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Abstract

Currently, it is difficult for a non-programmer to generate a complex sensor-

based robotic progiam. Most robot programming methods either generate only

very simple programs or are such that they are only useful to programmers. This

paper presents an interactive teach system that will allow a non-programmer to

create a program for a six degree of freedom mechanical robot. In addition to

conventional guiding capabilities, the teach system will allow the user to create

complex programs containing sensor-based moves (move until touch), loops, and

branches.
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1. INTRODUCTION

Currently, it is difficult for a non-programmer to generate a complex sensor-based

robotic program. Most robot programming methods either generate only very simple

programs or are such that they are only useful to programmers. This paper presents

an interactive teach system that will allow a non-programmer to create a program

for a six degree of freedom mechanical robot. In addition to conventional guiding

capabilities, the teach system allows the user to create complex programs containing

sensor-based moves (move until touch), loops, and branches.

This thesis introduces TRIG (Teaching Robots Interactively through Graphics), a

graphically oriented interactive robotic teach system. TRIG attempts to combine

the benefits of the two common robot programming techniques in use today:

teach by guiding and "textual" programming. TRIG maintains the simplicity and

immediate feedback of the guiding approach while incorporating many of the

flexible control structures available to most textual programmers.

1.1. HISTORY OF ROBOTS

In traditional automation, specialized automated devices are designed to perform

tasks that are tedious, exhausting, or unsafe for human involvement [Franchetti

78][Kato 79]. These devices are custom built and tailored for each installation.

Consequently, they are rather costly and only economically feasible for sufficiently

high throughputs [Nevins 75]. These traditional automation devices typically utilize

no direct external sensing in their operation. In the automation of an assembly

operation, for example, this is a severe limitation. The lack of sensing requires

that item to item tolerances be rather small (certainly much smaller than can be

handled by a human operator), often to the point of being more precise-than the

functionality of the assembled object dictates [Nevins 75]. Typically, vibrational

tracks are required to properly seperate and orient pieces of the assembly. During
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the -assembly process, parts must also be precisely positioned by accurate jigging.

Overall, this leads to a very costly mechanism to perform the assembly task.

Another major drawback of a specialized device is the excessive quantity of redesign

of the machine required to reflect any but the most trivial design changes in

the product being assembled. Such costly obstacles heavily restrict the economic

viability of these specialized devices [Ihnatowicz 78]..

During the last two decades, considerable effort has been expended towards creating

general purpoSe automated marnufacturing equipment. In particular, much of this

effort has been directed towards computer controlled manipulator arms, commonly

referred to as robots. Such computer mcontrolled devices have the advantage that

they can be programmed to perform any of a broad range of tasks with only

minimal engineering and debugging effort. This has made the robot become viable

for a broad range of needs [Corwin 75] [Gini 79].

The quality of an automated device can generally be measured by the following

attributes JCorwin 75]:

* Technical Capability

* Flexibility

* Reliability

In terms of technical capability and flexibility, a computer controlled robot can

outperform a specialized machine. Computer control allows tremendous flexibility

in deciding how to respond to any given situation. The robot can modify its actions

to reflect changing inputs, which makes such features as error detection possible

[Cunningham 79]. Such systems are performing successively more -complex tasks

with decreasing human involvement [Corwin 75]. .Also, the redundancy required

to minimize down-time ,is greatly Teduced when identical robots can be used -to

perform many different tasks. A small number of robots can serv: as the redundant
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Figure 1. Cost of Labor vs. Cost of Unimate Robot [Engelberger 79]

replacement for a large number of similar robots (.ln:n), rather than the redundancy

factor of 1:1 required for different machines to have similar protection.

There is doubt as to whether or not robots are as reliable as their highly specialized

counterparts. This is probably due to the relative infancy of most robotic designs.

For example, the Mean Time Between Failure (MTBF) for a 2000 series Unimate

robot more than doubled during its first three years in the field [Engelberger 74].

Currently, robots have MBTF's of greater than 400 hours, which many feel is high

enough to consider the machine "reliable", regardless of the relationship to the

reliability of "hard" automation [Engelberger 74].

Recently, economic issues have also played a large role in the increased use of robots

in industry, the primary factor being rising labor costs. During a period in which

U.S. labor costs rose over 200%, the cost of a Unimate robot rose only 40%[IR

--- -------------- ----- - - -----· --- ·- --
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76.2] (see figure 1).

Additional. benefits of a robot over a specialized automation device are:

* Reaction Time. An MIT study several years ago revealed that specialized

machines required an average of 12 months and a range of 7 to 24 months

to realize [Engclberger 79]. Robots, on the other hand, are atailable "off the

shelf" and can be used after relatively minimal ancilliary work [Zermeno 79].

* Debugging Cost. The overall debugging cost of a specialized device is large,

since the system is custom built and everything must be examined. With A

robot, the control hardware and software is already debugged - all that needs

attention is the user software.

* Obsolescence. Some specialized devices reach obsolescence even before they

are put into operation, usually due to changing job specifications that the

original device can not be readjusted to perform. Robots are much more flexible,

allowing many design changes to be accomIodated by software modifications.

Some other benefits of a computer controlled robot are:

r Positioning flexibility

*a Control flexibility

*e Ease of teaching

* System diagnostici:

X Eased in interfacing to other equipment
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1.2. METHODS OF PROGRAMMING ROBOTS

Today, such industrial robots typically consist of a manipulator with six

degfees of freedom. Three major methods of generating robot programs have

emerged through the years [Gini 79] [Salmon 78]. They are

1) teaching by showing (guiding)
2) explicit programming
3) task-level programming

Teaching By Showing

Most robots can usually be programmed by teaching. In teach mode, a

hand held pendant or similar device with a button for each degree of freedom

can be used to move the arm through the desired positions using one or more

different mathematical translation systems. The most common such systems are

world coordinates, tool coordinates, and joint mode.

* In the world coordinate system (figure 2a), .the teach buttons control movement

of the tool along the x-axis, y-axis, z-axis, and revolutions around each of

these axes, where the axes are defined relative to the base of the robot. All

axes move as necessary to produce the desired movement of the end effector.

* In the tool coordinate system (figure 2b), the teach box buttons control

movement along and relative to axes similar to the world coordinate axes,

only the axes are defined relative to the robot tool itself. Thus, movement in

the negative z direction will cause the tool to retract from its current position

directly backwards with no side-to-side or rotational movements.

* In joint mode (figure 2c), the teach box buttons map directly to each joint of

the robot, i.e., depresing the joint 1 button will result in movement of joint 1

with all other joints remaining fixed.

The teach box also contains a "record" button, which will save the information

about the current robot position when pressed. To program 'he robot in teach
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mode, one moves the robot arm around using the teach box1 until the robot is in a

desirable position and then presses the record button. This saves the current robot

location and orientation as the first step in the newly defined program. In a similar

manner, one defines as many positions as desired.

Once the positions have been saved, the new "program" can be executed. This

merely amounts to a rote playback of the stored positions, like a tape recorder.

Explicit Programming

Explicit programming entails the writing of a textual program, much like

conventional computer programming. Programs can be constructed that exploit

many different types of control structures (loops, conditionals, subroutines, etc.)

Variables are also introduced, which allows the user to monitor performance of the

robot and perform various actions based upon the values of these variables. The

teach box is usually used by the programmer, but only to define the locations that

the prograni will need - not to define the program.

Many explicit programming languages exist today. VAL [VAL 80] and SIGLA

[Park 77][Salmon 78] are two of the more widely used examples of this style of

programming.

This method is termed explicit programming because the programmer must

specify the exact positions to which the robot is to move. The programmer explicitly

controls every motion made by the robot. The program cannot simply state abstract

tasks like

PICK UP THE BOX

The program must. specify the exact position and rotation for .the tool to assume

(such positions are usually defined by the teach box). This means, for example, that

'Several alternative and original methods of specifying robot locations without using a "teach
box" to control the robot have also been explored, but will not be presented in this paper. These
methods are still inherently a teach by guiding approach jSeger 73I[Kelly 77].
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the robot does not employ any sort of collision avoidance scheme in determining

its trajectory: the programmer must navigate the arm around any obstacles.

Task-level Language

Rather than specifying exact positions for the robot to move to, task-level

languages allow the user to specify goals to be achieved by the program, and

the system decides how' best to move the manipulator to achieve the desired

effect. The language's compiler (or interpreter) decides what forces and torques

to exert, what speeds to use, where a part should be grasped, what trajectory to

use, etc. This obviously requires that the system have explicit knowledge of the

environment in which it is working (locations and specifications of parts, etC.). As

noted by Grossman and Taylor [Grossman 75], this effectively shifts the problem

of program generation from the procedures (assembly steps) to the declarations

(part descriptions). However, this problem is not as large as it may seem, as CAD

produced part descriptions can be utilized, simplifying the declarations required of

the programmer. Because of the heavy computational demands of such a language,

their use is limited to very large computer systems [Salmon 78].

Task level languages are currently still in the research and experimental

stages. Two examples of such systems are AUTOPASS and LAMA [Lieberman

77][Lozano-Pmez 76].

1.3. CONTRAST BETWEEN THE METHODS

Teaching by guiding is the most widely used method of program generation

used by current industry [Gini 78.2]; It has the obvious benefit that one need hot be

experienced in robotics or programming to generate the program. Manipulating the

robot using the teach box is relatively easy for even a complete novice [Blanding 79].

The user does not write a "textual" program, and thus is not required to be able to

relate abstract symbols to actions. This method also provides immediate feeedback

from the robot to the programmer. However, the associated cost is the very limited
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capability of the program: there are no provisions for conditional transfers of

control, loops, etc. The lack of text also makes maintainability, documcntation,

and modifications difficult.

Such programs that merely lead the robot through a series of predefined

positions without sensory feedback are not very useful in many modern applications

(such as assembly) [Gini 79][IR 76.1], and certainly do not exploit the sensory

capabilities of 'current robots. More sophisticated programs are desired, to allow for

larger part-to-part tolerances, recovery from object slippage, etc. Clearly, although

the simplicity of the process is exceptionally desirable, teaching by guiding (as it

now stands) is not a very powerful method of generating programs.

Currently, explicit programming is used in a few industrial robotic systems.

This method overcomes many of the simplistic shortcomings of the teach by guiding

approach, but now the robot user is required to be a programmer. the robot can no

longer be programmed by a layman. Also, the immediate feedback present in the

teach by guiding method has been lost, causing more errors and thus a lengthened

debugging process. In order to gain the added flexibility that explicit languages

provide, one has lost most of the simplicity of the teach by guiding process.

A task-level language simplifies the programming of the robot because it

parallels the way in which we think. The natural -Way in which humans approach a

task is in terms of the desired goals and subgoals of that task. It is natural to think

of an assembly operation, for example, in terms of the desired effects on the parts,

not in terms of the exact locations through time of a manipulator to carry out the

task [Gini 78.2]. For the user, task-level languages could make complex program

generation a rather simple process. However, task-level languages have proven to

be exceptionally difficult to implement. Most of the problems of such a language

are at the planning and representation level [Taylor 76], due to the ambiguity of

the task specification. All such languages are still in the research phases, and show

little hope of reaching full implementation in the near future.
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It seems clear that a system that could retain the simplicity of the guiding

process yet incorporate the more complex control structures of explicit programming

would be desirable. This is the function that TRIG attempts to perform.

1.4. TWO EXAMPLE PROGRAM GENERATION SYSTEMS

1.4.1. VAL

VAL is the most widely used industrial robotic programming language. It is

used in Unimation Inc. industrial robots. In VAL, the robot can be programmed

both by guiding and by explicit programming methods. In teach mode, the teach

box can manipulate the arm in the three coordinate systems presented earlier:

world, tool, and joint. The box also has a free mode. In free mao.de, selected joints

of the robot go limp (and if one is not careful, will cause the robot to crash to the

ground) and can be manually positioned by the user [VAL 80].

As in the exam:plc teach mode presented earlier, the defined positions can only

be replayed exactly as recorded. There .are no provisions for loops or conditional

transfers of control.

To overcome these limitations, the Unimnate robots can also be programmed

explicitly in a 'BASIC-like language (this method is by far the more common).

Constructs for simple loops, integer arithmetic, conditionalP branches, and position

transformations are provided. Subroutines, or subtasks, can be defined and used as

necessary iby main programs. Facility to communicate with auxilliary devices has

also been included via the S!IGNA'L command.

A simple program to wait :for :exterior signal number 5 and then pick up a

small box and drop it into a bin 10 times might look something like figure 3.
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1) SETI COUNT = 10
2) 99 WAIT 5
3) APPRO PICK, -50
4) MOVES PICK
5) CLOSEI
6) DEPART -50
7) MUVE DUMPIT
8) OPENI
9) SETI COUNT = COUNT - 1
10) IF COUNT GT 0 THEN 99
11) RETURN

Figure 3. A Sample VAL Program

Lines 1 and 9 provide examples of the integer variable operations provided in VAL,

which are of the form

SETI <intvuar> = <intvar or int> [<operation> <intvar or int>]

The MOVE [S] command is the basic robot movement motion command. MOVES

specifies a straight line trajectory to the specified location, whereas MOVE instructs

the robot to move along a joint-interpolated trajectory (which may diverge from the

straight trajectory but is computationally simpler and executes faster). APPRO (S]

and DEPART [S] move the robot hand to the position that is the specified distance

(in cm) backward or forward, respectively, along the current negative z axis of the

hand from the specified position.

In the above program, the locations PICK and QUMPIT can be defined by using the

teach box or can be numerically specified. All arm movements are specified explicitly

by the exact final location and orientation of the manipulator. The robot knows

nothing about its global environment, and is only required to interpolate between

the destination positions that it is given by the user to determine trajectories.
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1.4.2. AUTOPASS

AUTOPASS (AUTOmated Parts ASsembly System) is a world-modelling language

developed by IBM. The intent of AUTOPASS was to relieve the user of any need

to consider anything more detailed than the basic goals of the required task. In

turn, the compiler does all of the dirtywork. t'he compiler plans such things as the

grasping positions, trajectories, velocities, etc. (keeping collision avoidance and part

constraints in mind).. There are no variables, no loops, no conditional branches, etc.,

because everything that needs such structures is, to be taken care of by the compiler.

Instead,. AUTOPASS commands deal with such things as tool control, instructions for

placement, parts, etc [Park 771.

A typical AUTOPASS command, PLACE, has the following format [Lieberman

77]:

PLACE parta .ON partb

and has four (optional). qualifying phrases:

GRASPING surfaces
SUCH THAT final-condition
SUBJECT TO constraints
THEN HOLD POSITION

Other typical instructions include OPERATE, ATTATCH., VERIFY, SLIDE, TURN, SWI•CH,

and PUSH. The user program is compiled prior to run time into an explicit

programming language. The only requirements upon the user are that he be able

to correctly plan the assembly process and not specify impossible steps.

A program segmeat to obtain a screw from a'serew-dispenser might look like

figure 4 [Liebernman 77],
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PLACE screw-driver IN screw-dispenser

SUCH THAT screw--driver-ti'p CONTACTS dispenser

PLACE screw-driver-tip ON screw

SWITCH screw-driver ON

PUSH screw-driver-tip UNTIL seated

MOVE screw TO task

Figure 4. A Sample AUTOPASS Program

Clearly such a language requires an extensive geometric model of the world,

which is non-trivial to generate. Only a subset of AUTOPASS was ever implemented

by IBM [Lozano-P6rez 79].
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2. TRIG

The general approach taken in TRIG is to provide a graphical flowchart-like

representation of the program to the user, and to have a simple command syntax

that will allow the user to make arbitrary changes to .the program in a simple,

intuitive manner. Facilities are provided for non-linear control structures in the

form of loops and jumps. TRIG also has the sensory capabilities of a guarded

move (move until touch) with conditional branching.

TRIG is currently running in the Artificial Intelligence Laboratory at the

Massachesetts Institute of Technology. It consists of roughly 2000 lines (excluding

cormments) of code written in ZetaLisp, a dialect of Lisp. The target robotic device

is the Purbrick Arm located in NE43-905 (see figure 5).'The Purbrick Arm is a six

degree of freedom (three translational and three rotational) robot that is directly

driven by a PDP 11/45 (connected to the LISP Machine on which TRIG runs). The

platter on the table has 2 degrees of freedom (X and Y) and the section mounted on

the wall has the remaining four degrees of freedom (Z, ROLL, PITCH, and YAW),

Its gripper has two fingers, one of which contains a force sensing device.

2.1. THE DISPLAY

The basic user interaction in TRIG is carried out through a graphical/textual

display. The terminal screen is broken up into two:displays and a command window,

as shown in figure 6. The user gives commands and is queried when necessary in

the Program Editor window. The entire user program is represented in the Full

Display in miniature form without much detail - it does little more than indicate

the existence of each step. The Partial Display window is:a detailed listing of the

program (as much as will fit in the window). At any given Imoment, both the Fu

Display and the Partial Display have.a blinker that is located .at the active step (to

be explained later) in the program. Because bot'h blinkers point to the same step

in the program, the Full Display can be used to give a global idc, of the location of
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Figure 5. Purbrick Arm

the program section that is displayed in detail in the Partial Display. Any change

in program content by a command from the user is reflected immediately in both

display windows.

The representation of the program chosen is a 1-2 tree structure in which

every node has zero, one, or two sons. The top node in the tree is the first step

in the program. Transfer of control following completion of a step proceeds in a

downwards fashion (except as redirected by loops). If a node has no sons, then that

step is a terminating step in the program. If a node has only one son, then the

transfer of control will proceed to that son after the node has co•apleted execution.
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If a node has two sons, then the node is a step that represents a guarded move, and

transfer of control will proceed to either the right or left son, dictated by whether

or not an excessive force was detected.

2.2. TRIG COMMANDS

In TRIG, the user creates a program by typing simple commands and moving the

robotic arm around using the teach box. The available commands are documented

in the Appendix. Only a simple subset of the listed commands are usually required

to generate a program - many are provided for special capabilities that are not

always needed or are present to override defaults.

The commands can be broken up into two subsections: those that communicate

with the robot and have no effect upon the program being designed, and those that

pertain to the user's program.

The commands that communicate only with the robot are provided so the user

can verify stored positions, create new positions, navigate the robot to desirable

locations, and verify that certain guarded moves are feasible (test thresholds, etc.).

A Sample Program

Suppose that one wants to create a program that will perform the trivial task

outlined in figure 7.
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1. move the robot to the center of the workspace
2. pick up block A
3. dump block A in a bucket
4. pick up block B
5. place block B where block A was
6. move the robot back to the center of the workspace

Figure 7. Example Task No. 1

Upon starting up TRIG, both display windows will be empty (except for each

window's blinker) and the ">" prompt will be in the program editor window as in

figure 5, signalling that TRIG is ready to accept a command.

In the task of figure 7, Step 1 requires a movement to an absolute position (in

contrast to a relative movement) in the robot's workspace. So, the first command

entered by the user should be

>M CENTER

This will allow the teach box to control the robot arm, and will name the position

that is saved to be CENTER (the choice of the position name CENTER is arbitrary,

as are all position names). It will also make the first position in the program be

a move to CENTER. The teach box that TRIG currently uses operates the robot in

joint mode. When the robot has been positioned in the center of the workspace,

the record button is pressed and the ">" prompt will appear.

The partial display window will look as it does in figure 8, indicating that the

program is now one step long and contains a single move the the absolute position

CENTER. In the display, all program steps (except loops) are represented as two

grouped names: the step name and the position name. In figure 8, the default "***"

step name indicates that no step name was given to the defined si ep. (Similarly, the
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absence of a position name is indicated by "- - -".) In order to distinguish relative

and absolute' positions, relative positions are precceded by a "#" (see figure 14 for

examples).

Note that there is a cursor to the left of the step that was just defined (in

figure 8). This cursor indicates the current active step of the program. All step

insertions, step deletions, executions, and cursor movements are defined relative to

the current active step.

Step 2 also involves an absolute movement. The position of block A will need

to be. used again (to set block B there in step 5), so the position ought to be given

a name. The next command should be

>M BLOCK

The robot should be moved with the teach box until its grippers are on either

side of block A, and then the position should be saved. (This and all succeeding

steps in this example assume that there will be no collision with the block itself or

any other object in a linear move from CENTER to BLOCK. If such a collision were

possible, an intermediate position directly above BLOCK might be necessary.) The

robot still needs to grasp the block, so the user should type

>GRASP

The GRASP command adds a step to the program that will cause the robot to close

its grippers when the step is executed, as well as cause the robot to grasp the box

during the teach process.

The next step is simply

>M OVER-BUCKET

(and the robot should be moved to a position over the bucket and the position

should be saved). The robot still needs to let go of the block, so now

>UNGRASP
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Now the first three steps of Example 1 have been programmed. The Partial Display

of the program will look as it does in figure 10. The remainder of the program can

be found in figure 9:

>M CENTER
>M BLOCK
>GRASP
>M OVER-BUCKET
>UNGRASP

>M OTHER-BLOCK
>GRASP
>M BLOCK

Move to the predefined location? Yes.
>UNGRASP
>M CENTER
Move to the predefined location? Yes.

Figure 9. Commands to Perform Task of Figure 8

Note that neither of the last M commands required the positioning of the robot:

the positions named in tile command were already.known to the editor and thus

didn't need to be defined. TRIG will automatically move the robot to- the predefined

location. For this reason, TRIG will require the user to confirm that he realizes that

the position is already defined. The final program in the Partial Display window

should look as it does in figure 11. Because the program is relatively small, the

entire program can be displayed in the Partial Display.

This rather trivial example does not utilize much of the power of TRIG. In

fact, this example could be handled with ease by most current teach systems. As

soon as more of the basics are presented, a more taxing example will be analyzed.
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At any point in the preceeding teach process, the user can run. a section or the

entirety of his program that has been defined so far, either forwards or backwards

(via the RUN command). In TRIG, running a program backwards will cause an

"unwinding" (a traceback) of all steps that preceeded the current step during

forward execution. The preceeding steps will be executed in the exact reverse order,

including any loops or partial loops that were previously executed.2

Because the program is run in a interpretive manner, no pre-compilation is

necessary for program execution to take place. This allows the user to instantly

verify that any step or steps perform as desired. Should the user want to stop

the robot during execution (to avoid disasters or save time once an error has been

detected), facility is provided to terminate the program (by striking any key on the

terminal or flipping a "kill" switch on the teach box). During program execution,

the editing cursor marks the currently executing program step.

Many of the TRIG commands presented in Appendix 1 add steps to the

program. M, MA, and MR all add normal move-to-a-position type steps to the

program. MR indicates that the movement is to be relative to the current robot

position, and similarly MA indicates an absolute movement to a specified position.

The generic M command will default to be either a MA or a MR, depending upon

where it is used in the program. The default of M can be determined by the rules

outlined:in figure 12. In the series of commands in figure 11, all of the M commands

default to be absolute movements, as no preceeding steps are relative.

2It should be pointed out, however, that the effect of a step when executed forward can not
always be undone during reverse execution. A step that drops a block into a bucket is one such
example.
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1. Position name argument not given by user
OR Position name given is previously undefined:

-> If a move-to type step exists above the current step,
then default = type of movement of prior move-to step
else default = absolute

2. Position name argument is previously define'd:
-> default = type of movement of argument definition

Figure 12. Rules for Default of " M" Command

M, MA, and MR each have an optional position name argument. Without an argument,

TRIG will expect the teach box to be used to define a new unnamed position. This

is useful when the position is not going to be referenced again in the program, in

which case the position name would serve little purpose except documentation. In

case the position ever needs to be referenced again, it should be given a 'name.

Specifying a previously undefined position name argument such as "foo" will result

in the position defined by the teach box to be known to TRIG as "foo", and can

be referenced as such whenever a movement to that position is desired. (This is

not to say that unnamed positions cannot be referenced ever again, but the process

is rather indirect.) If the argument position name is already defined, repositioning

the robot with the teach box is unnecessary: TRIG will insert the step with the

predefined position into the program immediately, and move the robot to that

location.

The other commands that add steps to the program will be discussed later

when they are used in an example.

There are also several commands to manipulate the active step pointer, or

editing cursor. Two such commands are N (for Next) and P (for Previous), which

each take an optional numerical argument and move the active pointer up or
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down the corresponding number of program steps. If the argument is ommitted,

it defaults to 1. Whether the movement is up or down, loops are ignored. Moving

around a program in this fashion is not unambigious, however: branches exist.

TRIG handles branch selection as follows. When moving down the program (using

N), TRIG. will prompt the user to determine the proper route to take. When moving

up in the program (using P), TRIG will move the pointer back through the path of

"most recent steps" 3 . In practice, this is almost always the desired movement.

In some gases, moving up and down in the preceeding manner can be very

tedious, for which cases the GOTO command can be used. GOTO, which requires a

step-name argument, causes the active pointer to move to the specified step-name.

Unnamed steps cannot be reached with a GOTO.

Program steps can be deleted in several ways. If only a single program step is to

be deleted, the "D" command is used. This command takes an optional step-name

argument, which defaults to the active step. A series of steps can be deleted.with

multiple uses of the "D" command or by using the "DA" command. The "DA"

command (who's argument also defaults to the current active step) will delete a

step and all dependent sub-steps (any node all of whose parents are decendants of

the specified node). In a purely linear program, this would amount to every step

beneath the specified step.

Another Example

Figure 1.3 briefly outlines a palletizing operation.This application will require

relative movements, loops, and a guarded move. Figure 14 represents a possible

TRIG teach ptocess to perform this task, and the resulting screen setup is shown

in figures 16 and 17. Two screens are shown because the program is large enough

that the entire program can no longer fit within the Partial Window at one time.

When the commands of figure 14 have been entered, the Partial Window will only

3The "most recent step" of a step with several possible "fathers" is defined as the father that

was active most recently.
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contain the latter section of the program (as in figure 16) because the active step

cursor is at the end of the program. A command to move the active step cursor into

the top section of the program was then typed, which caused the Partial Display

to contain the upper section of the program in detail (yeilding figure 17). Figure 15

attempts to show the location of some of the positions used by the commands in

figure 14.

1. Go to the center of the workspace.
2. Pick up a box from a stack. If the stack is empty,

move to done position.
3. Place the box in the pallet.
4. Transfer the remaining boxes from the stack to the

pallet. If the pallet is full, move to the done
position.

5. Move to done position.

Figure 13. Example Task No. 2
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1) >M CENTER ... define center...(center of the workspacc)
2) >M STACK ... define stack...(just above the top of the- stack)
3) >CN GET-BLOCK
4) >GRASP
5) >MG BOTTOM

Threshold: .7

Force Vector: (.3 .3 .3) ... define bottom...
(at the bottom of the stack)

6) >M DONE ... define done...(done position)
Down the guarded branch? No.

7) >CN FINISH
8) >P 3
9) >RUN 3
10) >MR INCHUP

Down the guarded branch? Yes. ... define inchup...
(inch up the manipulator until it no longer touches the block)

11) >UNGRASP
12) >M DWNBLK ... define dwnblk...

(hand down until fingers can pick up block)
13) >GRASP
14) >MA PALLET ... define pallet,..(above corner of pallet)
15) >MR PLACE ... define place...(down into pallet)
16) >UNGRASP
17) >M -PLACE

Move to the predefined location? Yes.

18) >M YOVER ... define yover...(over to next row in pallet)
19) >SAVPOS PALLET
20) >CN RECALCI
21) >LOOP GET-BLOCK 2
22) >M XYOVER ... define xyo.ver...

(over one column and back 3 rows in pallet)
23) >CN NEWROW
24) >SAVPOS PALLET
25) >LOOP GET-BLOCK: 4
26) >LINK FINISH

Figure 14. Sample Palletizing Program (for Example 2)
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Figure 15. Approximate Manipulator Positions defined during Example 2
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SMORES

I
st1

sgrasDp

I .Sitspallet

2St
# place

I*1
SungraIsps

I,

S-pelace

yover

RECALCI
save P'LLET

sLOOPS*
GE-BLOCK 2 .8

HEWIRO)
Nyover

save PALLET

'LrHK F . . . . . . . . . . . .. .. . .

> I YOVER
>SAVPOS PALLET
>C" RECRLCI
>LOOP GET-BLOCK 2 0
>M NYOVER

>SAVPOS PALLET
>LOOP GET-BLOCK 4

PROGRORI EPITUR FULL DISPLRY

Figure 16. Coxmpleted Display for UEx iple 2 (.ast SectiQn of Program)
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ISt
center

IGET-BLOCK
stock

"fasp'
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FINISH ass
done I nchup
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Sungrasps

SIR
I dwnblk

agrasps

tSa
pallet

SIRI place

ass
tungrasps

I

I

RECALCI
save PALLET

sMORES

PARTIAL DISPLRY

>LIIK FINIISH
)GOTO GET-BLOCK

>SRUPOS PALLET
>CH RECRLCI
>LOOP GET-BLOCK 2
'> HYOVER
>CH HEuROM
>SRUPOS PALLET
>LOOP GET-BLOCK 4

PROGRRM EDITOR FULL DISPLRY

Figure 17. Completed Display for Example 2 (First Section of Program)

____ __ ~I~ ·



- 32 -

The constructed TRIG program utilizes a guarded move (move until touch)

to tell where the next item on the stack is or if the stack is empty. Nested loops are

used to index through the pallet. It should be noted that the program is slightly

more complex than necessary, in order to introduce more TRIG commands for the

purpose of discussion and. clarity. For this same reason, all positions have been

given names, although most of these names are unnecessary.

After the robot has been moved to the center of the workspace (line 1 of figure

14), the next subgoal is to find the top block on the stack. This is acheived by

executing a guarded move that starts just above the stack (line 2) and has a goal

position at the bottom of the stack (line 5). Before the guarded move is made,

however, the grippers are closed (line 4) purely for esthetic reasons. (The guarded

move -could just as easily be performed with the grippers open.)

The command at Line 3 changes the name of the current active step (in'which

there is a movement to STACK) to GET-BLOCK so that it can be referenced later. The

previous move step (to CENTER) is still unnamed, as can be seen in figure 17.

If any blocks are present, the previously mentioned guarded move will cause

the manipulator to hit them. The MG set of commands (MG, MAG, and MRG) are

analogous to the set of normal move commands described earlier (M, MA, MR), the

only difference being that they construct a guarded move step rather than a normal

move step. A guarded move has two force-related values associated with it that

the user is prompted for: a threshold and a force vector. When a guarded move

is made, the decision of when to terminate the trajectory due to incurred forces

depends upon these values. The test for excessive force is

[Force Vector] [ f: > Threshold

where [fx fy f,] is the vector of actual measured forces. If this test is true, then

an excessive force is said to have occurred, and the current :obot trajectory is
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terminated. Control of execution in the program will pass to the right hand side

son (the guarded son) in the partial display window. Had the robot reached the

goal position without incurring an excessive force, control would have passed to the

left son (the normal son).

Admittedly, line 5 assumes that the stack is not present during this phase of

the teach operation (becaiuse the user must move the robot to the bottom of the

stack in order to define BOTTOM, which would not be possible if the stack were

present). Possible improvements to this scheme are presented in the Extensions

section later.

Now the guarded move's two sons need to be defined. If no blocks are found,

the manipulator can be moved to the DONE position. If a block is discovered, it

should be picked up. The choice of which step to define first is arbitrary, as TRIG

allows the user the flexibility to add a step to a program at any location whenever

it is desired.

The commands of figure 14 define the normal son first (line 6). As stated

earlier, the normal son defines the action to be taken if the manipulator makes

it to position BOTTOM withoutt encountering an excessive force. Because this step

will be required later (when the pallet is full), it should be given a name. Line 7

names thisbstep FINISH. The lack of excessive force will only occur if there are no

more blocks in the stack. In this case, a terminating step of the program has been

reached which has no steps that need follow it.

The guarded son (what to do if an excessive force is detected) of the guarded

move has yet to be defined. To do this, one must manipulate the editing cursor

back to the guarded step so that its other can be defined. A simple P command will

not suffice, however, even though it will position the cursor in the desired location.

This is because the manipulator is still in the DONE position, a position that it will

never be in prior to executing the guarded move to BOTTOM step. The teach process

is simplified if the two steps prior to the guarded move are exec ted. This will get
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the manipulator into the position that it will be in when the program reaches the

guarded move during normal program execution. Alternatively, the effect of lines

8 and 9 can be produced by:

>GOPOS STACK ;send the robot to position STACK
>P ;move the cursor back to the guarded step
>RUN I ;execute the guarded move

or

>RUN -1 ;undo the last step (undoes FINISH)
>RUN i ;execute the guarded move

or any of several other combinations of commands. (Before the final RUN command

is issued, one should make sure that there is a block on the stack for the manipulator

to pick up.)

Steps 10 through 17 cause the robot to grasp the block on top of the stack

(t he block it bumped into) and place it into the pallet. Step 17 also demonstrates

a useful variation of the family of move commands. Previously defined relative

positions with aprcteeding "-" sign can be used as a command argument, indicating

a relative movement with the same magnitude as the predefined position and an

opposite direction. This saves the user from having to define relative movements

that are the mere opposites of predefined movements.

Step 18 moves the manipulator above the next row in the pallet, which is

where the next block should be placed. The SAVPOS command: in line 19 defines

this location to be the new location for the position PALLET. The argument to the

SAVPOS command becomes a "variable" position, the value. of which can be changed

over time (by using SAVPOS commands). In this case, the PALLET position is used

to indicate the position for placement of the next block. Line 20 assigns a name to

the SAVPOS step, purely for the sake of discussion.

Loops are introduced. in line 21. The LOOP command requires two arguments,

a step-name and a loop coun'. The loop step thus'icreated will cause the program
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to transfer control from step RECALCI to step GET-BLOCK twice (and therefore the

"body" of the loop will be executed three times) before transfer of control from

RECALCI finally proceeds to NEWROW. The displayed form of the loop step (see figure

17) shows the node to be looped back to, the desired loop count, and the current

loop count (which is updated as it changes during run-time).

Steps 22 through 24 move the manipulator back over to the first row in the

next column and redefine PALLET. (When a row is filled up, the next block will go

in the next column, so PALLET should be reset to that location.) All that remains

is to.repeat the row-filling process 4 times (step 25) and then execute the FINISH

step that was previously defined.

The LINK commalnd of line 26 causes the flow of control in the program to

proceed to FINISH when the lower loop to GET-BLOCK finally falls through. Thus, it

causes an unconditional branch to the specified step in the program. Such branches

are displayed as the target step name, surrounded by a box (see figure 16).

Now that the program is defined, running it will place the first 15 blocks in

the stack into the pallet. If it is then run backwards (with a RUN -100 command,

for example), the robot will pick up thle 15 blocks in the pallet and place them

back on the stack.

To briefly demonstrate the editing capabilities of TRIG, assume that the

command on line 21 had been ommitted. The correction can be made by:

>GOTO RECALCI
>LOOP GET-BLOCK 2

and the omission will be corected. Similarly, by manipulating the active step cursor

to the proper location, any number of steps can be inserted or deleted.

The program can be saved in a file with the W (for Write) command, and

previously saved programs can be read into TRIG using the R (for Read) command.

Both of these commands take a filename argument.
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3. IMPLEMENTATION

The internal representation of a TRIG program is relatively simple. Each

program step is a node in a 1-2 tree. Every node in the tree has forward pointers

to one or two sons and backward pointers to at least one father, (see figure 21).

Each node has specific information associated with it, as detailed in section 3.1

and figures 18 and 19. The major properties of the node are necessary to properly

construct the tree and the program. The minor properties have transient values

(that assist in display creation, etc.) and are recalculated frequently during program

editing .and execution. When a WRITE or READ command is performed, only the

major properties are written or read, respectively. Execution of "the program"

merely consists of moving through the tree, executing the intended task of a node,

and following various pointers to determine which node to execute next (to be

explained in more detail later).

3.1. SIMPLE STEP NODES

The 1-2 tree used by TRIG contains many nodes that only have one son, and

represent a particular instruction for robot motion. These nodes will be referred to

as simple nodes. Every manipulator motion except the guarded move is caused by

the execution of one of these nodes.

These nodes can be seperated into two categories: Group 1) those that change

the location and orientation of the manipulator and Group 2) those that operate the

grippers. A group 1 simple node is created by a M, MA, or MR command. The value

of the position property of these nodes specifies the name of their corresponding

position. Any number of group 1 simple nodes can indicate movement to the same

position. All such nodes have a type property of normal.



- 37 -

1) Type
2) Position
3) Sons
4) Fathers
5) Pstack
6) Loop Information
7) Threshold
8) Force Vector

Figure 18. Major Properties of a Node

1) Value
2) Location
3) Cursor Location
4) Display Number

Figure 19. Minor Properties of a Node

1) Position Data
2) Init Value
3) Relative

Figure 20. Properties of a Position

The positions specified by these nodes also have properties (see figure 20),

which distinguish absolute positions from relative positions, etc. When a group

1 simple node is executed, its corresponding position is first examined. Absolute

positions are output directly as a manipulator goal. If the position is relative, the

current manipulator location is added to the corresponding relative position data
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and the sum is treated as an absolute location for manipulator positioning.

The group 2 simple nodes differ from the group I nodes structurally in that they

require no position information. GRASP and UNGRASP commands create nodes that

have the unique types grasp and ungrasp. This allows such nodes to be identified as

pertaining to a specific direction of gripper motion, without any additional position

information. This method is acceptable as long as there are only two gripper states.

If a variable width of opening of the grippers were allowed, the gripper information

would have to; be stored and treated in a similar fashion to (or even as a part of)

the position information. On many current robots, the gripper information is an

integeral part of the position information.

3.2. OTHIER STEP NODES

3.2.1. Loops

During program execution, if one temporarily neglects loops, the node to

execute following execution of the current node can be determined from the sons

and fathers lists (major properties of'a node) associated with the current node.

These lists. are constructed as would be expected for a doubly-linked list, as shown

in figure 21. Every node has at most two sons, and can have any number of fathers

(muitiple fathers are caused by the LINK command).

However, in the case of loops,. one can no longer trace program executionri

through the sons and fathers lists. During forward execution, a loop node will either

pass control to its sonr or back to some other node, depending upon the value of

the loop count (commonly known as looping back or falling through the loop). The

node to loop back to (the loop target node), the current loop count, and the target

loop count are all stored in the Loop Information property of the loop node.

Further complications arise when the program is run backwards. The Loop

Information property of a loop node contains information that serves as a forward

rn't nnlv -. fr~ thp nfiF~ he rF ~evmfihle. the loon target :ode needs to have
nrrlv - or te prcessto b revrsibe th loo tar-et -odeneed tohav



- 39 -

*top*: sons (A)

fathers (*top*)
sons (B)

fathers (A E)
sons (*none* C)

fathers (B)
sons (D E)

fathers (C
sons (*nonf

*none*: fathers (B D E)

Figure 21. Construction of Father-Son Lists

rs (C)
*none*)

___ ______ ~_~____ __ __
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some kind of a pointer back to the loop node. This is a basic property of any doubly

linked list; if node A points to node 1, then node B has some form of a pointer to

node A, thereby facilitating mobility in both directions.

One alternative is to place a pointer to the loop node in the loop target node.

As long as no two loop nodes specify the same loop target node, this method will

work acceptably. However, as soon as two or more loop nodes point to the same

loop target node (which occurs frequently when nested loops are used), confusion

results. When this multiple loop target node is encountered during a backwards

execution, it will be difficult to choose the proper loop node to jump back to out

of the several that may exist.

TRIG solves this problem by introducing bloop (for backward loop) nodes.

Bloop nodes aid loop nodes occur in pairs - every loop node has a pointer to one and

only one bloop node, and every bloop node has a pointer to one and only one loop

node. The bloop nodes are placed in the. tree immediatly preceeding the loop target

node, such that the only father of the loop target node will be the bloop node.

When multiple loop nodes have the same loop target node, their corresponding

bloop nodes "stack up" on top of that node in the proper nested order.

Figure 22 shows the way in which loop and bloop nodes are inserted into the

TRIG tree. The user commands on the right will produce the tree on the left.

Each box in the tree on the left represents a node in. the internal TRIG tree. Each

node in the figure has a name (at the top) and the function the node is to perform

(at the bottom). Prior to the first loop command ("LOOP LOCi 2"), the tree only

contains the nodes A, LOCI, and- D. The loop command causes the nodes C and E

to. be inserted. Similarly, the second loop command causes the insertion of nodes

G and B. During forward execution the bloop nodes; are ignored and treated' as a

"do nothing". The loop nodes, however, will transfer control to their corresponding

bloop nodes the specified number of times. When executing in reverse, the loop

and bloop nodes swap functions: the loop, nodes are ignored and the bloop nodes
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INTERNAL TREE USER COMMANDS

>M READY
>M PICK
>CN LOC1
>GRASP
>LOOP LOC1 2
>M PLACE
>LOOP LOC1 3
>UNGRASP

Figure 22. Insertion of Loop-Bloop Nodes
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cause the transfers of control.

TRIG also takes. care of initializing loops every time they are' entered, causing

nested loops to behave in the conventional way: an inner loop is iterated its

corerresponding number of times for every iteration of an outer loop. In the

example of figure 22, LOC1 and D are executed (2 + 1)(3 + 1) = 12 times.

(Because the loop nodes loop back,. their bodies are executed one more time than

their loop count.

In order tb keep this implementation method invisible to the user, bloop nodes

do not appear in the program display windows (see figures 16 and 17).

3.2.2., Guarded Moves:

Guarded move nodes are the only type of nodes in TRIG that have two sons.

They are similar to normal: moves, in their treatment of relative and absolute'

position data., Guarded nodes: have user-supplied values for the properties threshold

and force vector,. which are used in the test, for "excessive force".

A seperate trajectory calculation routine had' to be written: for guarded moves

that makes a slow, linear trajectory. The trajectory routine, used: for normal moves

is much, too fast to-be used for guarded:moves.. Even if the user specifies a very small

threshold. for the excessive force calculation-, the inertia: of theý arm; will: cause it to

drive much. harder into any object in its path than is desirable. Also, stopping the.

arm abruptly when it is travelling. at high speeds can' damage the' arm's hardware.

The guarded trajectory proceeds slowly enough. that inertial effects are minimal-

and, abrupt stops in. the trajectory are not detrimental; to- the- manipulator.

The new guarded trajectory routine also performs the necessary force readings

and calculations. If the encountered force is great enough,. the trajectory is

terminated. Because the arm only has a-force sensor on one of its fingers, the results

are usually better if the guarded moves are' made with the. gripper open, causing

l the "sensitized" fin er 

r
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closed adds to the rigidity of the fingers as a unit, causing the force sensors to

detect a smaller force than if the gripper were open.

3.2.3. Savpos Command

The init value of a position (see figure 20) is necessary because of the existence

of the SAVPOS command. Prior to any program execution, all position data values

are set equal to the position's init value. In order to have the user's program run

the same way each time it is run, the initial values of all of the positions must be

consistent from run to run. For example, the program built by figure 14 requires

that the initial position PALLET correspond to the corner of the pallet every time

that the program is run from the top, even though the position data of PALLET is

modified many times during the course of the program.

3.3. NOTES ON EXECUTION

3.3.1. Special Nodes

There are two nodes that are present in every tree. These nodes are *top*

and *none*. *top* is always the first (top) node in the tree and points at the first

user-defined step (if one exists, else points at *none*). *none* is the son of any

node without a user-defined child; it signals a termination of the program. In short,

*top* and *none* are the beginning and end of any and every TRIG program (see

figure 21). These nodes allow TRIG to locate the beginning and detect the end of

program execution.

3.3.2. The Position Stack

The fact that a TRIG programs contain both absolute and relative movements

makes the implementation of running a program backward difficult. For this reason,

the pstack property of a node was created. The pstack (for position stack) of a node

contains information relevant only to backwards execution. When a program is

being run backwards, the desired effect is to "undo" each command in a backtrace

of the recent execution. When there are no relative movements, "undoing" the
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effect of a move-to-a-position type stcep is-simple: simply execute the most recent

move-to-a-position type step *prior to that step. When relative movements are

introduced, however, the solution is not as simple. The position that the r'obot

was in prior to any particular movement can be a sum of any number of prior

relative movements. Rather than search back, possibly through a lengthly series of

loops, to determine the position that the robot was in before a. particular step was

executed, TRIG takes advantage of the plentiful memory space of a LISP Machinie

and. creates a stack .of previous positions for every node. When the program is run

forward, the c urrent robot position is pushed onto the stack of a node before the

node is executed. This enables the backwards execution feature to be rather simply

performed: to undo a move-to type step, simnply pop the top position off of that

node's stack and move the robot to that position.
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4. CONCLUSIONS

4.1. DISCUSSION

The thrust behind the development of TRIG was the need for a non-programmer

to be able to generate a complex robot program. TRIG has not been widely tested

yet, so :t is difficult to determine its success. Certainly, TRIG is not a polished,

perfected systerim. Rather, it is -a prototype of a new method of robot program

generation. Time will uncover many of its flaws that may not be visible yet. Several

of the possible extensions to be presented later will greatly enhance its ability to

generate complex programs and create a friendlier user interface. It is hoped that

enhanced versions of TRIG may someday be suitable for general use.

As it stands, TRIG has been used to generate numerous programs fairly readily.

The author has created many programs with TRIG, most of which are at least as

complex as Example 2 presented earlier (figure 14). Such tasks are non-trivial to

write in explicit programming languages, yet TRIG seems to handle them rather

easily.

TRIG is easier to understand when one is faced with the actual display screen

and can run a sample program than it may seem from the preceeding introduction.

This is because TRIG relies heavily upon the immediate feedback from the robot

and the continuously updated display windows. Because of this interaction, it is

difficult to give a proper flavor of TRIG here.

4.2. EXTENSIONS

One possible extension to TRIG that would be valuable is the introduction

of subroutines. Such an addition would make many applications programs much

simpler and would help add modularity to TRIG programs. It would also reduce

the clutter in the display windows when the same series of commands are executed

several times in different sections of the program, by replacing the seties with
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a single subroutine call node. TRIG would lend itself easily to this extension

during execution, as little more than defining another node type and its associated

properties need be done. The bulk of the work will lie in the editing phases of

subroutines, as now the instruction set will have to be augmented to allow for

the seperate displaying, referencing, and editing of multiple program sections. A

possible consequence of subroutines would be a "library", which could contain

the moat commonly used subroutines and could be loaded into the. editor at the

beginning of a session.

At some point, TRIG can be used to generate output in an explicit programming

language that -can in turn be given to a manipulator. This would remove much of

the overhead that TRIG imposes and would allow the resulting program -to be run

on a smaller machine (smaller than a LISP Machine) due to the saved space. TRIG

would be the front end of the system, operating as an editor and debugger. Once

the correct program is created, it can be "compiled" into 'the more efficient explicit

programming language.

A source -of possible problems in the -current version of TRIG was pointed

out on page 33. 'Currentily, when .defining a position ifor -a guarded -move to go to,

the user must -place :the robot in -that position. Many times, this involves moving

away whatever the guarded move was esupposed to run into, which is not always

convenient or possible. ý(Say., for example, that the object is fixed!) Alternatively,

the user could be allowed to define a vector with the -robot which Would define a

direction for the move (this is the method used in.FUNKY [Grossman 77]). 'The

user -might also specify a .scaling factor for the defined vector to determine the

cndpoint :6f the trajectory.

Certainly, TRIG's current graphical interface is somewhat crude. The tree is

not as efficiently or as well displayed as might be possible. Also, the addition of a

graphical input .device with menus on the display screen might be considered, as

this would simplify the user interface considerably.
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One of the system's major limitations is the inability to comment the programs

that are created. This makes it more difficult to modify previously written programs.

It is not exactly clear how comments can be incorporated into the existing structure

of TRIG without cluttering up the program display screen to a large extent.
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5. APPENDIX OF TRIG COMMANDS

The Following: Commands Control: the Robot Motion.
FREE

Allow the robot to be controlled by the teach box until the- save button is
pressed.

GOGPOS < [-]pos-name>
Move the robot (guarded) to the specified position. The. user will be prompted.
for a threshold and a force vector.

GOGRASP
Close the'robot grippers.

GOPOS < -] pos--name>
Move the robot to the specified position.

GOUNGRASP
Open the robot grippers.

The Following Commands Affect the Robot Program
CALPOS

Begin a position calculation. When. the ENDCAL <pos-name> command is
typed, <pos-name> will: be defined as. the relative position difference between
the current robot positions when. the two comma-lds were typed.

CN. <step-name>
Change the name of the current step to be <step-name>.

CP <pos-name>
Change the position of the current step to be: <pos-name>. The position
specified by <pos-name> must already be defined.

CT <threshold->
Change the force threshold of the current step to be <threshold>. (Only
applies to guarded steps.)

CV <force-vect>
Change the force vector of the current step to <force-vect>. ( Of the form
"(x y z)" - only applies to guarded steps.)

D [<step--name> [{n,g}].)
Delete program step named <step-name>. If program step is guarded, then.
n or g specifies which subtree to save.

DA [<step-name>]
Delete program step <step-name> and all dependent stepl3.
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DLINK <step-name> [{n,g}]
Make the current step unlink from predefined and multiply used step <step-
name>.

ENDCAL <pos-name>
Terminates a position calculation. <pos-name> will be set to the relative
position between the robot position when CALPOS was typed and the current
robot position.

EX <file spec>
Terminate editor, writing program out to file <file-spec>.

FLUSH
Erase the current program.

GOTO <step-name>
Move editor cursor to step <step-name>.

GRASP
Make the robot grippers close.

HERE <pos-name>
Define the current absolute robot location to be <pos-name>.

L <step-name> [{n,g}]
Make the program link to predefined step <step-name>.

LOOP <step-name> <# of times>
When executing program, loop to step named <step-name> the specified
number of times before proceeding on to next node.

M [[-]<pos-name> [{n,g}])
Move (normal) to postion <pos-name> if it has been pre-defined, else move
normal and define user specified position to be < pos-name > . Type of movement

(relative or absolute) is determined by use.

MA [<pos-name> [{n,g}]]
Same as M only type of movement is absolute.

MAG [<pos-name> [{n,g}]]
Same as MG only type of mbvement is absolute.

MG [<[-]pos-name> [{n , g}]]
Move (guarded) to postion <pos-name> if it has been pre-defined, else
move guarded and define user specified position to be <pos-name>. Type of
movement (relative or absolute) is determined by use.

MR [<[-Ipos-name> [{n,g}]]
Same as M only type of movement is relative.
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MRG [<[-]pos-name> .({n,)g}J
Same as MG only type of movement is relative.

N [<# of steps.>]
Proceed to next (normal or guarded) program step.

P [<# of steps>]
Proceed to previous program step.

Q
Terminate the editor, saving nothing.

R <file spec>
Read in the program saved in file <file--pec>,

RUN [<# of steps>]
Execute the specified number -of program steps starting with the current active
location. A negative step count indicates to run the program bhackward. If no
argument, executes the entire program.

SA <pos-name>
Save current absolute position as < posname>.

SAYPOS <pos-name> t{n,g}]
Create a program step that will set the location of < pos-narne> to the current
robot position during programn execution.

SR <pos-name>
Save current relative position as <posname>.

UNGRASP
Make the robot grippers open,

W [<file spec>]
Write program out to file <file-spec>.
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