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ABSTRACT

Humanity is currently on an unsustainable path of growth and development.  One 
tool to address sustainability in industrial activities is Industrial Symbiosis, which is the 
study of cooperation across industry boundaries to increase sustainability.  Past efforts to 
generate these relationships have struggled.  Central to these failures is the difficulty of 
identifying and motivating stakeholders.  This thesis proposes a new approach to analysis 
that directly addresses these failures.     

The approach analyzes an entire domestic industry for attractive opportunities to 
cooperate.  By making the profit of stakeholders the primary criteria for investigation, 
this approach identifies opportunities where existing incentives to cooperate are greatest.  
This research demonstrates the new approach in a case study of brick manufacturing in 
the United States.  Through the use of life cycle assessment, geographic information 
systems, and decision analysis, this thesis identifies the brick manufacturing facilities that 
are most likely to gain substantial economic benefit from the use of processed glass cullet 
as a fluxing agent.  Additionally, the analysis demonstrates that these economic benefits 
are connected to environmental benefit.  

The results of this case study indicate that the approach is not only feasible, but if 
it is transferable to other industries, it taps into a substantial competitive advantage for 
data rich manufacturing sectors like those in the United States.  These economic benefits
will also lead to increased environmental sustainability.

Thesis Supervisor: John Ochsendorf
Title: Associate Professor of Building Technology
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1. Introduction 
1.1. Problem Statement  

Humanity is currently on an unsustainable path of growth and development.  

Unless changes are made in behavior the earth will one day no longer be able to support 

human activity at a level anywhere near what exists at present.  Efforts to make the 

necessary changes in behavior have had many forms in the last hundred years ranging 

from conservation to recycling to lean manufacturing.  “Industrial Ecology” (Frosch and 

Gallopoulos 1989) has emerged as a field of study that focuses specifically on research 

and analysis of just how human institutions like business, government, and other groups 

can begin to achieve increased sustainability in their growth and development.

Central to all efforts of achieving increased sustainability is a clear definition of 

the term “sustainable.”   A 1987 United Nations report entitled “Our Common Future” 

states that, “Sustainable development is development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs”(World 

Commission on Environment and Development 1987).  It is worth noting that simply 

avoiding development now is neither realistic nor desirable.  Therefore it becomes 

important to identify what is the least sustainable aspect of a product or process and 

prioritize efforts to reduce these environmental impacts.    

For example, how can a product or process more appropriately use non-renewable 

resources?  Approaches to increased sustainability have many forms and no individual 

method is appropriate for all products and processes.  A detailed understanding of the life 

cycle of a product is the only way to identify potential strategies that can lead to 

increased sustainability.  Opportunities may exist outside the life cycle of an individual 

product.  
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Within the field of Industrial Ecology, Industrial Symbiosis studies the potential 

for increased sustainability through greater levels of resource efficiency.   Approaches to 

develop gains in industrial sustainability through this mechanism have faltered.  One 

reason for this has been the inability to demonstrate clear economic gains from inter-

industry cooperation (Jackson and Clift 1998).  

The results of the current research speak directly to this need.  Through a detailed 

analysis of a case study an approach to valuing potential industrial linkages is developed.  

By quantifying both the environmental benefits and economic benefits of an industrial 

link, market incentives will be able to motivate implementation of the improvements to a 

life cycle by identified stakeholders.  Real experience and historical anecdotes support 

the position that the market is the most effective way to develop increased industrial 

complexity and consequently increased sustainability.   

The industry of focus for the case study is the structural clay (brick)

manufacturing industry.  The material and energy use of buildings and construction 

materials is a major contributor to overall unsustainable growth and development.  Bricks 

are a common part of this built environment and in this thesis the same question is asked 

about brick manufacturing that is now asked about all types of human activity.  How can 

the industry be more sustainable?

1.2. Chapter Outline

Chapter 2 provides a literature review of the framing concepts for research.  From 

the original definition of sustainability, the first section presents a refined definition for 

this particular study.  The subsequent sections describe the tools and frameworks, 

collectively known as the field of Industrial Ecology, that have been developed to 
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quantify and analyze efforts to increase sustainability.  After clearly describing Industrial 

Ecology, the chapter presents past life cycle assessment (LCA) studies of brick 

manufacturing.  The final section reviews studies in Industrial Symbiosis that inform the 

analysis of potential life cycle changes in the production of brick.  

Chapter 3 outlines the methodology used in this thesis to analyze potential 

changes to the life cycle of brick.  This methodology is composed of four elements.  The 

first element is research of the industrial context of domestic brick manufacturing.  The 

second element is feasibility analysis in terms of environmental factors, economic factors 

and regulatory factors.  The third element is the determination of the net impact for 

alterations in the life cycle of brick.  The final element quantifies the environmental and 

economic benefits and assesses which firms stand to gain these benefits through the use 

of important economic analysis tools such as discounted cash flows and decision 

analysis.  These tools are also described in this chapter.

Chapter 4 presents the results of analysis from the previously described 

methodology.  This chapter indicates historical production levels, trends in production 

related to economic indicators, existing environmental regulation specific to the industry, 

and market conditions for new brick, salvaged brick, and glass cullet.  For considerations 

of feasibility the economics of brick manufacturing are informed by data available from 

the Bureau of Census’ Annual Survey of Manufacturers.  Regulatory feasibility deals 

with building codes and industry specific regulations promulgated by the United States 

Environmental Protection Agency (EPA).  Finally the environmental feasibility considers 

any unintended costs or benefits of changes to the life cycle of brick.  
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Chapter 5 continues the analysis of utilizing glass cullet as a fluxing agent in brick 

manufacturing.  The thesis uses a portfolio of tools that ranges from geographic 

information systems (GIS) to life cycle assessment databases in order to quantify benefits 

of the proposed strategies.  This chapter concludes by quantifying the economic and 

environmental benefits that might be realized through a change in the life cycle of brick 

manufacturing.  It also identifies the facilities that stand to gain the most economically.  

These are the stakeholders with the greatest incentive.

Chapter 6 provides a brief discussion of the findings of the research.  General 

recommendations are made concerning policy options to increase sustainability in the 

case study of brick manufacturing.  Finally, the chapter considers the transferability of 

this method of analysis to other industries. 

Chapter 7 draws overall conclusions from the presented analysis, 

recommendations, and research.  Amongst these conclusions are that real opportunities 

exist for green house gas emission reductions through a symbiotic relationship between 

the brick industry and the glass packaging industry, and that the associated economic 

benefits are not evenly distributed throughout the brick manufacturing industry.  As such, 

the thesis pin points which potential links might be the most fruitful.  Finally the thesis 

concludes that this type of research is transferable to other industries and that it represents 

a competitive advantage for US manufacturers and will potentially lead to substantial 

environmental and economic benefits for the country.

1.3. Summary

Growth and development continues in unsustainable directions around the world.  

If increased sustainability is to be achieved, it will require methods to quantify the 
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benefits of more sustainable behavior to help create incentives to adopt more sustainable 

activity.  This thesis reviews the field of Industrial Ecology and applies its tools to the 

domestic brick manufacturing industry.  The thesis proposes a method for evaluating 

potential economic and environmental benefits of brick manufacturing and concludes by 

considering options to transfer this analysis to other industries in the hopes of increasing 

the overall sustainability of development.  
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2. Literature Review: Theoretical Framework
2.1. Introduction

The focus of this thesis is the search for Industrial Symbiosis precursors in the 

United States.  The brick manufacturing industry serves as a test case for an approach to 

identifying stakeholders, quantifying economic benefits, and quantifying environmental 

benefits.  This chapter provides a literature review of the framing concepts for research.  

From the original definition of sustainability, the first section presents a refined definition 

for this particular study.  The subsequent section describes the tools and frameworks, 

collectively known as the field of “Industrial Ecology”, that have been developed to 

quantify and analyze efforts to increase sustainability.  

After clearly describing Industrial Ecology, the chapter presents past Life Cycle 

Assessment studies of brick manufacturing.  The chapter then moves to review studies in 

Industrial Symbiosis that inform the analysis of potential life cycle changes in industry.  

As a part of this review, the chapter discusses past commentary on the apparent 

difficulties in involving stakeholders in industrial symbiotic relationships.

2.2. Sustainability

“Sustainable development is development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs” (World 

Commission on Environment and Development. 1987).  This clear statement of 

sustainability is necessarily abstract.  The definition must be narrowed for application to 

any individual element of development be it environmental, economic, or societal.  For 

the purposes of the current study the definition is limited to environmental sustainability 

specifically the consumption of non-renewable resources. 
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2.3. Industrial Ecology

The intended result of this research is to make an individual industry more 

sustainable.  To do this it is necessary to have a framework for understanding industrial 

activity and its consequences.  The emergent field of Industrial Ecology provides such a 

structure.  The work of researchers like Robert U. Ayres spawned the descriptive 

metaphor (Frosch 1992).  The concept behind the term is that natural ecosystems manage 

to achieve local sustainability by efficient utilization of resources creating minimal waste 

and utilizing waste from one process as a resource in another process.  By analogy, the 

idea suggests that industry might achieve greater sustainability in the same way, 

maximizing efficient use of materials and creating minimal levels of waste (Frosch and 

Gallopoulos 1989).  In the same way that a pond contains algae that benefits from the 

waste created by fish, Frosch and Gallopoulos envision one industry taking the waste 

from another industry to create a product that contributes to the industrial system.

From its initial description, Industrial Ecology has grown rapidly in the last 

eighteen years.  Ehrenfeld (2004) argues that Industrial Ecology had become well enough 

established to be considered a new field of research.  The criteria he presents to 

demonstrate this are:

1. A system of beliefs about how the world works,
2. Strategies and norms governing what one should do
when addressing a particular domain of action,
3. A common set of tools and technologies to be used
towards meeting one’s objectives in that domain,and
4. A set of legitimating authorities.   

Arguments continue about the proper characterization of Industrial Ecology, but there is 

no disagreement about the value of some of the tools that constitute the elements of 
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Industrial Ecology that fulfill Ehrenfeld’s second criteria. These tools are Material Flow 

Analysis and Life Cycle Assessment.

2.4. Industrial Ecology Tools
2.4.1. Material Flow Analysis &  Life Cycle Assessment

Material Flow Analysis (MFA) is a method that categorizes and compiles all 

flows into and out of a particular artifact.  It is the application of the principle of 

conservation of mass to a society or particular part of society (Wernick 1998).  While 

MFA has been a useful tool for analysis, critics have pointed out that it is not appropriate 

for use in comparative studies(Low 2005).  The current study focuses on comparing 

strategies and therefore a more appropriate tool within Industrial Ecology is Life Cycle 

Assessment (LCA).  

2.4.2. Life Cycle Assessment (LCA)

LCA is a “comprehensive method for analysis of the environmental impact of 

products and services” (Bauman and Tillman 2004).  It is considered a “cradle-to-grave” 

analysis in that it considers all inputs and outputs from raw material extraction to 

disposal.  The method considers the entire production system for a “functional unit” and 

all other needs over the life of the item to determine the total inputs and outputs for an 

artifact.  Unlike MFA, LCA need not be site specific and is an attractive tool for analysis 

because it is highly structured, quantitative in nature, and can be applied for comparative 

purposes (Bauman and Tillman 2004).

The original studies that lead to the formal development of LCA were indeed 

comparative studies.  Early examples include a 1969 study in the United States by the 

Coca-Cola Company and a 1972 study by the Glass Manufacturers Federation in the UK.  

The Coca-Cola study focused on the environmental impacts associated with alternatives 
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in packaging choices (glass bottles versus plastic bottles versus cans).  The Glass 

Manufacturers Federation paid to conduct a study comparing returnable and non-

returnable beer bottles (Bauman and Tillman 2004).  From these early studies, LCA has 

advanced rapidly and now has a clear format and structure as described in the 

International Organization for Standards series ISO 14040 (ISO 14001 Information Zone: 

ISO 14040 Life Cycle Assessment 2002).  Thousands of studies have now utilized LCA 

methods to evaluate impacts from various products and services.   

2.5. Environmental Impact of Brick Manufacturing

Before considering the actual environmental impacts of brick manufacturing, it is 

useful to consider a life cycle diagram of typical structural clay products.  

Figure 2.1 Life Cycle Diagram Structural Clay Products [adapted from (Venta 1998)]

This flow diagram demonstrates the general life cycle of brick.  Unlike many other 

common products in the technosphere that have extensive inputs during the use phase of 

their life cycle, many building materials lie dormant during their use phase without 
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requiring regular inputs beyond maintenance.  Schematically the use phase of brick is not 

noteworthy.  However, in terms of comparable building materials, the use phase is 

noteworthy in deed.  The typical service life of brick is in excess of 100 years (Illston and 

Domone 2001).  Other comparable cladding materials typically have life spans of less 

than 50 years.  In certain situations, long maintenance free life cycles can increase 

sustainability.  Unfortunately, in terms of LCA, the long life is not a benefit if it is not 

utilized.

Applying LCA to structural clay products has been the focus of three past studies.   

Each study has focused on a different geographic region.  The Athena Sustainable 

Materials Institute conducted a study in 1997 that focused on Canadian production (Venta 

1998).  The Swiss Centre for Life Cycle Inventories included brick as a component in 

their study of building materials in Europe (Kellenberger 2003).  Lastly, the Building for 

Environmental and Economic Sustainability (BEES) Program, administered by the 

National Institute of Standards and Technology, included brick in its inventory of exterior 

wall materials (BEES 3.0 Building for Environmental and Economic Sustainability 

2002).   

Direct comparison of these studies is complicated.  While the strength of LCA is 

its ability to compare, that ability exists only when there is a single set of assumptions.  

For these studies this is not the case.  
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Component Athena
Swiss Centre for 

LCI
BEES

Geographic focus Canada Europe United States
Functional Unit 1 Kg finished brick 1 Kg Brick 1 Kg brick

Life Span Unspec. Unspec. 50 yrs
Raw material input 

(clay)
1.00 kg 1.35 kg 1.00 kg

Raw material input 
(water)

0.14 l 0.07 l 1.89 l

Energy 
Consumption

4.58 MJ 2.84 MJ 4.95 MJ

Carbon Emissions
(CO2)

232.25 g 230.29 g 288.72 g

Total Suspended 
Solids

0.21 g 0.03 g 0.68 g

Solid Waste (mfg) 0.01 kg Unspec. 0.36 kg
Table 2.1 Comparison of Various LCA Studies of Structural Clay Manufacturing(Venta 1998; 
Kellenberger 2003; BEES 3.0 Building for Environmental and Economic Sustainability 2002)

Table 2.1 demonstrates difficulties due to variations in scope of LCA’s and geographic 

preferences can do.  In particular the BEES study is not comparable to the other studies 

because it considers surface area of installed brick.  Therefore, the data has been 

normalized to 1 Kg of Raw Material and this yields generally comparable results, but it 

must be stressed that because of the different original functional unit (finished product 

surface area) that this study can only loosely be compared to the first two studies.  For all 

of these studies the final results represent averages taken across a sample of actual brick 

manufacturing facilities that provided data to the studies.  Given these limitations, the 

above life cycle studies do not accurately describe any individual manufacturer, but still 

provide valuable information for considering strategies for increased sustainability.

The Swiss Centre for LCI study is the most useful study for the purposes of this 

thesis.  It is the study that is used in the EcoInvent Database.  Databases and related 

software packages are a powerful tool for modeling life cycles without collecting original 
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data.  In this thesis, the EcoInvent Database and SimaPro 6.0 are used to model 

modifications to the life cycle of brick.

2.6. Industrial Symbiosis and Location

There is substantial research into life cycle changes that can have an 

environmental benefit in specific cases.  An important question is how can these 

individual cases be expanded to the industry as a whole?  Industrial Ecology has an area 

of research that attempts to answer this question.  

The concept of Industrial Symbiosis considers the geographic proximity of 

different industries and the potential for them to cooperate for increased efficiency in the 

use of materials (Chertow 2000).  This element of Industrial Ecology is inspired by the 

level of industrial cooperation that is found in Kalundburg, Denmark.  In this town, four 

facilities exchange waste materials, water, and heat to reduce total consumption and 

waste.  Kalundborg has developed completely through free market means and with no 

central planning other than the four participating facilities (Gertler 1995).    

2.6.1. Past Approaches: Eco-Industrial Parks and Region Based Studies

Efforts to recreate the high level of sustainability in Kalunborg have centered on 

the development of “Eco-Industrial Parks” (EIPs).  The ideology behind the development 

of EIPs is that central planning allows for an optimal selection of participants that can all 

derive benefit from the wastes generated by neighboring facilities.  Pilot projects were 

built in the United States, Canada, and the Netherlands.  Initial enthusiasm regarding this 

approach has been replaced with concern that EIPs are not resilient in case where the 

members of the EIP change (Lambert and Boons 2002).  EIPs have also been criticized 

for their genesis as centrally planned projects.  Heeres et al. (2004) have published a 
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study comparing examples of centrally planned EIPs in the US to free market 

development in Europe.  They conclude that centrally planned EIPs have fared less well 

than symbiotic relationships that have been generated by market forces.  This finding is 

supported in a historical context by Desrochers (2004) who used historical case studies of 

Victorian England and mid-twentieth century Hungary to conclude that “market 

mechanisms” yield both more efficient and more long-lasting industrial symbiotic 

relationships.  The continued struggles of centrally planned new developments have lead 

to research focused on Industrial Symbiosis within the existing industrial network.  The 

current thesis and supporting research draws heavily on this work and makes a 

contribution to the analytical techniques that are currently used.

Kincaid and Overcash (2001) describe an effort to review a particular region in 

North Carolina for potential Industrial Symbiosis.  Some linkages were found and 

established, but the study concludes that the lacking element for success “is an agent to 

promote the vision of a web of materials, water, and energy flowing between neighbors 

and to gather the local information about by-products available or raw material 

requirements needed to build this web”(2001).  In a conceptually related study, Ozyurt 

and Realff (2001) analyze an industry and region for potential linkages.  The goal of their 

study is to optimize utilization of material, but to do so the researchers are forced to 

“assume cooperation” amongst stakeholders in order “that the best system performance 

be identified as a target” (2001).

How can this “agent” be created?  What can guarantee “cooperation”?  The 

answer is the same as has been described by Desrochers.  The market mechanism is the 

most efficient way of developing an efficient industrial ecology.  A major focus of future 
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research into Industrial Symbiosis must be methods for evaluating economic and 

environmental benefits associated with linking industries.  Past work by Chertow and 

Lombardi speaks to this need by “Quantifying Economic and Environmental Benefits of 

Co-Located Firms” (2005).  This study presents a detailed accounting of savings from the 

cooperation between an energy plant and a chemical plant.  The findings of this study 

serve as a strong example that can motivate replication.  Indeed, profit generation causes 

an industrial entity to become its own agent for investigation and development of a 

symbiotic link.  Similarly, environmental gains may motivate government and non-

government groups to also advocate and explore the potential for linking together 

different industries.  

While it is possible to quantify benefits of existing symbiotic relationships, the 

problem faced by Kincaid and Overcash, and by advocates generally, is how to value the 

economic and environmental benefits of a potential connection between two or more 

industries.  The methods used in this case study of brick manufacturing speak to this need 

and provide an approach to quantify benefit in the face of economic and technical 

uncertainty.  

2.6.2. Stakeholders and Motivation

The importance of quantifying potential benefits is in that it serves as a 

motivation for potential stakeholders to become active developers of symbiotic 

relationships.  Jackson and Clift (1998) describe the need for Industry Ecology to develop 

a “theory of agency.”  The idea is that knowledge about agents and their motivations will 

inform what are appropriate choices and who must have responsibility for action to 

realize the benefits.  Jackson and Clift conclude that since most industry exists in a profit 
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driven market, the agents are the decision makers in industry and the motivation is, 

obviously, profit.  They also find, however, that the “tension” between resource 

efficiency and low cost of disposal may serve to paralyze the concept of Industrial 

Ecology.  This idea is taken up by Esty and Porter in their paper, “Industrial Ecology and 

Competitiveness” (1998).  They support the idea that regulatory reform may be necessary 

to sharpen incentives for firms to participate in environmentally friendly practices.  As a 

part of this argument, Esty and Porter identify many examples where profit did generate 

changes at the firm level, changes that increased the sustainability of industrial activity.

A range of analysis (see Gertler, Desrochers, Jackson and Clift, and Esty and Porter) has 

concluded that firms will be the stakeholders who can enter into industrial symbiotic 

relationships and profit is the incentive that will motivate them.  As such, it is reasonable 

to use the same economic analysis tools that these firms already use to quantify the 

potential economic benefits of Industrial Ecology.      

2.7. Conclusion

The field of Industrial Ecology has grown rapidly in the last 18 years.  Many 

cases of success exist, particularly at Kalundborg, Denmark.  At present wider adoption 

of Industrial Ecology lacks an ability to speak to many of the agents that can act to realize 

increased sustainability.  There is a need for analysis that gets the attention of firms.  The 

current thesis utilizes economic profit as the highest priority for analysis with the belief 

that this is the language of agents.  Through this approach, the results of analysis will be 

able to effect real change in the relevant industrial systems.
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3. Methodology 
3.1. Introduction

The goal of this research is to find an approach to value potential inter-industry 

links.  The purpose of such an activity is to attract industrial stakeholder attention to the 

benefits of Industrial Symbiosis.  Developing their interest is a prerequisite for 

establishing increased sustainability through Industrial Ecology.  Economic benefit is the 

motivation that will activate “market mechanisms” to establish links.  As has been 

described in the literature, market motivations are the most efficient and effective way to 

begin to form industrial ecosystems.  

The selected approach focuses on an individual linkage as opposed to past studies 

that have focused on multiple uses for a single material, or past studies that have focused 

on a region or EIP.  The methodology of the research follows a similar pattern to past 

investigations of industrial links.  The first step in the approach is to identify a target 

industry (in this case the brick industry) and relevant spatial context (e.g. The United 

States).  Second, understand the life cycle of the chosen industry, either from an original 

LCA or from a review of relevant past studies.  Next, identify potential changes to the life 

cycle that can result in increased sustainability.  Fourth, assess the feasibility of these life 

cycle changes in terms of the economic, regulatory, technical, and capacity limitations 

that implementation might face.  

The next stage of analysis involves acquiring the physical locations of the 

industrial nodes into a geographic information system (GIS).  In addition to 

transportation distances, an understanding of the uncertainties that exist in the new 

industrial link must be developed.  Finally, applying the modified life cycle and an 
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appropriate cost model for the industry will yield an indication of the expected value of 

the economic and environmental benefits from the industrial link.

3.2. Identify Target Industry and Relevant United States Context

The selection of an industry for study can be arbitrary, but for the purposes of this 

exploratory effort an industry that produces a complex product is attractive because there 

are potentially many avenues of industrial exchange that can be explored.  Conversely, a 

simple product will prove easier to analyze because of reduced levels of uncertainty and 

availability of reliable information.  Regardless of the industry that is selected it is 

important to understand the state of the industry.  

Many life cycle studies, especially those conducted by the Athena Institute, 

provide some industry information.  Industrial trade groups are often a strong source of 

industry statistics and trends as well.  Within the United States, the EPA and the Census 

Bureau also tend to have published information relevant to an industry.  This is 

particularly true if the industry is regulated by the EPA.  This information gives an 

appropriate context to base the findings of relevant LCA studies.

3.3. Review Industry Life Cycle Research

A literature search is necessary to find life cycle studies of a particular product.  

There can be many sources for this material, from life cycle inventory databases to 

private and academic studies.  The source of studies is an important consideration as the 

framing of the findings may be influenced by the interests of those conducting or funding 

the study.  The purpose of reviewing past LCA studies is to identify the priority 

environmental impacts of a product.  The United Nations statement on sustainability 
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implicitly advocates this prioritization by indicating that the current generation must meet 

its needs as well as provide for the future generations.  

3.4. Identify Potential Life Cycle Changes

Changes to the life cycle can involve infinite forms of process or product 

modifications.  Within this study the focus is on a product that is dormant in its use 

phase.  Consequently the greatest likelihood of finding beneficial changes is bound to 

focus on the front end and the back end of the life cycle of the industrial product.  These 

are the two stages of a life cycle where material and energy are consumed in the greatest 

quantities and waste is produced in the greatest quantities.  These are also the phases of a 

life cycle where industry stakeholders have the greatest control over products.    

3.5. Assess Feasibility in United States Context

Industrial activity is subject to many constraints.  Technical limitations created by 

physical attributes of materials and manufacturing processes drive how much industrial 

activity is carried out.  A telling example of this comes from the Overcash and Kincaid 

study of a metropolitan region of North Carolina.  In this study, methanol from a resin 

producer was identified as useful to a wastewater treatment plant, but the existence of 

elevated levels of nitrogen in the methanol made it inappropriate for use at a wastewater

treatment plant that had initially expressed interest in establishing the industrial link 

(Kincaid and Overcash 2001).

Closely related to this concept is the capacity for a change.  Are the resources 

available to carry out a particular activity?  The use of salvaged brick leads to as much as 

a 25% savings in the energy consumption of new residential construction (Thormark 

2000).  However, the scarcity of salvageable brick reduces the total beneficial 
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environmental impact of this change to less than 1% of the energy consumed annually in 

the production of new brick.  

Meanwhile, economic constraints drive many decisions from a business 

perspective.  Few published examples of this case exist, but a hypothetical example can 

be considered.  A cement manufacturer may wish to use fly ash as an additive to its raw 

material flow, but the savings associated with the fly ash maybe less than the cost of 

transporting the waste material from the nearest supplier to the cement plant.  Thus, the 

cement manufacturer will choose not to utilize the waste product.  In the same way, if the 

cost of freight to transport a material causes a net economic loss to the cement 

manufacturer they will not adopt the change in raw material sourcing.  

Lastly, regulation can impact decisions and processes in industry.  Each of these 

requirements for feasibility may drive or prevent adoption of a new industrial linkage.  

Examples of this include any situation where the use of some waste product can only be 

carried out by a facility with a Resource Conservation and Recovery Act license for 

handling hazardous waste materials.  A limitation from any of these spheres of influence 

(technical, capacity, economic, and regulatory) can prevent the development of inter-

industry links.

3.6. Quantify Economic and Environmental Benefit
3.6.1. Economic Benefit

To quantify economic benefit a potential link, it is necessary to understand the 

cost and revenue that the focus industry faces.  The Bureau of Census provides this 

information for all large scale manufacturing industries in the United States through the 

Annual Survey of Manufacturers (ASM).  Similarly, the production of an industry is 

measured by the Census Bureau in its quarterly Current Industry Reports (CIR).  The data 
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available from the federal government is not limited to economic and production 

information.  With this information as a base, the cost model can be tailored to 

incorporate information that is available for individual facilities and cost information that 

is of interest regarding modifications to the life cycle of the focus industry.  Additionally, 

to deal with uncertainties associated with cost information well known financial methods 

can be employed to include uncertainty in the analysis.

3.6.2. Economic Analysis Tools

Two financial tools are central to the current analysis, discounted cash flow and 

decision analysis.  The first tool deals with the value of money over time and the second 

proscribes rational decisions for a single decision maker.  

Discounted cash flow is a method for dealing with economic costs and benefits 

that will be accrued over time.  It is generally understood that costs and revenues in the 

future are worth less than costs and revenues in the present (De Neufville 1990).  To 

account for this future benefit or cost the future value is discounted by a discount rate.  

This rate accounts for the earning power of money over time.  Thus a cash flow or cost in 

the future has a present value that is determined by the following equation.
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Equation 3.1 The Calculation of Present Value of Future Costs and Benefits (Clemen 1996)

In Equation 3.1, x represents the future value, r is the discount rate, and n is the number 

of time periods between the future and present values.  Utilizing this tool allows decision 

tools like cost-benefit analysis, net present worth, payback period, and internal rate of 

return to be used in the evaluation decisions that influence future results.  Another 

valuable tool is decision analysis.
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Decision analysis is “a method of evaluation that leads to three results: structures 

the problem…defines optimal choices…(and) identifies an optimal strategy…” (De 

Neufville 1990).  In deterministic cases, this method allows a decision maker to rationally 

identify optimal decisions based on preferences for outcomes.  In stochastic cases, 

decision analysis is still an incredibly valuable tool.  Outcomes can be associated with the 

probability that such a set of events occur.  With both outcomes and probabilities 

determined, mathematical evaluation methods like expected value, variance, and Monte 

Carlo simulation can be used in combination with other decision tools to aid in decision 

making. The current research uses decision analysis based on a decision maker who looks 

to maximize the expected monetary value of outcomes for their respective firm/facility.  

In this way the behavior of industry stakeholders is predicted based on uncertain 

outcomes in the future.

3.6.3. Environmental Benefit

Assessing the environmental benefit is the reverse of the approach used to 

quantify the economic benefit.  In the economic case, industry wide data was scaled 

down to an individual firm and product.  In the environmental case, product specific 

information must be scaled up to individual firm and then to industry.  The data provided 

by the life cycle studies of an industry can be combined with the production information 

in CIR to determine the difference between the impacts of existing life cycles compared 

to modified life cycles. 

3.6.4. Life Cycle Modeling: SimaPro 6.0

In considering these life cycle changes, even a simple modification leads to 

changes in many inputs and even more outputs.  To accurately model alternative life 
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cycles quickly database software is necessary.  SimaPro (SimaPro 6.0 2006) is a software 

specifically designed to allow the user to compare life cycles of alternative products and 

processes.  The software offers many ways to consider the impact of a life cycle.  For the 

purposes of this study the Cumulative Energy Demand 1.03 (Frischknecht R. 2003)

impact assessment methodology is use to consider total energy consumption for various 

life cycles.  Instead of utilizing another impact assessment method to determine global 

warming potential for an individual life cycle, the total amount of emitted carbon dioxide 

composes the largest portion of warming potential.  In the specific life cycle of brick 

manufacturing, other green house gases compose less than 1% of the total warming 

potential production (See Appendix B).

3.6.5. Elements of Uncertainty

The economic analysis and environmental analysis must incorporate uncertainties 

associated with the potential change to the life cycle.  Uncertainty about economic value 

is an obstacle to adoption of any change.  If the uncertainty can be included in a model 

then a much more informative estimation of the potential environmental and economic 

gains can be presented to stakeholders who will decide whether to adopt the change in 

their manufacturing life cycle.   

3.6.6. Modeling Uncertainty

Attempting to determine the value of the life cycle change in the face of 

uncertainty requires that one considers the expected value of the use of glass cullet in 

brick manufacturers.  Instead of considering a deterministic analysis with fixed values, a 

stochastic model takes into account the uncertainty and associates an outcome with the 

probability of that outcome.  
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Figure 3.1 Schematic Diagram of Approach to Modeling Uncertain Values and Determining Industry 
Wide Impact

Through the use of Monte Carlo simulation the information that characterizes the 

uncertainty about the expected environmental and economic benefits of a brick 

manufacturer adopting glass cullet as a fluxing agent to the life cycle trade offs described 

in Section 4.4.2 can be utilized in the cost model described in Appendix A.  Given that 

three of these variables are uncertain, the most appropriate form of analysis is a Monte 

Carlo simulation.

3.7. Nomenclature

In describing the results of this analysis the thesis refers to Industrial Symbiosis.  

This area of study considers the exchange of wastes and byproducts from one industry to 

raw materials or resources for another industry.  Chertow (2007) proposes a more 

detailed nomenclature to define various levels of cooperation.  She describes 2 terms:

Industrial Symbiosis – “at least 3 different entities must be involved in

exchanging at least two different resources”
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Kernels or Precursor of Symbiosis – “bilateral or multilateral exchange of these 

types that have the potential to expand, but do not yet meet the fuller 3-2 

definition of industrial symbiosis”

This thesis utilizes this same classification system to differentiate between an industrial 

system and individual elements of the system.

3.8. Conclusions  

This chapter has indicated the source of much of the data used to carry out 

analysis in the next chapter.  Both industry wide data available from government agencies 

and manufacturing information from life cycle studies are available for use in the case 

study of brick manufacturing.  The approach described in this chapter will be applied to 

the available data in the subsequent chapters of this thesis.
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4. Analysis 
4.1. Introduction

The United States brick industry is the focus of the current study.  This chapter 

reviews the relevant life cycle studies of brick that have been conducted by the Athena 

Sustainability Institute, the National Institute of Standards and Technology, and the Swiss 

Centre for Life Cycle Inventory.  In the context of these studies the research considers 

two potential life cycle changes.  These potential changes are the use of glass cullet as a 

fluxing agent and the use of salvaged brick in new construction.  The final section of this 

chapter evaluates the feasibility of adopting these changes.  

4.2. Target Industry and Context
4.2.1. Selecting the Target Industry

The United States brick manufacturing industry has been selected for multiple 

reasons.  First, it is a well established industry that has reached maturity (Venta 1998).  

Second, information about the industry is widely available because it has a trade 

association that represents a majority of the approximately 200 facilities across the 

country.  It is regulated by the EPA, so all manufacturing locations are in the Envirofacts 

Database and economic data is available from the Annual Survey of Manufacturers.  

Third, the manufacturing process has only three main inputs, clay, water, and energy in 

the form of heat.  Lastly, energy consumption and green house gas (GHG) emissions 

have a time sensitive value as the potential for climate change legislation becomes more 

real in the United States.

Selecting the spatial context for evaluation is not arbitrary.  Many factors support 

the selection of the continental United States as the focus of the current study.  Due to 

low levels of imports, and use of domestic natural gas resources and almost exclusively 
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domestic sales, the industry is essentially an island, useful in making definitions about the 

limits of the system.  Given these facts, brick manufacturing is ideal for approaching 

potential industrial links in a new way.

4.2.2. Description of the Industry

In the United States brick is used primarily as a cladding material for residential 

and commercial buildings.  Use as a cladding material makes up greater than 95% of 

demand for brick (Clay Construction Products: 2005 2005).  As a cladding material, brick 

faces competition from many different materials.  Brick’s market share of new house 

construction is stable, demonstrated in Figure 4.1.  Since the introduction of vinyl siding, 

brick has maintained a relatively constant 20% share of new housing starts.
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Figure 4.1 Percent of New Housing Starts by Cladding Material Type (US Census Bureau: 
Manufacturing 2005)

While the material has maintained a constant share of the new housing market, total 

production has fluctuated along with the new housing starts (show in Figure 4.2).  Since 

“new housing starts” is considered a leading economic indicator, it is reasonable to say 
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that the level of domestic brick production depends heavily on the overall health of the 

economy.
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The 200 plus facilities that manufacture bricks are spread across the US, but the highest 

concentration of these facilities occurs in the Southeastern states (Georgia, South 

Carolina, North Carolina, and Florida) and Texas.  The overwhelming majority of brick is 

also used in the southern states as well (US Census Bureau: Manufacturing 2005). 

Multiple factors cause this geographic distribution of facilities ranging from architectural 

preferences, to availability of raw materials, to the seismic characteristics of the region.  

Amongst the manufacturers there are multiple manufacturing methods and fuel types, but 

the defining characteristic of a particular manufacturer’s product is the color of 

manufactured brick.  While the consumer is often most concerned with the color of brick, 

it is in fact the energy consumption that drives the life cycle assessment of brick.    
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4.3. Life Cycle Assessment of Industry

Energy consumption in the firing process is the most substantial environmental 

impact of brick.  This has been verified in the previously mentioned studies of the life 

cycle of brick.  These studies, conducted by the Athena Sustainability Institute, The 

Swiss Centre for Life Cycle Inventories, and the National Institute of Standards and 

Technology have already been described in Chapter 2 of this thesis.  The details of the 

actual consumption of energy and materials in the life cycle of brick also provide 

valuable information.  A typical brick produced in the United States requires 1.8 kg of 

clay, 0.15 kg of water, 4.5 MJ of energy in the form of heat, cement mortar during the use 

phase, and transportation through its life cycle including at the disposal phase.  The major 

environmental impact of a typical brick is carbon dioxide emissions totaling 

approximately 230 g.  It is clear that the two most significant inputs into brick 

manufacturing are clay raw materials and energy.  In considering the definition of 

sustainability for this thesis, both of these inputs must be evaluated in terms of 

consumption of non-renewable resources.

Clay and shale, consumption is monitored by the United States Geological Survey 

and it characterizes the availability of clay resources as “extremely large” (Virta 2006).  

Energy in the form of fossil fuels are also abundant, but concerns about shrinking 

reserves have prompted substantial reforms in the consumption of what is now 

considered a scarce and non-renewable resource.  This view is supported by statements in 

the latest National Energy Policy Act (About the Department of Energy: The National 

Energy Policy 2007).  Coincident with concerns about the limits of fossil fuel availability 

is the growing concern over climate change.  The combustion of all forms of fossil fuels 
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produces carbon dioxide and other GHG emissions.  Given these concerns of energy and 

emissions the sustainability priority in brick manufacturing must be the consumption of 

natural gas.  Changes to the life cycle that improve the sustainability of brick should 

focus on reducing the total energy consumption in manufacturing.

4.4. Strategies for Increased Sustainability

Substantial research has been conducted on the “greening” of brick (Dondi 1997b, 

1997a).  The overwhelming majority of this work has been conducted in Europe.  There 

are two classes of proposed changes.  One is to use salvaged brick in new construction 

(Gregory 2004) and the second is the use of waste material as a substitute for clay (Dondi 

1997b). 

4.4.1. Salvaged and Reused Brick
4.4.1.1.Past Research

The first strategy for increasing sustainability in structural clay products is closed 

loop recycling for brick.  There is limited information about the use of “salvaged brick,” 

but one study conducted an analysis of a new house built using salvaged materials 

(Thormark 2002).  Figure 4.3 demonstrates the results of that study.

Figure 4.3 Total Energy Consumption All New Materials vs. Reused and Recycled Materials 
(Thormark 2000)
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Salvaged brick offers substantial savings for the embodied energy of new construction 

under the assumptions in this study.  The findings are that salvaged brick reduces energy 

use for brick by almost 100% and reduces the embodied energy for the whole building by 

approximately 20%.  These results are logical because one salvaged brick avoids nearly 

all of the resource use for a new brick (fossil fuels and clay minerals).  This is the 

advantage of having such a long life span.

Information is scarce regarding how much salvaged brick is used as well.  The US 

EPA commissioned a study of construction waste in 1998.  This report is the only 

indicator of how much brick exists in domestic waste streams.  This meta-study estimated 

that 65 million tons of construction waste is generated each year in the United States.  

Approximately 30% of this waste comes from residential sources.  Within this study, 

specific examples were presented to indicate the various components of the total waste 

stream.  Brick composed 14% of residential demolition debris, according to the National 

Association of Home Builders, and 1% of industrial demolition debris, according to 19 

demolition project conducted in Washington (Franklin Associates 1998).  This 

information provides a useful, but limited picture of brick salvage operations in the 

United States.   

4.4.1.2.Analysis of Life Cycle Change

In considering the net benefit of this life cycle change, it is important to consider 

what the major components are.  In the case of using salvaged brick, the trade off is 

between avoided new production and transportation required to convey the salvaged 

brick to the site of new construction.  Based on the life cycle of brick that is provided in 

SimaPro 6.0 (Kellenberger 2003), it becomes clear that transportation distance is the only 
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contributor to reducing the environmental benefit of closed loop recycling.  Given this 

fact, a maximum travel distance can be established.  Figure 4.4 graphs how 

environmental benefit drops as travel distance increases.  The travel distance can be 

thought of as the additional distance that an architect should be willing to look for a 

source of salvaged brick, beyond the distance to a source of new brick.
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Figure 4.4 Energy and Emissions Saved for Varying Transportation of Salvaged Brick (SimaPro 6.0 
2006)

4.4.2. Glass Cullet as a Fluxing Agent
4.4.2.1.Past Research

The second alternative for increasing sustainability of brick is a change in 

manufacturing, through the use of processed glass cullet as a fluxing agent.  A fluxing 

agent is a material that lowers the vitrification temperature of ceramic.  A lower 

vitrification temperature for a ceramic body means reduced use of energy in firing and 

consequent reductions GHG emissions.  The possibility of using glass cullet was 

originally studied by CERAM Building Technology and the Waste and Resources Action 

Programme.  In both laboratory and full scale industrial testing, the study found that 

processed glass cullet did indeed act as a flux.  For the particular clay used in the 
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industrial testing, savings were 20% compared to brick bodies without the flux (Smith 

2004b).  In this study Smith (2004a) also points out that there is substantial uncertainty 

regarding the scalability of these savings to the entire industry.  Based on the three clay 

types tested in this sample, he speculates that high temperature clays stand to gain the 

most from such a technology.  The work by CERAM is a landmark study for this 

particular application of glass cullet, but a related study focusing on another type of 

ceramic found similar results.

In 2004, Tucci et al. (2004) focused on the use of soda-lime scrap glass as a 

fluxing agent in porcelain stoneware.  In a small industry scale study it was concluded 

that the use of scrap glass lead to “a considerable decrease in firing temperature.”  Two 

studies are not enough to accept beyond doubt the benefits of utilizing processed cullet as 

a fluxing agent.  However, exploring other forms of ceramic materials lends support to 

the idea that glass cullet can act as a fluxing agent.  The glass industry recognizes the 

benefits of using cullet in the raw material flow.  Both fiberglass and glass packaging 

manufacturers use cullet to reduce total energy consumption (Glass Packaging Institute 

2005).

The work by Smith and Tucci et al. represent an industrial link between waste 

products and ceramics which is distinct from nearly all other studies that have 

investigated the use of waste in brick manufacturing (Dondi 1997b, 1997a).  Most other 

studies have shown feasibility of using waste, but have failed to show a clear benefit to 

the brick manufacturer.  In considering the potential for new links in Industrial Ecology, a 

mutually beneficial relationship is a prerequisite.  Indeed the potential benefit to brick 

manufacturers is what makes investigation of processed cullet worthwhile.
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4.4.2.2.Analysis of Life Cycle Change

In considering this change to the life cycle of brick, it is again valuable to 

determine what the tradeoff is for the net energy consumption and emissions of the life 

cycle.  In this case as well the tradeoff is essentially between the energy and emissions 

savings at the plant versus energy and emissions savings consumed in transportation of 

the glass cullet to the brick manufacturer.  Figure 4.5 graphs this tradeoff and shows a 

feasible one way transportation distance of 500 km.
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Figure 4.5 Energy and Emissions Saved for Varying Transportation for the Use of Glass Cullet per 
Standard Brick Equivalent (See Appendix B) (SimaPro 6.0 2006)

The use of salvaged brick and the use of glass as a fluxing agent are not an 

exhaustive list of life cycle changes that might reduce energy consumption.  However, 

past research into these two changes has shown energy savings at least conceptually and 

for this reason they warrant extra consideration above any changes that are unproven 

even at the conceptual level.  
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4.5. Feasibility

The feasibility of a life cycle change can be limited by a single factor or by a 

combination of many factors.  These factors can serve as an obstacle from any sphere of 

activity that interacts with the life cycle.  This thesis categorizes the range of obstacles to 

implementation into three groups: technical, economic, and regulatory.   

4.5.1. Salvaged Brick
4.5.1.1.Technical

Salvageable brick is generated by the demolition of existing brick buildings.  The 

process of sorting and cleaning bricks from a demolition site is usually conducted by 

demolition contractors who use only manual labor to complete the process.  The limiting 

factors within this process are whether bricks maintain their structural integrity during the 

demolition process and how much brick can be salvaged.  

Regarding structural integrity, it is generally understood that a solid brick that was 

manufactured prior to 1945 will likely survive the demolition process and be reusable.  

However, after that time two changes in the typical life cycle of brick leads to fewer 

salvageable bricks.  The first change began well before 1945.  A shift from lime based 

mortars to Portland Cement based mortars has meant that the bond strength of the mortar 

is often higher than the strength of the brick itself.  Thus, in the demolition or cleaning 

process the brick is significantly damaged and no longer salvageable.  The second change 

is the shift to extrusion forming.  Extrusion processing is what leads to the familiar set of 

3 to 5 holes in the body of a brick.  This change also reduces the ability of brick to 

withstand demolition.  Additionally, cement mortar often bonds within these extrusion 

holes and again the cleaning of such a brick becomes impossible.  An exception to this is 

“pavers” (bricks used in decorative pavements), which are still solid body bricks.  
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Additionally, they are often set with sand and not mortar.  However, pavers make up less 

than 5% of the total brick demand in the United States each year (Clay Construction 

Products: 2005 2005).

These historic changes indicate that there will be a continual decrease in 

availability of salvageable bricks from the waste stream of demolished buildings.  The 

current availability of bricks in the waste stream is not known, but the 1998 EPA study 

estimated that there were approximately 136 million tons (57% residential) of building 

related construction and demolition debris generated in the United States in 1996 

(Franklin Associates 1998).   Fifteen percent of this debris is from residential demolition 

and 33% is from non-residential demolition.  Additionally, from extremely limited case 

studies from the Pacific Northwest, 1% of non-residential demolition debris is brick and 

6% of residential demolition debris is brick (Franklin Associates 1998).  Totaled together, 

this means that in 1996 there was approximately 500 million bricks in the waste stream 

from demolition projects across the country.  If it is assumed that building being 

demolished are all at least 30 years old, but no older than 100 years old, then 

approximately 50% of the available bricks would predate the 1945 cut off date.  

Additionally, if a salvage rate of 75% is assumed, then this means that there were 190 

million bricks available for salvage in 1996.  A single point in no way indicates a trend, 

but this first cut analysis gives a descriptive picture of the prospects for salvaging brick.  

Given the manufacturing and installation changes that help to limit overall availability, it 

is probable that salvaged brick could only fill between 2% to 2.5% of the brick 

consumption in the United States annually.       
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4.5.1.2. Economic

No conclusive analysis has been conducted as to the comparison of costs between 

new brick and salvaged brick.  Price quotes from vendors that sell both used and new 

brick indicate that the cost of salvaged brick can range anywhere from 50% of new brick 

to 150% of new brick (Watkins 2007).  Another relevant conceptual point is that since 

brick is often selected based on color, it is nearly impossible to maintain a consistent 

color when utilizing salvaged bricks, so the market for salvaged brick may not be as large 

as that of new brick.

4.5.1.3.Regulatory

A lack of information regarding the price limits economic analysis of salvaged 

brick, but there is plenty of information regarding about the use of salvaged brick.  

Multiple building codes, particularly the Uniform Building Code, require that the 

allowable working stress of “reused” masonry be 50% of new brick and that the structural 

properties of “reused” brick must be determined by approved testing methods.  In 

addition to these requirements, the Standard Building Code requires that salvaged brick 

may not be used in external surfaces that are also structural (BIA Technical Notes 15 -

Salvaged Brick 1988).  These requirements place restrictions on a project manager or 

architect in any attempt to use salvaged brick.

4.5.2. Glass Cullet as a Fluxing Agent
4.5.2.1.Technical

Many of the questions about the technical feasibility of using cullet in brick 

manufacturing were answered by Smith and the CERAM study (2004a).  The potential 

limiting factors in this area are generated by the availability of processed glass cullet in 

the United States.  According to the CERAM study, particle sizes ranging from 1 micron 
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to 40 microns should make up as much as 85% of the cullet that is used.  Strategic 

Materials Inc. is the largest glass processing firm in the United States and they indicate 

that they are able to produce material that passes the .325 sieve which is equivalent to 

particle sizes less than 44 microns (Strategic Materials Capability Chart 2007).  While 

they have the capability to produce, according to a company spokesperson, there is not a 

pre-existing market for this material and as such, no material of this particle size is 

produced in large quantities (Dudak 2007).  

This raises the question of whether there is sufficient capacity for processors to 

meet the increased demand for processed cullet if brick manufacturers began to utilize it.  

At present, the United States recycles approximately 25% of the 10.9 million tons of 

glass packaging that is generated every year (Municipal Solid Waste in the United States: 

2005 Facts and Figures: Executive Summary 2006).  Of the glass packaging that is 

recycled, nearly 80% is used in manufacturing new glass packaging (Glass Packaging 

Institute: Recycling News 2007).  Much of the remaining 20% goes to other glass 

products like fiberglass.  So while the existing recycled material is near capacity, there 

are significant resources that can be tapped.  If the entire industry were to utilize glass 

cullet at the rate of 5% per brick this would cumulatively represent the use of 810,000 

tons of recycled glass each year.  This is 10% of the waste glass that is currently not 

recycled.  Increased glass recycling rates can lead to greater availability of processed 

cullet.  All that is necessary to generate this change is a market demand for more high 

value product like processed glass cullet.

Before turning to economic limitations, the last and most critical technical 

limitation must be considered, the specific interaction between a source of clay and glass 
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cullet.  There is no empiric relationship between clay chemistry and glass cullet 

chemistry that will indicate what the correct amount of glass cullet to include in the raw 

material flow might be for optimal energy savings.  Smith (2004b) points this out in his 

study.  This fact is corroborated by Dr. Denis Brosnan, Director of the National Brick 

Research Center.  In fact, research needs to be conducted for each source of raw material.  

The duration and cost of this work can be between six and twelve months and can cost 

$500,000 to $1,000,000 for reliable results (Brosnan 2007).  However, preliminary 

investigations can be conducted for as little as $10,000 and the findings of this analysis 

will give a strong indication of what the potential benefits might be (Smith 2007).

4.5.2.2.Economic

The economic feasibility of using cullet is closely related to the market demand 

for more processed glass cullet.  Assuming that a brick manufacturer will only adopt life 

cycle changes if they increase the firm’s economic wealth then it is necessary to 

determine whether it might be cost effective for a brick manufacturer to use glass cullet 

in the raw material flow.  Figure 4.6 shows the average cost of manufacturing in the 

United States.
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Figure 4.6 Cost and Revenue for Heavy Clay Materials Industry Normalized to Per Standard Brick 
Equivalent Basis, 1992 Constant Dollars (Annual Survey of Manufacturers: Statistics for Industry 

Groups and Industries 1990-2005)

This graph clearly demonstrates that the costs that the industry faces are relatively stable 

and there are no dramatic changes that have affected the cost of production over the last 

15 years.  Given this situation, it is reasonable to construct a cost model of a typical brick 

manufacturer based on values from the 2005 industry averages (see Appendix A).  Given 

these costs, applying them to the life cycle of brick developed by Kellenberger et al. 

(2003) Figure 4.7 shows that the use of glass cullet can already be feasible for glass cullet 

prices that are prevalent in the industry at present.
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Figure 4.7 Break Even Price of Natural Gas for Vary Costs of Acquiring Glass Cullet with 20% 
Energy Savings  (Energy Information Agency: Natural Gas Navigator 2007; Dudak 2007; Poole 

2007)

While this graph indicates potential economic feasibility, it also evidences an important 

consideration that will further inform analysis of whether market forces can motivate this 

change to the life cycle.  The price of natural gas delivered to industry will have a 

substantial effect on the desirability of utilizing glass cullet.  A second consideration that 

is not apparent in this graph is the transportation distance of cullet will have a large 

impact on economic feasibility in the form of freight charges for transporting the 

material.  These considerations will be valuable in future analysis.

4.5.2.3.Regulatory

Regulatory feasibility has two potential impacts on the use of glass cullet in brick 

manufacturing.  The first potential source of limitation is regulation relevant to the 

change in the life cycle of brick.  The second source of potential limitation is whether or 

not the change in product characteristics are within the acceptable limits of building code 

requirements for construction materials.  Regarding changes to the life cycle, no 
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regulation prohibits additives in brick manufacturing, glass cullet is not considered a 

hazardous waste material under the RCRA.  There are no apparent regulatory limitations 

on the change to the life cycle.  Regarding bricks made with this modified life cycle, it 

must meet the same standards as a regular brick.  The International Building Code refers 

to the American Society of Testing and Materials standards C62, C652, and C216.  The 

results reported by Smith meet the material property requirements set forth in this these 

standards (C216-07 Standard Specifications for Facing Brick (Solid Masonry Units for 

Clay or Shale) 2007).  So it would appear that there are no regulatory limitations on this 

change to the life cycle of brick.

4.6. Conclusion

Previous research has demonstrated that the use of glass cullet as a fluxing agent 

and closed loop recycling through salvaged bricks can reduce the environmental impact 

of the life cycle of brick.  This research has examined the feasibility of both of these 

options.  From the findings of the current work it is found that the feasible travel distance 

for salvaged brick is approximately 400 km.  However, regulation in the form of building 

codes limits the ability of builders to use salvaged brick.  The analysis concludes that 

because of the limitations of building codes and the shrinking stock of salvageable brick, 

closed loop recycling is unlikely to be scalable to industry wide savings.

In contrast to salvaged brick, the use of glass cullet as a fluxing agent is highly 

feasible.  The research finds that a transportation distance of up to 500 km will still yield 

environmental benefit.  Economic feasibility also appears to be reasonable and there are 

no limitations placed on the life cycle change by regulation.  Therefore, the use of glass 

cullet as fluxing agent has the potential to scale to the entire industry. 
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5. Quantification of Environmental and Economic Benefit 
5.1. Introduction

The previous chapter outlined the challenges to making brick a more sustainable 

product.  Also in the previous chapter, the comparison of two life cycle changes was 

presented.  The conclusion of this comparison was that the focus of efforts to increase 

sustainability should be at the front end of the life cycle of brick.  The current chapter

determines the net economic and environmental benefit to the brick manufacturing 

industry for the potential adoption of using glass cullet as a fluxing agent.  Of particular 

importance in the results is the ability to identify not only cumulative values, but to 

pinpoint which locations stand to gain the most from the adoption of this change.  In this 

way the analysis identifies stakeholders and motivation for these stakeholders.   

5.2. Findings

In this study the probable benefits are considered over the next 6 years (in this 

case 2007-2012).  Figure 5.1 shows the results of the Monte Carlo simulation for the 

expected economic value based on the cost faced by the industry (see Section 4.5.2.2 and 

Appendix A).  The following figure graphs the cumulative distribution function of 

potential economic outcomes and can be read as, in the case the Binomial Pricing 

scenario, there is a 60% probability that the economic benefit to the industry will be $30 

million or higher (for details see Appendix C).    
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Figure 5.1 Cumulative Distribution Function of Economic Value to Industry over 6 Years with a 
Discount Rate of 10%

Reading the information on this graph, if one considers uncertainty in the price of natural 

gas to be best modeled by the binomial lattice approach, there is a 99% probability that 

the expected benefits to the industry will be $25 million.  

The results of this are based on the assumption that a plant decision maker will 

only choose to use glass cullet if it is of a positive economic benefit to their individual 

plant.  In looking at Figure 5.1, the Department of Energy: Energy Information Agency’s 

(EIA) predictions of natural gas prices are substantially lower than some of the outcomes 

that the binomial approach considers.  This illustrates just how large an effect prices will 

have on rates of adoption this technology.  Consequently natural gas prices will have a 

substantial effect on the environmental benefits as well.  Figure 5.2 graphs the expected 

emissions avoided given the same future price scenarios.   
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Figure 5.2 Cumulative Distribution Function for Emission Avoided in Industry Over 6 Years with no 
Discounting

As can be seen in Figure 5.2, higher natural gas prices will motivate more brick 

manufacturers to choose to use glass cullet as a fluxing agent because of the increased 

value in saving energy.  Another valuable insight that can be gained from Figure 5.2 is 

that under the current economic conditions there is no risk of efforts to use glass cullet 

generating costs to the environment.  The cost of transportation prevents situations where 

a brick manufacturer would look beyond the feasible travel distance discussed in Section 

4.4.2.2.  The connection between cost of energy use and emissions avoided leads one to 

consider the impact of GHG emissions legislation in the United States.  

Figure 5.3 considers potential outcomes under different decision criteria.  The 

first decision criterion is the case where all brick manufacturers begin to utilize glass 

cullet as a fluxing agent regardless of cost.  In this case net environmental benefits are 

clearly negative.  The second case is where every brick manufacturer that stands to 
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reduce net emissions chooses to use glass cullet regardless of cost.  In this case the net 

benefits are obviously positive and as can be seen in Figure 5.3 under the assumptions the 

binomial prediction of future natural gas prices, approximately 80% of the environmental 

benefit would already be achieved without any form of incentive.  
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Figure 5.3 Cumulative Distribution Function for Emissions Avoided in Industry Over 6 Years with 
No Discounting

Additional incentive increases the economic benefit to the manufacturers who would 

already use cullet, but it would required a carbon tax of on the order of $40 per ton CO2

to motivate additional firms to adopt the life cycle change in their facilities (see results in 

Appendix C).  Regardless of carbon taxation, the economic and environmental benefits 

are clear.  Within this cumulative effect, specific locations exist that will garner the 

largest share of these benefits.
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5.3. Spatial Context and Industrial Symbiosis Precursor Identification

As has been mentioned frequently, the benefits to be received from the use of an 

artificial fluxing agent are dependent on the local chemical composition of clay for brick 

manufacturers.  And since an empirical relationship does not exist to determine optimal 

cullet amounts and energy savings a research program would be required to determine the 

necessary changes to the raw material stream.  The cost of such a research program and 

the necessary infrastructure changes might range between $500,000 and $1,000,000 for a 

facility (Brosnan 2007) while initial investigations could cost as little as $10,000 (Smith 

2007).  So to implement this life cycle change for the entire industry would require 

research projects and process modifications totaling as much as $200,000,000.  Taken 

collectively in this way, the costs clearly outweigh the benefits.  However, the benefits 

are not evenly distributed across the entire industry.  This means that the change need not 

be implemented across the industry.  In some locations benefits outweigh facility specific 

costs. 

This is an important point; indeed this is the most important point of the thesis.  

The benefits are not evenly distributed across the industry.  A subset of those plants that 

might adopt this life cycle change stands to gain the lion share of benefits, both economic 

and environmental.  Identifying which plants these are is of great value in finding 

industrial links that will have agents to act and realize the benefits of improved resource 

use.  As a part of developing the model for analysis, it was necessary to determine the 

distance between glass cullet processors and brick manufacturers.  This work really 

informs the spatial contexts where the highest benefits are located.  Figure 5.4 shows the 

location of brick manufacturers and glass cullet processors in the United States.



54

Figure 5.4 Map of Location of Brick Manufacturers and Glass Cullet Processors in US

Through the analysis conducted in this research this messy and relatively difficult to read 

map can now be screened to only include facilities that are likely to have substantial 

economic gains.  Figure 5.5 identifies the seven “hot spots” where economic gain is 

expected to be greatest.

Figure 5.5 Map of Facilities with Expected Economic Gain Greater than $100,000 under EIA Future 
Natural Gas Pricing

Table 5.1 presents the facilities’ names and locations for the seven areas.
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Table 5.1 Locations of Highest Probable Economic Value in Adopting Life Cycle Change (Expected 
Value Greater than $100,000 in DOE EIA Low Price Case)

Using either future price predictions, the fact remains that if this technical innovation can 

make a net reduction on the environmental impact of brick manufacturing, the locations 

where that benefit is most likely to happen have been identified.

5.4. Sensitivity of Assumptions

The current analysis depends heavily on assumptions made about an entire 

industry that are unlikely to be true in all or even any specific cases.  As is clear in 

Chapter 4, the future price of natural gas truly dominates the environmental impact that 

can be made by changing the life cycle of brick in specific cases.  If the more widely 

ranging Binomial Pricing scenario is utilized, the value to the above facilities is 

dramatically increased and additionally, many more facilities may become interested in 

the technology.  Other assumptions that were not considered as uncertain that affect the 

# Brick Plant Name Glass Cullet Processor Location
5 Belden - Plant #2-9 Sugarcreek Strategic Materials Inc. Newark OH
3 Boral - Atlanta Plant #7 Strategic Materials Inc. Atlanta GA
3 Boral - Columbus Plants (4) Strategic Materials Inc. Atlanta GA
5 Bowerston Shale Company - Hanover Plant Strategic Materials Inc. Newark OH
4 Brick & Tile Corp. of Lawrenceville - Plant 3 Strategic Materials Inc. Durham NC
5 General Clay Products Corp Strategic Materials Inc. Cleveland OH
3 General Shale Brick – Atlanta - Plant #30 Strategic Materials Inc. Atlanta GA

4 General Shale Brick - Brickhaven #25
Container Recycling 
Alliance

Raleigh NC

4
General Shale Brick - Moncure - Cape Fear 
Plant

Container Recycling 
Alliance

Raleigh NC

5 Glen-Gery Corporation - Iberia Plant Dlubak Glass U. Sandusky OH
6 Glen-Gery Corporation – Mid-Atlantic Plant Todd Heller Recycling Northampton PA
1 Mutual Materials Co Inc Strategic Materials Inc. Portland OR
4 Pine Hall Brick - Madison Face Brick Plants (2) Strategic Materials Inc. Durham NC
7 Redland Brick Inc. - K-F Plant Nutmeg Recycling East Hartford CT
6 The McAvoy Brick Company Blue Mountain Recycling Philadelphia PA

7 The Stiles & Hart Brick Company
Container Recycling 
Alliance

Franklin MA

4 Triangle Brick Company/Carpenter Plant
Container Recycling 
Alliance

Raleigh NC

4 Triangle Brick Company/Merry Oaks Plant
Container Recycling 
Alliance

Raleigh NC

2 Tri-State Brick and Tile Co Inc Strategic Materials Inc. Flowood MS
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findings of this research are changes in the level of production for brick manufacturers 

across the country.  This will serve to scale the benefits either up or down depending on 

the relative trend in production.  A last assumption that can have a dramatic effect on the 

findings is how production is distributed amongst the industry members.  In the absence 

of information regarding annual production for individual plant it is impossible to include 

this in any kind of analysis.  As a substitute, industry wide production has been 

distributed evenly, but it is known that production can vary as much as 10 times the 

assumed value to one half the assumed value.  

Given these qualifications, the value of the research is clear.  The use of glass 

cullet is a life cycle change that warrants further investigation by brick manufacturers in 

the United States.  Given the binomial case of natural gas pricing, the industry as a whole 

stands to benefit by anywhere from 0.5% of its profit to 1.0% of its revenue in a six year 

time frame and reduce its life cycle emissions from 0.5% to 0.7%.  These are real gains 

that can be generated through market forces.

5.5. Conclusions

This work indicate that absent the cost of initializing the use of glass cullet (i.e. 

research costs and process modification) the value is most probably in excess of $25 

million dollars in the binomial case prediction of future natural gas prices.  Additionally, 

the technology can result in greater than 100,000 tons of carbon dioxide not released to 

the atmosphere (in the binomial case) over 6 years.  Beyond these cumulative values, the 

analysis was able to identify exactly which facilities stand to gain the largest portion of 

economic gain.  The analysis has identified the locations that should be the focus of 

efforts to disseminate information about this opportunity.  This original work has not only 
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validated claims about the economic benefits of glass cullet as a fluxing agent, but has

also demonstrated the feasibility of using generally available information to search for 

“hot spots” that can have real economic gains through adoption of industrial symbiotic 

relationships across industries.
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6. Discussion
6.1. Introduction

This chapter of the thesis discusses the participation of stakeholders in realizing 

the previously described environmental and economic benefits.  After outlining this 

relationship, the chapter moves on to consider this approach as compared to past efforts 

to identify and initiate industrial symbiotic relationships.  Finally, the chapter makes 

policy recommendations for this specific case and for the research approach in general.  

6.2. Overcoming Cost

Through this analysis, the most promising locations for the establishment of inter 

industry links have been identified.  While multiple possible locations have been 

identified under future gas pricing scenarios, few of these locations have an average 

economic benefit that is substantially beyond the cost of research needed to allow for 

implementation of the change.  Looking at the list of facilities, an interesting phenomen is 

present.  There are multiple areas that have multiple brick manufacturers within a feasible 

distance.  These cullet suppliers are stakeholders as well and they stand to gain 

economically as well as the brick manufacturers.  Therefore it is reasonable to assume 

that they would be willing to participate financially in a research program to eliminate the 

uncertainties involved in the level of available benefit in the symbiotic relationship.  

Establishing these contacts is the critical next stage of this work. 

6.3. Is It An Industrial Symbiosis Precursor?

Before comparing this approach to other approaches, it is important to determine 

whether or not the relationship being described is actually an Industrial Symbiosis

Precursor.  If processed glass cullet is an available material and the result of brick 

manufacturers utilizing glass cullet is simply a new use for an industrial product, there is 
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no mutually beneficial relationship.  Considering only glass cullet processors and brick 

manufacturers, this is a reasonable description of the system in consideration.  However, 

if the processor is thought of as a contact point and one considers the brick industry and 

the glass packaging industry, one begins to see the symbiotic nature of the relationship.

Glass packaging is recycled at a rate of approximately 25% of the 10-12 million 

tons created each year.  Nearly all of this recycled glass is already allocated within the 

glass industry.  If all of the brick manufacturers that stood to gain financially began 

purchasing glass cullet, it would lead to a new demand for high value processed glass 

cullet on the order of 600,000 tons a year.  Assuming the recycling infrastructure can 

handle increased throughput this would increase the national recycling rate to 30%.  Thus 

it is indeed an Industrial Symbiosis Precursor from an environmental perspective in that 

the brick industry system benefits from improved resource efficiency and the glass

container industry system benefits from reduced waste generation.

6.4. The Research Approach as a General Method

The case study has found a potential model for Industrial Ecology.  Previously 

discussed approachs (eco-industrial parks and region-based studies) have found limited 

success in actually initiating increased sustainability.  The former has struggled from the 

limitations of central planning as described by Heeres (2004) and Desrochers (2004) and 

the latter has struggled from both a lack of motivating incentives and the absence of an 

agent to promote the vision of Industrial Symbiosis, as chronicled by Kincaid and 

Overcash (2001).  The current approach is an advance over previous efforts in multiple 

ways.
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While both EIP’s and the regional study have the advantage of field testing, 

through the dissemination of the results, the current research will also be field tested.  If 

all three approaches are considered as a method to search for and quantify industrial 

linkages, the findings of studies conducted in a similar manner to this study create 

advantages that cannot all be gained in the EIP or regional approach.  Those advantages 

are:

1. Focus on the entire industrial sphere (both existing and emerging)

The EIP approach to generating Industrial Symbiosis focuses only on facilities that are 

new.  This speaks to only a small portion of total environmental impact from industry.  

Both regional approaches and the current industry approach focus on existing industry, 

therefore the time horizon for these approaches to have substantial effects is effectively 

shorter.

2. Incremental development of larger Industrial Ecology

Conceptually, this approach and the regional approach allow for an evolutionary 

development of a sustainable industrial ecosystem.  In fact, this approach much more 

closely matches a natural ecosystem’s evolution.  This is in comparison to the EIP 

approach that is more of a step-wise approach to achieving sustainable development. 

3. Identification of agents for initiation

As Jackson and Clift (1998) have described, a major issue limiting the adoption of 

industrial ecological thinking is the idea of “agency.”  Who will act to establish linkages 

across industries?  In this case with such clear economic benefit for both partners in the 

potential link, the agents are the firms themselves and they have been identified.    
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4. Development of measurable incentive to investigate relationship

Closely related to the idea of an agent to actuate a change in industry is the idea of 

motivation for the agent.  This speaks directly to the idea that both Desrochers (2004)

when he says “market mechanisms” and Esty and Porter (1998) drive at commenting on 

the “competitive advantage” of industrial ecological thinking.  At the firm level, the only 

motivation to adopt more sustainable practices must be profit.  This analysis identifies 

what the economic benefit would be to the participants in the link.

5. Concentration of technical expertise

In this approach, it was only necessary to focus on one industry and a small set of related 

technical matters.  This made the analysis manageable for a single person with a single 

area of expertise.  This is an improvement over the regional approach where many forms 

of expertise would be required to accurately understand the subtleties of any potential 

industrial symbiotic relationships.  

The limitations of this approach are centered completely around available 

information.  While these are substantial obstacles, they are rapidly being reduced by the 

rapid growth in available information.  In the case of locations of different types of 

facilities resources like the EPA’s Envirofacts Data Warehouse provides location 

information for all facilities that are regulated by the EPA in the United States.  This 

information combined with powerful tools like geographic information systems and life 

cycle analysis databases drastically increases the ease of this type of analysis.  In 

summation, this approach only provides information, but it provides information that is of 

interest to the people who would adopt any life cycle change that might lead to increased 

sustainability.
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6.5. Policy Recommendations

There are really two areas of recommendation regarding policy.  The first relates 

specifically to this case of brick manufacturing and the use of glass cullet as a fluxing 

agent.  The results of this analysis indicate that there are clear environmental benefits to 

the use of glass cullet as a fluxing agent.  There are also clear economic benefits beyond 

the cost of determining certain technical parameters.  Depending on the future price of 

natural gas, regulation that placed a cost on the emission of carbon dioxide may serve to 

increase the use of this technology.  So a carbon tax or cap and trade systems may be 

effective, but in this case, the greatest cost is in the research necessary to establish 

optimal mix designs and what the actual energy savings might be.  It is in facing this cost 

that a policy might be most helpful.  Something as simple as a research grant from the 

National Science Foundation or the Environmental Protection Agency in partnership with 

brick manufacturers and glass cullet producers (both of whom have an economic stake in 

the results of the research) is most likely to lead to a realization of environmental benefit 

in this case.

The second area of policy recommendations speaks to the competitive advantage 

that the United States has in its information.  From Census reporting in the annual survey 

of manufacturers to geographic and waste material information collected by the EPA, the 

US industry has the potential to benefit economically from all this information.  This 

research is a strong example of such advantage.  Imagine an online tool that allows a firm 

to input its raw materials and quickly determine if there is a facility somewhere in their 

vicinity that produces the same product as waste.  This model of the world is not as 

ridiculous as it might seem.  Online tools like Google Earth or Virtual Earth by Microsoft 
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are capabilities that already exist.  As these tools become more common place it is only 

necessary to disseminate the evaluation methods like those used in this thesis to identify 

the most fertile areas for increasing sustainability through Industrial Ecology. 

6.6. Conclusions

This chapter has discussed the stakeholder relationships and how potential 

benefits might be achieved.  The second section provided a clarification on the use of the 

term Industrial Symbiosis in this particular case.  Finally, this chapter has described the 

advantages of this method over other approaches to create industrial symbiotic 

relationships and concludes by indicating what policy recommendations might be made 

to promote both this individual opportunity for increased sustainability and in general 

through Industrial Ecology.
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7. Conclusion
7.1. Introduction

Sustainable development and growth is the most difficult and most important 

challenge that humanity faces today.  On a planet with limited resources, how can the 

current generation meet its needs without depleting future possibilities?  The field of 

Industrial Ecology has emerged as one approach to conceptualize real sustainability and 

determine what steps might be appropriate for achieving this goal.  The useful tools of 

life cycle assessment and material flow analysis have lead to a rapidly growing 

knowledge of the industrial system that consumes the limited resources of Earth.  Having 

found opportunities to increase sustainability through research in areas like Industrial 

Symbiosis, the question posed by Jackson and Clift (1998) remains. How can the 

stakeholders who must act to achieve potential gains be identified and how can they be 

motivated?

This thesis has presented a method for identifying potential gains through 

geographic information systems, life cycle assessment, and financial analysis tools.  

Using the brick industry and the glass packaging industry as a case study for this 

approach, the research demonstrated measurable economic gains that might be 

recognized for adopting a life cycle change that benefits the environment as well.  In the 

case of brick manufacturing the expected value of adopting environmentally preferable 

options can be as high as $40 million.  Not only has this thesis presented the cumulative 

benefit of this information, it has identified where this value is most likely to accrue.  In 

essence, the approach has taken 200 potential locations for Precursors and determined the 

20 locations that have the greatest economic incentive to adopt the life cycle change.  
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Given this identification and the conclusion that Esty and Porter (1998) make 

regarding economic incentive being the motivation for companies to adopt product life 

cycle changes, the method has provided new information to help realize increased 

sustainability through Industrial Ecology.  

7.2. Findings

This thesis leads to two categories of conclusions.  The first category speaks to 

the specific case study in brick manufacturing.

 The use of cullet as a fluxing agent in the United States will generate 

environmental benefits when considered in the context of changes to the life 

cycle of brick.

 The disincentive to adopt this life cycle change is the initial cost of a research 

program to determine optimal design and optimal performance.

 Depending on the future price of natural gas, the use of glass cullet in brick 

manufacturing can generate economic benefits for facilities that invest in the 

research to determine optimal conditions.

 The adoption of this life cycle change is an example of an Industrial 

Symbiosis Precursor.

 Due to the symbiotic nature of the benefits, both stakeholder groups (brick 

manufacturers and glass cullet processors) have strong incentives to invest in 

the necessary research.

 The findings of this research indicate the approximate value of the research to 

the brick industry to be on the order of $30 million.
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The second category of conclusions speaks more generally to all industry.

 The various regulatory and data collection agencies in the United States 

represent a largely untapped resource for researchers and industry in efforts to 

increase resource efficiency.

 As was found in the case of brick manufacturers, this information may 

uncover not only environmentally preferable options, but economically 

preferable options.  

 Economically preferable options have agents for activity and motivations for 

these agents.

 Given the potential for finding economic advantages, this type of research 

with the available information represents a competitive advantage for 

domestic industry.

 The approach taken in this thesis may be repeatable for many other types of 

industry and potential symbiotic relationships. 

7.3. Future Work

The future work necessary for the concepts and ideas presented in this thesis are 

again divided into two categories based on the case study and the scaling up of the 

approach to other potential Industrial Symbioses.  Within the specifics of the brick 

manufacturing industry, the findings of this research can be greatly enhanced with 

information that is proprietary to the industry itself.  As such, these findings must be 

communicated to the Brick Industry Association for consideration and internal 

verification and modification of the findings.  Regardless of refined analysis, the findings 
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of this thesis indicate that research should be conducted to evaluate the use glass cullet as 

a fluxing agent at specific locations in the United States.  Lastly, an equity analysis of the 

benefits from research will aid in determining how much incentive glass cullet processors 

have in funding and participating in research of this potential industrial symbiotic 

relationship.

Again speaking generally about all industry, it is important that more case studies 

be conducted to determine whether the types of results found in this study are possible in 

other industrial contexts.  It must be determined whether the findings of this study are an 

exception due to the simplicity of manufacturing or if it is part of a larger general rule of 

applicability.  If that is indeed the case then real discussion and consideration is needed to 

answer the question of whether increasing the ease of accessibility of this type of research 

should be part of national efforts to increase sustainability.  One such example might be 

incorporation of the kind of research described in this thesis with the National Renewable 

Energy Laboratory’s US Life Cycle Inventory Database project.  If this were to occur it 

would help US firms to gain the competitive advantage from the prevalence of 

information.  In addition the environment would benefit from improved resource 

efficiency.

7.4. Conclusion

This thesis has found a way to identify actors for change to increase 

sustainability in industry.  In addition to identifying these actors, this thesis provides 

analysis that describes motivations for these actors.  The presence of this information 

helps to motivate the market mechanisms that will motivate Industrial Symbiosis across 
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an entire economy.  As a result of this Industrial Symbiosis, there can be dramatic 

increases in the sustainability of production and development.  
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Appendix A: Cost Model 

The cost model used for analysis is derived from industry data available from the Annual 

Survey of Manufacturers (Annual Survey of Manufacturers: Statistics for Industry 

Groups and Industries 1990-2005)and the Services Annual Survey (Service Annual 

Survey 2005) for freight costs.  Additionally, process data available from the various life 

cycle studies cited in Chapter 2 has been used to determine such things as energy 

consumption.  All data is based on 2005 information with the exception of the current 

price of natural gas which is based on the average 2006 price (Energy Information 

Agency: Natural Gas Navigator 2007).

As was mentioned in Chapter 4, the costs faced by a typical brick manufacturer 

are modeled from industry wide statistics.  It is unlikely that the cost values used in this 

model match those of any individual plant.  However, they serve as a good representation 

of a “typical producer.”  The cost of freight is simply the total revenue for the industry in 

2005 divided by the total miles traveled.  Again, it is unlikely that this will represent any 

individual case perfectly, but does serve as reference point for how much manufacturers 

can expect to pay for freight transport of materials.

Lastly, and perhaps most importantly, the cost model assumes an efficient brick 

manufacturer who has well maintained processes and uses natural gas as fuel source.  

Once again this does not capture all of the various manufacturing scenarios that exist in 

the US, but well over 90% of plants use natural gas.  Generally the cost model represents 

the “typical producer” as opposed to a specific producers costs and manufacturing 

techniques.
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Constants
Mass SBE 1.8 kg
convert cu m to cu ft 35.315 cu ft/cu m
Specifics
Energy Savings 20% %
Transport Distance 200 km
MATERIAL

Material Cost $45.33 
$/ton finished 
product

LABOR
Labor Cost 26.61 $/ton finished brick
CAPITAL
Capital Cost 7.28 $/ton finished brick
NON FUEL ENERGY
Electricity 3.54 $/ton finished brick
FUEL (Natural Gas)
Cu. Ft/SBE 2.46 Cu ft
Price $7.89 $/1,000 cu ft
Energy 39 MJ/cu m
Emission from NG 0.05 kg/1MJ of NG
Cullet
% SBE 5% %
Price $100.00 $/ton
FREIGHT (Freight 
Cost)
Freight Cost $1.42 $/KM
Truck Size 16 tons
Per KM Price (Freight) $0.09 $/tKM
Carbon Tax
Emission Cost $0.00 $/ton Carbon
Base Cost

$0.08159 Material Cost $/SBE
$0.04790 Labor Cost $/SBE
$0.01310 Capital Cost $/SBE
$0.00637 Electricity Cost $/SBE
$0.01946 Fuel Cost $/SBE
$0.16843 Cost $/SBE

GHG Tax
$0.00000 Carbon Tax Savings $/SBE
$0.16843 Cost $/SBE with Carbon Tax

Life Cycle Change
$0.00900 Cost of Cullet $/SBE
$0.00160 Freight Cost (Cullet)/SBE
$0.00389 Energy Savings $/SBE
$0.00408 Material Savings $/SBE

$0.17093
Cost $/SBE with Life Cycle 
Change

Figure A.1 Sample Cost Model Calculation
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Appendix B: Model Life Cycle

The life cycle utilized in this study was compiled by Kellenberger et al as a part of 

the Swiss Life Cycle Inventories EcoInvent 2000 Database (Kellenberger 2003).    The 

metadata provided within the SimaPro 6.0 software indicates that the sampling for this 

life cycle was conducted at 12 brick manufacturing plants in Germany, Austria, and 

Switzerland.  In applying this life cycle to US manufacturers it is important to mention 

where this life cycle diverges from data available regarding US producers.

The EcoInvent life cycle (LC) reports consumption of 2.23 MJ (equivalent to 4.43 

ft3) of natural gas per kilogram of finished brick.  According to the Brick Industry 

Association this is equivalent to the most efficient and large plants in the US.  Domestic 

plants can range from 4 ft3 to 6.75 ft3 per SBE (Profile of Brick Manufacturing 2001).  

Similarly, the life cycle assumes the use of natural gas as the fuel for firing.  This is true 

for approximately 90% of brick manufacturers in the US (Profile of Brick Manufacturing

2001).  The only other difference is that the EcoInvent LC considers substantially less 

water consumption than the Athena Institute study of brick manufacturing in Canada 

(Venta 1998).
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SimaPro 6.0 Process Date: 5/2/2007 Time: 4:16:03 PM

Process

Category type Material

Process 
identifier

EIN_UNIT0656770049
1

Type Unit process

Name brick, at plant

Time period Unspecified

Geography Unspecified

Technology Unspecified

Representative
ness

Unspecified

Multiple output 
allocation

Unspecified

Substitution 
allocation

Unspecified

Cut off rules Unspecified

Capital goods Unspecified

Boundary with 
nature

Unspecified

Infrastructure No

Date 8/19/2005

Record Data entry by: Daniel 
Kellenberger
Telephone: 0041 44 
823 48 66; E-mail: 
empa.du@ecoinvent.ch
; Company: EMPA-DU; 
Country: CH

Generator Generator/publicator: 
Daniel Kellenberger
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Telephone: 0041 44 
823 48 66; E-mail: 
empa.du@ecoinvent.ch
; Company: EMPA-DU; 
Country: CH

Literature 
references

Life Cycle Inventories 
of Building 
Products/2003/Kellenbe
rger D.
Data has been 
published entirely in
Copyright: true

Collection 
method

Sampling procedure: 
The data relates to 12 
brick production plants 
in Germany, Austria 
and Switzerland; The 
estimation of 
infrastructure relates to 
one company in 
Switzerland (Ziegelei 
Gasser AG in 
Rapperswil BE),

Data treatment Extrapolations: See 
geography

Verification Proof reading 
validation: passed
Validator: Roberto 
Dones
Telephone: 0041 56 
310 2007; E-mail: 
psi@ecoinvent.ch; 
Company: PSI; 
Country: CH

Comment Translated name: 
Backstein, ab Werk
Included processes: 
includes first ginding 
process, wet process 
(includes second 
ginding, mixing and 
plastifying), storage, 
forming (extruding 
molding method) and 
cutting, drying, firing, 
loading, packing and 
storage
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Remark: not included: 
charge of the 
wastewater and solid 
waste, it's assumed 
that the waste heat is 
totale reused for drying, 
no hard coal coke is 
used within these 12 
plants; Geography: 
certain exchanges are 
proxies (CH for RER), 
specially for the petrol 
consumption the proxy 
"operation, passenger 
car" has been used; 
data stem from 
Switzerland, Germany 
and Austria
Technology: Mix of 
different technologies 
(different firing fuels) in 
A, D, CH.
Version: 1.2

Synonyms: Ziegel, clay, 
Ton
Energy values: 
Undefined
Production volume: 
unknown

Allocation rules

System 
description

Ecoinvent

Products

Brick, at 
plant/RER U

1 kg 100 % Brick Constructio
n\Bricks
Europe

Avoided 
products

Resources

Water, well, in 
ground

in water 7E-05 m3 (5,5,3,3,1,5);
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Materials/fuels

Lubricating oil, 
at plant/RER U

0.0000132 kg (5,5,3,3,1,5);

Clay, at 
mine/CH U

1.35 kg (5,5,3,3,1,5);

Mine, clay/CH/I 
U

2E-10 p (3,5,5,1,3,5);

Sand, at 
mine/CH U

0.0147 kg (5,5,3,3,1,5);

Limestone, 
crushed, for 
mill/CH U

0.000396 kg (5,5,3,3,1,5);

Limestone, 
milled, packed, 
at plant/CH U

0.0239 kg (5,5,3,3,1,5);

Diesel, burned 
in building 
machine/GLO 
U

0.0297 MJ (5,5,3,3,1,5);

Electricity, 
medium 
voltage, 
production 
UCTE, at 
grid/UCTE U

0.0394 kWh (5,5,3,3,1,5);

Pulverised 
lignite, at 
plant/DE U

0.0245 MJ (5,5,3,3,1,5);

Steel, low-
alloyed, at 
plant/RER U

0.0000306 kg (5,5,3,3,1,5);

Sheet rolling, 
chromium 
steel/RER U

0.000000157 kg (5,5,3,3,1,5);

Sheet rolling, 
steel/RER U

0.0000157 kg (5,5,3,3,1,5);

Natural gas, 
high pressure, 
at 
consumer/RER 
U

1.24 MJ (5,5,3,3,1,5);

Heavy fuel oil, 
at regional 
storage/RER U

0.000381 kg (5,5,3,3,1,5);

Light fuel oil, at 
regional 
storage/RER U

0.00541 kg (5,5,3,3,1,5);

Polyethylene, 
HDPE, 
granulate, at 
plant/RER U

0.000000858 kg (5,5,3,3,1,5);
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Polystyrene, 
expandable, at 
plant/RER U

0.000352 kg (5,5,3,3,1,5);

Packaging film, 
LDPE, at 
plant/RER U

0.000542 kg (5,5,3,3,1,5);

Transport, lorry 
28t/CH U

0.00468 tkm (5,5,3,3,1,5);

Transport, lorry 
40t/CH U

0.014 tkm (5,5,3,3,1,5);

Transport, 
passenger 
car/RER U

0.0166 personkm (5,5,3,3,1,5);

Transport, 
freight, rail/RER 
U

0.00009 tkm (5,5,3,3,1,5);

Tap water, at 
user/RER U

0.0272 kg (5,5,3,3,1,5);

Wood chips, 
mixed, from 
industry, 
u=40%, at 
plant/RER U

0.000053 m3 (5,5,3,3,1,5);

EUR-flat 
pallet/RER U

0.0000161 p (5,5,3,3,1,5);

Electricity/heat

Emissions to air

Benzene 0.00000296 kg (5,5,3,3,1,5);

Carbon dioxide, 
fossil

0.18 kg (5,5,3,3,1,5);

Carbon 
monoxide, 
fossil

0.000391 kg (5,5,3,3,1,5);

Formaldehyde 0.0000164 kg (5,5,3,3,1,5);

Heat, waste 0.142 MJ

Hydrogen 
chloride

0.0000122 kg (5,5,3,3,1,5);

Hydrogen 
fluoride

0.0000106 kg (5,5,3,3,1,5);

Nitrogen oxides 0.00026 kg (5,5,3,3,1,5);

NMVOC, non-
methane 
volatile organic 

0.0000763 kg (5,5,3,3,1,5);
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compounds, 
unspecified 
origin
Particulates, < 
2.5 um

0.000014 kg (5,5,3,3,1,5);

Particulates, > 
10 um

0.00000468 kg (5,5,3,3,1,5);

Phenol 0.00000013 kg (5,5,3,3,1,5);

Sulfur dioxide 0.0000998 kg (5,5,3,3,1,5);

Emissions to 
water

Emissions to 
soil

Final waste 
flows

Non material 
emission

Social issues

Economic 
issues

Waste to 
treatment

Table B.1 Life Cycle Assessment for "Brick"(Kellenberger 2003; SimaPro 6.0 2006)

   This is the modified life cycle made for assessing the use of glass cullet as a 
fluxing agent.

SimaPro 6.0 Product 
stage

Date: 5/15/2007 Time: 3:43:55 
PM

Assembly: 

Name
Variability Brick
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Materials/Assemblies Amount Unit Distribution SD^2 or 
2*SD

Min Max Comment

Brick, at plant/RER U 1 kg Undefined
Glass, cullets, 
sorted, at sorting 
plant/RER U

0.1 kg Undefined

Clay, at mine/CH U -0.1 kg Undefined
Mine, clay/CH/I U 2E-11 p Undefined

Processes Amount Unit Distribution SD^2 or 
2*SD

Min Max Comment

Crushing, rock/RER 
U

0.1 kg Undefined

Transport, lorry 
16t/CH U

0.1 tkm Undefined

Heat, natural gas, at 
industrial furnace 
>100kW/RER U

-0.2604 MJ Undefined

Table B.2 Life Cycle of Utilizing Glass Cullet as Fluxing Agent (SimaPro 6.0 2006)
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Appendix C: Monte Carlo Simulation 

1. Introduction

The economic results presented in this thesis are developed through a Monte 

Carlo simulation of the entire brick manufacturing industry through the cost model 

presented in Appendix A.  The environmental benefits presented in the thesis are 

developed through the modified life cycle of brick presented in Appendix B.  In these 

calculations there are 4 uncertainties.  They are:

1. Transportation distance between cullet processor and brick 

manufacturer

2. Price of processed glass cullet

3. Actual energy savings realized at individual brick manufacturers

4. Future price of natural gas

In Appendix C, each of these uncertainties are discussed in detail and the chosen 

stochastic model of probable values is described and defended.  After describing the 

uncertainties, the following section describes the method of determining what the 

probable benefits might be.  Finally detailed results of this analysis are presented. 

2. Uncertainty Sources and Distributions

Table C.1 lists the unknowns that dictate how much of the 20% energy savings 

that Smith described can be realized by the US brick industry.  The table also describes 

how these unknowns are modeled within this thesis and the sources of information used 

to identify appropriate values.  Armed with this information, the benefits can be 

quantified.

Variable Model Relationship Source of Information
Transportat Utilizing GIS and road network Envirofacts Data 



86

ion 
Distance

analysis tools, the road travel distance 
between the relevant facilities can be 
determined

Warehouse (online 
database of all EPA 
regulated facilities)
(Envirofacts Data 
Warehouse US 
Environmental 
Protection Agency 2007)

Site 
Specific 
Energy 
Savings

No empiric relationship between raw 
material chemistry and energy savings 
is known, but a general inverse 
correlation between natural fluxing 
agents (alkalis: ex. Sodium, Potassium, 
Calcium, and Magnesium) is 
chemically sound since basic salts in 
the soil will tend to increase the pH of 
the soil 

Soils data available from 
United States 
Department of 
Agriculture Natural 
Resources Conservation 
Service (USDA Natural 
Resources Conservation 
Service: Soil Data Mart 
2005)

Cost of 
Natural 
Gas

Natural Gas Prices have varied over 
time and three considerations of future 
prices are made: the low price 
prediction made by the US Department 
of Energy: Energy Information Agency 
(DOE EIA), the high price prediction 
of the DOE EIA, and lastly a binomial 
expansion of historic growth trends

Predictions and historic 
data available from DOE 
EIA (Energy Information 
Agency: Natural Gas 
Navigator 2007; DOE 
Energy Information 
Agency: Annual Energy 
Outlook 2007 with 
Projections to 2030 
2007)

Cost of 
Glass 
Cullet

The cost of processed glass cullet is not 
a monitored economic statistic, but 
major suppliers provide an approximate 
range of prices across the country

Supplied by industry 
representatives (Dudak 
2007; Poole 2007)

Cost of 
Emissions

At present, GHG regulation may take 
on any of many proposed forms, in the 
absence of an official cap and trade 
system, the price of carbon credits on 
the Chicago Climate Exchange 

Chicago Climate 
Exchange (Chicago 
Climate Exchange CCX 
2007)

Table C.1 Variables Involved in Analysis of Value of Glass Cullet as Fluxing Agent

2.1. Transportation Distance

The required transportation distance between a glass cullet processor and a brick 

manufacturer was unknown prior to analysis, but it is not variable.  There is a single finite 

transport distance that exists between the two facilities.  It is only necessary to locate the 
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facilities and then determine the amount of road distance a truck would have to travel 

between one point and another.  

To accomplish this, the facility street addresses were collected from the Brick 

Industry Association’s website (BIA Member Directory 2007) which has a database of 

manufacturing facilities and the Glass Packaging Institute’s (Glass Packaging Institute: 

Recycling News 2007) website which has  a database of cullet processors.  These 

locations were cross-referenced with the locations of these facilities found in the EPA 

Envirofacts Data Warehouse (Envirofacts Data Warehouse US Environmental Protection 

Agency 2007).  Then using ArcGIS (a geographic information system software package), 

these street addresses were “geocoded” to physical locations.  Then using network 

analyst tools, the minimum road travel distance was calculated.  The results of these 

calculations were compared to travel distances described by Mapquest.com.    In the case 

of discrepancies, visual inspection was used to determine which distance was correct and 

that value was used in the simulation.  In this way, uncertainty about actual travel 

distances for individual plants was eliminated.

2.2. Price of Processed Glass Cullet

The cost of acquiring cullet is an unknown and variable value in this analysis.  

There are no facilities that produce the required particle size of cullet in large quantities 

at this time.  A comparable product is produced by most cullet processors for use by 

manufacturers of fiberglass.  Through contacting the facilities that supply this material it 

was determined that the price of an appropriate product for brick manufacturers would 

range in price from $60 to $100 per ton of material (Dudak 2007; Poole 2007).  Without 

any further information available, it was decided to model the range of prices as a 
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discrete distribution with values of $60, $70, $80, $90, and $100.  All of the values have 

a probability of 20%.  In addition to this cost, the transportation cost was determined by 

using a constant freight cost and the same transportation distances that were calculated 

previously.  

2.3. Actual Energy Savings Realized at Specific Plants

There is no empiric relationship that can be developed to predict the benefits of 

using a non-natural fluxing agent in a specific source of clay raw material.  Testing must 

be conducted for each source and the mix design must be optimized.  While no 

relationship can be developed, a good measure of the effect of the non-natural fluxing 

agent is the presence of natural fluxing agents in the clay.  Minerals that are natural 

fluxing agents include sodium, potassium, calcium and magnesium (Worrall 1975).  The 

presence of these alkali’s serves to drive up the pH of the clay.  Therefore, a region with 

soil pH’s that are generally low will tend to have a lesser presence of natural fluxing 

agents in the clay.  Using this fact and national soil survey data available from the United 

States Department of Agriculture, all of the brick manufacturing locations were divided 

up into three categories, those with: ambient soil pH of less than 6.0, ambient soil pH 

between 6.0 and 7.25, and ambient soil pH greater than 7.25.  

The lowest pH soils are most likely to benefit from unnatural fluxing agents so the 

associated energy savings with this range was considered to be uniformly distributed with 

bounds 15% and 25%.  The middle group is likely to see some benefit, but not the 

greatest benefit.  The associated energy savings was considered to be uniformly 

distributed with bound 5% and 15%.  Finally, the group with the highest pH is least likely 
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to benefit from the unnatural fluxing agent and the associated energy savings was 

considered to be uniformly distributed between 0% and 5%.   

2.4. Future Price of Natural Gas

The future price of natural gas is truly a driving cost for the brick industry and for 

the assessment of a life cycle change that reduces consumption of natural gas.  Natural 

gas prices have ranged dramatically in the last 5 years, but a general trend exists if one 

considers the nominal price of natural gas delivered to industry since 1967 (see Figure 

C.1).
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Figure C.1 Historical Natural Gas Prices (Average Price of Natural Gas Delivered to US Consumers, 
1967-2000 2000; Energy Information Agency: Natural Gas Navigator 2007)

Given this historical data one way to predict future prices is consider past growth as an 

indicator of future growth.  Based on the above data, exponential growth matches this 

pattern with a coefficient of determination value of .7555.  In this case the growth can be 

expected to increase at a rate of 7% annually.  Assuming that the distribution of future 

natural gas prices is lognormal and that the growth follows Geometric Brownian motion, 
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and with knowledge that the year end price in 2006 was $7.89/1,000 cubic feet, one can 

develop a binomial lattice to model future natural gas prices (for details on the binomial 

lattice see Real Options: A Practicioner’s Guide by Copeland and Antikarov and “Option 

Pricing: A Simplified Approach” by Cox et. al. published in the Journal of Financial 

Economics 1979).  

To calculate outcomes from a binomial lattice, three values are needed: u (the 

expected increase should the price rise), d (the expected decrease should the price drop), 

and p (the probability that the price will rise).  Using knowledge that the standard 

deviation of historical data is approximately 15% of the 2006 year end price, these values 

can be determined with the following equations:
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Figure C.2 Determination of u,d,p for Binomial Lattice Calculation

Figure C.3 presents a binomial lattice for future gas prices delivered to industry.  The first 

lattice presents the price of natural gas in a given year and the matching cell in the 

subsequent lattice presents the probability of that price occurring in that year. 
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u 1.161
d 0.861
p 0.734
p Start 1
Value 
Start $ 7.89

Year
2006 2007 2008 2009 2010 2011 2012

OUTCOME LATTICE

$7.89 $9.16 $10.64 $12.35 $14.34 $16.64 $19.32
$6.79 $7.89 $9.16 $10.63 $12.34 $14.33

$5.85 $6.79 $7.88 $9.15 $10.63
$5.04 $5.85 $6.79 $7.88

$4.34 $5.03 $5.84
$3.73 $4.33

$3.21
PROBABILITY LATTICE

1.00 0.73 0.54 0.40 0.29 0.21 0.16
0.27 0.39 0.43 0.42 0.39 0.34

0.07 0.16 0.23 0.28 0.31
0.02 0.06 0.10 0.15

0.01 0.02 0.04
0.00 0.01

0.00
Sum of Probability

1.00 1.00 1.00 1.00 1.00 1.00 1.00
Figure C.3 Binomial Lattice of Future Natural Gas Prices Delivered to Industry

This binomial lattice provides a range of outcomes and their likelihoods.  It can be argued 

that this stochastic approach may be preferred to deterministic predictions of future 

prices.  

In addition to the relatively blind prediction that has been presented, the 

Department of Energy releases future expectations of natural gas prices through the 

Energy Information Agency.  This information takes a deterministic approach to the 

future prices of natural gas.  Table C.2 graphs the DOE Low and High future price 

forecasts over the same 6 year time period.  
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Year High Low
2006 $7.68 $7.67
2007 $7.68 $7.35
2008 $7.85 $7.20
2009 $7.50 $6.46
2010 $7.24 $6.00
2011 $7.09 $5.59
2012 $6.72 $5.27

Table C.2 DOE EIA Predictions of Future Natural Gas Prices (DOE Energy Information Agency: 
Annual Energy Outlook 2007 with Projections to 2030 2007)

Looking at these two methods for prediction it is clear that they overlap, but that the DOE 

considers the trend of future prices to be negative while history indicates otherwise.  

Figure C. 4 shows the differing predictions.
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Figure C.4 Comparison of Future Natural Gas Price Projections

Both predictions of future natural gas prices are used to run through a Monte Carlo 

simulation of what the value of the life cycle change might be to the industry.

3. Monte Carlo Simulation

The specific situation of each brick manufacturing location was considered in the 

cost model (Appendix A) for each year and potential outcome for both the binomial case 
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and the DOE prediction case.  The decision maker at each plant was assumed to be a 

rational decision maker whose only decision criterion was maximizing annual profit for 

their particular facility.  If the expected value of using glass cullet is positive then the 

decision maker would choose to use the glass cullet.  If the expected value is negative 

then the decision maker will choose not to use glass cullet.  Based on these results for 

each facility the economic benefit and environmental that might be gained in a potential 

outcome can be determined.  

This process is repeated for each facility and then it is repeated 1,000 times for the 

entire industry.  The repetition of these calculations while varying the uncertainties 

through the use of random variable generation is known as a Monte Carlo simulation.  

Using a Monte Carlo approach gives the potential outcomes and the likelihood of these 

outcomes within the ranges assigned to the uncertain values.  This information is often 

best viewed as a cumulative distribution graph.

4. Results

The results presented in Figure C.5 indicate 5 different scenarios.  These are the 

binomial lattice price prediction, DOE high and low price predictions, the application of a 

$3.70/ton carbon emission tax applied to both the DOE high price prediction and the 

binomial lattice price prediction, and finally a $40.00/ton carbon emission tax applied to 

the binomial case.  In Figure C.5 the results based on economic benefit, energy savings 

and emissions avoided are presented.
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Cumulative Distribution Fn for Economic Value to Industry
(6 Years, D.R = 10%)
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Cumulative Distribution Fn for Energy Saving Value to Industry
(6 Years, D.R = 0%)
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Cumulative Distribution Fn for Emissions Avoided Value to Environment
(6 Years, D.R = 0%)
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Figure C.5 Results of Monte Carlo Analysis for Various Results of Interest


