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very simple programs or are such that they are only useful to programmers. This
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1. INTRODUCTION

Currently, it is difficult for a non-programmer to generate a complex sensor-bascd
robotic program. Most robot programming methods either gencrate only very simple
programs or are such that they are only useful to programmers. This paper presents
an interactive teach system that will allow a non-programmer to create a program
for a six degree of freedom mechanical robot. In addition to conventional guiding
capabilities, the teach system allows the user to create complex programs containing

sensor-based moves {move until touch), loops, and branches.

This thesis in‘trodﬁces TRIG (Teaching Robots Interactively through Graphics), a
graphically oriented interactive robotic teach system. TRIG attempts to combine
the bencfits of the two common robot programming tec]xniqués in use today:
teach by guiding and “textual” programming. TRIG maintains the simplicity and
immediate feedback of the guiding approach while incorporating many of the

flexible control structures available to most textual programmers.

1.1. HISTORY OF ROBOTS

In traditional automation, specialized autom;;ted devices are designed to perform
tasks that are tedious, exhausting, or unsafe for human involvemént [Franchetti
78][Kato 79]. These devices are custom built and tailored for each installation.
Consequently, they are rat_,he'r.costly and only economically feasible for sulficiently
high throﬁghput.s [Nevins 75]. These traditional automation devices typically utilize
no direct external sensing in their operation. In the automation of an assembly
operation, for example, this is a severe limitation. The lack of sensing requires
that item to item tolerances be rather small (certainly much smaller than can be
handled by a human operator), often to the point of being more precise-than the
functionality of the assembled object dictates [Nevins 75). Typically, vibrational

tracks are required to properly 'sep;arat;e and orient pieces of the assembly. During



the .assembly process, parts must also be precisely positioned by accurate jigging.

Overall, this leads to a very costly mechanism to perform the assembly task.

Another major drawback of a specialized device is the excessive quantity of redesign
of the machine required to reflect any but the most trivial design changes in
the product being assembled. Such costly obstacles heavily restrict the economic

viability of these specialized devices [Thnatowics 78].

During the last two decades, considerable effort has been expended towards creating
gencral purpose automated marufacturing equipment. In particular, much of this
effort has been directed towards computer controlled manipulator arms, commonly
referred to as robots. Such computer controlled devices have the advantage that
they can be programmed to perform any of a broad range of tasks with only
minimal engineering and debugging effort. This has ma;ie the robot become viable

for a broad range of needs {Corwin 75} [Gini 79).

The quality of an automated device can generally be measured by the following
attributes [Corwin 75):

s Technical Capability
» - Flexibility

» Reliability

In terms of technical capability and flexibility, a computer controlled robot can
outperform a specialized machine. Computer control allows tremendous flexibility
in deciding ﬁow to respond to any given situation. The robot can modify its actions
to reflect changing inputs, which makes such features as error detection possible
_[Cunningha-m 7‘9';]_. Such systems are performing su.ccess{veiy more .complex tasks
-with decreasing human involvement [Corwin 75]. Also, the redundancy required
to minimize down-time is greatly reduced when identical robots can be used to

perform tnany different tasks. A small number of robets.can servz as the redundant
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Figure 1. Cost of Labor vs. Cost of Unimate Robot [Engelberger 79]

replacement for a large number of similar robots (.1n:n), rather than the redundahcy

factor of 1:1 required for different machines to have similar protection.

There is doubt as to whether or not robots are as reliable as their highly. specialized
counterparts. This is probably due to the relative infancy.of most robotic designs.
For example, the Mean Time Between Failure (MTBF) for a 2000 serics Unimate
robot more than doubled during its first three years in the field [Engelberger 74].
Cﬁrrently, robots have MBTF"’s of greater than 400 hours, which many feel is high
enough to consider the machine “reliable”, rega.rdléss of the relationship to the

reliability of “hard” automation [Engelberger 74].

Recently, economic issues have also played a large role in the increased use of robots
in industry, the primary factor being rising labor costs. During a period in which

U.S. labor costs rose over 200%, the cost of a Unimate robot rose only 40%[IR



76.2] (see figure 1).
- Additional benefits of a robet over a specialized automation device are:

e Reaction Time. An MIT study several years ago rcvealed that specialized
machines required an average of 12 months and a range of 7 to 24 months
to realize [Engeclberger 79]. Robots, on the other hand, are available “off the
she!f” and can be used after relatively minimal ancilliary work [Zermeno 79].

e Debugging Cost. The overall debugging cost of a specialized deviee is large,
sincé the system is custom built and everything must be examined. With &
robot, the control hardware and sofiware is already debugged - all that needs
attention is the user software.

e Obsolescence. Some spe‘cialized devices reach obsolescerice even before they
are put into operation, usually due¢ to changing job specificatioris that the
original device can not be readjusted to perform. Robets are much more flexible,
allowing many design changes to be accomodated by software modifications.

- Some otlier benefits of & computer controlled robot are:
¢ Positioning flexibility
¢ Control flexibility
¢ Ease of teaching.
¢ System diagnostics

¢ Ease in interfacing to other equipment



.2. METHODS OF PROGRAMMING ROBOTS

Today, such industrial robots typically consist of a manipulator with six

degtees of freedom. Three major methods of generating robot programs have

emerged through the years [Gini 79] [Salmon 78]. They are

1) teaching by showing (guiding)
2) explicit programming
3) task-level programming

Teaching By S‘howing

Most robots can usually be programmed by teaching. In teach mode, a

hand held pendant or similar device with a button for each degree of frcedom

can be used to move the arm through the desired positions using one or more

different mathematical translation systems. The most common such systems are

world coordinates, tool coordinates, and joint mode.

In the world coordinate system (figure 2a), the teach buttons control movement
of the tool along the x-axis, y-axis, z-axis, and revolutions around each of
these axes, where the axes are defined relative to the base of the robot. All

axes move as necessary to produce the desired movement of the end effector.

In the tool coordinate system (figure 2b), the teach box buttons control
movement along and relative to axes similar to the world coordinate axes,
only the axes are defined relative to the robot tool itself. Thus, movement in
the negative z direction will cause the tool to retract from its current position

directly backwards with no side~to;side or rotational movements.

In joint mode (figure 2c), the teach box buttons map directly to each joint of
the robot, i.e., depresing the joint 1 button will result in movement of joint 1

with all other joints remaining fixed.

The teach box also contains a “record” button, which will save the information

about the current robot position when pressed. To program ‘he robot in teach .
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mode, one moves the robot arm around using the teach box! until the robot is in a
desirable position and then presses the record button. This saves the current robot.
location and orientation as the first step in the newly defined program. In a similar

manner, onc defines as many positions as desired.

Once the positions have been saved, the new “program” can be executed. This

mercly amounts to a rote playback of the stored positions, like a tape recorder.

Explicit ’rogrammiog

Explicit programming entails the writ;ing of a textual program, much like
conventional computer programming. Programs can be constructed that exploit
m:.ufy different types of control structurcs (lo_dps, conditionals, subroutines, -etc.)
Variables are also introduced, which allows the user to monitor performance of the
_robot, and perform various actions based upon the values of these variables. The
teach box is usually used by the programmer, but only to define the locations that

_ the prograni will need - not to define the program.

* Many explicit programming languages exist today. VAL [VAL 80} and SIGLA
[Park 77)[Salmon 78] are two of the more widely used examples of this style of

programming.

This method is termed explicit programming because the programmer must
specify the exact positions to which the robot is to move. The programmer explicitly
controls every motion made by the robot. The program cannot simply state abstract
tasks like

PICK UP THE BOX

.The program must specify the exact position and rotation for the tool to assume

(such positions are usually defined by the teach box). This means, for example, that

1Geveral alternative and original methods of specifying robot locations without using a “teach
box” to control the robot have also been explored, but will not be presented in this paper. These
methods are still inherently a teach by guiding approach [Seger 73][Kelly 77].
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the robot does not employ any sort of collision avoidance scheme in determining

its trajectory: the programmer must navigate the arm around any obstacles.
Task-level Language

Rather than specifying exact positions for the robot to move to, task-level
languages allow the ﬁser to specify goals to be achieved by the program, and
the system decides how best to move the manipulator to achieve the desired
effect. The language’s compiler (or interpreter) decides what forces and torques
to exert, what speeds to use, where a part should be grasped, what trajectory to
use, etc. This obviously requires that the system have explicit krnowledge of the
cnvironment in which it is working (locations and specifications of parts, etc.). As
noted by Grossman and Taylor [Grosélnan 75), this eﬂ_ectiVely shifts the problem
of program generation from the proccdu.res (assembly steps) to the declarations
(part descriptions). However, this problem is not as large as it may seein, as CAD
produced part descriptions can be utilized, simplifying the declarations required of
the programmer. Because of the heavy computatio_nai demands of such a language,

their use is limited to very large computer systems [Salmon 78].

Task level languages are currently still in the research and experimental
stages. Two examples of such systems are AUTOPASS and LAMA [Lieberman
77}[Lozano-Pérez 76}.

1.3. CONTRAST BETWEEN THE METHODS

Teaching by guiding is the most widely used method of program generation
uscd by current industry [Gini 78.2]. It has the obvious benefit that one need tiot be
experienced in robotics or programming to generate the program. Manipulating the
robot using the teach box is relatively easy for even a complete riovice [Blanding 79)].
The user does not write a “textual” program, and thus is not required to be able to
- relate abstract symbols to actions. This methad also provides immediate feeedback

from the robot to the programmer. However, the associated cost is the very limited



capability of the program: there are no provisions for conditional transfers of -
control, loops, etc. The lack of text also makes nlaintai-ndbility, documecntation,

and modifications difficult.

Such progréms’ that merely lead the robot through a series of p.l'edeﬁné'd :
positions without sensory feedback are not very useful in imnany modern applications
(such as assembly) [Gini T9][IR 76.1], and certainly do not exploit the sensory
capabilities of current robots. More sophisticated programs are desired, to allow for
larger part-to-part tolerances, recovery from object slippage, etc. Clearly, although
the simplicity of the process is exceptionally desirable, teaching by guiding (as it

now stands) is not a very powerful method of gencrating programs.

Currently, explicit programming is used in a few industrial robotic systems.
* This method overcomes many of the simplistic shortcommgs of the teach by guldmg
approach but now the robot user is required to be a ‘programmer: the robot can no
longer be programmed by a layman. Also, the immediate feedback present in the
teach by guiding method has been lost, causing more errors and thus a lengt;hened
debugging process. In order to gain the added flexibility that explicit languages

provide, one has lost most of the simplicity of the teach by guiding process.

A task-level language simplifies the programming of the robot because it
parallels the way in'which we think. The natural ; sway in which humans approach a
task is in terms of the desired goals and subgoals of that task. It is* natural to thlnk '
of an assembly operation, for example, in terms of the desired effects on the parts,
not in te_rm.s of the exact locations through time of a manipulator to carry out the
‘oask'[_Gini 78.2]. For the user, task-level languages could make complex program
generation a rather simple process. However, task-level languages have proven to
be exceptionally difficult to implement. Most of the problems of such a language
are.at the planning and representation level [Taylor 76], due to the ambiguity of
the task specification. All such languages are still in the research phases, and show

little hope of reaching full implementation in the near future.
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It scems clear that a system that could retain the sitnplicity of the guiding
process yet incorporate the more complex control structures of explicit programming

would be desirable. This is the function that TRIG attempts to perform.

1.4. TWO EXAMPLE PROGRAM GENERATION SYSTEMS

1.4.1. VAL

VAL is the most widely used industrial robotic programming language. It is
used in Unimation Inc. industrial robots. In VAL, the robot can be programmed
both by guiding and by explicit programming methods. In teach mode, the teach
box can manipulate the.arm in the three coordinate systems presented earlier:
world, tool, and joint. The box also has a free mode. In free mode, sclected joints
of the robot go limp (and if one is not careful, will cause the robot to crash to the

ground) and can be manually positioned by the uéer [VAL 80].

As in the exarn.:ple teach mode presented earlier, the defined positions can only
be rcplayed exactly as recorded. There .are no provisions for loops or conditional

transfers of control.

To overcome these limitations, the Unimate robots can also be programmed
explicitly in a BASIC-like language (this method is by far the more commeon).
Constructs for simple loops, integer arithmetic, conditional brariches, _;and position
transformations are provided. Subroutines, or subtasks, can be .defined and used as
necessary by main programs. Facility to communicate with -auxilliary .devices has
also been included via the SIGNAL command.

R

A simple ;.pi‘ogram ‘to wait for -exterior signal number 5 and then pick up a

small box and drop it into a bin 10 times might loeck something like figure 3.
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1)  SETI COUNT = 10
2) 99 WAIT 5 _
3) APPRO PICK, -50
4) MOVES PICK
5) CLOSEI
6) DEPART -50
7)  MUVE DUMPIT
8) OPENI _
" 'g) SETI COUNT = COUNT - 1
10) IF COUNT GT O THEN 99
'11) RETURN

Figure 3. A Sample VAL Program

Lines 1 and 9 provide examples of the integer variable operations provided in VAL,

which are of the form
SETI <intvar> = <intvar or int> [<operation> <intvar or int>]

The MOVE[S] command is the basic robot movement motion command. MOVES
specifies a straight line trajectory to the specified location, whereas MOVE instructs
the robot to move along a joint-interpolated trajectory (which may diverge from the
straight trajectory but is computationaliy simpler and executes faster). APPRO[S]
and DEPART[S] move the robot hand to the position that is the specified distance
(in cm) backward or forward, respectively, along the current negative z axis of the

hand from the specified position.

In the above program, the locations PICK and DUMPIT can be defined by using the
teach box or can be numerically specified. All arm movements are specified explicitly
by the exact final location and orientation of the manipulator. The robot knows
nothing about its global environment, and is only required to interpolate between

the destination positions that it is given by the user to determine trajectories.
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1.4.2. AUTOPASS

AUTOPASS (AUTOmated Parts ASsembly System) is a world-modelling language
developed by IBM. The intent of AUTOPASS was to relieve the user of any need
to consider anything more detailed than the basic goals of the required task. In
turn, the compiler does all of the dirtywork. The compiler plans such things as the
grasping positions, trajectories, velocities, etc. (keeping collision avoidance and part
constraints in mind). There are no variables, no loops, no conditional branches, etc.,
because everything that needs such structures is to be taken care of by the compiler.
Instcad, AUTOPASS commands deal with such things as tool control, instructions for

placement, parts, etc [Park 77}.

A typical AUTOPASS command, PLACE, has the following forma.tl[Liebe_rma.-n
77): ' '

PLACE parta ON partb
and has four (optional) qualifying phrases:

GRASPING surfaces
. SUCH THAT final-condition
SUBJECT TO constraints
THEN HOLD POSITION

Other typical instructions include OPERATE, ATTATCH, VERIFY, SLIDE, TURN, SWITCH,
and PUSH. The user program is compiled prior te run time into ar explicit
programming language. The only requirements upon the user are that he be able

to correctly plan the assembly process and net specify impossible steps.

A ;Sro.g_ram segment to obtain a screw from a sezew-dispenser might look like

figure 4 [Liebernman 77],
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PLACE screw-driver IN screw-dispenser

SUCH THAT screw-driver-tip CONTACTS dispenser
PLACE screw-driver-tip ON screw

SWITCH screw-driver ON

PUSH screw~driver-tip UNTIL seated

MOVE screw TO task

Figure 4. A Sample AUTOPASS Program

Clearly such a language requires an extensive geometric model of the world,
which is non-trivial to generate. Only a subset of AUTOPASS was ever implemented

by IBM [Lozano-Pérez 79]. - -
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2. TRIG

The general approach taken in TRIG is to provide a graphical flowchart-like
represcntation of the program to the user, an.d to have a simple command syntax
that will allow the user to make arbitrary changes to the program in a simple,
intuitive manner. Facilities are provided for non-linear control structures in the
form of loops and jumps. TRIG also has the sensory capabilities of a guarded

move (move until touch) with conditional branching.

TRIG is currently running in the Artificial Intelligence Laboratory at the
Massachesetts Institute of ‘Technology. It consists of roughly 2000 lines (excluding
comments) of code written in ZetaLisp, a dialect of Lisp. The target robotic device
is the Purbrick Arm located in NE43-905 (see figure 5)."The Purbrick Arm is a six
degree of freedom (three translational and three rotational) robot that is directly
driven by a PDP 11/45 (connected to the LISP Machine on which TRIG runs). The
platter on the table has 2 degrees of freedom (X and Y) and the section mounted on
the wall has the remaining four degrees of freedom (2. ROLL, PITCH, and YAW).

Its gripper has two fingers, one of which contains a force sensing device.

2.1. THE DISPLAY

The basic user interaction in TRIG is carried out through a graphical /textual
display. The terminal screen is broken up into two displays and a command window,
as shown in figure 6. The user gives commands and ‘is queried when necessary in
the Program Editor window. The entire user program is represented in the Full
Display in miniature form without much detail - it does little more than indicate
the existence of each step. The Partial Display window is.a detailed listing of the
program (as much as will fit in the window). At any given moment, both the Full
Display and the Partial Display have a blinker that is Jocated at the active step (to
be explained- later) in the program. Because both’ blinkers point to the same step
in ‘the program, the Full Display can be used to _-gi_vg a -g’i:'{jbal idea of the location of
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the program section that is displayed in detail in the Partial Displéy._ Any change

in program content by a command from the user is reflected immediately in both
display windows. '

The representation of the progrém chosen is a 1-2 tree structure in which
every node has zero, one, or two sons. The top node in the tree is the first step
in the program. Transfer of control following completion of a step proceeds in a
downwards fashion (except as redirected by loops). If a node has no sons, then that
step is a terminating step in the program. If a node has only one son, then the

transfer of control will proceed to that son after the node has co:apleted execution.
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PRARTIAL DISPLAY . . e
] .

PROGRAM EDITOR FULL DISPLRY

Figure 6. Screen Layout of TRIG
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If a node has two sons, then the node is a step that represerits a guarded move, and
transfer of control will proceed to either the right or left son, dictated by whether

or not an excessive force was detected.

2.2. TRIG COMMANDS

In TRIG, the user creates a program by typing simpl‘e commands and moving the
robotic arm around using the teach box. The available commands are documented
in the Appendix. Onljr a simple subset of the listed commands are usually required
to generate a program - many are provided for special capabilities that are not

always needed or are present to override defaults.

The commands can be broken up into two subsections: those that communicate
with the robot and have no effect upon the program being designed, and those that

pertain to the user's program.

The commands that communicate only wit)h the robot are provided so the user
can verify stored positions, create new positions, navigate the robot to desirable

locations, and verify that certain guarded moves are feasible (test thresholds, etc.).

A Sample Program

Suppose that one wants to create a program that will perform the trivial task

outlined in figure 7.
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. move the robot to the center of the workspace

. pick up block A - '

. dump block A in a bucket

. pick up block B

. place block B where block A was

. move the robot back to the center of the workspace

[o2 52 QR JURE N I

' - Figure 7. Example Task No. 1

Upon starting up TRIG, both display windows will be empty (except for each
window’s blinker) and the “>” prompt will be in the program editor window as in

figure 5, signalling that TRIG is ready to accept a command.

In the task of figure 7, Step 1 requires a movement to an absolute position (in
contrast to a relative movement) in the robot’s workspace. So, the first command

entered by the user should be

>M CENTER

This will allow the teach box to control the robot arm, and will name the position
that is saved to be CENTER (the choice of the position name CENTER is arbitrary,
as are all position names). It will also make the first position in the program be
a move to CENTER. The teach box that TRIG currently uses operates the roboet in
joint mode. When the robot hlas been positioned in the center of the workspace,

the record button is pressed and the “>” prompt will appear.

The partial display window will look as it does in figure 8, indicating that the
program is now one step long and contains a single move the the absolute position
CENTER. In the display, all program steps (except loops) are represented as two
grouped names: the step name and the position name. In figure 8, the default “***”

" step name indicates that no step name was given to the defined s! e.p. (Similarly, the
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absence of a position name js indicated by “ - -”.) In order to distinguish relative
and absolute positions, relative positions are precceded by a “#” (see figure 14 for

examples).

Note. that there is a cursor Lo the left of the step that was just delined (in
figure 8). This cursor indicates the current active step of the program. All step
insertions, step deletions, executions, and cursor movements are defined relative to

the current active step.

Step 2 also involves an absclute movement. The position of block A will need
to be used again (to set block B there in step 5), so the position ought to be given
a name. The next command should be

>M BLOCK
The robot should be moved with the teach box until its grippers are on either
side of block A, and then the position should be 'saved. (This and all succeeding
steps in this example assume that there will be no collision with the block itself or
any other object in a linear move from CENTER to BLOCK. If such a collision were
possible, an intermediate position dire(‘:tly above BLOCK might be necessary.) The

robot still needs to grasp the block, so the user should type

>GRASP

The GRASP commmand adds a step to the program that will cause the robot to close
its grippers when the step is executed, as well as cause the robot to grasp the box

during the teach process.

The next step is simply
>M OVER-BUCKET

(and tﬁe robot should be moved to a position over the bucket and the position
should be saved). The robot still needs to let go of the block, so now

>UNGRASP
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Now the first three steps of Example 1 have been programmed. The Partial Display
of the program will look as it does in figure 10. The remainder of the program can

be found in figure 9:

>M CENTER

>M BLOCK

>GRASP

>M OVER-BUCKET
- >UNGRASP

>M OTHER-BLOCK

>GRASP

>M BLOCK

Move to the predefined location? Yes.
>UNGRASP

>M CENTER

Move to the predefined location? Yes.

Figure 9. Commands to Perform Task of Figure 8

Note that neither of the last M commands required the positioning of the robot:
the positions named in the command were alreadyknown to the editor and thus
didn’t need to be defined. TRIG will automatically move the robot to-the predefined
location. For this reason, TRIG will require the user to confirin that he realizes that
the position is already defined. The final program in the Partial Display window
should look as it does in figure 11. Because the program is relatively small, the

entire program can be displayed in the Partial Display.

This rather trivial example does not utilize much of the power of TRIG. In
fact, this example could be handled with ease by most current. teach systems. As

soon as more of the basics are presented, a more taxing example will be analyzed.
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Figure 10. Screen After Three Steps of Example 1.
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Figure 11. Display After Entering Program for Example 1
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At any point in the preceeding teach process, the user can run.a section -or the
entirety of his program that has been defined so far, either forwards or backwards
(via the RUN command). In TRIG, running a program backwards will cause an
“unwinding” (a traceback) of &ll steps that preceeded the current step during
forward execution. The preceeding steps will be executed in the exact reverse order,

including any loops or partial loops that were previously executed.?

Because the program is run in a interpretive manner, no pre-compilation is
necessary for program execution to take place. This allows the user to instantly
verifly t-_hat any step or steps perform as desired. Should the user want to stop
the robot during execution (to avoid disasters or save time once an error has been
detected), facility is provided to terminate the program (by striking any key on the
terminal or flipping a “kill” switch on the teach box). During prograﬁ execution,

the editing cursor marks the cufrently executing program step.

Many of the TRIG commands presented in Appendix 1 add .sﬁeps to the
program. M, MA, and MR all add normal move-to-a-pesition type steps to the
program. MR indicates that the movement is to be relative to the current robot
position, and similarly MA indicates an absolute movement to a specified position.
The generic M command will default to be either a MA or a MR, depending upon
where it is used in the program. The default of M can be determined by the rules
outlined in figure 12. In the series of commands in figure 11, all of tlie M commands

default to be abgolute movements, as no preceeding steps are relative.

2]t should be pointed out, however, that the effect of a step when executed forward can not
always be undone during feverse execution. A step that drops a block into a bucket is one such
example.
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1. Position name argument not given by user
OR Position name given is previously undefined:
-> If a move-to type step exists above the current step,
‘then default = type of movement of prior move-to step
else default = absolute

2. Position name argument is previously defined:
—> default = type of movement of argument definition

Figure 12. Rules for Default of “ M* Command

M, MA, and MR each have an optional position name argument. Without an argument,
TRIG will expect the teach box to be used to define a new unnamed position. This
is useful when the position is ﬁot going to be referenced again in the program, in
which case the position name woﬁld serve little purpose except documentation. In
case the pésition ever needs to be referenced again, it should be given a name.
Specifying a previously undefined position name argument such as “foo” will result
in the position defined by the teach box to be known to TRIG as “foo”, and can
be referenced as such whenever a movement to that position is desired. (This is
not to say that unnamed positions cannot be referenced ever again, but the process
is rather indirect.) If the argument position name is already defined, repositioning
the robot with the teach box is unnecessary: TRIG will insert the step with the
predefined position into the program immediately, and move the robot to that

lacation.

The other commands that add steps to the program will be discussed later

when they are used in an example.

There are also several commands to manipulate the active step pointer, or
editing cursor. Two such commands are N (for Next) and P (for Previous), which

each take an optional numerical argument and move the active pointer up. or
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down the corresponding number of prégram éteps_. If the argument is ommitted,
it defaults to 1. Whether the movement is up or down, loops are ignored. Moving
around a program in this fashion is not unambigious, however: branches exist.
TRIG handles branch sclection as follows. When moving down the program (using
N), TRIG. will prompt the user to determine the proper route to take. When moving
up in the program (using P), TRIG will move the pointer back through the path of

“most recent steps”3. In 'practice, this is almost always the desired movement.

In some ¢ases, moving up and down in the preceeding manner can be very
tedious, for which cases the GOTO command can be used. GOTO, which requires a
step-name argument, causes the active pointer to move to the specified step-name.

Unnamed steps cannot be reached with a GOTO.

Program steps can be deleted in several ways. If only a single program step is to
be deleted, the “D” command is used. This command takes an optional step-name
argumcent, which defaults to the active step. A series of steps can. be deleted. with
multiple uses of the “D” command or by using the “bA” command. The “DA”
command (who’s argument also defaults to the current active step) will delete a
step and all dependent sub-steps (any node all of whose parents are decendants of
the specified node). In a purely linear pfogra;m, this would amount to every step

beneath the specified step.
Anothér Examp-le_.

Figure 13 briefly outlines a palletizing operation.This application will require
relative movements, loops, and a guarded move. Figure 14 represents a possible
TRIG teach process to perform this task, and the resulting screen setup is shown
in figures 16 and 17. Two screens are shown because the program is large enough
that the entire program can no longer fit within ﬁhé Partial Wiﬁdow at one time.

When the commands of figure 14 have been entered, the Partial Window will only

3The “most recent step” of a step with several possible “fathers” is defined as the father that
was active most recently. ' '
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contain the latter section of the program (as in figure 16) becausc the active step
cursor is at the end of the program. A command to move the active step cursor into
the top section of the program was then typed, which caused the Partial Display
to contain the upper section of the program in detail (yeilding figure 17). Figure 15
attemnpts to show the location of some of the positions used by the commands in

figure 14.

1. Go to the center of the workspace.

2. Pick up a box from a stack. If the stack is empty,
move Lo done position.

3. Place the box in the pallet.

4, Transfer the remaining boxes from the stack to the
pallet. If the pallet is full, move to the done
position. :

5. Move to done position.

Figure 13. Example Task No. 2
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7)
8)
9)
10)

>M CENTER ... define center...(center of the workspace)

>M STACK ... define stack...(just above the top of the stack)
>CN GET-BLOCK

>GRASP

>MG BOTTOM

Threshold: .7

Force Vector: (.3 .3 .3) ... define bottom...
(at the bottom of the stack)

>M DONE ... define done...(done position)

Down the guarded branch? No.

>CN FINISH

>P 3

>RUN 3

>MR INCHUP

_ Down the guarded branch? Yes. ... define inchup...

11)
12)

bk
o Gt W
St it it st e’

—
-3

D =t
© Co

NN
DN e

[\®]
(=]
et Maasas? St oot it

23)
24)
25)
26)

(inch up the manipulator until it no longer touches the block)
>UNGRASP

>M DWNBLK ... define dwnblk...

(hand down until fingers can pick up block)
>GRASP
>MA PALLET ... define paliet...(above corner of pallet)
>MR PLACE ... define place...(down into pallet)
>UNGRASP .
>M -PLACE
Move to.the predefined location? Yes.
>M YOVER ... define yover...(over to next row in pallet)
>SAVPOS PALLET
>CN RECALC1
>LOOP GET-BLOCK 2
>M XYOVER .. define zyover...

(over one column and back 3 rows in pallet)
>CN NEWROW :

>SAVPOS PALLET
>LOOP GET-BLOCK 4
>LINK FINISH

* Figure 14. Sample Palletizing Program (for Example 2).
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CCENTER
&« DONE
< PALLET
(7/ <« STACK
f
(—-3077'00(

l"igui:e 15. Appro_ximaté Manipulator Positions defined during Example 2

oy e



- 30 -

tHORES

(113
fungrasps

T2
2 dunblk

133
sgraspt

122
pal let

(111
# place

32
tungrasps

111
# -place

2t
yover

RECALCY
save PALLET

23 00Pt2’
GET-BLOCK 2 8

NEWRON
nyover

[13)
save PALLET

_JEaL00Pss
GET-BLOCK 4 0

PARTIAL DISELAY
TSLINK - ToH

!

>M YDVER

>SAVPOS PALLET
>CN RECALCI

>LOGP GET-BLOCK 2
»M NYOVER

2CN NEWROM
>SAYPOS PALLET
>LOOP GET-BLOCK 4

-PROGRAM EDITOR FULL DISPLAY

[P S

Figure 16. Completed Display for Example 2 (Last Sectian of Program)
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(313
center
N GET-BLOCK
stack
1)
tgraspt
(134
botton
FINISH t11]
dore B % Inchup
et
tungraspt
[13]
# dwnblk
(113
tgraspt
(113
pailiet
E3 1]
B place
(31
tungrasps
131
# -place
[t 1]
yover
RECRALC!
save PALLET
SMORES
PARTIAL DISPLAY
JLINK FINHISH
NiDTD GET-BLOCK - ! 1
> X T 1
>SARYPOS PALLET
>CN RECALCI e
>LODP GET-BLOCK 2 8
>M HYOVER
>CN NEWROHW
>SAUPOS PALLET
>L00P GET-BLOCK 4
PROGRAM EDITOR FULL DISPLRY

Figure 17. Completed Display for Example 2 (First Section of Program)
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The constructed TRIG program utilizes a guarded move (move until touch)
to tell where the next item on the stack is or if the stack is empty. Nested loops are
used to index through the pallet. It should be noted that the program is slightly
more complex than necessary, in order to introduce more TRIG cominands for the
purpose of discussion and. clarity. For this same reason, all positions have been

given names, although most of these names are unnecessary.

After the robot has been moved to the center of the workspace (line 1 of figure
14), the next subgoal is to find the top block on the stack. This is acheived by
executing a guarded move that starts just above the stack (line 2) and has a goal
position at the bottom of the stack (line 5). Before the guarded move is made,
however, the grippers are closed (line 4) purely for esthetic reasons. (The guarded

move could just as easily be performed with the grippers open.)

The command at Line 3 changes the name of the current active step (in Wwhich
there is a movement to STACK) 1o GET-BLOCK so that it can be referenced later. The

previous move step (It,o CENTER) is still unnamed, as can be seen in figure 17.

If any blocks are present, the previously mentioned guarded move will cause
the manipulator to hit them. The MG set of commands (MG, MAG, and MRG) are
analogous to the set of normal move commands described earlier (M, MA, MR), the
only difference being that they construct a guarded move step rather than a normal
move step. A guarded move has two force-related values associated with it that
the user is prompted for: a threshold and a force vector. When a guarded move
is made, the decision of when to terminate the trajectory due to incurred forces
depends upon these values. The test for ezcessive force is

fe
[Force Vector] - | fy| > Threshold '
L.

where [fz fy fz] is the vector of actual measured forces. H this test is true, then

an excessive force is said to have occurred, and the current :obot trajectory is
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terminated. Control of execution in the program will pass to the right hand side
son (the guarded son) in the partial display window. Had the robot reached the
goal position without incurring an excessive force, control would have passed to the

left son (the normal son).

Admittedly, line 5 assumes tﬁat the stack is hot present during this phase of
the teach operation (because the user must mm}e the robot to the bottom of the
stack in order to define BOTTOM, which would not be possible if the stack were
present). Possible improvements to this scheme are presented in the Extensions

section later.

Now the guarded move’s two sons need to be defined. If no blocks are found,
the manipulator can be moved Lo the DONE position. If' a block is discovered, it
should be picked up. The choice of which step to deﬁne. first is arbitrary, as TRIG
allows the user the flexibility to add a step to a program at any location whenever

it is desired.

The commands of figure 14 define the normal son first (line 6). As stated
earlier, the normal son defines the act:ion to be taken if the manipulator makes
it to position BOTTOM without encountering an exc_essi_ve force. Because this step
will be required; later (when the pallet is full), it should be given a name. Line 7
names thisstep FINISH. The lack of excessive force will only occur if there are no
more blocks in the stack. In this case, a terminating step of the program has been

reached which has no steps that need follow it.

The guarded son (what to do if an excessive force is detected) of the guarded
move has yet to be defined. To do this, one must -manipulate the editing cursor
back to the guarded step so that its other can be defined. A simple P command will
not suffice, however, €ven though it will position the cursor in the desired location.
This is because the manipulator is still in the DONE position, a position that it will
never be in prior to executing the guarded move to BOTTOM step. The teach process

is simplified if the two steps prior to the guarded move are execated. This will get
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the manipulator into the position that it will be in when the program reaches the
guarded move during normal program execution. Alternatively, the effect of lines

8 and 9 can be produced by:

>GOPOS STACK ;send the robot to position STACK
>P ;move the cursor back to the guarded step
>RUN 1 : ;execute the guarded move
or
>RUN -t ;undo the last step (undoes FINISH)
>RUN 1 ;execute the guarded move

or any of several other combinations of commands. (Before the final RUN command
is issued, one should make sure that there is a block on the stack for the manipulator

to pick up.)

Steps 10 t-.lfr_o’zigh 17 .cause the robot to grasp the bloek on top of the stack
(the block it bumped into) and place it into the pallet. Step 17 also demonstrates
a useful variation of the famil)._z of move commands. Previously defined relative

“®»

positions with a prc.eeding “-” sign can be used as a command argument, indicating
a relative movement with the same magnitude as the predefined position and an
opposite direction. This saves the user from having to define relative movements

that are the mere opposites of predefined movements.

. Step 1_8 moves the manipulator above the next row in the pallet, which is
where the next block should be placed. The SAVPOS eommand in line 19 defines
this location to be the new lo_ca.t-iorii for the position PALLET. The argument to the
'SAVPOS command becoines a “variable” position, the value of which can be changed
over time (by using SAVPOS commands). In this case, the PALLET position is used
to indicate the position for placement of the next block. Line 20 assigns a name to

the SAVPOS step, purely for the sake of discussion.

Loops are introduced. in line 21. The LOOP command requires two arguments,

a step-name and a loop coun®. The loop stép thus’created will cause the program



to transfer control from step RECALC1 to step GET-BLOCK twice (and therefore the
“body” of the loop will be excculed three times) before transfer of control from
RECALC1 finally proceeds to NEWROW. The displayed form of the loop step (see figure
17) shows the node to be looped back to, the desired loop count, and the '_currcrft,

loop count (which is updated as it changes during ruri—time).

Steps 22 through 24 move the manipulator back over to the first row in the
next column and redefine PALLET. (When a row is filled up, the next block will go
in the next column, so PALLET should be reset to that location.) All that remains
is to.repeat the row-filling process 4 times (step 25) and then execute the FINISH

step that was previously defined.

- The LINK command of line 26 causes the flow of control in the program to
proceed to FINISH when the lower loop to GET-BLOCK finally falls through. Thus, it
causes an unconditional branch to the specified step in the program. Such branches

are displayed as the target step name, surrounded by a box (see figure 16).

Now that the program is defined, running it will place the first 15 blocks in
the stack into the pallet. If it is then run backwards (with a RUN -100 command,
for example), the robot will pick up the 15 blocks in the pallet and place them

back on the stack. .

To briefly demonstrate the editing capabilities of TRIG, assume that the

command on line 21 had been ommitted. The correction can be made by:

>GOTO RECALC1
>LO0OP GET-BLOCK 2

and the omission will be corected. Similarly, by manipulating the active step cursor

to the proper location, any number of steps can be inserted or deleted.

The program can be saved in a file with the W (for Write) command, and
previously saved programs can be read into TRIG using the R (for Read) command.

Both of these commands take a filename argument.
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3. IMPLEMENTATION

The internal representation of a TRIG program is relatively simple. Each
program step is a node in a 1-2 tree. Every node in the tree has forward pointers
- lo one or two sons and backward pointers to at least one father, (see figure 21).
Fach node has spcciﬁc information associated with it, as detailed in section 3.1
and figures 18 and 19. The major properties of the I{Ode are necessary to properly
construct the tree and the program. The minor properties have transient values
(that assist in display creation, etc.) and are recalculated frequently during program
cditing and execution. When a WRITE or READ command is performed, only the
major properties are written or read, respectively. Execution of “the program”
merely consists of moving through the tree, executing the intended task of a node,
and following various pointers "t,o determine which node to execute next (to be

" explained in more detail later).

3.1. SIMPLE STEP NODES

The 1-2 tree used by TRIG contains many nodes that only have oune son, and
represent a particular instruction for robot motion. These nodes will be referred to
as simple nodes. Every manipulator motion except the guarded move is caused by

the execution of one of these nodes.

These nodes can be seperated into two categories: Group 1) those that change
the location and orientation of the manipulator and Group 2) those that operate the
grippers. A group 1 simple node is created by a M, MA, or MR comiand. The value
of the position property of these nodes specifies the name of their corresponding
position. Any number of group 1 simple nodes can indicate movement to the same

position. All such nodes have a type property of normal.
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1) Type
2) Position
3) Sons
4) Fathers
5) Pstack
" 6) Loop Information
7) Threshoid
8) Force Vector

Figure 18. Major Properties of a Node

1) Value

2) Location

3) Cursor Location
4) Display Number

Figure 19. Minor Properties of a Node

1) Position Data -
2) Init Value
3) Relative

Figure 20. Properties of a Position

The positions specified by these nodes also have properties (see figure 20),
which distinguish absolute positions from relative positions, etc. When a group
1 simple node is executed, its corresponding position is first examined. Absolute
positions are output directly as a manipulator goal. If the position is relative, the

current manipulator location is ad_ded to the corresponding relative position data
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and the sum is treated as an absolute location for manipulalor positioning.

The group 2 simple nodes differ from the group 1 nodes structurally in that they
require no position information. GRASP and UNGRASP commands create nodes that
have the unique types grasp and ungrasp. This allows such nodes to be identified as
pertaining té a specific direction of gripper motion, without any additional position
information. This method is acceptable as long as there are only two gripper states.
If a variable width of opening of the grippers were allowcd, the gripper information
would have to be stored and treated in a similar fashion to (or even as a part of)
the position information. On many current robots, the gripper information is an

integeral part of the position information.
3.2. OTHER STEP NODES

3.2.1. Loops

During program execution, if one temporarily neglects loops, the node to.
cxecute following execution of the current node can be determined from the sons
and fai.hér's lists (major properties of‘a hode) associated with the current node.
These lists are constru(;ted as would be expected for a doubly-linked list, as shown
in figure 21. Every node has at most two sons, and can have any number of fathers

(muitiple fathers are caused by the LINK command).

However, in the case of loops, one can no longer trace program execcution
through the sons and fathers lists. During forward execution, a loop node will either
pass control to its son or back to some other node, depending upon the value of
" the loop count (commonly known as looping back or falling through the loop). The
"node to loop back to (the loop target node), the current loop count, and the target

Joop count are all stored in the Loop Information property of the loop node.

Further complicati-on-é arise when the program is run backwards. The IL.oop
Information property of a loop nodé¢ contains information that serves as a forward

pointer only - for the process to be reversible, the loop target :.ode needs to have



~30 -

*top*: sons (A)

fathers (*top*)
sons (B)

fathers (A E)
sons (*none* C)

fathers (B)
sens (D E)

fathers (C)
sons (*none*)

fathers (C)
sons (B *none*)

*none*; falhers (B D E)

Figure 21. Construction of Father-Son Lists
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some kind of a pointer back to the loop node. This is a basic properiy of any doubly
linked list; if node A points to node B, then node B has somne form of a pointer to

node A, thereby facilitating mobility in both directions.

One alternative is to place a pointer to the loop node in the loop target node.
As long as no two loop nodes specify the same loop target node, this method will
work acceptably. However, as soon as two or more loop nodes point to the same
loop target node (which occurs frequently when nested loops are used), confusion
results. When this multiple loop target node is encountered during a backwards
exccution, it will be difficult to choose the proper loop node to jump back to out

of the several that may exist.

TRIG solves this problem by introducing bloop (for backward loop) nodes.
Bloop nodes aiid loop nodes occur in pairs - eve'fy loop node has a pointe'f to one and
only one bloop node, and évery bloop node has a pointer to one and only one loop
node. The bloop nodes are placed in the tree immediatly preceeding the loop target
node, such that the only fa‘ther of the loop target node will be the bloop'no_de.
When multiple loop nodes have the same loop target node, their corresponding

bloop nodes “stack up” on top of that node in the proper nested order.

Figure 22 shows the way in which loop and bloop nodes are inserted into the
TRIG trce. The user commands on the right will produce the tree on the left.
Each box in the tree on the left rebresents a node in the internal TRIG tree. Each
node in the figure has a name (at the top) and the funection the node is to perform
" (at the bottom). Prior to the first loop command (“LOOP LOCt 2”), the tree only
contains the nodes A, LOC1, and D. The loop command causes the nodes C and E
to be inscrted. Similarly, the second loop command causes the insertion of nodes
G and B. During forward execution the bloop nodes are ignored and treated as a
“do nothing”. The loop nodes, however, will transfer control to their corresponding
bloop nodes the specified number of times. When executing in reverse, the loop

and bloop nodes swap functions: the loop nodes are ignored and the bloop nodes
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INTERNAL TREE

Bloop G 3

T

i C

Bloop E 2

v
LOCT

M Pick

Ungrasp

v

USER COMMANDS

>M READY

>M PICK

>CN LOC1
>GRASP
>LOOP LOCT 2
>M PLACE
>LOOP LOC1 3
SUNGRASP

Figure 22. Insertion of Loop-Bloop Nodes




— 42 _

cause the transfers of control.

TRIG also takes care of initializing loops every time they are entered, causing
nested loops to behave in the conventional way: an inner loop is iterated its
corerresponding number of times for every itcration of an outer loop. In the
example of figure 22, LOC1 and D are executed (2 4 1)(3 4 1) = 12 times.
(Because the loop nodes loop back, their bodies are executed one more time than

their loop count.

In order to keep. this implementation method invisible to the user, bloop nodes

do not appear in the program. display windows (see figures 16 and 17).
3.2.2. Guarded Moves.

Guarded move nodes are the only type of nodes in TRIG that have two sons.
They are similar to normal moves in their treatment of relative and absolute
position data. Guarded nodes have user-supplied values for the properties threshold

and force vector, which are used in the test for “excessive force”.

A seperate trajectory calculation reutine had to be written: for guarded moves
that makes a slow, linear trajectory. The trajectory routine used for normal moves
is much. too fast to:be used for guarded moves.. Even .if: the user specifies a very small
threshold. for: the excessive f'orc.é calculation;, the inertia oft the:arm: will cause it to
drive much. harder into any object in its: path than: is desirable. Also, stopping: the.
arm abruptly when it is travelling at high speeds can' damage: the- arm’s hardware.
The guarded trajectory proceéds- slowly enough: that inertial effects are minimal-—_

and abrupt stops in. the trajectory are not detrimental to- the manipulator.

The new guarded trajectory routine also performs the necessary fo'rc‘e-read’-ihgs.
and calculations. If the encountered force: is great enough, the trajectory is
terminated. Because the arm only has a force sensor on one of its fingers; the results
are usually better if the guarded moves are made with the: gripper open, causing

only the f‘sensi’oi-.zed” finger to strike the object. This is because having.the gripper
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* closed adds to the rigidity of the fingers as a unit, causing the force sensors to

detect a smaller force than if the gripper were open.

3.2.3. Savpos Command

The init valueof a posit-i_on (see figure 20) is necessary because of the existence
of the SAVPOS comnmand. Pri'or t;o any program execution, all position data vlalues
are sét equal to the position’s init value. In order to have the user’s program run,
the same way each time it is run, the initial values of all of the positions must be
consistent from run to run. For example, the program built by figure 14 i'eqllires
that the initial position PALLET correspond to the corner of the pallet every time
that the program is run from the top, even though the position data of PALLET is

modified many times during the course of the program.
3.3. NOTES ON EXECUTION:

3.3.1. Special Nodes

There are two nodes that are present in every tree. These nodes are *top*
and *none*. *top* is always the first (top) node in the tree and points at the first
user-defined step (if one exists, else points at *none*). *none* is the son of any
node without a user-defined child; it signals a termination of the program. In short,
*top* and *none* are the beginning and end of any and every TRIG program (see
figure 21). These nodes allow TRIG to locate the beginning and detect the end of

program cxecution.
3.3.2. The Position Stack

The fact that a TRIG programs contain both absolute and relétive movements
makes the implementation of running a program backward difficult. For this reason,
the pstack property of a node was created. The pstack (for position stack) of a node
contains information relevant only to backwards execution. When a program is
being run backwards, the desired effect is to “undo” each command in a backtrace

of the recent execution. When there are no relative movements, “undoing” the
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effect of a move-to-a-position type step is-simple: simply execute the most recent
move-to-a-position type step. prior to that step. When relative movements are
introduced, however, the solution is not as simple. The position that the robot
was in prior to any particular movement can bc a sum of any number of prior
relative movements. Rather than search back, possibly through a lengthly series of
loops, to determine the position that the robot was in before a particular step was
exccuted, TRIG takes adyanta‘ge‘of the plentiful memory space of a LISP Machirie
and. creates a‘stack of previous positions for every node. When the program is run
forward, the .current robot position is pushed onto the stack of ‘a node before the
node is executed. This enables the backwards execution feature to be rather simply
performed: to urido a move-to type step, simply pop the top position off oi' that

node’s stack and move the robot to that position.
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4. CONCLUSIONS

4.1. DISCUSSION

The thrust behind the development of TRIG was the need for a non-programmer
to be able to generate a complex robet program. TRIG haé not been widely tested
yet, so ‘t is difficult to determine its success. Certainly, TRIG is not a pelished,
perfected system. Rather, it is-a prototype of a-new method of robot program
generation. Time will uncover many of its flaws that may not be visible yet. Several
of the possible extensions to be presented later will greatly enhance its ability to
generate complex programs and create a fricndlier user interface. It is hoped that

cnhanced versions of TRIG may someday be suitable for general use.

As it stands, TRIG has been used to generate numerous programs f#irly readily.
The author has created many pfograms with TRIG, most of which ére at least as
complex as Example 2 presented earlier (figure 14). Such tasks are non-triyial to
write in explicit programming languages, yet TRIG seems to handle them rather

casily.

TRIG is easier to understand when one is faced with the actual display screen
and can run a sample program than it may seem from the preceeding introduction.
This is because TRIG relies heavily upon the immediate feedback from the robot
and the continuously updated display windows. Because of this interaction, it is

difficult to give a proper flavor of TRIG here.

4.2. EXTENSIONS

One possible extension to TRIG that would be valuable is the introduction
of subroutines. Such an addition would make rhany applications programs much
simpler and would help add modularity to TRIG programs. It would also reduce
the clutter in the --display windows when the same series qf commands are executed

several times in different sections of the program, by replacing the series with
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a single subroutine call node. TRIG would lend itsell casily to this extension
during execution, as little more than defining another node type and its associated
properties nced be donc. The bulk of the work will lie in the editing phases of
subroutines, as now the instruction set will have to be augmented to allow for
the seperate displaying, referencing, and editing of multiple program sections. A
possible consequence of subroutines would be a “library”, which could contain
the most commonly used subroutines and could be loaded into the editor at the

beginning of a session.

At some point, TRIG can be used to generate output in an explicit programnming
language that:.can in turn be given to a manipulator. This would remove much of
the overhead that TRIG imposes and would allow the resulting program to be run
on a smallér machine (smaller than a LISP Machine) due to the saved space. TRIG
would be the front end -of the éystem, ‘operating as an .edi-tor and debugger. Once
the correct program is created, it ‘can be “compiled” inte the morc efficient explicit

programming language.

A source -of possible problems in the -current version of TRIG was pointed
out on page 33. ‘Currently, when defining a position for a guarded move to go to,
the user must place the robot in that position. Many times, this involves moving
away whatever the guarded ‘move was supposed to run into, which is not always
convenient or possible. -._'(Say;, for example, that the object is fixed!) Alternatively,
the user could be allowed to define a vector with the robot which would define a
direction for the move (this is the method used in. FUNKY [Grossman 77]). The
user might also specify a scaling facter for the defined vector to 'd.e‘t;erm-_ine the

cndpoint of the trajectory.

" Certainly, TRIG's current graphical interface is somewhat crude. The tree is
not as efficiently or as well displayed as might be possible. Also, the addition of a
graphical input device with menus on ‘the display screen might be considered, as

this would simplify the user interface considerably.
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One of the system’s major limitations is the inability to comment the programs
that are created. This rakes it more ditficult to modify previously written programs,
It is not exactly clear how comments can be incorporated into the existing structure

of TRIG without cluttering up the program display screen to a lacge extent.
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5. APPENDEX OF TRIG. COMMANDS.

The Following. Commands Control the. Robot Motion.
FREE :
Allow the robot to be controlled by the teach box until the save button is
pressed.
GOGPOS <[-]pos-name>
Move the robot (guarded) to the specified position. The user will be prompted
for a threshold and a force vector.
GOGRASP
Close the'robot grippers.
GOPOS <[-]pos—name>
Move the robot to the specified position.
GOUNGRASP
Open the robot grippers.

The Following Commands Affect the Robet Program
CALPOS
Begin a position: calculation. When. the ENDCAL < pos- name> eommand is
typed, <pos-name> will be defined as the relative position difference between
the current robot positions when the twe commz.ds were typed.

CN: <step-name>
Change the name of the current step to be <step-name>.

CP <pos-name>
Change the position of the current step to be. <pos-name>. The position
specified by <pos-name> must already be defined.

CT <threshold>
Change the force threshold of the current step to be <bhreshold> (Only
applies to guarded steps.)

CV <force-vect>
Change the foree vector of the current step to <force-vect>. ( Of the form
“(xy z)” - only applies to guarded steps.)

D [<step~name> [{n,g}l}
Delete program step named <step-name>>. If program step is guarded, then
n or g specifies which subtree te save.

DA [<step-name>]
Delete program step <step-name> and all dependent vtep 1.
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DLINK <step-name> [{n, g}
Make the current step unlink from predefined and multlply used step <step-

name>.

ENDCAL <pos-name>
Teriinates a position calculation. <pos-name> will be set to the relative
position between the robot position when CALPOS was typed and the current
robot position.

EX <file spec>
Terminate editor, writing program out to file < file-spec>.

FLUSH
Erase the current program.

GOTO <step-name>
Move editor cursor to step < step-name>.

GRASP
Make the robot grippers close.

HERE <pos-name> _
Define the current absolute robot location to be <pos-name>.

L <step-name> [{n,g}]
Make the program link to predefined step <step-name>.

LOOP <step-name> <# of times>
When executing program, loop to step named < step-name>> the specified
number of times before proceeding on to next node.

M [[~1<pos-name> [{n,g}]]
Move (normal) to postion <pos-name>> if it has been pre-defined, else move
normal and define user specified position to be <pos-name>. Type of movement
(relative or absolute) is determined by use.

MA [<pos-name> [{n,g}]]
Same as M only type of movement is absolute.

MAG (<pos-name> [{n,g}]]
Same as MG only type of movement is absolute.

MG [<[-]pos~-name> [{n,g}]]
Move (guarded) to postion <pos-name> if it has been pre-defined, else
move guarded and define user specified position to be <pos-name>>. Type of
movement (relative or absolute) is determined by use.

MR [<[-]pos~name> [{n,g}]]
Same as M only type of movement is relative. .
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MRG [<[-]pos-name> [{n ,g}]]
Same as MG only type of movement is relative.
N [<# of steps>]
Proceed to next (normal or guarded) program step.
P [<# of steps>]
Proceed to previous program step.
Q o
Terminate the editor, saving nothing.
R <file spec>
Read in the program saved in file <file-spec>.
RUN [<# of steps>]
Execute the specified number of program steps starting with the current active
location. A negative step count indicates to run the program backward. If no
argument, exccutes the entiré program.
SA <pos-name>
Save current absolute position as <posname>.
SAYPOS <pos-name> [{n,g}] |
Create a program step that will set the location of < pos-name> to the current
robot position during program' execution.
SR <pos-name>
Save current relative position as < posname}>.
UNGRASP .
Make the robot grippers open.
W [<file spec>]
Write program out to file <file-spec>>.
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