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ABSTRACT

The nonlinear, stalled, aeroelastic behavior of rectan-
gular, graphite/epoxy, cantilevered plates with varying
amount of bending-torsion stiffness coupling and with
NACA-0012 styrofoam airfoil shapes is investigated for low
Reynold's number flow (<200,000). A general, 5-mode Rayleigh-
Ritz formulation is used to calculate point load static
deflections, and static vibration frequencies and mode
shapes. Nonlinear, lift and moment aerodynamics are used in
the context of the Rayleigh-Ritz formulation to calculate
static airload deflections. The nonlinear, stalled ONERA
model initially developed by Tran & Petot is compared against
experimental, low Reynold's number, 2-dimensional lift and
moment hysteresis loops. Low angle of attack, linear flutter
calculations are done using the U-g method. Nonlinear flutter
calculations are done by applying Fourier analysis to extract
the harmonics from the ONERA-calculated, 3-dimensional aero-
dynamics, then applying a harmonic balance method and a
Newton-Raphson solver to the resulting nonlinear, Rayleigh-
Ritz aeroelastic formulation.

Test wings were constructed and subjected to static,
vibration, and wind tunnel tests. Static tests indicated good
agreement between theory and experiment for bending and tor-
sion stiffnesses. Vibrations tests indicated good agreement
between theory and experiment for bending and torsion fre-
quencies and mode shapes. 2-dimensional application of the
ONERA model indicated good agreement with experimental lift
hysteresis loops, but poor agreement with experimental moment
hysteresis loops. Wind tunnel tests showed good agreement
between theory and experiment for static deflections, for
linear flutter and divergence, and for stalled, nonlinear,
bending and torsion flutter limit cycles. The current non-
linear analysis shows a transition from divergence to stalled
bending flutter, which linear analyses are unable to predict.

Thesis Supervisor: John Dugundji

Title: Professor of Aeronautics and Astronautics
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CHAPTER I

INTRODUCTION

The development and ever increasing use of advanced com-

posite materials in the aeronautics field lends another

dimension to the aircraft designer's list of design tools. In

designing for desired aeroelastic response - most often maxi-

mization of flutter and divergence speeds - the aircraft

designer's ability to control the anisotropy of advanced com-

posite materials through selective lamination makes these

materials attractive for aeroelastic tailoring.

The present research is part of a continuing investiga-

tion into the aeroelastic flutter and divergence behavior of

forward-swept, graphite/epoxy composite wing aircraft. The

specific objectives of the current investigation are to

investigate experimentally and analytically, the roles of

nonlinear structures and nonlinear aerodynamics in large

amplitude, high angle-of-attack stall flutter of aeroelasti-

cally tailored wings.

In previous investigations at the Technology Laboratory

for Advanced Composites (TELAC) at MIT, the aeroelastic flut-

ter and divergence behavior of cantilevered, unswept and

swept, graphite/epoxy wings was investigated in a small, low-

speed wind tunnel. The wings were six-ply, graphite/epoxy

plates with strong bending-torsion coupling. Experiments were

conducted to determine the flutter boundaries of these wings

both at low and high angles of attack, stall flutter often
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being observed in the latter. The divergence and flutter

results at low angles of attack correlated well with linear,

unsteady theory, indicating some beneficial effects of ply

orientation in aeroelastic behavior [Refs. 1, 2, and 3].

Steady, nonlinear aerodynamics correlated reasonably before

the onset of flutter, but no unsteady, nonlinear flutter

analyses were attempted for higher root angles of attack.

Recently, Tran & Petot [Ref. 5] and Dat & Tran [Ref. 6]

of Office National d'Etudes et de Recherches Aerospatiales

have developed a semi-empirical, unsteady, nonlinear model

(called the ONERA model) for determining 2-dimensional aero-

dynamic forces on an airfoil oscillating in pitch only, which

experiences dynamic stall. This model incorporates a single

lag term operating on the linear part of the airfoil's static

force curve, thus analogous to the Theodorsen function for

linear, flat-plate theory, and a two lag term operating on

the nonlinear (i.e. stalling) part of the airfoil's static

force curve. The semi-empirical coefficients of the nonlinear

aerodynamics for the ONERA model were determined for various

airfoils and the model, using a numerical time-marching

scheme, applied as comparison against experiment by Dat,

Tran, and Petot. Further analysis of the model was done by

Peters [Ref. 11] to differentiate the roles of angle-of-

attack due to pitching (0) and effective angle-of-attack due

to plunging (h/U), and by Petot & Dat [Ref. 12] to reformu-

late the differential force equations so that they reduce to

the Theodorsen function in the case of a flat plate in the

-21-



linear domain. In addition, Petot & Loiseau [Ref. 13] have

contributed corrections to the ONERA model for low Reynold's

number flows, in the regime of the current investigation.

Generally, however, little work has been done in implementing

the ONERA model in a nonlinear, aeroelastic flutter analysis.

The ultimate objectives of the current investigation

were to develop an analytic aeroelastic model, using the

ONERA model as the basis for the aerodynamics, to predict

characteristics of 3-dimensional, stalled, flutter limit

cycles, while concurrently developing an experimental base of

both small amplitude and large amplitude flutter data for a

variety of composite laminate wings with a wide range of

bending-torsion characteristics. To reach these analytic and

experimental objectives, intermediate goals were to conduct

experimental static tests, vibration tests, static aeroelas-

tic tests, and linear, small-amplitude flutter tests, and to

accurately predict the results of these tests using those

portions of the final analytic model which were applicable to

each.
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CHAPTER II

THEORY

2.1 Anisotropic Plate Flexural Stiffness

The flexural modulus components of a laminated,

graphite/epoxy plate depends on both the fiber orientations

and stacking sequence of the individual plies. Only lami-

nated plates with mid-plane symmetric stacking sequences were

constructed in this study. The ply angles (0) follow the

sign convention in Figure 1.

The in-plane, unidirectional modulus components (Qij)

were obtained from the orthotropic engineering constants for

Hercules AS4/3501-6 graphite/epoxy, from which the test spec-

imens were fabricated. These engineering constants take on

different values depending on whether they are obtained from

out-of-plane bending or in-plane stretching tests. Engineer-

ing constants obtained from each type of test appear in

Appendix A. The Qij terms are defined in terms of the engi-

neering constants as,

E
Q = L (2-la)

1 - V VLT TL

E
QE (2-1b)22 1 - V LTVTL

VLTET (2-Ic)
12 21 1 - V(2-TTc)

Q66 = GLT (2-1d)
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; Tip

; Root

Trailing edge

Leadinrr ede

Figure 1. Sign convention for ply angles and axes
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where,

(2-1e)
ET

VTL ELLT
E LTL

The in-plane, rotated modulus components were obtained

by first defining a set of invariants,

1
1 4 = 11 Q + Q22 + 2Q 1 2 ]

1
2 = [Q11 + Q22 - 2Q 12 + 4Q 66 ]

1
1 2 [Q11

- 2Q 12
1

R2 8 1[Q1 + Q22 - 4Q6 6 1]

(2-2a)

(2-2b)

(2-2c)

(2-2d)

The invariants are transformed

components using the relations:

to the rotated modulus

(8)ii,
= I1 + 12 + R1cos20 + R2cos4O

Q22 = I + I2 - R1cos20 + R2cos40

Q012 I - 12 - R2 cos40

(8)
Q66 = I2 - R2cos40

(0) 1
Q16) = 2 R1sin20 + R2sin4O

Q~6) = 2 R1sin20 - R2sin4026 212

where 0 is the ply angle.

The flexural modulus components, Dij, for an n-ply lami-

nate with arbitrary ply angle orientation are obtained from,

-25-
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(2-3c)

(2-3d)
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n 3 3
D j = Q 3 i,j = 1,2,6 (2-4)

k=1

where,

(k = ply angle of the k-th ply

zk = distance from the mid-plane to the upper surface of
the k-th ply (positive above mid-plane, negative
below mid-plane)

zk-1 = distance from the mid-plane to the lower surface
of the k-th ply

2.2 Generalized Rayleiah-Ritz Problem

The direct Rayleigh-Ritz energy method is a relatively

simple, straightforward approximation for the plate deflec-

tions, as required for the static deflection, free vibration,

and flutter analyses in this study. The Rayleigh-Ritz method

also has the advantage of showing the effect of the individ-

ual variables on the solution more clearly than other more

accurate methods, such as finite element analysis. The

"wing" is idealized by a rectangular, cantilevered,

graphite/epoxy flat plate of uniform thickness, with styro-

foam fairings covering the entire chord but only part of the

entire span. The styrofoam fairings have chordwise variation

because of their aerodynamic shape, and the calculation of

their contribution to the wing mass and stiffness is

described by the equations in section 2.4.

The Rayleigh-Ritz analysis begins by assuming a deflec-

tion shape for the structure. If only lateral deflections,
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w, are allowed, the single deflection equation, written in

generalized coordinates, is,

n

w = (x,y) q i(t) (2-5)
i=1

where Yi(x,y) is the non-dimensional deflection, or mode

shape, of the i-th mode; qi(t) is the generalized displace-

ment, or modal amplitude, of the i-th mode; and n is the

number of mode shapes.

For simplicity, it is further assumed that the mode

shapes are separable in the chordwise and spanwise direc-

tions, x and y, namely that the mode shapes can be written in

the form,

Ti (x, y) = Oi(x)Ni (y) (2-6)

The symmetric stiffness coefficients, Kij, and the sym-

metric mass coefficients, M.i, are defined as,

Ki = 11 ixxjxx + D22 i, yyj + 4D66i,xyj,xy +
A

D12 [i, xxj, yy + Yi,yyYj,xx ] + 2D16 [+i,xxYj,xy + ]i,xyYj,xx] +

2D26 [7i,yyyj,xy + ixyyj,yy] } dA (2-7)

M fij= mYij dA (2-8)
A

where m is the mass per unit area and the subscripts follow-

ing the commas denote partial differentiation with respect to

the spatial coordinates, x and y. Since the styrofoam fair-

ings only cover the last 5/6 of the wing span, therefore the

m and Dij terms are not uniform along the span, necessitating
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a numerical integration scheme to evaluate the Kij and Mij

terms. A 12-point Gaussian quadrature scheme was used to

evaluate the above integrals. The strain energy, V, and

kinetic energy, T, under the assumed modes are then given as,

V = - ijq j (2-9)

i j

T = Mijqiqj (2-10)
i j

The modal forces, Qi, represent how much the dis-

tributed, applied load, f(x,y), affects each mode shape. The

Qi are defined as,

Qi = jf (x' y) Yi(x y) dA = Jf (x, y) ji (x) Vi (y) dA (2-11)

A A

Lagrange's equations of motion for conservative linear

systems [Ref. 8] yield the following differential equation,

relating the modal amplitudes to the modal forces [Ref. 9],

n n

Mijqj + K.ijqj = Qi i=1,...,n (2-12a)
j=1 j=1

or, in matrix form,

[M] {q} + [K] {q} = {Q} (2-12b)

To increase the accuracy of the structural model, an

empirical cubic stiffening factor was added to the stiffness

of the first torsional mode. The motivation for adding this

factor was based solely on the experimentally observed

results of the static bending tests. So, the stiffening

factor for the first torsional mode is given by,
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L C 2K2 2 = K22 + K2 2 q 2  (2-13)

L
where K22 is the linear stiffness of the flat plate given by

Cequation (2-7) and K22 is the empirically determined cubic
cstiffening factor. Values of K22 for different layups are

listed in Appendix B.

2.3 Selection of Modes

To sufficiently describe the deflection of the wing in

the static bending, free vibration, and flutter tests, five

mode shapes were chosen. As in previous studies [Refs. 3

and 4] these included two cantilever beam bending modes, two

beam torsion modes, and a chordwise bending mode. Previous

studies used simplified, sinusoidal torsional mode shapes

[Refs. 3 and 4] that did not meet the cantilevered root con-

ditions, but with a torsional stiffness correction which

accounted for the effect of root warping stiffness [Ref. 9].

Vibrations tests, where the modal amplitudes were very small

and the modal forces identically zero, showed that this tor-

sional stiffness correction sufficed to accurately predict

the natural frequencies and modes of vibration of the wings.

However, static bending tests and low speed, steady

deflection, wind tunnel tests conducted in this study, where

the modal amplitudes and modal forces were no longer

insignificant, showed that the use of mode shapes which did

not meet the cantilevered root condition adversely affected

the Rayleigh-Ritz prediction of modal deflections. There-

fore, the more complex torsional modes, with similar spanwise
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form as the beam bending modes, were used instead of the sim-

plified sinusoidal mode shapes. These five mode shapes are,

mode i (x) 1i (Y)
x x

1 cosh ( 1 ) -cos (C•)- 1 (2-14a)

a, [sinh (e )-sin (F )

x (flx2 B1lcos(gj1) +B12sin (g1L)+ I(2-14b)
+B1 3cosh(fl-) +Bl 4 sinh(flX

x x
3 cosh (2~ -cos ()- 1 (2-14c)

x X
a2 [sinh (2) -sin (2)]

4 B2 1 cos(g 2 •) +B2 2 sin (g 2 X) +c (2-14b)

x x
+B2 3cosh (f 2 ) +B24sinh(f2)

x x 4V 1
5 7(1- ) c 2  3 (2-14e)

where the parameters of the two beam bending modes (1 and 3)

are,

El = 1.875104 , al = 0.734096

62 = 4.694091 , a2 = 1.018466

The parameters of the two beam torsion modes (2 and 4)

are derived from the definition of 0 and the relationship

between f and g,

2D11 c

)6= 2 (2-15)
48D66
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f2 = + (2-16)

and by solving the coupled equations which ensure that the

mode shape meets the plate boundary conditions at the root

and tip. For the assumed torsional mode shapes, the equa-

tions that describe the boundary condition that must be met

can be written in matrix form as [Ref. 10],1 0 1 0 B
f22 2 i 2 _ 0 (2-17)

-g 2 cosg -g 2 sing f coshf f sinhf B i 0
gf sing gf cosg g 2 fsinhf g2fcoshf Bi4

The first two lines of the matrix equation (2-17) ensure

that the deflection and slope at the plate root are zero.

The last two lines of the matrix equation ensure that the

internal forces at the plate tip are also zero.

Since f and g are related through equation (2-16), the

non-trivial solution to the eigenvalue problem is found by

setting the determinant of the matrix in equation (2-17) to

zero. The values for f and g can be found by a simple Newton

solver scheme. Once the f and g values are found, the Bij

coefficients are determined through the following matrix

equation,

1 0 1 0 i -

0 2 0 B i2 0 (2-18)
-g2cosg -g 2 sing f coshf f2 sinhf Bi3 0

cosg sin g coshf sinh fJ B i4 1

The fourth line in equation (2-18), which normalizes the

modal tip deflection to one, replaces the fourth line of
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equation (2-17), which becomes redundant when f and g are

solved so as to make the matrix singular.

It is clear from equation (2-18) that Bil and Bi 3 are

equal in magnitude but opposite in sign. It is also gener-

ally found that f is order of magnitude 10, so that the

cosh(f) and sinh(f) terms dominate the third line of the

matrix equation, making Bi3 and Bi4 opposite in sign and

almost equal in magnitude. It is important to note for pur-

poses of calculating the tip deflection that Bi3 and Bi4 are

not exactly equal in magnitude, since this difference is mag-

nified exponentially by the cosh and sinh terms near x/l=l.

Values of 0, f, g, and Bij for the layups used in this study

are listed in Appendix B.

2.4 Styrofoam Mass and Stiffness Properties

The contributions to the stiffness matrix in equation

(2-7) from the styrofoam fairing are governed by its flexural

modulus components, which are calculated in the same manner

as for the graphite/epoxy plies in equation (2-4). The

isotropic engineering constants for Styrofoam HD-300, from

which the fairings were constructed, appear in Appendix A.

However, unlike the graphite/epoxy plies, the styrofoam fair-

ing does not have a uniform thickness along the chord.

Instead, the upper and lower distances from the mid-plane

follow the standard NACA formula for symmetric airfoils

[Ref. 7],
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z = .2969 -.126 3516( 2+.2843  - 1015 ( (2-19)

where y represents the chordwise location referenced from the

airfoil leading edge, and tmax represents the maximum thick-

ness of the airfoil (for example, for a NACA-0012 airfoil,

the non-dimensional thickness, t max/c, would be 0.12). As in

equation (2-4) for the graphite/epoxy plies, z represents the

distance from the midplane to the outer surfaces of each sty-

rofoam fairing. The inner surface of each fairing is assumed

to be at half the thickness of the graphite/epoxy flat plate,

so that when the graphite/epoxy and styrofoam are combined

they form the desired airfoil shape.

The contributions to the mass matrix in equation (2-8)

can be calculated directly using the known thickness of the

styrofoam in equation (2-19) and the chosen mode shapes in

equation (2-14).

9 c/2 c/2

MS= m (·1 2 dx dy = Ps(2z -tG/E) dy (4) 2dx

e/6-c/2 -c/2 e/6

= Psc (0. 685tmax-tG/E) f )2dx (2-20a)

1/6

9 c/2 2 c/2s 2

M22 f m 2 dx dy = Ps .(2z - tG/E) dy ( 2) 2dx
e/6-c/2 -c/2 2/6

=Ps c (0.506tmax-t /E) (2 )2dx (2-20b)

1/6
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c/2 c/2

M12 mf f 1 2 dxdy = Ps --tG/E) dyj 1'2dx
9/6--c/2 c/2 1/6

= -. 0545 psCtmax f0 102dx (2-20c)
9/6

M33 and Ms3 follow the same form as equation (2-20a)

since .(Y)=3(Y). Likewise, M 44 and M24 follow the same form

as equation (2-20b) since V2 (y) 4 (y). Finally, M 4,' M23 , and

M34 follow the same form as equation (2-20c). The calcula-

tions of the contributions to the mass matrix from the fifth

mode (chordwise bending) are more cumbersome because of the

complicated chordwise variation of the mode shape. There-

fore, for those components of the mass matrix involving the

fifth mode, the styrofoam thickness is assumed to be uni-

formly half the maximum thickness, tmax, as might be sug-

gested by equation (2-20b).

In the same manner, the contributions of the styrofoam

to the stiffness matrix can be calculated by inserting equa-

tion (2-19) into the flexural stiffness formula, equation

(2-4), then directly carrying out the integration for the

stiffnesses Kij in equation (2-7). These give,

3 3
77 max G/E

Ks = 2cQ ( 22) dx (2-21a)11 11  3 1, XX
2/6
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9/6

S3 3
7 779tmax 3 G/E_ 2• 1 2 2 2

+ 8cQ _ dx (2

S s 3 2,xxx

K = -. 01585cQ lltmax 3 dx (2-21c)K12 11x (2-21c)
e/6

s s
where Qs1 and Q66 are the styrofoam engineering constants,

defined in the same manner as for the graphite/epoxy in

equation (2-1), as listed in Appendix A.

s sK33 and Ks3 follow the same form as equation (2-21a)

s ssince 1 (y)=. 3 (y). Likewise, K44 and K24 follow the same form

as equation (2-21b) since V22 (y)=W4 (y). Finally, K1 4, K2 3 , and
s

K34 follow the same form as equation (2-21c). Again, the cal-

culations involving the fifth mode are quite cumbersome, so

for these purposes the styrofoam is assumed to be uniformly

80% its maximum thickness, as might be suggested by equations

(2-21a) and (2-21b).

2.5 Static Deflection Problem

The static deflection problem is formulated as an ana-

lytical model of the experimental deflection tests described

in Chapter III. For a pure force test, the cantilevered

plate or wing is subjected to a concentrated load at the

specimen tip (x=e), at the elastic axis (y=0). For a pure
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moment test, the cantilevered plate or wing is subjected to

equal and opposite concentrated loads at the specimen tip

(x=g), at the leading and trailing edges (y=±c/2). The

accelerations are zero for static deflection, and the real

forces are point loads, so equation (2-12a) for a pure force

reduces to,

n

Kijqj = Qi = Fi()i(0) i = 1,...,n (2-22)
j=1

where F is the concentrated load applied at the wing tip.

Similarly for a pure moment, where M is the moment applied to

the wing tip, equation (2-12a) reduces to,

n

Kij i = -i [i+) - i(--)1 (2-23)
j=1

Since the stiffness matrix contains a cubic stiffening

term which depends on the amplitude of the first torsional

mode, these equations are not purely linear and are therefore

not directly solvable by a matrix inversion scheme, such as

Gaussian elimination. However, since this cubic term only

introduces a nonlinearity in one entry of the matrix equa-

tion, a simple Newton-Raphson technique (Appendix F) quickly

converges to the desired solution.

2.6 Free Vibration Problem

The free vibration problem is formulated as an analyti-

cal model of the experimental vibration tests described in

Chapter III. The problem is formulated by setting the modal
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forces, Qi, equal to zero in equations (2-12a) and (2-12b).

The equations of motion are reduced from differential form to

algebraic form by assuming harmonic (sinusoidal) motion. The

modal amplitudes can be expressed as,

q= qeicot = 2 eiOt (2-24)

where co is the frequency. These assumptions are substituted

into the differential equations of motion, (2-12a), to obtain

the sinusoidal equations of motion,

n
(-02Mij + Kij)qj =0 i=l,...,n (2-25a)

j=l

or, in matrix form,

[-o2[M1+[K1]{q} = {0} (2-25b)

Equations (2-25a) and (2-25b) describe an eigenvalue

problem which can be solved in two manners. First, one can

set the determinant of the coefficient matrix equal to zero

and analytically solve for the eigenvalues, ( 2 , and the

eigenvectors, {q), corresponding to the natural frequencies

and natural modes of the plate or wing. This first method is

typically used for linear problems. Second, one can search

for a non-trivial solution by fixing one of the modal ampli-

tudes to be non-zero and solving for the remaining modal

amplitudes and the unknown frequency via a Newton-Raphson

scheme, as described in Appendix F. This second method is

typically used for nonlinear problems.

The latter method was chosen since it corresponds

closely to the Newton-Raphson scheme later used to solve the
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flutter problem (for the flutter problem, harmonic motion is

also assumed but the modal forces are no longer zero), thus

enabling the use of the same solution technique for two prob-

lems. In addition, use of the second method allows for

investigation of the nonlinear effects of amplitude of oscil-

lation on the characteristics of the free vibration.

The Newton-Raphson scheme requires a fairly good initial

guess, especially for an eigenvalue problem where the numeric

scheme may converge to one of several valid solutions. This

was resolved by looking more closely at the physical and

mathematical makeup of the problem. The mode shapes are

specifically chosen so that they are almost uncoupled

[Ref. 10], hence apriori it is already known that the indi-

vidual eigenvectors are close to the individual modes them-

selves. Therefore a good initial guess for the i-th natural

mode shape is a non-zero entry in the {q} vector for the i-th

mode, and zero entries for all the other modes. In addition,

since the modes are almost uncoupled, the mass and stiffness

matrices are almost diagonal, so that a good initial guess

for the natural frequency corresponding to the i-th mode is,

K..2 11oi = M (2-26)

The Newton-Raphson scheme quickly converges to the indi-

vidual natural modes and frequencies with these initial

guesses, and these results are compared in Chapter IV with

the experimentally obtained results.
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2.7 General Aerodynamic Model

The aerodynamic model used for this study was initially

developed at Office National d'Etudes et de Recherches

A6rospatiales by Tran and Petot [Ref. 5] and by Dat and Tran

[Ref. 6]. This ONERA model is a semi-empirical, unsteady,

nonlinear model which uses quasi-linear, small amplitude of

oscillation, experimental data to predict aerodynamic forces

on an oscillating airfoil which experiences dynamic stall.

The model incorporates a single lag term operating on the

linear part of the airfoil's static force curve, thus analo-

gous to the Theodorsen function for linear theory, and a two

lag term operating on the nonlinear (i.e. stalling) portion

of the airfoil's static force curve.

The ONERA model was later investigated by Peters

[Ref. 11] who differentiated the roles of angle of attack due

to pitching (0) and angle of attack due to plunging (h/U).

The final form of the ONERA model used for this study incor-

porates all terms needed such that it fits the theoretical

Theodorsen and Kussner coefficients within the linear domain

of operation [Ref. 12],

Cz = CZ1 + Cz2 (2-27a)

Cz1 = sa + kvzo + Czy (2-27b)

S(2-27c)
Czy + hz Czy = ±[ [ oz + Oz i + az a oza + 0 z± ] (2-27c)

-39-



**2 2
Cz2 + 2dwCz2 + w 2(+d2) C =

2 z2 z2

-w2 (1+ d2) [ACz + (2-27d)

where,

= - h (2-27e)

* _( ) ut
( =) )- ; T = b (2-27f)

D'r b

and,

0 = instantaneous angle of attack

h = instantaneous deflection of 1/4-chord

- hh - = non-dimensional deflectionb

a = effective angle of attack

Cz represents any of the three relevant non-dimensional

force coefficients: CL, the coefficient of lift, or CD, the

coefficient of drag, or CM, the moment coefficient. aoz is

the slope of the linear part of the static force curve, ACz

is the nonlinear deviation from the extended linear force

curve, and sz, kvz,  z' z' (•z, w, d, and e are the coeffi-

cients associated with the appropriate force coefficient,

determined empirically by parameter identification. These

force coefficients are listed in Appendix D.

Equations (2-27b) and (2-27c) describes that part of the

force coefficient associated with the linear model Czl , and

are similar in form to the description of unsteady, linear

theory with a first order lag for the Theodorsen function.

Czy is the linear circulatory contribution, while Cz1 is the
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total linear contribution, also incorporating the apparent

mass terms. Equation (2-27d) describes that part of the

force coefficient associated with the nonlinear model C

and is dependent on the deviation of the actual static curve

from the linear static curve, ACz, as shown in Figure 2. It

also includes a second order lag for Cz2 . Equation (2-27a)

combines these linear and nonlinear terms of the force coef-

ficient into the total coefficient Cz.

For implementation of the ONERA aerodynamic model, it is

necessary to describe the static aerodynamic force curves in

terms of the linear domain, described by the linear slope

aoz, and the nonlinear domain, described by the deviation

from the linear curve ACz.  The deviation ACz is defined as

positive for a decrease in the aerodynamic force, as shown in

Figure 2. The general description of the static aerodynamic

force curve is then given by,

Cz (a) = a0oz - ACz (a) (2-28a)

where,

dCze
a - d linear aerodynamic force slope (2-28b)

oz da

In general, the deviation ACz can be described in any

manner desired. In the current study, the deviation ACz was

described by simple straight line fits between discrete

points (see Appendix C). More generally, the ACz could be

described by polynomials in several regions of the aerody-

namic force curve. Polynomials of order Ji are used for ease
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Figure 2. Description of static curve

-42-

Czs(c)



of algebraic manipulations in the Fourier analysis, described

later in section 2.9.

The general formula for the deviation ACz in the i-th

region can then be expressed as,

Ji
ACz ()= ai (a - a ai <  ai+1 (2-29a)

j=0

where,

a.o = AC z (i) (2-29b)

ACz(a=a=) = 0 (2-29c)

Equation (2-29b) ensures that the description of the

aerodynamic force curve is continuous at the juncture of the

describing domains. Equation (2-29c) ensures that the devia-

tion AC z is identically zero in the linear region before

stall. The description of the aerodynamic force coefficients

used in the current study is more fully described in

Appendix C.

Once the aerodynamic force coefficients are determined,

they are inserted into equation (2-11) to give the modal

forces,

Qi2 pU2f I[CL(X)cos +CD(X)sinOR ]i(+c ) +
0

+ c 2 CM(x) 4i y(+-) (}i(X) dx (2-30)M 4,()WrY(
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2.8 Linear Aeroelastic U-g Method

As a starting point from which to investigate the full,

nonlinear flutter problem, it is useful to look at the

linear, small-amplitude, zero root-angle-of-attack flutter

and divergence problem, which can typically be solved using

what is called the U-g method. Since this analysis is only

intended as a rough starting point for the full, nonlinear

analysis, the derivation is carried out for only two

Rayleigh-Ritz modes for simplicity.

First, because the problem is linear, the steady problem

is completely uncoupled from the unsteady problem, and the

two can be considered separately. So, for the unsteady

problem, sinusoidal motion is first assumed,

Scot ictq1 = q1e ; q2 92 e (2-31)

After some algebraic manipulation, it is derived that

the aerodynamic modal forces are given by,

2SLPb2 [L1+iL ]2I ~ [L3+iL4] 12 -Q pb b ql +  12 q2 it (2-32a)

2 4.·) i [M1 +iM ]eI2 - [M 3+iM ]el 22 -Rot
Q2= 2SLPb bc cq+  2  q2 e ie (2-32b)

where,

2i aoL[L +iL 2 ] = 1 k 2s C(k) (2-33a)
L
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1 [ivL 2C(k) aL d cL a[L +iL 2C(k) aoL + 1 + C(k) (2-33b)3 4 2 k2  2s k sL 2s L

2s a
1 M i oL[M +iM ] - + C(k) (2-33c)1 2 2 SL k 2s

1 kvL M M C(k) aoL
[M +iM - - + S + +3 4] 4 2 s L  s L  k 2 2s

L L L k L

k 2 sL SL 2 sL 2sL
and where the approximation to the Theodorsen function and

the mode shape integrals corrected for spanwise effects are

given by,

L + a•Lik
C(k) = L ik (2-34)

L + ik
L

Ill = aoL  ( 1 ) dx (2-35a)
1+-- o

7CAR

I12 = 1o L  1 .II ,i 2 dx (2-35b)1+-- o
1cAR

22 aoL  2 ) dx (2-35c)
1+-- o

7c AR

One must note at this point that if the linearly derived

coefficients are inserted into equations (2-33a) to (2-33d)

[aoL= 2 c; sL=c; kvL=7/ 2 ; OL=2x; sM=-K/4; kvM=-3x/16 ; aM=-x/4 ],

then the typical 2-dimensional, linear relations, as shown in

Refs. 1 and 3, are recovered.
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Inserting these into the equations of motion and cancel-

ing the eic t, yields the following form of the equations of

motion, written in contracted matrix form,

[[K] - 02 [A] {q} = (2-36)

where,

All = M1 + SLP5b211 [L +iL2 ]

eb 3
A12 = M12 + SLP-c I 12 [L 3 +iL 4 ]

Ab3

A21 = M21 + SL C12 [M1 +iM2

M + s b 4  [M3+iM
22 = M22 + L P2 22[M3+iM4

Structural damping is then

(2-37a)

(2-37b)

(2-37c)

(2-37d)

introduced into equation

(2-36) by multiplying the [K] matrix by (1+ig). Introducing

the complex eigenvalue Z, equation (2-36) then becomes,

[[A] - [K]Z] {q} = 0 (2-38)

where,

1 + ig
Z 

22

The solution method is to pick a value of reduced fre-

quency, and solve equation (2-38) for all the corresponding

complex eigenvalues Zi .
Then, for each Z, the associated

frequency, structural damping, and velocity are given by,

1 Im{Z} cOb
c e ; g Re ; U -

_Re{Z} Re{Z} k
(2-40a,b,c)
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The procedure is repeated for several values of the

reduced frequency k, until enough values have been generated

to plot a smooth U-g diagram. The divergence points are

those locations where the structural damping and frequency

simultaneously go to zero. The flutter points are those

other locations where the structural damping goes to zero but

the frequency is non-zero.

2.9 Fourier Analysis of the Nonlinear Aerodynamics

For later use in the Harmonic Balance Method, it is nec-

essary to be able to evaluate the lowest order frequency com-

ponents of the nonlinear aerodynamic force coefficients when

given a harmonic input. First, harmonic motion is assumed for

the angle of attack and the non-dimensional, 1/4-chord

deflection,

0(t) = 0o + aOsin(kT) + Occos(kT) (2-41a)

h(t) = ho + hasin(kt) + hccos(kt) (2-41b)

where,

ab
k = reduced frequency = CU

UtT = non-dimensional time =-
b

The effective angle of attack, a, which combines both

the instantaneous angle of attack and the angle of attack due

to the velocity of the 1/4-chord deflection, is given by,

a(T) = ao + assin(kt) + acos (kt) (2-42a)
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where equation (2-27e) gives,

o 0  00 (2-42b)

0s = + khc (2-42c)

c = 08 - khs (2-42d)

Manipulations of the formulas are further simplified if

the angle of attack is put in the form where it is purely

sinusoidal,

a(T) = o + G sin(kt+4) = Go + avsinq (2-43a)

where,

(v= s + ( c  (2-43b)

-1 c= sin (2-43c)
V

9 = kT + 4 (2-43d)

Equation (2-43a) is then substituted into equation

(2-29a) to give,

Ji

ACz(T) = jaia o + vsinP9 - •i) (2-44a)

j=0

for (Pi < (P (P i+I

where,

(i = sin (2-44b)

{i (2-44c)
-7/2 if o-a > iX i.e., ai -G <- v0 " 0i
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Equation (2-44a) is only valid within the i-th region,

as shown in the example in Figure 3 for a nonlinear curve

described by only two regions. Since the effective angle of

attack is a function of the non-dimensional time, for each

angle of attack deliniating the i-th region, ai, there is

therefore an associated non-dimensional time, designated Pi"

As shown by the relationship in Figure 3, and diagrammed in

the time domain in Figure 4, the relationship between the

deliniating angle of attack, ai, and the associated non-

dimensional time, (i, is given by equation (2-44b).

For those regions where 9. is undetermined, Pi takes on

the values _+t/2, as described in equation (2-44c). These

values are arbitrarily set so that the limits of integration

are correct in the Fourier analysis in equation (2-48).

Substituting the power expansion relationship into the

polynomial in equation (2-44a) gives,

J. j-m

ACz (T) = aij Kv o •i sinm( (2-45)

j=0 =

where the binomial coefficients are defined as,

lmj j!
M m! (j-m)

Next, assume harmonic motion for ACz as well,

ACz(t) = ACzo + ACzvsin9 + H.H.T. (2-46)
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Figure 3. Example of oscillation straddling
stall angle on aerodynamic force curve
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Figure 4. Example of oscillation straddling
stall angle in non-dimensional time domain
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Since AC z is a single-valued function of a, the two

functions are always in phase with each other, and therefore

there is no cosP term in equation (2-46). Fourier analysis

then gives the relations for ACzo and ACzv'

+--

+n; 2

Aco 2ACz (C) d(P = ACz (t) d(P (2-47a)

2

+-
2

ACv = ACz (T) sin(P dP (2-47b)

2

Substituting equation (2-45) into equation (2-47a) gives,

ACzo
(j jm9Ii+1

aijO mi) f sinm dp (2-48)

S m=0 i

Interchanging the j and m summations in equation (2-48)

gives,

AC zo

-IJ.

aij (
) 3=m

dji (2-49)

For ease of calculation, the summation in equation

(2-49) is separated into two terms: those that are dependent

on a summation over the j's, the powers of the polynomial

approximation, and those that are independent of j. The new

equations are in essence no different than equation (2-49),

and no physical significance is implied in this particular
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separation of terms, but computationally the evaluation of

equation (2-49) is made more simple.

Ji
zobimim (2-50)

i m=o

where the bim's are the j dependent terms, and the Iim's are

the j independent terms. These terms are given by,

Ji 3-m

b. v= jja. j 0 (2-51)

j=m

9i+1i m- i+
irn =f sinmd-= + m- I, (2-52)im m m i, m-2

Pi (Pi

where the first two values required for the recursive formula

in equation (2-52) are given by,

(Pi+1
IiO = d( = pi+1 -i (2-53a)

i

(Pi+1
Iil = f sinPd( = cosP i - cos(Pi+ 1  (2-53b)

i
Similarly, using the same calculated bij and Iij values,

the first harmonic term is given by,

AC = bim i,m1 (2-54)
i m=o

Equation (2-46) is then placed back into the usual sine and

cosine harmonic form by setting ( = kt + ý,

ACz (T) = ACzo + ACzs sin(kt) + ACzccos (kT) (2-55a)
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where,

ACzs = ACzvcos = ACzzv (2-55b)
4a2. + a2

ACzC = ACzvsin4 = ACzV c (2-55c)
4a2 +a2

and where ACzo and ACzv are given by equations (2-50) and

(2-54), and where a s and ac are given by equations (2-42c)

and (2-42d).

It is unnecessary to also carry out the full Fourier

analysis for the time derivative of ACz because of the mathe-

matical identity that the Fourier expansion of the derivative

of a function is equal to the derivative of the Fourier

expansion. Hence, equation (2-55a) gives,

ACz (z)
= -kACzsin (kT) + kACzscos (kt) (2-56)

where ACzs and ACzc are again given by equations (2-55b) and

(2-55c). Simple examples for a force curve with only one and

two break points is given in Appendix E.

2.10 The Harmonic Balance Method

All the components of the flutter problem have been

stated in differential form and now it remains to reduce the

problem to an algebraic form so that it is more easily solved

computationally. The general form of the differential equa-

tion describing the motion of the wing is given by equation

(2-12). The left hand side of equation (2-12) contains the

structural information of the problem and is described by the
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definitions of the stiffness and mass matrices given in equa-

tions (2-7) and (2-8) . The right hand side of equation

(2-12) contains the aerodynamic information of the problem,

in the form of the modal forces, and is described by equation

(2-30).

In general the aeroelastic problem is reduced from dif-

ferential form to algebraic form by assuming harmonic motion

in the same manner as for the free vibration problem in sec-

tion 2.6. This method is acceptable for the linear flutter

problem where the steady part of the solution is uncoupled

from the unsteady part of the solution. However, for the

nonlinear flutter problem, these two are no longer uncoupled

and both must be considered at once.

First, the modal amplitudes are put into harmonic form,

qi ( ) = qio + qissin(kt) + qiccos(kt) (2-57)

From the modal amplitudes, the angle of attack and

1/4-chord deflection at each spanwise location are also put

into harmonic form,

h(x,t) = h o (x) + h s (x)sin(kC) + h c (x)cos(kT) (2-58)

(x, T) = 00 (x) + s (x)sin(kt) + c (x)cos(kt) (2-59)

where,

n
O(x) = ~i(x) i ( + c/4) (2-60a)

i=1

n•qiS
hs(x) = i -- (x) Ni (+c/4) (2-60b)

i=l
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and,

(2-60c)
-- n qic
hcI(x) = 01 •i(x) fi(+c/4)

i=l

n

eo (x) = eroot ioi(x)iy(+/4)
i=l

n
68 (x) = qisOi(x) Viy (+C/4)

i=l

n

c (x) = qic Oi(x)~ yi,y(+C/4)

i=l

(2-61a)

(2-61b)

(2-61c)

Substituting equations (2-58) and (2-59) into the

formula for the linear aerodynamics, equation (2-27c),

Cz,(x,t) = CzYO(x) +Czs(x)sin(k') + C zc(X) cos(kt)

gives,

(2-62)

where,

Czy (x) = a0oz0 (x)

CzIs(x) = F(k)L s (x) - G(k)L c (x)

Czc(x) = G(k)L s (x) + F(k)L (x)

where, in the present analysis, the F and G functions

(2-63a)

(2-63b)

(2-63c)

are the

resulting single lag approximations to the Theodorsen func-

tion, C(k) = F(k)+iG(k), namely,

2 _2
Az + Ozk

F (k) = 2 2
2 + k2

G (k)

(2-64a)

Xz k (1- a z )

2 + k2
z

(2-64b)
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and where the other intermediate variables are,

Ls (x) = a0z s (x) +kh c (x) - (zkOc (x) (2-64c)

Lc (x) = aoz [c(x) -kh s (x)] + YzkOs (x) (2-64d)

Finally, the apparent mass terms are added to give the

usual harmonic form of the linear aerodynamics derived from

equation (2-27b),

Czlo(x) = Czy o (x) (2-65a)

2- 2
Czl s ( x ) = Czys ( x ) - s z [ k Oc ( x ) - k h s ( x ) ] -kvzk Os(x) (2-65b)

Czl c ( x) = CzY (x) +s z [kOs (x)+k h (x)] -kvzk Oc(x) (2-65c)

Substituting the harmonic form of the nonlinear aerody-

namics, equation (2-55a), into the nonlinear aerodynamic

differential formula, equation (2-27d), gives,

Cz2(x,t) = Cz20(x) +C (x) sin (kt) +Cz2c(x)cos(k) (2-66)

where,

Cz2 0 (x) = -ACz0(x) (2-67a)

K1K3 +K2K 4
Cz2 s (x) = 2 2 (2-67b)

K1 + K2

KIK 4 - K2K 3Cz2, (x) = 2 2 (2-67c)
K1 + K2

and the intermediate variables are given by,

K1 =1 + d2  _ i (2-68a)

kK2 = 2d- (2-68b)2 w
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K3 = -(1+d 2 )[ACzs (x) - ekACzc (x)]

K4 = -(1+d 2 )[ACzc(x) + ekACzs (x)

(2-68c)

(2-68d)

The harmonic forms of the linear and nonlinear force

components, given by equations (2-65) and (2-66), are then

placed into the combined force formula, equation (2-27a), to

give,

C,(x,t) = Czo(x) + Czs(x)sin(kT) + Czc(x)cos(kZ) (2-69)

where,

Czo(x) = C 10 (x) + Cz20(x)

Czs(x) = Czls (x) + Cz2 s ( x )

Czc(x) = Czlc(x) + Cz2c(x)

The harmonic form of the aerodynamic forces

(2-70a)

(2-70b)

(2-70c)

is then

placed into equation (2-30) to give the harmonic form of the

modal forces,

Qi (T) = Qio + Qissin(kT) + Qiccos(kt) (2-71)

where,

-Qio = U2c [CLx) cosRCDO(x) sinOR]IiV (+-)
0 + c2CMO (x)Ny(+ -) (x) dx

4

Qis = U2 0 CLs (X) COSOR CDs(X) sin9R3 Yi
0

+ C2 CMs (x)i,y(+2)}Oi(x) dx

(2-72a)

(2-72b)
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0

form in equation (2-12b), are converted into the final har-

monic form by substituting the harmonic forms of the modal

amplitudes and modal forces from equations (2-57) and (2-71),

[K] 0 0 o
0 -[M]+[K] 0 {qs = {Qs (2-73)

0 0 -02 [M] + [K] . c L I 0.

2.11 Nonlinear Divergence

The steady deflection problem is solved by setting the

sinusoidal terms in equation (2-73), {qs}, {qc }, {Qs5 , {Qc '

and (0, to zero. The resulting n by n reduced set of non-

linear equations can then be solved using the same numerical

solver as for the full flutter problem.

Because the problem now contains nonlinear stalling

effects in the aerodynamics, the analytic solution will no

longer have a divergence velocity in the classical sense:

once the wing begins to diverge, part of the wing span will

begin to exceed the stall angle, thus reducing the lift and

at some point preventing the angle of attack from further

increasing. However, the linear divergence velocity can give

insight into the full nonlinear behavior of the wing, as can

be demonstrated by the following simple model.
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A simplified nonlinear divergence problem can be set up

using the same Rayleigh-Ritz method as for the full flutter

problem, with the simplification that we now only consider

one spanwise, linearly varying, torsional mode, and the lift

remains at CLmax after stalling occurs. This would then give

the spanwise variation of the angle of attack as,

xa(x) = aR + q 2 (2-74)

where aR is the root angle of attack and q2 is the torsional

modal amplitude. (The notation q2 is used so as to more

closely resemble the notation for the torsional mode used in

the full analysis.)

The potential energy and work terms are then given by,

e
Q2 2 pU ceCL(a(x)) dx

0

xs
= pU2 CL q 2+ ) dx + C a dx (2-75)

••R if less than e
x3

s -q2

= GJ (x d=(2-77)0where xs, the spanwise location beyond which the wing isexperiencing stall, is related to the stall angle a by the
relation,

a RQ if less thane

(2-77)
=e otherwise
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Note that equation (2-77) is valid for both positive and

negative stall angles, as. Putting equations (2-75) to

(2-77) into the equation of motion, dV/dq 2 =Q 2 , we get the

implicit linear and cubic equations,

3Q q23 6 for < 1 (2-78a)
2 2 1-Q a- a R

3 3 2 1- 3 q2
q2  2 Q 2aq 2 [a-R] = 0 for R> 1 (2-78b)

where the non-dimensional dynamic pressure is given by,

1-- pU2 AeeC
= 2 La

3GJ (2-79)

Figure 5 shows solutions for various values of root

angle of attack aR, with an arbitrary stall angle as=80.

This figure is in many ways insightful in its relationship to

the classical divergence problem.

First, for root angle of attack aR=00 , divergence does

not occur in the classical sense that at the divergence speed

the amplitude of deflection grows to infinity. However, at

and above the classical divergence speed (Q=1), equations

(2-78a) and (2-78b) yield three possible solutions. One of

these solution is the trivial solution, q2=0, and is unstable

- a small perturbation in q2 will generate an aerodynamic

force that cannot be restored by the torsional stiffness of

the wing. Therefore, the amplitude continues to increase

until it reaches one of the two non-zero values. So,

although nonlinear divergence does not indicate an infinitely
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Figure 5. Analytic example of nonlinear divergence.
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growing amplitude, it does indicate non-zero amplitude for

zero angle of attack.

One also notes from Figure 5 the asymptotic behavior as

l3 2Q and q2 grow large. For these values, the q2 and a 2 terms

are much larger than the (as-aR) term, thus leaving an equa-

tion which is independent of the root angle of attack aR,

3 3 2 2
S-3 q2 = 0 for >> 1 (2-80)22 2 S 2 (Xsq2I Ra

which leads to the asymptotic solution q2 =2 Qs

The full nonlinear divergence problem must be carried

out numerically because of the complexity of those effects

which were ignored in the simplified model. In the full

model, the lift coefficient curve is less straightforward,

and drag, moment, and three-dimensional spanwise effects are

also included. The addition of more modes and bending-

torsion coupling terms also add to the complexity. However,

with this simple model we see what to expect from, and how to

interpret, the results from the full nonlinear model.
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CHAPTER III

EXPERIMENT

3.1 Test Specimen Preparation

The test specimens were constructed from Hercules

AS4/3501-6 graphite/epoxy prepreg tape from Lot No. 4021-2,

Spool Nos. 53A and 38A, using the standard TELAC manufactur-

ing procedure [Ref. 18]. The laminates and curing materials

were arranged on an aluminium curing plate as shown in Fig-

ure 6 and cured in a Baron model BAC-35 autoclave using the

standard TELAC curing cycle described by Figure 7. After cur-

ing, the laminates were post-cured in a forced air circula-

tion oven at 3500 F for eight hours. After post-curing, rect-

angular test specimens 330 mm (13 in) long and 76 mm (3 in)

wide were cut from the laminates using a diamond-coated cut-

ting wheel mounted on an automatic feed, milling machine.

The plate was weighed to determine its density, and the

thickness and width measured at several locations and aver-

aged. These average measurements for each specimen appear in

Appendix G, along with the nominal values. The laminates

were also weighed on an electronic balance, from which the

material density (p) for each specimen was calculated.

Loading tabs 76.2 mm (3 in) x 25.4 mm (1 in) were ma-

chined from 3.2 mm (1/8 in) aluminum plate and bonded to the

base of each test specimen with FM-123-2 film adhesive, cured

using the standard TELAC bond curing cycle. The loading tabs

were intended to aid in aligning the test specimen in the
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Figure 6. Cross-section of symmetric curing assembly
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Figure 7. TELAC cure cycle
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clamping fixture and to prevent damage to the plate surface

fibers.

To get an indication of the lateral deflections, strain

gauges were attached to the base of each test specimen at the

midchord, as shown in Figure 8. Two Micro-Measurement

EA-06-125AD-120 strain gauges, from Lot No. R-A38AD297 with a

gauge factor of 2.055, were attached to both sides of each

specimen to measure bending strain. Two Micro-Measurement

EA-06-250TK-120 strain gauges, from Lot No. R-A38AD286 with a

gauge factor of 2.02, were attached to both sides of each

specimen to measure torsion strain. The two bending gauges

were wired together as a two-arm bridge circuit with three

external lead wires. The two torsion gauges were wired

together as a four-arm bridge circuit with four external lead

wires. Wiring the strain gauges in this manner provided

automatic temperature compensation. Finally, the gauges and

exposed wiring were coated with Micro-Measurement M-Coat A,

an air-drying polyurethane.

The NACA-0012 fairings were cut from 254 mm (10 in)

blocks of styrofoam using a hot wire cutter running over an

aluminum template. The fairings were then epoxied to the top

and bottom of the graphite/epoxy plates and slit chordwise at

63.5 mm (2.5 in) intervals to relieve some of the bending and

torsion stiffness.
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Figure 8. Wing construction and specimen dimensions
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3.2 Static Deflection Tests

The static deflection test setup is shown in Figure 9.

It consisted of a clamping device bolted to a large aluminum

table (the "optics bench" at M.I.T.'s Facility for Experimen-

tal Structural Dynamics). Two low friction pulleys were at-

tached to vertical rods such that a force or moment could be

applied to the test specimen at its tip. Rulers, graduated

in millimeters, were attached to Dexion angle-iron to facili-

tate measuring the test specimens' tip deflections. A de-

flection indicator, consisting of wooden dowels and thin

spring-steel for pointers, was constructed. Threads, routed

over the pulleys and attached to weights, could be attached

at any point along the wooden dowels so as to transfer either

a force or a moment to the test specimen.

The deflection indicator was aligned with the tip of the

test specimen and the test specimen clamped in the vise. For

the tip force test, the pulleys were aligned with the plate

midchord and threads from the center of the wooden dowels

were routed over the pulleys. Weights in increments of

5 grams were successively attached to the threads, first to

give positive deflections, then to give negative deflections.

As each weight was attached, the readings from both pointers

were recorded, along with the applied weight and the measured

bending and torsion strains.

Next, the pulleys were aligned with the leading and

trailing edge of the plate tip and the threads routed from
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the plate corners over the pulleys, so as to produce a posi-

tive moment when equal weights were attached. Weights of

5 gram increments were successively attached to each thread

of the couple, and readings from the pointers and the strain

gauges were again recorded along with the applied weights.

The pulleys were then switched to diagonal opposites of the

plate so that negative moments could be applied, and the same

procedure applied.

For each data point, the lateral deflection of the elas-

tic axis and the rotation about the elastic axis were calcu-

lated from the pointer measurements. The lateral and angular

deflections were plotted versus applied tip force for each

test specimen, and compared against the 5-mode Rayleigh-Ritz

with cubic stiffening. Similarly, the lateral and angular

deflections were plotted versus applied tip moment for each

test specimen, and compared against the same analysis. Lin-

earized fits between lateral deflection and bending strain,

and between angular deflection and torsion strain, were con-

ducted so that a linear relation could be later applied to

the flutter tests. The results of the static deflection

tests are discussed in section 4.2.

3.3 Free Vibration Tests

The free vibration test setup, shown in Figure 10, used

the same clamping device as the static deflection tests. The

oscillating force was applied to the test specimen by first

attaching a small 0.5" x 0.5" steel strip near the root of
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the test specimen using double-sided adhesive tape. A mag-

netic probe was then placed near the steel strip. The oscil-

lating signal was generated by a Wavetek Model 132 Signal

Generator, and amplified to the magnetic probe using a Gen-

eral Radio Company Unit Amplifier Type 1206-B, thus producing

the necessary oscillating force. In addition, the input

signal was sent to a Tektronix 2213 dual beam oscilloscope to

be compared with the measured deflection. The deflection was

measured by first attaching a small 0.5" x 0.5" strip of

adhesive aluminum tape to the opposite side of the test

specimen, near the plate tip. A proximity probe was then

placed near the aluminum tape. The signal from the proximity

probe was passed through a 7200 11mm transducer, an AP

Variable Frequency Filter to eliminate any noise in the

signal, and finally to the Tektronix 2213 oscilloscope so as

to be compared against the original input signal.

Each test began with the signal generator set below

5 Hz. The frequency was slowly increased until the first

bending mode was excited, i.e. when the vibration amplitude

peaked and the output signal was observed to be 900 out of

phase with the input signal. The frequency was recorded and

the node lines recorded using a "chatter" test: the tip of a

pencil was moved along the surface of the plate and a node

point observed when the pencil no longer chattered against

the vibrating plate. This procedure was repeated for the

second bending and first torsion vibration modes.
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Figure 10. Free vibration instrumentation setup
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In addition, "pluck" tests were also conducted to verify

the free vibration frequencies of the wings. The wings would

either be sharply tapped or given a brief, sharp torsional

force, hopefully exciting several of the lower bending and

torsion modes. The strain gauge readings were recorded on a

Nicolet digital oscilloscope, and passed through a Fourier

analyzer so as to decompose the frequency content of the sig-

nal. The results of the free vibration tests are discussed

in Section 4.3.

3.4 Wind Tunnel Tests

All wind tunnel tests were conducted in the M.I.T.

Department of Aeronautics and Astronautics acoustic wind

tunnel. The acoustic wind tunnel is a continuous flow tunnel

with a 1.5 m (5 ft) x 2.3 m (7.5 ft) free jet test section

2.3 m (7.5 ft) long. The tunnel was powered by a 100 HP

motor giving it a continuously variable velocity range of

0 m/s to 30 m/s (0 ft/sec to 105 ft/sec). The tunnel control

panel was located outside the chamber and the velocity was

controlled by two levers (coarse and fine speed control).

The coarse lever controlled the motor field current and was

variable in fixed step increments only; the fine lever con-

trolled the motor shunt current and was continuously vari-

able. There was a 400 amp current limitation on the motor,

which was protected by circuit breakers. The tunnel velocity

was read from an alcohol manometer, calibrated in inches of

alcohol, located at the control panel. This manometer was
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connected to a pitot tube located slightly forward of the

test section.

The test setup, shown in Figures 11 and 12, consisted of

a turntable machined from aluminum, mounted on a 914 mm

(36 in) tall, cylindrical pedestal made of 51 mm (2 in) thick

steel pipe, 305 mm (24 in) in diameter. The pedestal was

mounted to the floor of the wind tunnel section. A wooden

cover disk 762 mm (30 in) in diameter was used to ensure the

pedestal did not affect the flow over the test specimen, and

thus provided smooth airflow past the test specimen. A

pointer attached to the free rotating portion of the

turntable, and an angle indicator attached to the fixed base

of the turntable, provided a consistent means of reading the

angle of attack of the test specimen.

The bending and torsion strain gauges were wired to a

terminal strip attached to the fixed pedestal, which was in

turn wired to 2120 Strain Gauge Amplifiers. The amplifiers

had a two-arm D.C. bridge installed in channel 1 for the

bending gauges and a four-arm D.C. bridge installed in chan-

nel 2 for the torsion gauges. The bending and torsion out-

puts from the Strain Gauge Amplifiers were fed to a Nicolet

Digital Oscilloscope where the signals could be recorded on

floppy disk. Visual data was recorded by placing a mirror at

a 450 angle above the test setup, and recording on videotape

the overhead view of the tip deflections. For sinusoidal

flutter motion, a strobe light was used to help visualize the

oscillations.
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CHAPTER IV

RESULTS & DISCUSSION

4.1 Computer Implementation

The theory described in Chapter 2 was implemented using

Fortran code on the MicroVax facility at the Facility for

Experimental Structural Dynamics at the Aeronautics and

Astronautics Department of M.I.T. The listing of the princi-

pal Fortran programs and subroutines is given in Appendix H.

A flowchart briefly describing the functions of each of these

programs is given in Figure 13.

4.2 Static Deflections

The experimental results of the static deflection tests

for the [02/90]s, [90/02]s, [+152/0]s, and [-302/0] s flat

plates are compared in Figures 14a to 14d with the 5-mode

Rayleigh-Ritz analysis described in Section 2.5. The results

for the [-152/01]s flat plate are not presented because they

reflect the same results as for the [+152/0] s flat plate,

except with the signs of the moment-deflection and force-

twist coupling terms changed. The experimental results for

the same laminates with NACA-0012 styrofoam fairings are

likewise compared to analysis in Figures 15a to 15c. Deflec-

tion tests were not conducted for the [-30 2/0]s wing. Sym-

bols indicate experimental data, solid lines indicate analy-

sis with cubic stiffening, dashed lines without cubic stiff-

ening.
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These figures show excellent agreement between exper-

iment and analysis. Note that the figures also indicate a

slight asymmetry in the experimental bending characteristics.

This may be due, in part, to small errors in manufacturing,

which cause some initial warping of the flat plates.

Finally, it is noticed that the styrofoam fairing stiffens

the wings in torsion, but comparatively little in bending.
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Figure 13. Flow chart of computer programs
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Short Definition of Proarams

Subroutine STIFF - calculates stiffness matrix for bare

plates and wings

Subroutine MASS - calculates mass matrix for bare

plates and wings

Subroutine STATIC - calculates analytic static

deflection results

Subroutine VIBRATION - calculates analytic free vibration
results

Subroutine AEROF - calculates 2-dimensional, nonlinear

aerodynamics for oscillating angle

of attack and 1/4-chord deflection

Subroutine MODAL_FORCE - spanwise integrates 2-dimensional

aerodynamic forces to give

oscillating modal forces

Subroutine RESIDUAL - combines aerodynamic modal forces
with structural terms to give

residuals for Newton-Raphson solver

Subroutine DRDQ - calculates Jacobian matrix required
for Newton-Raphson solver by

numerically evaluating derivatives

in each direction of state vector

Subroutine SOLVE - calculates required step in Newton-

Raphson solver to drive the residual
to zero

Program FLUTTER - driver program to take inputs from
STIFF and MASS subroutines, with
desired experiment characteristics
(velocity, angle of attack, etc.),

and solve nonlinear flutter problem

Figure 13 (cont'd). Description of computer programs
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Figure 14a. Static deflection results for [02/901s plate
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Figure 14b. Static deflection results for [90/02] s plate
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Figure 14c. Static deflection results for [+152/0] s plate
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Figure 14d. Static deflection results for [-302/0]s plate
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Figure 15a. Static deflection results for [02/90]s wing
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Figure 15b. Static deflection results for [90/021 s wing
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4.3 Free Vibration Frequencies and Modes

Natural vibration frequencies for the flat plates and

the NACA-0012 wings were determined both experimentally and

analytically, and are tabulated in Table 1. Although these

are listed as 1st bending (IB), 1st torsion (IT), and 2nd

bending (2B), with highly coupled laminates this distinction

becomes much less meaningful because of the high bending-

torsion coupling. The coupling of these modes is more evi-

dent by comparing the mode shapes of the coupled laminates

with those of the uncoupled laminates.

The mode shapes for natural vibration were also deter-

mined experimentally and analytically for the flat plates.

The resulting experimental and analytic node lines are plot-

ted in Figures 16a to 16d. The node line of the first bend-

ing mode is not presented since it simply runs along the root

of the laminate.

Both the experimental frequencies and mode shapes show

excellent agreement with the analysis for the bending modes

and the first torsional mode. The higher modes are less well

predicted by the analysis, but they are less important in the

final analysis since they are only intended as corrections to

the more important lower modes. As with the static deflec-

tions results, the vibration results also indicate that the

styrofoam fairing stiffens the wings in torsion, but compara-

tively little in bending. In fact, the bending frequencies

are lowered because of the added weight of the styrofoam.
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FLAT PLATES

Experiment

1T

11.0 35.0 67.7

6.6 36.0 40.6

8.8 41.6 61.6

8.8 41.8 63.6

6.4 57.7 36.3

Analysis

91,

11.0 38.7 69.1

6.6 35.8 41.1

8.9 42.7 64.3

8.9 42.7 64.3

6.2 58.0 39.9

NACA-0012 WINGS

Experiment Analysis

1B 1T 2B 1B 1T 2B

[02/90] s  9.9 50.1 63.2 10.5 51.2 66.1

[90/02]s 6.3 45.9 40.5 6.4 47.9 41.4

[+152/0] s  8.8 52.8 61.9 9.1 52.4 65.1

[-152/0] s 8.6 52.1 61.4 9.1 52.4 65.1

[-302/0]s 6.3 63.0 43.5 6.7 66.4 44.6

Free vibration frequencies (all values in Hz)
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[02/90]
s

[90/02] s

[+152/0]
s

[-152/0]
s

[-302/0]
s

Table 1.

FLAT PLATES

Analysis
2B 2B



1ST TORSION MODE ; EXPERIMENT - 35.0 Hz ; ANALYSIS =38.7 Hz

2ND BENDING MODE ; EXPERIMENT - 67.7 Hz ; ANALYSIS - 69.1 Hz

2ND TORSION MODE ; EXPERIMENT - 118.4 Hz ; ANALYSIS - 130.7 Hz

-------- EXPERIMENT 5-MODE RAYLEIGH-RITZ ANALYSIS

Figure 16a. Free vibration mode shapes for [02/90] s plate
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- 1ST TORSION MODE ; EXPERIMENT - 36.0 Hz ; ANALYSIS - 35.8 Hz

4
I
I00

2ND BENDING MODE ; EXPERIMENT - 40.6 Hz ; ANALYSIS - 41.1 Hz

2ND TORSION MODE ; EXPERIMENT - 106.0 Hz ; ANALYSIS - 114.0 Hz

- - - --- EXPERIMENT 5-MODE RAYLEIGH-RITZ ANALYSIS

Figure 16b. Free vibration mode shapes for [90/02]s plate
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- 1ST TORSION MODE ; EXPERIMENT - 41.6 Hz ; ANALYSIS - 42.7 Hz

2ND BENDING MODE ; EXPERIMENT - 61.6 Hz ; ANALYSIS - 64.3 Hz

2ND TORSION MODE ; EXPERIMENT - 113.8 Hz ; ANALYSIS - 163.8 Hz

- -- --- EXPERIMENT 5-MODE RAYLEIGH-RITZ ANALYSIS

Figure 16c. Free vibration mode shapes for [+1 5 2/0]s plate
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_ 1ST TORSION MODE ; EXPERIMENT - 57.7 Hz ; ANALYSIS - 58.0 Hz

2ND BENDING MODE ; EXPERIMENT - 36.3 Hz ; ANALYSIS - 39.9 Hz

2ND TORSION MODE ; EXPERIMENT - 165.7 Hz ; ANALYSIS - 202.5 Hz

- - --- EXPERIMENT 5-MODE RAYLEIGH-RITZ ANALYSIS

Figure 16d. Free vibration mode shapes for

-94-

de

[-302/0] s plate



4.4 Two-Dimensional Aerodynamics

Experimental results of two-dimensional lift coefficient

and moment coefficient hysteresis loops from Ref. 16 for a

NACA-0012 airfoil in low Reynold's number flow are compared

against analysis in Figures 17a and 17b. This analysis em-

ploys the Fourier analysis described in Section 2.9 and the

two-dimensional static and unsteady aerodynamics described in

Appendices C and D. For a gauge of the influence of lag and

hysteresis, these figures may be compared with the

2-dimensional lift and moment curves given in Figure 27 in

Appendix C.

The second harmonic of the Fourier analysis is also

included in producing the analytic hysteresis loops, so as to

show a closer match with the high order frequency components

of the experimental data. However, this second harmonic is

not used in any later part of the nonlinear flutter analysis,

as only the lowest order harmonic is required in the harmonic

balance method used here.

The lift hysteresis loops show good agreement between

experiment and theory while the moment hysteresis loops seem

to show poor agreement. However, these discrepancies in the

moment loops may be overlooked in future analysis for several

reasons: (i) it is clear from the experimental moment data

that the moment hysteresis loops contain a larger component

of higher frequencies than do the lift hysteresis loops,

making it more difficult to easily compare the lowest har-
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monic component with the analysis, (ii) the semi-empirical

coefficients of the analytic model are principally derived

for the lift coefficient, and for much higher Reynold's num-

bers, leading one to expect poor agreement for the moment

coefficient at low Reynold's numbers, and (iii) because the

elastic axis of the wings is very near the midchord, in the

final flutter analysis it is likely that the moment around

the midchord will play a greater role than the moment around

the aerodynamically significant 1/4-chord, thus making the

moment generated by the 1/4-chord lift offset from the mid-

chord more important than the 1/4-chord moment, since it is

on average an order of magnitude larger.
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4.5 Wind Tunnel Tests

4.5.1 Steady Deflections

The steady aerodynamic deflections were determined ana-

lytically for the wings of interest, that is, the deflections

that the wings would experience if all unsteady motion were

suppressed. These results are presented in terms of midchord

tip deflection and tip twist in Figures 18a to 18g for lines

of constant velocity. The analysis and experiment are pre-

sented in this form because it was in this manner that the

actual experiments were conducted (the wind tunnel was

brought to a fixed speed, and the root angle-of-attack varied

with that speed held fixed). Later graphs will be plotted

for the more conventional lines of constant root angle-of-

attack. For these figures, the cubic stiffening was included

in the structural part of the analysis and only two mode

shapes (1st bending and ist torsion) were used.

The analysis is compared to the mean experimental aero-

dynamic deflections, that is, the steady deflections if no

oscillation is present or the time average deflections if

they are unsteady. To distinguish the two, the steady exper-

imental values are plotted as hollow symbols in Figures 18a

to 18g, while the time-averaged unsteady deflections are rep-

resented as solid symbols. The steady analytic values are

plotted as solid lines. Tests were also conducted with flat

plates, and the analysis is capable of determining steady
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deflections for these, but for brevity only the NACA-0012

wings are presented.

For clarity, these graphs are presented with intervals

of 4 m/s, thereby necessitating more than one graph for lami-

nates for which a large number velocities were investigated.

These graphs show good agreement between experiment and anal-

ysis up to the point where unsteadiness is experienced exper-

imentally. At this point, the time-averaged unsteady deflec-

tions show a consistent trend away from the predicted ana-

lytic steady values, which is more closely discussed in Sec-

tion 4.5.5. Only the [-152/0] s wing shows poorer agreement

between analysis and experiments, and here only for the tip

twist. Still, even with poor agreement, both analysis and

experiment show the same trends. The discrepancy is likely

explained because the [-152/0]s wing experiences divergence

very early on, so that the nonlinear structural and aerody-

namic effects are more pronounced.
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Figure 18a. [02/90] s averaged midchord tip

deflections, lines of constant velocity
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Figure 18b. [02/ 90 ]s averaged tip
twists, lines of constant velocity
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Figure 18c. [90/02] s averaged midchord tip
deflections, lines of constant velocity
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Figure 18d. [90/02]s averaged tip
twists, lines of constant velocity
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Figure 18e. [+152/0] s averaged midchord tip deflections
and tip twists, lines of constant velocity
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4.5.2 Linear Divergence and Flutter

The analytic results for linear divergence and flutter

are presented in Table 2 for the laminates of interest using

the three-dimensional, linear aeroelastic analysis described

in Section 2.8. The U-g plots from which these values are

generated are shown in Figures 19a to 19d. As expected, the

[02/90] s and [90/021s wings have torsional flutter velocities

very near their divergence velocities, the [+152/0]s wing has

a torsional flutter velocity just above those of the [02/90] s

and [90/02] s wings and does not experience divergence at all,

and the [-152/0 ]s wing has a divergence velocity well below

its torsional flutter velocity.

Figure 19e is simply a reproduction of Figure 19a for

the [02/90 ]s wing, but over a larger velocity range, to show

the full trend of the U-g diagram. It is important to note

in passing that another flutter velocity occurs somewhere

between 200 m/s and 250 m/s, when the torsional branch once

again crosses the damping coefficient zero axis. It is also

noteworthy that by this point the torsional branch has in

fact dropped to a frequency much closer to the natural first

bending frequency. These observations are important for

later use in the full flutter analysis, since often it was

observed in applying the Newton-Raphson solver to the non-

linear analysis, that if the initial conditions of the solver

were chosen poorly, the scheme would converge to this high-

velocity, low-frequency solution.
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NACA-0012 WINGS

Divergence

Vel (m/s)

Flutter

Vel (m/s)

Flutter

Frea (Hz)

38.14 36.39 25.78

35.99 33.98 22.34

> 50 37.27 27.28

21.55 48.84 29.73

Table 2. Linear divergence and flutter characteristics
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Figure 19a. [0 2/ 9 0 ]s U-g diagram
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Figure 19b. [ 9 0 / 0 2]s U-g diagram
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Figure 19c. [+ 1 5 2/ 0 ]s U-g diagram
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Figure 19d. [-152/0]s U-g diagram
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4.5.3 Flutter Boundaries for Given Root Anales

The experimental and analytic flutter boundaries (i.e.

for very small amplitude oscillation) are presented in Fig-

ures 20a to 20d for given root angles of attack, with no

cubic stiffening included in the structural part of the anal-

ysis. The divergence speeds for each laminate, as shown in

Section 4.5.2 and listed in Table 2, are also marked on each

graph. Each graph demonstrates the expected trends for each

laminate type (similar trends of decreasing flutter velocity

with increasing root angle-of-attack were also observed by

Rainey [Ref. 20]).

Figures 20a and 20b for the [02/90] s and [90/021 s lami-

nates show a very short range of linear behavior (where the

flutter velocity and flutter frequency remain constant) -

this region is very short because the divergence velocity is

near the linear flutter velocity, thus driving the wing very

quickly into the nonlinear, stall range - after which point

an increase in the root angle-of-attack aR causes the flutter

velocity to drop and the flutter motion to become more purely

torsional (denoted by a frequency closer to the first-torsion

free vibration frequency and a decrease in the bending

amplitude). Figure 20c for the [+152/0 ]s laminate shows a

more extended range of linear behavior (because the diver-

gence velocity is very high and the tip twist is negative)

and a very sharp change in the flutter behavior once it goes

into the nonlinear stall region. Figure 20d for the
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[-152/0] s laminate indicates a much different trend where the

flutter is characterized by a low, first-bending frequency

and immediate nonlinear, bending stall flutter in the range

of the divergence velocity - there is no portion of the flut-

ter graph here which could have been predicted by a linear

analysis.

The nonlinear analysis in Figures 20a and 20b for the

[02/90] s and [90/021 s laminates compares well against the

experimental flutter boundaries and flutter frequencies. The

nonlinear analysis in Figure 20c for the [+152/0] s laminate

also compares well against experiment, although the upper

limit on the wind tunnel velocity (30 m/s), which is below

the linear flutter velocity of the [+152/0]s laminate, did

not allow for an experimental investigation into the phe-

nomenon of sharp drop from linear to nonlinear behavior. The

nonlinear analysis in Figure 20d for the [-152/0] s laminate

compares reasonably with experiment when considered in the

light of three factors: (i) the analysis and experiment both

indicate a bending flutter frequency (note that the frequency

scale in Figure 20d is magnified as compared to Figures 20a,

20b, and 20c), (ii) the analysis and experiment display the

same trend for flutter velocity, only shifted by a few

meters/second, and (iii) more discrepancy is expected for the

[-152/0]s laminate since it reaches the nonlinear regime more

quickly.
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Figure 20b. [90/02]s flutter boundary and frequency variation
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4.5.4 Large-Amplitude, Nonlinear Flutter

without Cubic Stiffening

The experimental and analytic flutter characteristics

for increasing amplitudes of oscillation are presented in

Figures 21 to 24. Each set of figures contains (a) the graph

of the variation of time-averaged midchord tip deflection

with increasing velocity for lines of constant root angle-of-

attack, (b) the graph of the variation of time-averaged total

tip angle (the sum of the root angle-of-attack and the tip

twist) with increasing velocity for lines of constant root

angle-of-attack, and (c) the graphs of variation of midchord

tip deflection and tip twist amplitudes of oscillation. For

each line of constant root angle-of-attack, both the steady,

static analysis (unsteady terms suppressed; solid lines) and

the nonlinear, unsteady flutter analysis (dotted lines) are

presented, so as to show where the two meet (equivalent to

the flutter boundary) and how each diverges from the other.

Likewise, both the steady, static experimental data (hollow

symbols) and the unsteady, flutter experimental data (filled-

in symbols) are presented. The linear divergence speeds, as

shown in Section 4.5.2 and listed in Table 2, are also marked

for comparison. For these cases the cubic stiffening was not

included in the structural part of the analysis and only two

mode shapes (1st bending and first torsion) were used.

Figures 21 and 22 for the [02/90] s and [90/02] s lami-

nates show the same trends in analysis: both the midchord tip

deflection and total tip angle show a sharp decrease when the
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velocity is increased past the flutter boundary. Although it

is not clearly evident in the graphs of midchord tip deflec-

tion (but is more clear in Figures 18a and 18c), the experi-

mental trend for midchord tip deflection actually increases.

However, the experimental trend for tip angle does decrease

in accordance with the analytic trend - this is deemed more

significant since the angle plays a larger role in the gov-

erning aerodynamics than does the deflection. As expected,

Figures 21c and 22c demonstrate the high torsional content of

this flutter. Figure 23 for the [+152/0] s laminate shows an

analytic softening trend in the flutter characteristic: that

is, once past the flutter boundary, a decrease in velocity

will increase the flutter amplitude. Again, the upper limit

on the velocity of the wind tunnel precluded investigating

any of this phenomenon experimentally. Figure 24 for the

[-152/0] s laminate shows a more gentle deviation from the

steady analysis, as compared to the sharp change in character

demonstrated by the [02/90] s and [90/02] s laminates in Fig-

ures 21 and 22. Figure 24c, showing the amplitude of oscil-

lation of the bending and torsion components, displays a much

higher bending component, as would be expected for this pre-

dominantly bending stall flutter. Again, as with the flutter

boundary for the [-152/0] s laminate, analysis and experiment

show similar trends.
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Figure 21c. [02/90] s deflection oscillation amplitudes
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Figure 23a. [+152/0] s averaged midchord tip deflections,
compared against nonlinear flutter analysis
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Figure 23b. [+152/0 ]s averaged total tip angle,
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4.5.5 Larae-Amplitude. Nonlinear Flutter

with Cubic Stiffening

Figures 25 and 26 show the same results as for Sections

4.5.3 and 4.5.4 for the [0 2/ 9 0 ]s wing, but with the cubic

stiffening effects now included in the structural analysis.

Figure 25 shows that the flutter boundary follows a similar

trend as in Figure 20a, except that the nonlinear structures

push the flutter velocity into the nonlinear region above the

divergence velocity for very low root angles-of-attack This

indicates two viable solutions at low root angle-of-attack:

the first below the divergence velocity where the tip angle

operates in the linear region of the cubic torsional stiff-

ness curve, the second above the divergence velocity where

the tip angle operates in the highly nonlinear region of the

cubic torsional stiffness curve. This phenomenon occurs

because the tip angles become large, thus operating on a

steeper portion of the torsional stiffness curve, and there-

fore resulting in higher torsional frequency and correspond-

ing higher flutter velocity. The analysis shows a reversal

in trend for the flutter frequency: with the cubic stiffening

included, the flutter frequency decreases with increasing

root angle of attack, while it had previously increased with

increasing root angle of attack in Figure 20a. This occurs

because the average angle-of-attack decreases as the root

angle-of-attack increases, thus operating on a less steep

portion of the torsional stiffness curve, therefore resulting

in decreasing torsional frequency. Both these trends show a
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strong influence from the nonlinear structures when the flut-

ter velocity is near the divergence velocity.

Figures 26a to 26c demonstrate more reasonable results

for the large amplitude, nonlinear stall behavior than those

presented in Section 4.5.4. Figures 21, 22, and 23 demon-

strated softening effects from the nonlinear aerodynamics,

that is, increasing amplitudes of oscillation could be ana-

lytically achieved by reducing the free stream velocity, and

correspondingly no analytic solution exists above the flutter

velocity. This trend seems both counter-intuitive and runs

counter to the experimental results, where the amplitudes of

oscillation increased with increasing free stream velocity.

However, as seen in Figures 26a to 26c, with the cubic stiff-

ening included in the structural analysis, the amplitude of

oscillation now increases with increasing velocity, while the

general trends of decreased midchord tip deflection and tip

angle still reflect the same trends seen in Section 4.5.4.

These figures demonstrate the governing roles of the two non-

linearities: the nonlinear aerodynamics contribute primarily

to the coupling between the steady and unsteady terms in the

aeroelastic problem, while the nonlinear structures con-

tribute primarily to the overall stiffening and large ampli-

tude behavior of the aeroelastic problem.

While the nonlinear structures give the expected, intu-

itive results that compare well against experimental trends

for increasing velocity, Figures 25 and 26 still show some

room for refinement. Notably, the increase in flutter veloc-
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ities and the change in trend of the flutter frequencies

indicate that the magnitude of the cubic stiffening term may

have been overestimated. This discrepancy might be accounted

for by two factors: (i) the cubic stiffening factor was

determined for a 5-mode Rayleigh-Ritz analysis applied to the

static deflection tests, while the analysis in this section

uses only two modes, and (ii) the coupling effects between

large amplitude deflection in the 1st bending mode and tor-

sional stiffening has not been investigated at all. Cursory

investigation has shown that reducing the number of modes

from five to two increases the effect of the cubic stiffen-

ing, i.e. reduction to two modes without appropriate compen-

sation to the cubic stiffening results in an over-estimation

of the cubic stiffening term by a factor of approximately

two. The effect of large deflections in the first bending

mode are yet to be investigated.
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vs. nonlinear flutter analysis with cubic stiffening
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

An analytic method has been produced to include non-

linear structural and aerodynamic effects into a full,

3-dimensional, aeroelastic problem, using the mathematical

tools of Fourier analysis, harmonic balance, and the Newton-

Raphson method as a numerical solver. The method makes use

of the cubic torsional stiffness model together with the

ONERA stall flutter model for the aerodynamics. Although in

the current investigation the method is used with many sim-

plifications - for example in the simplification of the aero-

dynamic force curves, in the restricted range of low

Reynold's numbers which are considered, and in the low number

of harmonics used in the harmonic balance method - the method

can easily be extended to implement more complex variations

of these factors. The current analysis presents a large step

forward from previous linear analyses, and allows for a

broader range of nonlinear problems to be considered.

Experimental data have been obtained on a set of aero-

elastically tailored wings with varying amounts of bending-

torsion coupling. These matched the trends of previous

studies [Refs. 1, 2, 3, 4].

As shown in Chapter 4, the current nonlinear aeroelastic

analysis predicts well almost all the observed, experimental,

nonlinear stall phenomena. Specifically, flutter boundaries

have been obtained which decrease with root angle of attack,
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limit cycle amplitudes at flutter have been obtained, and the

transitions from linear, bending-torsion flutter to torsional

stall flutter, and from linear divergence to bending stall

flutter, have been predicted analytically.

The advantages of the current analysis are several fold.

First and foremost, the method is in such a form that it is

generalizable to any type of airfoil and any range of

Reynold's number, as long as the structural and aerodynamic

characteristics of the airfoil are available. Second, the

method is in a simplified form that relieves some of the cum-

bersomeness inherent in other methods (eg. computational

fluid dynamics), and allows the user to choose the number of

mode shapes or order of harmonics to suit his particular

problem, while retaining the full nonlinearity of the prob-

lem. Third, by use of Fourier analysis and the harmonic bal-

ance method, the current analysis avoids the need for a time-

marching method and avoids any computational time that might

be needed in such a method to reach the final flutter limit

cycle.

In spite of these advantages, the current analysis poses

some problems and requires some further refinement. Although

the method is generalizable to any airfoil, the unsteady

experimental database for many airfoils does not currently

exist. In particular, the semi-empirical coefficients used

in the current study are values which had to be gleaned from

other low Reynold's number studies, since they are difficult

to find for the NACA-0012 airfoil at low Reynold's numbers.
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Also, the coefficients could be refined to reflect larger

amplitudes where stalling occurs on both sides of the air-

foil. The results of the current investigation could be

improved by conducting 2-dimensional, low Reynold's number

oscillation tests for the NACA-0012 airfoil, or by conducting

computational fluid dynamics studies of the airfoil charac-

teristics.

The current investigation also used a simplified, empir-

ical cubic stiffening factor to model the structural nonlin-

earity. This could be improved through more in-depth analy-

sis, and by using a more general plate theory to model the

deflections.

The model does not determine the stability of the limit

cycles which it predicts. As already seen in the final sec-

tion of Chapter 4, because the problem is nonlinear, several

solutions are viable. A method to determine the stability of

each of these viable solution needs to also be incorporated

into the analysis.

Lastly, the current analysis is still in effect a modi-

fied strip method, in that it considers no crossflow. These

3-dimensional effects also need to be investigated and, with

the other simplifications made, need to be verified against

some higher order method, such as computational fluid

dynamics.
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APPENDIX A - MATERIAL PROPERTIES

Hercules AS4/3501-6 Graphite/Epoxy properties:

Longitudinal modulus, EL

Transverse modulus, ET

Shear modulus, GLT

Poisson's ratio, VLT

Density, p

Nominal ply thickness, t

Extensional

143 GPa

9.7 GPa

4.9 GPa

0.30

1540 kg/m 3

0.810 mm

Flexural

97.3 GPa(1)

6.3 GPa(1)

5.3 GPa(2)

0.28

1540 kg/m 3

0.810 mm

HD-300, high density styrofoam:

Longitudin•

Transverse

Shear modul

Poisson's

Density, p

s sQII=Qs2

s s
Q12=Q21

s
Q66

Nominal C

al modulus, EL 24 MPa

modulus, ET 24 MPa

lus, GLT 15 MPa

ratio, VLT 0.30

35 kg/m3

26.37 MPa

7.91 MPa

15.00 MPa

(1) Based on static deflection tests

(2) Based on free vibration tests

.urrent Analysis

10 MPa (1 )

10 MPa (1 )

10 MPa (1 )

0.30

35 kg/m 3

10.99 MPa

3.30 MPa

10.00 MPa
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SSTRUCTURALAND MO. SHAE CONSTANT

Layup

[02/90] s

[90/02] s

[+15/0]
s

[+152/0]
s

[±30/0] s

[+302/01 s

Not determined
L

NOTE: K22 is the

Layup

flat plate torsion stiffness term

n g Bn1

[02/90]
s

[90/02]
s

[+15/0] s

[+152/0]
s

[±30/0] s

[+302/0]
s

.02319 1 1.8123 6.8117 -.24029 +.90262 -.24015

2 5.0371 8.2757 -.38882 +.63903 -.38895

.00821 1 1.7200 11.1672 -.14870 +.96545 -.14870

2 5.0344 12.1283 -.32787 +.78985 -.32787

.01126 1 1.7448 9.5856 -.17335 +.95230 -.17334

2 5.0486 10.6925 -.35105 +.74351 -.35106

.01126 1 1.7448 9.5856 -.17335 +.95230 -.17334

2 5.0486 10.6925 -.35105 +.74351 -.35106

.00408 1 1.6755 15.7544 -.10457 +.98327 -.10457

2 4.9787 16.4372 -.26563 +.87697 -.26563

.00408 1 1.6755 15.7544 -.10457 +.98327 -.10457

2 4.9787 16.4372 -.26563 +.87697 -.26563

In all cases Bn3 = -Bnl
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D11
(N-m)

4.1811

1.4806

3.8582

3.8582

2.7212

2.7212

D22
(N-m)

0.4305

3.1309

0.3301

0.3301

0.6208

0.6208

D1 2

(N-m)

0.0785

0.0785

0.2901

0.2901

0.7133

0.7133

D66
(N-m)

0.2347

0.2347

0.4463

0.4463

0.8695

0.8695

D16

(N-m)

0.0000

0.0000

0.3942

0.8541

0.5589

1.2110

D26

(N-m)

0.0000

0.0000

0.0559

0.1211

0.2206

0.4780

C L
K2 2 /K 2 2

(m-2

6000

9000

ND*

6000

ND

ND

APPENDIX B STRUCTURAL AND ~ODE SHAPE CONSTANTS
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APPENDIX C - STATIC AERODYNAMIC MODELS

Raw data for the static lift curve of the NACA-0012 air-

foil is taken from Jacobs and Sherman [Ref. 14] and is empir-

ically fit using the previously described division into poly-

nomial regions. For the current study, the Reynold's number

is very low, always below the critical Reynold's number of

approximately 340,000. Therefore, no Reynold's number depen-

dence was incorporated for varying free stream velocity. As

illustrated in Figure 27, the model of the 3-dimensional lift

curve used in this study is divided into three regions and,

for simplicity, each region is defined by a straight line:

(i) below the stall angle, a1 = 100, the 3-dimensional lift

slope is given by aoL CL5 = 0.8*5.9 rad - 1 (where the 0.8

factor comes from the finite-span correction), (ii) between

100 and 200 the 3-dimensional lift coefficient drops linearly

to 0.75, and (iii) above 200 the 3-dimensional lift coeffi-

cient remains constant at 0.75. The 3-dimensional moment

coefficient follows the same trend: (i) it remains zero below

the stall angle, (ii) drops linearly to -0.108 between 100

and 200, and (iii) drops linearly to -0.150 between 200 and

37.50. The two-dimensional profile drag is given by the

polynomial,

CDo = 4.923( 3 + .1473a 2 + .042a + .014 (C-l)

-151-



5 10 15 26 25 30
ANGLE (dog)

6 5 10 15 2e 25 30
ANGLE (dog)

Figure 27. NACA-0012 low Reynold's number lift model
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Other 3-dimensional effects are included by adding a

span-wise drop. The 2-dimensional curves are already cor-

rected for finite aspect ratio.

C =1.1-[ x )9 C =a (C-2)C 1.11 1- ( L c)
L3D L2D

where the corrected angle of attack included the finite-span

correction,

1
•= a a (C-3)

oL
1+

E7AR

The 3-dimensional total drag is found by adding the induced

drag to the profile drag,

2
C
LC =C + L (C-4)D Do 7AR

As is suggested by Petot [Ref. 17], and illustrated in

Figure 28, more complex descriptions can be devised, and may

be useful for higher Reynold's number flows where the lift

drop after stall is more acute. A parabolic fit can be used

to describe the slight drop in lift preceding stall. A power

series expansion into a high order polynomial can be used to

describe the exponential drop immediately following stall

(the conversion from exponential form to polynomial form is

necessitated by the formulation of the Fourier series in Sec-

tion 2.9). A flat line can be used to describe the fully

decayed exponential for very high angles of attack.

The variables describing the aerodynamic force curves,

such as the maximum lift coefficient or the minimum profile
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drag, can further be generalized over a wide range of free

stream velocities, as suggested by the logarithmic dependence

on the Reynold's number described by Jacobs and Sherman

[Ref. 14]. Similar fits for the moment coefficient curve can

be generated using the data from McCroskey [Ref. 15].
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Figure 28. Generalized lift model
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APPENDIX D - COEFFICIENTS OF AERODYNAMIC EOUATIONS

The following are the coefficients of the 2-dimensional

aerodynamic equations (2-27b) to (2-27d), used for the lift

and moment coefficients. It is assumed that there is no hys-

teresis in the drag coefficient. The linear coefficients

(SL' kvL' XL' aL' L', aoM, SM, kvM' IM' aM, and aM) were

taken from standard references with the following exceptions:

sL was taken from Petot [Ref. 17] although a more consistent

value could have been sL=C; aoL was derived by fitting the

NACA-0012 data from Jacobs and Sherman [Ref. 14] although the

linear value aoL= 27 could have been used. The nonlinear

coefficients (a, r, d, w, and e) were taken from Petot

[Ref. 17] with corrections for low Reynold's flow guided by

similar values given by Petot and Loiseau [Ref. 13].

s L = 0.09*(180/c) rad-1

kvL = x/2 rad-1

IL = 0.15

aL = 0.55

aL = aoL = 5.9 rad - I

aoM = 0

sM = -c/4 rad-1

kvM = -37/16 rad-1

IM = 0
aM = 1

aM = -X/4 rad-1
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a = 0.25 + 0.1(ACL)2

= 0.25 + 0.4(ACL)2

r = [0.2 + 0.10(ACL) 2 ] 2

= [0.2 + 0.23(ACL) 212

d= a

4r - a 2

w = a/2d

e = -0.6(ACL) 2

= -2.7 (ACL )2

if Re > 340,000

if Re < 340,000

if Re > 340,000

if Re < 340,000

if Re > 340,000

if Re < 340,000
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APPENDIX E - EXAMPLE OF FOURIER ANALYSIS

Equations (2-31) to (2-33) are still applicable:

S(T) = ao + av s in(kt+4) (E-1a)

where,

av = 2 + a (E-1b)

a
= -sin C (E-1c)

For a single break point model (see Figure 29), equation

(2-29) simplifies to the following equations, where AA is the

stall angle and all is the difference in slopes between the

linear region and the nonlinear region,

ACz = all( - a.) for a!>•a

(E-2)
ACz = 0 for a5a•

Equations (2-51) to (2-53) then give that,

bl 0 = all (o- A)  (E-3a)

bll = alla (E-3b)

I = -9 (E-3c)10 2 A

Ill = cosPA  (E-3d)

I =1 sin9 cos9P + 1 9- (E-3e)12 2 A A 4 2 A

where,

sin - ao
(A = sin a(E-4a)

-158-



and,

+
2

'A =

2

if > +1
a

(XV
(E-4b)

Finally, putting these expressions into the combined

mean and oscillatory components of the nonlinear aerodynamic

deviations (2-50) and (2-54), we get,

ACzo a 1 -sin~A + cos2P (E-5a)

ACzv = a {-sin+A-cosPA + I- (E-5b)

A symmetric aerodynamic force curve can also be

accounted for by including a second stall angle at -aA. This

yields expanded versions of equations (E-5a) and (E-5b),

ACzo al -sin + cos +
Ao = IC n [ 2 A] + sA}

a { sin 1 - cos PAX %I [ sPA (E-6a)

allvv - A} +

a XV +sin ~cosTA L+ A +

X f % A 2 A·n 'P

where,

(E-6b)

-1~- ao}= sin v

if

(v

and,

+-2
-2

2

(E-7a)

> +1

< -1
(E-7b)
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Figure 29. Example of single break point stall model
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APPENDIX F - THE NEWTON-RAPHSON METHOD

The Newton-Raphson method is a numerical solver used to

find the roots of the implicit vector equation, f(x) = 0,

where x is the state vector and f(x) is the vector of resid-

ual functions that must be driven to zero. The Newton-

Raphson scheme takes an initial guess of the state vector x

and drives the vector f(x) toward zero by inverting the Jaco-

bian matrix (derivative matrix), and obtaining a correction

Ax to the current guess. The process is repeated until the

correction Ax becomes negligible and the process is deemed to

have converged.

-1
Ax (n) f ((n) (n+) () (F-n)Ax n = dxf(x ) ; x =x +- (F-n)

n

The Newton-Raphson solver is applied in the current

analysis by rearranging equation (2-73) as follows;

[K] 0 {qo) 1 Qo}

{f} = 0 -2 [M] + [K] 0 {qs - {Qs (F-2)
0 0 _o2 [M]+[K] 1{q}_ J Q c

Equation (F-2) comprises 3n equations that must be

solved in the form f(x) = 0 and are nonlinear in the aerody-

namic dependence of the modal forces Qi on the modal ampli-

tudes qi. The state vector x is comprised of the harmonic

components of the modal amplitudes, qio' qis, and qic' with

some minor adjustments to ensure convergence to a non-trivial

solution: the sine component of one mode qi is set to some
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small constant to set the amplitude level, while its cosine

component is set to zero, since the flutter limit cycle

oscillations can start at any arbitrary phase. The mode

usually chosen for this substitution is the first torsional

mode, since experimentally it is this mode which dominates

the oscillatory motion. These sine and cosine components are

then dropped from the state vector x and are replaced by the

reduced frequency of oscillation, k, and the flutter veloc-

ity, U. Because the sinusoidal component of one mode shape

has already been set to a non-zero value, the Newton-Raphson

scheme does not converge to the trivial steady solution.

Note that the Newton-Raphson solver is not always guar-

anteed to converge, especially when the initial guess is too

far from the ultimate solution or when the derivatives used

in the Jacobian matrix are changing abruptly, which often

happens with nonlinearities that have discontinuous deriva-

tives. In regions where convergence is difficult (for exam-

ple near the stall angle where the lift/moment coefficient

curves are discontinuous in slope), a relaxation technique,

which consists of taking only a fraction of Ax as a correc-

tion for each iteration, is more likely to converge. When

the Newton-Raphson solver does converge to a solution, it

will satisfy the equations, but there is no indication as to

whether this solution is unique or not. If other solutions

exist, the only way to find them is to start with a different

initial state vector.
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The Jacobian matrix can be calculated either numerically

or analytically. The numerical method involves moving an

incremental distance in each direction of the state vector x,

finding the resulting incremental change in the residual vec-

tor f, and estimating each component of the derivative matrix

as Afi/Ax . The analytic method involves carrying out the

entire nonlinear differentiation, which is best carried out

by multiple application of the chain rule to the equations of

sections 2.9 and 2.10.

Both the numerical and analytic methods have their

advantages and disadvantages. The numerical method is easier

to code on a computer since it involves using the already

existing subroutines which must compute the residual vector.

On the other hand, the numerical method is computationally

inefficient since it requires recalculating the residual vec-

tor for every direction of the state vector. In addition,

the numerical method is likely to be inaccurate at points of

discontinuity in derivatives, unless the user is careful to

choose appropriately small increments in the state vector.

By contrast, the analytic model directly solves for the

Jacobian matrix without needing several iterations, and so is

computationally faster for higher numbers of mode shapes and

harmonics. In addition, the analytic method is always accu-

rate and does not depend on any step size. Unfortunately,

the analytic method cannot employ already existing subrou-

tines and requires cumbersome programming for a highly non-

linear problem such as in the current study.
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Both the numerical and the analytic methods were used to

calculate the Jacobian matrix in the current study and com-

pared well against each other. However, with the large com-

plexity in calculating the modal forces, the numerical method

is more likely to have fewer coding errors than the analytic

method, despite being computationally slower. For this rea-

son, it was used more extensively for the full flutter

analyses.
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A PEDIXG -SPECIMEN DIME.NqTflN

nominal

[02/90]
s

[90/02] s

[+152/0] s

[-152/0] s

[-302/0]
s

P (kg/m 3 )

1540

1552

1581

1532

1570

1564

t (mm)

.810

.802

.806

.766

.805

.801

w (mm)

76.20

76.58

76.68

76.57

76.53

76.53
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APPENDIX H - COMPUTER CODE

C---- FILE: PARAM.INC
C

"Include" file, PARAM.INC, which describes the general
parameters of the stall flutter analysis programs.

IMPLICIT REAL*8
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
INTEGER
PARAMETER

RHOA:
MAXPLIES:
MAXMODE:
MAXREG:

MAXPOW:

GPOINTS:

(A-H,O-Z)
(PI=3.141592653589793238DO)
(RHOA-1.226DO)
(RMUA-1.78D-5)
(MAXPLIES-20)

(MAXMODE=5)
(MAXREG-5)
(MAXPOW-20)
GPOINTS
(GPOINTS,12)

Air density in kg/m**3
Maximum allowable number of plies in analysis
Maximum allowable number of mode shapes in analysis
Maximum allowable number of describing regions for
aerodynamic force curves
Maximum allowable polynomial power for each describing
region for aerodynamic force curves
Number of integration points used in Gaussian quadrature
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C--,-- FILE: GLBBLK.INC
C
C "Include" file to describe variables used globally
C by most programs in the stall flutter analysis.
C

REAL*8 RE,CHORD,LENGTH,LAMBDA,BETA,KT(2),G(2),F(2),B(4,2)
REAL*8 M(MAXMODE,MAXMODE),K(MAXMODE,MAXMODE),KTT0,KTTCUBE
INTEGER NMODES
LOGICAL LINEAR,STEADY,REDUC,CORREC,VLINES, LATAN
CHARACTER FOIL*5
COMMON RE,CHORD,LENGTH,LAMBDA,BETA,KT,G,F,B,M,K,KTT, KTTCUBE
COMMON NMODES,LINEARSTEADY,REDUC,CORREC,VLINES,LATAN,FOIL

C
C RE: Reynold's number
C CHORD: Chord length in meters
C LENGTH: Half-span in meters
C LAMBDA: Sweep angle in degrees
C BETA,KT,G,F,B: Coefficients of torsional mode shapes
C M(iJ): Mass matrix
C K(,iJ): Stiffness matrix
C KTTO: Torsional linear term
C KTTCUBE: Torsional cubic factor
C NMODES: Number of modes in analysis
C LINEAR: Logical variable to tell if linear analysis is conducted
C STEADY: Logical variable to tell if steady analysis is conducted
C REDUC: Logical variable to tell If finite-span reduction is to
C be applied to aerodynamic forces
C CORREC: Logical variable to tell if spanwise correction are to
C be applied to spanwise integrations
C VLINES: Logical variable to tell if constant velocity lines or
C constant angle lines are to be calculated by analysis
C LATAN: Logical variable to tell If exact angle or small-angle-
C approximations are to be applied to angle calculations
C FOIL: Character variable that denote airfoil type
C

-167-



C - FILE : FLUTTER.FOR
C

PROGRAM FLUTTER

C
INCLUDE 'PARAM.INC'
INCLUDE 'GLBBLK. INC'
REAL*8 QLIT(MAXMODE. 3). QALL(3*MAXMODE). RES(3*MAXMODE)
REAL*8 DRDQ(3*MAXMODE,3*MAXMODE),DQALL(3*MAXMODE)

REAL*8 VEL,AOA,FREQ,ATIP(3),HTIP(3)

INTEGER IERR,BENTOR
LOGICAL CONVERGED,DIAGNOSTICS
CHARACTER LAYUP*4,ANSWER*1,FILENAME*25,CDUM*7

C
C QLIT(i,J): i-th modal amplitude, j-th component (1-mean,
C 2-sine.3-cosine)
C QALL: Augmented state vector
C RES: Residual vector
C DRDQ: Jacobian matrix, derivatives of residuals (RES)
C w.r.t. modal amplitudes (QLIT)
C DQALL: Corrections to augmented state vector
C VEL: Free stream velocity
C AOA: Root angle-of-attack
C FREQ: Reduced frequency
C ATIP: Components of oscillating tip angle
C HTIP: Components of oscillating tip deflection
C

FOIL = 'NAC12'
C
C Read In the layup.
C
10 WRITE(6,'(/A,$)') '+Layup :

READ(5,'(A4)',ERR-10) LAYUP
C
C Read in number of mode shapes to be used for the analysis.
C
20 WRITE(6,'(/A,$)') '+Number of modes (2-5) ?

READ(5,*,ERR-20) NMODES
IF ((NMODES.LT.2).OR.(NMODES.GT.5)) GOTO 20

C
C Create mass and stiffness matrices by calling STATIC subroutine.
C

CALL STATIC(LAYUP,TRATIO,IERR)
IF (IERR.NE.0) THEN

WRITE(6,'(A,I2.A)') ' IOSTAT-',IERR,' error reading data file.'
GOTO 1e

ENDIF
C
C Open output file.
C

FILENAME - '[.'//LAYUP//']'//LAYUP//'WNAV.OUT'
OPEN(UNIT-2.FILE-FILENAME.STATUS,-'NEW ,FORM-'FORMATTED',IOSTAT-IERR)
IF (IERR.EQ.0) THEN

WRITE(6,*) 'Analysis results being sent to '//FILENAME
ELSE
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WRITE(6,'(A,I2,A)') ' IOSTAT-',IERR,' error opening output file.'

GOTO 10

ENDIF

WRITE(2,'(I2,A)') NMODES,' - number of modes in analysis'

WRITE(2,'(F5.2,A)') TRATIO,' - NACA airfoil thickness ratio'

C
C Read in whether to print diagnostics to output file.

C
25 WRITE(6,'(/A,$)') '+Output diagnostics ?

READ(5,'(A1)',ERR=25) ANSWER
DIAGNOSTICS - .FALSE.

IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) DIAGNOSTICS-.TRUE.

C
C Read in options for the complexity of the analysis.

C
30 WRITE(6,'(/A,$)') '+ Exact angle calc ?

READ(5,'(A1)',ERR-30) ANSWER
LATAN - .FALSE.

IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) LATAN-.TRUE.
IF (LATAN) WRITE(2,'(/A)') ' Exact angle calculation ON'

IF (.NOT.LATAN) WRITE(2,'(/A)') ' Exact angle calculation OFF'
C
40 WRITE(6,'(/A,$)') '+ Cubic stiffening ?

READ(5,'(A1)',ERR-40) ANSWER

IF ((ANSWER.NE.'Y').AND.(ANSWER.NE.'y')) KTTCUBE=0.DO
IF (KTTCUBE.NE.e) WRITE(2,*) 'Cubic stiffening ON'
IF (KTTCUBE.EQ.0) WRITE(2,*) 'Cubic stiffening OFF'

C
50 WRITE(6,'(/A,$)') '+ Non-linear aero ?

READ(5,'(A1)',ERR-50) ANSWER

LINEAR - .TRUE.

IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) LINEAR-.FALSE.
IF (LINEAR) WRITE(2,*) 'Aerodynamics LINEAR'
IF (.NOT.LINEAR) WRITE(2,.) 'Aerodynamics NON-LINEAR'

C
60 WRITE(6,'(/A,$)') '+ Spanwise lift cor ?

READ(5,'(A1)',ERR=60) ANSWER
CORREC - .TRUE.

IF ((ANSWER.EQ.'N').OR.(ANSWER.EQ.'n')) CORREC - .FALSE.
IF (CORREC) WRITE(2,*) 'Spanwise lift correction ON'
IF (.NOT.CORREC) WRITE(2,*) 'Spanwise lift correction OFF'

C
70 WRITE(6,'(/A,$)') '+ Finite span reduc ?

READ(5 ,'(A1)',ERR-70) ANSWER
REDUC - .FALSE.
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) REDUC - .TRUE.
IF (REDUC) WRITE(2,*) 'Finite span lift reduction ON'
IF (.NOT.REDUC) WRITE(2,*) 'Finite span lift reduction OFF'

C
80 WRITE(6,'(/A,$)') '+ Steady analysis ?

READ(5,'(A1)',ERR=80) ANSWER
STEADY-. FALSE.
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) STEADY-.TRUE.
IF (STEADY) WRITE(2,*) 'STEADY test case (no flutter)'
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IF (.NOT.STEADY) WRITE(2,*) 'UNSTEADY test case (flutter)'
C
90 WRITE(6,'(/A,$)') '+Constant vel lines ? '

READ(5,'(A1)',ERR-90) ANSWER
VLINES-.TRUE.
IF ((ANSWER.EQ.'N').OR.(ANSWER.EQ.'n')) VLINES-.FALSE.
IF (VLINES) WRITE(2,*) 'YES, constant velocity lines'
IF (.NOT.VLINES) WRITE(2,) 'NO, constant root angle lines'

C
C Read In the start & end values and the incremental step size
C between each line of either (i) constant velocity or
C (Ii) constant root angle of attack.
C
100 IF (VLINES) WRITE(6,'(/A,$)') '+Velocity start, end, & step '//

& 'size (m/s) ? '
IF (.NOT.VLINES) WRITE(6,'(/A,$)') '+Root angle start, end, & '//

& 'step size (deg) ? '
READ(5,*,ERR-l80) DUM1LO,DUM1HI,DUM1INC
IF ((DUM1LO.LT.e.).OR.(DUM1HI.LT.0.)) GOTO 109
IF (((DUM1HI-DUM1LO)/DUM1INC).LT.e.) GOTO 100

C
C Write header.
C

IF (.NOT.DIAGNOSTICS) THEN
WRITE(2, '(3(/A))')

& ' Vel AOA FRQ H avg H sin H cos '//
& 'A avg A sin A cos',
& ' (m/s) (deg) (Hz) (cm) (cm) (cm) '//
& '(deg) (deg) (deg)',

ENDIF
C
C Determine if bending or torsion flutter analysis should be performed
C (BEN-TOR - 1 for bending, 2 for torsion) in the unsteady case.
C

BENTOR - 2
IF (.NOT.STEADY) THEN

125 WRITE(6,'(/A,$)') '+[1] bending or [2] torsional flutter ?
READ(5,*,ERR-125) BEN-TOR
IF ((BENTOR.NE.1).AND.(BENTOR.NE.2)) GOTO 125

ENDIF
C
C Loop through each line of either (I) constant velocity or
C (ii) constant root angle of attack, denoted by the dummy
C variable DUtMMY1.
C

DO 1000 DUMMY1 - DUM1LO,DUM1HI,DUM1INC
C
C Set the velocity VEL or the root angle of attack AOA, depending
C on whether lines of constant velocity or constant angle.
C

IF (VLINES) VEL - DUMMY1
IF (.NOT.VLINES) AOA - DUMIMY1PI/180.
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IF (STEADY) THEN
C
C Initialize to zero the augmented modal amplitude vector QALL,
C all the modal amplitudes QLIT, and the reduced frequency FREQ.
C

DO 110 J - 1,3
DO 110 I - 1,NMODES

QLIT(I,J) - O.D8
QALL(NMODES*(J-1)+I) - QLIT(I,J)

lie CONTINUE
FREQ = 8.D8

C
C If steady, read in the start & end values and the incremental

C step size of the root angles/velocities for each corresponding
C line of constant velocity/root angle.
C
120 IF (VLINES) WRITE(6,'(//A,F5.1,A,$)*) '+VEL =',DUMMY1,

& * ; Root angle start, end, & step size (deg) ? '
IF (.NOT.VLINES) WRITE(6,'(//A.F5.1,A,$)') '+AOA =',DUMMY1,

& * ; Velocity start, end, & step size (m/s) ?
READ(5,*,ERR-120) DUM2LO,DUM2HI,DUM2INC
IF ((.NOT.VLINES).AND.(DUM2LO.LT.e.)) GOTO 120
IF ((.NOT.VLINES).AND.(DUM2HI.LT.0.)) GOTO 120
IF ((DUM2HI-DUM2LO)/DUM2INC.LT.S.) GOTO 120

ELSE
C
C If unsteady, read in the start & end values and the incremental
C step size of the amplitude of oscillating twist for each
C line of constant velocity/root angle.
C
130 IF (BENCTOR.EQ.1) THEN

IF (VLINES) WRITE(6,'(//A,F5.1,A,$)') '+VEL =',DUMMY1,
& * ; Bending amplitude start, end, & step size (cm) ?

IF (.NOT.VLINES) WRITE(6,'(//A,F5.1,A,$)') '+AOA -',DUMMYI,
& * ; Bending amplitude start, end, & step size (cm) ?

ELSE
IF (VLINES) WRITE(6,'(//A,F5.1,A,$)') '+VEL =',DUMMY1,

& ' ; Twist amplitude start, end, & step size (deg) ?
IF (.NOT.VLINES) WRITE(6,'(//A,F5.1,A,$)') '+AOA -',DUMMY1,

& * ; Twist amplitude start, end, & step size (deg) ?
ENDIF
READ(5,*,ERR-138) DUM2LO,DUM2HI,DUM2INC
IF ((.NOT.VLINES).AND.(DUM2LO.LT.S.)) GOTO 138
IF ((.NOT.VLINES).AND.(DUM2HI.LT.S.)) GOTO 130
IF ((DUM2HI-D2L/ULO)/DUM2INC.LT..) GOTO 130

C
C Determine if previous values should be used as an initial guess.
C

ANSWER - 'N'
IF (DLUMMY1.NE.DUM1LO) THEN

135 WRITE(6,'(/A,$)') '+Use previous values as initial guess ?
READ(5,'(A)' ,ERR-135) ANSWER

ENDIF
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IF ((ANSWER.NE.'Y').AND.(ANSWER.NE.'y')) THEN
C
C Initialize the oscillating amplitudes to some fraction
C (1/18th) of the first bending/twist amplitude.
C

TWIST - DUM2LO*PI/18e./1e.
DEFLC - DUM2LO/100./10.
DO 140 J = 2,3
DO 1408 I 1,NMODES

IF (BENTOR.EQ.1) QLIT(I,J) - DEFLEC/FMODE(0,'X',1,1.)/
& FMOOE(8,'Y',1,0.)

IF (BENTOR.EQ.2) OLIT(I,J) - DTAN(TWIST)*CHORD/
& FMODE(e, 'X,2,1.)/FMODE(1,'Y',2,0.)

QALL(NMODES*(J-1)+I) - QLIT(I,J)
140 CONTINUE
C
C Read in the initial guess for root angle AOA, or for
C velocity VEL, to be used for the first iteration of the
C Newton-Raphson solver for the first corresponding line
C of constant velocity/root angle.
C

IF (VLINES) THEN
150 WRITE(6,'(/A,$)') '+Initial root angle guess (deg) ?

READ(5,*,ERR=150) AOA
AOA = AOA*PI/188.
QALL(NMODES+BEN..TOR) - AOA

ELSE
160 WRITE(6,'(/A,$)') '+Initial velocity guess (m/s) ?

READ(5,,ERR-16e) VEL
IF (VEL.LT.e.) GOTO 160
QALL(NMODES+BENTOR) - VEL**2

ENDIF
C
C Determine if there is a problem because flutter velocity occurs
C above linear divergence velocity, and query user If he wants to
C directly Input the Initial average amplitudes.
C

WRITE(6,'(/A,$)') '+Input initial average deflections ? '
READ(50,'(A1)') ANSWER
IF ((ANSWER.EQ.*Y').OR.(ANSWER.EQ.'y')) THEN

DO 165 I - 1,NMODES
162 WRITE(6,'(/A,I1.A,$)') '+ Mode ',I,' average [m] -

READ(5,*,ERR-162) QLIT(I,1)
QALL(I) - QLIT(I,1)

165 CONTINUE
ENDIF

C
C Read in the initial guess for reduced frequency FREQ to
C be used for the first iteration of the Newton-Raphson solver
C for the first line of constant velocity/root angle.
C
170 WRITE(6,'(/A,$)') '+Initial reduced frequency guess ?

READ(5,*,ERR-170) FREQ
IF (FREQ.LT.0.) GOTO 176
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QALL(2*NMODES+BENTOR) = FREQ
ENDIF

C
C Road in the non-dimensional stop size tolerance [maximum
C delta(X)/X] to be applied to the root angle/velocity and
C frequency corrections [DQALL(NMODES+BENTOR) &
C DQALL(2*NMODES+BENTOR)] in relaxing the Newton-Raphson solver.
C
180 WRITE(6,'(/A,$)') '+Step size tolerance ?

READ(5,*,ERR-180) TOL
IF (TOL.LE.O.) GOTO 180

ENDIF
C
C Loop through the appropriate variable, denoted by the dummy variable
C DUMMY2, for each line of constant velocity/root angle.
C

DO 1009 DUMMY2 - DUM2LO,DUM2HI,DUM2INC
C
C Initialize the number of iterations to zero and, for the
C steady case, extract the appropriate root angle/velocity
C from the dummy variable DUMMY2.
C

LOOPS - 0
IF ((STEADY).AND.(VLINES)) THEN

AOA - DUMMY2*PI/188.DO
ELSEIF ((STEADY).AND.(.NOT.VLINES)) THEN

VEL - DUIMMY2
ENDIF

C
C Initialize convergence. If zero velocity, automatically set
C all amplitudes to zero and skip Newton-Raphson solver.
C

CONVERGED - .FALSE.
IF ((.NOT.VLINES).AND.(DLMMY2.EQ.e.)) THEN

DO 198 I = 1,NMODES
QLIT(I,1) - e.
QALL(I) - e.

190 CONTINUE
CONVERGED - .TRUE.

ENDIF
C
C Rescale unsteady, variable amplitudes according to set amplitude.
C

IF (.NOT.STEADY) THEN
DO 195 I = 1,NMODES
DO 195 J - 2,3

IF ((I.NE.BEN..TOR).AND.(DUMMY2.NE.DUM2LO)) QALL(NMODES*
& (J-1)+I )QALL(NMODES* (J-1 )+I ) DUMMY2/(DUMMY2-DUM2INC)

195 CONTINUE
ENDIF

C
C Loop through the Newton-Raphson scheme until it is
C converged to an acceptable limit.
C
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DO WHILE (.NOT.CONVERGED)
C
C Extract the modal amplitudes from
C the augmented modal amplitude vector.
C

JJ - 3
IF (STEADY) JJ - 1

DO 200 I - 1,NMODES

DO 200 J - 1,JJ

QLIT(I,J) " QALL(NMODES*(J-1)+I)
200 CONTINUE
C
C If unsteady, extract current values of unknown variables
C from the augmented state vector QALL.
C

IF (.NOT.STEADY) THEN
C
C Extract current value of unknown root angle/velocity
C from the augmented state vector QALL, appropriate to lines
C of constant velocity or root angle. Set velocity to
C zero if Newton-Raphson solver drives VEL**2 below zero.
C

IF (VLINES) THEN
AOA = QALL(NMODES+BENTOR)

ELSEIF (QALL(NMODES+BENTOR).GT.0.) THEN
VEL = DSQRT(QALL(NMODES+BENTOR))

ELSE
QALL(NMODES+BENTOR) - 0.
VEL - S.

ENDIF
C
C Extract current value of the unknown reduced frequency
C from the augmented state vector QALL.
C

FREQ - QALL(2*NMODES+BENTOR)
C
C Extract the desired twist oscillating amplitudes from
C the dummy variable DUMMY2.
C

TWIST - DUMMY2*PI/188.
DEFLC - DUMMY2/8le.

IF (BEN.TOR.EQ.1) QLIT(1,2) = DEFLC/FMODE(0,'X',1,1.)/
& FMODE(S,'Y',1,9.)

IF (BENTOR.EQ.2) QLIT(2,2) = DTAN(TWIST)*CHORD/
SFMOOE(, 'X',2,1.)/FMODE(1,'Y' ,2.0.)

QLIT(BENTOR,3) - 9.D8
ENDIF

C
LOOPS - LOOPS+1

C
C Write current values of inputs to residual calculations.
C

IF (DIAGNOSTICS) THEN
WRITE(2,'(/A, I3,11X,<NMODES>(5X.I1,4X))') ' LOOP =',
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a LOOPS,(I,I=1,NMODES)
WRITE(2,'(A,<NMODES>(1PE1.2))') ' Avg '//

& 'modal amp [m] : ',(QLIT(I,1),I-1,NMODES)
IF (.NOT.STEADY) THEN

WRITE(2,'(A,<NMODES>(1PE1e.2))') ' Sin '//
& 'modal amp [m] : ',(QLIT(I,2),I-1,NMODES)

WRITE(2, '(A,<NMODES>(1PE1O.2))') ' Cos '//
& 'modal amp [m] : ',(QLIT(I,3),I-1,NMODES)

WRITE(2,'(A,F8.3,A)') ' VEL -',VEL,' m/s'
WRITE(2,'(A,F8.3,A)') ' AOA -',AOA*180./PI,' dogs'
WRITE(2,'(A,F8.3)') ' k =',FREQ
OMEGA - FREQ*VEL/(CHORD/2.)/(2.*PI)
WRITE(2,'(A,F8.3,A)') ' w -',OMEGA,' Hz'

ENDIF
ENDIF

C
C Calculate the residuals from subroutine RESIDUAL, which
C are functions of the velocity VEL, root angle of attack AOA,
C reduced frequency FREQ, and modal amplitudes QLIT.
C

CALL RESIDUAL(VEL,AOA,FREQ,QLIT,RES)
C
C Write current values of residuals.
C

IF (DIAGNOSTICS) THEN
WRITE(2,'(/4X,A,<NMODES>(1PE18.2))') ' Avg '//

& 'residuals : ',(RES(I),I-1,NMODES)
IF (.NOT.STEADY) THEN

WRITE(2, '(4X,A,<NMODES>(1PE1.2))') ' Sin '//
& 'residuals : ',(RES(I),IMNMODES+1,2*NMODES)

WRITE(2, '(4X,A,<NMODES>(1PE1.2))') ' Cos '//
& 'residuals : ',(RES(I),I-2*NMOOES+1,3*NMODES)

ENDIF
ENDIF

C
C Calculate the derivative matrix of the residuals wrt the
C modal amplitudes using subroutine RREDIV, which is a
C function of the velocity VEL, root angle of attack AOA,
C reduced frequency FREQ, and modal amplitudes QLIT. The
C current values of the residuals RES are also passed since
C the derivative matrix may be calculated numerically, in
C which case the current values are needed.
C

CALL R..DERIV(BENTOR,VEL.AOA,FREQ,QLIT,RES,DRDQ)
C
C Write derivative matrix.
C

IF (DIAGNOSTICS) THEN
IF (STEADY) THEN

WRITE(2,'(/A)') ' NUMERIC dR/dq MATRIX :'
WRITE(2,'(12X,<NMODES>(6X, I1,3X))') (I, 1-1,NMODES)
DO 210 J = 1,NMODES

WRITE(2, '(5X,A5,I1,A1,<NMODES>(1PE1.2))')
& 'dR/dq',J,'o',(DRDQ(I,J),I-1,NMODES)
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210 CONTINUE

ELSEIF (NMODES.LE.2) THEN
WRITE(2,'(/A)') ' NUMERIC dR/dq MATRIX :'
WRITE(2,'(12X,<3*NMODES>(6X,I1,3X))') (I, I1,NMODES),

& (II-1,NMODES),(I,I-1,NMODES)
DO 220 11 - 1,3
DO 220 12 - 1,NMODES

IF (I1.EQ.1) CDUM - 'dR/dq'//CHAR(12+48)//'o '
IF (Il.EQ.2) CDUM - 'dR/dq'//CHAR(I2+48)//'s '
IF (I1.EQ.3) CDUM = 'dR/dq'//CHAR(I2+48)//'c '
IF ((I1.EQ.2).AND.(I2.EQ.BENTOR).AND.

e& (VLINES)) CDUM - 'dR/dAOA'

IF ((I11.EQ.2).AND.(I2.EQ.BENTOR).AND.
& (.NOT.VLINES)) CDUM - 'dR/dV*2'

IF ((I1.EQ.3).AND.(I2.EQ.BENTOR))
& CDUM - ' dR/dk '

J - (I1-1)*NMODES+I2
WRITE(2,'(5X,A7,<3*NMODES>(1PE1 .2))')

& CDUM,(DRDQ(I,J),I-1,3*NMODES)
220 CONTINUE

ENDIF

ENDIF
C
C Apply the Newton-Raphson scheme to figure the appropriate
C linear correction in the state vector so as to drive the
C appropriate residuals to zero. For the steady case, only
C the steady amplitudes need to be corrected.
C

IF (STEADY) THEN

CALL SOLVE(DRDQ,RES,DQALL,3*MAXMODE,1,NMODES)
ELSEIF (.NOT.STEADY) THEN

CALL SOLVE(DRDQ,RES,DQALL,3*MAXMODE,1,3*NMODES)
ENDIF

C
C Write the uncorrected state vector corrections.
C

IF (DIAGNOSTICS) THEN

WRITE(2,'(/A,<NMODES>(1PE10.2))') ' DELTA avg '//
'amps [m] : ',(-DQALL(I),I-1,NMODES)

IF (.NOT.STEADY) THEN
IF (BENTOR.EQ.1) THEN

WRITE(2, '(A,<NMODES>(1PE10.2))') ' DELTA '//
& 'sin amps [m] : ',0.DO,-DQALL(NMODES+2),
& (-DQALL(I),I-NMODES+3,2*NMODES)

WRITE(2, '(A,<NMODES>(1PEIO.2))') ' DELTA '//
& 'cos amps [m] : ',0.D0,-DQALL(2*NMODES+2),
& (-DQALL(I), I2*NMODES+3,3*NMODES)

ELSE

WRITE(2, '(A,<NMODES>(1PE10.2))') ' DELTA '//
& 'sin amps [m] : ',-DQALL(NMODES+1),0.DO,
& (-DQALL(I),I-NMODES+3,2*NMODES)

WRITE(2, '(A,<NMODES>(1PE10.2))') ' DELTA '//
& 'cos amps [m] : ',-DQALL(2*NMODES+1),0.D0,
& (-DQALL(I),I-2*NMODES+3,3*NMODES)
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ENDIF
IF (VLINES) WRITE(2,'(A,1PE18.2,A)')

S*' DELTA AOA =',-DQALL(NMODES+BEN-TOR),' deg'
IF (.NOT.VLINES) WRITE(2,'(A,1PE18.2,A)')

S*' DELTA V*2 -',-DQALL(NMODES+BEN•_TOR),' (m/s)**2'
WRITE(2,'(A,1PE10.2)') ' DELTA k I',

& -DQALL(2*NMODES+BENTOR)
ENDIF

ENDIF
C
C Calculate the appropriate factor for relaxation when the
C correction step size is too large for either the root
C angle/velocity or reduced frequency.
C

FACTOR - 1.D9

IF (.NOT.STEADY) THEN
DO 230 I = 1,2

II = I*NMODES+BENLTOR
IF (QALL(II).NE.S.) THEN
IF (ABS(DQALL(II)/FACTOR/QALL(II)).GT.TOL) THEN

FACTOR - ABS(DQALL(II)/(TOL*QALL(II)))
ENDIF
ENDIF

230 CONTINUE
IF (DIAGNOSTICS) WRITE(2,'(/A,1PE1I.2)') ' FACTOR ,

a FACTOR
ENDIF

C
C Update the augmented state vector, at the same time
C checking for convergence of the maximum residual and
C of the relative change in the state vector QALL.
C

CONVERGED , .TRUE.
RESMAX =- .D8

IMAX - 3*NMODES
IF (STEADY) IMAX = NMODES
DO 240 I - 1,IMAX

QALL(I) - QALL(I)-DQALL(I)/FACTOR
C
C Check relative change in state vector.
C

IF (QALL(I).NE.e.) THEN
IF (ABS(DQALL(I)/QALL(I)).GT.1.D-5) CONVERGED-.FALSE.

ENDIF
C
C Check size of residuals.
C

IF (ABS(RES(I)).GT.1 .D-8) CONVERGED-.FALSE.
IF (ABS(RES(I)).GT.ABS(RESMAX)) RESMAX-RES(I)

240 CONTINUE
IF (LOOPS.GE.99) CONVERGED-.TRUE.

C
C Print current status to screen.
C
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IF (STEADY) THEN

IF (VLINES) THEN
WRITE(6,'(A,F6.2,A, I2,A,1PE8.1)') '+STEADY - AOA ',

& DUMMY2,' deg ; Loop',LOOPS,' ; Rmax - ',RESMAX
ELSEIF (.NOT.VLINES) THEN

WRITE(6,'(A,F6.2,A,12,A,1PE8.1)') '+STEADY - VEL ',
& DUMMY2,' m/s ; Loop',LOOPS,' ; Rmax - ',RESMAX

ENDIF

ELSE

IF (VLINES) THEN
WRITE(6,'(A,F6.2,A, I2,A,1PE8.1,A,OPF6.2,A,F5.2)')

& '+AMP -',DUMMY2,' ; Loop',LOOPS,' ; Rmax - ',
& RESMAX,' ; AOA -',QALL(NMODES+BEN_TOR)*180./PI,
& ' deg ; k -',QALL(2,NMODES+BENTOR)

ELSEIF (.NOT.VLINES) THEN
WRITE(6, '(A,F6.2,A, I2,A, 1PE8. 1,A,BPF6.2,A,F5.2)')

& '+AMP -',DUMMY2,' ; Loop',LOOPS,' ; Rmax - ',
& RESMAX,' ; VEL -',DSQRT(QALL(NMODES+BENTOR)),
& ' m/s; k -',QALL(2*NMODES+BENTOR)

ENDIF

ENDIF
END DO

C
C Extract the modal amplitudes and the velocity and reduced
C frequency from the final, converged augmented state vector.
C

DO 250 I- 1,NMODES

DO 250 J - 1,3
QLIT(I,J) - QALL(NMOOES*(J-1)+I)
IF ((STEADY).AND.(J.NE.1)) QLIT(I,J) - 0.

250 CONTINUE

FREQ - 0.
C
C If unsteady, extract the appropriate root angle/velocity,
C frequency, and twist oscillating amplitudes from the
C final, converged augmented state vector.
C

IF (.NOT.STEADY) THEN
QLIT(BENTOR,3) - 8.D9
IF (BENTOR.EQ.1) QLIT(1,2) - DEFLC/FMODE(0,'X',1,1.)/

& FMODE(8,'Y',1,8.)
IF (BENTOR.EQ.2) QLIT(2,2) - DTAN(TWIST)*CHORD/

& FMODE(e,'X',2,1.)/FMODE(1,'Y',2,0.)
IF (VLINES) AOA - QALL(NMODES+BENTOR)
IF (.NOT.VLINES) VEL - DSQRT(QALL(NMODES+BENTOR))
FREQ - QALL(2*NMODES+BENTOR)

ENDIF
C
C Calculate the midchord tip deflection components and the tip
C twist components.
C

DO 270 J - 1,3
HTIP(J) - 0.DO
ATIP(J) - O.DO
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260

ENDIF
WRITE(2, '(/A,F7.3,A)')
WRITE(2, '(A,F7.3,A)')
WRITE(2, '(A,F7.3)')
WRITE(2, '(A,F6.3,A)')

ENDIF
1000 CONTINUE

CLOSE(2)

* AOA -',ANG,' degs'
VEL =',VEL,' m/s'
k -',FREQ
w - ',OMEGA,' Hz'

STOP
END
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C

270

DO 260 I = 1,NMODES
HTIP(J) - HTIP(J)+QLIT(I,J)*FMODE(8,'X',I,I1.)*

FMODE(, 'Y',I,6.)
ATIP(J) - ATIP(J)+QLIT(I,J)*FMODE(0.'X'.I,1.)*

FMODE(1, 'Y', I,0.)/CHORD
CONTINUE

Convert tip deflection to centimeters and tip twist
to degrees.

IF (LATAN) ATIP(J) - DATAN(ATIP(J))
HTIP(J) = HTIP(J)*100.D9
ATIP(J) - ATIP(J)*180.DO/PI

CONTINUE

Write converged results.

ANG - AOA*180./PI
OMEGA - FREQ*VEL/(CHORD/2.)/(2.*PI)
IF (.NOT.DIAGNOSTICS) THEN

WRITE(2,'(3F7.2,6F9.3)') VEL,ANG,OMEGA,(HTIP(J),J-1,3),
(ATIP(J),J-1,3)

IF (LOOPS.EQ.99) WRITE(2,*) ' Not converged: '//
'Newton-Raphson solver halted after 108 Iterations'

ELSE
WRITE(2,'(/A, I3,A)') ' After',LOOPS,' N-R iterations :
WRITE(2,'(26X,<NMODES>(5X,I1.4X))') (I,1-1,NMODES)
WRITE(2,'(A ,<NMODES>(1PE10.2))') ' Avg amps [m] :

(QLIT(I, 1),I-1NMODES)
IF (.NOT.STEADY) THEN

WRITE(2,'(A,<NMODES>(1PE10.2))') ' Sin amps [m] :
(QLIT(I,2),I-1,NMOOES)

WRITE(2,'(A,<NMODES>(1PE1B.2))') ' Cos amps [m] :
(QLIT(I .3) .I-•NMODES)



C- FILE: MASS.FOR
C

SUBROUTINE MASS(LO,HI,MPA)
C
C Subroutine to calculate the components of the flat plate mass matrix.
C

INCLUDE 'PARAM. INC'
INCLUDE 'GLBBLK.INC'
REAL*8 LO,HI,MPA,INTGRL

C
DO le I - 1,NMODES
DO 18 J - 1,NMODES

M(I, J) - MPA*CHORD*LENGTH*INTGRL('X', I,0, J, LO,HI ) *
& INTGRL('Y',I,, J,0,-.5De,+.5D0)

10 CONTINUE
C

RETURN
END
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C
SUBROUTINE QUCON(EL,ET,NULT,GLT,QU11,QU12,QU22,QU66)

C
C Subroutine to compute the unidirectional elastic constants,
C the unidirectional Q's, from the ply engineering elastic constants.
C

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 EL,ET,NULT,NUTL,GLT
REAL*8 QU11,QU12,QU22,QU66

C
NUTL = ET/EL*NULT
DENOM -I .D0-NULT*NUTL
QU11 - EL/DENOM

QU12 - NULT*ET/DENOM
QU22 - ET/DENOM

QU66 - GLT
RETURN
END

C

C
SUBROUTINE QTCON(K,THETA,QU11, QU12,QU22,QU66,QT)

C
C Subroutine to compute the rotated elastic constants,
C the Q[theta], for the K-th ply, laid up at an angle theta.
C

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER K
REAL*8 THETA,QQ11,QU12,QU22,QU66
REAL*8 I1,I2,R1,R2,QT(3,3,*)

C
C Calculate the invariants
C

I1 - (QU11 + QU22 + 2.DO*QU12)/4.D0
12 - (QU11 + QU22 - 2.DO*QU12 + 4.DO*QU66)/8.DO

R1 - (QU11 - QU22)/2.DO

R2 - (QU11 + QU22 - 2.DO*QU12 - 4.DO*QU66)/8.DO

C
QT(1,1,K) - I1 + 12 + R1,DCOS(2.DO*THETA) + R2*DCOS(4.DO*THETA)
QT(2,2,K) - I1 + 12 - R1*DCOS(2.DO*THETA) + R2*DCOS(4.DO*THETA)
QT(1,2,K) - 11-I2 - R2*DCOS(4.DO*THETA)

QT(3,3,K) - 12 - R2*DCOS(4.De*THETA)

QT(1,3,K) - RI*DSIN(2.DO*THETA)/2.De + R2*DSIN(4.DO*THETA)
QT(2,3,K) - R1*DSIN(2.De*THETA)/2.DO - R2*DSIN(4.DO*THETA)
QT(2,1.K) - QT(1,2,K)
QT(3,1,K) - QT(1,3,K)
QT(3,2K) = QT(2,3,K)

C
RETURN
END
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C
SUBROUTINE BEND(NPLIES,ZU,ZL,QT,A,D)

C
C Subroutine to compute the laminate bending stiffnesses, Aij & Dij.
C

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER NPLIES
REAL*8 ZU(*),ZL(*),QT(3,3.*)
REAL*8 A(3,3),D(3,3)

C
C Initialize the A and D matrices.
C

DO 10 I - 1,3
DO 10 J - 1,3

A(I,J) - 0.
D(I,J) - 8.

18 CONTINUE
C
C Add the contribution of each ply to the A & D matrices.
C

DO 30 I - 1,3

DO 30 J - 1,3

DO 30 K = 1,NPLIES
A(I.J) - A(I,J) + QT(I,J.K)*(ZU(K)-ZL(K))
D(I,J) - D(I,J) + QT(I,J.K)*(ZU(K)**3-ZL(K)**3)/3.DO

30 CONTINUE
C

RETURN
END

C

C
SUBROUTINE STIFF(A,D,LO,HI,Z)

C
C Subroutine to compute the stiffness matrix, KIJ.
C

INCLUDE 'PARAM.INC'
INCLUDE 'GLBBLK.INC'
REAL*8 A(3,3),D(3,3),LOHIINTGRL
REAL*8 Z(MAXMODEMAXMODE)

C
C NOTE: INTGRL(XY,I.ID,J,JD,lo,hi) is the function to numerically
C integrate the XY-variatlon of the ID-th derivative of the I-th mode
C with the JD-th derivative of the J-th mode between the interval [lo,hi].
C

DO 18 I - 1,NMODES
DO 18 J - 1,NMODES

Z(I,J) - S.
K(I,J) - (CHORD*LENGTH) * (D(1,1)*INTGRL('X',I,2,J.2,LO,HI)*

& INTGRL('Y',I,0,J, ,-.5,+.5)/LENGTH**4 + D(2,2)*INTGRL('X',
& I,e.J.,,LO,HI)*INTGRL('Y',I,2,J.2,-.5,+.5)/CHORD**4 + 4.D9*
& D(3.3)*INTGRL('X',I,1,J,1.LO,HI)*INTGRL('Y'.I,1,J,1,-.5,+.5)/
& (LENGTH*CHORD)**2 + D(1.2)*(INTGRL('X',I,2,J.,.LO,HI)*
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& INTGRL('Y',I, J,2,-.5,+.5)+INTGRL('X',I, J,2, LOHI)*
& INTGRL('Y',I,2,J.,,-.5,+.5))/(LENGTH*CHORD)**2 + 2.DO*D(1,3)*
& (INTGRL(X',I,2,J,1, LO,HI)*INTGRL('Y',I, , 1,-.5,+.5)+
& INTGRL('X',I,1,J,2,LO,HI)*INTGRL('Y', I,1,J,e,-.5,+.5))/
& (LENGTH**3*CHORD) + 2.D*.D(2,3)*(INTGRL('X',I,8,J,1,LO,HI)*
& INTGRL('Y',I,2,J,1,-.5,+.5)+INTGRL('X .I,1 J, , LO.HI)*
& INTGRL('Y',I,1,J.2,-.5,+.5))/(LENGTH*CHORD**3))

1e CONTINUE
C

RETURN
END
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C-== FILE : RESIDUAL.FOR
C

SUBROUTINE RESIDUAL(VEL,AOA,FREQ,QLIT,RES)
C
C Subroutine to calculate the residuals used in the Newton-Raphson solver.
C
C INPUT VARIABLES: velocity VEL, root angle of attack AOA, reduced
C frequency FREQ, and modal amplitudes QLIT
C OUTPUT VARIABLES: residuals RES, non-dimensionalized by
C 1/2*rho,(V**2)*area
C

INCLUDE 'PARAM.INC'
INCLUDE 'GLBBLK.INC'
REAL*8 VEL,AOA,FREQ,QLIT(MAXMODE,3)
REAL*8 RES(3*MAXMODE),QBIG(MAXMODE,3)

C
C Calculate the modal forces QBIG using subroutine MODALFORCE, which
C are functions of the velocity VEL, the root angle of attack AOA,
C the reduced frequency FREQ. and the modal amplitudes QLIT.
C

CALL MODAL_FORCE(VEL,AOA,FREQ.QLIT,QBIG)
C
C Calculate the residuals by Including the contributions
C of the mass and stiffness matrices with the modal forces.
C

DO 20 J - 1,3
C
C Calculate the current cubically stiffened torsional stiffness.
C

IF (J.EQ.1) K(2,2) - KTTO + KTTCUBE*(QLIT(2,1)**2+1.5*
& QLIT(2.2)**2+1.5*QLIT(2.3)**2)

IF (J.NE.1) K(2,2) = KTTS + KTTCUBE*(3.*QLIT(2,1)**2+e.75*
& QLIT(2.2)**2+0.75*QLIT(2.3)**2)

C
DO 20 I - 1,NMODES

II - NMODES*(J-1)+I
IF ((STEADY).AND.(J.NE.1)) THEN

RES(II) - 0.
ELSE

RES(II) - -QBIG(I.J)
DO 10 L - 1,NMODES

RES(II) - RES(II)+K(IL)*QLIT(L.J)

OMEGA - FREQ*VEL/(CHORD/2.)
IF (J.NE.1) RES(II)-RES(II)-OMEGA**2*M(I,L)*QLIT(L,J)

10 CONTINUE
ENDIF
RES(II) - RES(I I)/(.5DO*RHOA*VEL**2*CHORD*LENGTH)

20 CONTINUE
C

RETURN
END
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C- FILE: QBIG.FOR
C

SUBROUTINE MODALFORCE(VEL,AOA,FREQ,QLIT,QBIG)
C
C Subroutine to calculate the oscillating components of the modal forces.
C
C INPUT VARIABLES: velocity VEL, root angle of attack AOA, reduced
C frequency FREQ, and modal amplitudes QLIT
C OUTPUT VARIABLE: modal forces QBIG
C

INCLUDE 'PARAM.INC'
INCLUDE 'GLBBLK. INC'
REAL*8 VEL,AOA,FREQ,QLIT(MAXMODE,3),THETA(3),HBAR(3)
REAL*8 DCLO,CL(5),CM(5),CD(5),QBIG(MAXMODE,3)

C
C Initialize the modal forces to zero value.
C

DO 10 I - I,NMODES
DO le J - 1,3

QBIG(I,J) - e.D0

18 CONTINUE
C
C Loop through Gauss integration points along the span.
C

DO 66 IGNUM - 1,GPOINTS
C
C Calculate the non-dimensional 1/4-chord deflection and angle
C of attack sinusoldal coefficients at the Gauss point
C spanwise location.
C

XBAR - (GP(IGNUM)+1.DO)/2.DO
DO 30 I1 - 1,3

HBAR(I) - S.D9
THETA(I)- 6.D0
DO 28 J 1,INMODES

HBAR(I) = HBAR(I) + QLIT(J,I)/(CHORD/2.DOe)
& FMODE(S,'X',J,XBAR)*FMODE(8,'Y',J,+.25)

THETA(I) - THETA(I) + QLIT(J,I)/CHORD*
& FMODE(, 'X' ,J,XBAR)*FMOOE(1,'Y',J ,+.25)

20 CONTINUE
IF (LATAN) THETA(I) - DATAN(THETA(I))
IF (I.EQ.1) THETA(I)-THETA(I)+AOA

30 CONTINUE
C
C Calculate the lift/moment coefficient sinusoldal coefficients.
C

CALL AEROF('L' ,THETA,HBAR,VEL,FREQ,DCLO,CL)
CALL AEROF('M' ,THETA,HBAR,VEL,FREQ,DCLO,CM)

C
C Calculate the profile-drag coefficient contribution using
C a 3rd-order polynomial fit.
C

CD(1) - 4.923*ABS(THETA(1))**3 + .1472*THETA(1)**2 + .042*
e& ABS(THETA(1)) + .014
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CD(2) - 0.DO
CD(3) -= .DO

C
C Calculate the induced-drag coefficient contribution.
C

CD(1) - CD(1) + CL(1)**2/PI/(2.*LENGTH/CHORD)
C

IF (CORREC) DUMMY-SC(XBAR)
IF (.NOT.CORREC) DUMMY-1.DO

C
C Add contributions from the lift and moment at the current
C Gauss point spanwise location to the modal force.
C

DO 50 I - 1,NMODES

DO 50 J - 1,3
QBIG(I,J) = QBIG(I,J)+GW(IGNUM)/2.DO*(.5DO*RHOA*

& VEL**2*CHORD*LENGTH)*((CL(J)*DCOS(AOA)+CD(J)*
& DSIN(AOA))*FMOOE(, 'Y', I,+.25)+CM(J)*
& FMOOE(1,'Y',I,+.25))*FMODE(.,'X',I,XBAR).DUMIY

50 CONTINUE
60 CONTINUE
C

RETURN
END
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C
FILE: AEROF.FOR

SUBROUTINE AEROF(LM,THETA,HBAR,VEL,FREQ,DCLO,CZ)

Subroutine to calculate unsteady, non-linear, oscillatory aero-
dynamic coefficients by Fourier decomposition of the oscil-
latory, non-linear, stalled static aerodynamic force coefficient.

C
INCLUDE 'PARAM.INC'
INCLUDE 'GLBBLK.INC'

C *** Input variables (LM,THETA,HBAR,VEL,FREQ) and output variables CZ.
CHARACTER
REAL*8

C *** Constants
REAL*8

C *** Variables
INCLUDE

C *** Variables
INCLUDE
REAL*8

C *** Variables
REAL
INTEGER
CHARACTER
LOGICAL

LM*1
THETA(e),HBAR(*),VEL,FREQ,DCL,CZ(*)

used in non-linear equations.
ALFA(3) ,ALFO,ALFV.TC(3),S.KV,LAM.SIG.ALF.W.D.E

used in linear calculations.
'CZ1BLK. INC'

used in non-linear calculations.
'CZ2BLK. INC'
JCK

used in plotting routines.
XAXIS(2000),YAXIS(2000)
IOPT(3),NUM(3)
TITLE*80,ANSWER*1
LPRINT

C
RE - RHOA*VEL*CHORD/RMUA

C
C Determine if an output file should be generated.

IF (LM.EQ.'L') WRITE(*,'(/A,$)') '+Create output file for '//
& 'lift trial, AEROF.OUT ? '

IF (LM.EQ.'M') WRITE(*,'(/A,$)') '+Create output file for '//
& 'moment trial, AEROF.OUT ? '

READ (*,'(A1)') ANSWER
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) LPRINT-.TRUE.
LPRINT - .FALSE.

IF (LPRINT) THEN
OPEN (UNIT=3,FILE-'AEROF.OUT',STATUS-'NEW',FORM-'FORMATTED')
WRITE(3,*) ' '
IF (LM.EQ.'L') WRITE(3,*) 'LIFT TRIAL USING AEROF SUBROUTINE'
IF (LM.EQ.'M') WRITE(3,.) 'MOMENT TRIAL USING AEROF SUBROUTINE'
WRITE(3,*) I I
WRITE(3,*) 'INPUT VARIABLES:'
WRITE(3,*) ' I
WRITE(3,*) 'Reynold". Number -',RE
WRITE(3,*) 'THETAB -',(THETA(1)*180.De/PI),' degs'
WRITE(3,*) 'THETAs -', (THETA(2)*18B.D9/PI),' degs'
WRITE(3,*) 'THETAc -',(THETA(3)*18e.De/PI),' degs'
WRITE(3,*) ' HBARO =',HBAR(1)
WRITE(3,*) ' HBARs -',HBAR(2)
WRITE(3,*) ' HBARc =',HBAR(3)
WRITE(3,.) ' FREQ -',FREQ
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ENDIF
C
C Calculate the perceived angle of attack coefficients [ALFA(i)]
C and the mean and vibratory amplitudes [ALFe and ALFV].
C

ALFA(1) - THETA(1)

ALFA(2) = THETA(2) + FREQ*HBAR(3)
ALFA(3) - THETA(3) - FREQ*HBAR(2)

C
ALFO - ALFA(1)

ALFV - DSQRT(ALFA(2)**2+ALFA(3)**2)
IF (ALFV.EQ.0) ZETA-O.DO
IF (ALFV.NE.0) ZETA-DASIN(ALFA(3)/ALFV)
IF (ALFA(2).LT.0) ZETA--ZETA

C
IF (LPRINT) THEN

WRITE(3,*) ' I

WRITE(3,*) 'ALPHAS -',(ALF,*18e.De/PI),' degs'
WRITE(3,*) 'ALPHAs =',(ALFA(2)*18e.De/PI),' degs'
WRITE(3,) 'ALPHAc -',(ALFA(3)*18e.DB/PI),' dege'
WRITE(3,*) 'ALPHA- =',(ALFV*180.DB/PI),' degs'
WRITE(3,*) ' ZETA -',(ZETA*18e.DO/PI).' degs'

ENDIF
C
C Correct effective angle of attack and real angle of attack
C for finite span.
C

ALFe - ALFO/(I.+SLOPE('L' )/PI/(2.*LENGTH/CHORD))
ALFV - ALFV/(1.+SLOPE('L')/PI/(2.*LENGTH/CHORD))
ALFA(1) - ALFA(1 )/(1 .+SLOPE('L' )/PI/(2. *LENGTH/CHORD))
ALFA(2) - ALFA(2)/(1.+SLOPE('L' )/PI/(2. *LENGTH/CHORD))
ALFA(3) - ALFA(3)/(1.+SLOPE( L' )/PI/(2.*LENGTH/CHORD))
TC(1) - THETA(1)/(1 .+SLOPE('L')/PI/(2.*LENGTH/CHORD))
TC(2) - THETA(2)/(1.+SLOPE('L')/PI/(2.*LENGTH/CHORD))
TC(3) - THETA(3)/(1.+SLOPE('L')/PI/(2.*LENGTH/CHORD))

C
CZ1(1) - SLOPE(LM)*ALFS

C
C Calculate lowest and highest region in which the alpha
C oscillation passes through.
C

LOREG - 0
HIREG - 8
AMIN = ALFO - ALFV

AMAX = ALFO + ALFV
DO 10 I - 1.IREGS(FOIL)

IF ((TD(I).LE.AMIN).AND.(AMIN.LT.TD(I+1))) LOREG-I
IF ((TD(I).LT.AMAX).AND.(AMAX.LE.TD(I+1))) HIREG-I
IF ((-TD(I+1).LT.AMIN).AND.(AMIN.LE.-TD(I))) LOREG--I
IF ((-TD(I+1).LE.AMAX).AND.(AMAX.LT.-TD(I))) HIREG--I

10 CONTINUE
C

IF (.NOT.STEADY) THEN
C
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C Calculate coefficients of the linear differential equations.
C

CALL COEFS_LIN(LM,ALF,S .KV.LAM,SIG,ALF)
IF (LPRINT) THEN

WRITE(3,*) '

WRITE(3,*) ' S -',S,'1/rad'
WRITE(3,*) ' KV ',KV,l1/rad'
WRITE(3.,) 'LAM -'.LAM
WRITE(3,*) 'SLP -',SLOPE(LM),'1/rad'
WRITE(3,*) 'SIG ' ,SIG, 'l/rad'
WRITE(3,*) 'ALF -',ALF

ENDIF
C
C Calculate variables of linear aerodynamic equation.
C

LS - SLOPE(LM)*ALFA(2)-SIG*FREQ*TC(3)
LC - SLOPE(LM)*ALFA(3)+SIG*FREQ*TC(2)
IF (LPRINT) THEN

WRITE(3,*) - *
WRITE(3.,) 'Les -'.LS
WRITE(3.,) 'Lc -',LC

ENDIF
C
C Calculate oscillatory contributions of linear aerodynamics.
C

CZ1(2) - ((LAM*LAM+ALF*FREQ*FREQ)*LS+LAM*FREQ*
& (1.DO-ALF)*LC)/(LAM*LAM+FREQ*FREQ)

CZ1(3) = ((LAM*LAM+ALF*FREQEFREQ)*LC-LAM*FREQ*
& (1.06-ALF)*LS)/(LAM*LAM+FREQ*FREQ)

ENDIF
C

IF (LPRINT) THEN
WRITE(3,*) 'C'//LM//'lo -' ,CZ1(1)
WRITE(3,*) 'C'//LM//'ls -',CZ1(2)
WRITE(3,*) 'C'//LM//'lc -',CZ1(3)

ENDIF
C
C Calculate the coefficients of CZ2 in time: 1-constant,
C 2-first harmonic sine. 3-first harmonic cosine. 4-second
C harmonic sine, 5-second harmonic cosine.
C

IF (((LOREG.EQ.0).AND.(HIREG.EQ.e)).OR.(LINEAR)) THEN
C
C Set coefficients equal to zero if oscillation
C never enters the stalled regime or If only considering
C the linear problem.
C

DO 220 I - 1.5

CZ2(I) - S.De
220 CONTINUE

ELSEIF ((STEADY).OR.(ALFV.EQ.e)) THEN
C
C If steady, calculate steady non-linear coefficient and set
C unsteady non-linear coefficients to zero.
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CZ2(1) = -DCZS(LM,e,ALF0)
DO 230 I - 2,5

CZ2(I) -= .D0

230 CONTINUE
ELSE

C
C Calculate limits of integration for each region for
C use In the Fourier analysis.
C

PHI(LOREG) - -PI/2.D9
PHI(HIREG+1) - PI/2.DO
IF (LOREG.NE.HIREG) THEN
DO 240 I - LOREG+1,HIREG

IF (I.LE.e) THEN
PHI(I) - DASIN((-TD(1-I)-ALFO)/ALFV)

ELSE
PHI(I) - DASIN((TD(I)-ALFO)/ALFV)

ENDIF
240 CONTINUE

ENDIF
C

IF (LPRINT) THEN
WRITE(3,*) ' I

DO 245 I - LOREG,HIREG+1
WRITE(3,*) 'REGION -',I,' PHI -',(PHI(I)*180.DB/PI),' dogs'

245 CONTINUE
ENDIF

C
C Calculate the coefficients of the polynomial expansion
C sine series in each region that the oscillation passes thru.
C

DO 308 I = LOREG,HIREG
IF (I.EQ.e) GOTO 306

C
C Calculate constant coefficient.
C

BB(I,e) = DBLE(SIGN(1,I))*DCZS(LMe,TD(ABS(I)))
DO 250 J - 1.JMAX(ABS(I))

BB(I,0) - BB(I.0) + DBLE(SIGN(1,I)**(J+1))*
& A(LM,ABS(I),J)*(ALFe-DBLE(SIGN(1,)))*TD(ABS(I)))**J

259 CONTINUE
C
C Calculate higher order coefficients.
C

DO 288 KK = 1,JMAX(ABS(I))
BB(I,.KK) = (DBLE(SIGN(1,I)))**(KK+1)*A(LM.ABS(I).KK)*

& (ALFV**KK)
IF (KK.NE.JMAX(ABS(I))) THEN
DO 270 J - KK+1,JMAX(ABS(I))

C
C Calculate J-choose-KK.
C

JCK - 1.D6
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DO 268 L - 1,KK

JCK - JCK*DBLE(J-L+I)/DBLE(L)
260 CONTINUE
C
C Add contribution of J-th power to bb(i,kk).
C

BB(I,KK) = BB(I,KK) + JCK*(DBLE(SIGN(1,I)))**(J+1)*
& A(LM.ABS(I).J)*(ALFV**KK)*((ALFO-DBLE(SIGN(1.I))*
& TD(ABS(I)))**(J-KK))

270 CONTINUE
ENDIF

280 CONTINUE
C

IF (LPRINT) THEN
WRITE(3.*) - -
WRITE(3,*) 'REGION -'.1
DO 285 KK = 8,JMAX(ABS(I))

WRITE(3,*) 'B(',KK,') -',BB(I,KK)
285 CONTINUE

ENDIF
C
C Calculate the integrals of the sine powers In each region
C using Equation ??? from "???."
C

INT(I.,) - PHI(I+1) - PHI(I)

INT(I,1) - DCOS(PHI(I)) - DCOS(PHI(I+1))

DO 290 KK = 2,JMAX(ABS(I))+2
INT(I,KK) - (DCOS(PHI(I))*DSIN(PHI(I))**(KK-1)-

& DCOS(PHI(I+1))*DSIN(PHI(I+1))**(KK-1))/DBLE(KK)+
& DBLE(KK-1)/DBLE(KK)*INT(I .KK-2)

290 CONTINUE
C

IF (LPRINT) THEN
WRITE(3,*) I '

DO 295 KK - @,JMAX(ABS(I))+2
WRITE(3,*) 'INT(',KK,') -',INT(I,KK)

295 CONTINUE
ENDIF

300 CONTINUE
C
C Calculate the polynomial coefficients of the
C Fourier expansion in the PHI domain.
C

DCZO - 8.D9
DCZ1 - 9.D8
DCZ2 - 0.D9

DO 418 I - LOREGHIREG
IF (I.NE.e) THEN
DO 400 KK - S,JMAX(ABS(I))

DCZO = DCZO + BB(I,KK)*INT(I,KK)/PI
DCZ1 - DCZ1 + BB(I,KK)*INT(I,KK+1)*2.DO/PI
DCZ2 - DCZ2 + BB(I.KK)*(INT(I.KK)-2.DO*INT(I .KK+2))*

& 2.D0/PI
400 CONTINUE
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ENDIF
410 CONTINUE
C

IF (LPRINT) THEN
WRITE(3,*) I I
WRITE(3,*) 'DC'//LM//'e -',DCZO
WRITE(3,*) 'DC'//LM//'V1 -',DCZ1
WRITE(3,*) 'DC'//LM//'V2 -',DCZ2

ENDIF
IF (LM.EQ.'L') DCL=-DCZ8

C
C Calculate the polynomial coefficients of the Fourier
C expansion in the OMEGA*TAU domain.
C

DCZ(1) - DCZO

DCZ(2)-DCZ1*ALFA(2)/ALFV
DCZ(3)-DCZ1 *ALFA(3)/ALFV
DCZ(4)-DCZ2*-2. D*,ALFA(2)/ALFV*ALFA(3)/ALFV
DCZ(5)=DCZ2* (ALFA(2)**2-ALFA(3)**2)/(ALFV**2)

C
C Calculate coefficients of the non-linear aerodynamic
C differential equations. NOTE: this depends on DCLO having
C already been calculated, i.e. that the calculations for
C LM-'L' are done before LM-'M'.
C

CALL COEFSNON(ALF,.DCLO,W,D, E)
IF (LPRINT) THEN

WRITE(3,*) I I
WRITE(3,*) 'W -',W
WRITE(3,*) 'D -',D
WRITE(3,*) 'E -',E

ENDIF
C

CZ2(1) = -DCZ(1)
C
C Calculate second harmonic coefficients of unsteady aerodynamics.
C

K1 - 1.DO+D*D-(2.DO*FREQ/W)*(2.DO*FREQ/W)
K2 - 2.DO*D*(2.DO*FREQ/W)
K3 - -(1 .DO+D*D)*(DCZ(4)-E*2.DO*FREQ*DCZ(5))
K4 = -(1 .D+D*D)*(DCZ(5)+E*2.DO*FREQ*DCZ(4))
CZ2(4) - (K1*K3+K2*K4)/(K1*K1+K2*K2)
CZ2(5) - (K1*K4-K2*K3)/(KIK1K+K2*K2)

C
IF (LPRINT) THEN

WRITE(3,'(/A)') ' Second Harmonic'
WRITE(3,*) 'DC'//LM//1'2 -',DCZ(4)
WRITE(3,*) 'DC'//LM//'c2 -',DCZ(5)
WRITE(3,*) 'K1(2) =',K1
WRITE(3,*) 'K2(2) -',K2
WRITE(3,*) 'K3(2) -',K3
WRITE(3,*) 'K4(2) -',K4

ENDIF
C
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Calculate first harmonic coefficients of unsteady aerodynamics.

K1 - 1.DO+D*D-(FREQ/W)*(FREQ/W)
K2 - 2.DO*D,(FREQ/W)
K3 = -(1.DO+D*D)*(DCZ(2)-E*FREQ*DCZ(3))
K4 - -(1.D6+D*D)*(DCZ(3)+E*FREQ*DCZ(2))
CZ2(2) - (K1*K3+K2*K4)/(K1*KI+K2*K2)
CZ2(3) - (K1lK4-K2*K3)/(K1KKl+K2*K2)

IF (LPRINT) THEN
WRITE(3,'(/A)I) ' First Harmonic'
WRITE(3,*) 'DC'//LM//1' -',DCZ(1)
WRITE(3,*) 'DC'//LM//'sl -',DCZ(2)
WRITE(3.*) 'DC'//LM//'cl -'.DCZ(3)
WRITE(3,*) 'K1(1) -',K1
WRITE(3.*) 'K2(1) -',K2
WRITE(3,*) 'K3(1) -'.K3

WRITE(3.,*) 'K4(1) -',K4
ENDIF

ENDIF
IF (LPRINT) THEN

WRITE(3,*)
WRITE(3,*) '
WRITE(3,*) '
WRITE(3,*)
WRITE(3.*)
WRITE(3,*)

ENDIF

I
C'//LM//'2e
C'//LM//'2sl
C'//LM//'2c2
C'//LM//*'2c2
C'//LM//*2c2

'4
.4
'4

-',CZ2(1)
-' CZ2(2)
-' CZ2(3)

', .CZ2(4)
-' CZ2(5)

Combine linear, non-linear, and apparent mass terms for
total coefficients of full non-linear aerodynamics.

CZ(1) - CZ1(1)
CZ(2) - CZ1(2)
CZ(3) = CZ1(3)
CZ(4) - CZ2(4)
CZ(5) - CZ2(5)

+ CZ2(1)
+ CZ2(2) - S*FREQ*ALFA(3) - KV*FREQ*FREQ*TC(2)

+ CZ2(3) + S*FREQ*ALFA(2) - KV*FREQ*FREQ*TC(3)

IF (LPRINT) THEN
WRITE(3,*)
WRITE(3.*)
WRITE(3,*)
WRITE(3,*)
WRITE(3,*)
WRITE(3,*)
CLOSE(3)

ENDIF

'C'//LM/' l

'C'//LM//' cl
'C'//LM//' s2
'C'//LM//'c2

RETURN
END

-193-

-. ,cz(1)
' .CZ(2)
' .CZ(3)
' .CZ(4)

- .CZ(5)



C
C "Include" file, CZIBLK.INC to describe the common variables used
C In the harmonic balance method applied to the linear lift/moment.
C

REAL*8 LS, LC,CZ1(3)
COMMON /CZ1BLK/LS, LC,CZ1

C

"Include" file, CZ2BLK.INC, to describe the common variables used
in the harmonic balance method applied to the non-linear lift/moment.

INTEGER
REAL*8
REAL*8
COMMON

LOREG,HIREG

PHI(-MAXREG:MAXREG),BB(-MAXREG:MAXREG,e:MAXPOW)
INT(-MAXREG:MAXREG,e:MAXPOW),DCZ(5),K1,K2.K3,K4,CZ2(5)
/CZ2BLK/LOREG,HIREG,PHI, BB, INT,DCZ,K1, K2,K3,K4,CZ2
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C - FILE: DRDQ.FOR
C

SUBROUTINE RDERIV(BENTOR,VEL,AOA,FREQ,QLIT.RES.DRDQ)
C
C Subroutine to calculate the Jacobian matrix d(RES)/d(QLIT) by
C numerical estimation of the derivatives.
C
C INPUT VARIABLES: velocity VEL, root angle of attack AOA, reduced
C frequency FREQ, modal amplitudes QLIT, and
C current residuals RES
C OUTPUT VARIABLE: derivative matrix DRDQ
C

INCLUDE 'PARAM.INC'
INCLUDE 'GLBBLK.INC'
REAL*8 VEL,AOA,FREQ,QLIT(MAXMODE,3),RES(3*MAXMODE)
REAL*8 VEL2,AOA2,FREQ2,QLIT2(MAXMODE,3),RES2(3*MAXMODE)
REAL*8 DRDQ(3*MAXMODE,3*MAXMODE)
INTEGER BEN-TOR

C
C Loop through each direction of the components of the modal amplitudes,
C ignoring oscillating components If steady analysis.
C

MAX - 3
IF (STEADY) MAX - 1
DO 30 I1 = 1,NMODES
DO 30 J1 - 1,MAX

C
C Skip if looking at components of state vector
C reserved for angle of attack/velocity and reduced frequency.
C

IF ((I1.EQ.BEN.TOR).AND.(J1.NE.1)) GOTO 30
C
C Initialize modal amplitude trial vector.
C

DO 10 12 - 1,NMODES
DO 10 J2 - 1,MAX

QLIT2(I2,J2) - QLIT(I2,J2)
10 CONTINUE
C
C Increment desired direction of modal amplitude
C trial vector by e0.1%
C

QLIT2(I1,J1) - 1.6081*QLIT(I1,J1)
IF (QLIT2(I1,J1).EQ.6.) QLIT2(I1.J1)-e.0001

C
C Calculate new residuals from modal amplitude trial vector.
C

CALL RESIDUAL(VEL,AOA, FREQ.QLIT2,RES2)
C
C Calculate numeric derivatives from modal amplitude trial
C vector QLIT2 and associated residuals RES2.
C

K1 - NMODES*(JI-1)+I1
DO 20 12 - 1,NMODES
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DO 28 J2 - 1,MAX

K2 - NMODES*(J2-1)+I2
DRDQ(K2,K1) - (RES2(K2)-RES(K2))/(QLIT2(I1,J1)-QLIT(I1 J1))

20 CONTINUE
38 CONTINUE
C
C If steady, skip angle of attack/velocity and frequency derivatives.
C

IF (STEADY) RETURN
C
C Increment trial angle of attack/velocity by 8.81% and
C calculate new residuals.
C

IF (VLINES) THEN
AOA2 - 1.e001*AOA
IF (AOA2.EQ.0.) AOA2-0.0001
CALL RESIDUAL(VEL,AOA2,FREQ,QLIT,RES2)

ELSE
VEL2 - 1.e081*VEL

IF (VEL2.EQ.0.) VEL2-0.0001
CALL RESIDUAL(VEL2,AOA, FREQ,QLIT,RES2)

ENDIF
C
C Calculate numeric derivatives from trial angle of attack/velocity
C AOA2/VEL2 and associated residuals RES2.
C

K1 - NMODES+BENTOR

DO 40 12 - 1,NMOOES
DO 40 J2 - 1,MAX

K2 - NMODES*(J2-1)+12
IF (VLINES) DRDQ(K2,K1)-(RES2(K2)-RES(K2))/(AOA2-AOA)
IF (.NOT.VLINES) DRDQ(K2,K1)-(RES2(K2)-RES(K2))/(VEL2**2-VEL**2)

40 CONTINUE
C
C Increment trial frequency by 0.01% and calculate new residuals.
C

FREQ2 - 1.l0001FREQ

IF (FREQ2.EQ.0.) FREQ2-0.0001
CALL RESIDUAL(VEL,AOA,FREQ2,QLIT,RES2)

C
C Calculate numeric derivatives from trial frequency FREQ2 and
C associated residuals RES2.
C

K1 - 2*NMODES+BENTOR
DO 50 12 = 1.NMODES
DO 50 J2 - 1,MAX

K2 - NMODES*(J2-1)+I2
DRDQ(K2,K1)-(RES2(K2)-RES(K2))/(FREQ2-FREQ)

56 CONTINUE
C

RETURN
END
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