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Abstract

A gravitational lens is the result of a massive object lying along the line of sight to a
more distant object, such as a quasar, so that the light from the quasar is deflected
before it reaches earth. Often the distortion caused by the lensing mass can cause
multiple images of the same object to be seen. Such systems provide an opportunity to
measure the effective angular diameter distance to high redshift objects, and thereby
deduce Hubble's Constant (Ho). There are two steps to this procedure. First, the
mass distribution of the lensing object must be determined so that a model can
be made of the relationship between the angular diameter distance to the lens and
the difference in path lengths among the multiple images. Second, this path length
difference must be measured in the form of a time delay between flux variations among
the multiple components.

In this thesis, I present a time delay measurement of the gravitational lens 0218+357
as well as VLBA observations of this lens which are used to model the mass distri-
bution of the lensing object. With the time delay and lens model, we determine
that Hubble's Constant is in the range 9 km/s/Mpc < Ho < 68 km/s/Mpc at 95%
confidence. Cosmological implications are discussed.

Thesis Supervisor: Jacqueline N. Hewitt
Title: Professor of Physics
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Chapter 1

Introduction

1.1 What is a Gravitational Lens?

1.1.1 Basic Concept.

According to Albert Einstein's theory of general relativity, the perceived force of

gravity is a result of the curvature of space-time by massive objects. Light, which

normally travels along a straight line path, is deflected when it travels through a

region of curved space. Therefore, the curved space in the vicinity of a very massive

object acts like a lens and can bend, concentrate or spread light rays that pass through

it.

It then follows that light paths should be bent by the gravitational field of the

Earth as well. This is in fact the case; however, the enormous speed of light makes

this difficult to observe. For example, if one were to aim a laser beam perfectly

horizontal to the ground at a target that was 300 meters away, the light would take

only one millionth of a second to reach its target. The gravitational pull of the earth

will cause the light to hit somewhat lower than its target, but only by an amount

that is less than the width of a single atom! So the effect of gravity is not noticeable

in any normal situation on Earth. Even an object as massive as the Sun can only

cause very small deflections of passing starlight.

When very large masses are involved, such as an entire galaxy or even a cluster

19
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Gravitational Lens Diagram
True light aths. Image 1:

I

Figure 1-1: The basic concept behind gravitational lensing. The lensing mass bends
the light emitted by the source so that two (or more) separate paths reach Earth. An
observer will then see the two (or more) images of the same source, both of which are
offset from the true source position.

of galaxies, the lensing effect can be quite striking. In some instances such a massive

object lies along the line of sight to a more distant object. When this happens,

the light rays from the background object are bent and distorted before they reach

Earth. Often the distortion caused by the lensing mass can cause multiple images of

the same background object to be seen (see Figure 1-1). Astronomers refer to this

phenomenon as a gravitational lens. Such objects had long been predicted, but it was

not until 1979 that the first gravitational lens, named by its coordinates 0957+561,

was discovered (Walsh Carswell & Weymann 1979). There are now more than 50

such objects confirmed as gravitational lenses.

1.1.2 Review of Cosmology

Gravitational lensing in which multiple images can be resolved by existing telescopes

occurs only for objects at distances that are a significant fraction of the size of the

observable universe. For this reason, the structure and dynamics of the universe as a

whole have a large effect on gravitational lensing. This makes gravitational lenses a

20
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valuable tool for studying cosmology. In order to demonstrate this, it is necessary to

summarize some of the basics of quantitative cosmology.

The space-time structure of the universe as a whole can be described by the

Robertson-Walker metric which is simply the most general space-time metric which

is both homogeneous and isotropic. It has the form:

dr 2

ds2 = dt2 a(t) 1 - 2 + r2 (d 2 + sin 2 Odq 2 )] (1.1)

where k is the curvature of space and a(t) is the scale factor of the universe. As a(t)

changes in time, space expands or contracts. At the present time, a(t) is increasing,

causing the distances between galaxies in the universe to increase with time. The

redshift of an object, z, is directly the result of the changing scale factor. If the light

we observe from the object was emitted at time t, and time at present is to, then the

redshift is:

Z- a(t.) 1 (1.2)

The cosmological equations governing how a(t) evolves in time in a universe domi-

nated by non-relativistic matter are:

a 4
-=--7rGp+ - (1.3)

a 3 3

(&)2 8 k A
-) = 7rGp- + (1.4)

where G is the Newtonian gravitational constant, p is the matter density of the

universe and A is a constant term related to the energy density of the vacuum which

causes "negative" pressure and increases the expansion rate.

The expansion rate of the universe, H, is directly related to the rate of change of

the scale factor, a(t), in the following way:

H- &(t) (1.5)
a(t)

where H can change throughout the lifetime of the universe. Typically the present

21



day values of cosmological parameters are denoted by a subscript "o" and so the

present day expansion rate, is denoted as Ho and is called Hubble's Constant.

If there is no cosmological constant (A = 0) then there is a critical matter density,

Pc, above which the universe is gravitationally bound and will eventually begin to

contract:
3H2

Pc 87rG (1.6)

It is therefore convenient to define a normalized matter density:

Po _ 8rGp (1.7)
Pc 3H 2

If there is no matter (QO = 0) then there is a similar critical value for the cosmological

constant, Ac, which allows us to similarly normalize the cosmological constant:

A o (1.8)

The cosmological constants Qo and Ao determine how the scale factor, a(t) changes

with time and therefore how the universe will evolve and has evolved. Together, they

also determine the curvature of space-time:

Qo + Ao > 1 = Spacetime has negative curvature

Qo + Ao = 0 =: Spacetime is flat (Euclidean)

Qo + Ao < 1 =: Spacetime has positive curvature

1.1.3 Cosmological Distances and Gravitational Lenses

Gravitational lensing occurs when the lensing object and the source are at cosmologi-

cal distances from the observer. Objects are said to be at cosmological distances when

the time it took their light to reach us is a significant fraction of the age of the uni-

verse. Thus the light we receive has traveled for billions of years through expanding

and possibly curved spacetime. Before describing quantitatively how gravitational

lenses work, it is necessary to define precisely what we mean by distance in a universe

22



that is vast, expanding and possibly consists of curved space. Normally we can imag-

ine the distance between two points in space as the length of a string used to connect

them in a straight line. However, we see objects only by the light they emit which

takes time to travel to us. Objects at cosmological distances are separated from us

not only in space but also in time, because we only see the object as it existed when

the light we are now receiving from it was emitted. How do we define the distance to

an object we are looking at when we are seeing it where it was billions of years ago

and in a universe that has expanded significantly since that time? In addition, for a

curved universe, it is not immediately obvious how we even define a straight line.

One way to define distance for cosmological objects is called the lookback time.

Lookback time is simply how far back in time was the light we now observe from this

object emitted. If the present time (now) is t and if the light we see from an object

was emitted at time t, then the lookback time is t - t. The lookback "distance" is

simply the lookback time multiplied by the speed of light. This is perhaps the most

intuitively satisfying way of defining distance, and will be referred to as the "true"

distance or just the distance throughout this thesis.

Another definition of cosmological distance, which may be less intuitive but is

much easier to calculate and to observe, is called angular diameter distance. Angular

diameter distance is defined for an object of known physical size, R, and observed

angular size, 0, as:

R
Dad -- (1.9)

This, of course, is an exact way to calculate "true" distance in flat and static

Euclidean space. However, in a curved or dynamic universe, this formula no longer

results in the "true" distance, but is still a very useful quantity. Angular diameter

distance is particularly useful for the modeling of gravitational lenses.
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1.1.4 Quantitative Explanation of Lensing.

In order to make quantitative predictions about gravitational lensing one must con-

sider the nature in which gravitational fields distort space-time. In the limit of a weak

gravitational field, , the space-time metric is the following:

ds2 = (1 + 2 )2dt2 _ (1- )6dxdx - (1.10)

For light, ds2 = 0, so in the case of one dimension, we have:

(1 + )c 2dt 2 = (1 - )d 2 (1.11)
C2 C2

To first order in A, we get:
dx c
dt (1 -A) (1.12)

So the speed of light appears to an outside observer to be slowed down by a factor

of (1 - )-1. In this way, we can think of the gravitational potential as giving space

an effective index of refraction, n = - 20, for light. Now we can apply Fermat's

Principle from optics, which states that light will travel only along paths for which

the travel time is an extremum. The travel time of light along a given path is equal

to the following line integral:

T = dl (1.13)

When this principle is applied to a situation such as that in Figure 1-1, it is useful

to start off with some reasonable approximations. In all known gravitational lenses,

the deflection of light is extremely small, about six arcseconds or less. Therefore,

we can approximate this bending as an instantaneous deflection that occurs at the

moment the light passes through the image plane (see Figure 1-2). Since all paths we

need to consider begin at the light source and end at the observer, the travel time, T,

can be considered a function only of the point at which the path intersects the image

plane. This is referred to as the "Thin Lens" approximation.

According to Fermat's Principle, images will appear only at points (x, y) on the
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0

DOL
Light Path

Lensing

DLS

Light
Source

Image Plane Source Plane

Figure 1-2: An idealized picture of the bending of light by a gravitational lens. All
of the bending takes place as the light passes through the image plane. Therefore,
an observer will see the object as if it were in the position at which the light path
intersects the image plane, rather then its true position as shown in the source plane.
The gravitational potential that a photon will "feel" as it takes this trajectory can
be approximated as that it would feel if it traveled along a line parallel to the z-axis
through the image plane at a given point (x,y). These approximations are valid only
because the bending angle is in reality extremely small. For the sake of visual clarity,
the bending angle is depicted in this diagram as far larger than it really is.

image plane for which:
dr dr

-= - 0 (1.14)dx dy

Rather than directly evaluating Equation 1.13, it is useful to separate the travel time,

r, into the following components:

T = TO + geometry + Tgravity (1.15)

where T0 is the travel time for an undeflected light path in the case that there is no

lensing mass, Tgeometry is the increase in travel time due to the extra distance in the

real light path over a straight line path, and Tgravity is the increase in travel time due

to the gravitationally induced effective index of refraction along the light path.

Let us name the position at which the true light path intersects the lens plane

with the vector ir. Let us also name the position at which a straight line between

the observer and the source intersects the image plane as s. Then if we also use the
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quantities labeled in Figure 1-2, we can immediately calculate the travel time term

Tgeometry, to second order in r - s, and ry - sy as:

1 Dos I- 12
Tgeometry(x, y) =2 (1 + ZL)DOLDLSIr (1.16)

where ZL is the redshift of the lens, and with the convention that the point (x, y) =

(0, 0) will be located where the image plane intersects the straight line connecting

the observer to the source. The term (1 + ZL) is included to convert Tgeometry(Z, Y)

from the restframe of the lens to that of the Earth. These equations were derived

assuming a flat, Euclidean geometry. They are valid for curved cosmologies only when

the distances, Dos, DOL and DLs are angular diameter distances. (Here, DLS is the

angular diameter distance measured by an observer at the lens at the time the light

passed the lens.)

The remaining term, Tgravity, depends on the mass distribution of the lensing

object. If we rely on the assumption that the path deflection by the lensing object

is extremely small, we can form the following general expression for Tgravity for a lens

gravitational potential, 0:

2 wa
Tgravity(X, y) = - (1+ ZL) ] (, , w)dw (1.17)

Again, the term (1 + ZL) is included to convert Tgravity(X,y) into the restframe of

the Earth rather than that of the lens in which the gravitational potential, X(Z),

is having its effect. The limits of integration, Wa and wb, must enclose the region in

which different possible light paths will "feel" different parts of the potential. Far from

the lens, the potential is practically the same for all paths. As long as this condition

is met, the actual values of the limits of integration are unimportant. This is because

we are only interested in differences in Tgravity(x, y) among the various paths, and

so extending the integrals beyond the point where the various paths pass through

non-negligibly different potentials will not change the difference in time delays.

We can simplify the above formulas with a change of notation. First we define a
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new quantity called the effective potential:

(x, y) c2DoLDos f 0(X, , w)dw (1.18)

which is just a scaled two-dimensional potential formed by integrating the three-

dimensional potential along the line of sight. Also, instead of using length coordinates

in the image plane, we will use angular coordinates. Thus we have:

0= (0x Oy) = D (x, y) (1.19)
DOL

Now we plug in Equations 1.16, 1.17 and 1.18 into Equation 1.15 to get:

DOLDos 2 - 2 () (1.20)Tr(0) = To + (1 + ZL) 2cDLs[- -2 (1.20)

where is the angular position of the source object in the absence of lensing. One

convenient property of the effective potential is that its gradient at the image position

is equal to the difference between the image position and the true source position in

the absence of lensing as follows:

V(0) = - 0 (1.21)

This allows us to rewrite Equation 1.20 so that the light travel time can be expressed

entirely in terms relating to the effective potential and its derivatives:

T(O) = To + (1 + ZL) 2cDLs [N o0122 (W)]. (1.22)

Knowing 4() for a given lensing object, we can then plot r as a function of 0 in

the image plane. According to Equation 1.14, images of the source object will appear

at places in the image plane where the function r(O) (calculated from Equation 1.20)

is a local maximum, local minimum or a saddle point. In figure 1-3, several lensing

scenarios are shown along with the resulting images as seen by the observer. Notice
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Various Lensing Scenarios
Observer's View

Observer's View

D)
Lensing-
Mass

Observer's View

Observer's View

Figure 1-3: The r-surfaces of various lensing configurations are shown here, along
with the resulting image positions that an observer would see in the sky. In case A,
there is no lensing mass, so the observer sees the undistorted image of the background
light source. In case B, there is a point mass located exactly along the line of sight to
the background object. This results in an Einstein ring image. Case C is similar to
case B except that the point mass is not quite lined up with the background source.
This results in two images of the same background source. Case D is like case C
except that instead of a point mass, we have an elliptical mass distribution, which
can cause the background object to be quadruply imaged.
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that, in addition to determining where the images will fall, the T-surface also predicts

the time delays among the images. Also, the curvature at these points determines

the magnification of the background source. So knowing the mass distribution of

the lensing object, and thus 0(x), we can deduce the image positions, relative mag-

nifications and time delays. In gravitational lens modeling we seek to reverse this

procedure. Using empirically determined factors such as the image positions and flux

ratios, the lens position and the redshifts of the lens and source, we seek to model

the mass distribution of the lensing object.

1.2 What Can We Learn from Gravitational

Lenses?

The field of cosmology, which deals with the overall structure and evolution of the

universe, can potentially be advanced greatly by the study of gravitational lenses.

This is for two main reasons. First, strong gravitational lensing (in which the image

separation is great enough to resolve with existing telescopes) only occurs when the

foreground object is extremely massive, on the scale of an entire galaxy or larger.

Currently among the primary unknown factors in cosmology are the mass density

of the universe and the nature in which this mass is distributed. All astronomers

can observe directly is the distribution of light sources in the universe. Lately, the

evidence seems to be mounting that the light distribution is very different from the

mass distribution. Studying a single gravitational lens allows us to measure directly

the mass distribution in the lensing object by its gravitational effect on the light from

the background source. Studying the overall density of gravitational lenses in the sky

allows us to estimate the number density of such massive objects in the universe as a

whole.

The second way in which gravitational lenses are useful for cosmology will comprise

the main part of this thesis. This is a use that had been theoretically predicted

by Refsdal in the 1960's, long before any gravitational lenses had been discovered
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(Refsdal, 1964 ;Refsdal, 1966). He proposed using gravitational lenses to measure the

distance to objects at cosmological distances, a task that has long proven difficult.

Gravitational lenses provide a unique opportunity to measure directly cosmological

distances. This is done by relating the angular diameter distances among the objects

in the lens to the difference in travel time among the various light paths to a multiply

imaged background object. The travel time difference, known as the time delay, can

be measured observationally if the brightness of the background object varies. The

brightness variations among the images will be separated in time by their respective

time delays. This will be discussed in greater detail in Chapter 2.

Suppose we want to calculate the time delay between two images, A and B, of the

same background source. We start with the simple equation:

AT = TA - B. (1.23)

Since Tr is the same for each image, and using equation 1.22, we get the following

expression:

AT (1 + ZL) DOLDOS [ O(OA)12 _IV P(O) 2 - 2 (OA) + 2' i(OB)] (1.24)2r = (1 + cDLS

In this expression, we know ZL by observation. All angles in this expression are

measured with respect to the lens center so if we can determine the center of the

lensing mass in the image plane, we can determine J0A I2 and 10BI2. Also, through lens

modeling, 4'(0) can be determined for all 0. With these quantities known, we can

combine them into a single known constant of proportionality, G(ZL, A, B, b(OA),

#(OB)). Thus we have:
DoLDos _ 2c- AT (1.25)

DLS G

where G is determined by lens modeling and ATr is measured observationally. In this

way, a time delay and a lens model can determine a scaled distance in the lens system
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called the effective distance which we define as:

DoLDos
Deff DLS

DLS
(1.26)

In order to use knowledge of Deff to determine H, we must first relate angular

diameter distance to redshift. This relation depends on which cosmological model we

use, and in general we can write:

D(1, Z2 ) = C f(Z, Z2)Ho
(1.27)

where D(zl, z2) is the angular diameter distance from an object of redshift z1 to an

object of redshift z 2, assuming both object lie along the same line of sight. The

function f(z1, z2) is independent of Ho. The functional form of f depends only on

the cosmological parameters QO and Ao. With a filled beam assumption' we have:

f(zl,Z 2 ) =

sin (X2 - X1)

(1 + z 2 )Qo+ Ao- 1

X2 - X1

1 + z2

sinh (X2 - X1)

(1 + z 2 )/ 1 - o- Ao

for QO + A > 1

for £Q, + Ao = 1

for Qo + AO < 1

'The filled beam angular diameter distance assumes that the matter in the universe is uniformly
distributed. Empty beam assumes that matter exists mainly in isolated clumps and so looking
out through a small-angled cone there is likely to be no mass in the cone. Filled beam assumes
that the cone is filled with matter of density Qo. Because of the lensing effect of matter, the
different assumptions result in different angular diameter distances to objects of a given redshift.
The difference is greatest for high redshifts and high Qo, universes.
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where

Z
2 5 IQo+ ~A. o-1dz for Qo + Ao 1

X2-X1 z VQo(1 + z)3 + (1 Qo- Ao)(1 + z)2 + Ao

I z2 dz
J2 dz for Q1, + Ao = 1

J/o(1 + z)3 + (1-o)
(1.29)

(see Fukugita Futamase Kasai & Turner, 1992 and Dyer & Roeder 1972).

Combining Equations 1.26 and 1.27, we get:

Delf ! c f(0, zL) f(,zs) (130)
f Ho f(zL,zs)

where zs is the redshift of the source and ZL is the redshift of the lensing object.

In this equation, Deff is determined by measuring the time delay and modeling the

lens. For the given redshifts, ZL and zs, the quantity f(O,zL) f(Os) depends only onf(zL,Zs)

the values of Qo and Ao in the model we choose. With most reasonable cosmological

models, this quantity does not vary by more than a few percent. For example, if we

take a typical case with zL = 0.5 and zs = 1, the difference between the angular

diameter distance calculated for an Q, = 1, Ao = 0 universe versus an Qo = 0.25,

A, = 0 universe is only 6.6%. This error is small compared to the errors from lens

modeling and time delay measurements. With all the other terms in the equation

known, Ho is therefore determined.

1.3 Implications for Cosmology

In the previous section we showed that the method for determining Ho uses only

knowledge of the effective distance and has a relatively weak dependence on the choice

of cosmological model. By itself, Ho is the scale factor that tells us the distance to

objects with low redshift, thus determining the geometry of the "nearby" universe

with redshifts of about 0.2 or less, which contains most of the galaxies and galaxy

clusters that are close enough to study in detail. Knowing the distances to these
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objects would immediately tell us their size, luminosity and age at which we see them.

This is extremely useful for studies of galaxies, clusters of galaxies and estimates of

the mass density of the universe.

However, some quantities that are bypassed in this method are themselves useful

for cosmology. For example, the angular diameter distance to the lens, DL, is a

very useful quantity in its own right. With the method described in the previous

section, DL is never isolated. Only Deff which is a ratio of DL and other distances is

determined (see Equation 1.26). As described by (Narayan, 1991), the way to isolate

DL from Deff is to obtain, independently from lens modeling, information about the

mass distribution of the lensing object. Such information usually consists of velocity

dispersion measurements or cluster dynamics. That information is not available for

the lenses discussed in this thesis at this time. However, measuring DL to many

lenses at a variety of redshifts would determine directly the relation between redshift

and angular diameter distance out to high redshifts (z > 0.5) and thus represents the

ultimate potential of studying gravitational lenses. As this thesis presents research

concerning the first steps towards this goal, it is necessary to discuss the implications

of this ultimate result as part of the motivation for this research.

Knowing the correlation between distance and redshift for a range of redshifts

extending well beyond 0.5 will constrain much more than just the current expansion

rate of the universe. This is because over the very long time its light has taken to

reach us from these high redshift objects, the expansion rate of the universe may have

changed. This can be determined in a plot of redshift versus distance. In Figure 1-4

the predicted redshift-distance curves are shown for several cosmological models. For

a universe with a high mass density, the gravity will cause the expansion rate to slow

down over the life of the universe, and possibly even to eventually start contracting.

For a very low mass density, the expansion rate is expected to remain more or less

constant. It is also conceivable, though not necessarily intuitive, that the expansion

rate could increase. This is the case in models with a high value of the cosmological

constant, Ao,. Each cosmological model predicts a different history of the expansion

rate of the universe from the big bang forward. Therefore, an empirical determination
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of the relationship between distance and redshift to very distant objects will help

determine which cosmological model is correct.

The physical basis for a cosmological constant comes from the possibility that the

vacuum energy density is not quite zero. Recent work with high redshift supernovae

indicate that the expansion rate of the universe could in fact be increasing, which

indicates a high value for Ao (Perlmutter et al. 1999). Knowing the energy density

of the vacuum is fundamental to our understanding of physics. With experimental

cosmology, it could actually be measured.

1.4 Radio Astronomy

1.4.1 Radio Waves

Visible light is the relatively small section of the entire electromagnetic spectrum,

with wavelengths between about 400 nm and 750 nm, to which the human eye is

sensitive (see Figure 1-5). Electromagnetic waves with longer or shorter wavelengths

than visible light can also be used to gain valuable information about astronomical

objects. Most of the data used in this thesis was obtained by observing the radio

emission from gravitational lenses.

Radio emission has frequencies that range from a few tens of megahertz to many

tens of gigahertz. This is much lower than that of visible light and is in the range where

the oscillating electric fields can be measured directly and amplified with available

electronics. For higher frequency radiation, such as visible light or X-rays, this is

not currently possible and the light is detected instead by counting the number of

electrical or chemical reactions the individual photons cause to occur in the detector

(whether a charged coupled device, photographic film or even a retina).

1.4.2 Imaging the Radio Sky

Radio emission produces an oscillating electromagnetic field causing a varying voltage

across an antenna which can be amplified by a transistor or other such device. This
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Distance-Redshift Relation for Various Cosmologies
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Figure 1-4: This diagram shows the relation between redshift and filled beam angular
diameter distance (see Equations 1.28 and 1.29) for cosmologies containing various
amounts of mass density (Qo) and cosmological constant (Ao). The gravitational lens
0218+357 has a redshift of 0.685, so knowing its angular diameter distance would
establish one point on the redshift-distance curve on the line shown. If the distance
to many gravitational lenses at a variety of redshifts can be determined, it would help
to not only to determine Ho, but also to distinguish among the curves shown here
and therefore determine Qo and Ao as well.
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The Electromagnetic Spectrum

Radio X-ray Gamma Ray

10-m 10-3m 10-5m 10-7m 10-9m 10 - 1 10-3

Figure 1-5: The full spectrum of electromagnetic radiation is shown here according to
wavelength. Notice that visible light (400nm to 750nm) is a small part of this entire
spectrum. Radio waves have wavelengths ranging from a few millimeters to over a
meter and are not detectable by the human eye.

is how hand held radios work to use the radio emission from commercial broadcasters

as the signal that is then converted into sound. The main difference between a radio

telescope and a communication radio is that radio telescopes seek not only to detect

the radio emission, but to determine precisely from where that emission is coming. In

contrast, hand held radios have no need for directional information and simply accept

radio signals from all directions. Another difference is that for radio astronomy, the

signals received are far weaker than for artificial radio broadcasts. This means that

the receiver design is extremely important.

One method of making a radio receiver sensitive to direction is to place the feed at

the focal point of a reflecting paraboloidal dish. Radio emission that comes from the

direction parallel to the axis of the paraboloid is maximally concentrated on the feed.

In addition, the feed can be shielded from most of the emission that does not come

from the reflective dish. The directional sensitivity is limited mainly by diffraction.

A dish with diameter D will be mostly sensitive to a circular cone centered on the

paraboloidal axis and with a diameter of 0 in radians, where:

0 = 1.22 A (1.31)
D

This is called the primary beam of a radio dish, and the beam size, 0, is the image

resolution achievable with this dish. For the same wavelength, A, the beam size

decreases as the dish diameter increases.
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Suppose one wants to observe an object with 0.25" resolution at a wavelength of 3.6

cm, or 8.4 GHz. According to Equation 1.31, the dish size needed for such resolution

would be 36 km! This is of course impractical. Yet, with a more "practical" size dish

of D = 25 m, the primary beam would have a diameter of 360", which is about one

fifth as large as the full moon. This would make imaging of most sources impossible.

The solution to this problem is to take advantage of the ability of radio receivers to

measure the amplitude and phase of incoming radiation. That allows for the technique

of interferometry, which involves combining the signals from radio telescopes that are

far apart. For example, the Very Large Array (VLA) telescope in Socorro, New

Mexico, uses 27 radio dishes, each 25 m in diameter, which are placed in a three-arm

array in which the maximum separation is 36 km. The VLA is capable of achieving

0.25" resolution at a wavelength of 3.6 cm with interferometry, just as if it were a

single 36 km-wide dish. The Very Large Baseline Array (VLBA) consists of ten 25 m-

diameter radio dishes placed at various locations throughout the North American

continent. The VLBA is capable of resolutions of less than 0.001", which is the

angular size of a golf ball in New York as seen from Los Angeles.

To illustrate how interferometry works, first consider the case of a single pair of

radio telescopes. Radio emission from a particular direction in the sky will arrive

at one telescope at a slightly different time than at the other telescope depending

on the relative positions of the two radio dishes. Both telescopes will measure the

same signal, but with a different phase depending on the light path length difference.

This path length difference between the two telescopes will depend very strongly

on the angle from where the emission is coming (see Figure 1-6). As the angle is

gradually increased, the interference goes from constructive to destructive and back

to constructive, in what is a striped pattern that is perpendicular to the line from one

telescope to the other. The "striped" pattern is actually a sinusoid, and so the two

antennas together measure not the total radio emission within the primary beam, but

that emission multiplied by a sine wave. The angle and frequency of the sine wave

depends on the angle and spacing of the antenna pair. So essentially each antenna pair

measures one two-dimensional Fourier component of the image in the sky. With the
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Figure 1-6: A). A pair of telescopes aimed in the same direction will see an interference
pattern that varies with angle in the sky. The interference pattern is a sinusoidal
striped pattern across the entire primary beam. The longer the baseline, the narrower
the stripes become. That is why long baselines are necessary to obtain fine resolution
in an image. B) As shown in part A, the combined sensitivity of a single pair of
antennas will form a sinusoidal striped pattern in the sky. The stripes are thinner
for longer baselines. This diagram shows the sensitivity patterns for various baselines
at a wavelength of A = 3.6 cm. The top pattern is for a 36 km baseline, while the
second pattern is for a 9 km baseline. The combination of the sensitivity patterns
of 10 different baselines is shown on the bottom. Notice how most of the sensitivity
is contained in a small region near the phase center. This is called the synthesized
beam, and for an array, this is analogous to the primary beam of a single antenna. For
the VLA, the synthesized beam is over 1000 times smaller than the primary beam.
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Figure 1-7: The layout of the 27 VLA antennas is shown in the left plot. The right
plot consists of all possible vectors from one antenna to another. This is referred to
as the instantaneous uv-coverage of the array.

VLA, there are 27 antennas and therefore 351 antenna pairs. Each pair of antennas

can be represented by a point defined as the vector from one antenna to the other

projected on a plane perpendicular to the line of sight of observing. Such a vector

is called the baseline. Figure 1-7 shows the antenna configuration for the VLA along

with all the baselines such a configuration produces. The plane in which baselines are

plotted is called the uv plane because the coordinate axes are commonly labeled as

u and v. A visibility is a measurement taken at one baseline, or one point in the uv

plane. The uv plane consists of the two dimensional Fourier transform of the actual

image in the sky. With interferometric arrays, the direct measurements are of data

points in the uv plane, which must then be Fourier transformed back to obtain an

image.

However, the fact that the entire uv plane is not sampled will result in errors

in its Fourier transform and hence the final image. To determine how incomplete

uv-coverage will effect the final image, it is useful to first consider the response of a

given array to a point source of radio emission. If the point source falls in the primary

beam of the antennas in the array, all the antennas will receive the following signal
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Snapshot Synthesized Beam for the VLA
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Figure 1-8: The synthesized beam for the VLA snapshot uv coverage. The image
originally produced by such uv coverage consists of the brightness distribution on the
sky convolved with this synthesized beam pattern.

S(t) with complex value:

S(t) = F ei
(

V t+ ekgeometr y ) (1.32)

This signal is simply the sinusoidally varying electromagnetic field of frequency v and

strength F that is received from the point source. Because of the different locations

of each antenna, the signal will not arrive at all antennas simultaneously, so there

will be a phase offset, Sgeometry, unique to each antenna. This can be adjusted for by

adding an electronic delay to the signal received at the central correlator that exactly

cancels the phase offset at each antenna location. Now, the point source is said to be

at the phase center of the array, and all the antennas will receive the same signal:

S(t) = F e(t) (1.33)
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The complex visibility between two given antennas, i and j, is:

Vij = Si(t) * Sj*(t) = IF12 (1.34)

where S* denotes the complex conjugate of S. So for a point source at the phase

center, all visibilities from all baselines are equal. The response of the array to a

point source can be determined by giving each sampling in the uv-plane the same

value (usually 1 for convenience) and then inverse Fourier transforming this uv data.

This is called the synthesized beam for a particular uv coverage, and is analogous to

the point spread function in optical astronomy. In Figure 1-8 the synthesized beam

is shown for the instantaneous uv coverage of the VLA as shown in Figure 1-7. This

beam pattern consists of a central peak where the array is most sensitive, the width

of which will determine the resolution of the image. There are other, smaller peaks

and valleys in the area surrounding the main peak which are called sidelobes. The

more complete the uv coverage is, the lower the sidelobes will be. The lower the

sidelobes, the better the initial image fidelity will be. The image originally produced

by a given uv coverage, called a dirty image, consists of the brightness distribution on

the sky convolved with the synthesized beam pattern of the given uv coverage. The

degrading of the image caused by the convolution of the true sky brightness with the

synthesized beam pattern is the ultimate effect of incomplete uv coverage.

Knowing the beam pattern it is desirable to deconvolve it from the dirty image

to recover the undistorted sky brightness distribution. There is no analytical way to

do this, however some numerical algorithms seem to perform quite well. The most

widely used of such algorithms is called "CLEAN". CLEAN is an iterative procedure

which finds the brightest point in the dirty image and subtracts a fraction of the

synthesized beam pattern from the dirty image. It then goes on to the brightest

point in the resulting image and repeats the process. This can go on for thousands of

iterations until virtually all the flux in the image is subtracted. Then, at the points

where the beam pattern was subtracted, it is replaced by a two dimensional Gaussian

of the same dimensions as the central peak of the synthesized beam. The idea is to
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replace the flux of the image but without the sidelobes from the beam pattern. The

result is called a CLEANed map and is generally a huge improvement over the dirty

map. Virtually all images produced by interferometry need to be CLEANed in order

to be useful. Over time there have been improvements made to both the efficiency

and stability of the CLEAN algorithm (see Hogbom (1974), Schwarz (1978), Clark

(1980) and Cornwell (1983)). However, the core idea of CLEAN remains the same. It

is likely that in the near future, new radio telescope arrays will be built with hundreds

or even thousand of elements, making the uv-coverage so complete that CLEANing

will be unnecessary.

1.4.3 Sources of Extragalactic Radio Emission

In order to get a better feel for how radio astronomy can be useful in experimental

cosmology it is useful to discuss how the extragalactic universe appears at radio wave-

lengths. As at optical wavelengths, the universe is dominated by galaxies. However,

not all galaxies are luminous radio sources. The few that are, usually have what is

called an Active Galactic Nucleus (AGN) at their core. The nature of AGN is still a

matter of debate, but it is likely that they consist of super-massive black holes which

are still in the process of forming by accreting matter from their surroundings. As

the matter falls into the deep gravitational potential well of the black hole, it gains

kinetic energy in the form of heat. The falling matter spirals into the black hole form-

ing a very hot and luminous accretion disk. The accretion disk can easily become far

more luminous than all the rest of the hundreds of billions of stars in the host galaxy

combined. In the optical part of the spectrum, AGN are the most luminous steady

state light sources known in the universe. Originally mistaken for stars, these objects

were named QSO's (Quasi-Stellar-Objects) or quasars. Their existence is fortunate

for astronomers, because it allows us to see objects that are at the very edges of the

observable universe.

Virtually all radio bright galaxies are associated with an AGN. Unlike at optical

wavelengths, the radio image of an AGN often includes not only a bright central core,

but also bipolar jets and lobes (see Figure 1-9). These jets and lobes shine in the radio
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Hot Spots

Hot Luminous Matter
Spiraling into Black Hole

Jets

Figure 1-9: An artists rendition of a generic radio galaxy. The main features are the
central radio core (AGN), the bipolar jets and the lobes. A "Hot spot" refers to the
bright region within a lobes which is assumed to be where the fast moving jets meet
the intergalactic medium forming a hot, luminous shock front. A magnified view of
the radio core is shown to demonstrate a possible mechanism for the formation of the
AGN. No such magnified view has actually been directly observed.

because they contain relativistic charged particles, which in the presence of magnetic

fields emit synchrotron radiation. The lobes are clearly fed by the jets, but what

causes the jets is not well understood. Some fraction of the very energetic particles

near the center of the accretion disk must somehow be ejected at high speeds along the

polar axes. Though no completely satisfactory explanation yet exists, the existence

of these lobes is also fortunate for astronomers. This is because, among other things,

the extended emission in the lobes provides more structure to the background objects

in gravitational lenses. With more structure being multiply imaged, it becomes much

easier to model such gravitational lenses, as will become apparent later in this thesis.
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1.4.4 Background on the Gravitational Lens 0218+357

The majority of the scientific information in this thesis comes from observations of the

gravitational lens 0218+357. Therefore, some background information and history on

this lens will now be discussed.

The radio source 0218+357 was first proposed as a gravitational lens by Patnaik,

et al., 1993 and O'Dea et al., 1992. It consists of two images of a background BL Lac

type AGN, including a radio Einstein ring and a more distant radio lobe that is not

multiply imaged (see Figure 1-10). The radio ring has an unusually small diameter,

only 0.35". The small ring, the detection of absorption lines attributed to neutral

hydrogen (Carilli, Rupen & Yanny, 1993) and various molecules (Wiklind & Combes,

1995), and the large rotation measure observed in linear polarization suggest that

the lensing object is a gas-rich spiral galaxy. The images of the radio core reveal a

flat-spectrum component that has been imaged on VLBI scales (Patnaik, Porcas &

Browne, 1995). The lens redshift, based on optical (Browne et al., 1993) and radio

absorption lines, is 0.685; the source redshift is 0.96 (Lawrence 1996).

In this lens system, the two bright point sources are in fact two images of the

same AGN. The double image occurs because the AGN is offset slightly from the

direction of the center of the lensing mass (as in Figure 1-3 part C). The separation

between the two AGN images is only 0.33", making this the smallest gravitational

lens yet known. From the AGN, there is a single radio jet and lobe that extends away

from the AGN by about 1". Unlike the AGN core, the jet and lobe are large enough

to produce extended emission. Presumably a part of the jet falls directly behind the

center of the lensing mass, and its image is therefore expanded into a full Einstein ring

(as in Figure 1-3 part B). The end of the jet and the lobe are too far from the lensing

center to be multiply imaged, but most likely the single image we see is nevertheless

distorted by the lens.
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Gravitational Lens 0218+357
330 MHz VLBA Image 8.4 GHz VLA Image
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Figure 1-10: Two images of gravitational lens 0218+357. The left image was taken
at 330 MHz with the VLBA and has a resolution of 48 by 38 mas. The Einstein ring
appears as a diffuse annulus. The two images of the radio core are seen as well. The
right image was taken at 8.4 GHz with the VLA and at a resolution of about 220
mas. Here the resolution is too low to easily distinguish the two AGN images, A and
B, much less the Einstein ring that surrounds them. However, the jet that extends
to more than 1" to the south is clearly visible. Notice that the two images are at
different scales.

1.5 Thesis Summary

This thesis will concentrate on the use of the gravitational lens 0218+357 to measure

the effective angular diameter distance to the lensing galaxy in that system which has

a redshift of 0.685. That provides a direct estimate of Ho and is therefore one step in

the process of measuring the geometry of the universe.

First I will describe our lens monitoring project, in which we made periodic obser-

vations of eight different gravitational lenses with the aim of measuring time delays

based on time shifted variations in multiply imaged components. We were able to
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measure a time delay in the lens 0218+357 to the highest precision, so I will concen-

trate on the data from that lens and then describe how we determined the time delay

from that data and our statistical analysis that set our confidence limits. Then, I will

describe the modeling of this system which relies partly on additional observations

that we made. With the time delay and model, Ho is determined. I will then discuss

what this result implies for cosmology as well as future research in this area.
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Chapter 2

Gravitational Lens Monitoring

2.1 How to measure a time delay?

In order to measure the distance to a particular gravitational lens by the method

described in Chapter 1, one first needs to measure at least one time delay among the

multiply imaged components. This is done by taking a series of measurements over

time of the brightness of each component. Plots can be made for each component

of its flux as a function of time, called light curves. If the flux varies, it will vary

at different times in the different components due to the time delay between them.

Therefore, comparing the light curves can reveal the time delay between those two

components.

Since this can be done only if the multiply imaged light source has a variable

brightness, it is useful to have an idea beforehand which components in which lenses

are likely to vary. One general rule is that a light source can change its brightness

no faster than the time it takes for light to travel across that source. In other words,

smaller sources can vary faster than large sources. If we are hoping for variations

on a time scale of about a week, our light source must be smaller than the distance

light can travel in one week. If we assume a typical distance to a cosmologically

distant object, say 4 billion light years then a one-light-week sized object will have

an angular size of roughly 5 x 10-12 radians, or about one millionth of an arcsecond.

This is much smaller than the resolution of any current telescopes, so any source that
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is large enough to be resolved can be ruled out as a variable source. That leaves only

the radio cores as possible variable objects (see figure 1-9). Most unlensed radio cores

in radio galaxies have been observed to vary over timescales ranging from days to

months, so it is reasonable to expect that the multiple images of a lensed radio core

will vary as well.

2.2 Previous Time Delay Measurements

This method was first applied to the gravitational lens 0957+561, with time delays

reported by Florentin-Nielsen, 1984; Vanderriest et al., 1989; Lehar et al., 1992 and

Press, Rybicki & Hewitt, 1992(a&b) among others. (For a comprehensive review

of time delay measurements in 0967+561 see Haarsma et al., 1997.) The results

were conflicting and somewhat controversial, and have only recently been resolved

(Kundic, et al. (1997); Haarsma et al., 1999). These measurements, particularly

those of Kundic et al., determine the delay with 1% accuracy, which makes this

by far the best determined time delay. However, uncertainties in the lens model

at present limit the accuracy of a distance determination in the 0957+561 system

(Falco, Gorenstein & Shapiro, 1991; Grogin & Narayan, 1996(a&b); Bernstein et al.,

1997). Recently, time delays have been reported in other lens systems, including PG

1115+080 (Schechter, et al. (1997)), B0218+357 (Biggs, et al. (1999)), PKS 1830-

211 (Lovell et al., 1998), HE 1104-1805 (Wisotzki Wucknitz Lopez & Sorensen, 1998)

and B1608+656 (Fassnacht et al., 1999). In many of these systems, additional data

will be needed to reduce the uncertainties in the time delay. And for most of these

systems, the lens modeling currently limits the determination of angular diameter

distance. In order to refine significantly our investigations in cosmography, it will

probably be necessary to consider measurements of many lens systems as well as to

improve individual lens models. With this goal in mind a number of lens monitoring

programs are under way. In this chapter, we will present the VLA monitoring of five

lenses, of which two have so far produced time delay measurements.
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2.3 The Data

All the lens monitoring data presented in this thesis comes from the MIT-VLA Lens

Monitoring Survey (October, 1996 to May 1997), in which eight gravitational lenses

were monitored for various lengths of time with the VLA. In this chapter, the light

curves for five of those lenses will be presented along with discussion of the data

reduction and image processing methods used to achieve accurate flux measurements.

2.3.1 Data Calibration

The VLA produces raw data in the form of visibilities. Each visibility corresponds to

the combined data from a single pair of antennas and is represented by the amplitude

and phase of the correlation of the signals measured by each antenna. The amplitude

measures the product of the signal strengths received by both antennas, and the phase

is the phase difference of the light between the two points in space that the antennas

occupy.

Each antenna receiver directly measures a voltage caused by the electric field of the

radio emission. We need to relate this measured voltage to the electric field strength

of the incoming light. Specifically, we would like to know the gain of the system, G,

which we use as the coefficient of proportionality between these two quantities. In

this case, we define

£1A Vm (2.1)

where Etl is the electric field strength, and Vm is the measured voltage produced by

that electric field. The gain depends on many factors including the antenna collecting

area, the receiver electronics, the gain of the amplifier and the integrated opacity of

the atmosphere along the line of sight. Since all but the last two of these factors are

known beforehand, we can make a reasonable guess of the overall antenna gain based

on knowledge of the antenna itself. Because of atmospheric effects, and the amplifier

gain which can vary, the overall gain will vary. In order to produce the best possible

images from the visibility data, we need to calibrate the gains of each antenna of

the array by observing calibrator sources which have known characteristics. The best
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way to determine G is to observe a source with known El and take note of the value

of Vm that the antenna returns. a

The largest effect of the atmosphere is not to change jEj from its natural value,

but to change the phase of the incoming light. This is because the index of refraction

of the atmosphere for radio emission varies with position and time. In an array like

the VLA, the antennas are kilometers apart, and therefore each antenna will have a

unique atmosphere-induced phase offset. (Electronics also contribute to this phase

offset, but such variations are expected to be on much longer time scales.) The total

phase offset can be corrected by giving the gain term G a phase as well as magnitude

which will correct this phase offset. In this sense, G is a complex number with

amplitude defined by Equation 2.1 and a phase that corresponds to the atmosphere-

induced phase offset of that antenna. The best way to determine this phase offset is

again by observing a calibrator source, which we call the phase calibrator. The phase

calibrator source should be close enough to being a point source that even the longest

baselines can't resolve it. In this case, if the source is placed at the phase center of

the array, all visibilities should have the same magnitude and zero phase. Since there

are 351 baselines in the 27-element VLA, that yields 351 equations for 27 unknown

antenna gains. Therefore, this is an overdetermined system and so the complex gains

can be calibrated to a high degree of accuracy.

It so happens that virtually all point-like sources have variable fluxes. Therefore,

in addition to a phase calibrator, we need to observe a flux calibrator which should

be a source of large and constant flux. The flux calibrator need not be a perfect

point source like the phase calibrator. The visibilities of the phase calibrator can be

compared to those of the flux calibrator to determine the flux of the phase calibrator

at the time of observation.

Since it is uncalibrated, we observed (in addition to the lenses of interest) a flux

calibrator source, either 3C286 or 3C48, which both have constant and published

flux values, as well as point source calibrators which are unresolved sources used to

set the complex gain of each antenna. The data reduction was done with NRAO's

Astronomical Imaging Processing System (AIPS). We used AIPS to first calibrate the
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Figure 2-1: VLA image of Gravitational Lens 1422+231.

lens visibilities according to the calibrator visibilities. The calibration process was

the same for each lens. Once the data were calibrated, the data reduction differed

somewhat for each lens depending on its morphology.

2.3.2 Gravitational Lens 1422+231

The gravitational lens 1422+231 was the first lens for which light curves were pro-

duced. It was discovered by Patnaik et al. in 1992, and consists simply of one radio

core which is quadruply imaged by the lensing mass (see Figure 1-3, case D). The

four images are labeled A, B, C and D as shown in Figure 2-1. The four radio cores

are unresolved to the VLA and there is no extended emission. Time delays have been

predicted, with the delays among A, B, and C expected to be much less than a day,

and the delay from A, B and C to D expected to be 15h-1 (Kundic et al., 1997). The

h here is defined as:

h 10 0 (2.2)
100 km/s/Mpc

Therefore, our lens monitoring will attempt to measure a time delay between the D

image and the other images. The time delays among the A, B and C images is too
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small to measure with our sampling rate.

The monitoring data for this lens consisted of 45 separate observations taken with

the VLA between October 9, 1996 and May 2, 1997. The VLA was in both the A

and B-array configurations during this period. The observations were at 8 GHz with

a 100 MHz bandwidth. Observation times varied but averaged about 15 minutes on

source. The flux density scale was set by observing the flux calibrator source 3C286.

The phase calibrator 1407+284 was used to calibrate the complex antenna gains.

Each observation can be completely described by 10 parameters. Six parameters

specify the relative positions of three of the four point sources relative to the first

(absolute positional information is irrelevant to our measurements). The other four

parameters specify the flux of each of the four images. Previous VLBA observations

of this lens have already determined the six positional parameters to milliarcsecond

accuracy. These data were shared with us courtesy of Cathy Trotter. We therefore

had a model with only four free parameters to describe each observation. With such a

simple model, it was not necessary to create images with the UV data, but rather we

fit our four parameter model directly to the UV data with the AIPS task UVFIT. We

identify the flux of each of the four images with the corresponding best fit parameter

produced by UVFIT.

At this point we must consider the possibility that differing UV coverage of each

observation might affect our ability to make flux measurements of consistent accuracy

over the course of the light curves. Not only does the UV coverage change because

of the different LST of each observation, but about halfway through our monitoring

of 1422+231, the VLA went from A-array configuration to B-array configuration. To

correct for these variations in UV coverage, we create a set of synthetic data sets

in which the visibilities of the real data sets are replaced by those of a static source

model. The synthetic data sets are then put through the exact same data reduction

procedure as the real data sets to produce a synthetic light curve. Since the source

model is static, any variability in the light curves is due only to the differing UV

coverage. By isolating this effect we were able to remove it from the real light curves

by dividing by the simulated flux measurements.
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Figure 2-2: Light curves for 1422+231.

Of the 45 observations, some were not included in the final light curves because

of bad weather or other effects. Data points in which the flux calibration errors or

the X2 value of the model fitting were much higher than normal were removed. The

resulting light curves have 29 data points and are shown in Figure 2-2. The error

bars were determined by calculating the average scatter of nearby points in each light

curve as will be discussed in more detail in the next chapter. The source object in this

lens system clearly shows variability as can be seen in the A, B and C light curves.

The error bars in the D light curve are fractionally much larger, mainly because it is

much fainter than the other source images. As a result, the D light curve does not

show any features at a high enough signal to noise ratio necessary to measure a time

delay by comparing it to the other light curves. Therefore we cannot make a time

delay estimate from this data.-

Since the time delays among the A, B and C light curves are too small to measure,
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8 GHz VLA Map
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Figure 2-3: VLA
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images of 1938+666.

these light curves should be identical in shape. It is clear that this is not the case.

Possible reasons for this result will be discussed in the next chapter.

2.3.3 Gravitational Lens 1938+666

Gravitational Lens 1938+666 was also monitored over roughly the same time period

as 1422+231. This object was first identified as a lens by King et al., 1997. It has a

cat's paw type morphology, similar to 1422+231, however many of the "points" are

resolved. The three brightest components, labeled A, B and C, (Figure 2-3) are all

resolved, and component A actually appears to be an arc of some sort. Components

B and C also are resolved, indicating that if any point sources are present, they are

surrounded by extended emission. Of course resolved sources cannot vary, so we pro-

duce light curves of these three components in the hopes that they are combinations

of extended emission on top of points sources which may in fact vary. We hope to see

these variations as variations in the combined flux of each component. Our observa-

tions are at both 8 GHz and 15 GHz. No time delay has yet been predicted for this

system.
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Since the morphology of this lens is much more complicated than that of 1422+231,

we are unable to use UVFIT to fit for the fluxes. Therefore it is necessary to produce

images from each observation. We use the AIPS task IMAGR to create images from

the UV data. First IMAGR simply does a two-dimensional Fourier transform to

change the UV data into an image. This image is initially of poor quality because it

is convolved with the synthesized beam, which has significant sidelobes. There is no

analytic way to deconvolve such a beam, but it can instead be done numerically with

a method called "CLEAN" (Hogbom, 1983, Clark (1980)). CLEAN is an iterative

algorithm which on each step subtracts a fraction of the beam from the point of

highest flux level. This process is repeated until it there is no flux in the map higher

than some previously specified level. Then, at each point where the beam pattern was

subtracted, it is replaced with a two-dimensional Gaussian that best fits the center

of the synthesized beam. Thus all the flux is replaced, but without the sidelobes,

creating a cleaned image. It should be noted that this method is not mathematically

proven, but is widely used since it performs quite well based on empirical tests.

Since the locations on the map where flux was subtracted are recorded during

the "cleaning" process, we automatically produce a point-source model of the source.

If we suspect that the initial calibration of the UV data could be improved, as is

usually the case, we can then go back to the UV data and use AIPS to readjust

the complex antenna gains so as to best fit the model we have produced. This is

called self calibration, and a few such iterations can greatly reduce the noise in an

image. Like the "CLEAN" algorithm, self calibration is not mathematically proven,

yet appears to work quite well empirically. For our data, including that in Figure 2-3,

we perform three iterations of self calibration, allowing only the phases of the gains to

be adjusted. This is because the gain amplitudes are better determined in the initial

calibration, and in the interests of being as conservative as possible, we don't want

to have too many free parameters in the self calibration.

Once the final maps had been produced, the measurement of the fluxes of A, B and

C were done by measuring the peak flux of each of the "blobs" associated with each

component. As for the 1422+231 data, simulated data sets were created to remove
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Figure 2-4: Light curves for 1938+666.

the effects of varying UV coverage for each observation. Again, observations for which

the weather was bad, or the flux calibration was unsuccessful, were removed.

The resulting light curves are shown in Figure 2-4. Unfortunately there is no

variation in any component that is greater than the noise. Therefore, for this lens no

time delay measurement is possible based on this data.

2.3.4 Gravitational Lens 1131+0456

Another lens we monitored was 1131+0456, which includes the first Einstein ring to

be discovered (Hewitt et al., 1988). It consists not only of the ring, but also a doubly

imaged radio core, labeled A and B (see Figure 2-5). Presumably, the source object

consists of one bright radio core which falls slightly off-center of the lensing mass and
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Figure 2-5: VLA map of 1131+0456 at 8 GHz.

so is lensed into two images (see Figure 1-3, case C). In addition to the radio core,

there is some extended emission, probably a jet, that happens to fall exactly behind

the center of the lensing object and is transformed into a large ring as seen from

Earth (see Figure 1-3, case B). We hope to measure a time delay between the point-

like components A and B. The predicted delay is about 58h- ' days (Chen, Kochanek

& Hewitt (1995)).

Gravitational lens 1131+0456 was too complicated a source to fit a simple model

to the UV data, so images were produced in the same manner as for 1938+666. The

observations were calibrated with AIPS and then phase-only self calibrated three

times. The flux values of A and B were taken to be the peak flux value of each point

source. This likely included some flux from the ring, however, the ring is a constant

source and shouldn't add any variability to the light curves. Of course this is only

true because, as for the previous lenses, we made simulated light curves to remove

the effects of varying UV coverage.

The resulting light curves are shown in Figure 2-6. Unfortunately there is again

no variation in either component that is greater than the noise. Therefore, for this

lens as well, no time delay measurement is possible based on this data.

59

0



I-,<

:JV-
ICr

10

9.5

9

10

;-

0

3

9.5

9

8.5

Light Curves for 1131+0456 at 8 GHz

I I I I I I II I I

I II I Ii I11 I I I I It

I 

50 100 150

Julian Day - 2450365

200
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2.3.5 Gravitational Lens 1830-211

Also monitored was gravitational lens 1830-211, discovered by Jauncey et al., 1991.

This lens consists of two points sources with a small amount of emission from pro-

truding arcs that don't quite form a complete Einstein ring (see Figure 2-7). The

arcs probably arise from jets emanating from the radio core point source and coming

close to, but not quite covering the point directly behind the center of the lensing

mass. Again, we will monitor the point source images of the radio core, A and B, to

try measure a time delay.

Because the extended emission in the arcs makes this source too complicated fit a

model to the UV data, we made images of each observation just as we did for lenses

1938+666 and 1131+0456. For this lens however, the radio core points source images

are clearly identifiable since they are much brighter than the surrounding emission.
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Figure 2-7: VLA maps of 1830-211 at 8 GHz and 15 GHz.

In this case, we found it advantageous to scale and rotate the map so that each of

the points sources was located exactly in the center of a map pixel. The flux of this

pixel was then taken as our flux measurement. Since the pointing of the VLA is only

accurate to about 0.1", and our pixels were about 0.02" on a side, it was necessary

to align spatially all the images to make sure the point sources were located on the

intended pixels. This was done by taking a model of 1830-211 from one of our better

images to which we phase-only self calibrated each data set. Since the shifting of the

image corresponds only to a constant phase correction to all the visibilities in the data

set, calibrating all the data sets to the same model was sufficient to attain spatial

alignment. This calibration to another data set has the potential to bias the flux

values of the point sources which could have varied from the model to the data set

of interest. To correct for this, we then perform several iterations of self calibration

to restore the flux values to there natural level at that epoch. In our experience, the

flux values had converged by the third iteration of self calibration.

The resulting light curves are shown in Figure 2-8. There is clear variability

visible at both 8 GHz and 15 GHz and in both components. It also seems that at

each frequency, one can visually identify subtle features in the A and B light curves
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that are similar but shifted in time from one to the other. Therefore these light curves

represent a reasonable potential for a time delay measurement. However because the

variations are small compared to the measurement errors, it is unlikely that a very

accurate result could be obtained from these data alone.

2.3.6 Gravitational Lens 0218+357

The final lens in this chapter for which we will present light curves is 0218+357, which

was introduced in Chapter 1. This lens consists of a doubly imaged radio core as well

as an Einstein ring (see Figure 2-9) and a faint jet that is not multiply imaged (best
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Figure 2-9: These are VLA maps of 0218+357 at 8 GHz and 15 GHz.

seen in the 8 GHz map of Figure 2-9). Presumably it is a portion of this jet that is

located just behind the center of mass of the lensing object and is therefore imaged

into a full Einstein ring. The separation of the radio core images is only about .35"

making this by far the smallest gravitational lens known.

Again we will be measuring the flux of the two point sources to measure a time

delay. The method used is virtually identical to that used for 1830-211. The maps

produced from the UV data are once again scaled and rotated so that the point

sources fall on the centers of map pixels. Variations due to different UV coverage are

removed by creating synthetic light curves.

The resulting light curves are shown in Figure 2-10. At both frequencies we see

a clear "up and down" change in the flux of each component. Also clear is that this

feature occurs slightly later in the B image than in the A image. This lens therefore

has very good potential for time delay measurement, which will be discussed in the

next chapter.
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Figure 2-10: Light curves for 0218+357.
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Chapter 3

Time Delay Determinations for the

Gravitational Lens 0218+357.

This chapter is largely based on a paper submitted for publication to the Astrophysical

Journal, (Cohen et. al., 2000).

3.1 Time Delay Analysis

From the light curves for the gravitational lens 0218+357 (Figure 2-10) we seek to

derive the time delay in this system. One can easily estimate the time delay between

the light curves of components A and B by eye, but it is preferable to have an objective

method that gives reproducible results and a quantitative estimate of the errors. Two

such methods are presented and applied in this chapter. The first is the maximum

likelihood method of Press, Rybicki & Hewitt (1992a,b; henceforth PRH). The second

method is the "minimum dispersion method" of Pelt et. al (see Pelt et al., 1994, and

Pelt et al., 1996).

VLA monitoring observations of 0218+357 have also been carried out by another

research group (Biggs, et al. (1999)), and they report a time delay of 10.5 ± 0.4 days

(95% confidence). They also report significantly different flux ratios of 3.57 ± 0.01

and 3.73 ± 0.01 (68% confidence) at 8 GHz and 15 GHz, respectively. These results

are based on data spanning approximately the same 100 day period for which our
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data were taken. We report in this chapter our estimate of the time delay which is

based on our independent VLA measurements of 0218+357, in which we used data

reduction and parameter fitting techniques that differed from those of Biggs et al. We

also adopt a more general model of the source variability, including the possibility of

constant and variable components with different magnification ratios. At the end of

this chapter the we will compare the results of both efforts and discuss any differences.

A comparison of the results addresses the issue of the robustness of the parameter

estimates. We caution, however, that since our monitoring observations occurred at

the same epoch as those of Biggs et al. and are based on the same feature in the light

curve, the effect of any unmodeled scintillation or microlensing cannot be assessed.

3.2 Basic Ideas in Time Delay Analysis

Inherent in all methods of time delay analysis is the assumption that the light curves

for components A and B are identical except for a shift along the time axis caused

by the time delay and a scale factor difference in the flux density axes caused by the

different magnifications of each image. This assumption can be expressed with the

following equation:

FA(t) = RFB(t + T) (3.1)

where FA(t) and FB(t) represent the flux density as a function of time for components

A and B respectively, T is the time delay and R is the magnification ratio between A

and B. The light curves are simply measurements of FA(t) and FB(t) over the time

interval of the observations. Time delay analysis consists of using the light curves to

determine the two remaining parameters in Equation 3.1, T and R.

The reasoning behind Equation 3.1 is the fact that the two components are images

of the same object. After correcting for the time delay and the magnification of each

component, each of the two light curves should become the same light curve - that

of the single, unlensed source object. This is generally the case, however there are

complications.

The first complication has to do with the fact that the different light paths travel
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through different regions of space. It is possible that one of the light paths might

be gravitationally microlensed by a compact object in the lensing galaxy or in the

halo of our own galaxy. Also possible is that scintillation by the interstellar medium

could affect each light path differently. These conditions are probably rare for radio

sources; however, they do raise the possibility that light curves for multiple images

of the same source object could differ in shape. The initial controversy over the time

delay in 0957+561 was likely caused by such a factor, which was resolved only when

light curves over much longer time periods became available. It is also possible that

one of these factors may be responsible for the apparent differences in shape among

the light curves we observed for the lens 1422+231 (see Figure 2-2). The best way

to eliminate this complication in determining time delays is to measure light curves

over a long time period that ideally includes many features. That way the effect of

any incidence of microlensing or scintillation will be minimized.

Another complication to Equation 3.1 is much more common. This is the fact

that often what is identified as the radio core in a VLA image turns out to be made

up of more than one component when observed under much higher resolution. This

was in fact demonstrated to be the case for 0218+357 with VLBA images presented

by Patnaik et al. (1995). For any AGN, there is only one true core, so the other

components must be small bright sections of the jets. Only the core's brightness

can vary over the time scales in which we are interested. Therefore, the total flux

density we measure with the VLA could be comprised of both the variable core as

well as other emission that is not variable. This alone does not violate Equation 3.1.

Different magnification gradients across the core and jets of each image will cause

the flux ratio of the variable and constant components in each image to be different.

Therefore the variations in each light curve could comprise different fractions of the

total flux of each component. That would violate Equation 3.1. However, unlike

the first complication, this effect can be modeled while performing the time delay

analysis. This is done by modifying Equation 3.1 to include the constant parts of

each component. Letting CA and CB be flux densities of the constant components in
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images A and B respectively, we then have:

FA(t) + CA = R (FB(t + T) + CB) (3.2)

where we define R as the flux ratio of the variable components only. This nominally

implies that time delay analysis requires the fitting of four different parameters: T,

R, CA and CB. However, as shown by Press & Rybicki, 1998, we cannot fit for both

CA and CB. A parameter for which we can solve is Co = R CB - CA, which essentially

tells us the difference in constant flux densities in images A and B. Now our model

of the relation between the light curves for A and B an be expressed as follows:

FA(t) = R FB(t + T) + C (3.3)

Thus there are three independent parameters, T, R, and C, that determine the

difference between light curves A and B. All three of these parameters must be solved

for in order to determine the time delay. The difference between various methods of

time delay analysis is that each one employs different techniques for using the light

curves to determine the most likely values of these three parameters.

3.3 The PRH Method

3.3.1 Summary of PRH Method

The first method we consider for determining the time delays is the maximum like-

lihood method developed by PRH. The PRH method is based first on determining

the statistical qualities of the A and B light curves individually. Then the B light

curve is transformed according to trial values of T, R, and CO and then combined

with the A light curve to create a single light curve with twice as many points. Then

the statistical properties of the combined light curve are determined. The parameters

T, R, and Co are fit so that the statistical qualities of the combined light curve best

match that of the individual light curves.

70

� __ _� _



The statistical quality used by the PRH method is the amount of correlation

between points on the light curve as a function of the time lag between measurements.

We expect a greater correlation between measurements with smaller separations in

time. The difference between any two flux measurements is caused by two factors,

the measurement errors and the actual flux variations in the source. We need to

understand both of these.

3.3.2 Flux Measurement Errors

First, we estimate the measurement errors. This is done empirically for each light

curve by taking as our error estimate the average flux difference between points sep-

arated in time by less than some small time interval D. D is chosen small enough

so that there will be little intrinsic variation in the source yet large enough so that

there will be a fair sampling of points with time lags less than D. For 0218+357

we choose D = 2 days. This assumes that within any time period of length D, the

variations are dominated by measurement errors and not actual source variability. To

the extent that this is not true, we can consider our result to be an upper limit on

the measurement errors.

Normally one would assume that the measurement errors for different points in

the light curve are uncorrelated. This is mostly true, but as discussed in Chapter

2, the measurement errors are caused partly by errors in the flux calibration in each

image. Therefore, the measurement error for the A and B components taken from

a single image will share the portion of the measurement error that comes from flux

calibration. In the combined light curve, the A and B points from a single image

will be separated in time by the trial time delay, T. But the errors will be correlated

between these two points. To estimate how much of the total error is correlated versus

uncorrelated between the A and B light curves, we create a light curve such that each

point has a value equal to the ratio of the flux densities of A and B. In this A/B

light curve, all the correlated errors will divide out. So we can estimate the error

in the A/B light curve just as we did for the individual light curves to estimate the

uncorrelated error. We take the total error to be the average of the error from the A
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Estimated Measurement Errors for 0218+357
frequency A error B error Total error A/B error remaining error
v (GHz) (averaged) (uncorrelated) (correlated)

8.4 0.49% 0.62% 0.56% 0.34% 0.44%
15 1.3% 1.2% 1.25% 0.90% 0.87%

Table 3.1: Estimated errors for individual light curves and estimated correlated and
uncorrelated errors at each frequency for gravitational lens 0218+357.

light curve and B light curve. Then the correlated error has the value such that when

added to the uncorrelated error in quadrature it gives the total error. The results for

each light curve are shown in Table 3.1.

3.3.3 The Structure Function

Next we need to evaluate the statistical properties of the true source variation. This

is done by estimating the structure function, V(r), of the light curve. The structure

function is defined as one half the average square of the flux difference between points

as a function of the time difference, r, between the measurements. If we separate the

measurement errors, e(t) from the true flux density, s(t), then the measured flux

density is:

f (t) = s(t) + e(t), (3.4)

and the structure function is defined as:

1
V() -= < [s(t) - s(t - T)]2 > (3.5)

2

where f (t) is the flux value at time t and the brackets < > denote the expected value.

Since we can't measure s(t) directly, in order to determine empirically the functional

form of Equation 3.5, we need the following relation:

1 1
< [s(t) - s(t- T)2 >= < [f(t) - f(t- T)] 2 > - < [e(t)]2 > (3.6)2 2
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We already know the expected value of e(t) from the error estimates in Table 3.1. We

can apply Equation 3.6 to the data in the light curves to come up with an empirical

structure function. Every pair of points in the light curve will result in one point

on the structure function. With 51 points in the 0218+357 light curves, there are

1275 points estimates of the structure function. Since we do not know yet the flux

ratio between components A and B, we take f(t) to be the natural logarithm of the

flux density measured at time t referred to 1 mJy, removing the dependence of our

analysis on the unknown flux ratio. (We will continue to use log units throughout

the analysis.) The point estimates were binned in groups of 100 to produce the plot

shown in Figure 3-1.

Initially the most surprising feature of the empirical structure functions was the

fact that they appear very different for light curves A and B at each frequency. Com-

ponent B appears more strongly auto-correlated at small time lags than component

A. This is of course unexpected since components A and B are images of the same

source object. Since radiation from the two components travels along different paths

to reach the observer, such a comparison may reveal differences in propagation char-

acteristics, such as scintillation or gravitational microlensing, as discussed in Section

3.2.

To investigate this possibility it is necessary to first determine if the differences

between the structure functions of different components is statistically significant.

We do this empirically with Monte Carlo simulations. First, a power law model of

the form:

V(T) = K T (3.7)

is fit to each structure function. The four resulting structure function models were

used to generate four sets of Gaussian Monte Carlo simulations, of 1000 realizations

each, and empirical structure functions were computed for all the simulated data sets.

From these the mean and the 68% confidence interval were computed for each value

of r. The results are the error bars shown in Figure 3-1. Although our error estimates

are to some extent model dependent, it is clear that the differences in the structure
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Figure 3-1: Empirical point estimates of the structure function for the 8 GHz and
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functions are not significant. Much longer time series would be necessary to explore

propagation effects in this way.

It is also clear that we do not have enough data to measure the intrinsic struc-

ture function with a high degree of accuracy. Therefore, we have to refer to other

data and theory about extragalactic variable sources in general to make reasonable

assumptions. In particular, over 25 years of monitoring the flux density of many

quasars and BL Lac objects (Hughes, Aller & Aller, 1992) show that for quasars, the

structure function value of a is 1.04 + 0.18 for light curves which are not dominated

by a single feature (which tends to give an upward bias on the measurement of a).

For BL Lac objects, ac = 0.94 ± 0.37. There are also theoretical arguments that are

consistent with this; the value of a is exactly unity for such natural random processes

as shot noise and random walk. It is reasonable, therefore, to assume that a = 1 in

the intrinsic structure function and only solve for K. We will use this assumption

throughout our analysis.

3.3.4 Fitting for T, R and Co.

As described in Section 3.3.1 the PRH method is based on combining the A and B light

curves according to trial parameters and then investigating how closely the statistical

qualities of the combined light curve match that of the original light curves. For the

individual light curves the error estimates and a power law fit to the structure function

comprise the statistical characteristics we will use. As for the expected measurement

error, we use the average of the error estimates for each A and B light curve (see

Table 3.1). Our estimate of the structure function is the average of the two power

law fits (Equation 3.7) to the empirical structure functions for light curves A and B.

Since we assume that a = 1 for each light curve, the averaged power law will also

have a = 1. The value of K will be different for each light curve, so we average them

by taking the geometric mean. This gives us one value for the fractional measurement

error and one power law fit to the structure function. For 0218+357, the results were

< K >= 1.2 x 10- 5 at 8 GHz and < K >= 3.1 x 10- 5 at 15 GHz.

Now we must determine how well the combined light curve matches these statisti-
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cal factors. As shown by PRH and Rybicki & Kleyna, 1994, the degree of "matching"

can be quantified by what is referred to as the "Q-statistic":

Q = yTB-ly- In det(B-l) (3.8)

where y is the vector of flux density values for the recombined light curve and B is

the total covariance matrix as defined by PRH. Using Equation 3.4, we can use the

following expression for the elements of the covariance matrix, B:

Bij =< s2(t) > -V(T)+ < e(ti)e(tj) > (3.9)

The first term on the right-hand side is simply the average square of the flux density

values and is the same for all Bij. The second term is the structure function that we

have estimated empirically. Because the measurement error in different measurements

is uncorrelated, last term is always zero except for two cases. The first case is when

i = j and < e(ti)e(tj) >=< e 2(t) >, the average square of the measurement errors.

The other case occurs when i 0 j but (because of the shift by the time delay) the

two flux density measurements come from the same observation and so the errors are

not uncorrelated. In this case we must use the expected value of the correlated errors

as calculated in Table 3.1. In this way we account for the correlated flux density

scale errors. Combining the light curves for trial values of T, R, and C, we find the

best-fit values of these parameters by minimizing the Q-statistic. The final results

for 0218+357 were T = 9.6 days, R = 3.2, and C = 110 mJy for 8 GHz; and

T = 11.3 days, R = 4.3, and C, = 180 mJy for 15 GHz.

3.4 The Minimum Dispersion Method

3.4.1 Summary of the Minimum Dispersion Method

The Pelt et al. minimum dispersion method is similar to the PRH method in that it

also attempts to find recombination parameters that minimize a statistical quantity
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associated with the combined light curve. The quantity in this case is the "dispersion,"

which is defined as the average square of the difference in flux density values of nearby

points in the light curve. "Nearby" is defined as points that are spaced apart in time

by less than the decorrelation length, 6. The contribution of any such pair of points

is then weighted by the factor (1 - /6) where r is the time between the two points

(Pelt et al., 1996). Since we give all the points in the light curves equal weight, our

dispersion statistic is:

D = Ei,j Si,j(f(ti) - f (tj))2 (1 - (5)
Eij Si,j (1 - )

where

= ti-tjl and Siif (6)
=0 if > 6

As in the PRH method, we fit T, R, and Co so as to minimize the dispersion in the

combined light curve. It is unclear, however, what value to use for 6. Therefore, we

tried a range of values of 6 and found best-fit values of the parameters as a function

of 6.

3.4.2 Results of the Minimum Dispersion Method

The results of the minimum dispersion method are shown in Figure 3-2, plotted as

a function of the assumed decorrelation length 6. The results vary by +10% as a

function of 6, even without any consideration of the errors in the parameters. The

values of T are generally centered around the values we found with the PRH method.

However, since we have no knowledge of the actual value of 6 for either light curve, we

conclude that no definitive determination of the parameters could be made with the

dispersion method. Although successful in determining the time delay in 0957+571

(Pelt et al. 1996), the method is inconclusive here, probably because in this case we

have a much shorter monitoring period.
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Figure 3-2: The best fit time delay and variable ratio as determined by the minimum
dispersion method, plotted as a function of the "decorrelation length", a (in days).
Since we have no a priori knowledge of 6, this technique does not provide definitive
values for the parameters.
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3.5 Error Analysis for PRH Results

To estimate the accuracy of the PRH parameter fitting procedure for our case, we

repeated the PRH analysis with two sets of simulated data. The first set assumes

that the underlying process producing the light is Gaussian; the second makes no

such assumption and instead derives the simulated data from the real data.

3.5.1 Gaussian Monte Carlo Simulations

As described by PRH, we created simulated light curves with the same sampling

in time as the true light curves, with flux density values produced by assuming a

Gaussian process with the same structure function and errors that we derived from

the measured light curves. The measurement errors consisted of both correlated and

uncorrelated parts, as described in Sections 3.3.2 and 3.3.4.

Errors Due to an Incorrect Structure Function

As described in section 3.3.3, with our limited time series, we could not measure the

structure functions to high precision. It is necessary to determine how this could affect

the final results. Therefore, our first application of the Monte Carlo simulations was

to investigate the effect of an incorrect structure function on our estimate of the time

delay, T. For each light curve, simulations were performed with the time delay varying

randomly and uniformly between 0 and 20 days. The differences between the actual

time delays and the fitted time delays were computed, and standard deviations of the

set of differences were calculated. It is important to realize that for these calculations

two structure functions are involved. The first is used to create the simulated data,

and we call this the "true" structure function. The second is the one we fit to the

simulated data in the process of estimating the time delay; we call this the "assumed"

structure function. Varying both the true and assumed structure functions in our

simulations allows us to test the effects of an incorrect assumed structure function on

our time delay estimation, as a function of the true structure function.

Of the two free parameters in a structure function, K and a, the value of a was
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Error Estimates as a Function of "True" a and "Assumed" a
"Fitted" a atrue = 0.5 atrue = 0.75 atrue = 1.00 atrue = 1.25 atrue = 1.50

la = 0.42 la = 0.42 la = 0.48 1 = 0.59 lar = 0.82
0.5 2a = 1.72 2a = 1.35 2a = 1.40 2cr = 1.46 2a = 1.73

la = 0.48 1a = 0.41 1or = 0.44 la = 0.56 la = 0.70
0.75 2a = 1.81 2a = 1.23 2a = 1.32 2ar = 1.41 2a = 1.80

lor = 0.60 la = 0.42 1a = 0.42 1ca = 0.54 la = 0.69
1.00 2a = 2.04 2a = 1.16 2a = 1.11 2a = 1.23 2a = 1.59

la = 0.67 1a = 0.49 1a = 0.48 la = 0.49 1a = 0.68
1.25 2ar = 2.29 2a = 1.42 2a = 1.22 2a = 1.30 2cr = 1.68

la = 0.98 1a = 0.67 1a = 0.26 lac = 0.55 1a = 0.62
1.50 2a = 2.82 2cr = 1.79 2a = 1.18 2a = 1.49 2a = 1.49

Table 3.2: Results of Monte Carlo simulations for various "true"
structure functions. In each case, the synthetic light curves were

and "assumed"
created using a

structure function with a given a (the "true" a). A structure function was then fit
to the synthetic light curves with the condition that ac be fixed at a given value (the
"assumed" ac). This fitted structure function was -then used to get the time delay.
The time delay derived from this technique was compared to the actual time delay in
each case. For each pair of true ac and assumed a, 1,000 synthetic light curves were
produced. In each case the accuracy of the time delay fitting was expressed as 1a
and 2a error bars, given in units of days.
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chosen and the value of K was fitted, reproducing our analysis procedure. For the

"true" structure functions a "true" a was chosen and the "true" K was fit to the real

(measured with the VLA) light curves. For the "assumed" structure functions an

"assumed" a was chosen and the "assumed" K was fit to the simulated light curves.

Then the effectiveness of the PRH method was tested for values of "true" a and

"assumed" Oa that ranged in five steps from 0.50 to 1.50. For each case, we performed

1,000 Monte Carlo simulations. The first result of this test showed that the average

deviation between the actual time delay and the PRH-deduced time delay was less

than .02 days. This was the case regardless of how the "true" and "assumed" values

of a were varied. Therefore, it seems unlikely that an incorrect "assumed" structure

function could have produced a significant bias in the time delay measurements.

However, the error estimates for each measurement did change somewhat as the

structure functions were varied. Table 3.2 shows how the error estimates change as

function of "true" a and "assumed" oa. The "true" a has much more of an effect on the

error estimates than the "assumed" a. This indicates that the magnitude of the error

estimates depends mostly on the intrinsic structure function of the BL Lac object

and very little on the accuracy of the fitted structure function. Thus, the reliability

of our error estimates appear to be limited by our knowledge of the intrinsic structure

function. In all further simulations we assume a = 1.

Confidence Intervals

After settling on a reasonable structure function, we concentrate on our ability to

determine confidence intervals for the three parameters T, R, and C,. We expect T

and possibly R to be the same for both frequencies, but the C, parameter is likely to

be different at the two frequencies. We again constructed Monte Carlo light curves,

but now allowing all three parameters to vary. T was varied between 8 and 12 days;

R was varied between 2 and 5; and CO was varied between 0 and 200 mJy. For the

light curves, the fitted values were compared to the true values, and 95% confidence

intervals were derived and adopted as the errors on the parameter estimates. The

distributions are shown in Figure 3-3. The parameters T and R for the two frequencies
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Results with Monte Carlo Error Estimates (95% confidence)
v T (days) R Co (mJy)

8GHz 9.61-ii 3.2_4 11Oi0i
15 GHz 11.3 + 4 3+ 180+140

combined 10.1+t 3.4 +2-1.0 -0.4

Table 3.3: Results of fitting the time delay (T), variable ratio (R) and excess con-
stant component (Co) to minimize the PRHQ statistic for the 8 GHz and 15 GHz
light curves. The error bars (95% confidence) are determined from Monte Carlo sim-
ulations. The last line of the table shows the combined result from the two light
curves.

were averaged, weighted according to their errors. The results are presented in Table

3.3.

3.5.2 Jackknife Samples

The confidence intervals derived in the previous section are based on the assumption

that the underlying process producing the quasar light curves is a Gaussian process

and on the model we assumed for the errors. This is a weakness of our Gaussian

Monte Carlo technique, and we seek to explore methods that derive the statistics

of the process from the data themselves. One such method is the jackknife (Tukey,

1958; see also Efron & Tibshirani, 1993), in which "jackknife samples" are formed by

successively deleting one point from the data set. We applied this technique to our

light curves at both frequencies, estimating the T, R, and Co parameters for each

jackknife sample and forming distributions of the fitted values, shown in Figure 3-4.

We compute errors on the parameters by forming the 95% confidence intervals

from the data of Figure 3-4, multiplying each distribution by the necessary "expan-

sion factor" (N - 1)/VN (see Efron & Tibshirani, 1993). Values from the different

frequencies for T and R are combined as described above, and the results are presented

in Table 3.4. We caution that since the light curve data points are not independent,

the jackknife simulations are likely to underestimate the true errors.
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Figure 3-3: Histograms that display the error distribution for each parameter as
deduced from Monte Carlo simulations of the 8 GHz and 15 GHz light curves. The

"deviation" in each case is the difference between the fitted and true values. The

bottom two panels compare the O deviation to the R deviation for each simulated
data set. There is clearly a high correlation between the two. This demonstrates that
if either Co or R is known a priori, the other parameter is well constrained. However,
the two parameters cannot be constrained simultaneously with these data.
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Results with Jackknife Error Estimates (95% confidence)
V T (days) R Co (mJy)

8GHz 9.6 + ' 7 3.2 + 0 2 101+7° (
-2.6 ·- 0.3 I -80

15 GHz 11.3 + 4: 3 4 3+0 4 180+ 9 0
-2.0 d -0.6 -150

combined 10.1+1 ' 3.4+0 2
-1.6 -0.2

Table 3.4: Results of fitting the time delay (T), variable ratio (R) and excess constant
component (Co) to minimize the PRHQ statistic for the 8 GHz and 15 GHz light
curves. The error bars (95% confidence) are determined from jackknife samples. The
last line of the table shows the combined result from the two light curves.

N 0.6

0

O 0.4

. 0.2

-4 -2 0 2 4 -1 -0.5 0 0.5 1 -200 -100 0 100 200
Time Delay Deviation (Days) Variable Ratio Deviation Constant Flux Deviation (mJy)

-4 -2 0 2 4
Time Delay Deviation (Days)

-1 -0.5 0 0.5
Variable Ratio Deviation

1 -200 -100 0 100 200
Constant Flux Deviation (mJy)

Figure 3-4: Histograms that display the error distribution for each parameter as
deduced from jackknife samples of the 8 GHz and 15 GHz light curves.
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3.5.3 Evaluation of Errors

If we compare the error distributions generated by the two different simulation tech-

niques (Figures 3-3 and 3-4), a couple of interesting differences emerge. First, the

jackknife distribution for the time delays is very different from the corresponding

Monte Carlo distribution, and it clearly is not Gaussian. This is an indication that

the Monte Carlo simulations are failing to capture the properties of the data in a way

that causes estimation of the time delay distribution to be unreliable. Therefore, we

adopt the jackknife errors as our errors on T. Second, the jackknife distribution for

R and Co are not as broad as the corresponding Monte Carlo distribution, but do

appear Gaussian, indicating that the R and Co estimation process is better behaved

than the T estimation process. However, since there is reason to suspect the jack-

knife procedure may underestimate the true errors, we adopt the Monte Carlo errors

as our errors on R and Co. The differences in the distributions in Figures 3-3 and 3-4

illustrate the difficulty of reliable error estimation in these light curves, a topic that

deserves further study. With the confidence intervals determined, we now see that

the best-fit values of T and R for the two observing frequencies are not significantly

different. Therefore, as shown in Tables 3.3 and 3.4, we form a weighted average for

each of these two parameters. Our final results, with 95% confidence intervals, are:

T = 10.1+ 1 5 days, R = 3 4+ 0.2, -110 + 8 0i (8 GHz), and C = 180+00 (15 GHz).-1.6 ' -- 0.4 G ---11 0 -140

The light curves superimposed according to the best-fit parameters are shown in

Figure 3-5.

3.6 Comparison with Previous Measurement

Our time delay value of 10.1+15 days (95% confidence) is consistent with the value

of 10.5 ± 0.4 days (95% confidence) found by Biggs et al. and lends confidence

to the robustness of the time delay measurements. Our results are derived from

an independent set of data, very different data reduction techniques, very different

parameter fitting techniques, and more general models for both the measurement

errors and the variability of the background object. The light curves produced by the
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Figure 3-5: Light curves superimposed according to the best-fit time delays, magni-
fication ratios and constant components.

two analyses are in excellent agreement, showing the same major feature. However,

this is also a weakness of the comparison. It is possible that this feature is affected

by microlensing or scintillation, and both analyses of the data would be biased in the

same way if this is the case. Only measurements at another epoch can reduce this

uncertainty.

Our error analysis results in confidence intervals for the time delay that are about

a factor of four larger than those of Biggs et al. The errors on our flux density

measurements are smaller than those of Biggs et al. at 8 GHz, larger at 15 GHz,

but in both cases not much different. Therefore, it appears the source of the dif-

ference in confidence intervals is in the time delay fitting procedures rather than in

the light curve errors. Since we parameterize our variability model differently, with

three parameters associated with each light curve rather than two, it is not surpris-

ing that our confidence intervals are larger. In fact, we caution that in general an

oversimplification of the model may result in deceptively small confidence intervals.

In the derivation of magnification ratios, Biggs et al. parameterized their model in

terms of the ratios of the total flux densities. We separate the variable and constant
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parts of the flux densities, fitting for the magnification ratio associated with the

variable part, and our results are not directly comparable. However, we do come

to quite different conclusions concerning the size of the confidence intervals and the

consistency in the magnification ratios for the two different frequencies. The fitting of

our more general model shows that for the existing data there is a degeneracy between

the C, and the R parameters, so that without independent information on CO the

value of R is rather poorly determined. Therefore, we find larger confidence intervals

for the values of R at the two frequencies, with the confidence intervals including the

values found by Biggs et al. We believe that the more general model is plausible, and

provides a natural alternative to the somewhat surprising result of Biggs et al. that

the magnification ratios at the two frequencies are very significantly different. The

experience of 0957+571 shows that a longer series of data that includes both variable

and quiescent behavior of the quasar should determine the magnification ratios with

more precision.

3.7 Conclusion

For the gravitational lens 0218+357, we find a time delay of 10.1+ 1 5 days and a

magnification ratio associated with the variable part of the light curves of 3.4+0.2

both at 95% confidence. We find best-fit values (which are rather poorly determined)

of the constant part of the light curves of 110+80o mJy (8 GHz) and 180+140 mJy

(15 GHz), also at at 95% confidence. Our results, when compared to those of Biggs et

al., indicate that the time delay measurement is very robust in this system, assuming

the dominant feature in the light curve is not significantly affected by scintillation or

microlensing.

With the time delay determined, the remaining step towards using this system to

measure Ho is a model of the mass distribution in this lens. The 0218+357 system has

not yet been extensively modeled. However, in this system there is a full Einstein ring

in addition to the doubly imaged radio core. This ring is difficult to observe in detail

because it is small (about 350 mas in diameter) and very faint compared to the radio
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cores. However, an accurate map of the fine structure in the ring will add many more

constraints to any existing models of this system and greatly improve their accuracy.

This is probably the best way to improve the measurement of the angular diameter

distance to this lens. The next chapter describes our efforts to obtain such data for

the purposes of improving the lens model of this system.
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Chapter 4

VLBA Imaging of Gravitational

Lens 0218+357

4.1 Scientific Motivation

Having measured the time delay in gravitational lens 0218+357, we need a model of

the mass distribution in the lensing galaxy in order to determine Ho. Most current

models of gravitational lenses are constrained by the image positions of the multiply

imaged point source, the flux density ratios of those images, and the center of the

lensing mass (if this can be determined from high resolution optical images of the

lensing galaxy). From this, a model will fit for the gravitational potential of the

lensing object projected along the line of sight, 0(r, 0). However, most reasonable

parametric models of Ob(r, 0) contain parameters that are not easily constrained by the

data mentioned above. This results in large uncertainties for the estimated relation

between the time delay and Ho. For example, one of the more simple models of the

lensing potential has ?P(r, 0) depending on radius as a power law function in r

4'(r, 0) oc r f () (4.1)

with f(O) included to allow for non-spherical symmetry. In most lens systems even

this simple model is very difficult to constrain with the data constraints mentioned
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above. Just to constrain the value of a for a particular lens, it is usually necessary to

observe multiply imaged emission at many different distances from the lensing center.

This is usually not the case for lenses in which the only multiply imaged source is a

compact (point-like) radio core. In an ideal situation there is extended emission that

is multiply lensed to a wide range of distances from the lensing center. Therefore

systems that contain Einstein rings or extended arcs have the greatest potential for

accurate lens modeling.

This fact was demonstrated convincingly in the modeling of the Einstein ring

system MG 1131+0456, (Chen, Kochanek & Hewitt (1995)). Chen et al. produced a

model of that lens which predicted the relationship between a time delay between the

doubly imaged radio cores and Ho to a formal accuracy of 4%. (This modeling error

would be added to the time delay error in quadrature to determine the total error for

the Ho measurement.) Chen et al. used an algorithm called LensClean (Kochanek &

Narayan, 1992) specifically designed for lenses with a great deal of multiply imaged

extended emission. This remains the most accurately modeled lens. Unfortunately

no time delay has been measured for this system.

The gravitational lens 0218+357 has a very similar morphology to MG 1131+0456,

with a doubly imaged radio core and a full Einstein ring. This indicates that it

has the potential to be modeled with similar precision as MG 1131+0456 has been.

Additionally, unlike MG 1131+0456, it already has a well determined time delay

(Biggs et al., 1999; Cohen et al., 2000). However its small size (the ring has only

a 0.35" diameter) has prevented the detailed mapping of the extended structure

of 0218+357. For this reason, no model of this lens exists that is anywhere near as

accurate as that for MG 1131+0456.

In order to model accurately the mass distribution of the lensing object in the

0218+357 system, it is necessary to image the lensed emission at much higher reso-

lution than is possible with the VLA. The Einstein ring diameter is about 0.35", and

even at 15 GHz, the VLA has a synthesized beam size of roughly 0.15". The VLBA,

with its high resolution, is a much more promising choice.
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Figure 4-1: Location of each of the ten VLBA antennas.

4.2 Background on the Very Long Baseline Array

The Very Long Baseline Array (VLBA) is an array of radio telescopes designed for

extremely high resolution imaging. It consists of ten 25-meter radio dishes, similar

to the VLA dishes, but spread out across the continental United States, Hawaii and

the island of St. Croix in the Caribbean Sea (Figure 4-1). The longest baselines are

up to 8,600 km long, giving the VLBA a resolution of more than 100 times that of

the VLA. However, with fewer antennas, the VLBA has lower sensitivity and poorer

image fidelity than the VLA.

4.3 Planning the Observations

Resolution, however, is not the only factor that determines what can be imaged.

Just as the longest baselines determine the smallest scales in which features can be

resolved, the shortest baselines determine the largest scales for which emission can

be detected. A baseline of length B will be positively and negatively sensitive to the
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sky in a striped sinusoidal pattern (see Figure 1-6) of width:

0 = (4.2)B

When B is large enough, 0 becomes smaller than the feature being observed. In this

case, both positive and negative stripes will "cover" the emission feature, causing the

total integrated flux density detected by that baseline to be less than the total flux of

the emission object as a whole. As B increases so that 0 becomes smaller and smaller,

the flux density detected will decrease as more and more positive and negative stripes

cancel each other out. However, the noise level for the given baseline remains the

same. So for very large values of B the flux density detected becomes smaller than

the noise level. At this point, the baseline is almost completely insensitive to that

feature. So in addition to needing long baselines to define the small scale structure,

short baselines are also needed to detect large features.

The largest feature we are interested in is the Einstein ring, which is about 0.35"

in diameter. If we let = 0.35" in equation 4.2, then that gives us:

B = 600, 000 A. (4.3)

Baselines much larger than this will be virtually insensitive to the ring. For the

VLBA, one must go down to a frequency of 1.4 GHz to get any baselines at all that

are smaller than that specified in Equation 4.3. At 330 MHz there are many more

baselines of this size or smaller. Therefore, we chose to observe only at these two

frequencies.

In addition to having effectively shorter baselines, there are other advantages to

observing at low frequency. First, the steep spectrum Einstein ring becomes relatively

brighter as compared to the flat spectrum cores, so the side-lobes of the cores cause

much less confusion in the image. Second, the radio cores are known to vary at higher

frequencies. This is obviously advantageous for time delay measurements, but it is

not ideal for lens modeling because the flux ratios of varying components will change

in time. Also, with varying components it becomes difficult to combine data from
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Figure 4-2: UV-coverage of the ten VLBA antennas and one VLA antenna for an
object at declination 35° . The left figure shows the UV-coverage of a snapshot image
taken when the object is at zenith. The left image shows the UV-coverage for a
12-hour synthesis observation.

different epochs in order to reduce the noise. Finally, there is usually much more

extended emission visible at low frequencies, and therefore more potential lensing

constraints.

Since short baselines are especially useful for our scientific goals, we decided to

include one telescope from the VLA in addition to the ten VLBA antennas. This

added to the number of short baselines between telescopes in the Southwest and

produced one very short baseline from the VLA to the Pie Town station (see Figure

4-1) which at 50 km is less than half the length of the shortest VLBA baseline. Thus

we had 11 telescopes yielding 55 independent baselines for the observation.

Even 55 baselines is not sufficient for high image fidelity, so we take advantage

of the fact that as the Earth rotates, the projected baselines slowly change in time.

The longer the observation, the more complete the UV-coverage becomes. This is

why we chose to observe in 12 hour blocks, essentially from when 0218+357 rises to

when it sets, to obtain the maximum UV-coverage. The UV-coverage over this 12

hour period is shown in Figure 4-2.

The reduction of VLBA data is similar to that of VLA data (see Chapter 2)
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except for adjustments that must be made because the baselines are hundreds of

times larger. This means that the atmosphere each antenna "sees" is completely

uncorrelated with any other antenna, so the relative phases become more unstable.

Also, minute changes in the Earth's rotation rate and orientation which are far too

small to affect VLA observations are large enough to affect the VLBA because the

resolution is so much greater. Therefore it is impossible to predict precisely the

relative group delays at each station that will cause the delay center of the array to

coincide with the target source. With such long baselines, these group delays change

very rapidly as the Earth turns, and so it is also necessary to solve for the rate of

change of these group delays. To accomplish this, we use a form of self-calibration

called fringe fitting. Usually this is done by observing known calibrators called fringe

finders, which are point-like objects with high brightness. In practice it works very

much like the phase calibration for VLA data except that it also solves for the rate

of change of the phases. In doing so the total phase gain is calculated which includes

not only the deviations in the Earth's orientation, but also the effects of the very

different atmosphere at each antenna station. The delays and time derivatives of

these delays which were solved by observing a fringe finder are then interpolated to

the times when the VLBA was observing the primary target source. The AIPS task

FRING was used to solve globally for the delay and rate of change of delay at each

antenna. At the resolution of the VLBA, there are no reliable amplitude or phase

calibrators. So after applying the solutions from fringe fitting, the rest of the data

reduction is accomplished by self-calibration.

We were granted four 12-hour observation times on the VLBA, and chose to do

one of them at 1.4 GHz and the other three at 330 MHz. This is because the receivers

have a higher system temperature at 330 MHz and therefore we wanted to be able to

combine three such data sets to increase the signal to noise ratio at that frequency.

For all observations, we used two-bit sampling, channel widths of 0.5 MHz and 16

channels per intermediate frequency (IF). For the 1.4 GHz data we used four IF's

for a total bandwidth of 32 MHz. At 330 MHz, radio interference prevented us from

using more than three IF's, so the total bandwidth was 24 MHz. While granted 12
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Figure 4-3: Initial map of 0218+357 at 1.4 GHz.

hours, we were limited in our data collection to two magnetic tapes per station. That

gave us about 10.5 hours of observing time, which we spread out across the 12 hours

for the maximum UV-coverage. We also made frequent observations of the fringe

finder 3C84. All told, for each 12 hour observation we were able to spend about 9.5

hours of that on the primary source, 0218+357.

4.4 Results from the 1.4 GHz observation

The main imaging challenge at 1.4 GHz is the fact that at this frequency, there are

very few baselines that are short enough to detect the large scale extended structure

in the ring. After several attempts at imaging and self-calibration, it became clear

that there simply was not enough data at these short baseline spacings to define the

complicated structure of an object as large as the Einstein Ring in 0218+357. On the
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other hand, the ring does have at least a few hundred mJy of flux which is detected

by a small number of baselines, and so the AIPS task IMAGR will try to put this

flux somewhere. This resulted in an image with the two radio cores clearly seen and

surrounded by a large blob of extended emission (see Figure 4-3). This blob is not

correct, and results from the fact that the flux of the ring is detected, but not detected

by enough baselines to define its true structure.

The radio cores show a great deal of extended structure themselves. Each image is

extended over a length of about 70 and 100 mas. Since both of these images are lensed

images of the same source, their comparative morphology has the potential to add to

the model constraints. Therefore, while concluding that producing a detailed image

of the ring is impossible at this frequency, we decided to concentrate on producing

the best maps possible of the structure in the two radio core images.

With this goal in mind, the fact that we detect flux from the ring is actually a

disadvantage because having flux detected but not constrained to an exact position

adds noise to the map in general. To solve this problem two things were done. First,

the one baseline (from the VLA to Pie Town) that is much shorter than any other and

therefore detected much more flux from the ring than any other baseline, was simply

removed from the data set. Second, the visibility data were uniformly weighted. This

means that in combining the data from all the baselines, each baseline was given

a weight such that all regions of the UV-plane would contribute equally. Since the

center region of the UV-plane is the most densely sampled, that means that the small

baselines, which might pick up some of the flux from the ring will be given weights

that are smaller than normal. In this way, uniform weighting decreases the size of

the synthesized beam, which causes the response to the extended emission (which is

measured in flux per beam) to decrease. Therefore, the diffuse ring should appear

fainter in a uniformly weighted image.

The result of removing the smallest baseline and uniform weighting the rest of

the baselines was to almost completely remove the ring from the map to the level

that it isn't detectable above the noise. Therefore, only the smaller scale features of

the image are visible. Both radio core images show intricate and clearly distorted
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Figure 4-4: Final map of 0218+357 at 1.4 GHz. The shortest baseline was removed
and the data was uniform weighted. This suppressed the flux from the ring to allow
the radio cores to be imaged with much greater sensitivity and detail.

structure, which we hope will provide clues as to how the mass is distributed in the

lensing object. The final map is shown if Figure 4-4.

4.5 Results from the 330 MHz observations

At 330 MHz, there are plenty of baselines short enough to define the large scale

structure in the ring. However, for many reasons, this is a more difficult frequency

at which to observe. The antenna receivers have a system temperature that is about

eight times higher than that for 1.4 GHz observations. This results in a lower signal

to noise ratio for the observation. This is compounded by the fact that in this part

of the radio spectrum there is much more Radio Frequency Interference (RFI) which

is interference from radio transmitters on Earth, such as radio stations, TV stations,
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Figure 4-5: Combined map of 0218+357 at 330 MHz. The resolution is 48 by 38 mas.

cellular phones, etc. This restricted the bandwidth to 24 MHz instead of 32 MHz,

which also will reduce the signal to noise ratio. Also, the ionospheric distortions

(which can be calibrated) change much more rapidly at this frequency.

The first problem encountered in the data reduction was that some RFI was

present in the correlated data. The RFI took the form of a single channel differing in

flux from the other channels by an amount that was usually well over 10 times the

standard deviation for the channels as a whole. Not many channels were affected, but

the error from those channels could be significant. The AIPS task FLGIT was used

to remove the channels that were suspected of having RFI contamination. All data

points that differed from the mean by an amount greater than six times the standard

deviation were flagged. It is possible that this removed some outlier points that were

not actually affected by RFI, however the total fraction of data points removed was

less than 1% so the effect on overall sensitivity from "over-flagging" is negligible.
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The fringe finder 3C84 was observed about every 45 minutes. Fringe fitting was

only done on 3C84 and the solutions from FRING were interpolated onto the data

for 0218+357. The 0218+357 data was then phase-only self calibrated several times

until the solutions began to converge. Then amplitude-and-phase self calibration

was performed. One problem encountered in the self calibration was that for short

solution intervals there often was not a sufficient signal to noise ratio to achieve

reliable solutions for the gains. However, at 330 MHz the ionosphere is known to

vary on timescales as short as our integration time of two seconds. Ideally a solution

interval of two seconds should have been used in the final stages of self calibration.

Unfortunately this proved too short to achieve reasonable solutions. One way of

dealing with this was to average the three IF's to increase the signal to noise ratio

for each time interval. This helped, but the final result was that we could not self

calibrate with a solution interval less than about 10 seconds. This most likely removed

the major ionospheric distortions, but it is possible that some of the faster ionospheric

variations were not successfully calibrated.

Despite the RFI and high system temperatures at this frequency, images were

produced from each of the three data sets that clearly show the ring structure. To

lower the noise in the images, the UV-data from all three data sets were combined.

Then self calibration was repeated on the combined data set. The final image is

shown in Figure 4-5 and represents a total of about 28 hours on the source. In this

image, the full Einstein ring is clearly visible. It is also apparent that the ring is

resolved in the radial direction. Thus there is multiply imaged emission visible at a

wide range of distances from the lensing center. For this reason, this image shows

excellent potential for lens modeling.
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Chapter 5

The Mass Distribution of the Lens

in 0218+357

5.1 Gravitational Lens Modeling

Gravitational lensing occurs when the light from a background source passes through

the curved spacetime created by a massive lensing object on its way towards reaching

Earth. The curved spacetime in the vicinity of the lensing object will distort the

image of the background source as seen from Earth. All we can observe directly is

the distorted image. From this it is a complicated mathematical process to determine

both the location and morphology of the undistorted image as well as the nature of

the mass distribution of the lensing object that could have so distorted its image.

In principle, there is never enough information in the distorted image to solve this

problem.

This problem can be partially solved if it is known that parts of the distorted

image are multiple images of the same source object. If it can be determined for

example, that two radio cores seen in the distorted image are in fact two images of a

single radio core in the source object, than this immediately produces constraints on

the mapping function from the source object to the distorted image. The mapping

function is directly related to the mass distribution of the lensing object. The more

multiply imaged emission there is, the more constraints can be placed on the nature

103



4

of how the lensing object is acting to distort the light rays from the original source

object.

The only way to exploit the limited information available is by making reasonable

assumptions about the lensing object. For example if it is a galaxy, one can make the

assumption that it is most dense at its center and that the density falls off monotoni-

cally with distance from the galaxy center. One can also exploit the symmetries that

are known to exist in most galaxies. Ultimately, one can create a parametric model

of the mass distribution of the galaxy. This parametric model is constrained by the

data from the multiply imaged regions and can be fit to the data set as a whole.

Once a model of the mass distribution of the lensing object is determined, one can

use Equation 1.25 and the measured time delay to determine H,. The challenge is

not only to fit for a model, but also to determine the error and statistical confidence

level for that model. In this chapter we seek to use our VLBA observations (presented

in Chapter 4) of the gravitational lens 0218+357 to determine the mass distribution

of the lensing object to much greater precision than previous attempts at modeling

this system. In particular, we wish to exploit the 330 MHz VLBA map (Figure 4-5)

which reveals multiply imaged emission over a wide range of positions relative to the

lensing center to extract the constraints necessary to accomplish this.

5.2 Previous Modeling of 0218+357

The gravitational lens 0218+357 has been modeled by Biggs, et al. (1999) using

the constraints from 15 GHz VLBA observations including the positions of the sub-

components of the cores (Al, A2 and B1, B2) (Patnaik, Porcas & Browne, 1995;

hereafter PPB). With these constraints, data sets with Gaussian-distributed errors

were produced and they solved for the model parameters by minimizing X2 . Their

best fit model (with a time delay of 10.5 ± 0.4 days which is also derived in that

paper and is close to the value we derived in Chapter 3) gives H = 69+3 km/s/Mpc

at 95% confidence which is largely dependent on their derived position of the lens

center (Figure 5-4).
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A recent paper (Lehar et al., 1999; hereafter LehAr) attempted to reproduce the

Biggs et al. model. Using the same constraints as did Biggs et al., they found that

the position of the lens center was very poorly determined. Lens center positions

ranged over a roughly horizontal degenerate region over which the derived Ho value

ranged from over 80 to less than 20 km/s/Mpc. Lehar attempted to measure the

lens center position with NICMOS images they took (NICMOS1) as well as archival

data (NICMOS2) (Figure 5-4). Using these positions however, along with the Biggs

et al. time delay, they found Ho to be very low and not well determined at 20

±20 km/s/Mpc. This is mainly because of the lens center position indicated by the

NICMOS data. They concluded that to obtain a well constrained model would require

a more accurate determination of the lens center position than currently exists.

Another indication of the lens center could be the centroid of the Einstein ring.

This was measured by Patnaik, et al., 1993. However, as pointed out by Biggs et al., if

the extended source object that gives rise to the ring is asymmetricly positioned with

respect to the caustic, the ring centroid could be offset from the lens center. In fact

the Einstein ring shown by Patnaik et al., 1993, in their 5 GHz Merlin map, seems

to have a significantly different center from that shown in our 330 MHz VLBA map.

This could be due to the fact that the extended source object is shaped differently

at each frequency and therefore has different levels of asymmetry with respect to the

caustic. If this is the case, it indicates that a ring centroid can vary with frequency

and therefore is certainly a poor estimator of the lens center position.

In this chapter, we will attempt to exploit the data from our 330 MHz VLBA

observations which show much extended emission including the full Einstein ring

to better constrain the position of the lens center and therefore produce a better

constrained lens model.
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5.3 Quantitative Overview of Lens Modeling

5.3.1 How To Determine Ho

Before proceeding to the method we use to constrain mass models, it is necessary

first to review the notation used for quantitative discussions of gravitational lensing.

Some of the following is also covered in Chapter 1.

Normally we think of the gravitational potential as a function of position in

three dimensional space: (x, y, z). However, the relevant quantity for a thin lens

is 0(x, y, z) integrated over the line of sight at each angular position in the lens plane.

This results in a two dimensional "effective" potential defined as follows:

C2 DOLDO S / 0(, yI) dl (5.1)

where Ox and Oy are angular coordinates in the image plane, I is the coordinate along

the axis parallel to the line of sight, and DLS, DOL and Dos are the angular diameter

distances from the lens to the source, the observer to the lens and the observer to the

source respectively.

It is useful to define a scaled distance in the lens system called the effective distance

which we define as:

Deff - DOLDO (5.2)
DLS

The angular diameter distance between an object at redshift z and and object at

redshift 2, both along the line of sight, is defined as:

D(Zi, Z2 ) = f (z, 2) (5.3)

where f(zl, z 2) is given by Equations 1.28 and 1.29. The function f(zl, z 2) is inde-

pendent of Ho and depends only on the cosmological model we use (specifically the

values of Qo and A). Therefore the effective distance is:

c f(O,ZL) f(O,) (54)
Del = H f(zL,zs) (5.4)
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AQ , A f (0, ZL) f(0, zs)

f (ZL, ZS)
1 0 1.39

0.25 0.75 1.47
0.25 0 1.50

Table 5.1: The value of f(OZL) f(Ozs) for several different cosmologies. This assumes
f(ZL,ZS)

that ZL = 0.685 and zs = 0.96 as is the case for the gravitational lens 0218+357.

where zs is the redshift of the source and ZL is the redshift of the lensing object. For

the given redshifts, ZL and zs, the quantity f(O,zL) f(O,zs) depends only on the values
f(ZL,ZS)

of Q, and Ao in the model we choose. In the case of gravitational lens 0218+357, we

already know that ZL = 0.685 and zs = 0.96, so we can determine f(O,zL) f(O,s) for
f(zL,s)

various cosmological models by numerically calculating Equations 1.28 and 1.29. The

results for a few reasonable cosmological models are shown in Table 5.1.

It is clear from Table 5.1 that the quantity f(O,zL)f(Ozs) does not change very much
f(ZL,Zs)

depending on the cosmology we assume. There is only an 8% difference between the

highest and lowest values here. Therefore, for the rest of this chapter, we will use the

value resulting from a cosmology in which Q,o = 1 and A, = 0, while keeping in mind

the fact that if this cosmological model is incorrect the true value could be up to 8%

higher. Thus we have for the case of 0218+357 that:

Def = 1.39 . (5.5)
H,

Now if we apply Equation 5.5 and the value ZL = 0.685 to Equation 1.24 we get:

H .1L7 [I ()2l I +(0B) - 2 +(0A) + 2+(oB)] (5.6)

where Ar is the time delay. In Chapters 2 and 3 we measured AT for this system.

In this chapter, with the data from Chapter 4, we will try to constrain the function

?(O0) and thus complete the measurement of H,.

107



5.3.2 Parametric Mass Models of the Lens

Before applying a lens modeling algorithm to the 330 MHz VLBA data to determine

b(06), we first need a reasonable parametric model for (0).

Let us start with a very simple case in which the lensing mass is a singular isother-

mal sphere (SIS). Physically, a SIS is the mass distribution of a gas cloud of uniform

temperature which is held together by its own gravity. In this case, the mass within

any given radius, M(r), is directly proportional to r. It is thought that the mass

distribution of a typical frontier galaxy is roughly that of a SIS out to the very edges

of the luminous part of the galaxy. For a SIS, the parametric mass model is:

l(0) = b 01 (5.7)

where b is a constant value measured in angular units and 0 is measured from the

angular position of the center of the lensing mass. If we let a equal the one dimensional

velocity dispersion in the SIS then we can relate b to the physical qualities of the lens

as follows:
o 2 DLS

b = 47r 2 DLs (5.8)
C2 Dos

The quantity b is also significant in that it is the critical radius of the gravitational

lens. This means that a source object will be multiply imaged only if it is separated

from center of the lens by less than the angle b.

Of course we can make the model more general by not assuming that the potential

falls off exactly as it does for a SIS. With an SIS, M(r) oc r and this can be generalized

by adding a new parameter a so that M(r) oc ra, where for a SIS, a would be 1.

Allowing a to vary allows us to test a variety of mass falloff rates. The mass model

in this case is:
b2-a

(0) = _1Iol (5.9)

This model can be further generalized by not requiring the potential to be spherically

symmetric, but allowing an elliptical mass distribution.

108



To first order this results in the following mass model:

b2-¢t

0(0t) = -101' (1 +ycos 2(0- 06)) (5.10)

This adds two additional parameters: y, which represents the magnitude of the el-

lipticity and 0,, which is the angle of the ellipticity. Overall, the model now has four

free parameters: b, a, a and 0. There is no end to how general we can make the

model, and therefore no limit to the number of independent parameters it can con-

tain. There is, however, a limit to the data at hand to constrain such a model. The

model should be general enough to reasonably approximate the mass distribution in

a real galaxy (although this is not presently well known) but not so general that there

are too many parameters to be well constrained by the available data.

5.4 LensClean

5.4.1 Basic Concept of LensClean

One very powerful lens modeling technique was developed by C. S. Kochanek and R.

Narayan and is called LensClean (Kochanek & Narayan, 1992). The basic strategy

of LensClean is first to assume a trial mass model for the lens. That mass model

determines a mapping function between the source plane and the image plane. For

some regions of the source plane, the mapping function will map points to more than

one location in the image plane. This is defined as the multiple image region of the

source plane. Therefore for any given point in the image plane, there could be one or

more other points in the image plane that share a common inverse mapping point in

the source plane. With LensClean, the normal CLEAN algorithm for deconvolving the

synthesized beam from an interferometer image is adjusted to take multiple imaging

into account. This algorithm was later generalized to work directly from the visibility

data in what is sometimes referred to as "visibility LensClean" (Ellithorpe, Kochanek

and Hewitt, 1996). This is the version of LensClean we apply.
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A

Multiple Image
Region

Figure 5-1: The lensing mass caused each point in the source plane to appear at a
different apparent location in the image plane (see point 2). In the case of strong
lensing, there is a region surrounding the line of sight to the lensing mass which is
multiply imaged. Points here appear in more than one location in the image plane
(see point 1). LensClean is a modification of the CLEAN algorithm which takes into
account the fact that some points in the image (see points 1A and 1B in the image
plane) are from the same source point. If flux is cleaned from the point 1A, it must
also be cleaned from 1B at the same time.

5.4.2 Review of the CLEAN Algorithm

With normal CLEAN, the first step is to identify the point in the image with the

highest flux density. At that location, the dirty beam with peak flux density equal

to some small fraction (usually 0.03 to 0.15) of the flux density at that point is

subtracted. CLEAN then moves on to the location of the peak flux density in the

resulting image. This continues until the absolute peak flux density of the residual

image is lower than some value determined beforehand (usually this value is two or

three times the expected RMS noise in the final image). At that point, most of the

flux in the image has been removed. But CLEAN has in the process created a point-

source model of the image based on the points at which it subtracted the dirty beam

and how much flux was subtracted at each of these points. This point-source model

is then convolved with a CLEAN beam which is a two-dimensional Gaussian with

the same dimensions as the primary peak in the dirty beam. Therefore the flux is
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replaced in the form of Gaussians to restore the proper image resolution, but without

restoring the sidelobes of the dirty beam. Over time there have been improvements

made to both the efficiency and stability of the CLEAN algorithm (see H6gbom

(1974), Schwarz (1978), Clark (1980) and Cornwell (1983)). However, the core idea

of CLEAN remains the same.

5.4.3 Overview of LensClean

LensClean adjusts the CLEAN algorithm to take into account the effects of the distor-

tions due to the lens. While CLEAN deals with one point source at a time, LensClean

also checks to see if (based on the trial mass model) each point is the image of a point

in the source plane that is multiply imaged. If so, the dirty beam will be subtracted

from all points in the image plane to which this source point is mapped. In addition

to identifying where these points are in the image plane, the trial mass model also

determines the relative magnifications at each of these points, so the algorithm can

subtract the dirty beams with the correct flux density ratio from each of these points.

LensClean chooses the location of successive clean component so as to maximally re-

duce the root-mean-square noise in the residual image. As with CLEAN, LensClean

continues this process until some previously specified stopping criteria is reached.

Typical stopping criteria are a maximum number of clean components or a minimum

value for the peak flux in the residual map. At this point, a point-source model of the

image is produced. The trial mass model can then be evaluated based on how well

that point-source model fits the original uv data. Clearly a trial mass model much

different from the actual mass distribution in the lens will cause LensClean to remove

flux from the wrong points in the map, causing the final point-source model to be a

poor fit to the original uv data. For a parametric mass model, all the free parameters

can be fitted so as to produce, from LensCleaning, the point-source model that best

matches the original uv data. The average deviation of the real uv data from that

expected from a given point-source model, given in units of the expected RMS noise

per visibility, is used as the measure of the goodness of the fit, which we use as our

X2 statistic. If Nvis is the number of visibilities, Vi is the complex value of the ith
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visibility, av is the average noise per visibility and Vim is the predicted value of the

ith visibility based on the clean component model then we have:

X2 = | i i2 (5.11)

i=l a

LensClean determines the model parameters for the lensing mass by fitting them so

as to minimize X2.

One great advantage of this method is that LensClean works directly with the uv

data, rather than taking as input an image, which may have deconvolution errors.

Of course LensClean does perform deconvolution from the uv data, but the resulting

image is never used. All that is used is the point-source model obtained from the

deconvolution process. This is then directly compared to the original uv data to

measure the goodness of fit for the trial model used.

5.5 Applying LensClean to 0218+357

The original uv data set for the 330 MHz VLBA data contained over 2 million visi-

bilities at 3 different IF's. LensClean is a very computationally intensive algorithm

in that the deconvolution must be done many times to find best fit values. With a

data set this large, a single deconvolution with LensClean takes nearly a full day on

a Sun Ultra 1 workstation, thus making its use highly impractical. One way we chose

to reduce computation time was to average this data in time from 2 seconds to 90

seconds integration times. This was the maximum value that would still provide suf-

ficient field of view. The three IF's were also averaged together. This greatly reduced

the size of the data set and reduced the computation times by a similar factor.

With LensClean we hope to use the structure of the Einstein Ring as well as

other extended emission in 0218+357 to constrain a mass model. However, the 330

MHz VLBA image has a resolution which is too high to be useful given the map

noise. Therefore we restricted the uv data to only those baselines which are shorter

than 2 million wavelengths. This removed approximately half the data leaving 25,215
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visibilities. This dramatically improved the speed of the LensClean algorithm not only

by reducing the size of the data set, but also by increasing the size of the synthesized

beam which allowed deconvolution with far fewer iterations. By removing the long

baselines, the synthesized beam went from 23 by 32 mas to 69 by 73 mas, a factor of

almost seven increase in area.

5.5.1 Finding the Center of the Lensing Mass

For any given mass model, such as those of Equations 5.7, 5.9 and 5.10, the effective

potential 4'(0) is a function of the variable 0 which is measured with respect to the

central position of the lensing mass. Therefore, knowing the location of the center

of the lensing mass is crucial for lens modeling. This can sometimes be determined

empirically with high resolution optical images, but in the case of 0218+357, the

angular size of the lens is too small to isolate the lens position to the roughly 0.01"

accuracy needed for this lens. Therefore, we must use LensClean to constrain the

location of the lens center.

We apply a singular isothermal ellipsoid (an SIE) as a mass model. An SIE is a

mass distribution which is a SIS with critical radius b, but stretched so that is has

a sheer of y at the angle 0, measured east of north. For this mass model there is a

rather simple relation between Ho and the time delay, AT:

Ho- 1 + ZL f(O, ZL) f(O, zs) 1 - 2 ) (5.12)
AT f(ZL, zS) 2 ( ; A - r -- )

(Witt, Mao & Keeton, 2000; adjusted for notation). Here 0, is the position of the lens

center, A and OB are the positions of the A and B images respectively and f(zl, z 2 )

is the normalized angular diameter distance between redshifts z and z 2 as defined

in Equations 1.28 and 1.29. Notice that Ho depends only on the lens center position

and not on the other mass model parameters.

In principle we would use the SIE mass model and fit all five parameters (b, y, AO,

Xcenter and Ycenter) using LensClean so as to minimize the goodness of fit parameter

x 2. This would tell us the most likely position for the lens center which, along with
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Goodness of Fit for Various Lens Center Positions
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Figure 5-2: The LensClean X2 values as a function of the lens center position, (x, y),
measured relative to the B image. At each location, the parameters other model
parameters b, and 90 were fit with LensClean. The minimum value is X2 = 50,260
at (x, y) = (-100, -50) mas.

the time delay, determines Ho. However, through experience, we learned that the

X2 surface is very poorly behaved due to systematics as the x and y coordinates of

the lens center are varied. This prevented us from directly fitting these parameters.

What we did instead was to choose trial values of Xcente, and Ycenter and fit for b, -y

and 0, at that trial lens center position. The X2 value for the best fitting model was

thus calculated as a function of the lens center position.

At each trial lens center position, we began the fitting of the other three mass

model parameters, b, 7 and y, with their values calculated using other data as mod-

eling constraints. The three constraints we used were: two from the relative positions

of the radio cores as measured with the VLBA at 15 GHz to sub-milliarcsecond ac-

curacy by Patnaik, Porcas & Browne, 1995 and one from the flux ratio of the radio
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cores as measured in Chapter 3 of this thesis. From this initial guess, LensClean was

allowed to fit these parameters based only on the data from our 330 MHz VLBA

data. We used as stopping criteria for the image deconvolution a limit of 10,000 clean

components. This minimization was performed over a large grid of trial lens center

positions with a periodic spacing of 10 mas. The results are shown in Figure 5-2.

It is apparent from the data in Figure 5-2 that there is a clear minimum in the X2

surface. The region surrounding the X2 minimum is relatively flat but increases steeply

at its edges. The minimum value X2 is 50,260 and occurs at a lens center position of

(Xcenter, Ycenter) = (-100 mas, -50 mas) relative to the B component. Assuming a time

delay of 10.1 days and a cosmology with (Qo, Ao) = (1,0), this lens center position

corresponds to Ho = 37 km/s/Mpc. The other lens parameters for this best fitting

model are: b = 180 mas, y = 0.11, 0v = -48.2 °.

The best fitting value we obtain for y of 0.11 is rather high and indicates a potential

ellipticity (1 - b/a) of 0.2 and a mass ellipticity of 0.55 (or more depending on the

orientation angle). The orientation of the ellipticity is more than 600 from the line

joining the two core images. The lens galaxy is quite difficult to observe at a redshift

of 0.685, and Lehir stated that they were unable to fit for an ellipticity in the light

distribution based on their HST images. Nevertheless, the fact that the galaxy image

would appear roughly circular for an ellipticity as large as 0.55 is difficult to imagine.

Before this final run of LensClean we also experimented with CLEANing much

less deeply than 10,000 clean component by: a) using only 2,000 and 5,000 clean

components in the deconvolution and b) by including the longer baselines which

resulted in a smaller beam size and therefore a less deep CLEAN. The result was a

lens center that was even farther away from the B image and therefore resulted in

an ever lower Ho estimate. However, the residual maps for the best fitting models in

each of these cases showed residuals much higher than the map noise, indicating that

by not CLEANing deeply enough, systematic errors were introduced. Therefore we

judge the results from the 10,000 clean component run to be much more reliable. We

could have used even more than 10,000 clean components. However this would have

increase the computation time, and since the residuals for the 10,000 clean component
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LensClean Image Reconstruction
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Figure 5-3: Maps for the various outputs of LensClean compared to the original
observed map. In each map a 75 by 75 mas restoring beam was used to provide easier
comparisons. Note that the contours are lower for the residual map. The peak of the
residual map is only 2.5% that of the observed image.
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case are already very close to the map noise (see Figure 5-3), it is unlikely that there

would be any improvement.

In order to determine how good a fit our X2 values are, it is necessary to compare

them to the number of degrees of freedom, Ndof in the model. We apply a formula

used by Ellithorpe et al. (1996) to estimate the total number of degrees of freedom:

Ndof = 2 Ni - 3 Ngrid - Nparm - 2 Ngain (5.13)

where Ni is the number of visibilities, Ngrid is the number of grid points for the clean

components, Nparm is the number of parameters in the mass model and Ngain is the

number of gain parameters used in the data calibration. The values Nvi, and Ngain

are multiplied by two because they are complex numbers. Ngrid is multiplied by three

because each grid point contains three free parameters: its x and y coordinates and

the total flux at that point. For our model, we have Ni, = 25,215, Ngrid = 16,384,

Nparm = 5 and Ngain = 60 which results in Ndof = 1,153. Thus our best fit model

has a X2 value that is far from the theoretical optimum fit. One might argue that a

more appropriate formula for the number of degrees of freedom is

Ndof -- 2Nvis - Ngrid - Nparm - 2 Ngain (5.14)

since the (x, y) coordinates are not free to vary. This would give Ndof = 33,921, still

much smaller than our minimum X2. However, only a 20% underestimate of the of

our measurement errors would account for the difference in the minimum value of

the x2 and the number of degrees of freedom. As we discuss below, the technique

we choose to determine confidence intervals does not depend on the value of Ndof, so

we do not discuss this further here. See Ellithorpe, Kochanek and Hewitt (1996) for

some discussion of this issue.

With the X2 surface mapped out in the x - y plane, we would like to measure the

uncertainties in our best fitting lens center position. Formally, the 68% confidence

region (la region) is determined by the set of points for which X2 - Xi = AX2 1.

Figure 5-2 clearly shows that the noise level in the X2 surface is much greater than 1,
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(probably due to systematic errors) so this method is not feasible. Instead we estimate

the noise in the X2 surface as the root mean square of the differences between adjacent

points in the sample grid. Restricting this measurement to the relatively flat base

of the X2 well, we calculate the average variation to be 99. Adding this to 1, we

conclude that points for which AX2 > 100 are eliminated as being the lens center

position at the 68% confidence level. The la region is then the set of points for

which AX2 < 100. We define AX2 for the 2a region as twice the noise, 198, plus 4

or AX2 < 202. Similarly the 4a region is defined by AX2 < 408. This allows us to

define confidence regions in the image plane for the position of the lens center (see

Figure 5-4).

This allows us to set confidence limits on Ho as well. With a time delay uncertainty

from Chapter 3 of about 8% (68% confidence), we can conclude that H = 37+-20

km/s/Mpc at 68% confidence. At 95% confidence we conclude that Ho is between 9

and 68 km/s/Mpc.

5.6 Discussion of Results

It is clear that the combination of these data and LensClean are unable to constrain

usefully the lower limit on H,. However, given the current range of Ho estimates,

the upper limit of 68 km/s/Mpc at 95% confidence is a rather interesting result. It

indicates an Ho that is on the low end of current measurements which range from

about 60 to over 80 km/s/Mpc.

The la region we determine for the position of the lens center does overlap that

calculated by Lehar which is based on high resolution VLBA maps of the cores by

PPB. However, the lens center in the Biggs et al. (1999) model as well as the position

of the ring centroid calculated from 5 GHz data are both ruled out by our model

at greater than 4a confidence. The two NICMOS estimates of the galaxy center by

Lehdr are similarly ruled out, but the average of the two (which was used by Lehar

for their model) does fall within our 2a region. Not surprisingly both our model and

Lehr's model give extraordinarily low most-likely values for H,.
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Plane of 0218+357

0 -50 -100 -150 -200 -250 -300

Right Ascension (mas)

Figure 5-4: The image plane of the gravitational lens 0218+357. Here we measured
X2 as a function of lens center position and plot the X2 minimum and the la, 2a and
4a confidence regions. Also shown are the lens center positions indicated by: the
ring centroid (Patnaik, Porcas & Browne, 1995), the Biggs et al. model (Biggs, et al.
(1999)), the "NICMOS1" and "NICMOS2" images (Lehar et al., 1999). If we assume
a SIE mass model then, for a given cosmology and time delay, Ho is a function of the
lens center position. We plot Ho contours in units of km/s/Mpc for a time delay of
10.1 days and a cosmology with (Q, A) = (1,0). The positions of the A and B radio
core images are also shown.
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5.7 Comparison with Existing Data

In using the Einstein ring in this system as our primary lensing constraint, we are

using nearly independent data as has been used in previous modeling efforts based on

the small scale morphology of each image core. It is therefore of interest to determine

the consistency of our best fitting model with data other than the Einstein ring. A

In particular, PPB measures the vector between the double cores in each compo-

nent (A1-A2 and B1-B2). These data have been used for modeling by Biggs et al.

(1999) and LehAr. Lehar defines a region in the image plane in which the lens center

can be and still be consistent with the PPB data. The best fitting model we derive

based on the 330 MHz VLBA data does not fall within this region, and therefore it

is not consistent with the data from PPB. However there is overlap between our 2a

confidence region (Figure 5-4) and Lehar's region. We estimate the region that is

consistent with both data sets at the 95% confidence level to be the intersection of

our 2c region with the Lehdr region defined by AX2 < 101/2. This intersection region

(along with the uncertainty in the time delay measurement) restricts Ho to between

12 and 50 km/s/Mpc at 95% confidence.

The fact that our confidence region overlaps that of Lehir shows that there is a set

of models that is consistent with two very different sets of data. One data set is our

330 MHz VLBA observation of the Einstein ring. The other is the sub-milliarcsecond

resolution images of the double cores by PPB with the VLBA at 15 GHz. We wish

to compare our lens models to a third data set, our 1.4 GHz VLBA image (Figure

4-4). That image has one tenth the resolution of the PPB image, so the double cores

are not resolved. However, extended emission appears at 1.4 GHz that is not seen

(or more likely is resolved out) at 15 GHz. Unlike the 330 MHz image, the extended

emission is only seen in the vicinity of the cores, so the information in the Einstein

ring is unavailable. We test the consistency of the 1.4 GHz data and a lens model

by mapping the image of both the A and B components back into the source plane

according to that model. If the model is consistent with the data, the pre-images of

A and B should have the same morphology. In Figure 5-5 we show the original A
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and B images along with their pre-images determined according to two models. One

model (Model 1) is the best fitting model determined with LensClean as discussed

previously. The other model (Model 2) is chosen so that the lens center of that model

lies near the center of the intersection of our region of allowable lens centers and

that of Lehir. The parameters of Model 2 are: Xcenter = -120 mas, Ycenter = -40

mas, b = 183 mas, y = 0.13 and = 81.4 °. Model actually lies outside the

region determined by Lehgr. The result is that the pre-images for Model 1 seem to

have somewhat different morphologies, indicating that Model 1 is not consistent with

these data. This is not surprising since Model 1 is not consistent with the PPB data.

The pre-images of Model 2 are very similar in morphology and in particular have

nearly identical ellipticity angles. It is encouraging that a model determined mainly

by the Einstein ring and from a data set in which structure of each radio core is not

resolved produces a lens model with the right strength and internal sheer to cause

the drastically different A and B morphologies from the 1.4 GHz data to map back

to virtually the same morphology in the source plane. We conclude that models in

the intersection region are consistent with all three data sets.

5.7.1 Future Work

The mass model of the gravitational lens 0218+357 can be improved in two major

ways. One is to refine the lens modeling technique. Perhaps more important than

this is to obtain data of higher quality. Here we discuss both of these possibilities.

One way to improve the modeling is to make the mass model more general. This

can be done by adding more parameters such as an exponent a to the radial depen-

dence of the effective potential, allowing for an external sheer or allowing for a core

radius. It must be emphasized that for each extra dimension that must be minimized

the computational time increases very rapidly. However one must recognize the possi-

bility that assuming a SIE mass distribution could have biased the results if the true

mass distribution is very different from this. For example, with an effective potential

dependent on radius as (r) o r the time delay changes by a factor of roughly (2-a)

(Witt, Mao & Keeton, 2000). Romanowsky et al. (1997) shows plots of line-of-sight
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Consistency Test for Models with the
1.4 GHz VLBA Image
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Figure 5-5: Comparison of morphologies of the A and B image in the 1.4 GHz VLBA
map of 0218+357 and their pre-images in the source plane according to two different
models.
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velocities as a function of radius for galaxies NGC 7619 and NGC 1439. From the

data in these plots, we estimate that these galaxies both have a = 0.7. Similarly,

modeling the gravitational lens MG1131+0456, in which the ring is resolved in the

radial direction gives a = 0.6 + 0.2. On the other hand, the gravitational lens models

of MG1654+1346 gives a = 1.15 ± 0.01 (Ellithorpe, Kochanek and Hewitt, 1996).

Clearly our inability to constrain a in 0218+357 is a major source of uncertainty in

our determination of H,. Adding an external sheer of y would change the time delay

by roughly factor of (1 - y cos 20) where 0 is the angle between the sheer and the

component separation. The region around 0218+357 was explored optically by Lehir

to estimate the external sheer. They found that the lensing galaxy was unusually

isolated, and any external sheer was likely to be at the 1% level.

As for the determination of the errors, rather than assuming that the la error bars

would extend to parameter values which produced a AX2 less than a given value, the

best way to determine the errors is through Monte Carlo simulations. However, to

achieve reasonable results through Monte Carlo simulations, it is necessary to perform

at least several hundred samples, each of which done in the same method as the real

data. Therefore, Monte Carlo simulations necessarily take at least several hundred

times the computing time as the original measurement. This obviously was not a

practical option for contemporary computers.

As for the data we used, there are two major areas which could be improved.

These are the uv coverage and the sensitivity of the images. We used only the VLBA

baselines plus a singe VLA antenna which gave only 55 independent baselines. Adding

data from MERLIN and the entire VLA would greatly increase the uv coverage near

the center of the uv plane. This would greatly expand the dynamic range of baseline

lengths, producing images of higher image fidelity. Additionally this would make the

extended features we are interested in visible at higher frequencies. This will help our

second goal of higher sensitivity not only by increasing the amount of data, but also

because at higher frequencies the receivers are many factors more sensitive.
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Chapter 6

Conclusion

6.1 Implications for Cosmology

By measuring light curves for the gravitational lens 0218+357, we were able to de-

termine its time delay to be 10.1+ 1 5 days at 95% confidence. With further VLBA

observations of this system, we were able to put constraints on the lensing mass. To-

gether, we determine that H = 37 km/s/Mpc with a 95% confidence interval of 9 to

68 km/s/Mpc. With our measurement of Ho, it is useful to discuss what this implies

for cosmology and how this result fits into current work being done in the field of

observational cosmology.

6.1.1 Age of the Universe

Knowing the cosmological model (i.e. the parameters Qo and Ao) as well as Ho allows

a direct calculation of the age of the universe. The quantities Qo and Ao determine

how the expansion rate of the universe changes over time. Combined with knowledge

of the current expansion rate, Ho, the scale factor can be determined at all times in

the past back to the time when it was zero. The time in the past at which the scale

factor was zero is defined as the beginning of the universe.

This is demonstrated for several cosmological models in Figure 6-1. This figure

shows that even for the same value of Ho, the age of the universe will change by
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Scale Factor of the Universe as a Function
of Time for Various Cosmologies
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Figure 6-1: The scale factor of the universe for three plausible cosmological models
as a function of time. Time, t, is measured in units of 1/Ho and shifted so that t =
0 at the present epoch. The time in the past at which the scale factor is zero defines
the age of the universe for that particular model.

quite a bit depending on the cosmological model used. In Chapter 5, we determined

an upper limit for Ho of 68 km/s/Mpc at 95% confidence. This upper limit to Ho

corresponds to a lower limit on the age of the universe for each cosmology. This results

in a universe that is at least 9.6 billion years old for a flat universe with Qo = 1. If

Qf = 0.25 and Ao = 0.75 then this value of Ho leads to a universe that is a minimum

of 13.8 billion years old. For an open universe in which Qo = 0.25 and Ao = 0, then

the universe is at least 11.0 billion years old. For the two cases where Qo, $ 1 the fact

that the Ho value implied by our modeling results is different is taken into account.
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6.2 Comparison with Other Results

The last few years have seen a flurry of publications of Ho measurements using gravi-

tational lenses (as we have done in this thesis) as well as other methods. Results from

gravitational lenses include Ho = 64 ± 13 km/s/Mpc (95% confidence) for 0957+561

(Kundic, et al. (1997)), Ho = 44 + 4 km/s/Mpc (68% confidence) for PG1115+080

(Schechter, et al. (1997) and Impey, et al. (1998)), Ho = 59 ± 7 ± 15 km/s/Mpc

(95% confidence) for 1608+656, (Fassnacht, et al. (1999) and Koopmans & Fass-

nacht (1999)) and Ho - 69+1 3 km/s/Mpc (95%confidence) for 0218+357 (Biggs, et

al. (1999)). Using Cepheid distances to nearby galaxies to calibrate other distance

scales has resulted in a value of Ho = 71 ± 6 km/s/Mpc (68% confidence) (Mould,

et al. (1999)). Recent work on calibrating the Cepheid distance scale based on a

geometric distance to NGC 4258 has resulted in a value of Ho = 81 ± 4 km/s/Mpc

(68% confidence) (Maoz, et al. (1999) and Herrnstein, et al. (1999)).

It seems that recently reported values are beginning to center around a value of

about Ho = 70 km/s/Mpc but there are outliers. Our result of Ho < 68 km/s/Mpc is

on the low end of recently reported measurements however it is consistent. Our best

fit value of Ho = 37 km/s/Mpc is much lower than any of these results. Interestingly,

another measurement of Ho with 0218+357, by Lehar et al. (1999), was also extremely

low at Ho = 20 ± 20. A lower value of Ho implies an older universe and larger spacings

between galaxies than that for higher values of Ho.

There are several possible explanations for why our Ho measurement is so much

lower than other measurements. The time delay, measured by us as well as Biggs et

al. (1999), is based on a single feature of the light curve which (given effects such as

microlensing and scintillation) could bias the results. Incorrect redshifts for the lens

and source in this system are an unlikely explanation because our ratio of source to

lens redshift is higher than normal, and if it were lower, our Ho measurement would

actually decrease. As discussed in Chapter 5, a different mass profile than that for

flat rotation curves could also be biasing our answer. Other galaxies have measured

mass profiles which, if applied to 0218+357, could increase our Ho measurement by
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40% or so. Lehar et al. (1999) determined that there was not likely to be an external

sheer of more than about 1% in this system, so it is unlikely that not including an

external sheer in our model has biased the results significantly. More detailed study

of this lens and others will be needed to resolve this discrepancy in H, measurements.

6.3 Future Work

Gravitational lensing is a phenomenon that is just beginning to prove useful in ex-

perimental cosmology. For individual lenses, there is great room for improvement in

the measurement of the time delays and mass modeling which would lead to more

and more accurate Ho estimates. And, as more lenses are discovered the distribution

of their statistical properties will also begin to constrain many aspects of cosmology.

6.3.1 Improving the Accuracy of the Ho Measurement

The measurement of Ho depends on two independently determined factors, the time

delay and the mass model. In the case of 0218+357, both need to be determined

with more accuracy in order to constrain Ho to within a significantly smaller range

of values than it is currently.

The time delay measurement can be improved in two major ways. First, the

accuracy of the flux measurements in the light curves can be improved. This can

occur either with longer dwell times on current telescopes, or with the construction of

new telescopes with more sensitivity and higher resolution. Perhaps more important

however, is obtaining light curves over much longer time intervals. This would result

in light curves with many more variation features to match up among the multiple

components. It would also minimize the effects of possible one time deviations due

to microlensing or scintillation. Again, this could be helped with the construction of

new telescopes because the currently most sensitive radio telescope array is the VLA,

which changes configuration every few months and therefore cannot continuously

monitor lenses for more than a few months. Another option for improving radio

monitoring is to use stationary arrays, such as the MERLIN array in England or the
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VLBA in North America. These telescopes are not as sensitive as the VLA, but can

monitor lenses continuously for years if necessary. As telescopes are improved and as

more and more data is acquired, the accuracy of time delay measurements can only

increase in time.

As for improvements in the mass modeling of gravitational lenses more data is

likely to play a large role. Most lenses, including 0218+357, have not been fully

investigated even with existing telescopes let alone new and improved telescopes. For

the best chance at accurate lens modeling one would ideally make deep maps of a

lens at various frequencies and resolutions and use this complete set of morphological

data to constrain the lens mass. One example related to 0218+357 would be to

combine the 1.4 GHz VLBA data shown in Chapter 4 and combine it with similar

data taken from the Merlin array and possibly even the VLA to increase the number

of short baselines. With a data set containing such a large dynamic range of baseline

lengths not only would the image fidelity and sensitivity be greatly improved, but

the observation would be sensitive to emission on a wider range of angular scales,

probably with the result of detecting the Einstein ring in 0218+357 even at 1.4 GHz

or higher frequencies. Of course "next generation" telescopes would also help greatly.

Ironically for these times, another limiting factor in lens modeling is the speed

of computers used in the modeling. This is a factor because of the large amounts of

data used in the modeling and the computationally intensive nature of the modeling

process itself. Of course computer speed is increasing exponentially with time, which

will certainly allow more complete and sophisticated modeling techniques in the near

future. Also of use would be a modeling technique that could use all the data that

LensClean uses, but in a more time-efficient manner.

6.3.2 Determining More than the Effective Distance

The estimate of Ho presented in this thesis was based on measuring the effective

distance, Deff, of the gravitational lens 0218+357. At no point was the angular

diameter distance to either the lens or the source determined individually. This

degeneracy can be broken most easily by obtaining independent information on the
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velocity dispersion in the lensing mass. Recall that the critical radius of the lens is

related to the physical qualities of the lens in the following way:

b = 4r 2 DLS (6.1)
C2 Dos

The critical radius, b, is determined very accurately in the lens modeling as was

demonstrated in Chapter 5. If the one dimensional velocity dispersion, a, can be

determined, then the ratio DLs could then be solved for, allowing one to isolateDos

the angular diameter distance to the lens, DOL, from the effective distance, Deff.

The most straightforward way to measure a is to obtain optical spectra of the lensing

galaxy and measure the widths of the absorption lines. The width of the lines indicates

the range of frequencies that line emits and therefore the range of Doppler shifting

due to the radial velocity dispersion of the stars and gas in the galaxy. For most

high redshift galaxies, this takes a great amount of time on a telescope with large

collecting area. In some cases it is beyond the capability of current telescopes.

The advantage of isolating DOL from Deff is most evident when this measurement

can be made for several gravitational lenses at a variety of lens redshifts. This allows

one to construct an empirical plot of angular diameter distance versus redshift, which

could determine not only H, but also the expansion rate of the universe at times in

the past which would help determine both Q0 and A,.

6.4 Summary

The original goal of this thesis was to use gravitational lensing to measure Ho. Consid-

ering what is being measured, the method is amazingly simple. It comes directly from

the first principles of cosmology and general relativity with virtually no reliance on

independent empirical data such as intermediate distance indicators, many of which

cannot be derived from first principles (for example the Cepheid frequency-luminosity

relation, the ,assumption that Type la supernovae are standard candles, the Tully-

Fisher relation, etc...). Therefore this method is completely independent of all other
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methods of measuring Ho, which provides (if nothing else) a very valuable check on

other efforts in experimental cosmology.

For all its theoretical simplicity, it is in practice a challenging measurement to

make. In the process, one needs to be able to reliably measure the flux density of the

variable components to an accuracy many times greater than the average flux density

variation, which is often only a few percent of the total flux density (see Chapter

2). Accomplishing this only produces light curves. Deriving the time delay from

these light curves is a complex statistical process, for which no standard method has

emerged either for measuring the best fit time delay or determining the error bars

for that value (see Chapter 3). In order to determine a mass model of the lensing

object, the morphology of the multiply imaged emission must be imaged in detail. In

our case this was done with separate VLBA observations at 1.4 GHz and 330 MHz

to explore the morphology of the Einstein ring and the radio cores (see Chapter 4).

We then used another statistical algorithm, LensClean, to determine the best fitting

parametric model of the lens potential (see Chapter 5). In this thesis, we describe

our efforts to accomplish each of these steps for the gravitational lens 0218+357. The

final result is a measurement of Hubble's Constant with a value of Ho < 68 km/s/Mpc

at 95% confidence.

This project is also intended to be an exploration of many of the steps needed

to investigate many other areas of science in addition to H,. First of all, extremely

accurate light curves taken of two objects known to be images of the same source

could be compared to investigate propagation phenomenon, such as microlensing

and scintillation. Lens modeling itself promises much in the efforts to determine

the mass distribution in galaxies, clusters of galaxies and even the universe as a

whole. Finally, as mentioned above, in combination with independent data about

the velocity dispersion in the lensing object, the angular diameter distance to the

lensing object can be measured directly. Therefore, gravitational lenses could become

distance markers across the known universe, helping us to understand the geometry

and dynamics of the universe as a whole.
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