
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 238 September 1982

Talking to the Puma

Patrick G. Sobalvarro

Abstract

The Al Lab's Unimation Puma 600 is a general-purpose industrial robot arm that
has been interfaced to a Lisp Machine for use in robotics projects at the lab. It has
been fitted with a force-sensing wrist. The Puma is capable of moving payloads of
up to 5 pounds at up to 1 meter per second, with positioning accuracy to within a
millimeter.

This paper is a primer on the control of the Puma from a Lisp Machine. The current
Lisp Machine interface is preliminary; the Lisp Machine communicates with the
Puma is over a serial line in Unimation's VAL language. The interface will probably
change over the next year; however, the commands documented in this paper will
probably remain much the same.

A.I. Laboratory Working Papers are produced for internal circulation, and may
contain information that is, for example, too preliminary or too detailed for formal
publication. It is not intended that reference be made to them in the literature.

1 MASSACISES INSTUTE OF TECaHm01i ai

Figure 1. The Puma, anthropomorphically labelled.

Wrist

Hand

Shot

1. Introduction: The Puma

The Al Lab's Unimration Puma 600 robot arm is a high-quality, general purpose
industrial robot arm. It has been fitted with a ferce-sensing wrist with a sensitivity
of about 0.5 ounces. Other hardware associated with the Puma includes a video
frame-grabber fitted to a Lisp Machine.

The Puma is a robot arm with six revolute axes. This means that it has six joints,
each of which rotates about a single axis. Six is a good number of degrees of
freedom to have, as we'll discuss later. It happens that the geometry of the Puma
lends itself to compatrison with human anatomy; the Puma, has a waist, a shoulder,
an elbow, a wrist, another wrist, and a flange (see figure 1).
Each of these is a joint which rotates about a single axis. You can see that there
is some ambiguity in this anthropomorphic naming of the joints, however; for
example, while the Puma has only one joint that would be called an elbow, it has
two wrists. To avoid just this sort of ambiguity, the joints are numbered as well;
the waist is joint number one, the shoulder is joint number two, and so on down to
the flange, which is joint number six (figure 1).

When using a manipulator, one nmust be able to specify the orientation in space
of the tool attaclled to the manipulator as well as its position. For example, if the
robot were drilling holes in a curved surface, it might be necessary for it to hold
the drill at an orientation normal to the surfac'e. T'hus it does not suffice to be able
to po:;ition the tool at locations in space; it is also necessary to have control over
the orientation of' the tool.

This is one of the reasons why it is good to have six revolute axes. It takes three
jo0,ill,,, to liold Iti tool at an a.rbitxrary orientation in space, and it takes another
tlree(join ts to place it, in a•o. arbitrary position in the space wi thin the manii ulator's
reach. \Vhy not hlave more thaln six joints? With more th,0u six joints there are

Sobalvarro Talking to the Puma

an infinite number of combinations of joint angles for most positions. While it
might be useful to have many combinations of joint angles available, e.g., for the
avoidance of obstacles, not much work has been done on controlling such an arm.
With less than six joints there are many positions that cannot be reached. With
exactly six joints there are usually eight joint-angle combinations that result in a
given position and orientation [Horn & Inoue].

There are usually eight joint-angle combinations that will result in a given position
and orientation because there are three sets of joints, each of which can assume
two configurations that will result in the same terminal position. VAL allows one
to choose which configuration each set of joints will assume; thus, the current Lisp
Machine interface does the same.

Talking to the Puma

2. Transformations

2.1. Euler Angles

Often when one talks about manipulator tasks one refers to postion-orientation
combinations. These combinations are usually called transformations. A transfor-
mation is only a position-orientation combination, and does not tell which joint-angle
combination will be used to attain that position; this joint-angle combination will
depend on the current configuration of the robot.

Transformations can be represented in several ways. Often the representation of
a transformation seen by the programmer will be a sequence of six numbers; the
first three are the Cartesian coordinates (hereinafter referred to as X, Y, and
Z) representing the position of the tool, and the other three are Euler angles
representing its orientation in space. Although one would think that the term
"Euler angle" would indicate that there is a standard interpretation for Euler
angles, this is not true. In this paper we will use the interpretation that Unimation
does [VAL] when we speak of Euler angles, and we will refer to them respectively
as O, A, and T.

X, Y, and Z are measured in millimeters. If the robot's front is the side opposite
the motor for joint 1, X is an axis through the center of the trunk, parallel to the
ground, increasing to the robot's right. Yis an axis through the center of the trunk,
parallel to the ground, increasing to the front of the robot. Z is an axis along the
center of the trunk, perpendicular to the ground, increasing upwards. The origin
is a point at the center of the trunk at the level of a vector through the center of
joint 2 (see figure 2).

O, A, and T often give the newcomer to robotics trouble, but once their meaning is
understood, debugging manipulator programs becomes much easier. To understand
what O, A, and T represent, let's consider the reference frame of the tool. If the
tool attached to the Puma is a two-fingered hand, the reference frame of the tool
has its origin at the intersection of an axis Z7 along the axis of the flange, an
axis YT through the center of the flange and parallel to a line between the two
fingertips, and an axis XV through the center of the flange and perpendicular to
Y, and ZT (see figure 3).
O, A, and T are rotations of the reference frame of the tool with respect to the
world reference frame. O is a rotation about the world Z-axis. It increases in the
counter-clockwise direction when looking from positive Z. A is a rotation about
the new (after performing the rotation specified by 0) X-axis. A increases in the
counter-clockwise direction when looking from positive X. T is a rotation about
the new Y-axis (after performing the rotations specified by O and A). It increases
in the clockwise direction when looking from positive Y (see figure 4).

When O, A, and T are all zero, the hand points along the negative Z-axis, rotated
so that a line between the two fingers is parallel to the world X-axis; thus the
fingers are in a horizontal plane. When O, A, and T are 90, -90, and 0 degrees,

Sobalvarro

Talking to the Puma

Figure 2. The Puma, showing X, Y, and Z axes.

Figure 3. The reference frame of the tool.

Yt

XT, YT, and Z,, are parallel to .X, Y; and Z, and increase in t.he same directions Ps.
do X, Y, and Z; th.e band points stlraight up, with the flamge rotated so that. a line
between the [ingertips is along the Y-axis.

2.2. Rotation Matrices

T'Ir;.'ior'n.ations can also be represcnted as mn;•trices. Tl'le oricer t.:,ation of' tbhe ha,.

- --- '-~- - ---------~- I -~ I------'- -'---- --'-`

Sobalvarro

Talking to the Puma

Figure 4. O = 90, A = -90, T = 0.

Zt

1-'
T

Xt

Z
Yt

/

/:
/

O = 90
A=0
T=0

Y.

Zt

0 = 90

A = -90
T=0

· ·------ 00.
I t Y t

'I Y //
/ e xt

can be represented by a 3 X 3 rotation matrix, which is the product of three simpler
matrices, each of which represents a rotation of the reference frame about some
axis. The position of the hand can be represented as a 3 X 1 vector; for ease of
manipulation, we can combine the two (position and orientation) as a special case
of a three--dimensiona.l hoinogeneous transformation.

in such a transformation, the rotation matrix occupies the upper left-hand corner
of the matrix, and the top three members of the fourth column are X, Y, and
Z, which are defined as in the Euler angle representation. The bottom row of the
matrix is always (0 0 0 1).' So the entire rotation matrix looks like:

mi n 12 min13 X'
?n21 m22 rn23 Y
Mn31 7m32 ?n 33 Z

0 0 0 1

2.,3. Transformations and the Lisp Machine Interface

By now you may be wondering what type of transformations we use on the Lisp
Machine when talking to the Pumra. Do we use Euler angles or rotation matrices?
The somewhat surprising answer is t,hat we use both.

liuler angles are t~he only representation for transformations that VAL understands,
but they are somnewhiat clumsy to manipulate. The rotation matrix form of
tr:an orr ation, on the o(trher hand, allows simple composition of transformations;
co)lpo.;itio of tian 1 "l n,;fll'a ioni is matrix mulltiplication.

T'he bott ,,lm row i a !lree-dimcnsional homogenenous tra:s'ormaioi usually reprce•ents a
p• p lc.riv, :r lnsflorm.tit, wilh t the jieAl elemctl boeig a scale factor. These are more often of

in compubtr ;raipkivs ilmil illobtis however'.

Sobablvarro

Talking to the Puma

The solution we have adopted is to use rotation matrices for computation on the
Lisp Machine and translate them to Euler angle form when they are passed to
the Puma.2 Transformations that have already been defined are cached locally on
the Puma. When they are modified, they are marked as no longer valid, so that
they will be updated the next time the software refers to them. What this means
for the programmer is that she or he can manipulate and modify rotation-matrix
type transformations through the functions provided for doing this, and use them
without worrying about whether they have been updated or not; the interface will
take care of this automatically.3

2This may seem slow, but the time taken for the translation step is negligible compared to the
time spent in transmitting the transformation to the Puma over a serial line.
3 While the rotation-r atrix transformation is preferred for mahipulation, commands are provided

that allow the manipulation of the Euler-angle transformation.

Sobalvarro

Talking to the Puma

3. Using the Puma

3.1. Starting Up

To use the Puma, you must first find the Lisp Machine that is hooked up to it and
log in on it. At the current time, this is CADR-25, but this may well change in the
future. To load up the interface software, do:

(load "<puma>psys. lisp")

Then do

(make-system 'puma)

This will load up the Puma interface, and redefine system-R (for Robot) to select
the Puma interaction window. The default Puma interaction window is a frame
with two panes. The upper pane is a window on the Lisp Machine's communications
with the Puma. The window is provided because communicating with the Puma in
VAL over a serial line is a shaky business at best, and, while the current interface
is fairly robust, line noise or a dropped character will be easier to recognize with a
communications window.4 The lower pane is a Lisp Listener.

The symbol :*PUMA* has been bound to an object of flavor PUMA; you can think
of this object as the Puma's avatar in the Lisp Machine world. You communicate
with the Puma by sending messages to this object.

Now that you have loaded up the interface software and selected the Puma
interaction window, you are ready to initialize the Puma. Do not turn the Puma
11/02 on before initializing the Puma, or you will cause the interface software
to miss part of the initialization dialogue and become confused. If the Puma was
already on, you should turn it off at this point.

Now do

(send *PUMA* ':INITIALIZE)

The message

Make sure the Puma 11/02 is connected to your Lisp Machine's
serial line.
Then turn it on.

will be displayed.

As soon as you turn on the Puma, the communications pane will show VAL
announcing its presence, and the Lisp Machine will tell the Puma controller to
initialize itself. When this is done, the Lisp Listener will display the message:

Now turn on the arm power and press the COMP button
on the manual control.
Is this done yet? (Y. or N)

"Of course, there is a way to disable this feature.

Sobalvarro

oal~king to the Puma

Once you have pressed the COMP button, type a "Y" or a space to the query. You
will notice some activity in the communications window. The Lisp Machine will
cause the Puma to be calibrated, and finally the message

The Puma has been calibrated and should be ready to receive
commands now.

will be displayed. At this point you are in a normal lisp listener, and can use the
commands described in the following sections.

If for some reason you should need to type directly to the VAL interface (for
example, if a character is dropped, and the interface software becomes confused),
you can use the function (PUMA-TALK-DIRECT), which selects the communications
pane. You can end direct typein by typing the END character.

If at some point you should wish to go through the initialization sequence again
(for example, if you power-cycle the Puma controller), you can do:

(send :*PUMA* ':INITIALIZE)

Sobalvarro

Talking to the Puma

3.2. Some Cautionary Notes on the Use of the Puma

* Never leave the room while the Puma is executing a program. While the Puma
has many safety features designed to keep it from hurting itself or others, there
is still the danger that something may go wrong and you will need to disable
power manually.

* Do not come within one meter of the Puma while it is executing a program.
The table around the Puma has been designed so that the Puma cannot reach
you, unless you lean over on it. If you must approach the Puma while it is
in the course of moving, hit the arm power off button (the red button
on the front of the controller) first. This will immediately disable power
to the Puma. While the Puma's payload is only five pounds, the manipulator
itself is fairly heavy and moves very quickly. An unexpected bug in your
program, a power glitch in the controller -- any one of these could cause it to
do something unplanned, and very quickly.

* To avoid damage to the Puma, be very careful when using the manual control.
There is rarely any reason to set the speed knob on the manual control to
more than 50. Do not touch the FREE button, or you may seriously damage
the arm.

* Never try to determine how strong the arm is by trying to make it lift something
heavier than five pounds, or by pushing against it when the power is on Even
when the Puma is not moving, its motors are servoing to keep it in psition.
If you push against it, they will work harder and harder. If we are lucky, you
will blow a fuse. If we are unlucky, you will destroy the power amplifiers.

* When you are finished using the Puma, turn the arm power off (there is a big
red button on the Puma 11/02 provided for this) first; then turn the controller
off.

Sobalvarro

Talking to the Puma

4. Some Simple Programs

4.1. Pick and Place

Since a transformation defines most of a state of the manipulatol, 5 we can write
simple manipulator programs by telling the robot to move from one transformation
to another. One of the most elementary manipulator tasks, called pick and place,
involves getting the robot to approach an object, grasp it, move to another position,
and place the object there.

Place a bolt on a sheet of styrofoam on the table before the Puma, and, using
the manual control,6 move the Puma to a position where it can grasp the bolt by
closing its hand. Don't forget to press the COMP button on the manual control
when you've finished; otherwise computer control is disabled and you will get an
error the next time you give a motion command. Then do

(setq 'bolt-place (send :*PUMA* ':HERE))

which asks the Puma to return a transformation which represents its current
position. Now move the Puma to the location at which you wish to place the bolt,
and set destination to that location:

(setq 'destination (send :*PUMA* ':HERE))

Here is a function that will cause the Puma to pick up the bolt and place it at the
new location. The operation is illustrated in figure 5.

(defun pick-and-place (source-trans destination-trans)
;; move to a point 50mm over the source
(send :*PUMA* ':APPROACH source-trans 50.)

actually move to the source
(send :*PUMA* ':MOVE source-trans)

grasp the bolt
(send :*PUMA* ':CLOSE)

move up 50mm
(send :*PUMA* ':DEPART 50.)
; move to a point 50mm over the destination

(send :*PUMA* ':APPROACH destination-trans 50.)
;; actually move to the destination
(send :*PUMA* ':MOVE destination-trans)

let the bolt go
(send :*PUMA* ':OPEN)

move to someplace safe
(send :*PUMA* ':DEPART 50.))

5As we mentioned above, a transformation does not define a complete manipulator state, as all
the joint angles aren't %pecified, and any one of 8 combinations may be used, depending on the
confguration of the ar i. Usually, however, this doesn't matter.

6For an explanatiocn of the use of the manual control, see the Unimation VAL primer [VAL].

Sobalvarro

Talking to the Puma

Figure 5. Pick and place.

Initial Position

t Depart

Closeo

Source

stination

SLUU
Move

Destination

Open

Destination

4.2. Some Interesting Things to do with Transformations

01 course, in order to do anything interesting with a manipulator, it is important
to have some ability to generate and manipulate transforms under software control.
Here we'll present some simple primitives for manipulating transformations.

We've already seen that it is possible to create a transformation by sending the Puma
a :HERE message. NULL-TRANSFORM is a function that returns the null transform;
that is, a transformation whose matrix part is the identity matrix. Because of the
way in which 0, A, and T' are defined, the Euler angles corresponding to the null
transformation are 90, -90, and 0 respectively.

(COPY-TRANSFORM transform)

is a function that returns a transform that is a copy of transform; the Euler and
rotation matrix .parts are both copied, along with the value of the EULER-UP-TO-
DATE? slot (see tile section on writing your own transformation-hacking functions
for ain explanation of how the interface software uses this slot, if you are interested;
otherwise, you can safely ignore it).
SHIFT-TRANSFORM is a primitive that allows one to modify the Cartesian part of a
transformat~ion (X, Y, and Z).

(SHIIFT--TRANSFORM transform X-offset Y-offset Z-offset)
:,.his ithe ot!htl,s to lthe respective coordinlates in the transformation. It actually
mo•llifis the tra.ns•orrnation it is given. If you would prefer to make a new
II '.)L1(LCi 1 SC

Move
Source I Depart

Sobalvarro

W ~Approach De!

Talking to the Puma

(SHIFT-TRANSFORM (COPY-TRANSFORM transform) X-offset
Y-offset Z-offset)

Here is a program that allows one to pick up several bolts arranged at regular
intervals along a straight line parallel to the X-axis in front of the manipulator
and place them in a bin. First the user uses the :HERE method to define a
transformation for the location of the first bolt (the one furthest to the robot's
left), and a transformation for the location of the bin to place the bolts in.

(defun pick-in-line (how-many interval start bin)
(dotimes (i how-many)

(pick-and-place start bin)

(SHIFT-TRANSFORM start interval 0 0)))

4.2.1. Compound Transformations

COMPOUND-TRANSFORMS does something more complex than SHIFT does. In pick-
and-place, we used transformations to define locations. Sometimes we may want
to be able to describe a location in terms of another location; for example, we might
be writing a program for a robot that performs the same task for several objects of
the same sort on a table. Then we might want to describe the locations of interest
on each of those objects in terms of the location of the object itself, so that we
don't have to define a whole set of transformations for each one. For example, if a
robot bad to insert two brushes in each of several electric motors on a table before
it, we could define a transformation for one corner of each motor, and then define
two transformations describing the location where the brushes had to be inserted
with respect to the corner of a motor.

(COMPOUND-TRANSFORMS transforml &REST transforms)

composes the transformations and returns a new transformation made from the
result of the operation. It does this by performing a matrix multiplication of

the transformations, in the order they are given to it (recall that rotations in
three-space, unlike rotations in two-space, do not commute). Thus

(COMPOUND-TRANSFORMS motor-location brush-location)

would do what we wanted above, provided that brush-location was defined as a

transformation with motor-location as the origin (see figure 6). We will use this

primitive to write a program to unload pallets in the next section.

We can use the primitive INVERT-TRANSFORM to define a transformation with respect
to another transformation. INVERT-TRANSFORM returns the matrix inverse of a
transformation. Since composition of transformations is just matrix multiplication,
all we need do if we have a transformation world-brush-location for the location
of the brush with respect to the world origin and we want one with respect to the
location of the motor is to "compound" it with the inverse of the location of the
motor. That is,

(COMPOUND-TRANSFORMS (INVERT-TRANSFORM motor-location)
world-brush-location)

Sobalvarro

Talking to the Puma

Figure 6. The loc:ation of the brush with respect to the location of motor.

x

World F
Fi

Inverse of Motor-location

Inverse of Motor-location * World-brush-location = Brush-location

will give us a transformation for the position of the brush with respect to the motor

(see figure 6).

4.3. Unloading a Pallet

Another common manipulator task is unloading a pallet. An exposition of how a
program like this might be coded will be useful for demonstrating how we can use
the functions described in the previous section.

Our function will require as arguments the nunber of columns, the number of rows,
and four transformations: the location of the first object in the first row on the
pallet, the location of the second object in the first row, the location of the first
object in the second row, and a location at which to place the objects unloaded
from the pallet.

Sobalvarro

Talking to the Puma

(defun unload-pallet (number-of-rows number-of-columns pallet bin
second-object-first-row

first-object-second-row)
;; get the position of the first objects in row and column
(let* ((pallet-to-base (INVERT-TRANSFORM pallet))

;; with respect to the first object on the pallet
(inter-column-offset
(COMPOUND-TRANSFORMS pallet-to-base

second-object-first-row))

(inter-row-offset

(COMPOUND-TRANSFORMS pallet-to-base

first-object-second-row)))

(do ((rows-left number-of-rows (i- rows-left))

;; add the offset to the row after each column

(row (NULL-TRANSFORM)
(COMPOUND-TRANSFORMS row inter-row-offset)))

((zerop rows-left))
(do ((columns-left number-of-columns (I- columns-left))

;; add the offset to the row
(column (NULL-TRANSFORM)

(COMPOUND-TRANSFORMS column
inter-column-offset)))

((zerop columns-left))

;; the object is at corner * row * column
(let. ((object (COMPOUND-TRANSFORMS pallet row column)))

;; this is what causes the action to actually be executed
(pick-and-place object bin))))))

The operation of the program is depicted in figure 7. Note that for the first bolt,
row and column are set to the null transformation, so the result. of composing them
with pallet is a transformation equal to pallet, which is correct.

14

Sobalvarro

Talking to the Puma

Figure 7. Unloading a pallet.

Second-object-first-row

X

World F
F

5. The Tool Transformation

You may have already realized.from our discussion of transformations that a
transformation can serve as a frame of reference as well as a position and
orientation of the tool. It is precisely this property of transformations that we
are taking advantage of when we speak of a transformation relative to another
transformation, as in the case of row and column in the previous section.

l'he reference frame of the tool (described in section 2.1) is used by certain
commands, such as the :APPROACH and :DEPART methods used in the previous
section. These commands result in motion along the axis of the tool; that is,
the Zraxis. The integer one specifies as the second argument to :APPROACH is a
negative offset in millimeters along the ZT-axis from the transformation specified.
Thlat is, if 50. were specified as the second argument to :APPROACH, the tool would
actually be moved to a position shifted along the ZT-axis in the negative direction
by 50. millirmeters from the transformnation specified.

When the Puma moves to the position and orientation described by a transformation,
the tbinjL: I,hat assumes that position and oricnta.tion is the tool. By default, the
Iool is located at, the centl,er or the fla.nge. What if we affixed a different sort of
.ool to the a.rn, not 1he two iingered a•.and we've been using, but, for examnple, a
sc.cwdriver. lThen we rnight want to cause all motions to refer, not to the center of

Sobalvarro

Sobalvarro Talking to the Puma

the flange, but to a point 100mm out from the flange in the positive ZT direction.
There is something called the tool transformation that makes this possible.

The tool transformation is a transformation that gives a position and orientation
of the tool with respect to the center of the flange. The reason the tool is located
at the center of the flange by default is because the tool transformation is the null
transformation by default. One can set the tool transformation by doing:

(send :*PUMA* ':TOOL transform)

where transform is the new tool transformation.

If we wanted to cause all motions to refer to a point 100mm from the flange in the
positive ZT direction, we could do:

(send :*PUMA* ':TOOL (SHIFT-TRANSFORM (NULL-TRANSFORM) 0 0 100.))

Talking to the PumaSobalvarro

6. Writing Functions for Working with Transformations

Note: The functions documented in this section will change as soon as the
interface software ceases to use VAL for communication with the Puma. At
that time, a revised version of this memo will be made available.

The functions provided with the interface software for working with transformations
are very simple, and may not provide all the capabilities required by some
users. For example, the unload-pallet program of the last section creates
three transformations for every bolt it moves; users whose programs manipulate
transformations extensively might want to reuse transformations rather than create
new ones. One might also want to be able to manipulate the rotation matrix
directly. The purpose of this section is to provide you with the information you
will need to do this successfully.

Recall that transformations on the Lisp Machine are cached on the Puma and
updated only when necessary, so as to minimize time spent in transferring this
information over the serial line. There are functions provided for updating the
Euler angle part of a transformation from the rotation matrix part and vice-versa,
for asserting that the transformation is not up to date on the Puma, for reading a
transformation from the Puma, and for writing a transformation to the Puma.

Transformations on the Lisp Machine are structures. If you describe a transfor-
mation, you will see something like this:

#<TRANSFORM 31751106> is a TRANSFORM
EULER: #<ART-FLOAT-6 31751156>
EULER-UP-TO-DATE?: NIL
MATRIX: #<ART-FLOAT-4-4 31751114>
UP-TO-DATE-ON-PUMA?: NIL
INTERNED-ON-PUMA-NAME: G0259

This is a ART-Q type array.
It is 6 long.

As you can see, the Euler and matrix parts are both arrays of type art-float. If
you wish to modify the matrix part, or replace it, you can use the accessor macro
MATRIX:

(setf (MATRIX transform) my-matrix)

After modifying or setting the trapsformation's matrix part, you should set EULER-
UP-TO-DATE? to NIL, so that the next time the transformation is used on the
Puma the Euler part will be updated from the matrix part, and then, in turn, the
copy on the Puma will be updated from the Euler part. It is not necessary to set
UP-TO-DATE-ON-PUMA? to NIL if you have set EULER-UP-TO-DATE? to NIL, because
the code assumes that if the Euler part is not up to date, the cached version on
the Puma will not to be up to date.

(UPDATE-TRANSFORM-EULER transform)

Talking to the Puma

updates the Euler part of a transformation from the matrix part.

(UPDATE-TRANSFORM-MATRIX transform)

updates the matrix part of a transformation from the Euler part. Both set
EULER-UP-TO-DATE? to T.

As mentioned above, there is usually no need to cache a transformation on the
Puma explicitly, because the various methods defined in the interface check if this
is needed and do so if necessary. It may be useful, however, in demo programs and
the like, to define a set of transformations, cache them all sequentially, and then
run the program, so as not to have to wait while the transformations are cached
during the first execution of the program.

(send :*PUMA* ':CACHE-TRANSFORM transform)

will update the Euler part of a transform if necessary, then cache the transformation
on the Puma (if it is not up to date there), creating a name for it if necessary, and
finally set UP-TO-DATE-ON-PUMA? to T.

(send :*PUMA* ':UPDATE-TRANSFORM-FROM-CACHED transform)

will updatCe the Euler part of a transformation from the cached values on the Puma.
If the transformation has no INTERNED-ON-PUMA-NAME, one will be created, as in the
: CACHE-TRANSFORM method. If the INTERNED-ON-PUMA-NAME is not recognized by
the Puma, the transformation will be given the value of the null transformation.7

After the Euler part has been updated from the Puma, the matrix part will be
updated from the Euler part and EULER-UP-TO-DATE? will be set to T.

The method :HERE uses this method, but user programs will probably never need
it unless the user has been working in VAL and wishes to upload a set of saved
transformations from the Puma to the Lisp Machine. In this case, the right thing
to do is use the transformation constructor macro MAKE-TRANSFORM, specifying the
name of your transformation as the initial value of :INTERNED-ON-PUMA-NAME:

(MAKE-TRANSFORM ': INTERNED-ON-PUMA-NAME my-transform-name)

Then a call to the :UPDATE-TRANSFORM-FROM-CACHED will retrieve the value of your
transformation from the Puma.

'This is a side effect of using the VAL POINT command.

Sobalvarro

Talking to the Puma

7. A Glossary of Puma Interface Functions and Methods

7.1. Functions for Creating and Manipulating Transformations

COMPOUND-TRANSFORMS transformi &REST transforms

Creates and returns a new transform from the product of the transformations
given it as arguments. The matrix multiplications are performed in the
order that the transformations are specified. See section 4.2.1 for a lengthier

explanation.

COPY-TRANSFORM transform

Returns a new transformation that is a copy of transform. The contents of
the EULER, MATRIX, and EULER-UP-TO-DATE? slots are copied. Of course, this
does not create a transform with the same EULER and MATRIX parts; rather, it
copies the arrays.

INVERT-TRANSFORM transform

Creates and returns a transformation whose matrix part is the inverse of the
matrix part of transform. If transform represents the position and orientation
of reference frame F with respect to some reference frame R, then the inverse
of transform represents the position and orientation of R with respect to F.
For a description of how this is useful, see section 4.2.1.

NULL-TRANSFORM

Returns a transformation whose matrix part is the identity matrix. Thus
composing this transformation with any other transformation will return a
copy of the other transformation. The Euler part of a null transformation
(when up to date) is 90, -90, and 0, for 0, A, and T respectively. If it
were possible to position the terminal device at the location and orientation
represented by the null transformation, the hand would be positioned so that
the center of the flange was at the world coordinate system origin (at the
intersection of the axes of joints 1 and 2), pointing straight up, with a line
between the fingers of the hand parallel to the Y-axis.

SHIFT-TRANSFORM transform X-offset Y-offset Z-offset

Modifies transform by adding the offsets X-offset, Y-offset, and Z-offset
to X, Y, and Z.

UPDATE-TRANSFORM-EULER transform

Calculates the Euler part of transform from the matrix part and stores it
in the Euler part. Sets EULER-UP-TO-DATE? to T. You probably will not have
need to call this function unless you are writing your own functions for dealing
with transformations. See section 6.

Sobalvarro

Talking to the Puma

UPDATE-TRANSFORM-MATRIX transform

Calculates the matrix part of transform from the Euler part and stores it in
the matrix part. Sets EULER-UP-TO-DATE? to T. You probably will not have
need to call this function unless you are writing your own functions for dealing
with transformations. See section 6.

7.2. Arm Motion Methods

Most of the arm motion methods are exactly like their VAL equivalents.

:ALIGN

The orientation of the tool is changed so that the ZT-axis is aligned with the
nearest world coordinate axis. Thus if the tool had been pointing more or less
in the negative Z direction (towards the ground), the execution of an :ALIGN
method would make it point straight down. This can be useful if one is defining
a group of transformations using the manual control.

:APPROACH transform offset
:APPROACH-STRAIGHT transform offset

Like the :MOVE and :MOVE-STRAIGHT methods (see below), except that, rather
than causing the manipulator to move the tool to the location defined by
transform, they cause it to move to that orientation and a position displaced
in a negative direction along the Zr-axis (the axis of the tool) by offset
millimeters. :APPROACH and :APPROACti-STRAIGHT are useful for approaching
an object to be grasped without knocking it or objects close to it over.

:CLOSE

Causes the hand to be closed immediately.

:DEPART offset
:DEPART-STRAIGHT offset

The counterparts to the :APPROACH and :APPROACH-STRAIGHT methods, these
cause the manipulator to move offset millimeters in a negative direction
along the Zt-axis. :DEPART does this using joint-interpolated motion; :DEPART-
STRAIGHT uses straight-line motion.

:DRAW dx dy dz

Moves the tool along a straight line to a position displaced from the current
position (in world coordinates) by dx, dy, and dz. The attitude of the tool is
maintained constant throughout the motion.

:DRIVE joint charge speed

joint must be an integer between 1 and 6; joint number joint will be rotated

Sobalvarro

Talking to the Puma

through an angle of change degrees at a speed of speed/100 times the monitor
speed.

:MOVE transform

Causes the roo move to the location and position defined by transform,
using a joint-interpolated trajectory. Some positions will be unattainable in
certain configurations; as of now the software does not know to assume another
configuration automatically in these cases. However, if a change in configuration
has been requested, the change will take place during the execution of the next
:MOVE method.

:MOVE-OPEN transform
:MOVE-CLOSE transform

These do the same thing as :MOVE, but, at some time during the motion, the
hand will be opened or closed.

:MOVE-STRAIGHT transform

Causes the robot to move to the location and position defined by transform,
but attempts to use a Cartesian trajectory, making any requested changes in
tool attitude smoothly. If a change in configuration has been requested by the
user, it will not take place during the execution of a :MOVE-STRAIGHT method.

:MOVE-STRAIGHT-OPEN transform
:MOVE-STRAIGHT-CLOSE transform

These do the same thing as :MOVE-STRAIGHT, but, at some time during the
motion, the hand will be opened or closed.

:OPEN

Causes the hand to be opened immediately.

:READY

Causes the arm to assume the ready position, in which it is pointing straight
up, all joints aligned. This method always succeeds, regardless of the position
or configuration of the robot.

7.3. Methods that Deal with Transformations and Locations

:TOOL transform
The tool transformation is set to transform. When the Puma is told to move
to some transformation (i.e., assume a position and orientation), what is being
positioned is the terminal device, which is at a point at the center of the flange
compounded with the tool transform, which is initially the null transformation.
The :TOOL method allows you to set the tool transformation to account for
the size and orientation of a terminal device.

Sobalvarro

Talking to the Puma

:BASE dx dy dz zrot

Translate the world reference frame by dx, dy, and dz, and rotate it about the
Z-axis by zrot. All motion commands are affected by the new base, as well as
information that the robot returns about its state (such as the transformation
returned by :HERE). Note that to reset the base one must negate the original
arguments, not give arguments of 0.

:HERE

Returns a transformation that describes the current position and orientation
of the terminal device. The transformation returned is affected both by the
setting of the tool transformation and any translation of the base.

7.4. Methods to Control Configuration and Speed

:SPEED speed
The mnornitor speed is set to speed, which must be an integer. The monitor
speed can be between 1 and 300 (decimal), although it is recommended that it
not be set to more than 100. The precise meaning of the monitor speed depends
on whether the motion being performed is straight-line or joint-interpolated.
The initial monitor speed setting is 100.

: ABOVE
:BELOW

The configuration of the robot is set to cause the "elbow" (joint 3) to point
either upward or downward. The actual change in conhigration will take
place during the next joint-interpolated motion command. The default state
is :ABOVE.

:FLIP
:NOFLIP

The configuration of the robot is set so that the range of angles assumed
.by joint 3 is constrained to be positive (:NOFLIP) or negative (:FLIP). The

actual change in configuration will take place during the next joint-interpolated
motion command. The default state is :NOFLIP.

:LEFTY
:RIGHTY

The configuration of the robot is set to that it will resemble either a left arm
or a right arm. This makes it possible to reach positions that would normally
require joint 1 to move out of range. The actual change in configuration will
take place during the next joint-interpolated motion command. The default
state is :RIG::' f.

Sobalvarro

Sobalvarro Talking to the Puma

7.5. Miscellaneous Methods

:CALIBRATE
Causes the arm to be calibrated. Whenever the Puma 11/02 is turned on, the
position and orientation of the arm is not precisely known until it has been
calibrated.

:INITIALIZE

This method should be called just before powering up the arm. It goes through
the initialization dialogue with the arm, and calls the :CALIBRATE method.

Talking to the Puma

Bibliography

[Horn&Inoue]
Berthold K. P. Horn and Hirochika Inoue, Kinematics of the MIT-AI-
VICARM Manipulator, MIT Artificial Intelligence Laboratory Working Paper
69, May 1974

[Paul]

Richard P. Paul, Robot Manipulators: Mathematics, Programming, and
Control, MIT Press, Cambridge, Massachusetts, 1981

(VALI
User's Guide to VAL, Unimation Inc., Danbury, Connecticut, June 1980

Sobalvarro

