
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Working Paper 306 January, 1988

A Proposal For An
Intelligent Debugging Assistant

Ron I. Kuper

Abstract

There are many ways to find bugs in programs. For example, observed input and output values
can be compared to predicted values. An execution trace can be examined to locate errors in
control flow. The utility of these and other strategies depends on the quality of the specifications
available. The Debugging Assistant chooses the most appropriate debugging strategy based on
the specification information available and the context of the bug. Particular attention has been
given to applying techniques from the domain of hardware troubleshooting to the domain of
software debugging. This has revealed two important differences between the two domains: (1)
Unlike circuits, programs rarely come with complete specifications of their behavior, and (2)
Unlike circuits, the cost of probing inputs and outputs of programs is low.

Copyright © 1988 Massachusetts Institute of Technology

A.I. Laboratory Working Papers are produced for internal circulation and may contain
information that is, for example, too preliminary or too detailed for formal publication. It is not
intended that they should be considered papers to which reference can be made in the literature.





Table of Contents
I Introduction 1
2 Hardware Troubleshooting vs. Software Debugging 2

2.1 Overview 2
2.2 The Examples 3
2.3 The Role of Specifications 6
2.4 The Cost of Internal Probing 7
2.5 Finding Suspects 7
2.6 Exonerating Provably Innocent Suspects 8
2.7 Convicting a Suspect 11
2.8 Finding Suspects from Multiple Tests or Multiple Faults 12

3 The Debugging Assistant 13
3.1 Overview 13
3.2 Outline of the Debugging Algorithm 13

4 Related Work 15
4.1 Overview 15
4.2 Tutoring Systems 16
4.3 Debugging Systems 18
4.4 Other Work





1 Introduction

This proposal consists of 4 parts. Section 1 introduces the goals and purposes for the
research. Section 2 examines the similarities and differences between the domains of software
debugging and hardware troubleshooting. Section 3 describes the proposed debugging assistant.
Section 4 discusses other work related to this research.

The understanding of human problem solving is a goal at the foundations of Artificial
Intelligence. The Programmer's Apprentice project, of which the Intelligent Debugging
Assistant is a part, is working towards this understanding by studying the domain of
programming. We believe that the techniques that people use in designing and implementing
programs are representative of other problem solving tasks.

Debugging is not just for novice programmers. Even experienced programmers spend much
of their time correcting mistakes. Debugging is not just for newly written programs.
Maintaining existing software systems would be impossible without programmers who can
understand and correct one another's code.

Programmers use a variety of strategies to debug programs. They scrutinize intermediate
steps of a program's execution to localize the first appearance of a bug's symptom. To detect
nontermination, programmers limit the space and time resources of suspect components of the
system. To confirm the presence of a bug, they look for conflicts between observed input/output
values and specifications.

Since our goal is the broad understanding of problem solving, we would like to demonstrate
how the same problem solving techniques are appropriate in several domains. Hardware
troubleshooting is a task that appears in many ways similar to software debugging.

Hardware troubleshooters use other strategies for troubleshooting circuits. From the wiring of
components in a circuit and observed misbehaviors, they form a list of devices which may be
broken. By reasoning about device behavior and conservative probing of the circuit they
logically eliminate devices from this list. By looking within a faulty device, they localize the
fault to one of the device's subcomponents.

We will explore how principles from hardware troubleshooting can be applied to software
debugging. As a practical result we will introduce new strategies for software debugging. We
will also elucidate the important similarities and differences between the two domains, relative to
debugging.

The proposed Debugging Assistant will help a programmer find errors by reasoning from
first principles. In addition to using traditional software debugging techniques, the debugger will
borrow strategies from the domain of hardware troubleshooting. It will choose the most
appropriate debugging strategy based on the amount of specification information available and
the context of the bug. The debugger will use a reasoning system [15] to perform the inference
and simulation necessary for the task.



2 Hardware Troubleshooting vs. Software Debugging

2.1 Overview

The task of hardware troubleshooting appears in many ways similar to the task of software
debugging. Specifically, we propose to explore the degree to which techniques that are useful
for localizing faults in digital circuits are appropriate for localizing bugs in programs.

The following simplifying assumptions have been made to clarify the comparison between the
hardware and software domains. These same assumptions are common to most current research
on debugging systems.

* Debugging is done exclusively by reasoning from first principles, as opposed to
reasoning from past experience. In other words, all reasoning is done from
knowledge of structure and behavior, as opposed to having a library of "bug
patterns." A good debugging system would include both kinds of reasoning;
examples of such systems are presented in Chapter 4.

* The single-fault assumption: incorrect program or circuit behavior is caused by
exactly one bug. (We will show that this assumption may not simplify the task of
software debugging at all).

* All bugs are consistent and reproducible. Due to the iterative nature of- our
debugging algorithm, we must be able to repeatedly reproduce error conditionS.

* Programs are purely functional: they have no internal state or side effects. -(We
allow limited side effects in software in the form of variable assignments (i.e., LISP
setqs)).

Circuits and programs share many structural similarities. Section 2.2 will illustrate these
similarities via examples.

Differences between troubleshooting and debugging can be attributed to two differences
between hardware and software: (1) Unlike circuits, programs rarely come with complete
specifications of their behavior, and (2) Unlike circuits, the cost of probing intemal inputs and
outputs of programs is low. Sections 2.3 and 2.4 will explore each difference in turn.

The logical steps taken to debug a program will parallel the steps traditionally taken to
troubleshoot a circuit. Specifically, these steps are:

1. Determine an initial set of suspects.

2. Exonerate any of these suspects that can be proven innocent.

3. Convict one of the remaining suspects.

Sections 2.5, 2.6 and 2.7 will discuss each step in more detail.

Section 2.8 will address the issue of probing in the presence of multiple faults or multiple
tests.



2.2 The Examples

To better illustrate the parallels between hardware troubleshooting and software debugging
we will first provide one example representative of each domain.

Figure 1: Adder-Multiplier Circuit

For hardware, consider the Adder-Multiplier circuit [4], shown in Figure 1. That circuit takes
5 n-bit input values, A, B, C, D, and E, and produces two n-bit output values, AC+BD and
EC+BD. In the circuit, Mult boxes compute the n-bit product of their two n-bit inputs, and Add
boxes compute the n-bit sum of their two n-bit inputs.

For software, consider the trivial Air Traffic Control program (and its corresponding plan
diagram [12]), shown in Figure 2. This program takes a complex data object as its input,
the-plane, which contains information about the present state of an aircraft. The program
produces as its output a new aircraft data object, representing changes to the aircraft's current
position and velocity. In the program, flight-no-of, position-of and velocity-of are accessor
functions for the aircraft data object, returning the aircraft's flight number, position and velocity
vector, respectively; build-new-plane-record is the constructor function for the data object;
update-position computes a new position based on the old position and velocity vector;
may-collide? determines if the plane's present flight path may result in a collision with another
plane; wind-adjust changes a velocity vector to account for present wind conditions; and
turn-to-safety changes a velocity vector to avoid collisions with other aircraft.

The Adder-Multiplier circuit and the Air Traffic Control program are similar in two important
ways. The first is the similarity of their representation as constraint networks [26, 28].
Schematic diagrams and plan diagrams both consist of components (shown as boxes) that are
modeled by constraints on their inputs and outputs. Components are connected to one another,
by wires in a circuit and by data and control flow arcs in a program.

The second similarity is that both the circuit and the program consist of components that are
functionally decomposable into subcomponents (see Figures 3 and 4). Repeatedly decomposing
components reveals the hierarchical structure of a circuit or program. Levels in this hierarchy
correspond to layers of abstraction in the design.

There is also a significant difference between these two examples that characterizes the
difference between a "software component" and a "hardware component." In hardware, the
presence of multiple components of a given type, such as 3 Mult boxes, generally implies that
each one is a separate physical instantiation. Thus we can assume that one Mult box is broken



(defun air-traffic-control (the-plane)
(let ((flight-no (flight-no-of the-plane))

(position (position-of the-plane))
(velocity (velocity-of the-plane)))

(build-new-plane-record
flight-no
(update-position position velocity)
(if (may-collide? position velocity)

(wind-adjust position (turn-to-safety position velocity))
(wind-adjust position velocity)))))

Input

Output

Figure 2: Air Traffic Control Program



Figure 3: Decomposition of an Add Box

(defun update-position (position velocity)
(vector-sum position

(vector-scale (delta-t) velocity)))

Figure 4: Decomposition of UPDATE-POSITION

while the other two are working. But in software, components are shared. If one wind-adjust
box fails, both fail.

This difference between hardware and software will force us to redefine the single-fault
assumption. Taken literally, the single-fault assumption tells us that the failure of a single
component can be viewed as the failure of a single "box" in the constraint network. But in the
presence of shared components, the failure of a single component must be viewed as the failure
of many boxes in the constraint network.



2.3 The Role of Specifications

In a circuit or program, a discrepancy between specifications and observed behavior indicates
the presence of a bug. One way to find a bug is to follow the discrepancies it causes back to the
source. Good specifications enable us to detect mote discrepancies, thereby allowing us to better
localize bugs.

Specifications model the behavior of devices. Since a single specification can rarely describe
the full behavior of a device, we often consider collections of partial specifications. A trivial
type of partial specification is an enumeration of allowable inputs and outputs for a device. For
example, {A=3, B=3, C= 2, D=2, E=3, F=12, (;=12} is a partial specification for the Adder-
Multiplier circuit.

1. Output(Adder) = Input(Adder, A) + Input(Adder, B)

2. Input(Adder, A) = Output(Adder) - Input(Adder, B)

3. Input(Adder, B) = Output(Adder) - Input(Adder, A)

Figure 5: Simulation and Inference Rules for an Adder

In hardware, specifications are often given in the form of simulation and inference rules.
Simulation rules make "forward" deductions: they allow the outputs of a device to to be
determined from its inputs. Inference rules make "backward" deductions: they allow one or
more inputs of a device to be determined from its outputs and other inputs.

Figure 5 lists the simulation and inference rules for an Adder with inputs A and B. Rule I is
a simulation rule. Rules 2 and 3 are inference rules. Notice that inference rules do not describe
real-world behavior. If one were to put a 10 at the output of the Adder and 4 at input B of the
Adder, a 6 would not magically appear at input A.

In software, simulation is easy and inference is hard. Simulation is easy because no rules are
needed. If a program works, we can simply execute it to determine its behavior. Inference is
hard because programs usually come with less detailed specifications. Without good
specifications it's difficult to come up with inference rules.

There are other ways to describe a device's behavior besides via simulation and inference
rules. One such way to is to describe the dependencies between a device's inputs and outputs.

Knowing the dependencies between inputs and outputs of a device can be as useful as
knowing detailed inference rules. For example, one inference rule for a multiplier states "If the
output is X and one input is A, then the other input should be X/A". This rule can abstracted in
terms of dependencies between inputs and outputs as follows: ''If the output is known to be
correct, and one input is known to be correct, then the other input should also be correct."

Input/output dependencies are useful because they require very little information about the
actual function of the device, thus making them easy to provide. For example, the rule for
adders is exactly the same as the rule for multipliers, with neither rule mentioning adding or
multiplying.



2.4 The Cost of Internal Probing

We probe a circuit or program to determine values at the inputs and outputs of devices. In
hardware, probing denotes the physical. act of placing an instrument in contact with a wire in the
circuit. In software, probing denotes the installation of instrumentation code to monitor control
flow and data flow.

There are several considerations in choosing probes. First, if we don't know much about a
particular device (i.e., if it's poorly specified), then we might not even be able to conclude
whether an observed value is right or wrong. Thus we should avoid probing poorly specified
devices.

Second, we should choose probes in accordance with the hierarchical structure of device.
Probing begins at the topmost layer of the hierarchy. Once the bug has been localized to
particular device in the topmost layer, we decompose that device and begin probing the next
layer. Exploiting the hierarchy in this way reduces the number of probes, because the number of
components at any level of abstraction is much less than the total number of components in the
system.

The final consideration in choosing probes is their cost. Due to physical constraints, probing
circuits is often very expensive, if not impossible. Components of a complex circuit may lie
within the same physical package, forcing us to observe only the input and output pins of the
package. Or a circuit board may be deeply buried within its chassis, preventing us from getting
close enough to probe it.

The cost of probing software is more mental than physical, because unlike circuits, programs
are relatively free of physical constraint. Physically, editing a low level subroutine is just as easy
as editing a top level control loop. But mentally, editing low level routines requires the
programmer to consider implementation details he would rather accept on faith.

2.5 Finding Suspects

3

3

2

2

3

10 (Incorrect)

12

Figure 6: Adder-Multiplier Test

Once we have a device's specifications and have observed discrepancies in its behavior, our
task is to determine which component of the device is buggy. First we determine an initial set of
suspects from among the device's components. We hope that the initial number of suspects is



significantly less than the total number of components in the device. Then we try exonerate each
suspect in turn. This section discusses how we find an initial set of suspects.

In order to find an initial set of suspects we must first determine which components could
have contributed to the observed misbehavior. Suspects are found via two simple rules: (1) A
component is suspect if any of its outputs are incorrect; (2) A component is a suspect if any of'its
outputs are connected to another suspect. The process of finding suspects with these rules is
known as dependency tracing.

Consider the Adder-Multiplier test shown in Figure 6. The output at F is incorrect: it is 10
when it should be 12. Since F is the output of Add-I, and F is incorrect, Add-I is a suspect.
Since the outputs of Mult-I and Mult-2 are connected to Add-I, and Add-I is a suspect, Mult-1
and Mult-2 are suspects. The final set of suspects from this dependency trace is Mult-1, Mult-2
and Add-2.

Our definition of dependency tracing changes when we switch to the domain of software.
Consider the Air Traffic Control program shown in Figure 2, which produces only one output. If
the output of the program is ever wrong, dependency tracing would uselessly conclude that all of
the program's components are suspect. Exonerating at least one component by dependency
tracing would be an improvement. Reasoning about data abstractions in the program will yield
the improvement we seek.

The output of the Air Traffic Control program is a plane-record constructed by the
build-new-plane-record function. If any of the inputs to build-new-plane-record are incorrect,
then the output of the program will be incorrect. Conversely, if the output of the program is
incorrect, then build-new-plane-record received some incorrect input.

To determine the inputs that were given to build-new-plane-record in the creation of a
plane-record record, we simply apply the accessor functions to the output. Applying accessor
functions "spreads" the data structure out into its components.

Figure 7 demonstrates how this idea improves dependency tracing. In this example, the
velocity-of accessor function relates the program's incorrect output to the third input of
build-new-plane-record. Dependency tracing from this input yields wind-adjust, turn-to-
safety, may-collide?, position-of and vector-of as suspects.

2.6 Exonerating Provably Innocent Suspects

Dependency tracing leaves us with several suspects. Our next task is try to prove that one or
more of the suspects cannot be the true cause of the bug. Control flow analysis can exonerate
suspects in programs. Constraint suspension [4] can exonerate suspects in circuits as well as
programs.

To understand the use of control flow analysis, consider the flow of control in the Air Traffic
Control program show in Figure 2. Control passes into the if statement, then into the
may-collide? predicate. Control then splits, continuing into turn-to-safety if may-collide?
returns TRUE, and into wind-adjust if may-collide? retums FALSE.

Figure 2 also demonstrates how control flow is represented with plan diagrams. The box
labeled with may-collide?, F and T represents the if statement in the program. Arrows
emanating from F and T represent the the split on control flow based on the outcome of
may-collide?. Finally, the box labeled with JOIN, F and T represents the synchronization of



Test Vector Input

flight-no-of position-of velocity-of

(Inccrrec)

dependency
trace

Figure 7: Air Traffic Control Program Test

control flow after the execution of the if.

An analysis of the control flow in the test of the Air Traffic Control Program (Figure 8)
allows us to exonerate turn-to-safety. Assume that probing tells us that may-collide? failed,
i.e., the F branch of the split was executed, and the T branch was ignored.

It would be naive to assume that all of the components lying in the ignored T branch went
unexecuted. A counterexample to this assumption is wind-adjust, which appears in both the T
and F branches. Wind-adjust must have been executed, because the F branch was executed. In
other words, appearing in the ignored branch of a split does not imply nonexecution.



Test Vector Input

' 1 I

flight-no-of

dependency
trace

position-of velocity-of

(incore)

contrl paths
not taken

Figure 8: Control Flow in the Air Traffic Control Program Test

Recall that dependency tracing told us that position-of, vector-of, may-collide?, wind-adjust
and turn-to-safety were suspects. But turn-to-safety was never executed: it wasn't executed
before the split, it doesn't appear in the F branch of split, and it wasn't executed after the split.
Therefore turn-to-safety can be ruled out as a suspect.

We now consider constraint suspension, a technique that is useful in both hardware and
software. Constraint suspension is based on the principle that if a device is malfunctioning, then
the rules which normally model its behavior no longer apply. If we were to model such a device
using constraints, it would have none. So to simulate a malfunctioning device in our network we
simply suspend all of the constraints that govern its behavior.



Exonerating a device via constraint suspension proceeds as follows. First, we assume that the
device is buggy by suspending its constraints. Next, we place the original test data at the inputs
of the network and the observed test results at the outputs of the network. Finally, we run the
network's simulation and inference rules.

If running simulation and inference rules leads to a contradiction, then we can exonerate the
suspended device by the following argument. The single-fault assumption guarantees that only
one device can be broken. Thus each time we suspend the constraints for a device we are
implicitly assuming that all other devices are functioning correctly. But if the suspended device
is not broken, then the implicit assumption leads to a contradiction: one of the supposedly
working devices is actually broken.

Constraint suspension can exonerate Mult-2 in the Adder-Multiplier test shown in Figure 6.
We first assume that Mult-2 is buggy, so we suspend its constraints. Then the inputs and outputs
shown in the diagram are placed at the inputs and outputs of the network. Simulation and
inference lead to the following deductions:

1. The output of Mult-I is 6, by multiplying A and C.

2. The output of Mult-2 is 4, by inference on Add-i: the first input to Add-I is 6, and
the output of Add-I is 10, so the second input to Add-I must be 4. The second
input to Add-1 is connected to the output of Mult-2, hence the output of Mult-2 is
also 4.

3. The output of Mult-3 is 6, by multiplying C and E.

4. The output of Mult-2 is 6, by inference on Add-2 (similar to the inference done on
Add-I in step 2).

The results of (2) and (4) are contradictory, since the output of Mult-2 cannot be both 4 and 6.
Mult-2 is thereby exonerated.

2.7 Convicting a Suspect

Control flow analysis and constraint suspension will rarely narrow down the set of suspects to
a unique element. But we assume that only one component of a circuit or program can be
broken. Thus we must determine which of the handful of remaining suspects is the true culprit.

With a complete set of specifications, we can trivially find the culprit: it's the device whose
behavior does not agree with its specifications. But given only a partial set of specifications,
finding the culprit becomes much harder. This is because only the grossest of errors can be
detected by partial specifications.

To illustrate this point, consider a procedure that computes integer factorials. A partial
specification on the factorial function is that it's result must be greater than zero. Suppose that
this hypothetical factorial procedure is buggy in that (factorial 0) returns 2 instead of 1.
According to the partial specification there is nothing wrong with this result: it is indeed greater
than zero.

Convicting a suspect may therefore require user interaction. Suppose some device's behavior
agrees with its partial specification. That means that either the device is working or its
specification is too vague to detect a problem. The only way to decide is to present the user with
the observed inputs and outputs for the device and ask if they seem correct.



We should attempt minimize the number of these user consultations. First, because our goal
is to build an automatic debugging system. Second, because the user may be unable to verify the
correctness of some input/output pair. And last, because every input/output pair that will be
presented to the user has to be acquired at the cost of an additional probe.

One way to minimize the number of user consultations is the divide and query approach [24].
Divide and query orders the suspects based on their execution order and dataflow, and then
performs a binary search among them to deduce where specifications were first violated.

Is (may-collide? #<100 350 18000> #<20 0 -10>) = T correct?
>>> Yes.
Is (wind-adjust #<100 350 18000> #<20 0 -10>) = #<-50 100 0> correct?
>>> No.

Figure 9: Divide and Query Applied to the Air Traffic Control Test

Figure 9 illustrates a divide and query scenario in the Air Traffic Control example. The
suspects are ordered as follows: position-of, vector-of, may-collide? and wind-adjust.
may-collide? is in the middle of this list, so the user is queried about it first. Prompted with the
observed inputs, the user decides that may-collide? is indeed working properly.

Knowing the may-collide? works allows us to conclude that everything before it in the
suspect ordering is innocent. This is because if something before may-collide? were broken,
then the user would see it through incorrect inputs to may-collide?.

We now focus our attention to the suspects that occur after may-collide? in the ordering. In
our example, the only such suspect is wind-adjust; of course there could just as easily have been
more than one such suspect. Again the user is queried, but this time he decides the device is
indeed buggy. Thus we can finally conclude that wind-adjust is the source of the bug.

2.8 Finding Suspects from Multiple Tests or Multiple Faults

The examples just discussed were simplified in order to clarify basic concepts. Specifically,
each test produced exactly one discrepancy, and only one test was performed at at time. We now
consider multiple discrepancies and multiple tests.

The presence of more than one discrepancy can reduce the size of the initial set of suspects.
We need to determine which components can account for all of the discrepancies at once. This
is done by intersecting the suspect sets that account for each discrepancy separately.

Performing multiple tests similarly limits the size of suspect sets. We assume that the bug is
being caused by one component. This implies that the faulty component will be a suspect in
every test. So we intersect the sets of suspects generated from every test.



3 The Debugging Assistant

3.1 Overview

The Debugging Assistant is a prototype of what we hope will eventually become a useful
programming tool. Before providing a structured description of the debugging algorithm, we
shall briefly summarize its underlying methodology.

The Debugging Assistant does not correct bugs, it only localizes them. Correcting bugs
requires an understanding of the relationship between specifications and implementation. The
problem of relating specifications to implementation has been has been ignored to simplify this
research.

No heuristic methods are used in the Debugging Assistant. All reasoning is done directly
from the structure and behavior of components, i.e., from first principles. Heuristic methods are
useful in early steps of debugging, because they directly relate symptoms to bugs and avoid
expensive reasoning about the program.

The basic debugging algorithm used by the Debugging Assistant can be applied to programs
written in any language. Language independence comes from the use of the plan calculus [12] as
a representation for programs.

The Debugging Assistant is simplified by limiting its repertoire of recognizable programs.
Programs must be written in functional style, with the exception that side-effecting is permitted
is via variable assignments. Loops in a program must be implemented as tail-recursions. This is
more a syntactic issue than a restriction, since any loop can be implemented as a tail-recursion.

3.2 Outline of the Debugging Algorithm

1. The procedure being debugged is analyzed to construct a surface plan [12, 31],
which represents the program as functional boxes with data and control flow
constraints.

2. A test case is given to the procedure, Both correct outputs and discrepancies are
noted.

3. An initial set of suspects is found via dependency tracing (see above). Sets of
suspects from multiple discrepancies or multiple tests are intersected.

4. Components that are provably innocent are exonerated. For each suspect found in
step 3:

a. By probing splits in control flow, determine if the the suspect was executed.
Unexecuted suspects are exonerated.

b. If step (a) fails to exonerate the suspect, constraint suspension is applied. If
contradictions are found after constraint suspension, the suspect is
exonerated.

5. If more than one suspect remains after step 4, try to convict each one in turn:
a. For groups of suspects that depend on each other via simple sequential data

flow, the user is queried for additional specifications. Some variation of



14

binary search is applied to minimize the number of queries.

b. Otherwise, the user is queried for additional specifications in an unspecified
order.

6. If one suspect remains, the entire debugging procedure is recursively applied to it,
if desired.



4 Related Work

4.1 Overview

Automatic program- debugging has been an active area of research in Artificial Intelligence.
The design of new debugging systems (this research included) is in part inspired by the successes
and failures of old debugging systems.

Debugging systems differ in the way they represent programs. Some systems operate directly
on the syntax of the programming language, and are thus deemed to be language dependent.
Other systems attempt to model programs in a language independent way, via some graph
representation or logical formalism.

Debuggers also differ in the way they reason about programs. Experience-based systems have
libraries of heuristics that describe how to find common bugs. Other systems reason from first-
principles, using only knowledge about the program to find bugs.

Debugging systems typically perform one or more of the following tasks: program
recognition, bug detection, bug localization, bug explanation and bug correction. These tasks are
usually done in the order mentioned. Systems which worry more about program testing tend to
perform fewer of these tasks (i.e., only recognition and detection). Systems which tutor students
must perform all of these tasks.

We can describe the proposed Debugging Assistant in terms of these three aspects. The
Debugging Assistant is language independent, by virtue of'the plan calculus [12] representation.
It reasons about programs from first principles via its use of simple constraints. Finally, the
Debugging Assistant localizes bugs and has some ability to explain bugs.

Several criteria are used to evaluate debugging systems. The first is generality. An ideal
debugging system should be able to detect many types of bugs. It should be able to understand a
variety of programs. And it should be able to relate alternate implementations of the same
algorithm.

Another criterion is degree of automation. The user of the debugging system should be
required to do as little work as possible. If the user is an expert programmer, he should not have
to answer questions about mundane details of his program. And if the user is a student, he
should not have to interpret cryptic error messages.

Some debugging systems claim cognitive plausibility. The way a debugging system models
programs should somehow parallel the programmer's own mental model. For example, a
debugging system that will be used by experts shouldn't model a program at the syntactic level,
because experts rarely make deep syntactic errors (i.e., an expert in Pascal will rarely omit a
semicolon). But a debugging system that will be used by students must view a program at least
partly syntactically, since that's the way students view programs.

The proposed Debugging Assistant can be evaluated by these criteria. It is general, by the
argument that any program or bug can be expressed in terms of first principles. It is highly
automated, in that control flow analysis and constraint suspension require no user interaction.
And it is cognitively plausible, because everyone must resort to first principles when experience
is of no help.



4.2 Tutoring Systems

One application of automatic program debugging is the tutoring of novice progranumers.
Tutoring systems are usually experience-based: they maintain a library of algorithm descriptions
which serve as templates for correct student programs. The tutoring system will compare a
student's code to the appropriate algorithm description, transforming one or the other to account
for minor implementation differences.

If a student's program cannot be matched to the algorithm description, experience-based bug
detection is invoked. One by one, a collection of bug experts, each knowing the symptoms and
cure for a specific bug, examines the code. When able, an expert modifies the buggy code to
correct the bug and allow matching to continue.

When evaluating tutoring systems, we stress the importance that the systems provide good
explanations. A good explanation describes the cause of a bug rather than its symptom. If a
student understands how a bug arises, he or she can learn how to program defensively and
prevent the bug from appearing again.

In evaluating tutoring systems we emphasize the need for cognitive plausibility. A tutoring
system is not only debugging programs, it is debugging the mind of the student. Any bug in a
program can be traced to a specific misunderstanding in the mind of the student. A good
debugging model makes this relationship explicit.

In Ruth's system [21], Program Generation Models (PGM's) describe algorithms by
modeling the decisions made in writing a program. A PGM is like a context free grammar;
Where context-free grammars derive valid strings in a language, PGM's derive valid
implementations of an algorithm. A recursive descent parser called the Action List Matcher
(ALM) attempts to match a program to a PGM.

When the ALM is unable to parse a section of code, a bug has been found. Some bugs, such
as loops that repeat the wrong number of times, require only minor changes in the source code to
be corrected. These bugs are heuristically detected and corrected, thereby allowing the parse to
continue. Other bugs, such as missing control structures, can only be corrected by major
changes to the source code. These bugs indicate either that the wrong PGM is being matched
with the program, or that the program is grossly incorrect.

PGM's are not guaranteed to represent all possible implementations of a given algorithm. If a
student has a syntactically mangled implementation that happens to work, Ruth's system might
consider the program incorrect. And if the student devises some clever new implementation of
an algorithm, the PGM might not be able to derive it.

Adam and Laurent's LAURA [1] represents algorithms as program models. A program
model is a supposedly correct implementation of an algorithm. Program models are written by
the teacher in a traditional iterative language (FORTRAN).

LAURA converts the student's program and the program model into labeled control-flow
graphs. During this process a variety of transformations are systematically applied to
canonicalize graph structure. LAURA then compares the two graphs, applying additional
transformations in an attempt to make the graphs as similar as possible. Finally, any remaining
differences are diagnosed from a set of known errors.



LAURA does not suggest corrections for errors, nor does it refer to syntactic elements of the
program in its error messages. Instead, it presents the program model along with an annotated
transformed version of the student's program. Examples of the annotations LAURA provides
are "Line 15 in program I is unidentifiable" or "Different conditions on the arcs coming from
lines 10 and 109."

The actual utility of presenting the student with annotated rewritten programs is questionable.
An inexperienced student may not be able to understand why the rewritten version of his
program is more correct than the original. And the vague annotations LAURA provides do not
tell enough about what is actually wrong with the code. The student would learn more from a
message like "Bad initialization of variable N in line 3" than he would from "Undefined
instruction in line 3."

Program models in LAURA share the same shortcomings as PGM's in Ruth's system. An
implementation of an algorithm may be correct even though its structure differs significantly
from the program model.

Murray's TALUS [11] combines heuristic and formal methods. Heuristic methods are used
to recognize algorithms, to guess at the possible locations of bugs and to suggest corrections for
bugs. Formal methods are used to verify the equivalence of program fragments, to detect bugs
and to prove or disprove heuristic conjectures.

TALUS views all programs, either student or teacher written, as collections of functions.
Functions have abstract features such as recursion type and termination conditions. The measure
of similarity between two functions is the numnber of abstract features they share. The measure
of similarity between two programs is a weighted sum of the similarities of their component
functions.

The first stage of debugging in TALUS is algorithm recognition. TALUS performs a best
first search through all known algorithms to find the one algorithm that is most similar to the
student's solution. Transformations are applied to facilitate matching with algorithms that have
several functional decompositions.

The second stage of debugging is bug detection. In this stage, functions are represented as
binary trees, with intemal nodes representing conditional tests and leaf nodes representing
function terminations or recursions. The set of conditions which must be true to reach a given
leaf node defines a test case for that node. TALUS supplies each test case to both the student's
solution and the matched algorithm. If the resulting returned values do not agree, a bug has been
found.

The third and final stage of debugging in TALUS is bug correction. Top level expressions in
the student's code fragment are replaced with their counterparts in the teacher's algorithm.
When the two code fragments are found to be functionally equivalent, the bug has been
completely corrected.

Representing an algorithm as a collection of abstract properties has several advantages.
Algorithms are matched on the basis of abstract nonsyntactic features, so syntactically
unconventional implementations will always be recognized. The properties which describe
programs are language independent; with the appropriate parsers, algorithms and solutions can
be written in any programming language. Bug descriptions drawn from abstract properties can
replace a symptom with its cause (i.e., a message like "The loop variable X has been incorrectly



initialized" describes a symptom, whereas "The DO loop over variable X repeats 1 time too
many" describes the cause of the symptom).

Johnson and Soloway's PROUST [81 debugs programs by reconstructing the goals of the
student and identifying the elements of the program that were meant to realize the goals. This
process is claimed to correspond to the actual thoughts of the student as he or she writes a
program.

PROUST uses programming plans to represent common implementation fragments, both
correct and buggy. For example, the "counter plan" describes the code where a variable is
assigned an initial value and then incremented within the body of a loop. Programming plans are
founded on the theory that expert programmers reason in temns of familiar algorithmic
fragments, as opposed to primitive language constructs.

A programming task can be broken down into subtasks. A goal decomposition of a program
describes the hierarchical structure of its subtasks, how its subtasks interact, and the mapping of
subtask goals to the plans which implement them. PROUST relates programs to goals by
matching plans from the goal decomposition to the program's code.

A problem description in PROUST can give rise to many correct and incorrect
implementations. The initial description of the problem may have several goal decompositions,
and each subtask in a goal decomposition may be implemented by several different plans.

PROUST avoids searching through all implementations of a task by using heuristics that
describe which plans and goals will occur together. Thus goals are decomposed at the same time
as plans are analyzed. As PROUST begins to understand a program, it establishes expectations
to confirm its current line of reasoning. When an expectation fails, PROUST tries an alternate
interpretation for the program.

PROUST is most useful as a tutoring tool. By attempting to capture the cognitive processes
in program synthesis, it can assist a misguided student by appealing to his or her deeper
understanding of program design. This is a feature missing in LAURA or TALUS, which simply
present the bug in the code and suggest a repair.

4.3 Debugging Systems

Daniel Shapiro's Sniffer [23] uses expert knowledge about programming to understand
specific errors. Sniffer recognizes programs by identifying familiar algorithmic fragments, or
programming cliches [12, 16, 31] in the code. Knowledge about bugs is encoded in bug experts,
which generate detailed reports about errors.

A debugging session in Sniffer proceeds as follows. The user asks Sniffer to execute his
program. As the program runs, Sniffer constructs an execution history containing information
about when and where variables were modified, and what paths of control flow were taken.

The user interrupts execution at the first sign of trouble. He uses the time rover to search the
program's execution history for bug symptoms and to localize the bug to a particular section of
code. Once the location of the bug has been found, the programmer asks the sniffer system for a
report.

The sniffer system performs two functions. First, it employs a cliche finder to recognize the



familiar parts of the buggy code. Then bug experts are invoked to determine the exact nature of
the bug. Bug experts use the time rover to verify symptoms for the bugs they specialize in.

Finally, Sniffer produces a detailed report about the bug. This report summarizes the error,
analyzes the intended function of the code, and discusses how the bug manifested itself at
runtime.

An advantage of Sniffer is its well defined modularity. In theory, one could easily augment
the knowledge base of either the cliche finder or the sniffer system to suit any domain of possible
bugs.

Because Sniffer is not given any specification information, it can neither detect nor localize
bugs. This places unreasonable demands on the user, especially in large software systems. Bugs
can manifest themselves in subtle ways in large systems, making their detection difficult. The
number of components in a large system complicates the task of tracing a bug to its source.

Lukey's PUDSY [10] understands a program by building a description of the program. These
descriptions can be compared to specifications to find bugs. Bugs occur where descriptions
disagree with specifications.

Building a program description in PUDSY proceeds as follows. First, the program is grouped
into chunks. A chunk is a schema for common computations. A common type of chunk is a
loop that finds an array's maximum element. PUDSY determines the dataflow in and out of
each chunk, and the dataflow between chunks.

Next, PUDSY looks for debugging clues by using constraints on what "rational" programs
look like. One such constraint is that a variable rarely appears in the left hand side of two
consecutive assignment statements. Another constraint is that variable names are meaningful: a
variable named min usually finds a minimum element. Violations of these constraints are
usually noted for later use, but in some instances they can be used to immediately debug a
section of code.

Describing a program in PUDSY is viewed as a stepwise process, where each step performs
some transformation on the current description. An initial description of a chunk is made by
trying to recognize it as an instance of a known schema. Every schema that can be recognized
by PUDSY comes with a logical assertion that describes it. Assertions are combined by
reasoning about program control and data flow. For example, a chunk that appears in the body of
a loop can be quantified over the loop variable.

If the final program description does not agree with its specification, a bug has been found.
PUDSY applies backtracing to determine the source of the bug. In backtracing, the inverse of
each description-building transformation is applied to the program's specification. For example,
if a transformation quantified an assertion in the description, back tracing would remove the
equivalent quantification from the specification. In this way PUDSY can find the first point
where descriptions and specifications disagree.

PUDSY's methodology for finding bugs is useful and reliable. Comparing complete
specifications to descriptions will always find a bug if there is one. And looking for discourse
clues in variable names is good way to detect low level differences between what the
programmer meant to do and what he did by mistake.

Ehud Shapiro's system [24] debugs Prolog programs from first principles. Shapiro's system



comes closest to this research in its use of first-principles reasoning. Three types of bugs are
considered by this system: termination with incorrect output, when the output value of a
deterministic procedure is incorrect; finite failure, when none of the outputs of a
nondeterministic procedure are correct; and nontermination, when the program enters an infinite
loop.

A debugging session in Shapiro's system consists of a question and answer session with the
user. If some input causes a program to terminate with incorrect output, the system will
selectively ask the user about the correctness of intermediate results of the computation. An
approach termed divide and query performs a binary search on the steps of the computation to
quickly focus in on the source of the bug.

Debugging a finite failure condition proceeds in a similar way. In this case, since the buggy
procedure is nondeterministic, the debugger asks the user to supply all known solutions to
intermediate results (making what is called an existential query).

Nontermination is debugged in several ways. First, the program can be run with bounds on
space or time, on the assumption that exceeding these bounds implies that the program does not
terminate. Also, well founded orderings can be defined on a procedure. An example of a well
founded ordering is that consecutive calls to a divide and conquer procedure have decreasing
parameter size.

Shapiro's work goes beyond debugging. He proposes a method for the inductive learning of
programs (beyond the scope of this paper), and then demonstrates how the inductive learner can
be applied to the correction of bugs. The underlying idea is that leaming a program is
incremental. At some point in time we have a partially learned version of the program. As
various input/output pairs come in to further describe the program's behavior, the partial
definition of the program is modified slightly. To debug a program, one could use the
input/output pair that caused the bug to manifest itself as a negative example. Similarly, one
could supply correct input/output pairs to buggy programs as positive examples.

Shapiro's system is able to localize broad classes of bugs by reasoning from first principles.
A couple of minor details in the methodology used in localizing the bugs are suspect, however.
The first problem is that the user is treated as an oracle that can answer yes or no questions about
the desired behavior of the program. But the answers to these questions should be found by
consulting the specifications for the program. The user could still be consulted, but only if the
specifications are too unclear or unwieldy to get a straight answer.

Another shortcoming is that there is no way for Shapiro's system to explain to the user why it
is asking a particular question. In reading a debugging session with the divide and query
approach, one sees that the questions asked seem relatively unrelated. The debugger should
explain why it chose to ask the user the seemingly random handful of questions it did.

Gupta and Seviora's Message Trace Analyzer [5] uses an expert systems approach for
debugging real time processes. Each process is modeled by a finite state machine that interacts
with other processes by sending messages. The system constructs a structured model of
interprocess communication called the context tree. The construction of the context tree is done
through a multilevel subgoaling process. Components of the context tree are tested for failure by
heuristic rules and state machine simulation.

The approach taken in the Message Trace Analyzer does not lend itself to the general



debugging of traditional serial software systems. Debugging based solely on interprocess
communication is akin to a pure I/O based debugging approach. In a complex software system,
simple I/O discrepancies could have many equally valid explanations. One needs to understand
the intemal behavior of a program (or at least how it can be decomposed into simpler parts) in
order to debug it.

One promising feature in the Message Trace Analyzer is its separation of general knowledge
of real time systems from specific domain knowledge (the domain being telephone switching
systems). This parallels the need for a software debugger to separate first principles
programming knowledge from the knowledge of specific algorithms. A debugger which can
maintain both types of knowledge and can intelligently decide to use one or the other would be
quite useful indeed.

Harandi's Knowledge Based Programming Assistant [7] is another expert-systems
approach. In this system, heuristic information is used to find many compile time and run time
errors with well-defined symptoms. These heuristics are specified as situation/action pairs. The
situation specifies bug symptoms and program information, and the action describes probable
causes for the error and possible cures.

The apparent intent of [7] is to present a description of the knowledge base structure and
inference system operation. Unfortunately, none of the actual rules for debugging are presented
in the work.

4.4 Other Work

Waters [33] observes that two approaches have been traditionally used in the verification and
debugging process, testing and inspection. Both approaches have problems when a large system
must be dealt with. The utility of testing is limited by the imagination of the programmer who
designs the tests. If the programmer cannot envision some unexpected error condition, he will
not devise a test for it. The power of inspection is limited by the complexity of subprogram
interactions in a large system. A programmer that inspects code to verify its correctness might
not have the insight to consider the interaction of two seemingly unrelated subroutines.

Constraint modeling is a third way to verify and debug programs. The program is modeled as
a network of constraints. The choice of what aspects of the program to model and what
constraints to use is left up to the programmer. By performing constraint propagation on this
network, bugs can be found that might not be found using testing or inspection. Waters
concludes that the three approaches of testing, inspection and constraint modeling are mutually
orthogonal, and are best used together in system verification.

Constraint modeling is the primary strategy used by the Debugging Assistant and by most
hardware troubleshooters. Constraints are given by the specifications of the components of the
program and their interconnections. Bugs are found by detecting contradictions (discrepancies)
in this constraint network. Testing is used as a secondary strategy, as a method for determining
an initial set of contradictions.

Chapman's Program Testing Assistant [2] helps programmers develop and maintain
program test cases. The programmer tests functions in his program by specifying an expression



to execute on some test data, along with correct results and success criteria. Each test case is
associated with the set of functions it verifies through a set of abstract features. If any of those
functions change, the test is re-run. If a success criterion is not met the programmer is warned of
the error.

Wills' program recognizer [34] applies flow-graph parsing to the recognition of programs as
plans in the plan calculus. A program is first transformed into a surface plan by control and data
flow analysis. Surface plans represent programs in terms of functional boxes, data flow, control
flow and constraints (the Debugging Assistant represents programs as surface plans). This
surface plan is then translated into an extended flow graph (a type of labeled, acyclic, directed
graph) to better facilitate subsequent matching. Flow graphs are parsed against a library of
common structures to determine familiar program fragments. During the parse the original
graph may be transformed in order to eliminate constraint violations.

Program recognition has always been considered an integral part of debugging. Wills'
program recognizer factors this task out of the debugging process, allowing future research to
concentrate more on bug localization and correction.

Levitin [9] explores the meaning and uses of errors in programming. A roughly day-long
coding assignment in CLU (a strongly typed high-level language) was given to several
volunteers. Versions of the program files were examined after the completion of the project to
determine the quantity and nature of bugs encountered. Bugs were classified by such names as
missing guard,'missing declaration, and malformed update. Levitin concludes from this
experiment that a general method for describing bugs is needed, one that works equally well for
any programming task.

The imethod for describing bugs proposed by Levitin describes a bug as a vector in a space of
categories. Each category has a metric associated with it that describes how the bug relates to
that category. The categories chosen are severity of error, how serious the error is to the
development process; locus of error, at what level of thought process the programmer erred; and
intent of error, the realization of the programmer that a mistake was being made.

The metrics proposed vary depending on the category. Locus of error is measured across the
spectrum from specification to implementation. Severity of error can be measured in amount of
code changed, amount of time taken, or combinations of these and similar metrics. Intent of
error is quantified based on the stage of the design process where the programmer decided to
ignore some assumption about the program, and when the programmer realized the exact nature
of the assumptions being violated.



References
I. Adam, Anne and Laurent, Jean-Pierre. "LAURA, a System to Debug Student Programs".
Artificial Intelligence 15, 1 (November 1980), 75-122.

2. Chapman, David. "A Program Testing Assistant". Communications of the ACM 25, 9
(September 1982).

3. Cyphers, D. Scott. Automated Program Description. (MIT-AI Working Paper 237).

4. Davis, Randall. Diagnostic Reasoning Based on Structure and Behavior. AI Memo 739, MIT
AI Laboratory, June, 1984.

5. Gupta, N. K. and Seviora, R. E. An Expert System Approach to Real Time System
Debugging. Proceedings of the First Conference on Artificial Intelligence Applications,
December, 1985.

6. Hamscher, Walter and Davis, Randall. Issues in Model Based Troubleshooting. AL Memo
893, MIT AI Laboratory, March, 1987.

7. Harandi, Mehdi T. Knowledge-Based Program Debugging: A Heuristic Model. Proceedings
of SOFTFAIR, July, 1983.

8. Johnson, W. Lewis and Soloway, Elliot. PROUST: Knowledge-Based Program
Understanding. In Readings in Artificial Intelligence and Software Engineering, Charles Rich
and Richard C. Waters, Eds., Morgan Kaufmann, 1986, pp. 443-451.

9. Levitin, Samuel M. Toward a Richer Language for Describing Software Errors. (MIT-AI
Working Paper 270).

10. Lukey, F. J. "Understanding and Debugging Programs". International Journal on Man-
Machine Studies 14 (February 1980), 189-202.

11. Murray, William R. Heuristic and Formal Methods in Automatic Program Debugging.
Proceedings of the UCAI, August, 1985.

12. Rich, Charles. Inspection Methods in Programming (PhD Thesis). AI-TR 604, MIT AI
Laboratory, June, 1981.

13. Rich, Charles. A Formal Representation for Plans in the Programmer's Apprentice.
Proceedings of the IJCAI, August, 1981.

14. Rich, Charles. Knowlege Representation Languages and the Predicate Calculus: How to
Have Your Cake and Eat It Too. Proceedings of the AAAI, August, 1982.

15. Rich, Charles. The Layered Architecture of a System for Reasoning about Programs.
Proceedings of the UCAI, August, 1985.

16. Rich, Charles and Waters, Richard C. Abstraction, Inspection and Debugging in
Programming. AI Memo 634, MIT AI Laboratory, June, 1981.

17. Rich, Charles and Waters, Richard C. The Disciplined Use of Simplifying Assumptions.
(MIT-AI Working Paper 220).

18. Rich, C. and Waters, Richard C. Toward a Requirements Apprentice: On the Boundary
Between Informal and Formal Specifications. AI Memo 907, MIT AI Laboratory, July, 1986.



19. Rich, Charles and Waters, Richard C. A Scenario Illustrating a Proposed Program Design
Apprentice. AI Memo 933A, MIT AI Laboratory, January, 1987.

20. Rich, Charles and Waters, Richard C. Formalizing Reusable Software Components in the
Programmer's Apprentice. AI Memo 954, MIT Al Laboratory, February, 1987.

21. Ruth, Gregory R. Intelligent Program Analysis. In Readings in Artificial Intelligence and
Software Engineering, Charles Rich and Richard C. Waters, Eds., Morgan Kaufmann, 1986, pp.
431-441.

22. Seviora, Rudolph E. "Knowledge-Based Program Debugging Systems". IEEE Software
Magazine 20, 5 (May 1987), 20-31.

23. Shapiro, Daniel G. Sniffer: A System that Understands Bugs (MS Thesis). AI Memo 638,
MIT AI Laboratory, June, 1981.

24. Shapiro, Ehud Y. Algorithmic Program Debugging (PhD Thesis). Yale RR 237, Yale
University, Department of Computer Science, May, 1982.

25. Soloway, Elliot and Ehrlich, Kate. Empirical Studies of Programming Knowledge. In
Readings in Artificial Intelligence and Software Engineering, Charles Rich and Richard
C. Waters, Eds., Morgan Kaufmann, 1986, pp. 507-521.

26. Steele, Guy Lewis, Jr. The Definition and Implementation of a Computer Programming
Language Based on Constraints (PhD Thesis). AI-TR 595, MIT AI Laboratory, August, 1980.

27. ,Steele, Guy Lewis, Jr.. Common LISP. Digital Press, 1984.

28. Sussman, Gerald Jay and Steele, Guy Lewis, Jr. CONSTRAINTS, A Language for
Expressing Almost-Hierarchical Descriptions. AI Memo 502A, MIT AI Laboratory, August,
1981.

29. Tan, Yang Meng. ACE: A Cliche-based Program Structure Editor. (MIT-AI Working
Paper 294).

30. Waters, Richard C. "A Method for Analyzing Loop Programs". IEEE Transactions on
Software Engineering SE-5, 3 (May 1979).

31. Waters, Richard C. KBEmacs: A Step Towards the Programmer's Apprentice. AI-TR 753,
MIT AI Laboratory, May, 1985.

32. Waters, Richard C. Program Translation Via Abstraction and Reimplementation. AI Memo
949, MIT AI Laboratory, December, 1986.

33. Waters, Richard C. System Validation via Constraint Modeling.

34. Wills, Linda M. Automated Program Recognition (MS Thesis). AI-TR 904, MIT AI
Laboratory, February, 1987.

35. Zelinka, Linda M. An Empirical Study of Program Modification Histories. (MIT-AI
Working Paper 240).


