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Abstract

Haptic virtual environments (VEs) are computer-generated environments within which
human users can touch, feel, and manipulate virtual objects in real time through force or
tactile feedback. Integration of force-feedback into VEs with graphical and auditory
displays is expected to have many applications in the area of medical training,
CAD/CAM, entertainment, graphic arts, and education. The development of force-
feedback system for VEs is in the research area of haptics, which can be divided into
three sub-categories: human haptics, machine haptics, and computer haptics. Human
haptics focuses on the understanding of human hand brain system. Machine haptics
focuses on the design and development of force-feedback devices (also called haptic
interfaces). Computer haptics focuses on the algorithm and software for the creation of
virtual objects and how to efficiently display these objects to the users.

The research of this thesis focuses on computer haptics. First, a point-based interaction
paradigm called Neighborhood Watch is developed to allow human users to use a point
probe to manually explore and manipulate virtual objects. A major feature of
Neighborhood Watch is that the computational time is independent of the number of
polygons of the virtual objects. Second, another interaction paradigm, called ray-based
rendering, which allows human users to use a line probe to interact with virtual objects is
also described. The computational time with ray-based rendering is also essentially
independent of the number of polygons of the virtual objects. In addition to the two
haptic interaction paradigms, various object property display algorithms have also been
developed. Using these algorithms, we can add friction and textures to the surfaces of
arbitrarily shaped virtual objects and also add compliant and dynamic behavior to the
virtual objects. All of the techniques developed for haptic rendering were finally
incorporated into a surgical simulator to demonstrate their usefulness.
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Chapter 1

Introduction

Virtual environments (VEs) are computer-generated environments with which a human
user can interact in real time. In particular, a multi-modal virtual reality (VR) system will
enable the humans to interact with the computer and obtain visual, auditory, and haptic
sensations, as they would encounter in real life. A VE system typically consists of several
interface devices such as a head mounted display and a position tracker that send and
receive signals of the interactions between the computer and a human user. The
development of VEs is a very popular research topic for the past decades. The techniques
in creating visual and auditory VEs have already been broadly applied to entertainment
such as the creation of video games and movies. In addition to the visual and auditory
VEs, the development of haptic VEs that can provide human users with force-feedback
interaction is a relatively new research topic in the area of virtual reality simulation. With
the addition of force-feedback interaction to the VEs, the users will be able to touch, feel,
and manipulate virtual objects in addition to see and hear them. The haptic VEs, with the
feature of force feedback, are particularly helpful when manual actions such as
exploration and manipulation are essential in an application. For example, surgical
residents would benefit from training in a haptic VE as it offers a consistent environment
and unlimited opportunity to practice surgical procedures. Aside from medical training,
other applications of the haptic VEs may include CAD/CAM, entertainment, graphic arts,

and education.



In creating haptic VEs, a device called " haptic interface" is used to provide force-
feedback interactions via "haptic rendering” techniques. The typical functions of a haptic
interface are to sense the position of the user’s hand and reflect forces back to the user.
The term “haptic rendering” refers to the process that compares the position information
of user's hand with the data of virtual objects and calculates an appropriate interaction
force to send back to the user. A computer is the main hardware that performs the haptic
rendering. For a given position information, a computer checks whether the hand is inside
the virtual objects or not. If the hand is inside the virtual objects, it sends force commands
to the haptic interface to prevent the hand from further penetrating into the objects. It
should be noted that, with the technology available today, the user unfortunately couldn't
get the complete sensation of touching the virtual objects directly as in real life. The user
can touch and manipulate objects in virtual environments only through an end-effector of
a haptic device (see Figure 1-1). This end-effector could be a thimble in which the
fingertip could be inserted, a stylus or a mechanical tool that could be held in the hand, or
an actuated glove or exoskeleton that the user could wear. During the simulations, the
user manipulates the end-effector and feels the reaction forces when the end-effector
contacts the virtual objects. Although the end-effector can have different physical shapes
and designs, they can be modeled as a point, a line, or a 3D object in virtual environments

for simulating haptic interactions.

Most of the techniques for creating visual VEs are covered in the research area of
computer graphics, which is mainly concerned with the generation and rendering of
graphic images. Some of the techniques in creating haptic VEs are similar to those in
computer graphics. However, there are still many differences between them. To
differentiate the difference between the techniques in creating visual and haptic VEs,
researchers have proposed the term "Computer Haptics" to represent the field of research
that is concerned with the generation and rendering of haptic virtual objects (Srinivasan

and Basdogan, 1997 and Ho, Basdogan, and Srinivasan, 1999).
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Figure 1-1. The concept about a human user interacting with virtual objects: (a) The user
puts the index finger into the end-effector of the haptic interface. When the user moves
the index finger, the end-effector will follow the movement, too. (b) The computer reads
the position information of the end-effector and uses a model to represent the end-
effector. In this example, the model of the end-effector is simplified to a point. The
computer then checks whether the point has a collision with the virtual object or not. If
there is no collision, the computer will not send any force to the haptic interface.
However, if the point penetrates the object, the computer will send forces to the haptic

interface to prevent the end-effector from further penetrating into the object.

Haptic display of 3D objects in virtual environments, with various applications in many
areas, has been an exciting and challenging research topic for scientists and engineers in
the last few years (Srinivasan, 1995, Burdea, 1996, Srinivasan and Basdogan, 1997,
Salisbury et al, 1995, and Salisbury and Srinivasan, 1997). It is generally accepted that
for haptic objects in VEs to appear natural, the haptic servo rate should be of the order of
1000 Hz. In other words, the computational time for each haptic servo loop (where a
reaction force is computed for one position input) should take about a millisecond or less.

If the 3D objects in VEs are simple primitives (e.g. cube, cone, cylinder, sphere, etc.),



this goal could be easily achieved with the computer technology available today.
However, realistic synthetic environments usually contain multiple 3D objects that have
complex surface as well as material properties. Therefore, the development of efficient
haptic interaction techniques that can render arbitrary 3D objects in a time-critical

manner becomes essential.

The research of this thesis focuses on two fundamental fields of computer haptics. The
first one is a haptic interaction paradigm that defines the nature of the “haptic cursor”
and its interaction with object surfaces. The second one is an object property display
algorithm that renders surface and material properties of objects. Finally, various
techniques developed in this research were incorporated into a surgical simulator to

demonstrate the usefulness of these techniques.

A literature review is first described in the next chapter to give an overview about
computer haptics. The hardware and the software architecture for creating haptic VEs are
described in chapter 3. After that, I describe a point-based haptic interaction paradigm in
chapter 4. By using the point-based rendering technique, we can create VEs that allow
users to use a point probe to interact with arbitrary 3D polyhedral objects. The second
haptic interaction paradigm that is called ray-based rendering technique is presented in
chapter 5. The ray-based rendering techniques allow users to use a line probe to interact
with virtual objects. In chapter 6, I present various object property display algorithms.
These techniques could add different material properties to the virtual objects. The details
of the surgical simulator developed in this research are described in chapter 7. The

suggestions of future work are summarized in chapter 8.



Chapter 2

Background

2.1 Force-Feedback Devices

In haptic VEs, the typical functions of a force-feedback haptic interface are to sense the
position of the user’s hand and reflect forces back to the user. In the past few years,
different types of haptic interfaces have been developed for different purposes. An
important distinction among haptic interfaces is whether they are tactile displays or net
force displays. The corresponding difference in interactions with VEs is whether the
direct touch and feel of objects contacting the skin is simulated or the interactions are felt
through a tool. Simulation of interactions through a tool, such as feeling the virtual world
through a rigid stick, requires only net force (and torque) display. Simulation of direct
contact with objects is much more difficult since it requires a tactile display capable of
distributing the net forces and torque appropriately over the region of contact between the
object and the skin (see Ikei, Wakamatsu, and Fukuda, 1997 for a recent example of such
devices). Since human tactile sensation is very complex and delicate, the performance of
the currently available tactile displays is inadequate in comparison to the human sensory

capabilities.

At present, net-force display devices that can match at least some of the capabilities of
the human haptic system are available. Depending on how the interfaces are set up, they
can be categorized as ground-based or body-based. The ground-based interface has
devices attached to a fixed object. Whereas, the body-based interface is a freestanding

device attached directly to human hands. Since the body-based devices usually provide
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larger workspaces, they require more complex calculation in rendering. Current available
software technologies don’t provide good enough support for such computation. In
addition, human hand is a very versatile organ, the body-based devices developed today
provides only a limited simulation. Therefore, general speaking, ground-based devices
provide better performance in the creation of haptic VEs than the one simulated by body-

based devices.

The following figures are examples of force-feedback haptic interfaces. The devices
shown in Figure 2-1 to 2-6 are all capable of sending ground-based net force to the users
through an end-effector. They could be used to simulate indirect contact. The algorithms
developed in this research are for this type of haptic interfaces. The devices shown in
Figure 2-7 and 2-8 are force-feedback gloves. These gloves are body-based devices.
These devices could usually provide larger workspace compared to those shown in Figure
2-1 to 2-6. More haptic devices and the developing history of haptic interfaces could be
found in Minsky, 1995 and Burdea, 1996.

Figure 2-1. The "PHANToM" by SensAble Technology, Inc.
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Figure 2-3. "Freedom-7" Haptic Device by Vincent Hayward at McGill University.

Figure 2-5. 6-DOF Haptic Interface by Tsumaki at Tohoku University

12



Figure 2-4."'

Figure 2-6. "Laparoscopic Impulse Engine" by Immersion Corporation.
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Figure 2-7. "RM II" Force Feedback Device developed in Rutgers University.

Figure 2-8. "CyberGrasp" by Virtual Technologies, Inc.

2.2 Rendering Algorithms

The goal of haptic rendering is to display the haptic attributes of surface and material
properties of virtual objects in real time via a haptic interface device. As mentioned
earlier, the user can touch and manipulate virtual objects only through an end-effector of
a haptic device. This end-effector could be a thimble, a stylus, a mechanical tool, or an
actuated glove. Since the users use the end-effector to explore the virtual environments,
we use the general term "probe" to represent these end-effectors. In order to detect the

collisions between the probe and the virtual objects, we have to create a mathematical
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model in the VEs to represent the probe. Although the probes can have different physical
shapes and designs, they can be modeled as a point, a line, or a 3D object in virtual

environments for simulating haptic interactions.

In order to help readers understand the process of haptic rendering, I give a simple
example here. The probe is modeled as a point in this example. The virtual object we are
going to create is a sphere (see Figure 2-9). The radius of the sphere is R and its center is
located in C whose coordinate is (Cx, Cy, Cz). In each servo loop, we can get the
location of the probe from the sensors of the haptic interface. Let’s say we read the
sensors and find that the probe is located at position P whose coordinate is (Px, Py, Pz)
for the current loop. Next step is to do collision detection to see whether the probe is
inside the sphere or not. To do this, we calculate the distance D between the probe and
the center, which will be the square root of ((Cx-Px)*( Cx-Px)+( Cy-Py)*( Cy-Py)+( Cz-
Pz)*( Cz-Pz)). If D is larger than R, we know that the probe is outside the sphere. On the
other side, if D is smaller than R, the probe is inside the sphere and, therefore, we need a
collision-response phase to calculate the interaction force. To decide the force, we need
to find out the penetration first. The penetration direction V will be from the probe
pointing to the center: (Cx-Px, Cy-Py, Cz-Pz). We normalize the vector V to make it a
unit vector. After that, we can calculate the penetration vector PV, which is equal to (R-
D)*V. To calculate the interaction force, we use a simple mechanistic model F =—kx%,
where X is the penetration vector and k is the spring constant representing the material
stiffness. So, the force that will be sent to the user will be (-k * PV). In each servo loop,

the haptic rendering basically repeats the same procedure to compute the interaction

force.
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Figure 2-9. The procedure of haptic rendering between a point probe and a virtual
spherical object. The center of the spherical object is located in C and its radius is R. At
time to, the point probe is located at Py and, at time t;, it moves to P;. At time ty, the
distance between the Py and C is larger than R. Therefore, the point probe is outside the
spherical object. At time t;, the distance between the P; and C is smaller than R, which
means that the point probe is inside the spherical object. We can calculate and find out
that the penetration is the vector PV. By using a simple mechanistic model, we send a
force (-k * PV) to the user to prevent the point probe from further penetrating into the

object.

Initial haptic rendering methods modeled the probe as a single point since it is
computationally less expensive. In this haptic interaction model, the user could interact
with 3D objects in VEs through the end point of the haptic device, which is defined as the
Haptic Interface Point (HIP). Massie and Salisbury (1994) developed the PHANToM
haptic interface device and proposed a simple method to render 3D geometrical
primitives. Later, Zillevs and Salisbury (1995) developed a more sophisticated, constraint-
based method to render polyhedral objects. They defined a “god-object” point, to

represent the location of a point that is constrained to stay on a particular facet of the

16




object when the HIP penetrates that object. Lagrange multipliers are used to compute the
new location of the god-object point such that the distance between the god-object and
the haptic interface point is minimized. Adachi, Kumano, and Ogino (1995) and Mark et
al. (1996) suggested an intermediate representation (a tangent plane) to render virtual
surfaces. Although the forces are updated frequently (~1 kHz), the tangent plane is
updated more slowly. Ruspini, Kolarov, and Khatib (1997) proposed an approach similar
to the god-object technique and improved the collision detection algorithm by
constructing a bounding sphere hierarchy and configuration space. Gregroy et al. (1999)
proposed a framework for fast and accurate collision detection by combining many of the
techniques in computer graphics. Ho, Basdogan, Srinivasan (1999) have also proposed a
rendering method called "Neighborhood Watch" to render polyhedral objects. The local
connectivity information is used to reduce the computation and make the computational
time independent of the number of polygons of the objects in the VEs. In addition to the
techniques that render polyhedral objects, Avila and Sobierajski (1996) proposed
techniques to render 3D volumetric objects. Salisbury and Tarr (1997) proposed a method
to render implicit surfaces. Thompson, Johnson, and Cohen (1997) proposed a method
for rendering NURBS surfaces. Since the probe is modeled as a point for these methods, I

call them point-based haptic rendering.

In a departure from the point-based methods described above, we have proposed a ray-
based interaction technique where the probe is modeled as a line segment rather than a
point (Ho, Basdogan, and Srinivasan, 1997 and Basdogan, Ho, and Srinivasan, 1997).
Using ray-based interaction technique, we can simulate the contact between the tip as
well as side of the probe with several convex objects at the same time. We can then

compute the associated forces and torques to be displayed to the user.

One further step for improving haptic interaction paradigm might be to model the probe
as a 3D object. However, the detection of collision between the 3D probe and 3D objects

is computational too expensive for haptic rendering since the required update rate is
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about 1000 Hz. Instead of directly detecting collision between 3D probe and 3D objects,
researchers have proposed alternative methods to approach this goal. For example,
McNeely, Puterbaugh, and Troy (1999) have presented a voxel-based approach. In their
approach, static objects in the scene are divided into voxels and the probe is modeled as a
set of surface points. Then multiple collisions are detected between the surface points of
the probe and the voxels of the static object. The calculation of interacting forces is based
on a tangent-plane force model. A tangent plane whose normal is along the direction of
the collided surface point is constructed at the center of each collided voxel. Then, the net
force and torque acting on the probing object is obtained by summing up all of the
force/torque contributions from such point-voxel intersections. Although this approach
enables 3D probe to interact with static rigid objects, its extension to dynamical and
deformable objects would significantly reduce the haptic update rate because of the
computational load. Moreover, rendering of thin or small objects will also have problems

with this approach.

In addition to the interaction paradigms described above, various techniques have been
proposed for displaying surface properties such as shape, friction, and texture of virtual
objects. Most of these techniques are developed for polyhedral objects. One of the
advantages for polyhedral representation of 3D objects is that any type of objects can be
represented in polyhedral format within an arbitrary tolerance. However, due to the
sensitive perception of our haptic system, the users can easily feel the discontinuity at the
connection of two faces that may be undesirable for some applications. To solve this
problem, Morgenbesser and Srinivasan (1996) have proposed force-shading methods to
smooth the feel of polyhedral objects by eliminating the force discontinuities at polygonal
boundaries. In addition to smooth the object surfaces, researchers have also proposed
techniques to add roughness to the surfaces. Salcudean and Vlaar (1994), Salisbury et al.
(1995), Chen et al. (1997) and Green and Salisbury (1997) have proposed different

techniques to simulate friction on smooth surfaces. Minsky et al. (1990 and 1995)
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proposed algorithms to simulate textures on 2D surfaces. Siira and Pai (1996) and Fritz
and Barner (1996) have also proposed methods to generate stochastic textures on well-
defined surfaces. Basdogan, Ho, and Srinivasan (1997) presented techniques to add

haptic textures to arbitrary 3D polyhedral objects.

Some readers may think that the interaction paradigms for computer haptics are identical
to those collision detection and collision response techniques in computer graphics.
Indeed, many of the techniques in these two areas are identical. However, the basic
concept is different between the two research areas. The main difference is that the
program can fully control the behavior of the objects in graphic VEs, not in haptic VEs.
For example, in graphic VEs, when an object moves toward another object and, finally, a
collision occurs (Figure 2-10), the program could send forces to the two collided objects
and change their velocity to make the two objects separated. Since the program can
control the behavior of the objects, the overlap between the two objects usually occurs
only in a small amount of time. Therefore, it is usually good enough for the collision

response algorithms to make decision based on objects’ current positions.
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(a) (b)

Figure 2-10. A simulation of dynamic behavior in computer graphics. (a) One object
moves toward another object. (b) The moving object contacts the other object. The
collision detection algorithm could detect the overlap between the two objects. The

collision response algorithm is then used to change the velocity of the two objects.

Compared to graphic VE, the programs for haptic VE do not have full control on the
probe. The user is the one that controls the behavior of the probe. Therefore, the contact
time between the probe and virtual objects is typically very long. This makes most of the
algorithms in computer graphics inappropriate for computer haptics. One example is the
simulation of a probe contacting a cube (see Figure 2-11). The probe approaches from the
top to contact the cube (Figure 2-11(a)). Based on our daily experiences, we know that
the probe should contact the top surface of the cube and the direction of the interacting

force should always be up (Figure 2-11(b)). If we calculate the collision based on the
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current configuration, we will get a wrong answer telling us that the probe is contacting
the right surface of the cube (Figure 2-11(c)). And the direction of interacting force will

be towards right side, which is not correct.

(a) (b) (©)

Figure 2-11. A simulation of a probe contacting a cube. (a) The probe approaches from
the top to contact the cube. (b) Based on our daily experiences, we know that the
direction of the interacting force should always be up. (c) If we calculate the collision
based only on current configuration, we will get a wrong answer telling us that the

direction of interacting force is towards the right side.

Other examples showing that the algorithms in computer graphics might give wrong
answers could be found in Figures 2-12 to 2-14. In Figure 2-12, a long rod moves from
the right side to contact a thin object (Figure 2-12(a)). The correct direction of interacting
force should be towards right side (Figure 2-12(b)). However, most of the algorithms will
suggest a direction either up or down (Figure 2-12(c)). In Figure 2-13, a thin paper moves
towards another thin paper. The two papers are perfectly parallel. Since it is a discrete-
time system, the program can update the position of the moving paper only in certain
times. It is very likely that the moving paper passes the other paper between a time
interval without contacting it. Therefore, no collision could be detected. In Figure 2-14,

we try to simulate that an object moves towards a hole of another object (Figure 2-14(a)).

21



The ideal interacting force should be the one shown in Figure 2-14(b) since the object
should be in the position indicated by the dash line. Using the existing algorithms, we

will get wrong answers such as the one shown in Figure 2-14(c).

(a) (b) (©)

Figure 2-12. A simulation of a long rod contacting a thin object. (a) The long rod moves
from the right side to contact a thin object. (b) The correct direction of interacting force

should be towards the right side. (c) Most of the algorithms will suggest a wrong

direction that is either up or down.

Figure 2-13. A thin paper moves towards another thin paper. The two papers are
perfectly parallel. It is very likely that the moving paper passes the other paper between a
time interval without contacting it. Since no collision could be detected in either previous

or current configurations, no interacting force would be sent to the moving paper.
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(a) (b) (©)

Figure 2-14. A simulation that an object moves towards a hole of another object. (a) The
moving object moves from up towards down. (b) The ideal interacting force is towards
up since the object should be in a position indicated by the dash line.. (c) With the

existing algorithms, we will get wrong answers such as the one shown in the figure.
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Chapter 3

Hardware Set-up and Software Architecture

3.1 Hardware Set-up

The minimum hardware requirement for creating a haptic VE includes a force-feedback
haptic interface and a computer. The haptic interface could sense the position of the
probe that is held by the user and send interaction force to users. The computer performs
the process of haptic rendering. That is, for a given position information, a computer
checks whether the probe is inside the virtual objects or not. If the probe is inside the
virtual objects, it sends force commands to the haptic interface to make the user feel the
objects. Usually the VE system will also includes a graphic display device (such as a
monitor or a head-mounted display device) to let the users visually see the virtual objects.
The hardware set-up for the VR systems used in this research includes a computer, a

monitor, and a force-feedback haptic interface.

3.1.1 Haptic Interface for Point-Based Interaction

In order to apply the point-based rendering techniques, the haptic interface should have
the ability to sense 3D positional information and send 3D force back to users. The haptic
interface device that I have used for the point-based rendering is a commercial product
available in the market (called PHANToM from SensAble Technology, Inc.). The
PHANToM can reflect forces along three axes and sense 3 or 6 degrees of position

information (depending on the models). The probe attached to the end of the PHANToM
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could be a thimble in which the fingertip could be inserted (Figure 3-1(b)) or a stylus that
could be held in the hand (Figure 3-1(a)).

(@ (b)

Figure 3-1. The PHANToM by SensAble Technology, Inc. Different probes could be
attached to the end of the PHANTOM.

3.1.2 Haptic Interface for Ray-Based Interaction

To implement the ray-based rendering techniques, the haptic interface device needs to
have the ability to reflect back at least 5 DOF (degree of freedom) force. The haptic
devices designed by Millman and Colgate (1991), Iwata (1993), and Buttolo and
Hannaford (1995) are examples of such devices. To implement the ray-based algorithm,
we have put together a haptic device set-up that is capable of displaying torques as well
as forces. As mentioned earlier, the PHANToMs can reflect forces along three axes only.
However, if two PHANToMs are connected to each other through a rigid probe, then a 5-
dof force/torque display can be obtained (see Figure 3-2 and Figure 5-2). This
configuration is the one we used to implement ray-based rendering and to conduct

experiments described in Chapter 5.
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Force feedback Force feedback
device 1 T device II

Figure 3-2. Schematic description of our force-feedback haptic interface. In order to
display forces and torques to the user, we connected 2 force-feedback devices using a
rigid probe. This enables us to display forces in 3 axes and torques about 2 axes (The

torsion about the long axis of the probe cannot be displayed with this design).

3.2 Software Architecture

It is generally accepted that for the objects in VEs to appear natural, the graphic and
haptic update rates need to be maintained at around 30 Hz and 1000 Hz, respectively.
Therefore, to have optimal performance for a fixed computer power, the graphic and
haptic loops have to be separated. There are two types of software architectures that can
achieve this goal: multi-threading and multi-processing techniques (see Figure 3-3). In
the multi-threading structure, both the graphic and haptic loops are processed in the same
computer and share the same database. In this structure, the synchronization of the two
loops in accessing to the data is important. In the multi-processing structure, the haptic
and the graphic loops have their own copies of databases that are not shared. The two
processes could run on the same machine or on different machines. The communication

protocol between the two loops that ensure consistent between the graphic and haptic

databases is important in this structure.
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Based on our experience, both multi-threading and multi-processing techniques are quite
useful in achieving stable haptic interactions and high graphic and haptic rendering rates.
The choice of multi-processing or multi-threading structures should depend on the
application. If the application requires large amount of data to be transferred between the
two loops, we recommend multi-threading technique since it requires less programming
effort and can achieve faster and more efficient communication. On the other side, if the
application requires more computation or needs higher update rates, the multi-processing
technique is recommended since it enables the user to process the two loops in two

different machines.
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Figure 3-3. Software architectures for (a) multi-threading and (b) multi-processing. In
the multi-threading structure, both the haptic and the graphic loops share the same data.
In this structure, the synchronization of the two loops in accessing the data is important.
In the multi-processing structure, the haptic and the graphic loops have their own copies
of data that are not shared. The two processes could run on the same machine or on
different machines. The communication protocol between the two loops that ensure

consistent update of both graphics and haptics data is important in this structure.
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Chapter 4

Point-Based Interaction

One of the major concerns for haptic rendering is that the computational time usually
increases when the number of polygons in the VE increases. In such a case, the quality of
the haptic interaction will depend on the complexity of the environment. If the interacting
forces cannot be updated at a sufficiently high rate, contact instabilities occur. In order to
have stable haptic interactions, a haptic rendering algorithm that makes the computational
time essentially independent of the number of polygons of an object would be quite
beneficial. In this chapter, I present a haptic interaction paradigm called "Neighborhood
Watch" that utilizes a hierarchical database and a local search technique geared towards
achieving this goal. In this rendering algorithm, the computational model of the probe is
simplified to a point and the virtual objects are represented as polyhedrons. The reason I
focused on polyhedral objects is that any type of objects can be represented in polyhedral
format within an arbitrary tolerance. Also, most of the digitized models of real objects are

in polyhedral format.

4.1 Introduction

There are two important issues any haptic interaction paradigm has to specify. The first
one is the collision detection that detects the collisions between the probe and the objects
in the scene. The second one is the collision response that computes the response to

collision in terms of how the forces reflected to the user are calculated. A good collision
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detection algorithm not only reduces the computational time, but also helps in correctly
displaying interaction forces to the human operator to make the haptic sensing of virtual
objects more realistic. The collision detection and collision response techniques for
haptics and graphics are slightly different. In computer graphics, collision detection
(Cohen et al., 1995, Lin, 1993, Gottschalk, Lin, and Manocha, 1996, Smith et al., 1995,
Hubbard, 1995) techniques are used to detect if two objects overlap. When the collision is
detected, objects are separated from each other using collision response methods (Moore
and Wilhelms, 1988, Baraff, 1994, Mirtich, 1995 and 1996). In general, the purpose of
the collision detection and response in graphics is to avoid the overlap between objects

and to simulate the behavior of objects following the overlap.

In contrast, the purpose of collision detection in haptic rendering is to check collisions
between the probe and virtual objects to compute the interaction forces. When simulating
interactions between the probe and the objects, the reflected force typically increases with
penetration distance such that it resists the probe from further penetrating the object.
Thus, the probe will always be inside the object during the collision response phase. This
is a major difference between the collision response techniques developed for haptic and
graphic interactions. In graphics, typically the existence of the overlap needs to be
detected, followed by collision response algorithms to separate the overlapped objects. In
haptics, the main goal is to compute the reaction force, instead of pushing the probe out
of the objects. Hence the depth of penetration and how the penetration evolves are

important. After detecting a collision between the probe and the objects, a simple

mechanistic model such as the Hooke’s law (F =—k%, where ¥ is the penetration

vector) can be used to calculate the force.

One simple way to determine the depth of penetration is to use the shortest distance
between the probe and the object’s surface (Massie, 1993, Massie and Salisbury, 1994).
This approach works well for primitive objects such as a cube, sphere, cylinder, etc.

However, the drawbacks of this technique are that it cannot display the objects that are
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small, thin, or polyhedral (Massie, 1993, Ruspini et al., 1996, 1997). Another approach to
decide the depth of penetration is to use a constraint-based method (Zilles and Salisbury,
1995). This method defines an imaginary point, called the god-object point, which is
constrained by the facets of the object. The penetration depth could then be defined as the
distance from the god-object to the probe. This approach can be applied to polyhedral
objects, even when the objects are thin or small. However, their proposed method
requires different sets of rules to handle concave and convex objects. The "Neighborhood
Watch" rendering algorithm presented in this chapter can handle both convex and
concave objects uniformly. This algorithm is conceptually similar to the god-object
algorithm (Zilles and Salisbury, 1995) but follows a different approach. The new
approach reduces the computational time, makes the haptic servo rate independent of the
number of polygons of the object, and results in more stable haptic interactions with

complex objects.

In order to describe the concept more clearly for this approach, we need to define three
types of probe. The first one is called real probe that is the physical piece held by the
user and is the real 3D probe. The second one is called haptic interface point (HIP) that is
the computational model of the real probe. It should be noted here that the probe is
modeled as a point in this algorithm. The HIP could be the coordinate of the probe tip,
the coordinate of the center of the probe, or the coordinate of a specific part of the probe.
In the mathematical computation, the HIP is used to represent the real probe. The last one
is called ideal haptic interface point (IHIP) that represents the ideal location of the HIP.
The IHIP is similar to the god-object proposed by Zilles and Salisbury, 1995 or the proxy
by Ruspini et al., 1997). Ideally, a probe cannot penetrate into any objects in a real world.
Therefore, the IHIP is constrained so that it cannot penetrate into objects. If the HIP is
outside the objects, the positions of IHIP and HIP will be the same. However, it the HIP

moves into an object, the IHIP will be constrained to stay on the surface of the object.
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The positions of HIP and IHIP play an important role in computing the interacting force

(see section 4.4 for more details).

4.2 Hierarchical Database

In order to develop efficient collision detection and collision response algorithms, a
processing stage called "pre-processing phase" is needed. The function of the pre-
processing phase is to arrange the data in a way such that it can help in later computation.
In our pre-processing phase, we build two types of data to achieve faster collision
detection: the hierarchical bounding-box tree and the connectivity information between
primitives. The bounding-box tree is useful in determining the contact situation between
the probe and the objects when there is no contact in the previous loop. Once a contact
occurs, the connectivity information could be used to perform local search for the up-
coming loops since we know the probe cannot move too far in a small amount of time

(since the servo rate is around 1 kHz, and human motions are relatively slow).

The first step in the pre-processing phase is to load/create the data for each object. The
object data include the coordinates of each vertex and how the polygons are made from
these vertices. After that, we construct another type of 2D geometrical primitive, namely,
the lines that are simply the edges of the triangular polygons. As a result, the polyhedral
objects in our own database are made of three types of 2D geometrical primitives:
polygons, lines, and vertices. In order to implement a fast search technique for detecting
collisions between the probe and 3D objects, we extend our database such that each
primitive has a list of its neighboring primitives. Each polygon has neighboring
primitives of lines and vertices, each line has neighboring primitives of polygons and
vertices, and each vertex has neighboring primitives of polygons and lines (see Figure 4-1
and Figure 4-2). In addition to the connectivity information, we compute the normal
vector of each primitive. For a polygon, the normal is the vector that is perpendicular to

its surface and points outwards. For a line, its normal is the average of the normals of its
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neighboring polygons. For a vertex, its normal is the average of the normals of its

neighboring polygons, linearly weighted by the associated angle subtended at the vertex.

Polyhedron
|
[ | |
Vertex Line Polygon
Normal Normal  Neighbors Neighbors

Neighbors — Normal
I_I_l Vertices Polygons

Lines Polygons Vertices Lines

Figure 4-1. The connectivity information for primitives. The polyhedron representing the
object is composed of three primitives: vertex, line, and polygon. Each primitive is

associated with a normal vector and a list of its neighbors.

() (b) (c)

Figure 4-2. Illustration of how the neighbors of a vertex, line, and polygon are defined.
(a) The vertex has six neighboring lines and six neighboring polygons. (b) The line has
two neighboring vertices and two neighboring polygons. (c) The polygon has three

neighboring vertices and three neighboring lines.

Another task performed in the pre-processing phase is creating the hierarchical bounding-
box tree for each object (Gottschalk, Lin, and Manocha, 1996). At the top of the
hierarchy is a bounding box that covers all of the polygons of the object. The polygons
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are then separated into two groups based on their geometric centers. We then create a
bounding box for each group. These two new bounding boxes are placed under the first
bounding box in the hierarchical tree. We repeat the same process to create two children
bounding boxes for each parent bounding box at each hierarchical level of the tree until

there is only one polygon left in each bounding box (see Figure 4-3).

Figure 4-3. An example of hierarchical bounding-box tree. At the top of the tree is a
bounding box that contains all 12 polygons. The top bounding box is separated into two
bounding boxes at the second level. The separation of bounding box continues until there

is only one polygon in each of the box.

4.3 Collision Detection

When exploring virtual environments, we interact with virtual objects through the real
probe, which is computationally modeled as the haptic interface point (HIP) in the VEs.
As mentioned earlier, we create another point called ideal haptic interface point (IHIP) in
our program to represent the ideal location of the HIP. The HIP is not constrained and,
consequently, it can penetrate the surface of virtual objects. However, we constrain the
IHIP such that it cannot penetrate any objects. When the HIP is in the free space of the

virtual environments, the location of the IHIP will be coincident with the HIP. If the
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movement of the HIP does not penetrate any object, the IHIP will keep following the path
of the HIP. However, if the HIP moves into a virtual object, the THIP will stay on the
surface of the object. To computationally achieve this concept, we keep track of the path
of HIP and check if this path penetrates any polygon. We construct a line segment
between the coordinates of the HIP in the previous and current loops. We then detect
whether this line segment (since the servo rate is around 1 kHz, and human motions are
relatively slow, this line segment is very short) has an intersection with the polygons of
the 3D objects or not. To achieve fast checking, we utilize “hierarchical bounding boxes”
approach (Gottschalk et al., 1996). We first check whether the line segment is inside the
bounding box of the objects or not. If it is outside of the bounding box, the line segment
cannot have an intersection with the polygons. If it is inside the bounding box, we then
check if the line segment is inside any of the two children bounding boxes in the next
level of the hierarchical tree. If the line segment is outside the bounding box, the check is
stopped. However, if the line segment is still inside one of the bounding boxes, we check
with the lower level of that bounding box in the hierarchical tree again. As intersections
are detected with successive bounding boxes along one particular branch of the tree, the
last intersection is checked between the line segment and the polygon that is inside the
lowest level of bounding box of the tree. If the line segment penetrates a polygon, we set
this polygon as the contacted geometric primitive. The IHIP will then be constrained to
stay on the surface of this polygon. The nearest point from this polygon to the current
HIP is set as the IHIP and the distance from the IHIP to the current HIP is set as the depth
of penetration. Although the first contacted geometric primitive is always a polygon and
the IHIP is assigned to be on the surface of this polygon, it can easily be a line or a vertex

in subsequent iterations.

Once the first contact is detected, we can use the local search techniques to reduce the
computational time for the subsequent loops. The concept to support the local search

techniques is that the probe cannot move too far away from the current position in just
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one loop. (Since the typical servo rate is around 1 kHz and human motions are relatively
slow, the movement of the probe in one loop is usually less than one millimeter.)
Therefore, if we know the contacted geometric primitive in the previous loop, we can
start from that primitive and check collision only with its neighbors. The connectivity
information described in the previous section is used to perform this local search. The
local search approach significantly reduces the number of computations and also makes
them essentially independent of the number of polygons that represent the objects. So, in
the next iteration, we calculate the nearest distances from the current HIP to the contacted
geometric primitive and its neighboring primitives. For example, if the contacted
primitive is a polygon, then we check the distance from the current HIP to the
neighboring lines and vertices. If the contacted primitive is a line, we check the distance
from the current HIP to the neighboring polygons and vertices. Then, we set the primitive
that has the shortest distance to the current HIP as the new contacted geometric primitive
and move the THIP to a point that is on this primitive and nearest to the current HIP (see
Figure 4-4). This rule-based algorithm is repeatedly applied for the ensuing interactions.
From the description in Figure 4-5 and Figure 4-6, we can see that this rule-based

algorithm works with both non-convex and thin objects
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Figure 4-4. Haptic interactions between the probe and 3D objects in VEs. Before the
collision occurs, HIP is outside the object surface and is identical with IHIP (see HIP,
HIP,,, and HIP, ;). When the HIP penetrates into object at time t, the IHIP is constrained
to stay on the surface. At time t+1, HIP moves to a new location (HIP;) and the new
location of IHIP is determined by the current HIP and the neighboring primitives based

on the nearest distance criterion.

Figure 4-5. Haptic interactions between the probe and a non-convex object in VEs.
Before the collision occurs, HIP is outside the object surface and is identical with THIP
(see HIP,; and HIP.;). When the HIP penetrates into object at time t, the IHIP is
constrained to stay on the surface. At time t+1 and t+2, HIP moves to new locations

(HIP,,; and HIP,,,). The nearest distance criterion could be used to find the new locations
of THIP.
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Figure 4-6. Haptic interactions between the probe and a thin object in VEs. Before the
collision occurs, HIP is outside the object surface and is identical with IHIP (see HIP,,
and HIP, ;). When the HIP penetrates the object at time t, the IHIP is constrained to stay
on the surface (IHIPy. At time t+1, HIP moves to a new location (HIP.,;). The nearest

distance criterion will still work in finding the new location of IHIP.

In each cycle, we also need to check if the current HIP is still inside the virtual object.
For this purpose, we construct a vector from the current HIP to the IHIP. If the dot
product of this vector and the normal of the contacted primitive is negative, the current
HIP is no longer inside the object and there is no penetration any more. If the dot product
1s positive, then the current HIP is still inside the object. The pseudo-code for this

“Neighborhood Watch” haptic interaction algorithm is given below.
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if (collision == FALSE)

{
if (the path of HIP penetrates a polygon)

{

Set the polygon as the contacted geometric primitive;
Move the THIP to a point on this polygon that is closest to the HIP;
collision <— TRUE;

else

contacted geometric primitive <— the contacted geometric primitive in the previous loop;
primitivel <— contacted geometric primitive ;
distancel < closest distance from current HIP to primitivel;
repeat {
primitivel = contacted geometric primitive;
for (i=1:number of neighboring primitives of primitivel)
{
primitive2 <—the ith neighboring primitive of primitivel;
distance2 < distance from current HIP to primitive2;
if (distance2 < distancel)

{
contacted geometric primitive <— primitive2;
distancel < distance2,

}
}

} while (primitivel = contacted geometric primitive)

Move IHIP to a point that is nearest from the contacted geometric primitive to current HIP
vector]l <— vector from current HIP to current IHIP,
normall < normal of the contacted geometric primitive;

if (dot product of vectorland normall < 0)
collision <— FALSE,

Using this algorithm, we can render both convex and concave objects in an efficient
manner. The computational time for detecting the first collision will be in the order of
log(N) for a single object, where N is the number of polygons (Gottschalk et al., 1996).
After the first collision, we only calculate the distances from the current HIP to the
contacted primitive and its neighbors to determine the new location of IHIP. Therefore,

the servo rate will be fast since it only depends on the number of neighbors of the
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contacted geometric primitive. For a homogeneously tessellated polyhedron, as N
increase, because the number of computational operations for searching the neighbors of
each primitive is about the same, the servo rate will continue to be independent of the

total number of polygons after the first collision.

4.4 Collision Response

In haptic rendering, the collision response focuses on the computation of reaction force
that arises from the interactions between the probe and the 3D objects. Although the
collision response phase has been studied in computer graphics (Baraff, 1994; Mirtch and
Canny, 1995; Moore and Wilhelms, 1988), its implementation to haptics shows some

differences.

The first step in collision response phase is to find the penetration depth. In this
"Neighborhood Watch" algorithm, the penetration depth is simply the position difference
between the HIP and the IHIP and the penetration direction is from the IHIP to HIP.
Then, the interacting force could be computed based on the penetration depth. One way
to calculate the force is to use a simple mechanistic model such as the Hooke’s law
(F = —kx , where k is the spring constant and represents the material stiffness, ¥ is the
penetration vector starting from IHIP to HIP, see Figure 4-7). We can choose a larger &

to simulate a stiff object or choose a smaller & to simulate a soft object. A damping term

(- bx) could be added to the model to add the damping effect. We can also change the

model (such as: F = —k, Ji- k,X —k,X*) to simulate non-linear material properties.
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Figure 4-7. When the HIP penetrates into an object, the IHIP stays on the surface. The
penetration vector X is defined such that it points from the IHIP to HIP.

4.5 Results

I have successfully applied the rendering techniques described in this chapter to render
various objects both on a Windows NT platform and a Unix platform (see Figure 4-8 and
4-9). In order to demonstrate the efficiency of our haptic interaction technique, we did a
test to compare the rendering rate for different objects. The structure of the programs
includes two separate loops, one for updating graphics and the other for displaying force.
The graphics update rate is around 30. The polygon number of the objects we tested
ranges from hundreds to thousands (see Table 4-1). It can be seen from table 4-1 that the

haptic servo rate is approximately constant even if the number of polygons is increased

by approximately 5000 times.
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Figure 4-8. Rendering of various 3D virtual objects. The small dark dot represents the

haptic probe. The user uses this haptic probe to interact with the virtual objects.

(a) (b)

Figure 4-8. Rendering of 3D virtual organs. (a) The small dark dot represents the haptic
probe. The user uses this haptic probe to interact with the virtual organs. (b) The virtual

organs are all polyhedrons composed of triangular polygons.
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Table 4-1. Haptic rendering rates for various 3D rigid objects. The results were obtained
with a Pentium II, 300 MHz PC running two threads and equipped with an advanced
graphics card (AccelECLIPSE from AccelGraphics). Servo rate results are based on
rendering 3D objects for at least 3 minutes. Rendering test is repeated at least three times

for each object.

Object 1 Object 2 Object 3 Object 4
Number of vertices 8 239 902 32402
Number of lines 18 695 2750 97200
Number of polygons 12 456 1800 64800
Haptic servo rate (kHz) ~12t013 |~11tol2 |~11to12 |[~9to10
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Chapter 5

Ray-Based Interaction

Most of the haptic rendering techniques developed so far are point-based in which the
probe is simplified to a point. This approach is computationally less expensive, but it only
enables the user to feel interaction forces, not the torques. Since the probe is modeled as a
point, the net force is the only haptic feedback that could be sent to the user. For
exploring the shape and surface properties of objects in VEs, these methods are probably
sufficient and could provide the users with similar force feedback as what they would get
when exploring the objects in real environments with the tip of a stick. However, point-
based methods are not sufficient to simulate rool-object interactions that involve multiple
constraints. The computational model of the simulated tool cannot be reduced to a single
point sinée the simulated tool can easily contact multiple objects and/or different points
of the same object simultaneously. Moreover, the resulting reaction torque has to be
computed and reflected to the user to make the simulation of haptic interactions more

realistic.

Modeling haptic interactions between a probe and objects using ray-based technique has
several advantages over the existing point-based techniques. First of all, side collisions
between the simulated tool and the 3D objects can be detected. User can rotate the haptic
probe around the corner of the object in continuous contact and get a better sense of the
object’s shape. In point-based methods, one of the common unrealistic feelings is that the

user's hand could go inside the objects although the point probe is still outside (see Figure
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5-1). This situation could be eliminated using ray-based rendering. Second, ray-based
rendering provides a basis for displaying torques to the user. Using the ray-based
rendering algorithm, we can compute the contact points, depth of penetration, and the
distances from the contact points to both ends of the probe. Then, we use this information
to determine the forces and torques that will be displayed to the user. Third, the ray that
represents the probe can be extended to detect the collisions with multiple layers of an
object (in fact, this is the reason why we name the technique as ray-based). This is
especially useful in haptic rendering of compliant objects (e.g. soft tissue) or layered
surfaces (e.g. earth’s soil) where each layer has a different material properties and the
forces/torques depend on the probe orientation. Fourth, it enables the user to touch and
feel multiple objects at the same time. If the task involves the simulation of haptic
interactions between a tool and an object, ray-based rendering provides a more natural
way of interacting with objects. Fifth, the reachable haptic workspace can potentially be
extended using this technique since we have the full control of forces and torques that are
displayed to the user. This means that it may be possible to create an illusion of touching
distant objects by virtually extending the length of the probe and appropriately changing
the direction and magnitude of the reflected forces (similar to seeing distant objects with

a flash light, see Figure 5-2).
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Figure 5-1. The difference in point- and ray-based rendering techniques: In point-based
rendering, the haptic probe is modeled as a single point leading to artifacts such as feeling
the bottom surface of the object by passing through the object. In ray-based rendering,
end point as well as side collisions are detected between a line segment and virtual

objects.

Figure 5-2. (a) Our two-PHANTOM set-up for displaying forces and torques to the user
using ray-based haptic rendering algorithm. (b) The reachable haptic workspace can
potentially be extended using this technique since we have the full control of forces and

torques that are displayed to the user.

For example, in performing minimally invasive surgeries, the surgeon inserts thin long

rigid tubes into the body of the patient through several ports. Small size instruments
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attached to these tubes are used for manipulating internal organs. During the surgery,
surgeon accesses the targeted area by pushing the organs and surrounding tissue to aside
using the instruments and feels both the interaction forces and torques. A point-based
technique is inadequate to fully simulate such haptic interactions between surgical
instruments and virtual organs. If the instrument is modeled as a single point, the side
collisions of an instrument with organs will not be detected and the instrument will pass
through any organ other than the one touching the tip. We have observed that simulation
of haptic interactions between the line segment models of laparoscopic instruments and
organs using the ray-based technique could significantly improve the realism (Basdogan
et al., 1998). In addition, multi-layered and damaged tissues whose reaction forces
depend on the tool orientation can be simulated better using the ray-based technique since
the ray can be extended along the contacted surface and the contacts in multiple layers

could be detected to compute interaction forces.

Another example where the ray-based rendering is preferable would be the simulation of
assembly line in car manufacturing. A scenario may involve a mechanic to go under a
virtual car and turn the nuts of an engine block. Some of these procedures are done
through mechanical instruments attached to a long and rigid shaft that enables the
mechanic to reach difficult areas of the engine. Typically, the vision is limited and the
mechanic finds his way around using haptic cues only. Moreover, the path to the nuts is
usually blocked by several other mechanical components that make the haptic task even
more challenging. The simulation of this procedure in virtual environments will certainly
involve the modeling of torques and detection of multiple collisions simultaneously since

a long rigid shaft is used to reach the targeted areas.

The details of the ray-based rendering techniques are presented in this chapter. In section
5.1, a general introduction of ray-based rendering is presented first. Following the
introduction is the hierarchical database in section 5.2. The hierarchical database for ray-

based is extended from the one for point-based. The collision detection and the collision
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response methods are presented in section 5.3 and section 5.4, respectively. In section
5.5, I present a haptic perceptual experiment to show that the ray-based rendering is
better than the point-based one in human perception. The conclusions are presented in

section 5.6.

5.1 Introduction

In ray-based rendering, we model the generic probe of the haptic device as a line segment
and then detect collisions with 3D objects in the scene to compute the interaction
forces/torques. In the point-based rendering, the point probe and virtual object can only
have point-vertex, point-edge, or point-polygon contacts (see Chapter 4). However, the
type of contacts between the line segment model of the haptic probe and virtual object
can, in addition, be line segment-edge and line segment-polygon. There can also be

multiple contacts composed of a combination of the above cases.

In order to reflect the forces properly to the user in haptic rendering, we has to consider
the history of probe’s movements, which is one of the main differences from graphical
rendering. Although this means the tracking of probe’s tip position in the point-based
interactions, the tracking of probe’s orientation has to be considered as well in the ray-
based interactions. Therefore, the detection of collisions between a line-segment model of
a haptic probe and arbitrary shaped 3D objects (i.e. convex and concave) is more
complicated and computationally more expensive than that of point-based interactions.
However, the advantages of the ray-based rendering over the point-based techniques that
are mentioned earlier were still quite appealing. I have developed a rule-based algorithm
that can successfully handle the collision conditions between a line segment model of a
haptic probe and triangular convex objects. Although the algorithm is developed to
render only convex objects at this stage, I do not consider this as a major limitation since
the concave objects can always be divided into several convex objects. The proposed

algorithm works well with convexified objects.
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In general, three types of collisions occur when a convex object is explored with a line
probe: (1) either end of the probe contacts with a polygon (we use triangles in our
implementation) of the polyhedron and the intersection is a single point (Point-Polygon,
see Figure 5-3a); (2) the probe collides with an edge of the polyhedron and the
intersection is a single point that is in between the end points of the probe (Line Segment-
Edge, see Figure 5-3b); (3) The probe comes to a position in which it is perfectly parallel
to a polygon or a set of polygons of the object and the intersection is a portion of the
probe (Line Segment-Face, see Figure 5-3c). Other types of contacts such as point-vertex,
point-edge, and line segment-vertex are very unlikely to happen and will be covered by
the three contact types mentioned above because the boundaries are included in the

definition of edge and face.

(a) (b) (©)

Figure 5-3. Possible contact conditions for the line segment-convex object interactions:
(a) the probe contacts a polygon of the object at a single point (Point-Polygon), (b) the
probe intersects an edge of the convex object at a single point (Line Segment-Edge), (c)
the probe stays on the surface of a plane constructed from a single or multiple polygons
and the intersection between the probe and the plane is either a portion or all of it (Line

Segment-Face).

In order to describe the concept more clearly for this rendering algorithm, we need to
define three types of probe: (1) real probe: the physical piece that is held by the user, (2)

virtual probe: the computational model of the probe (i.e. line segment model) that is
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defined by the tip and tail coordinates of the real probe (3) ideal probe: the ideal location
of the virtual probe that is constrained to stay on the surface when the virtual one
penetrates into an object. The ideal probe is similar to the IHIP in point-based rendering.
As we manipulate the real probe of the haptic device in the real environment, the line
segment model of the probe (i.e. virtual probe) that is defined by the end points of the
real probe is updated at each servo loop. The collisions of this line segment with the
virtual objects are then detected. Although the line segment model of the virtual probe
can be anywhere in 3D space, the movements of the ideal probe are restricted such that it
cannot penetrate into objects. The location of the ideal probe relative to the virtual one is

displayed in Figure 5-4 for each contact condition.

Ideal Equilibrium ey
point Equilibrium

point

Equilibrium

pOint .-Vinual

~" Probe

(a) (b) (c)

Figure 5-4. Location of ideal probe relative to the virtual one for the contact conditions
shown in Figure 4. Although the virtual probe can penetrate into objects, the ideal one is
restricted to stay outside the objects. During the interactions, the collisions of the virtual
probe with objects are detected and the collision information is used to calculate the
location of the ideal probe. The stretch of the spring in between the ideal and virtual
probes in the figure illustrates a method for computing force interactions between the

probe and the convex object for three different contact conditions.
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In ray-based rendering, the collision-response phase is more complicate than that in the
point-based one since we have to calculate the torques as well as the reaction forces. To
properly distribute the forces to each force feedback device, we need to know the point of
equilibrium on the ideal probe (see Figure 5-4). The net moment is computed according
to this point to distribute the forces. The location of this point on the ideal probe changes
with respect to the contact type. For example, in point-polygon collision (Figure 5-4a),
the equilibrium point coincides with the tip point of the ideal probe. On the other hand, in
line segment-face contact (Figure 5-4c), the location of this point depends on the portion
of the probe that is in contact with the surface. The details of the collision detection and

the response phases are described in the following sections.

5.2 Hierarchical Database

Similar to the point-based algorithm, the pre-processing phase is needed to develop
efficient collision detection and collision response algorithms. The function of the pre-
processing phase is to arrange the data in a way such that it can help in later computation.
In the pre-processing phase of ray-based rendering, we build, again, two types of data to
achieve faster collision detection: the hierarchical bounding-box tree and the connectivity
information between primitives. The bounding-box tree is used to determine the contact
situation between the probe and the objects when there is no contact in the previous loop.
Once a contact occurs, the connectivity information could be used to perform local search

for the up-coming loops.

The first step in the pre-processing phase is to load/create the data for each object. The
object data include the coordinates of each vertex and how the polygons are made from
these vertices. After that, we construct another type of 2D geometrical primitive: the
edges of the triangular polygons. After the addition, the polyhedral objects in our
database are made of three types of 2D geometrical primitives: polygons, edges, and

vertices. Same as the one in point-based rendering, we extend our database such that each
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primitive has a list of its neighboring primitives. Each vertex has neighboring primitives
of polygons and edges. The difference from the one in point-based rendering is that each
polygon has neighboring primitives of vertices, edges, and polygons. And each edge has
neighboring primitives of vertices, edges, and polygons. (Figures 5-5). We also compute

the normal vector of each primitive (refer to section 4.2 for details).

Polyhledron
| I }
Edge Vertex Polygon
Normal Normal l Normal
Neighbors Neighbors  Neighbors

—

Edges Polygons

| | I —
Vertices | Polygons Vertices | Polygons
Edges Edges

Figure 5-5. The connectivity information for primitives. The polyhedron representing the
object is composed of three primitives: vertex, line, and polygon. Each primitive is

associated with a normal vector and a list of its neighbors.

Another set of neighboring primitives we created in the pre-processing phase is the
possible contacted primitives (PCPs). The PCPs of a primitive are those primitives that
are likely to be contacted by the probe in the next loop when the primitive is currently
contacted. For example, if a polygon is contacted in the current loop, its neighboring
edges are likely to be contacted in the next loop. Therefore, the neighboring edges of the
polygon are in the list of PCPs. If that polygon and other polygons together form a face,
those polygons and edges that are in the same face will be in the PCPs list of the polygon,

too. As mentioned earlier, there are only three types of contact when the user uses a line
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probe to explore a convex object in real environment (see section 5.1). The vertex is not
one of the contacted primitives in the three contact situations. Therefore, the vertex is not
in the PCPs list. After adding the PCPs list to the primitives, the database will look like

the one in Figure 5-6.

Polleedron
I I ]
Edge Vertex Polygon
Normal Normal l Normal
Neighbors  Neighbors Neighbors
PCPs PCPs
Edges Polygons Edges Polygons

Figure 5-6. The connectivity information for primitives. The polyhedron representing the
object is composed of three primitives: vertex, line, and polygon. Each primitive is

associated with a normal vector, a list of its neighbors, and a list of possible contacted

primitives.

Another task performed in the pre-processing phase is creating the hierarchical bounding-
box tree for each object (Gottschalk et al., 1996). There will be two bounding-box trees
for each object in ray-based rendering. The first bounding-box tree is for polygon
primitives (refer to section 4.2 for details). The second bounding-box tree is for edge
primitives. At the top of the hierarchy is a bounding box that covers all of the edges of
the object. The edges are then separated into two groups based on their length centers.
We then create a bounding box for each group. These two new bounding boxes are
placed under the first bounding box in the hierarchical tree. We repeat the same process

to create two children for each parent at each hierarchical level of the tree until there is
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only one edge left in each bounding box. This bounding-box tree is, in fact, similar to the

one for polygons except that the primitives inside the bounding boxes are the edges.

5.3 Collision Detection

I have constrained the ray-based rendering method to handle only convex objects in order
to simplify the computations. In fact, this simplification permits us to use the local search
technique (called “Neighborhood Watch”) that is described in Chapter 4. Finding the
constrained position and orientation of the ideal probe using a localized neighborhood

search makes the rendering rate independent of the number of polygons.

In general, the collision detection phase between the virtual probe and a virtual object is
composed of two states: the probe did or did not have a collision with the object in the
previous loop. Once this state in the previous loop is known, the following steps are

followed to detect the subsequent contacts:

If there was no contact with the object in the previous cycle, we first check (1) if the
movement of end points of the virtual probe contact with any polygon of the object (see
Appendix A.5 for details), or (2) if the movement of the virtual probe crosses any edge of
the object (see Appendix A.8 for details). To speed up the collision detection
calculations, we first check if the virtual probe is inside the top most bounding box of the
hierarchical tree. If no, the checking is finished since the probe has no chance to contact
the object if it does not contact the bounding box. If so, we then check the collisions with
the bounding boxes at the second level. This process is repeated until the lowest level is
reached by progressing along one or multiple particular branches of the tree. Finally, we
check if the virtual probe collides with the primitive (i.e. polygon or edge) that is inside
the lowest level of the bounding-box tree. If either of the end points of the virtual probe
penetrates a polygon, we have a point-polygon collision. If the virtual probe crosses any

edge, we encounter line segment-edge collision.
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If there was a certain type of contact with the object in the previous cycle (i.e.
continuation of the previous contact) such as point-polygon, line segment-edge, or line
segment-face, we then study all the possible contact conditions for the upcoming loops.
For example, if the contact type in the previous cycle was point-polygon, then the
possible contact conditions for the current loop can be point-polygon, line segment-edge,
or line segment-face. Each contact condition and the possible contact conditions that may

follow it are discussed in detail below.

1. If there was a point-polygon collision in the previous loop: The first step is to update

the vector that defines the virtual probe. A line segment that connects the end points
of the real probe defines this vector (V) and its direction is from the end that was in
contact with the object in the previous loop to the other end point (see Figure 5-7).
We then calculate the dot product of V and the normal (N) of the polygon that was

contacted in the previous loop.

Figure 5-7. A point-polygon collision: In this figure, one end of the probe is already

inside the object whereas the other end point is outside the object.

If the dot product of the collided polygon normal (N) and the vector (V) is larger than
zero (i.e. if the angle between these two vectors is less than 90 degrees), we first

project the collided end point of the probe to the plane of the previously collided
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polygon (see Appendix A.1) and then check whether the projected point is still inside
the same polygon or not. If so, the type of contact condition in the current servo loop
is a point-polygon collision again (Figure 5-8a). If not, the probe could have a point-
polygon collision with a neighboring polygon (Figure 5-8b) or have a line segment-
edge collision with a neighboring edge (Figure 5-8c). If the collided end point is
above the surface containing the polygon, then there is no collision in the current

cycle.

If the dot product of (N) and (V) is smaller than zero, we encounter a line segment-

face contact (Figure 5-8d).

(b) (d)

Figure 5-8. Possible contact types following a point-polygon collision: (a) point-

polygon, (b) point-neighboring polygon, (c) line segment-edge, and (d) line segment-
face.
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2. If there is a line segment-edge collision in the previous loop: First, we find the

projection of the virtual probe on a plane which contains the previously contacted
edge and is parallel to the virtual probe (see Appendix A.4 for details). Then, we
check whether the projected probe has an intersection with the previously collided
edge or not. In addition to this check, we also define two angles (¢ and P) to describe
the collision status of probe with the edge (see Figure 5-9a). Each edge primitive in
the database has two neighboring polygons. The angle f is the angle between the first
polygon (arbitrarily chosen) and the extension of the second polygon (see Figure 5-

9a). Similarly, the angle o is the angle between the first polygon and the probe.

If the value of o is larger than zero and smaller than the value of B and the projection
of the probe (see Appendix A.4) has an intersection with the edge of the object, the
probe should still be in contact with the same edge. If the probe is above the edge,

then there is no contact.

If (1) the value of o is larger than zero and smaller than the value of 3, and (2) the
projection of the probe (see Appendix A.4) does not have an intersection with the
edge, the probe should either have a line segment-edge collision (see Figure 5-9b), a

point-polygon collision (see Figure 5-9¢), or no collision at all in the upcoming loop.

If the value of o is smaller than zero or larger than the value of B, we infer that the

probe has a line segment-face contact with a neighboring face.
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Front View

Figure 5-9. Possible collision situations following a line segment-edge contact.

. If there is a line segment-face collision in the previous loop: We have already

discussed the cases where the tip of the probe penetrates into object (point-polygon)
and the probe collides with the edge of the object (line segment-edge). However,
there is a situation, for example, where a part of the probe may be on the surface of
the object. Or, when we touch the surface of a convex object with the tip of a probe
and then rotate the probe around the contacted polygon in continuous contact: first, a
single-point contact occurs (point-polygon), then the probe becomes parallel to the
contacted surface of the object. We call the phase described in these examples as line
segment-face where the term “face” refers to the face that is constructed from the
collided polygon (i.e. since the probe lies on the surface of the object, it could be in

contact with multiple polygons). For the detection of line segment-face contact, we
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first define an angle (&) that is between the probe and the face (see Figure 5-10). We,
then check whether the projection of the probe on the plane of the face (see Appendix

A. 3) still has a collision with the face or not.

If the value of @ is smaller than a user defined small angle epsilon (set at, say, 1°)
and the projection of the probe (see Appendix A. 3) has a collision with the face, the
probe should be in contact with the same face. If the probe is above face then there is

no contact.

If the value of & is larger than epsilon and the projection of the line probe (see
Appendix A. 3) has a collision with the face, the type of contacts can be a point-
polygon (see Figure 5-11a), line segment-edge (see Figure 5-11b), or no collision at
all.

If the projection of the probe (see Appendix A. 3) does not have a collision with the
face, we trace the path of the probe and find out which direction the probe moves out
of face. Based on this direction, we determine whether the probe has a point-polygon
collision, a line segment-edge collision, or no collision at all. To determine the type
of contact, we use the direction of the movement in the following manner: (a) if the
probe moves out of the face from an edge, we check if the end points of the probe is
below the neighboring polygon of this edge. If so, then there is a point-polygon
collision (see Figure 5-12), otherwise there is no collision. (b) if the probe moves out
of the face through a vertex, we check if the probe is below any of the neighboring
edges of the vertex (see Figure 5-12). If so, then there is a line segment-edge
collision. To quickly determine the unqualified edges (i.e. a vertex can have multiple
number of neighboring edges) in which the probe cannot possibly collide, we
consider an imaginary plane. This plane contains the vertex in consideration and its
normal is determined using the closest vector from the vertex to the projected probe
(i.e. the probe is projected to the plane of face). If the neighboring edges of the vertex

are behind this imaginary plane, then we do not consider them for a possible collision.
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Figure 5-10. Line segment-face collision. The definition of the angle (&) that is

between the probe and the face is as shown on the figure.

Figure 5-11. Possible future contacts if & becomes larger than epsilon and the
projection of the line probe has a collision with the face in line segment-face contact:

(a) point-polygon, (b) line segment-edge.
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Figure 5-12. Possible contact types if the projection of the probe (see Appendix A.3)

does not have a collision with the face when there is a line segment-face contact in

the previous cycle: (a) point-polygon and (b) line segment-edge.

5.4 Collision Response

In haptic rendering, the collision response involves the computation of the ideal probe
relative to its virtual counterpart and the reaction forces/torques that arise from the
interactions with 3D objects. Although the collision response phase has been studied in
computer graphics (Baraff, 1994; Mirtch and Canny, 1995; Moore and Wilhelms, 1988),

its implementation to haptics shows some differences (Ho et al., 1999).

o The location of the ideal probe relative to the current location of the virtual probe:
The probe that is held by the user is free to move anywhere in 3D space until its
motion is constrained by force feedback or workspace boundary of the device. Since
the virtual probe is allowed to penetrate into objects for the purpose of detecting
collisions, we have to compute the location and orientation of the ideal probe for the

calculation of forces/torques (see Figure 5-13)

e Computation of forces and torques that will be displayed to the user: During haptic

interactions with virtual objects, the computer sends force commands to the haptic
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device. This prevents the user from further penetrating into the objects. The forces
and torques are computed based on the differences in the locations of the virtual and

ideal probes.

The computation of ideal probe location and the interaction force depends on the type of

contact. Each contact case is studied in detail below:

1. In point-polygon collision, we first determine the surface point on the collided
polygon that is nearest to the end point of the virtual probe. Then, the virtual probe is
projected to this nearest surface point to define the new position of the ideal probe
while keeping its orientation the same as the virtual probe. Following the projection,
the nearest surface point and the end point of the ideal probe coincides. This nearest
surface point is called as the equilibrium point in Figure 5-4a since it enables us to
compute interaction forces and torques. We assume that there is a virtual spring
between the contacted end points of the virtual and ideal probes (see Figure 5-13a).
The forces and torques are then computed based on the spring constant and the

position difference between the virtual and ideal probes (see section 4-4 for details).

2. In line segment-edge collision, we first determine the plane that contains the collided
edge and is parallel to the virtual probe. The virtual probe is projected to this plane
(see Appendix A.4) to define the new position of the ideal probe. We then compute
the intersection point of the collided edge and the ideal probe, which is called the
equilibrium point in Figure 5-4b. To compute the net interaction force, we assume
that there is a virtual spring between the virtual and ideal probes (see Figure 5-13b).
The net force is then distributed to two Phantoms to display them to the user. The
force reflected from each PHANTOM is inversely proportional with the distance from

the PHANTOoM in consideration to the collision point:

L
F‘l =—L1Fnet FZ :%Fnet (5_1)
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where, L is the total length of the stylus (L, +L,), Fand F,are the forces reflected

from PHANToM devices, and F,,is the force coming from the virtual spring.

. In line segment-face collision, a part of the ideal probe lies on the surface of the

object while the virtual one penetrates into the object. If the user rotates the probe
even slightly, the type of contact may quickly change to point-polygon or line
segment-edge. This is undesirable since it can cause instability. For this reason, the
orientation of the probe relative to the object surface (angle € in the Figure 5-10)
plays an important role in computing the equilibrium point where the net force is
acting. We first determine the contour points of the face that collides with the probe
(note that the probe intersects the contours of the face at two points which are marked
as A and B in Figure 5-13c). We then compute the distances from one end of the

probe to these points (x, and x,in the Figure 5-13c). Now, we can compute the

location of the collision point where the net force is acting as follows:

2

epsilon

L =<x‘+"2)+(60 J(’“Z‘Z) (5-2)

where, L, = L— L, and the angle @ is defined as the current orientation of the probe

relative to its ideal orientation and it varies between —8

epsilon

and &

epsilon *

In our
simulations, 6,,.,, was chosen as one degree. For example, observe the collision

response phases in Figure 5-13c: If @ is equal to € then L, becomes equal to x;

epsilon ?

and equilibrium point moves to the point A and the contact phase switches to line

segment-edge. Similarly, if € is equal to —0,,,,,, then L, becomes equal to x,. The
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equilibrium point moves to the point B and contact phase switches to line segment-

edge. For 6 between —0, and 6

epsilon

L, will have a value between x, and x,.

epsilon *

Following the computation of L, and L,, the force that will be reflected from each

PHANTOM can be easily determined using Eq. (5-1).

(a) (b) " ©)

Figure 5-13. The collision response for ray-based haptic rendering: The ideal location
of the probe is determined based on the type of collision (i.e. point-polygon, line
segment-edge, or line segment-face). In the figure, dashed and solid lines represent

the virtual and ideal probes respectively

In the computations above, the net torque from the two PHANToM  is equal to zero since
the collision is described for a single object. However, the user may feel torques as well
as the forces when there are multiple objects to interact in the scene and the movement of
the probe is constrained. For example, if there are two convex objects and the user

attempts to touch both of them at the same time as it is schematically described in Figure

63



st

5-14 and illustrated in an example in Figure 5-15, certain amount of torque and force will

be felt. The net force ( F,,,) that will be reflected to the user’s hand under this situation

will be the vector summation of the forces F“and F” (see Figure 5-14). The net torque

acting on the user’s hand is computed as

T, =Fr*+F’"° (5-3)

The component of the force F® that will be reflected from PHANToM-1 and
PHANTOM-2 can be computed using the Equation (5-1) as:

a a Ll_ra a
F Ff = F 5-4
L 2 L S

Figure 5-14. Computation of interaction forces/torques when the line probe interacts with

two virtual objects: The forces are distributed to the PHANToMs based on the net force

and moment principles.




Similarly, the force F? is distributed between the two Phantom devices as:

_ b b
L2 r Fb sz — _IL*.L_Fb (5_5)

F' =
L L

Figure 5-15. The floating dumbbells: The user can touch, explore, and manipulate two

dumbbells at the same time with a single probe using the ray-based rendering technique.

5.5 An Experiment on the Haptic Perception of 3D Objects: Ray-based

versus Point-based Interactions

In order to compare the effectiveness of the ray-based haptic rendering algorithm over the
existing point-based rendering techniques in perceiving the shape of 3D objects, 1
designed and conducted a perceptual experiment. A total of 7 subjects participated in the
experiment. Subjects were asked to identify the shape of 3D objects as quickly as
possible using haptic cues only (i.e. no visual feedback was provided to the subjects).
Four primitive objects (i.e. sphere, cone, cylinder, and cube), rendered either with the
point-based or the ray-based technique, were randomly displayed to the subjects, one at a
time, in various orientations. Each subject repeated the experiment for 304 times (i.e.
each object was displayed for 76 times) under each of the two different conditions for
haptic interactions (i.e. point-based versus ray-based). We measured the total time taken

to identify an object for each subject and then compared the results for point-based versus
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ray-based rendering conditions. The results indicate that haptic perception of 3D objects
with the ray-based technique is faster than the point-based for the cone and cube (see
Figure 5-16). This is likely to be because (a) the sphere and cylinder can be efficiently
identified solely by exploring them with the probe tip and (b) the cone and cube can be

identified faster when side collision with the probe are rendered.
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Figure 5-16. Comparison of the point- and ray-based rendering techniques: The use of
the ray-based technique leads to a faster perception of cone and cube (on the average,
22% and 11% faster than point-based respectively). However, there were no significant

differences for the sphere and cylinder.

5.6 Conclusions

In this chapter, I have presented a ray-based rendering technique for simulating the haptic
interactions between the end effector (i.e. probe) of a haptic interface and 3D virtual

objects. As compared to the point-based approaches that model the probe as a single
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point, the ray-based rendering technique models the probe as a line segment. Although
the point-based approach simplifies the computations, it only enables the user to feel net
forces. The ray-based rendering technique provides the user with torques in addition to
the forces, both of which are essential in simulating tool-object interactions. Moreover, as
the experimental study demonstrates, the haptic perception of some 3D objects using the
ray-based rendering technique is better than the existing point-based techniques when
there are no visual cues available. Although the ray-based rendering algorithm proposed
in this chapter works with convex polyhedral objects only, it can also handle concave

objects if they are represented as a combination of multiple convex objects. I have, for

example, successfully rendered convexified 3D objects using the ray-based rendering

technique (see Figures 5-15, 5-17, and 5-18).

Figure 5-17. The flying concave rocket: The ray-based rendering technique has been
used to manipulate a rocket with concave parts that have been sub-divided into multiple

convex parts.

The ray-based rendering algorithm can be superior to the point-based techniques in many
applications. If we need to explore an interior surface of an object where visual cues are
limited or if the interaction torques are important in executing a task as in assembly
planning and design, we can take advantage of the ray-based rendering. Moreover, the
ray-based rendering can be considered as an intermediate stage in progress towards the

full 6-dof haptic rendering. Since modeling of the haptic interactions between arbitrary
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shaped 3D objects is computationally too expeﬁsive (especially in interacting with
dynamical or deformable objects with a 3D haptic probe), an intermediate step for
rendering both forces and torques will be helpful. For example, the computational model
of a 3D mechanical tool can be easily constructed from a few line segments to achieve
faster haptic rendering rates (see Figure 5-18a). I have achieved real time update rates for
rendering dynamical and deformable objects using the ray-based rendering which would

not be possible if full 3D object-object interactions were considered (see Figure 5-18b).

b

Figure 5-18. (a) Haptic Interactions between a mechanical tool and an engine block were
simulated using the ray-based rendering technique. The engine block is made of convex
objects and the mechanical tool is modeled as two line segments shown in white. (b)
Haptic interactions between surgical instruments and flexible objects were simulated
using the ray-based technique. The computational model of the surgical instrument seen

in the figure consists of the three white line segments.
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Chapter 6

Haptic Display of Object Properties

When we explore objects in the real world, we seldom contact smooth, frictionless, rigid
surfaces. Therefore, in addition to the shape of objects, material property is another
important factor that could increase naturalness of VEs. The material properties could be
separated into three sub-areas: surface properties, dynamics, and compliance. In my
simulations, surface properties are separated into two different categories: texture and
friction. From a computational viewpoint, texture is the geometry that is too expensive to
be represented as shape. Both friction and texture can be simulated by appropriate
perturbations of the reflected forces. The major difference between the friction and the
texture simulation via a haptic device is that the friction model creates only lateral forces

and the texture model modifies both the lateral and normal forces.

The simulation of static and dynamic friction gives users the feeling as if they are
stroking over the surface of sandpaper (Salisbury et al, 1995). By changing the mean
value of friction coefficient and its variation, we can efficiently simulate various surfaces
(Siira and Pai, 1996, Green and Salisbury, 1997). Textures can be simulated simply by
mapping bumps and cavities onto the surface of objects. Minsky (1995) presented a
method to simulate 2D haptic textures by perturbing the direction of reaction force. In
contrast to the simulation of surface properties that add roughness to a smooth surface,
force shading technique (Morgenbesser and Srinivasan, 1996, Basdogan, Ho, and

Srinivasan, 1997, Ruspini, Kolarov, and Khatib, 1997) eliminates the surface roughness.

69




When the objects are represented as polyhedron, the surface normal and the force
magnitude are usually discontinuous at the edges. By using force-shading technique, we
can reduce the force discontinuities and make the edges of polyhedral object feel

smoother.

Since an environment with moveable objects could always attract people’s attention better
than the one with only static objects, adding dynamic behavior to the VEs is another
important factor in creating realistic VEs. Also, since many objects we encounter in our
real life are compliant, the techniques that could render compliant virtual objects are also
very important in improving the VEs. In this chapter, I first present the details of force-
shading technique in section 6.1. The method to simulate frictions is presented in section
6.2. In section 6.3, I presented the techniques to add haptic textures to the virtual objects.
The techniques to rendering dynamic and compliant objects are described in section 6.4
and 6.5, respectively. The conclusions are presented in section 6.6. It should be noted
here that the techniques to render surface properties described in this chapter are for point
contact only. They could be combined perfectly with the point-based algorithms.
However, in the case with ray-based algorithm, they should be used only when the probe
tip is contacting the objects. The techniques for rendering dynamic and compliant objects

are for both point-based and ray-based algorithms.

6.1 Force Shading

During haptic rendering, we can compute the point of contact and retrieve information
about the contacted primitive from the database using the haptic interaction paradigms
mentioned earlier. The first step in calculating the shaded force is to find the shaded
surface normal. To compute the shaded normal, we need to consider only the vertex
normals of the original surface. If the contacted primitive is a vertex, the normal of the
vertex is used directly as the normal of the collision point. If the contacted primitive is a

line, the normal at the collision point is the average of the normal of the line’s two

70




neighboring vertices, weighted by the inverse of the distance from the collision point to
the vertices. If the contacted primitive is a polygon, since our objects are made of
triangles, the collision point will divide the collided triangle into three sub-triangles (see

Figure 6-1). We then calculate the normal (N,) at the collision point by averaging the
normals of the vertices (N ;) of the contacted polygon, weighted by the areas A; of the

three sub-triangles (Equation 6-1).

3
I AN, (6-1)

3

Figure 6-1. The collision point (IHIP) divides the collided triangle into three sub-
triangles. The point in the center is the collision point. Points 1, 2, and 3 are the three

vertices of the triangle. N,’s are the normals of the vertices. 4;’s are the areas of sub-

triangles. N, is the normal at the collision point.

After the interpolation, the normal vector will become continuous across the whole
surface. When the probe contacts the surface and strokes over the surface, the change of
the surface normal along the stroking path will be continuous, too (see Figure 6-2). Once
the shaded normal is available, we change the interacting force to be in the same direction

as the shaded normal at the contact point (the magnitude of the force is still kept the

same).
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Figure 6-2. When the probe contacts the surface and strokes over the surface, the change

of the surface normal along the stroking path will be continuous after the interpolation.

Although the interpolation of the vertex normals makes the normal vector N, continuous

at the edges, user can still feel the existence of the edges because of the discontinuities in
the force magnitude (due to limited position tracking ability of the user, the depth of
penetration is not held constant while the operator moves the probe of a haptic device
from the surface of one polygon to another to explore the shape of a polyhedron). To
minimize this problem, we project the HIP to the object surface along the direction of
interpolated normal vector ( N ). The distance between the projected HIP and the current
HIP is then used to determine the magnitude of the force (see Figure 6-3). This method
works well when the penetration of HIP is small compared to the size of the polygon. If
the penetration depth is larger than the length of the edge of the contacted polygon, the
users can still feel the existence of the edges. Force shading should be implemented
appropriately depending on the geometry of the object that is being represented. It should
be turned on to minimize the effects of artificial edges created by the polygonal
representation. It should be turned off where the objects has natural edges (e.g. the force

shading technique should be used to smooth the lateral surfaces of a circular cylinder

made of polygons and not for the flat ends).
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Figure 6-3. The direction and magnitude of force with force-shading technique. Before
applying force shading, the vector from HIP to IHIP is used to determine the force. After
applying the force shading technique, the vector from HIP to the projected HIP is used to

compute the force.

6.2 Friction

As mentioned earlier, we can simulate friction by adding a lateral force vector to the
normal force vector. We extended the friction model proposed by Salcudean and Vlaar
(1994) and Salisbury et al. (1995) to simulate various types of bumpy frictional surfaces
by changing the static and dynamic friction coefficients at different spatial locations and
to improve the perception of object surfaces. We can simulate static and dynamic friction
such that the user feels the stick-slip phenomenon when he/she strokes the stylus of a

haptic device over the object surface.

In my model, there are two types of friction states: sticking and sliding. During the
sticking and sliding states, the static and dynamic friction coefficients are used
respectively. When the first collision is detected, the contacted point is stored as the
sticking point and the friction state is set as the sticking state. When the users move the

HIP, a tangential resistive force is applied to the user. The magnitude of the tangential
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force is decided by the linear elastic law (F, = k,x, where k,is proportional to the static

friction coefficient and x is the vector from the IHIP to the sticking point) (see Figure 6-
4). If the tangential force is larger than the allowable static friction force (the normal
force times the static friction coefficient), the friction state is changed to sliding state and
the sticking point is updated and moved to a new location. The location of the new
sticking point is on the line between the old sticking point and the THIP. The distance
from the IHIP to the new sticking point is calculated using the inverse of linear elastic

law (x=F, /k,, where k,is proportional to the dynamic friction coefficient, F; is the

friction force which is equal to the normal force times the dynamic friction coefficient). It

should be noted that k, is smaller than k,, as is the case for real objects. Unlike the

method described in Salisbury et al. (1995), we keep the state in the sliding state, instead
of switching to the sticking state, following the movement of sticking point. The reason is
that if we change back to sticking state right after the movement of sticking point, we
observed that the feeling of dynamic friction is lost. In the next iteration, we calculate the
tangential force (F, =k,x). If this force is larger than the dynamic friction force (the
normal force times the dynamic friction coefficient), we know that the user intends to
keep moving the HIP in the same direction and, therefore, we keep the state in the sliding
state and use the method mentioned above to move the sticking point to a new position.

However, if the force (F,) is smaller than the dynamic friction force, meaning that the

user has stopped moving in the same direction, we change the state to sticking state and
do not update the position of the sticking point. The computation of frictional force is

done continuously as long as the HIP is inside the object.

Uniform friction all over the object surface is created when the static and dynamic
friction coefficients are constant and independent of the position. We can also create
periodic frictional surfaces by varying the static and dynamic friction coefficients at
different locations. More sophisticated surfaces can be simulated by changing the

distribution of the friction coefficients. Green and Salisbury (1997) have shown that
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various grades of sandpaper can be simulated well by modifying the mean and variance

of the friction coefficient.

THIP Sticking Point
T \
<
HIP

Figure 6-4. Description of the friction model. In addition to HIP and IHIP, a sticking

point is created in this model. As shown in the figure, when the HIP and IHIP move

towards left, the sticking point will cause a force to pull the IHIP to the right side.

6.3 Texture

Texturing techniques can be used to add roughness to a smooth surface. Similar to the
role of textures in computer graphics, haptic textures can add complexity and realism to
the existing geometry. Texturing techniques reduce the load on the geometry pipeline
since they reduce the need for expressing texture geometry explicitly. In computer
graphics, the final goal of the texturing computations is to decide the color in each pixel.
Similarly, the final goal in haptic texturing is to decide the direction and magnitude of the
force that will be reflected to the user. In order to simulate haptic textures, we need to
know IHIP, HIP, and the height field that will be mapped to the surface. How to compute
IHIP and HIP has already been described in Chapter 4, and how to map the height field

over the object surfaces to simulate textures will be described in this section.

6.3.1 Magnitude of Force
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When there is no texture on the surface, we can use the elastic law to decide the
magnitude of the force based on the depth of penetration. When a height field is mapped
over the surface to simulate haptic textures, the geometry of the surface will be changed,
which, in turn, will change the depth of penetration. To correctly change the force, we
simply need to add the texture height at IHIP to the depth of penetration. We choose the
height value at THIP instead of HIP because IHIP is the simulated contact point and is the
point that stays on the surface of the object. If we use the height value at HIP, different
penetration depths will have different height values, although the contact point is the

same.

One other situation that has to be taken into account in texture display is the collision
state. Adding a texture field over a surface may change the collision state from no
collision to collision or vice versa when the probe is stroked over the textured surface
(see Figure 6-5). There may be a collision between the HIP and the texture-mapped

surface even when there exists no collision between the HIP and the original surface.

Te:fture mapped
1 Surface
Original Surface A/\ :: /\
/e ld \/ K
HIP
(@
il /N AN
7/
77777, //z/{ﬁg/// / o/ 1o, \
(b)

Figure 6-5. Collision situations may change after texture mapping. The original surface

and the surface after texture mapping are shown in (a). In (b), there is no collision
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between HIP; and the original surface before the texture is mapped, but collision occurs

after the texture mapping. The situation is the opposite for HIP,.

To handle all such cases, we compute the “nearest distance” to HIP at each iteration using
the following rules. If there is a collision with the original surface, the nearest point to the
HIP is IHIP and the “nearest distance” is the distance between the IHIP and HIP. Since
the HIP is below the contacted geometric primitive, we consider its value as negative. If
there is no collision between the HIP and the primitive, the “nearest distance” is the
distance between the HIP (the HIP is above the surface in this case) and the primitive and
its value is positive. With the definition of “nearest distance” concept, we can easily
check the collision status: the collision with textured surface actually happens only when
the “nearest distance” is less than the height value at the nearest point on the original
surface. Note that the height value could be positive or negative relative to the original
object surface. We can define the depth of penetration to be the height value at the
nearest point minus the “nearest distance”. If this depth of penetration is negative, it is set
to zero. The magnitude of the force is then calculated based on the depth of penetration

and the mechanistic law that governs the interactions.

6.3.2 Direction of Force

To decide the direction of the force in the haptic display of texture, we modify the “bump
mapping” technique of computer graphics. Bump mapping (Blinn, 1978) is a well known
graphical technique for generating the appearance of a non-smooth surface by perturbing
the surface normals. In haptics, if we perturb the direction of the force, we can also
generate a similar effect that makes the users feel that there are bumps on the smooth
surface. The first step in deciding the direction of force is to determine the direction of
the surface normal. For graphics, Max and Becker (1994) improved the original bump

mapping technique and suggested a direct method of mapping that does not require a
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transformation from global to parametric space. They developed a formulation that is
purely based on the original surface normal and the local gradient of the height field that
generates bumps on the surface of the object. Max and Becker utilized this technique to
generate bumps to simulate clouds graphically. We used the same approach to calculate

the perturbed surface normals (47 ).

M=N,-Vh+(Vh.N)N, (6-2)
Vh =%{+%}- 4%12 (6-3)

where, M represents the normal of the surface after texture mapping, h(x,y,z) represents

the height (texture) field function and Vr is the local gradient vector, N, represents the

unperturbed surface normal at the collision point.

The most intuitive way of deciding the direction of the force is to use the perturbed
surface normal (#7) as the force direction. Indeed, our experience shows that this can
give the users very good feeling of texture for most of the cases. However, if the
amplitude and spatial frequency of the texture are very high and the force applied by the
user to explore the surface is very large, the haptic device will become unstable due to
sudden changes in the force magnitude and direction when this algorithm is used. The
reason for the instability is that the magnitude and direction of the force change abruptly
with only a small change in position. To eliminate the force instability, we modify the
approach slightly and use the normal of the original surface along with the perturbed

surface normal to calculate the direction.

F=(d-Kh)N, + KhM if 4> Kh (6-4a)

F=dM if d <Kh  (6-4b)

where, F represents the force that will be displayed to the users, d represents the

magnitude of the penetration, N, represents the normal of the original surface, M
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represents the perturbed surface normal, K is a scalar that depends on the properties of
the texture, h is the height of the texture. From the equations (Equation 6-4a and 6-4b),
we observe that the force will be in the same direction as the perturbed surface normal #
when the penetration is small (i.e., the magnitude of the force is small) compared to the
height of the texture. This is same as bump mapping approach. However, if the force is
large, only a small amount (the Kh term in Equation 6-4a) of the force is perturbed and
the remaining amount will still be along the original surface normal. This modification
will make the interactions with fine textures more stable (In our experience with
PHANTOoM force feedback device, the simulation gives the best results when the value of
K is between 1 and 2. If the simulated texture is very smooth, K should be set to 2. If the

changes in texture gradient are sharp, then K should be set to 1 or even smaller).

6.3.3 Height Field of Textures

In order to apply the proposed texturing techniques, textures must be C® and C'
continuous (Foley et al., 1995). The simulation has the best effect if the height and the

wavelength (i.e., the inverse of the spatial frequency) of the texture are of the same order.

Taking these constraints into account, we have ported several texturing techniques of
computer graphics to simulate haptic textures. The haptic texturing techniques can be

classified into two parts: (a) image-based and (b) procedural.

Image-based haptic texturing: This class of haptic texturing constructs a texture field
from a 2D image data (see Figure 6-6). In computer graphics, the digital images are
wrapped around 3D objects to make them look more realistic. The graphical texture map
consists of texels with only 2D color or gray scale intensities, whereas the haptic texture

map consists of texels with a height value (Basdogan, Ho, and Srinivasan, 1997).

The first step to create image-based haptic texture is to map the digitized image to the 3D
polygonal object. We use the two-stage texture mapping techniques of computer graphics

(Bier and Sloan, 1986; Watt and Watt, 1992) to map the 2D image to the surface of 3D
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objects. The first stage is to map the 2D image to a simple intermediate surface such as
plane, cube, cylinder, or sphere. The second stage maps the texture from the intermediate
surface to the object surface. After this two-stage mapping, we can obtain the height
value for any point on the object surface (see Basdogan, Ho, and Srinivasan, 1997 for

implementation details).

After the mapping, the only information we need to create the haptic texture is the
gradient of the height field at the IHIP. The gradient of the height could be computed

using the central difference approximation for partial derivatives:

é _ (hx+£ — hx~5)

K 2¢

h _ (hy+€ _hy—l:‘)

EREY ©-5)
i"_ - (hyp—h,_)

% 2¢

Vh:%f+%}+%l€ (6-6)

where (X, y, z) represents the coordinate of the collision point and € is a small parameter.
To compute the gradient at the IHIP, we estimate the height values that are € distance
away from the IHIP along the coordinate axes. Texture heights can be estimated at these
points using the two-stage mapping technique (Basdogan, Ho, and Srinivasan, 1997). For

example, h,,, represents the estimated height value at the point (x+€, y, z). Once the

local gradient is known, it can be used to perturb the surface normal at the collision point
for simulating image-based textures. Note that all the texture values indicated here are

filtered values because of the need for C° and C! continuity.

80



Figure 6-6. An example of image-based texture mapping. (a) The original image that is
going to be mapped to the object. (b) The original object without texture mapping. (c)
The object after the texture mapping.

(b) Procedural haptic texturing: The goal of procedural haptic texturing is to generate

synthetic textures using mathematical functions(see Figure 6-7). Generally speaking, it is
much more straightforward to obtain the height value and the gradient of height in this
approach. The function usually takes the coordinate (x,y,z) as the input and returns the
height value and its gradient as the outputs. For example, we have implemented the well-
known noise texture (Perlin, 1985; Ebert et al. 1994) to generate stochastic haptic
textures. Fractals are also suggested for modeling natural textures since many natural
objects seem to exhibit self-similarity (Mandelbrot, 1982). We have used the fractal
concept in combination with the texturing functions mentioned above (e.g. Fourier series,
noise) with different frequency and amplitude scales (Ebert et al. 1994) to generate more
sophisticated surface details. Other texturing techniques suggested in computer graphics
can also be ported to generate haptic textures. For example, we have implemented haptic
versions of reaction-diffusion textures (Turk, 1991, Witkin and Kass, 1991), the spot
noise (Wijk, 1991), and cellular texture (Worley, 1996, Fleischer et al., 1995).
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Figure 6-7. An example of procedure-based texture mapping. (a) The height field
function of the texture. (b) The original object without texture mapping. (c) The object

after the texture mapping.

6.4 Dynamics

Adding dynamic behavior to virtual objects could add dramatic fun and usefulness to the
VEs. To simulate dynamic behavior, the first step is to attach a transformation matrix to
each object. The transformation matrix contains the translation and rotation information
of the object that it is attached to. When an object moves to a new location, we change
only the transformation matrix, instead of changing the coordinates of all vertices of the

object.

When checking collision between the object and the probe, we first use the inverse of the
transformation matrix of the object to transform the probe from world coordinate to the
object’s local coordinate. We, then, check the collision in the local coordinate. Once the
contact point and the interaction force are computed, we use the transformation matrix to
transform them back to the world coordinate. In this way, we can save a lot of

computational time in updating the object’s coordinates.

The behavior of objects is governed by the equations of the motion. When an object is
contacted by the probe or by other objects, we compute the contact point and the contact
force in world coordinate. Once the contact point and the contact force are available, we

can use them and object properties (such as the mass, inertia matrix, and mass center) to

82



form the equations of the motion. The equations of the motion is then solved using the
Euler integration technique and the location of the object is updated every iteration. In
this way, the VEs could allow the user to manipulate the objects and change their position
or orientation dynamically via the end-effector of the haptic device. Figure 6-8 is an

example of simulation of dynamic object using point probe. Figure 5-15 and Figure 5-17

are examples of simulation of dynamic objects using ray probe.

Figure 6-8. Haptic rendering of a dynamic object. The small dark dot represents the point
probe. The user moves the probe from the right side to contact the banana. After the

contact, the banana changes its position and orientation.

6.5 Compliance

It is very difficult to simulate physical-based deformable objects in haptic VEs due to the
requirement of fast update rate. The finite element method (FEM) is a popular and
available way to compute the physical-based behavior of a deformable object. However,
it is computational too expensive for haptic rendering at this stage. The computation of
the deformable behavior of an object is in the research area of material modeling. In this
section, I am not trying to present another method of material modeling. Instead, I present

the software structure that is good for simulating deformable objects in haptic VEs.
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In section 3-2, I have presented software structures to simulate rigid objects for haptic
VEs. Since a huge amount of data needs to be changed when simulating deformable
objects, the two-threading technique is more appropriate than the two-processing
technique when simulate deformable objects. The new software structure for simulating
deformable object is shown in Figure 6-9. Compared to the one described in section 3-2,
the modeling calculation is the new component in the software structure. It should be
noted that the addition of the modeling computation would not affect the haptic rendering
or the graphic rendering. The modeling computation is a separated loop. It could use
different methods in calculating the new shape of the objects, as long as those methods
are fast enough. If the objects are rigid, we could delete the modeling calculation loop

and the software structure will change back to the one in section 3-2.

. haptic e e
i interface l

(@ (b) ©

Figure 6-9. The software structure for simulating deformable objects in haptic VEs. (a)

haptic rendering, (b) modeling computation, and (c) graphic rendering.
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One of the easy ways to change the shape of an object is to deform it locally. Deforming
an object locally is not a physical-based method. However, the advantage is that it is fast
in computation. Also, since the human kinesthetic resolution is not very good, the users
usually could not differentiate the difference between the real one and the fake one.
Therefore, the local deformation is usually good enough and could convince the users

that they are deforming an object.

To deform an object locally, the first step is to get the contact point and the penetration
depth. This information is usually available from the results of haptic interaction
paradigms (see chapter 4 and chapter 5). Once the contact point is available, the vertices
of the contacted object that are in the close vicinity of the contact point are moved along
the direction of penetration vector. A simple polynomial function could be used in
deciding how much the vertex is going to be moved. The picture in Figure 6-10 shows an
example of modeling computation using local deformation. In this example, I defined an
affecting radius R. The affecting radius R defines the size of the area that is going to be

deformed. When the probe contacts the object, we can get the contact point Pt and the

penetration vector P from the haptic interaction paradigms. Then, we compute the
distance Di between each vertex Vi of the object to the contact point Pr. If the distance Di
between the vertex Vi and the contact point Pt is less than R, the vertex Vi is going to be

R-Di

moved and the movement will be ( )13. In this way, we can create a smooth

deformation. To reduce the computation, we can create a neighbor list for each vertex
during the pre-processing phase. The neighbor list of a vertex will contain all the vertices
whose distance to the vertex is less than R. In this way, we can reduce the computational
time in finding the vertices that is going to be deformed. More methods on material

modeling are described in section 7.7.
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Figure 6-10. Haptic rendering of a deformable object. The small dark dot in the figure
represents the probe. The original shape of the object is like a sphere. When the probe
penetrates the surface of the object, the vertices of the object will be moved along the

direction of penetration.

6.6 Conclusions

In this chapter, I have presented a couple of object property display algorithms to
rendering material properties. These techniques all work with the haptic interaction
paradigms described in chapter 4 and chapter 5. By combining the haptic interaction
paradigms and these object property display algorithms, we can create versatile realistic
3D objects with various material properties. Different object property display algorithms
could also be combined. For example, the friction, texture, and dynamic rendering
algorithms could work together to create a moveable, frictional, and textured object. It
should be noted that the force shading and the texturing algorithms should not work
together since they are both used to change the shape of the objects. Any other

combination of object property display algorithms will work well with each other.
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Chapter 7

Application-Simulation of a Medical Process

7.1 Introduction

Human hand is a very versatile organ. People rely very much on their hands to explore
and manipulate objects in the real world. Through haptic sensations, human beings are
able to obtain information and then control the environment. In many situations, the
interactions are very simple and it is easy to complete the tasks. However, there are many
circumstances, for instance, navigating an airplane or dissecting human tissues during
surgery, in which haptic sensations are critical for success. In such cases, where failure
can be expensive or life-threatening, training is essential. The advantages of training in
haptic virtual environments include: (1) it offers a consistent environment, (2) it offers
unlimited opportunity to practice, and (3) it is cost effective. They are some of the
reasons why the development of haptic VEs has become a popular research topic in

recent years.

From chapter 3 through chapter 6, I have presented different techniques for haptic
interaction and display of object properties in VEs. I have combined these techniques to
build an initial demonstration of a surgical simulator, which when fully developed could

help laparoscopic surgeons to practice specific medical procedures.

In the following section, an introduction to laparoscopic surgery is given. In section 7.3

the reasons why laparoscopic surgeons are in need of a trainer are discussed. In section
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7.4, the specific procedure to be simulated is presented. The hardware setup of the
simulator is presented in section 7.5. The software structure and how I implement the
environment are described in section 7.6. The modeling methods for different deformable

objects are presented in section7.7. The results are presented in section 7.8.

7.2 Laparoscopic Surgery

Laparoscopy has been used in a range of medical procedures since the early sixties.
However, it was not applicable in surgery until the development of the clip appliers,
which is required during a surgical procedure to clip off blood vessels. Major advantages
of laparoscopic surgery to the patient are short hospital stay, short recovering time, less
pain, and less scarring after the surgery. Moreover, it is cost effective. Because of the
benefits associated with laparoscopic surgery, surgeons and their patients prefer it to the
open surgery. Some of the most common laparoscopic procedures include
cholecystectomies, appendectomies, and hernia repair. It is expected that more
laparoscopic techniques will be developed in the near future as the instruments get
smaller and more dexterous. It is a general trend that more surgical procedures will be
performed laparoscopically. Researchers estimated that 60 to 80 percent of abdominal

surgeries will be performed laparoscopically by the year 2000.

To perform a typical laparoscopic surgery, the patient is first placed under general
anesthesia. The surgeon then uses narrow, tube like instruments called trocars to create a
couple of holes on the abdomen. These trocars allow miniature surgical instruments at the
end of long tools to access to the abdominal cavity. After that, A miniature camera is
inserted through the trocar. The camera projects a clear magnified image of the patient’s
internal organs on a video monitor, which provides the surgeon a view of the insides of
the abdomen as he proceeds with the surgery. Carbon dioxide gas is used to inflate the
abdomen to help the surgeon see better and to expand the workspace. During the surgery,

several miniature surgical instruments such as a scissors, clipping tool, and grasper are
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inserted through the trocars to perform the necessary haptic actions on the organs (see

O
¢

Figure 7-1 and Figure 7-2).

Figure 7-1. The setting of the operating room for a typical laparoscopic surgery. A
couple of instruments are inserted through trocars to access to the internal organs. The

screen of the monitor shows the view of the inside of the abdomen.
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Figure 7-2. An example setup of the trocars and camera for a laparoscopic surgery.

Cholecystectomy is one of the most commonly performed laparoscopic procedures in the
United States. The cholecystectomy is the surgical removal of the gallbladder. The
surgery is done to get rid of problems associated with gallbladder diseases, such as
gallstones and infections in the gallbladder. The gallbladder is a pear-shaped sac found on
the liver (see Figure 7-3 and Figure 7-4). It is about 8cm long and its purpose is to store
bile that is released by the liver. The bile helps in digesting fat. Gallstones are made out
of cholesterol, bile salts, calcium and bilirubin. Gallstones usually stay in our gallbladder
without causing problems. However, if they block the outlet of the gallbladder, it would
cause pain in the abdomen. Occasionally, these stones can come out of the gallbladder,
causing jaundice or inflammation of the pancreas. Sometimes very small stones grow in

the bile ducts, which are the tubes that take bile to the intestines. During a
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cholecystectomy, the surgeon inspects the bile ducts and may x-ray them or examine
them with a special instrument in search of gallstones. If stones are found in the common
bile duct, they will be removed. In the past, patients were hospitalized for about seven
days after having undergone such a procedure and usually spent another six weeks
recovering at home. The laparoscopic technique makes it possible for most patients to go
home the day after surgery and resume normal activities within a very short time.
Gallstones and gallbladder disease affect approximately one out of ten people in the
United States. It is estimated that more than 90% of gallbladder patients can be treated

successfully by the laparoscopic method.

Liver

Stomach
Gallbladder

Cystic duct

Common bile duct Hepatic duct

Figure 7-3. Anatomy of the gallbladder. The gallbladder is a pear-shaped sac found on
the liver. It is about 8cm long and its purpose is to store bile that is released by the liver.

The bile duct takes the bile to the intestines to help in digesting fat.
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Figure 7-4. An image of a cholecystectomy. The surgery is done to get rid of problems

associated with gallbladder disease, such as gallstones and infections in the gallbladder.

Removing the gallstones from the bile duct is an important procedure in
cholecystectomy. Multiple steps are followed to clean up the small stones. First, the
cystic duct is dissected and a clip is placed at the junction of the infundibulum of the
gallbladder with the cystic duct. A needle is inserted directly through the abdominal wall
such that the catheter will naturally point towards the operative site. A catheter attached
to a syringe of saline is flushed to remove bubbles, and inserted through the needle. With
an instrument behind the cystic duct to stabilize it, microscissors is used to incise the
cystic duct. The catheter is then carefully inserted into the duct (see Figure 7-5). A
special instrument can then be inserted through the catheter to go inside the bile duct to

clean gallstones.

The major risks associated with the laparoscopic cholecystectomy during the operation
are injury to abdominal organs from the laparoscopic insertion and injury to the bile duct
that could require major reconstructive procedures. Other possible risks include bleeding,
clipping impingement, leakage of bile from the bile ducts into the abdomen, and

misidentification of common bile duct as the cystic duct.
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Figure 7-5. A catheter is inserted into the cystic duct for common bile duct exploration.

7.3 The Need for a Training System

As described above, in laparoscopic surgeries, surgeon uses a small video camera and a
few customized instruments to perform surgery. The camera and instruments are inserted
into the abdomen or chest through small skin incisions that enable the surgeon to explore
the internal cavity without the need of making large openings. However, the surgeons are
handicapped by limitations of the current laparoscopic technology in comparison to
traditional open surgery. The laparoscopic surgeons face four main types of problems.
First, the visualization of the internal organs can be achieved only by means of a camera
places inside the body. Therefore, the vision is monoscopic and is limited by the field of
view of laparoscope. Second, hand-eye coordination is a problem since the monitor
reflects the mirror images of the actual hand movements and the anatomical landmarks.
Third, the tactile sensing and force-feedback cues to the surgeons are substantially
reduced since the instruments that interact with internal organs have to go through a long
thin tube. Fourth, the movement of the instruments is constrained since they have to pass
through the trocars, which can only rotate about a fixed point. The instrument cannot

have a translation perpendicular to the long axis of the trocar.

While learning laparoscopic procedures, the trainees watch senior surgeons performing

them first. Then, they start by performing simple tasks under the guidance of senior
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surgeons. It usually takes several months for the trainees to learn a procedure. Therefore
it is necessary to find new training approaches or develop new devices to reduce the

training time and reduce the risks related to the training process.

7.4 Selection of a Laparoscopic Procedure for Simulation

An important component of a cholecystectomy is the proper insertion of a flexible
catheter (about 2-3 mm in diameter) into the cystic duct of (about 8-10 mm in diameter).
Due to the limited visual and haptic cues and the small size of the catheter, this is not an
easy task to perform for a junior level surgical resident. If a catheter is not inserted
properly, it may cause the bile to come out or even damage the bile duct. To learn this
procedure, the surgical residents usually practice on a simple training system first. The
training system includes a laparoscopic training box, two laparoscopic tools, a camera,
and several other objects such as a pen, needle, tube, and wire (see Figure 7-6). For
example, they might practice inserting a wire into a tube guided by the view from the

camera (see Figure 7-7).
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Figure 7-6. A system to practicing the skill for inserting a catheter into the bile duct. The
training system includes a laparoscopic training box, two laparoscopic tools, and a
camera. Inside the box, objects such as a pen, needle, tube, and wire are used for

practicing manual and hand-eye coordination skills.

Figure 7-7. Using the training system shown in Figure 7-6, surgeons can practice

inserting a wire into the tube guided by the view from the camera.
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The purpose of our simulator is to improve this training stage by providing the user with
more realistic environment. We selected the simulation of catheter insertion into the
cystic duct based on a couple of reasons. First, the cholecystectomy is one of the most
commonly performed laparoscopic surgeries in the United States and the insertion of
catheter is a very important component of a cholecystectomy. Second, the current system
in training catheter insertion is not realistic and can be improved by using haptic VEs.
Third, it is possible to develop such a training system using haptic VEs with the
techniques available today. The simulator could serve to verify the usefulness of the
algorithms developed in this research. From the technical point of view, the development
of such a part task simulator is also quite challenging since it needs to simulate the

interaction between two deformable objects in VEs with both visual and haptic feedback.

Training the catheter insertion in haptic virtual environments has many advantages. First,
the simulator could help in improving the hand-eye coordination. Second, we can have an
objective measure of the performance. The computer could record all of the activities
during the training process and the recorded data could be used to measure the
performance. Third, we can easily change the material properties or change the objects in
the VEs to simulate different tasks. We can also record and measure the forces applied by
surgeons to help them understand whether the force they applied is too large or too small.
The simulated tasks can be repeated many times and it is cost effective. And, the

simulator could be continuously improved to create more realistic simulations.

7.5 Hardware Setup

In order to provide force-feedback interaction between the medical instruments and the
virtual organs, we chose PHANToMs again as the haptic interfaces. Since two surgical
tools are required in performing the catheter insertion, we used two PHANToMs in the

simulator to provide force feedback for two instruments. One component task of the
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catheter insertion is to use gripper to grip the catheter and the cystic duct. In order to
provide the force feedback for this gripping procedure, we attached an actuated
laparoscopic tool (see Figure 7-8, developed by Ben-Ur, 1999) to the end of the
PHANTOM (see Figure 7-9 and Figure 7-10).

Figure 7-8. An actuated laparoscopic tool developed by Ela Ben-Ur, 1999. An encoder-

actuator couple was attached to the distal end of a laparoscopic instrument.

Figure 7-9. When connecting a force-feedback haptic interface and a force-feedback

laparoscopic tool together, we can provide both gripping and interacting forces.
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Figure 7-10. A force-feedback surgical simulator. Our simulator was designed to
simulate laparoscopic procedures and to train medical residents and students. Two
laparoscopic tools were attached to the end of two PHANToMs to provide both gripping

and interacting forces.

In order to provide an environment similar to the one in real laparoscopic surgery, we put
a torso (see Figure 7-11) on top of the simulator. The torso is produced by Simulab
Corporation. By making a hole at the back of the torso and attaching it to the simulator,
we can make the simulator very similar to what the surgeons will see in a real
laparoscopic surgery (see Figure 7-12). With this training system, as the user manipulates
the actual instruments and interacts with the virtual objects, the associated deformations
of the organs are displayed on the computer monitor and the reaction forces are fed back

to the user through the actuators.
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Figure 7-11. A torso by Simulab Corporation.

Figure 7-12. A surgical simulator for practicing laparoscopic procedures.

7.6 Software Setup

The software structure that was used to simulate the surgical procedure is similar to the
one mentioned in section 6.5. Since there are two haptic interfaces and two force-
feedback grippers, the servo loop for haptic rendering has to get position information

from and send force commands to these four devices, instead of just one haptic interface

99




shown in section 6.5. Since the computation of material modeling is very expensive, we
separate it from haptic rendering. With the separation, there will be three different update
rates during the simulation. The haptic rendering is updated fastest (around 500 Hz) and
the modeling computation is updated slowest (a couple of Hertz). The graphic rendering

rate is around 10 ~ 20 Hz.

7.6.1 Geometric Data on Human Organs

Visible Human Data set including graphical data in the forms of CT and MRI cross
sectional images as well as slice photographs of actual body are available through the
National Library of Medicine. Nowadays, 3D geometrical models of various body parts
and organs generated from image slices are available in the market through many
companies. To make the environment more natural, we add a couple of organ models
(including liver, stomach, intestine, and fat) to our simulation. In order to use the
rendering algorithms developed in this research, the organs are all represented in
polyhedral format. A simple code was developed to generate and display the catheter.
Texture maps were used to make those geometrical models appear more realistic. The
image in Figure 7-13a shows the geometry and location of the organs we used in our
simulation. The image in Figure 7-13b shows the wire frame representation of those

organs.

100



Figure 7-13. (a) The geometry and location of the organs we used in our simulation. The
liver, stomach, gallbladder, and intestines were represented as the polyhedra. (b) The wire

frame image of those organs.

7.6.2 Modeling of Surgical Instruments

3D computer models of the laparoscopic surgical instruments were by using computer-
aided design techniques and packages. Since there are two force-feedback laparoscopic
tools in our simulator, we need to show two laparoscopic tools on the screen. As catheter
insertion is the process we are simulating, we need only the model of laparoscopic
grippers as end-effectors. The pictures in Figure 7-14 show the model of the laparoscopic
grippers we used to display on the screen. This laparoscopic gripper is the graphical
representation of the tools manipulated by the users. When the users manipulate the
force-feedback laparoscopic tools in the simulator, we change the positions of the

laparoscopic grippers based on how the user manipulates the tools.

101



(a) (b) ©

Figure 7-14. The model of the laparoscopic gripper used in our simulation. The
laparoscopic gripper is composed of the tool-body and two grippers. The two grippers
were modeled such that they could rotate about a hinge point. The images show that the

gripper is (a) fully open, (b) half open, and (c) closed.

On the computer screen, the surgical instruments appear as 3D objects to the user.
However, it is very difficult and computationally expensive to detect the collision
between the 3D organs and the 3D surgical instruments. In order to reduce the number of
computations and achieve fast collision detection rates, we simplify the model of the
surgical tools when we perform haptic rendering. The laparoscopic gripper is modeled as
combination of three line segments (see Figure 7-15) for haptic rendering. With this
simplification, we can use the ray-based haptic rendering techniques described in Chapter

5 to perform real-time collision detection.
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Figure 7-15. The model of the laparoscopic gripper used in haptic rendering. The
laparoscopic gripper is shown as complex 3D objects on the screen. However, it is
simplified to three line segments in haptic rendering to reduce the number of
computations and achieve fast collision detection rates. In this model, one line segment is

used to represent the tool-body and two line segments represent the two arms of the

gripper.

7.6.3 Collision Detection

In virtual reality simulation, the detection of collision between objects is one of the most
important components. A good collision detection algorithm can increase not only the
realness of the VE, but also the stability of the interaction. As mentioned earlier in
section 7.6.2, we have created a computer model to represent the real surgical tool in the
VEs. We call these computer models as virtual tools since they are the representation of
the real tools in virtual environments. In our simulator, as the user manipulates the force-
feedback surgical tools, the encoders measure the new position and orientation of the

surgical tools. This information is used to update the position and orientation of the
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virtual tools. We then perform collision detection between the virtual tools and virtual
objects. If the virtual tool collides with an object, a reaction force will be calculated and
sent to the users. In addition to the detection of collision between tools and objects, we
also have to detect collision between objects. In the catheter insertion simulation, the
catheter is a movable object. Therefore, we have to detect the collision between the
catheter and organs. If the catheter collides with any of the organs, the reaction force
needs to be calculated and sent to both the catheter and contacted organ. To reduce the
computation, we set the deformable organs as static objects so that we do not need to

check collisions among several organs present in the VE.

To check the collision between virtual tools and virtual objects, we used the ray-based
rendering algorithms described in Chapter 5. The virtual tools shown on the screen are
3D complex objects. However, as described before, three line segments were used to
represent each one of the 3D virtual tools when performing the collision detection. The
first line segment is used to represent the body of the tool and the other two line segments
represent the two arms of the gripper (see Figure 7-15). When the gripper arms are open,
the two line segments will be open. When the arms are closed, the two line segments will
be closed, too. For example, the images in Figure 7-16 show what the users will see on
the screen when they manipulate the force-feedback surgical tools to manipulate the
catheter. When performing collision detection, we check for collisions only between the
three line segments and virtual objects (see Figure 7-17). If any one of the line segments
contacts an object, the interacting force will be calculated and sent to the users. The
interacting force will also be used to calculate the dynamics and deformations of the

virtual objects in contact.
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Figure 7-16. The images seen by the users on the screen when they manipulate the force-

feedback surgical tools to move a virtual catheter.

Figure 7-17. Three line segments are used to represent the tools in performing collision
detection. Using this simplification, we can reduce the number of computations and

achieve fast collision detection rates.

Simulating the interactions between the flexible catheter and deformable organs is
challenging. Not only is the detection of object-object collisions difficult and
computationally expensive, but also the modeling of “collision response” phase is
complex. There are many groups focusing on the algorithms of collision detection and
collision response (Cohen et al., 1995, Lin, 1993, Gottschalk et al., 1996, Smith et al.,
1995, Hubbard, 1995, Moore and Wilhelms, 1988, Baraff, 1994, Mirtich, 1995 and
1996). However, they are all focused on rigid objects, not on deformable objects.
Therefore, we need an alternative way to perform the collision detection. The way we
chose was to use multiple points to represent catheter and then detect collision between

these points and the organs. We located many points on the surface of the catheter and
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then used the point-based rendering algorithms described in Chapter 4 to perform
collision detection between these points and the organs appropriately. If multiple points
contacts an organ, the reaction force will be calculated and used to deform the catheter
and the organ. If many of the points contact an organ at the same time, all of the
interaction forces at these points have to be calculated. In this way, we will be able to
perform collision detection between two 3D deformable objects. The image in Figure 7-
18 shows an example of using this method to perform collision detection. The user can
use two laparoscopic grippers to grip the vessel and catheter. When the catheter contacts
the vessel, the interaction forces will be calculated and used to compute dynamic

behaviors of the two compliant objects in contact.

s

Figure 7-18. Simulation of the catheter insertion in virtual environments. In this
simulation, the user could employ two laparoscopic grippers to grip the vessel and
catheter and move them around. A group of points are placed on the surface of the
catheter. Collision detection is performed between these points and the vessel. When one
of the points contacts the vessel, the interaction forces will be calculated and used to

compute the interaction dynamics and the associated deformations.
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A further way to reduce the computational effort is to place the points representing the
catheter along its central axis, instead of on the surface. The catheter used in
cholecystectomy is a long thin flexible tube (around 2 mm in diameter). The position
difference between the surface and the center is only about 1 mm. Since human
kinesthetic resolution is quite poor, users usually are not able to notice the small
difference. With this simplification, we can dramatically reduce the computation in
collision detection. The images in Figure 7-19 show an example of collision detection
with this simplification. In this example, the user is able to use a laparoscopic gripper to
move the catheter. Several points are placed in the center of the catheter. The collision

detection is performed between these points and the vessel.

Figure 7-19. Simulation of catheter insertion. The user uses a laparoscopic gripper to
move the catheter. Several points are placed in the center of the catheter. The collision
detection is performed between these points and the vessel. When one of the points
contacts the vessel, the interaction forces will be calculated and used to deform the

catheter and the vessel.
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7.7 Material Modeling

The techniques mentioned in section 7.6 allow us to perform the collision detection and
compute the interaction force when a collision occurs. The next step would be to compute
the deformation of the collided objects. Modeling and simulation of soft tissue behavior
is always a challenging problem. Soft tissue mechanics is complicated not only because
of non-linearity, rate and time dependence of stress-strain relationship, but also because
the organs are layered and non-homogeneous. Some of the characteristics of living
tissues that are difficult to simulate include (1) nonlinear response: displacement versus
force profile is a nonlinear curve, resembling an exponential increase on force in relation
to displacement, (2) hysteresis: force versus displacement profile is different for
continuously increasing versus decreasing forces, (3) non-homogeneous: displacement
versus force curve changes across the structure, (4) anisotropic: displacement versus
force profile depends on the direction of the applied force, (5) rate dependent: the

material is viscoelastic.

With the computational mechanics techniques available today, it is unlikely that we can
accurately simulate the physical-based behavior of soft tissues in real time, especially on
a personal computer. However, the good news is that we don’t need highly accurate
computation to convince the users that the simulated tissue behavior is realistic. If we can
find a solution that makes the users believe what they are experiencing is colse to reality,
it is good enough. Therefore, what we really want is to find a solution that is realistic
enough for users to suspected disbelieve but efficient enough to be executable in real
time. Since human haptic resolution while operating tools is quite poor, this goal is

actually achievable.

In our catheter insertion simulation, the virtual objects could be divided into three
categories: organs, ducts, and catheter. The main purpose of the organs is to increase the

realness of the virtual environment. The users could use the laparoscopic tools to interact
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with these organs during the simulation. However, these organs play no role in the task of
catheter insertion. But the duct and the catheter are important in this simulation. The duct
is hollow and supported by a membrane. It can be deformed but not translated. The
catheter is flexible. It can be both deformed and translated. Since the material modeling
and haptic rendering are two separate loops in the program, we can use different

modeling methods to model the different objects.
(1) Modeling of organs

As described earlier, the main purpose of the organs is to increase the realness of the
environment. The user seldom interacts with the organs when performing the task.
Therefore, the modeling of organs requires less accuracy compared to the modeling of
other two virtual objects. To reduce the computation, I use the local deformation
technique described in section 6.5 to deform the organs. The local deformation technique

is quite fast in terms of computation but is not physically-based.
(2) Modeling of the duct

We modeled the duct using Finite Element Method (FEM) techniques. In FEM, the
volume occupied by the object is divided into finite number of elements. Properties of
each element is formulated and the elements are assembled together to study the
deformation states for given loads. Modeling deformable objects using FEM could
achieve very high accuracy. However, it is also very expensive in terms of computation.
To apply it in a real time simulation, we have to reduce the accuracy in order to reduce
the computation. The technique we used to model the duct was developed by Basdogan
(1999). This technique is appropriate for a shell element only. Since the duct is a hollow
tube, its wall can be treated as an assemblage of shell elements. In the pre-processing
phase, the duct is divided into small shell elements first (see Figure 7-20). A modal
analysis is then performed to find some of the most significant modes. The unwanted
degrees of freedom will be eliminated at this stage. During the real time simulation, the

computation focuses only on those significant modes. In this way, we could reduce the
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computation dramatically, yet achieve acceptable accuracy (more details could be found
in Basdogan, 1999).

Figure 7-20. The duct is divided into small shell elements in the FEM technique.
Properties of each element is formulated and the elements are assembled together to

study the deformation states for a given loads.
(3) Modeling of the catheter

We model the catheter using particle-based modeling techniques (also known as lumped
parameter or mass-spring-damper models) to reduce the computations and achieve faster
haptic rendering rates. Particle systems have been extensively used in computer graphics
to simulate the behavior ranging from clothes to fluid flow. This technique is simple to
implement since the developer does not need to construct the equations of motion
explicitly, but yet is able to simulate the physical-based behavior of deformable objects
reasonably well. Particle systems consists of a set of point masses, connected to each
other through a network of springs and dampers, moving under the influence of internal
and external forces (see Figure 7-21). In this model, each particle is represented by its
own mass, position, and velocity. The particle-based modeling is computationally less
expensive and more flexible than FEM in implementing the boundary conditions for
freely moving objects. In simulating catheter insertion, the catheter needs to be modeled
as a freely moving visco-elastic tube that is going to be inserted into a flexible vessel.
This makes the particle systems an ideal candidate for the simulation of catheter

dynamics.
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Figure 7-21. The catheter was modeled as a set of particles that lie along the central line
of the catheter. Each particle has a mass and is connected to its neighbors with a damper

and linear and torsional springs.

In our particle-based model, the particles are located along the central line of catheter.
The forces applied to each of the particles could be external forces or internal forces. The
external forces come from contact with the laparoscopic tools, the ducts, and the organs.

The internal forces come from the linear spring, torsional spring, and damper (see
Equation 7-1).

F;inear_spring = 2 kl (l - lo)

k(©G-0,)
F;nt ernal = F;orsional _spring = z _t—-l—i' (7'1)
F damper = —bV

where [ and [, are the current and original distances between two particles, respectively,
0 and @, are the current and original relative angles between neighboring segments that

connect the particle to its neighboring particles, respectively, v is the velocity of the

particle, k, and k, are the spring constants, and b is the damping coefficient.

Then, the acceleration, velocity, and position of each particle can be updated in each

servo loop using the Euler integration method (see Equation 7-2).
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at+Al = F;otal /m

vl+At = vt + At at+At (7‘2)
pt+At = pt + At vt+At

where m is the mass of the particle, a is the acceleration, v is the velocity, p is the

position of the particle.

7.8 Results

With the surgical simulator, the users can have unlimited opportunity to practice catheter
insertion in a consistent and cost effective haptic VE. Figure 7-22 shows what users will
see on the screen. I use the organ model shown on Figure 7-13 in the environment. I also
added a camera to make the view more realistic. The location of the camera could be
adjusted using keyboard. When the users want to spot an interesting area, they can zoom

in for a bigger image (see Figure 7-22b for an example).

(@ (b)
Figure 7-22. This is the image that the users will see on the screen. (a) The users can see
liver, stomach, intestines, and gallbladder. The cystic duct has already been cut, as
indicated by a hole on it. (b) The users can change the camera location to view an area of

interest from different view points and different distances.
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As the user manipulates the force-feedback laparoscopic tools and interacts with the
organs, the associated deformations of the organs are displayed on the computer monitor
and the reaction forces are fed back to the user through haptic interfaces. If the users grip
the catheter, they can feel the gripping force. The user also feels the forces that arise from
pulling and pushing of flexible objects during the simulation. The images in Figure 7-23
are example images of the catheter insertion. In Figure 7-23a, the two tools are ready and
the catheter is in its initial position. In Figure 7-23b, the user has already inserted a
portion of the catheter into the cystic duct. It should be noted that the material properties
used in the simulation are probably not realistic at this stage of simulator development.
This is because that the material properties of live organs are currently unavailable.
Although we have used three different ways to model the material properties (see Section
7.7), those material properties were chosen only based on what feels reasonably right.
When the material properties become available in the future, we can easily incorporate

them into the simulation and make the simulation more empirically based.

(a) (b)

Figure 7-23. These are example images of the catheter insertion. (a) The two

laparoscopic tools are ready and the catheter is in its initial position. (b) The user has

grasped the catheter and has already inserted a portion of the catheter into the cystic duct.
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To get an expert opinion, we have invited a surgeon to our laboratory to try the
simulation. His response was very positive. He said that the setup was great and the
interaction with the virtual objects was very realistic. He agreed that we could really use
the simulator to practice the catheter insertion process. He had two suggestions on the
improvement of the simulator. The first one is the texture mapping. The textures used at
the current stage are real pictures of the organs. However, the resolution is not high
enough. He said that we could have more realistic organs by using higher resolution
images. The second suggestion is on the material properties. He believed that the

simulation would be perfect if we use real material data.
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Chapter 8

Suggestions for Future Work

The mission to create a better haptic VE and incorporate VE into our life is a never-
ending task. It is like connected gears. Motion of any part will definitely change the state
of whole mechanism. There are many facets to be continued on. First of all, in haptic
interaction paradigms, research efforts can be made to improve rendering techniques in
simulating interaction between arbitrarily shaped 3D probe and 3D objects. In addition, in
object property display algorithms, new or better material modeling and surface property
rendering algorithms in simulating different materials are needed. Secondly, in
incorporating haptic VE into real-life applications, we need to establish a huge and
reliable database, such as the material properties of live tissues, for more realistic
material modeling. Finally, combining the techniques and data, we will be able to create
better or different simulators. With the simulators, we will be able to simulate different

applications or understand the effectiveness of using a haptic simulator.

In this research, I have proposed point-based and ray-based haptic interaction paradigms,
which model the probe as a point and as a line segment, respectively. An extension in this
area would be to develop algorithms to simulate interactions between 3D probe and 3D
objects. If the probe could be modeled as a 3D object, it would give researchers more
freedom when developing applications. A few groups have already made efforts in this
direction (see section 2.2 for more details). However, there are many constrains to their

algorithms. If a more efficient and powerful algorithm could be created to simulate 3D
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probe and 3D objects interactions, further benefits can be derived from haptic VEs since

more diverse and realistic applications can be created.

In enhancing the displayed quality of virtual objects in haptic VEs, developers need to
focus on different object property display algorithms. I have proposed a couple of
rendering algorithms to simulate different object properties in this research such as
friction, texture, dynamic behavior, and compliant behavior. However, there are a large
number of different materials that exist in our environment, which cannot be simulated at
this stage. For example, there is no algorithm to simulate the haptic behavior of bloody
tissue, fur, or clothes. In many of these simulations, the proper property display is the key
to a good haptic VE. In surgical simulation, for instance, a good bloody tissue display

technique will definitely make the virtual surgery more realistic.

The other important aspect of a quality haptic VE calls for good material modeling,
which provides fast and accurate displays of compliant objects. Since real time display is
essential in a good haptic VE, a faster material modeling is critical. The existing
techniques are either too slow or not sufficiently accurate for realistic haptic rendering. If
a more efficient material modeling method is developed, researchers will be able to
simulate more complex objects of interest. Aside from improving fundamental
techniques, researchers might also head to build the fundamental data of different
materials. A good material model requires empirically data on materials, which are

usually nonlinear and unavailable at present.

In addition to focusing on the rendering techniques, other direction in continuing this
research is to improve the surgical simulator developed in this thesis. As mentioned in
section 7.8, the quality of the images and the material data of the organs need to be
improved. The improvement of the image quality of the mapped textures is easy to
achieve since we need only to take some higher resolution pictures of real organs.
However, it is difficult to improve the material properties of the organs since it requires

the material data of live organs, which are unavailable at present. One of the alternative
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ways in improving the material properties of the organs is to create several different
material properties and ask experienced surgeons to identify the closest one. If an
experienced surgeon feels that the material property is similar to the real one, we can
safely assume that most people would be convinced that the material property is realistic.
In this way, although we still cannot incorporate empirically based material property, we
can implement a material property that is very close to the real one. In addition to
improving the quality of the simulation, other direction to improve might be to extend the
simulated process. Currently, the surgical trainer simulates only the process of catheter
insertion. The process could be extended to simulate the whole cholecystectomy

procedure or other laparascopic surgeries.

Another direction in continuing this research might be to use the simulator to do
experiments to identify the usefulness of the simulator and understand the training effects
of haptic VEs. For example, in flight simulation, extensive experiments have been done
to understand the training effects. Researchers have found that ten hours of flight
experience in the simulator is equal to one hour of real flight experience. Similarly,
different psychophysical experiments have to be done to understand whether the training
has any effect or which training method achieves the desired goal with the best
efficiency. Only after we fully understand the effect of haptic VEs on human task

performance, can we incorporate the haptic VE technology into real-life applications.
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Appendix A

A.1. Projection of a point to a plane:

Given a point p, a plane with a unit normal ¥ and another point pg in the plane, The

projected point p’ of point p on the plane is calculated as

p’= p+((po—p)-ﬁ)l_v"

A.2. Distance between a point and a plane:

Given a point p, a plane with a unit normal § and another point pp on the plane, the

distance between the point p and the plane is calculated as d = | -P)*§].

A.3. Projection of a line segment to a plane:

Given a line segment (P,, Py), a plane with a unit normal ¥ and another point py on the
plane, we want to calculate the projected line segment (P,’, Py’) of line segment (P,, Py) on
the plane. Use the method mentioned in Appendix A.1 to project the point P, to the plane
and obtain the projected point P,”. Same way, we can obtain the projected point Py’ of the

point Py,. Then, the line segment (P,’, Py)) is the projection of the line segment (P,, P) on

to the plane.

A.4. Projection of a line segment to a plane parallel to the line segment

and containing another line segment:

Two line segments (P,, Py) and (P, P4) are defined in 3D space. First, we find a vector
(¥) that is perpendicular to the two line segments (P,, P,) and (P., Py) (i.e. cross product
of two vectors (P,, Py) and (P., Py)) and normalize it. The plane perpendicular to the line

segment (P,, Pp) and containing the line segment (P;, P4) will have the unit normal ¥ and
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the point P.. Use the method mentioned in Appendix A.3 to project the line segment (P,
Py) to this plane and obtain the projected line segment (P,’, Py).

A.S. Intersection point between a line and a plane:

Given a line segment (P,, Pp) and a plane with a unit normal ¥ and another point Po on
the plane, we want to find out the intersection point between this line segment and the
plane. First, we check the signs of dot products (P, Po) ¥ and (PyPg) v. If any of them is
equal to zero, then at least one of the points is on the plane. If both of them have the same
sign, the two points P, and Py, are on the same side of the plane and, therefore, there will
be no intersection point. If the signs are different, we calculate the distances from the
points P, and Py, to the plane (let’s say, d; and d,, respectively). The intersection point will
be (dy.+P, + di« Pp)/(d; + dy).

A.6. Nearest Distance between two line segments in 3D space:

Two line segments (P,, Py) and (P, Py) are defined in 3D space. We want to calculate the
nearest distance between the two line segments. First, we project the line segment (P,, Py,)
to a plane that is perpendicular to the line segment (P,, Py) and contains the line segment
(P¢, Pg) using the method mentioned in Appendix A.4, which will be (P,’, Py’). We also
calculate the distance between the point P, and the plane (Appendix A. 2), which is
defined as d;. We then find the nearest distance between the two line segments (P, Py")
and (P, Pg), which is defined as d,. Then, the nearest distance between the two line

segments will be the square root of (d; * di+ d; * d).

A.7. Movement of a point penetrates a triangular polygon:

A point is at point P; in time t; and at point P, in time t,. A triangular polygon has
vertices P,, Py, and P.. We want to check if the movement of the point penetrates the

triangular polygon. First of all, we find the normal N of the triangle which is equal to the
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cross product of the two vectors (P, - P.) and (Py - P.) and normalize it. We then check if
there is an intersection between the line segment (P;, P,) and the plane containing the
triangle (Appendix A. 5). If so, we check if the intersection point is inside the triangle or
not. If the intersection point is inside the triangle, the movement of the point penetrates

the triangle.

A.8. Collision between a moving line segment and a static line segment

in 3D space:

At time to, the line segment Iy, is at lp(tg) and at time t;, it moves to I(t;). We want to
know if the movement of I, from ty to t; passes the line segment l.q. The analytical
solution could be found in Schomer and Thiel (1995). Their method gives the exact
solution for the collision time and the collision point. However, this solution is
computational too expensive to be used in haptic rendering since the haptic loop needs to
be updated in 1 kHz. Instead, we present a simplified method in here. Although this
method does not calculate the exact collision time and the collision point, it reports
whether the movement of one line crosses the other. For this method to be valid, the
translation and rotation of the line segment should be very small. (This is absolutely the

case in haptic rendering since the haptic loop is updated in 1 kHz and the movements of
our hand are quite slow.) To detect the collision, we first calculate the vector 5; which

represents the nearest distance from Iq to ln(to) (see Appendix A. 6). Let’s call the

nearest points on the two lines are P.qo and P.,p. We also calculate the nearest distance

vector D) from Iy to Ly(t;). Let’s call the nearest points on the two lines are Py and

Pap1.

If (1) the dot product of l_); and B; is negative, and (2) neither P49 nor P.q; are the end

points of L, (3) Papo is not the end point of L(to), (4) Payiis not the end point of Ly(t;), we

say the movement of l,, from tg to t; crosses the line segment /cq.
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