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Abstract

The nonlinear dynamics of a spacecraft coupled to a contained fluid
with a free surface is studied both experimentally and analytically. A general
finite degree-of-freedom, nonplanar model describing the dynamics of a
spacecraft coupled to a fluid, contained in a tank of general geometry, is
developed and verified by comparing analytical with experimental results.

The nonlinear model of the fluid/spacecraft system is accurate to
third order in terms of the fluid motion amplitudes. A generalized
coordinate description is obtained by satisfying the free surface boundary
condition in an assumed mode approach. The kinematic boundary
problem, posed as a variational problem, provides the relationship between
the assumed free surface generalized coordinates and the fluid flow
potential coordinates. Given the generalized coordinate description of the
fluid, linear and nonlinear capillary forces, along with the standard energy
terms, are included in the fluid Lagrangian. This method is valid for tanks
with straight and parallel walls but results are presented which show that
the method can be applied to tanks of more complex geometry if the
geometry can be approximated with a straight/parallel wall assumption. In
this research, the linear eigen-mode shapes as calculated with a finite
difference routine, are used as assumed modes.

The nonlinear set of equations obtained by applying Lagrange's
principle to the fluid Lagrangian, is solved for the forced response
characteristics by numerical implementation of the Harmonic Balance
method. The nonlinear time independent equations provided by this
method are solved using an Inverse Iteration technique as well as a
Newton-Raphson solver. The analytical model is used to investigate the
nonlinear fluid slosh behavior in spherical, square, rectangular and
cylindrical tanks.

Three scaled fluid tank models, namely; spherical, square and
rectangular, were experimentally tested to determine the nonlinear
characteristics of fluids contained in these types of tanks. The tanks are
scaled to have Bond numbers representative of typical spacecraft fluid
storage tanks. Both uncoupled (tank alone) and coupled forced excitation



tests are performed. In the coupled tests, the measured reaction slosh force
is fed to an analog simulation of a spacecraft's modal dynamics, thus
coupling spacecraft and fluid slosh dynamics. In these tests, the effects of
system mass ratio, frequency ratio and damping ratio on the nonlinear
coupled behavior are investigated.

The analytical and experimental results contributed to a general
understanding of the complex behavior of fluid/spacecraft dynamic systems.
In conclusion, tank vibrations exceeding 5% of the equivalent diameter
show significant nonlinear effects, both in the fluid and spacecraft responses.
The equivalent diameter is equal to four times the surface area divided by
the circumference. For cylindrical tanks the equivalent diameter is equal to
the tank diameter. At higher excitation levels (resonance amplitudes greater
than 10-15% of the equivalent diameter), all the tanks exhibit jump
phenomena and multi-valued oscillations. Convective (kinematic) fluid
nonlinearities are important for all Bond numbers and capillary effects must
be modeled for Bond numbers as high as 60.

Nonlinearities are the strongest for systems with low fluid mass
fractions and for fluid-to-spacecraft frequency ratios between 0.8 and 1.0.

The experimentally observed amplitude dependent dissipation rates
and shift in resonant frequencies (softening) are predicted by the analytical
model. The model fails to predict the forced response characteristics when
swirling motion occurs in the tanks which have repeated eigen-modes. If
perturbed, to include a small coupling term between the spacecraft degree-of-
freedom and the nonplanar slosh mode, the analytical model can predict the
swirling motion. However a more detailed model of the nonplanar degree-
of-freedom of the excitation system is required to correctly model the forced
response characteristics when swirling occurs.

Thesis Supervisor: Prof. Edward F. Crawley
Title: Associate Professor of Aeronautics and Astronautics
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Nomenclature

a Tank radius

(al,a2,a3) Accelerations measured by the accelerometers mounted on the
test model base

ax Planar tank acceleration component

ay Nonplanar tank acceleration component

amn Nonlinear equivalent fluid slosh depth matrix

a(O) Zero'th order equivalent fluid slosh depth matrix

(1)
amn Linear correction to the nonlinear equivalent fluid slosh depth

matrix

(2)amn Quadratic correction to the nonlinear equivalent fluid slosh
depth matrix

Bo Bond number

c Damping constant for the spacecraft mode

Cqi Damping constant for the ith fluid mode

Surface Areade Equivalent diameter = 4 Surface C ren
Surface Circumference

d mn Nonlinear kinematic matrix

(0)
mn Zero'th order kinematic matrix

(1)
mn Linear correction to the nonlinear kinematic matrix

(2)
dmn Quadratic correction to the nonlinear kinematic matrix

d Tank diameter

f Free surface equilibrium position, dimensional

(F1,F2,F3) Forces measured by the force reaction balance force transducers

Fex Externally applied force (x-direction)



fo, fo Spacecraft mode natural frequency

fs Primary planar fluid mode natural frequency

Fxs Planar (x) reaction slosh force component

Fys Nonplanar (y) reaction slosh force component

Fx Total planar force component measured

Fy Total nonplanar force component measured

g Apparent acceleration at a tank location

go Earth normal gravity (9.81 m/s 2)

G Linear system reactance matrix

GC Spacecraft mode feedback gain corresponding to damping ratio

Go Spacecraft mode feedback gain corresponding to frequency

Gm Spacecraft mode feedback gain corresponding to mass

h Fluid depth

I Kinematic integral which is minimized to satisfy fluid
boundary conditions

IzD Total moment of inertia of the dry mass of the model tank and
mounting hardware

kmn Nonlinear fluid wave number matrix

(0)
mn Zero'th order fluid wave number matrix

(1)kmn Linear correction to the fluid wave number matrix

(2)kmn Quadratic correction to the fluid wave number matrix

k Spacecraft mode spring rate

K Stiffness matrix

Ka Accelerometer sensitivity (mvolts/g)

Kx Proximeter sensitivity (volts/inch)

Kf Slosh force resolver sensitivity (volts/pound)



Normal accelerometer sensitivity (volts/g)

Equivalent mechanical slosh model spring rate

Nonlinear fluid wavelength matrix

Kg

Kn
Imn

(0)
Imn

(1)
imn

(2)
Imn

L

m

mD

mF

mp

mr

mxq, myq

Mzs

Mz

N

Zero'th order fluid wavelength matrix

Linear correction to the fluid wavelength matrix

Quadratic correction to the fluid wavelength matrix

Lagrangian of the coupled fluid-spacecraft system

Spacecraft modal mass

Total dry mass inertia of the model tank and mounting
hardware

Total fluid mass

Proof mass used in the force measurement calibration

Residual null-out dry mass in the force measurement
calibration

Fluid-spacecraft inertial coupling coefficients

Vertical slosh reaction moment component

Total vertical reaction moment component measured

Number of modes in the assumed modal decomposition of the
fluid dynamics

Gravity scaled viscosity

Surface tension scaled viscosity

Outward pointing normal to the fluid volume V on the surface
SF (including free surface and container walls)

Free surface modal coordinates

Radial coordinate, dimensional

Radial coordinate, units of tank radius

Inertial coordinates of the tank frame origin

N V2



rT Radius of the force transducer center-lines on the slosh force
reaction balance

ra Radius of the accelerometer center-lines on the slosh force
reaction balance

rh Hydraulic radius

RC Time constant of the spacecraft mode circuit

Rcg Spacecraft orbital radius at the center of gravity

s Laplace's variable

SF Fluid free surface

SB Tank cross section

t Time

TF Total fluid kinetic energy

Ts/c Spacecraft mode kinetic energy

u Fluid potential velocity relative to coordinate system fixed in
the tank

u,v Curvilinear coordinate system defining the boundary of an
enclosed fluid

ul, u2 Amplitudes of the complex eigen-mode coefficients, A1 and A2

ux i., u q Linear system eigen-mode coordinates

UG Free surface gravitational potential energy

Us/c Spacecraft mode potential energy

Ua Free surface capillary potential energy

Vfex Input voltage of the compliant actuator spacecraft mode circuit

Vfxs Planar slosh force measurement voltage

Vfys Nonplanar slosh force measurement voltage

Vx Proximeter displacement measurement voltage

Vxc Output voltage of the compliant actuator spacecraft mode
circuit

v Kinematic viscosity of the fluid



x Planar tank displacement (coordinate)

xi Inertial velocity vector of a fluid particle

y Nonplanar tank displacement (coordinate)

z Vertical coordinate (parallel to gravity vector)

zT Tank displacement from spacecraft center of gravity

Greek:

a Fluid-vapor-solid contact angle

ai, aijk Nonlinear convection (fluid modal inertia) coefficients

fi, Iijk Nonlinear capillary coefficients

Xn Fluid flow field potential mode shapes

V Gradient operator (2 or 3 dimensions, depending on the
function)

E Small parameter (<<1)

Yijk Secondary fluid mode forced solution coefficients for the
quadratic perturbation equation

F Linear hysteresis constant

11 Free surface height parallel to g vector

x Linear fluid sloshing mass fraction

9 Coupled system mass ratio (total fluid over spacecraft mode)

4xq, Jyq Linear fluid-spacecraft inertial coupling coefficients

i33' , 44  Secondary fluid mode mass ratios

v Coupled system frequency ratio (slosh over spring frequencies)

V1, v2  Coupled system eigen-frequencies (units of spring-mass
frequency)



V3, V4 Secondary fluid mode natural frequencies (units of spring-mass
frequency)

Q Excitation frequency

Fluid flow potential field

On Fluid flow potential field modal coordinates

<f Fluid flow spatial modal coordinate

a Surface tension

os Slosh circular frequency

ýn Free surface mode shapes

Zex Non-dimensional externally applied force

SSpacecraft mode damping ratio

ýqi Fluid mode damping ratio

Derivatives:

(') Total time derivative

( ) Partial derivative with respect to any variable xx



Chapter 1

Introduction

This Chapter motivates the research on coupled spacecraft/fluid
systems (Section 1.1), discusses the underlying assumptions on which the
assumed mode analytical model is based (Section 1.2) and explain how this
analytical model was modified in this research to be valid for tanks of more
complex geometry (Section 1.3). The chapter concludes with an outline of
this document.

1.1 Research Motivation

The precise operating requirements of modern spacecraft demand a
detailed model of all the on board dynamic components. Nonlinearities
that were ignored in the past, must be modeled and understood in order to
satisfy stringent operating requirements. For example; the resolution of
orbiting optical systems can be significantly degraded by imperfections of 10-5

radians. Furthermore, attitude errors during transfer orbit insertion can
result in a fuel mass penalty for the spacecraft. Since unmodeled dynamics
during the design phase can result in sub-standard system performance and
lead to instabilities, the modeled spacecraft dynamics must reflect the design
requirements. For very tight tolerances, this will invariably lead to a very
complex model. Effects, that may have to be modeled are; nonlinear
geometric and material properties and multi-body dynamic effects.

Another potentially important nonlinear effect is fluid slosh.
Nonlinear fluid/spacecraft motion caused by finite amplitude fluid slosh
will depart significantly from motion predicted by linear theory. Liquid
propellants are more efficient than solid propellants and more spacecraft
designs rely on liquid propellants than ever before. Communication
satellites carry as much as 50% of their total mass as liquid, both for orbital
transfer and for attitude control. Liquid-fueled upper stages and orbital
transfer vehicles can have mass fractions as high as 120%. These large mass
fractions, spacecraft dry mass versus propellant mass, indicate that the
dynamics associated with the fuel slosh is of paramount importance. The



longitudinal vibrations, also known as the pogo phenomena, observed in
rockets and launch vehicles (for example; Thor-Agena and Titan II) [Kana in
Abramson, 1966] and the fluid induced roll oscillations encountered in the
Saturn I rocket program [Abramson, 1966] emphasize the need to accurately
model the fluid slosh dynamics. Since it may be impossible to completely
avoid interactions between the spacecraft motion and the contained fluid,
this research is an attempt to develop a rational approach to the modeling of
the coupled dynamics associated with spacecraft carrying contained fluids.

In the past many researchers have published work on this topic,
namely; Reynolds and Satterlee [1964, 1966], Luke [1967], Yeh [1967],
Abramson [1963, 1966] and Ibrahim [1975a, 1975b] and in the recent past;
Peterson [1987] on the coupled nonlinear dynamics of fluid/spacecraft
systems with cylindrical tanks, Agrawal [1987] on the interaction between
liquid propellant slosh modes and attitude control in a dual-spin spacecraft,
Berry [1981] on modeling large amplitude propellant slosh, Kanan [1987] on
modeling nonlinear rotary slosh in propellant tanks, Komatsu [1987] on the
analysis of nonlinear sloshing of liquids in tanks with arbitrary geometries,
Nakayama [1981] on using the boundary element method to analyze two-
dimensional nonlinear sloshing problems and Yu [1987] on the nonlinear
analysis of sloshing in circular cylindrical tanks using the perturbation
method. This list, far from a complete one, illustrates the considerable
importance the engineering community has attached to the nonlinear fluid
slosh problem. Studying the literature on the subject, one can conclude that
there are many innovative ways to approach and solve the problem. It is
not clear, however, how to generalize most of these methods to tanks of
arbitrary geometry while keeping the model simple. Some of the
approaches yield unwieldy equations, require significant algebraic
manipulation and are not computationally cost effective.

The Rayleigh-Ritz assumed mode approach, developed by Miles
[1984a and 1984b] and modified by Peterson [1987] for low Bond numbers,
was selected, in this research as a method that could best be extended to
tanks of arbitrary geometry. The following section is devoted to the
underlying assumptions and simplifications associated with the assumed
mode approach, while the next section of this chapter explains how this
method was modified for this research.



1.2 Assumed Mode Approach

This section discusses and outlines the assumed mode approach
developed by Miles [1984a and 1984b] and Limarchenko [1978a, 1978b and
1980]. This method was modified by Peterson [1987] to be valid for low Bond
numbers. The method starts out by assuming separate sets of generalized
coordinates for the free surface motion and for the internal potential flow
function. The kinematic boundary condition at the fluid free surface is then
used to relate the fluid flow potential generalized coordinates to the free
surface motion generalized coordinates. Given a unique, independent set of
generalized coordinates, the fluid kinetic and potential energies are
expressed in terms of the free surface generalized coordinates and combined
to form the system Lagragian. The next few paragraphs outline the
underlying assumptions of the assumed mode model and identifies the
important parameters.

Sources of Nonlinearities: The relationship between the fluid flow
potential function generalized coordinates and the free surface generalized
coordinates is nonlinear and is one of the major sources of nonlinearity in
the fluid slosh behavior. Consider the action of the convection forces at the
fluid free surface of the fluid. The potential flow (0) and the free surface
motion (T1) must satisfy the kinematic boundary condition (Fig. 1.1):

at + I z= zz=T (1.1)

This equation is an analytical expression of the Dirichlet and Neumann
problems and constitutes a nonlinear relation between the fluid flow
potential (0) and the free surface motion (01). Eq. 1.1 is a mathematical
expression for the requirement that the fluid at the free surface boundary
must follow the motion of the free surface.

Another source of nonlinearity is the potential energy stored in the
capillary viscous forces [Limarchenko, 1981], given by:

U= of fV1+ VT V dS
s (1.2)

The potential energy of the free surface is a function of the total dynamic
free surface area. The free surface area is a complex nonlinear function of
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Figure 1.1 Inviscid Fluid Flow Boundary Conditions for a Cylindrical
Tank.

Fluid is constrained to flow parallel to the solid walls. The free
surface boundary condition leads to nonlinear inertia effects in the
fluid equations of motion.

the free surface shape (1i). Peterson [1987] extended the work of Miles [1984a]

by expressing the free surface shape as a sum of the equilibrium or static free
surface and the dynamic motion of the free surface. The capillary energy is
then a function of the equilibrium free surface or Bond number (Bo). The
Bond number is a non-dimensional measure of the relative importance of
gravity versus capillary forces (eq. 1.3).

pga 2
Bo- o (1.3)

In this equation (p) is the fluid density, (g) is the mean apparent gravity
level, (a) is some fluid tank size scale factor and (a) is the surface tension.
Fig. 1.2 depicts the Bond numbers for Hydrazine, Liquid Qxygen and Liquid
Hydrogen due to gravity gradient, expressed as the tank displacement from
the spacecraft's center of gravity, in a 3 m diameter cylindrical tank.
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Figure 1.2 Typical Bond numbers

In terms of the equilibrium free surface, gravity tends to minimize

the free surface height and the capillary forces tend to minimize the free

surface area. Many researchers [Satterlee and Reynolds, 1964; Myshkis, et al,

1987] have showed that at very low Bond numbers, the fluid can assume

many stable configurations. Each equilibrium configuration of the fluid and

vapor corresponds to a local minimum in the capillary-gravity potential

energy expression. Large enough motions of the fluid container can re-

orientate the fluid into another stable configuration. For Bond numbers

above 200, gravity dominates and the fluid gathers in the bottom of the tank
with a flat free surface. For moderate Bond numbers (below 100 and above a
critical value), however, the capillary and gravity forces are comparable and

the fluid has a curved free surface. Below a critical Bond number, the fluid

equilibrium free surface is no longer stable and multiple configurations can
exist. Each configuration is associated with a local minimum in the



capillary-gravity potential energy. A large enough perturbation of the tank
will cause the fluid to re-orientate from one stable configuration to another.
If the gravity vector reverses direction, there is critical Bond number at
which the vibration frequency goes to zero. This corresponds to a static
instability of the fluid, and is the critical re-orientation Bond number. The
critical Bond number is a function of the contact angle (a) of the fluid at the
tank wall and thus on the fluid type. For example, for a cylindrical tank the
critical Bond number is given by:

Bo = - 3.40 + 2.57 cos a
Critical (1.4)

Low contact angle fluids are therefore less stable than high contact angle
fluids. In this research however it is assumed that the Bond number is
above the critical value (See Peterson [1987]) and that an equilibrium free
surface exists.

Contact Angle Hysteresis Effects: Another effect that must be included
to correctly model the dynamics of the fluid, is the contact angle hysteresis
effect. Satterlee and Reynolds [1964] showed that this effect can be linearized
and included in the fluid description as an additional boundary condition at
the fluid free surface contact contour with the container wall (eq. 1.5).

-n -a ]on contact surface (1.5)

In this equation, T is the contact angle hysteresis constant which is a
function of the fluid type and the tank wall surface and n is the normal to
the tank wall at the free surface contact contour.

Fluid Flow Field Assumptions: The fluids considered in this
research as well as typical spacecraft propellants, can be considered as viscous
and incompressible. Model simplifications can be justified based on the
knowledge of the dominant physical behavior. Potential flow can be
assumed if fluid viscous effects are restricted to the Stokes layer near the
wall of the container. This condition is satisfied if the surface tension
scaling parameter N,2 << 1 (see eq. 1.7). In this research, given the model

tanks and fluids used, N,2 ranges from 0.001 to 0.0014, justifying the

potential flow assumption.



The viscous effects are included in the model as linear non-

conservative damping forces. Predicting the fluid slosh damping can often

only be done experimentally [Abramson, 1966], but analytical scaling analysis
and estimation is possible [Miles, 1967]. For high Bond numbers, the fluid

slosh damping scales with gravity and viscosity. The appropriate scaling
parameter is:

NV

S• (1.6)

where (v) is the kinematic viscosity of the fluid. For low Bond numbers,
eq. 1.6 must be multiplied with the Bond number (which is equivalent to
scaling the Navier-Stokes equation using surface tension instead of gravity
as the reference force), yielding an alternative scaling parameter:

N,2 = (1.7)

These scaling parameters have been experimentally verified by Salzman and
Masica [1969], who showed that the damping ratio at low Bond number is
approximately six times higher than the high Bond number value. Salzman
and Masica suggested that this is due to the free surface curvature effects on
the flow profile. Important to note is that baffles and propellant
management devices can enhance the fluid damping. This, however, only
produces a finite amount of damping and if the baffles are partially
submerged, they tend to break up and separate the fluid oscillation modes
which, incidentally, produces a very nonlinear geometric effect [Abramson,
196].

The analytical method of this research completely ignores all
geometric nonlinear effects. Some of these effects are; partially submerged
baffles that cause fluid flow impact, drainage and complex container walls
that cannot be aligned with a curvilinear grid.

Container: The analytical model assumes a rigid container which
considerably simplifies the problem. This assumption is valid for containers
that have structural frequencies spectrally separated from the dominant
fluid slosh and control modes. The boundary condition at the tank walls,
for a rigid tank, is simply that there is no flow normal to the tank wall. The
previous paragraphs summarized the fluid flow assumptions and the rest of



this section will concentrate on the assumed coupled characteristics of the
fluid/spacecraft system.

Recent studies of the coupled fluid/spacecraft problem have
concluded that any proper model must be nonlinear in order to correctly
model the coupling between the fluid and container motion. The problem
of a water tower on flexible supports was analytically and experimentally
studied by Ibrahim and Barr [1975a and 1975b] (Also see Ibrahim and
Heinrich [1987]). Their analytical model did not include capillary effects, nor
secondary fluid modal interactions. Peterson [1987], on the other hand,
included these effects in his model to study a fluid/spacecraft configuration
similar to the one considered in this research.

In order for the results to be applicable to a wide range of spacecraft,
this research concentrated on coupled nonlinear dynamics of the system
depicted in Fig. 1.3. In this figure, a fluid container (not necessarily a
cylindrical container) is attached to a one degree-of-freedom spacecraft mode.
The motion of the container, but not the fluid, is restricted to be in one
direction (the x-direction or planar direction) only. The spacecraft degree-of-
freedom can be either an attitude control mode or one of the support
structure's modes. The stiffness, mass and damping of this mode may be
tuned to study the coupling effects on the fluid/spacecraft dynamic behavior.
The response of the coupled system will be dependent on the relative tuning
between the primary fluid slosh mode and the spacecraft mode. The
relevant non-dimensional parameters are therefore the mass ratio, the ratio
of total fluid mass to total dry mass of the tank

mF
S- m (1.8)

and the frequency ratio, the ratio between the fundamental fluid slosh
frequency and the frequency of the spacecraft mode

fs
v fo (1.9)
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Figure 1.3 Research Fluid/Spacecraft Study Model

One other non-dimensional parameter remains that will influence
the fluid/spacecraft system response, namely the applied force:

F ex
"ex - k d (1.10)

where (k) is the stiffness of the spacecraft mode and (d) some scale length.
Since the response will scale with =ex, given an absolute force level Fex, a
more compliant (softer k) spacecraft will result in a more nonlinear
response.

In practice, spacecraft have six degrees-of-freedom. Therefore the
assumption that the nonplanar degree-of-freedom is infinitely stiff, that is;



vs/c in eq. 1.11 is assumed to be infinite, is only valid for the experimental
setup of this research. Incidentally, it was found that this assumption was
one of the major limitations of the analytical model used in this research.

s /c (1.11)

1.3 Research Approach and Outline

This section outlines how the analytical method of Miles [1984a and
1984b] and Peterson [1987] was modified to be valid for tanks of arbitrary
geometry, and describes the solution procedure used to determine the
nonlinear characteristics of the fluid/spacecraft system along with the
experimental studies that were performed to validate the analytical model.

In order to apply the assumed mode model developed by Peterson,
the Taylor series expansion of the kinematic integrals [Peterson, 1987] had to
be modified to be valid for a numerical grid curvilinear system. The
method also had to be adapted for numerically derived eigen-modes. This
allowed the nonlinear formulation to be valid for almost any tank geometry
and also for tanks with baffles, as long as the baffles remain submerged
during fluid oscillations. The method derived, however, is only valid for
tanks with side-walls aligned with one of the curvilinear coordinates.

Although many standard computer packages exist on the market that
can calculate the linear eigen-modes of the fluid in the container, a finite
difference program was developed for flexibility, cost and data management
reasons. The finite difference method used shape functions to implement
the boundary conditions that are misaligned with the finite difference mesh.
The effect of contact angle hysteresis was included to yield the
experimentally observed linear eigen-frequencies.

In order to correctly model Bond number effects (the effect of the
nonlinear capillary forces), the equilibrium free surface shape was calculated
and added to the finite difference mesh of the linear eigen-routine. The
capillary and acceleration potential energies were posed in a variational
integral.
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Figure 1.4 An example of the Amplitude Dependent Dissipation
Rates observed by Peterson [1987].

Euler's equation, which satisfies the requirement that the variational
integral remains stationary with respect to independent variations, was used
to solve for the Bond number-dependent equilibrium free surface. This was
achieved by discretizing the free surface in a finite difference mesh and
solving the resultant non-linear equations with an Inverse Iteration
scheme. This approach is one of the major contributions of this research
and it can be applied to tanks of arbitrary geometries.

Peterson [1987] used the Multiple-Time-Scales method to solve for the
nonlinear forced response characteristics of the fluid/spacecraft system. This
method can only predict the shift in resonant frequencies and failed to
predict the amplitude dependent dissipation rates observed in the coupled
system resonances (See Fig. 1.4). In this research, the Harmonic Balance
Method is used to predict the coupled nonlinear forced response
characteristics, using a full nonplanar model of the fluid/spacecraft system.
The nonlinear time independent equations provided by this method are
solved using both an Inverse Iteration Scheme and a Newton-Raphson
solver with an adaptive under-relaxation scheme.

The objective of the experiments was to verify the analytical model
and to extend the database on the dynamic behavior of coupled



fluid/spacecraft configurations. The experimental setup was essentially the
same as the one used by Peterson. In this research, however, a personal
computer was used to control the experiment, collect data and perform pre-
data analysis. A spherical, square and rectangular tank were used as study
models. The results obtained with these tanks, combined with the
cylindrical tank results obtained by Peterson, were considered adequate to
verify the analytical method.

1.4 Report Outline

Chapter 2 develops the nonplanar, nonlinear analytical model based
on the assumed mode approach. The fluid flow potential generalized
coordinates are related to the free surface generalized coordinates through
the application of the kinematic free surface boundary conditions. The
nonlinear relationship between these coordinates are formulated to facilitate
the use of numerically determined eigen-modes. The finite difference
method used to determine the linear eigen-modes is outlined as well as the
determination of the equilibrium free surface shape. This chapter concludes
with the fluid energy Lagragian.

Chapter 3 describes the Harmonic Balance method and how the
method was numerically implemented. This chapter also discusses solution
techniques other than the Harmonic Balance method and ways to solve
systems of nonlinear equations.

Chapter 4 describes the experimental setup, and the test and
calibration procedures. Chapter 5 presents the experimental uncoupled and
coupled results obtained with the three study models.

Chapter 6 compares the analytical results obtained with the model
developed in Chapter 2 with the experimental results of Chapter 5. In
addition to the three study models, the analytical model was also used to
predict the nonlinear coupled forced characteristics of fluids contained in
cylindrical tanks. These results are compared with the results obtained by
Peterson [1987].

Chapter 7 concludes with a short review of the research and
conclusions that can be drawn from the experimental and analytical results.



This chapter also identifies the implications for future research and
discusses the application of the results to practical systems.

Appendix A derives the nonplanar model from the system Lagragian
obtained in Chapter 2. Appendix B presents simplified planar and
nonplanar models based on the results of Appendix A. These models are
simplified in the sense that zero terms are omitted and that the models are
expressed in matrix form.



Chapter 2

General Nonlinear Fluid Model

This chapter develops and derives the equations of motion describing
the nonlinear coupled dynamics of the fluid-spacecraft system. The
analytical model developed is valid for tanks of arbitrary geometry.

The goal of the analytical formulation is a description of the
fluid-spacecraft motion in terms of a finite set of system degrees of freedom.
This description will be in the form of a coupled system Lagrangian and a set
of coupled nonlinear differential equations derived from this Lagrangian.

The formulation of such a coupled system Lagrangian requires
generalized coordinates for the motion of the spacecraft and the motion of
the fluid. For the spacecraft in the study model, the generalized coordinates
will be the physical displacement coordinates of the fluid tank in the
horizontal plane (x and y). For the fluid, however, the choice of generalized
coordinates is far more complicated.

The first part of this chapter will concentrate on the derivation of
such a generalized coordinate description of the fluid motion. The
kinematics (boundary conditions) are solved approximately with nonlinear
and Bond number effects included. An expression for the kinetic and
potential energy of the fluid system is formulated with nonlinear surface
motion and nonlinear capillary effects included.

This chapter also outlines the approach that was used to calculate the
linear fluid eigen-characteristics and the fluid free surface shape. In the final
section, the generalized coordinate description of the fluid is used to
formulate the coupled fluid-spacecraft Lagrangian.

2.1 Kinematic Description of the Fluid Dynamics

In this section, using existing methods, the kinematic description of
the fluid is developed in terms of assumed modal series for the flow
potential and the free surface motion. The flow potential generalized
coordinates are expressed as nonlinear functions of the free surface
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Figure 2.1 General Fluid-Spacecraft System.

Fluid with a free surface is vibrating inside a spacecraft mounted fuel
tank. Attitude control dynamics and structural modes may interact
with fluid dynamics.

generalized coordinates through the application of a particular free surface
boundary condition.

2.1.1 Problem Statement

Consider the general fluid-spacecraft system diagrammed in Fig. 2.1.
A fluid tank, partially filled with a liquid, is supported by the spacecraft
structure. The spacecraft motion is forced by attitude control thrusting,
gravity gradient, or the action of any other external forces. When the mean
gravity level produces a Bond number above the critical value, the fluid will
collect into a single mass at the end of the tank aligned with the mean
gravity vector, with a free surface at the other end. External excitation of the



Figure 2.2: Study Nonplanar Model.
The planar (x) direction is in line with the excitation force; the
nonplanar (y) direction is perpendicular to the excitation force.

fluid tank will result in fluid vibratory response about this equilibrium
shape.

The resultant vibratory response of the fluid inside the tank creates a
fluid pressure field against the tank walls, which will have three
dimensional force and moment fields. These reaction slosh loads will
appear in the equations of motion for the dry dynamics of the spacecraft as
motion-dependent forcing terms. In this manner, the fluid and the

spacecraft motion are coupled.



Consider the generic fluid-spacecraft system (Fig. 2.2). The equation of
motion for the spacecraft in the direction of excitation (planar direction) is

mi +cx + kx= Fex + Fxs (2.1a)

and in the nonplanar direction:

my + c, + ky = F (2.1b)YS (2.1b)

Where x is the x-direction degree of freedom of the tank, y the y-
direction degree of freedom, Fex the external modal load component
evaluated at the tank, Fxs and Fys the net reaction slosh forces acting against
the tank in the x and y directions.

The net reaction slosh force Fxs is the integration of the pressure field
created by the fluid motion within the tank, and will therefore be a function
of the fluid generalized coordinates, qn. The equations for these (as yet
unspecified) fluid generalized coordinates can be symbolically expressed by a
nonlinear equation:

N(q1,q1,... q 2 , " .. /",112"..." 2"i 2/ .. 91..) = N = 0 (2.2)

These equations, along with (2.1) form the coupled equations of
motion of the fluid-spacecraft.

2.1.2 Modeling

Instead of evaluating and integrating the flow pressure field, which
can be very complicated even for the simplest of tank geometries
[Abramson, 1966], a variational energy method will be used which does not
explicitly require the evaluation of the pressure field. This approach has
been successfully used before [Peterson, 1987, Limarchenko, 1978a; 1981;
1983]. In the variational method, the virtual work done by the pressure field
against the tank wall will be part of the total fluid kinetic energy, provided
the flow boundary conditions have been satisfied by the choice of
generalized coordinates.

The next step in modeling the fluid motion is to find a Lagrangian
description of the fluid-spacecraft dynamics. Although the derivations for
the spacecraft part of the Lagrangian are trivial, those of the fluid dynamics



are much more complicated. In particular, a generalized coordinate
description of the fluid must be found which also satisfies the boundary
conditions of the flow.

The modeling of the fluid-spacecraft dynamics can thus be separated
into three distinct modeling steps.

* Model of the fluid motion consistent with the fluid boundary
conditions (the Kinematic description of the fluid),

* Express the kinetic and potential energy of the fluid in terms of
generalized coordinates, as derived in the first step, and

* Formulate the coupled system Lagrangian

Each of these steps will be discussed in the subsequent paragraphs.

2.1.3 Boundary Conditions

Some approaches in the past, such as Luke (1967), included the fluid
boundary conditions as constraints in the Lagrangian. This will not be
necessary if all the flow boundary conditions have been satisfied by the
generalized coordinate flow fields. Choosing such generalized coordinates
for the fluid is the 'kinematic problem' for the flow. Limarchenko (1978)
solved this problem using the boundary condition differential equations in a
Galerkin-type procedure. Miles (1976) provided a more general approach
which uses a 'kinematic variational' to solve this problem. The approach
used in this analysis is the approach used by Peterson, which is an
adaptation of Miles's 'kinematic variational' method.

The main procedures and assumptions used in finding a generalized
coordinate description of the fluid, are:

* Assume inviscid, incompressible flow.
* Postulate assumed modes for the free surface motion and the flow

potential.
* Relate the flow potential generalized (modal) coordinates to the

free surface generalized (modal) coordinates through a variational
procedure.



Each of these procedures (and assumptions) will be discussed in the
next sections.

2.1.3.1 Assumptions on the Fluid Flow Field and
Boundary Conditions

In general, the fluid is a viscous, compressible continuum, and has a
very complicated slosh behavior. Assumptions and simplifications,
however, can be justified based on the knowledge of the dominant physical
behavior.

Most of the following sections will assume a general curvilinear
coordinate system (el, e2, e3). The actual coordinate system used for the four

study models considered in this research is:

* Cylindrical tanks Cylindrical Coordinate system (r, 0, z)
Velocity Components: (ur, ue, uz)

* Spherical tanks Cartesian Coordinate System (x, y, z)
Velocity Components: (ux, uy, uz)

* Rectangular tanks Cartesian Coordinate System (x, y, z)
(of which Square tanks Velocity Components: (ux, uy, uz)

are a subset)

A cartesian coordinate system, instead of a spherical coordinate
system, was used for the spherical model tanks since the equilibrium free
surface is not aligned with one of the spherical coordinates. If the fluid
viscous effects are restricted in a Stokes layer near the wall of the tank

(N2 = v << 1), the fluid flow velocity u relative to the tank reference2 a

frame can be completely described by an irrotational, three dimensional
potential field *. (See eq. 4.1b for a definition of the surface tension
parameter N,2). In this research, given the model tanks and the modeling

fluids used, the capillary viscous parameter (N, 2) range from 0.001 to

0.0014. :

u = VO (2.3)



Since the fluid is incompressible, the divergence of the velocity field
must vanish throughout the fluid volume:

V*u = 0 (2.4)

The resulting partial differential equation describing the flow
potential is the Laplace equation:

V20 = 0 (2.5)

If 0 is continuous inside the fluid volume V, it will be completely and
uniquely specified by its value and the value of its normal derivative

V4.n = (2.6)

at the boundary of the fluid (Hildebrand, 1976).
For the 'Dirichlet Problem', in which the value of 4 is prescribed at

the fluid boundary, the solution to (2.5) will be unique in V. For the
'Neumann Problem', in which the value of ~p/an is prescribed at the fluid
boundary, the solution to (2.5) will be unique within an additive constant in
V. For the case of fluid flow in a closed container, only the velocity of the
fluid at the boundary is specified, and so the fluid description is a Neumann
Problem. Solution of Equation (2.5) will then lead to a unique value of VO
in V, which will uniquely define the flow velocity field, u. What this means
physically is that if the free surface motion is known, the fluid flow velocity
profile will be completely specified.

Fig. 2.3 to 2.5 depicts the boundary conditions of the flow potential for
the four study tanks considered in this research. For the cylindrical tank
(Fig. 2.3) a cylindrical coordinate system (r, 0, z, t) is used. Three separate
surfaces bound the fluid volume. The bottom of the cylinder is designated
SB, the walls of the cylinder are designated Sw, and the free surface is
designated SF. The free surface is defined by the surface il(r, 0, z, t) with 1
aligned with the z-axis. The following boundary conditions apply at each of
these surfaces:

-0
0 z on SB (2.7a)

r 02a)r on Sw (2.8a)



-- + V y =Tt 71 z=1 = z Iz=1 on SF (2.9a)

The first two boundary conditions analytically state that the fluid does

not penetrate the solid walls of the container. The third boundary

condition, however, is a mathematical expression for the requirement that

the fluid at the free surface (SF) must follow the motion of the free surface.

This 'convective boundary condition' on the flow drives the dynamics of

the fluid motion within the fluid volume V. It is also the principal source

of the fluid slosh nonlinearity.

VO

0"--" -- 0
atz

Figure 2.3 Inviscid Fluid Flow Boundary Conditions for a Cylindrical
Tank. (Repeat of Figure 1.1)



Inviscid Fluid Flow Boundary Conditions for
Tank.

a Spherical

For spherical, rectangular and square tanks it is convenient to use a
cartesian coordinate system. The free surface is defined by the surface
rl(x, y, z, t) with rl aligned with the velocity component uz. The boundary
conditions, for the spherical tank, (Fig. 2.4), are:

,r - 0
on Sw

+at VVlI az=

(2.7b)

on SF (2.9b)

where Sw is the spherical surface of the tank.

r Uar

Figure 2.4



-- + Vo Vr-~ 7

O

Inviscid Fluid Flow Boundary
Rectangular and Square Tank.

Conditions

The boundary conditions for rectangular tanks (Fig. 2.5) (of which
square tanks are a subset), are:

S-0
Sz

-- =0ax

-0
ay

on SB (2.7c)

on SWx

on SWy

Figure 2.5 for a

(2.8c)



at +V tz=Iz a_ z z=1 on SF (2.9c)

Sw, and Swy being the tank walls in the x- and y-directions respectively.

2.1.4 Variational Solution of the Neumann Kinematic
Problem

While no general solution to the above nonlinear potential flow
boundary value problem is known, approximate solutions can be found
which are valid for finite motion of the free surface. The approach followed
here assumes modal behavior for both the free surface and the flow
potential. The generalized coordinates describing the flow potential are then
related to the generalized coordinates describing the free surface motion
using a variational expression for the Neumann problem.

Luke (1967) and Miles (1976) extended earlier work of Clebsch (1859)
and Hargreaves (1908) to show that the general Neumann problem for fluid
flow in containers can be satisfied by requiring that the integral of eq. 2.10
remains stationary with respect to arbitrary variations of the function *.
Application of this integral to specific container geometries can be found in
the literature, for example; Miles (1976) and Peterson (1987) - cylindrical
tanks and Moiseev and Petrov (1966) - spherical tanks.

SI= JfJ(VOPVO)dV - z,0 dS
2F (2.10)

in which tl is the function describing the dynamic free surface, S the
equilibrium free surface area (as projected on the plane perpendicular to z-
coordinate) and SF the dynamic free surface area. The requirement that the
integral remains stationary for arbitrary fluid motion (84) yields Laplace's
Equation (2.6) and the flow boundary conditions of eq.'s (2.7), (2.8), and (2.9).

This integral will be minimized by the exact nonlinear solution to the
kinematic problem but in the absence of a known exact solution, an
approximate solution to the kinematic problem can be found using assumed
potential flow behavior and assumed free surface motion. The assumed
motions are not independent and their relationship can be found by
substituting the assumed motions into eq. 2.10 and requiring the result to be



stationary. This will result in a 'least squares' solution to the nonlinear
boundary value problem. No mathematical preconditions are set on the
assumed functions except that they be continuous in V.

This variational principle can be applied to any (single-valued)
equilibrium free surface shape. In this research it will be applied to a
moderate-to-low Bond number equilibrium curved free surface shape.

At this point it is assumed that the free surface and the fluid potential
can be described by the superposition of finite modal sets. Ignoring
geometric nonlinearities, that is assuming that the in-plane motion of the
fluid can be neglected, the free surface motion Ti is described in terms of the
departure from the equilibrium free surface shape f (Fig. 2.6) as:

N
rl(e ,e 2,t) = f(e ,e 2) + 1 rn(e ,e 2)qn(t)

n=l1

Ti(e 1,e2,t) = f(el,e2) + 2 d(e 1,e 29t)

(2.11)

(2.11a)

Equilibrium Free
Surface

Dynamic Free

Coordinate System for Dynamic Free Surface and
Equilibrium Free Surface Shape.

Figure 2.6



in which qn are the generalized coordinates for the free surface motion.
Implied in eq. 2.11 is that iT is the coordinate defining the free surface shape.
In this research, 1l is the vertical coordinate (e3 or z) of the free surface
height. For the cylindrical and rectangular tanks 11 completely describes the
free surface, but for spherical tanks iT will define the free surface for
moderate amplitudes of free surface motion. Thus for a grid defined on the
el-e 2 plane f(el, e2) is the displacement, along the e3-axis, from the grid-plane
to the equilibrium free surface and Tld(el, e2, t) is the displacement, along the
e3-axis, of the dynamic free surface from the equilibrium free surface. In
order to obtain a correct definition of the free surface, a coordinate
transformation will be required that will align surface motion with one of
the axis. An arbitrary orthogonal coordinate system (e1, e2, e3) is used for
generality.

The fluid potential field O(el, e2, e3, t) is assumed to be of the form:

Nx(ele 2'e3t)= I Xm(el,e 2,e3)P m(t)
m=1 (2.12)

in which the Pm are the generalized coordinates for the flow potential.
The number of modes describing the flow potential (M) and the free

surface motion (N) are set equal to ensure that the problem is completely
determined and that no additional least squares match is required. The
number of modes N (N=M) to be used in the analysis will be kept arbitrarily
large but will be truncated later to include only those which significantly
contributes to the fluid vibratory motion.

The two sets of generalized coordinates qn and Pm are related by the
nonlinear free surface boundary condition (2.9), and are therefore not
independent. Selecting the free surface generalized coordinates qn to be the
independent fluid generalized coordinates, the flow potential coordinates
(Pm) can be expressed as nonlinear functions of the free surface generalized
coordinates qn.

Pm = P(q n) (2.13)



Substituting the assumed modal behavior into the kinematic integral
of eq. 2.10, yields:

N N N N
SI= 1 1 mkmn•n- 4imdmnn

m=ln=l m=ln=1 (2.14)

in which the kinematic matrices are:

kmn = f(VXm'VXn)dV
V (2.15)

dmn = f4mX n z)dS
SF (2.16)

The matrix kmn is the generalized symmetric wavenumber matrix of
the fluid motion, having units of inverse length The matrix dmn is both

unsymmetrical and unitless. Both of these matrices are nonlinear functions
of the free surface modal vector qn because the volume V depends on tl and
the function Xn is evaluated on the free surface.

In matrix notation, (2.14) is the same as

SI= {pm}T[ kmn]{Pn } - {Pn}T [dmn]T'(m (2.17)

Now requiring that the kinematic integral remains stationary with
respect to pij results in:

a(SI) =TPn1-d jT
-pj -ki]{Pn} -[dm] 0Am}= 0

ap (2.18)

by which the flow potential generalized coordinates Pm can be related
to the free surface generalized coordinates qn by

NN -1
pm = XI [kmr] dnr4n

n=lr=l (2.19)

which is the same as

N

Pm= ( Imn2n
n=1 (2.20)



1t~ TAThii9I fhn~ m~r I ic, Ct~t~ Ih,
ILL VV L CLL ; LIL LCLLL A J• mn a •IUAL Uj

N -1
Imn I E[kmn] dnr

r=l (2.21)

The matrix Imn is the generalized nonlinear wavelength matrix, and is
a nonlinear function of the modal vector qn. Equation (2.20) is the desired
functional relation which expresses the potential generalized coordinates

(Pm) in terms of the free surface generalized coordinates (qn).
Based on the experimental results cubic and higher order terms in Imn

of the generalized free surface coordinates will be considered as small. This
truncation will yield a fluid flow description valid to cubic order in the
amplitude of the motion.

2.1.5 Note on the Assumed Mode Shapes

The number and choice of the mode shape functions Xm and 4n will
determine the ultimate accuracy of the above kinematic solution. Selection
of these mode shapes must be based on experience, previous research or
experimental results. In practice it may be required to progressively increase
the number of assumed modes while keeping track of the relative change in
the predicted fluid motion. Intuition also suggests that more accuracy will
result from those assumed mode shapes that satisfy most of the kinematic
conditions exactly. The linear eigen-modes of the slosh, which satisfy the
linearized kinematic conditions, is an obvious choice, since the kinematic
integral (I) would contain only error terms due to the nonlinear correction
of the kinematic conditions. In Chapter 6 both theoretical mode shapes and
numerically determined mode shapes are used to predict moderate-to-low
Bond number fluid motion in cylindrical tanks. In predicting the fluid
motion in spherical, rectangular and square tanks (Chapter 6) only
numerically determined mode shapes were used.

An additional presumption is made about the two dimensional
components of the assumed mode shapes. The assumed mode shapes must

1··~· · · · ·



be orthogonal and normalized as follows:

ff{mn.dS =ffXmX.dS = mnS
s s (2.22)

where S is the equilibrium free surface area.
In this research, the mode shapes assumed for the free surface

motion, 4n is equal to the surface component of flow potential mode shapes
at the free surface; namely: 4 n(e 1,e 2) = X n(e 1,e 2 ,e 3 = f)'

2.1.6 Formulation of the Generalized Wavenumber Matrix

The calculation of the wavenumber matrix Imn involves an

integration over the dynamic fluid volume. The volume integral can be
written as:

t fe ,e 2`t)

kmn = h(ee2)Xm'VXnde 3 dSF
,e 2)

S F(el,e 2) (2.23)

where e3 is the coordinate that defines the free surface, namely z for the
model tanks considered in this research and h(el, e2) is the surface describing

the bottom surface of the tank. Implicit in this statement is that the free
surface area, SF, is independent of the fluid height or that the tank has

straight and parallel walls. This assumption is clearly violated in the
spherical tank case but for certain spherical fluid volumes, the error
introduced by assuming a constant projected surface area (projected on the
(el, e2) plane) will be small for a large range of fluid motions. This error will

also be discussed in Chapter 6, the chapter that discusses the analytical
results. In this statement, kmn is a nonlinear matrix with respect to the
generalized coordinates qn in that the inner integration must be performed
from the bottom surface to the dynamic (non-stationary) free surface. The
free surface, defined by 7i(el, e2, t) is assumed to be a sum of modal terms (eq.
2.11) and also a function of time. The inner integral can be split into two
parts, one over the equilibrium fluid volume and the other over the
perturbation of the equilibrium free surface.



VXm'VX nde 3} dS +

S(e 1,e 2)

I (e Z,e 2')
f VXm'VXnde3 dS

.I i f(e 1, 2)
S(e e 2 )

(2.24)

where ird is defined in eq. 2.11a and kmn is the contribution to kmn due to

the volume integral of eq. 2.23 over the equilibrium fluid shape and kmn
the contribution to kmn due to the dynamic motion of the free surface. Note

that kmn is not dependent on the generalized coordinates qn . The integrand

of the inner integral of kmn can be approximated by a Taylor expansion

about a free surface e3 = f, as:

{VXm'VXn} = {VXm•VXn. a+ (e - f)e {VXm'VXn.e =f 3 3  e =f
33

1 2 a2

2(e3 - f) {VXm'VXn}2 32 ;1 e =f
(2.25)

Substituting eq. 2.25 into the second integral of eq. 2.24 and integrating
with respect to (e3 - f), yields:

k m n = 1d( V m V n ) e = f ( , e 2 d S +JJ1 (e 3 =f(e 1 e2)J

S(e ,e 2)

I (fid e i2 vbm'mvX n) sdS + ...
2 5 3 X e =f(e ,e2)

S(e ,e 2)

where S is the fluid equilibrium free surface.

(2.26)

kmn =

-3



The Taylor expansion of the integrand and the subsequent integration
with respect to e3, transformed the volume integral to a sum of two surface
integrals. The first term in eq. 2.24 is independent of the fluid motion but is
a function of the equilibrium free surface shape and therefor a function of
the Bond number. The second term, however, is a nonlinear function of
the free surface degrees of freedom (qn) and leads to a nonlinear series

expansion for kmn of the form:

d N (1) N N (2)
kmn = Y kmnr qr +  kmnrs qrqs +...

r=1 r=ls=l (2.27)

These terms express progressive corrections to the flow wavenumber as a
function of the wave motion amplitude.

Equations 2.24 and 2.26 yield a convenient form to evaluate the
wavenumber matrix numerically. The evaluation, however, requires the
numeric evaluation of the first order derivatives (a/ae1 , a/ae2, a/ae 3) and
the following second order derivatives; a2/aelje 3, D2/ae 2ae3 and a2/ae 3

2. The
accuracy of a numerically evaluated kmn matrix will thus depend on the
"smoothness" of the X functions.

At this point the series for the wavenumber matrix will be truncated
to include only the linear and quadratic terms in qn. The truncation errors

will only appear in the evaluation of the kdmn matrices, since k is
mn n is

independent of qn. This will result in a cubic expression relating the

potential field degrees of freedom with the free surface degrees of freedom
(eq. 2.21), that is; Imn will be cubic in qn-.

In conclusion, kmn depends on the assumed free surface modes

Wn(el, e2), the assumed potential field profiles Xm(el, e2 ,e3), the equilibrium
free surface shape f(el, e2) and the fluid depth h(el, e2). The dependence on
the equilibrium free surface implies a Bond number dependence.



2.1.7 Formulation of the "d" Kinematic Matrix

The dmn matrix was defined as:

dmn = ff( mX nlz=)dSF
(2.16)

This matrix is also a nonlinear function of the free surface degrees of
freedom qn and again a Taylor expansion about the equilibrium free surface,

f(e1 , e2), can be used to transform the integral so that it can be evaluated

numerically as a series of terms. Let:

Xn = Xn =(e - f)-j, X n

e 3 =f 33 3

(e -f) a2
e =f 2 3e 3 e3 =f

then if eq. 2.28 is truncated after the second order term,
written as:

dmn i m{ ne3

S(e ,e 2

+ jd Faxn 1Lae 3
e 3 =f

eq. 2.16 can be

I(d 2 [ a2X n
2 a23

+ ...] d S

e3=f f

so that dmn is given by:

(0) N (1) NN (2)
dmn = dmn+ Idmnrqr+ F• Xdmnrsqrqs+...

r=1 r=ls=l (2.30)

The coefficients of the Taylor series expansion again express
progressive corrections to the kinematic matrix (dmn,). Eq. 2.29 is less
complex than the equivalent expressions for the wavenumber matrix (kmn)
and can be evaluated numerically for continuous or discretely defined mode
shapes. Again the matrix depends on the assumed modes, the equilibrium
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(2.28)

(2.29)



free surface (therefor the Bond number) and, although not explicitly, also on

the fluid depth. The dependence on the fluid depth is hidden in the

assumed mode shapes.

2.1.8 Formulation of the Generalized Wavelength Matrix

The wavelength matrix was defined in eq. 2.21 as:

N
Imn =  [ kmr]d nr

r=1 (2.21)

or

N
d mn = X kmr Irn

r=1 (2.31)

The inversion of the wavenumber matrix is not simple and again a Taylor

expansion must be used to find an approximate expression for the
wavelength matrix. Substituting for kmn and dmn into the eq. 2.31, yields:

N (0) (0)
k .l. +

i=1

N f N (0) (1) 0(1) ()
7f1[k ., I +k 0 )]q+r=1 i=1 Mir

r=mi rs mirs m mir ns

(0) N (1) N (2)
= dmn+ dnmrqr+ I dnmrs qrqs

r=1 r=ls=l (3.32)

This equation must be true for each order of the expansion in qn. Therefore,

a recursion sequence for the Imn expansion coefficients can be generated,

which yields that in the limit of no fluid motion, the wavelength matrix is



given by:

N -1(0) N (0) (0)rmn k "mr dnr
r=l (2.33)

with the linear correction to the wavelength matrix, due to fluid motion,
given by:

(1) N (0) (1) N kN -1 )
mnr = kmi d I kij kj dk

i=1 nir j=lk=1 (2.34)

and the quadratic correction:

NN -1(2) N (2) N (2) (0) (0)
-mnrs = kmi d 12) - k k jk d nk

i=1 nis j=lk=l

N N (0) -1 - N N -1(2)

mi kr jk kjs d X nt
i=1j=1k=1 Lns 1=1t= 1 (2.35)

These definitions can now be substituted into equation eq. 2.19:

N( 0 ) NN( 1 ) NNN( 2 )

Pm = X Imnqn+ I X Imnr Anqr + I I l mnrsAnqrqs
n=1 n=lr=l n=lr=ls=l (2.36)

expressing the potential flow degrees of freedom, Pm, as nonlinear functions
of the free surface degrees of freedom, qn, to third order accuracy.

This completes the derivation of the kinematic description of the
fluid and although almost identical to the results of Peterson [1987], this
description is valid for any tank geometry, for which an equilibrium free
surface is defined and is in a convenient form for numerical evaluation.

2.2 Fluid Energy Description

In the preceding sections a nonlinear functional description was
derived, relating the flow potential and the free surface generalized
coordinates. In the following sections, the kinetic and potential energy of
the fluid system will be expressed in terms of both the flow potential and
free surface generalized coordinates.



2.2.1 Kinetic Energy

In order to retain generality, an expression for the fluid kinetic energy
will be given which includes translational and rotational motion. This

expression will then be truncated to the horizontal translational case, which

is applicable to the four study models used in this research.

2.2.1.1 Arbitrary Tank Motion

The kinetic energy of the fluid flow is the volume integral of the

squared magnitude of the fluid velocity referenced to an inertial frame

(Fig. 2.7):

T = ~fI p (u*u)dV
S V (2.37)

Spacecraft Coordinate Frame
* no rotation
* uniform mean acceleration

Figure 2.7 Motion of a Fluid Particle for Arbitrary Rotation and
Translation of the Tank.

The total velocity of a fluid particle has components of both the fluid
velocity (potential) field and the motion of the tank.



The flow velocity, u relative to the inertial frame is the resultant of

three components:

* Velocity due to tank translation

* Velocity due to tank rotation

* Fluid flow velocity

so that:

u = R + oxr + VO (2.38)

Substituting eq. 2.38 into eq. 2.37, applying Green's Theorem

[Hildebrand, 1976], an expression for the kinetic energy of the fluid is

obtained:

Tp =mp R*R + m*I1c + J On*V# dSF +TF 2 F-Lm 2RR+o2I s O F+SF+

(i) (ii)
(iii)

pfffi RV dV + pfff(coxr)*.V dV + R* ox r
V V CA -

' - ' (vi)
(iv) (v) (2.39)

Each term has a physical meaning, with:

Term Physical Meaning

(i) The translational kinetic energy of the fluid if stationary

mF = Total mass of fluid.

(ii) The rotational kinetic energy of the fluid if stationary

IF = Instantaneous moment of the fluid with:

OIF Co= JJp(coxr). (coxr) dV (2.40)
V

Evaluation of the integral will depend on the dynamic

motion of the free surface, rendering this component to be
a nonlinear function of the free surface generalized
coordinates.



(iii) The contribution to the kinetic energy due to the motion
of the free surface relative to the tank.

(iv) Inertial coupling between the fluid flow potential and the
translation of the tank.

(v) Inertial coupling between the fluid flow potential and the
rotation of the tank.

(vi) The kinetic energy correction for the offset between the
origin of the spacecraft reference frame and the fluid
center of mass.

2.2.1.2 Horizontal Translational Kinetic Energy

Deleting terms other than those resulting from tank horizontal
translation, yields the following expression for the fluid kinetic energy,
which is valid for all four the study models considered in this research.

TF= -mF it+ pI~an dS, + pjjffRV dV
V V (2.41)

The first term is equal to:

1 (.2.21
2 (i+ ) (2.42)

and since:
- v • *n  - V(V (2.43)

an z (2.43)

with

+ V_*V_

e n  e 3= n on e3 = r (2.44)

or:

an - at on e3 = T (2.45)



the second integral can be written as:

1P J eI = t tdS,

sF (2.46)

Using the results obtained in the previous section, this integral can be

expanded to:

N N
C qmamn n

m=ln=l (2.47)

where amn, the slosh depth matrix, is defined by:

N

amn = I dmi lin
i=1 (2.48)

using the expressions for dmn and Imn, amn can be written as:

N NN
,,(0) N T. ,. + N N (2)amn = ar)n+ a nr + L amnrs q rq s

r=1 r=ls=l (2.49)

with, in the limit of no fluid motion:

a(0) N' d (0) 1(0)
mn mi in

i=1 (2.50)

The linear correction to the slosh depth matrix is given by:

N (1) 0) (0) (1)
a)mnr- mir in mi inr

i=1 (2.51)

and the quadratic correction by:

(2) N (1) (1) (2) (0) (0) (2)
mnrs- d mir ins mirs in mi inrs

i=f1 (2.52)

Note that amn, the slosh depth matrix, has the dimension of length
and if an inertia is associated with each surface degree of freedom (qn), then
the elements of this matrix represents the depth of fluid having a mass
equal to the associated free surface modal inertia. The inertia of each slosh
mode will appear to change with the amplitude of the slosh motion.



Using Green's Theorem, the third term of eq. 2.41 can be written as:

ff (xi + yy) 1 tdS,
sF (2.53)

and after substituting the modal series expansion for the free surface motion

eq. 2.53 becomes:

IJR*V.dV =J4(xx+yy)TitdSF

sF (2.54)

by using Green's Theorem and substituting the assumed series expansion

for (11) (see eq. 2.11), this integral can be written as:

I 4qnf ,nxdS Y+ y qnf f lnydS
n=1 n= J

s s (2.55)

Combining eq.'s. 2.42, 2.46 and 2.55, the expression for the kinetic

energy of the fluid (eq. 2.41) becomes:

1 .2 .2
TF 2 mF(x + ) +

1 amn + mnr q r a r+ anrsqrqs qmqn
m =ln =1 r=l r=ls=l

Px 14n fnxdS + Pk Iqn f nYdS
s S (2.56)

2.2.2 Potential Energy

This section formulates the expression for the fluid potential energy.

The fluid potential energy is the sum of the virtual work done on the fluid

by external conservative forces. Two types of potential energies are

important in this derivation: acceleration potential energy and capillary
potential energy. The acceleration potential energy is the virtual work done
by the slosh motion against the mean spacecraft acceleration field; it acts on
the volume of the fluid. The capillary potential energy is the virtual work



done by the slosh motion against the surface tension of the fluid-vapor
interface; it acts on the free surface of the fluid.

2.2.2.1 Fluid Acceleration Potential Energy for a Uniform
Acceleration Field

Each differential mass element of the fluid has potential energy equal
to the work done against the uniform acceleration field in moving the fluid
element, in the direction of the acceleration field, from some reference
position to its instantaneous position. For a constant acceleration field
strength, a (aligned with the e3 axis), the potential energy due to this motion
is:

dU a = pae 3dV (2.57)

The total fluid acceleration potential energy is the integral of dUa
over the entire fluid volume. As before, the integral can be written as a sum
of integrals (see equations 2.23 and 2.24):

Ua=

e 2't) f (e'e 2
pae 3de 3dS + Jpae 3de 3dS
,e 2 ) h(e ,e )

S

U
d  U e

Ua Ua (2.58)

where Ua is the contribution of the acceleration potential energy

from the motion of the fluid over the equilibrium volume and Uda is the
contribution due to the motion of the free surface about the equilibrium free
surface position. For an incompressible fluid in an uniform gravity
acceleration field (a = g), this becomes

U [= m2 n If d J1d(ele 2t)- 2 1'2) S +m=1n=1

S[h 2(e 1,e 2) f2 e ,e2) ] dS
s (2.59)



The first term is time dependent but the second not. Using the modal
series expansion for rl (eq. 2.11), eq. 2.59 can be written as:

Ug= 21 JL 1 •--In mqn - fJ d S  + h 2 - f 1dS
lm=ln=l s s (2.60)

Note that eq. 2.60 can be simplified if the orthogonality of the
assumed mode shapes are used; that is:

fJ1mindS =S8mn

s (2.61)

The first group in eq. 2.60 is a constant independent of the free surface
motion and it reflects the static equilibrium of the free surface shape for a
given uniform acceleration field. When added to a similar term for the
capillary potential energy, this leads to a variational expression for the free
surface equilibrium shape, f(el, e2). The second term in eq. 2.60 is the
primary quadratic acceleration potential energy which leads to a linear
restoring force term in the final equations of motion.

2.2.2.2 Fluid Capillary Potential Energy

Each differential surface element at the free surface SF has a potential
energy equal to the area times the local surface tension of the interface:

dU a = adS F (2.62)

When it is assumed that the surface tension is uniform over the
entire free surface, the total capillary potential energy is (from Peterson
[1987]):

Uo= offdSF
sF (2.63)

Projecting the fluid surface onto the plane (el, e2) perpendicular to the
coordinate describing the fluid surface (e3) see Fig. 2.6, the capillary potential



energy can be expressed as:

uo= ff, + Vn.Vn dS
s (2.64)

From this expression it is clear that the capillary energy will be a nonlinear
function of the free surface degrees of freedom (qn). Following the work of
Peterson [1987], the square root is expanded in a binomial series of 1r. The
resultant expression for the capillary potential energy is:

) N 1) N N (2)
U o = OS +o( Smq m + I Smnqmq n +

m =1 m=1 n =1

N N N (3) N N N N (4)
SI I• Smnr qmqqr + C I IX Smnrsqmqnqrqs
m=ln=lr=l m=ln=lr=ls=1 (2.65)

In which the series is truncated after the fourth order term in order to
retain cubic order terms in the final equations of motion. The nonlinear
surface area coefficients, S(i), are progressive corrections to the free surface
area due to the deformation of the free surface. In absence of free surface
motion, the area of the equilibrium free surface is given by:

s() = ff l+ V.f dS
s (2.66)

The linear correction coefficient is:

(1) =ff Vf*V4m dS
m /1 + Vf* Vf

s (2.67)

The quadratic correction coefficient is:

(2) 1 "1 + VVff V n ( m nVvm)(VfV )
mn 2 (1 + Vf-Vf) (1+VfV 2

s (2.68)



The cubic correction coefficient is:

(3) 1 1 + (VfV)r)
Smnr 2. -\/1+ Vf*Vf 1 . v (1+ Vf*Vf) 3

(1+ Vf'm)(Vfn 2  )dS
(1 + Vf*Vf) 2 (2.69)

and the quartic correction coefficient is:

(4) JVf 1[ m )( 0 r *s)]
.mnrs VF 8 (1+ Vf-Vf)

3 (V*V J) (Vf* J M)V r*V4 s)
4 ) (1 + Vf.Vf)3

5 -(Vf m) (V + V f·n)(f*V fr)(vfO) dS8 (1 + Vf*VfD4
(2.70)

The surface correction coefficients depend on both the free surface
mode shapes and the shape of the equilibrium free surface, and therefore on
the Bond number. The relative influence of the capillary potential energy
on the fluid dynamics will thus be a function of the Bond number. The
physical role of these terms are follows:

* S ( 0)

(1)
S Sm

(2)
* Smn

is the equilibrium free surface area. Together with
the constant terms if the acceleration potential
energy, Ua, it defines the equilibrium free surface
shape, f(e1, e2).

will appear as an inhomogeneous term in the final
equations of motion.

multiply the linear surface tension restoring forces
in the fluid modal equations of motion. This
terms weakens as the free surface curvature
increases.



* S mnr multiply the quadratic surface tension nonlinear
forces in the fluid modal equations of motion and
are zero for a flat free surface.

Sn(4) multiply the cubic surface tension nonlinear forces

in the fluid modal equations of motion. These
terms are negative, resulting in a cubic softening of
the fluid dynamics as a function of amplitude.

2.2.3 Fluid/Spacecraft Lagragian

The Lagragian for the fluid/spacecraft system is given by the sum of
the total kinetic (eq. 2.56) and the total potential energy. The spacecraft
kinetic and potential energy, eq. 2.71, must be added to the fluid energy
terms.

1 .2 1 .2T = -mx + -my (2.71a)sc 2 2 (2.71a)

U = 2 k xx2 + ky 2  (2.71b)

The Lagrangian of the fluid/spacecraft system is the total kinetic energy
minus the total potential energy (T - V). Instead of writing out the
unwieldily equation, the fluid/spacecraft Lagragian is stated to be the sum of
eq.'s 2.56 and 2.71a minus the sum of eq.'s 2.58, 2.65 and 2.71b.

2.3 Fluid Equilibrium Free Surface Shape and Linear
Fluid Eigen-Characteristics

In order to calculate the coefficients in the energy expression, a
selected set of assumed shape functions is required for the surface motion
and the velocity potential function. As discussed in section 2.2.5, the linear
eigen-modes of the fluid system is an obvious choice. The next sections will
formulate a finite difference scheme for calculating the linear eigen-modes
of the fluid system. The fluid equilibrium free surface will be calculated and



included in the fluid geometry to improve the accuracy of the linear eigen-
modes and to correctly Bond number effects. The linear effect of contact-
angle-hysteresis will be included via a special boundary condition at the
fluid contact surface.

2.3.1 Fluid Equilibrium Free Surface

As indicated in the previous section, two terms in the fluid energy
expression determine the fluid equilibrium free surface. When the dynamic
terms in the fluid energy expression are set to zero and constant terms are
ignored, a variational integral is obtained for the fluid equilibrium free
surface equation, f(e1, e2), namely:

I=ff(ViVf*Vf+ 'Bo f2 S
s (2.72)

where Bo is the Bond number based on some characteristic length a
and f = f/a. Let F be the integrand of eq. 2.72, then Euler's equation that will
satisfy the requirement that the integral remains stationary with respect to
independent variations, is:

a __F + ~ F _F
uelf e 2 a2 fe2 - (2.73)

The subscript e1 and e2 indicates partial derivatives with respect to the
coordinates el and e2 respectively. After evaluation eq. 2.73 yields the
following nonlinear equation for the fluid equilibrium free surface.

1+f2 fe -2fe fe fee2 + f 2 e 2

3/2
Bo(l1+f+fe2) =0 (2.74)

The nonlinear problem of minimal surfaces is known as Plateau's
problem [Simmons, 1972] and finding an exact solution is extremely
difficult. In general, the boundary conditions that must be satisfied are; the
prescribed contact angle at the tank walls, the fluid height at the center of the
tank (as defined by the fluid volume) and for symmetric tank geometries (as



are the four study models considered in this research) the zero slope

requirement at the symmetry axis (axes).
Several numeric solution techniques are found in the literature, for

example; the method of local variations and the method of optimal

discretization discussed in Myshkin [Myshkin, et al, 1987] and a shooting

technique described by Peterson [Peterson, 1987]. Also see Satterlee [Satterlee

and Reynolds, 1964]. The shooting technique used by Peterson works well

for axi-symmetric problems, where the problem is one dimensional but this

technique is considered too complex to be implemented for two-

dimensional problems.

The approach used in this research is based on a finite difference

approximation of eq. 2.74 and the inverse iteration method discussed in

Chapter 3. The domain over which the fluid surface is defined (S) can be
discretized, with the fluid surface f(el, e2) only defined at a finite number of

discrete points (ei,j). The derivatives of the free surface shape can be

approximated with a second order accurate central finite difference

approximation. For example:

i,j -1
f, (e ,e ) f= l + O(Ae2)

(ei e ) i,j+l ij-1 k
k k (2.75)

ij+1 ,j ij-1

ekek (e ,e = - 2 + +O (Ae 2 )
ae i,j+1 - e i, j-1

and (k k (2.76)

Using these finite difference expressions eq. 2.74 can be written as a

nonlinear set of equations:

A( 2f2n- 1 n-olj B( n-1 n-1i Bo

A 1 f2 1 e 2- f= 2 f2 1 l2 (2.77)

The equilibrium free surface shape is iteratively solved by:

* Calculate A and B, as a function of f n-1, where f n-1 is the solution
for the the free surface shape at the previous iteration (n-1).

* Solve for the free surface shape by inverting A. (Inverse Iteration).
* Repeat until convergence.



The convergence criteria is:

M n n -1
i= j= 1 (2.78)

That is, if the left-hand-side of eq. 2.78 is less than the convergence limit e,
the solution has converged. In practice a zero initial guess for the free
surface shape worked well and convergence was significantly improved by
decreasing the discretization grid spacing near the tank walls (See Figures
2.8a to 2.8d). Intuitively the decrease in grid spacing at the tank walls is an
obvious requirement, since the sharp changes in fluid slope at the tank walls
require a fine grid mesh for a good finite difference approximation of the
slope. The grid spacing can be increased near the symmetry axis (axes) where
the slope changes are more gradual. Figures 2.8a to 2.8d compares the results
obtained with this inverse iteration method with those obtained by the
shooting technique used by Peterson [1987]. The results are presented for the
equilibrium free surface of a cylindrical tank of radius (r). The Bond number
is based on the tank diameter (d) and the acceleration vector aligned with
the symmetry axis. The equilibrium free surface shapes for the study models
of this analysis will be discussed in later chapters.

As can be seen from Figures 2.8a to 2.8d, the results obtained with the
inverse iteration method match the results obtained with the shooting
technique.
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Figure 2.8a Comparison of Inverse Iteration and Shooting Technique
Results.
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2.3.2 Fluid Linear Eigen-Characteristics

Although exact solutions exist for many containers of simple
geometry [Moiseev and Petrov, 1966], numerical methods will be required to
calculate the eigen-characteristics of tanks of arbitrary geometry. Several
numerical methods exist for the calculation of these eigen-characteristics,
i.e.; finite element methods, virtual mass methods, fluid ring element
method (See [Stavrindis, 1985]), boundary element methods [Nkayama and
Washizu, 1981] and finite difference methods. No attempt will be made to
evaluate the pros and cons of these methods but it is important to note that
in calculating some of the coefficients, spatial derivatives are required,
indicating that methods which yield mode shapes with continuous first
order spatial derivatives will be superior to those that did not.

The simple tank geometries considered in this research favored a
finite difference scheme. The governing differential equations for the linear
(small amplitude oscillations) fluid slosh problem is (refer to Fig.'s 2.4 to
2.5):

V2 = 0 inside the fluid volume (2.79)

an on the tank walls (2.80)

an = at and (2.81)

-- + gl1= 0
+ g on the fluid surface (2.82)

Differentiating eq. 2.82 with respect to time and substituting eq. 2.81 in the
result, yields the following boundary condition at the fluid surface:

a2
2 +g =0at 2 an (2.83)

Assuming sinusoidal behavior for the potential function 4, that is, let:

0 = CejXt (2.84)



eq. 2.83 can be written as:

7- 8 on the fluid surface (2.85)

Equation 2.79 is the governing differential equation with eq.'s 2.80 and
the 2.85 the boundary conditions. Note that eq. 2.85 is a time dependent
boundary condition which will eventually determine the eigen-
characteristics of the fluid. Using a second order accurate central finite
difference scheme, based on a cartesian coordinate system and uniformly
spaced grid (mesh), eq. 2.79 can be approximated as:

a 2 2kh , a 2(D aD2 a20
V2(e, 1=e,e = ee = ek , -1 2 2 2 2 ae2 De2 ae21 2 3J

i+1 i i Pi-1 4 j+1 j -1
e -e e -e e -e e -ei-1 e j+1 j j i-11 1 1 1 2 2 2 2

+ +

e f(i+1 + ei-1) 1 ( j+1 j-1e
2 1 1 -e2  2 +

0k+1 _ k 4k 0k-1

ek+1- ek ek -ek-13 3 3 3 +O(e, Ae Aee e e -(e +1+ ek-1) 22.86)2 3 Z 3 (2.86)

Where:

ei+1 - ei-1 ej+1 -e ek+ -ek-1
Ve= 1 1 Ve 2 2 Ve 3 3e 2 ' 2 2 ' 3 2 (2.87)

Eq. 2.86 is also valid for non-uniformly spaced grids except that the error
term becomes first order [Lapidus and Pinder, 1982]. In this research a
uniformly spaced curvilinear grid will be used for the rectangular (square)
and cylindrical tanks. A uniformly spaced cartesian grid will be used for the
spherical tank with a quadratic interpolation scheme at the boundary nodes
to account for boundaries that are not aligned with the mesh. The non-
curvilinear mesh for the spherical tank was used since the fluid free surface
in a spherical tank is not aligned with a spherical coordinate system. The
use of a cartesian grid for a non-rectangular tank will also illustrate the
general application of the finite difference technique. The boundary



conditions, again using a second order accurate finite difference
approximation can be expressed as:

(a) For boundaries aligned with the grid mesh (See Fig. 2.9):

o~,-=2 2' ' v/ + O(Ae:
;n2 t B I\

1 \ 1 qI on the tank walls

(2 B _ DI) T2 20B O(Ae2)( e2) +  O (eee23

eB el)2 g (eB -eI ) 3/
3 3 3

on the surface (2.89)

(b) For skew boundaries, a
used to eliminate the external nodes.
Fig. 2.9, the interpolation scheme can

quadratic interpolation scheme can be
Using the specific nodal numbering in

be expressed as:

7

1(e ,e 2'e 3) I i •(e , 2e 3 i)().
(2.90)
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(2.88)
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Figure 2.9 Boundary Conditions for Finite Difference Scheme.
n is the vector normal to the boundary.



This expression is valid for the seven node finite difference model of

2.86 and the bars on the coordinates indicating that the coordinate system is
a local non-dimensional coordinate system. The shape functions Ni, in

terms of the non-dimensional coordinates, are:

_2 _2 _ 2 1(el 1) l
1 1 2 3e 2 2

N (e + 1)el N = 2
3 2 ' 4 2

(e 2 + 1) e (e3- 1) 3N 5  2 2 3N= 3
5 2 ' 6 2

(e 3 + 1)e 3
7  2 (2.91)

As an example, the potential function at the boundary nodes in the two-
dimensional problem of Fig. 2.9 (Bottom), namely P2,0 3, and 04, can be

eliminated from Laplace's equation by using the boundary condition that

the normal derivative of the potential function must be zero on the tank

wall. Thus:

(D2 = ( 3 =bc' 4 a=(a (2.92)

Plugging the coordinates of the auxiliary nodes a, b and c into eq. 2.90, yields

a linear set of equations that express the potential function at the external

boundary nodes in terms of the internal boundary nodes. That is:

7 b 7 7

(Db = I2 = IN D (=C=3 = . i7 i1 , (l a =4 = (D ia,.
1 i1 (2.93)

The superscripts on the shape functions (Ni) indicating that the shape

functions are evaluated at the location of the superscript nodes. Re-

organizing and writing in matrix form, yields:

(2.94)

Using eq. 2.94, the potential function at the external nodes can be
eliminated from the finite difference approximation of Laplace's equation



(eq. 2.86). This interpolation scheme can be used for other higher order
finite difference approximations and allows the use of a non-curvilinear
coordinate system to solve for the linear eigen-characteristics of a fluid
system.

The process of determining the eigen-characteristics can be simplified,
by solving for the internal degrees of freedom in terms of the surface degrees
of freedom. The finite difference equations can be written in block matrix
form, as:

[A11] [A1,2] 01 [01
[A 2,1] [A 2,2 ] [A 2,3] [0]

[0 [A3, 2] [A3, 3] [A3, 4]

[0] A m,m _- [Am,m]

01

2

3

Dm

[B W(h)]
[o0]
[ol

[0] (2.95)

Where [0] is the block zero matrix, m the number of mesh levels in
the e3 direction, iDl is the vector containing the surface degrees of freedom,

02 vector of the nodes one level below the surface level and Om the vector of
tank bottom nodes (See Fig. 2.10). This formulation is only valid for the
seven point finite difference approximation of Laplace's equation. The
value of the potential function, D, at any one of the nodes on a given mesh
level is only dependent on the nodal values of the potential function at one
level above and one level below the given mesh level.

"
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Figure 2.10 Nodal Numbering Scheme.

Eq. 2.95 is in tri-diagonal block matrix form and the internal degrees of
freedom can be solved for as follows:

m = - [A m,m]- [Am -,]- m-1
and
[A m-1,m-1] m-1 + [A m1_,m]m = - [A m-1,m-2] m-2

m-1 - [A m-,m-1] [A m,l][A mm][A m,m-1l[A mr-1,m-2 1 0 m -2

(2.97)
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The internal degrees of freedom of the potential can thus be eliminated

from the problem and the result is a standard characteristic equation in

terms of the surface potential function degrees of freedom:

IA -2 Ari = 01 1 surface 0 (2.98)

where I is the identity matrix, B1 a diagonal matrix and a function of X and

Ar the matrix obtained by the repeated application of eq.'s 2.97. The solution
of eq. 2.98 yields the eigen-values A, from which X can be calculated along

with the eigen-vectors or linear mode shapes. The shape of the modes at the

internal nodes can be found by back-substitution of the shapes at the surface

nodes into eq.'s 2.97.

2.3.2.1 Note on Contact Hysteresis Angle

In this research the model fluid, water/photoflo solution, has a

contact angle near zero and a zero hysteresis contact angle constant (T).

Experimental results for the non-linear slosh characteristics of water in

cylindrical tanks were available [Peterson, 1987] and in order to analytically

predict these results, the linearized effect of contact angle hysteresis were

included in the eigen-analysis by introducing the following inhomogenous

boundary condition [Satterlee and Reynolds, 1964]:

on contact surface (2.99)

where n is the normal to the contact surface and d is the cylindrical radius.
Eq. 2.99 is only valid for cylindrical tanks and must be modified for tanks of
other geometry. This boundary condition can be transformed to be a
boundary condition for the fluid potential (Q).

ancs anfs gDI on contact surface (2.100)

Here ncs is the normal to the tank wall at the fluid/tank wall contact contour
and nfs is the normal on the fluid equilibrium free surface. Eq. 2.100 is a
modification of the boundary condition in eq. 2.85 at the fluid/tank wall



contact contour. Eq. 2.85 is still valid for the rest of the fluid free surface.
Eq. 2.100 can easily be incorporated in the finite difference approximation of
fluid governing differential equations and the accompanying boundary
conditions.

2.4 Derivation of the Nonlinear Fluid-Spacecraft
Equations of Motion

Given the fluid Lagragian, namely the sum of eq.'s 2.56, 2.58, 2.65 and
2.71, Lagrange's principle;

d ( L 1 L
dt i (2.101)

can be applied to find the nonlinear coupled fluid/spacecraft differential
equations. Appendix A presents these equations both in dimensional and
non-dimensional form. Appendix A also address the question of model
truncation and simplification. The nonlinear matrices for a planar model
and a nonplanar model are presented in Appendix B.

2.5 Summary

This chapter derived the nonlinear governing differential equations
of motion, describing the dynamic fluid behavior of fluids contained in
tanks of arbitrary geometry. This chapter also presented a finite difference
model for the calculation of the linear fluid eigen-characteristics and the
nonlinear equilibrium fluid surface shape. The fluid dynamic model
developed in this chapter will be used in Chapter 6 to predict the fluid
behavior in the study models considered in this research.



Chapter 3

Prediction of the Dynamic Characteristics of
Coupled Non-linear Systems

In this chapter the available analytical and numerical methods for
determining the dynamic characteristics of coupled non-linear equations
will be discussed. The discussion will be general but with specific emphasis
on the type of non-linear coupled equations that are associated with the
fluid slosh problem discussed in chapter 2.

The first section will be an overview of some of the known solution
techniques for nonlinear time dependent differential equations, while in the
ensuing section (Section 3.2) the harmonic balance method will be discussed
in more detail. Section 3.3 discusses the solution of time independent
nonlinear equations and the chapter concludes (Section 3.4) with a
discussion of an alternative method to the Harmonic Balance method,
namely; the least squares fitting technique.

3.1 Introduction and Discussion of Available Solution Methods

There are many approaches to the solution of time dependent
nonlinear differential equations. The approaches can be divided into two
broad categories, namely; time domain and frequency domain techniques.
The following paragraphs weigh the pros and cons of these two methods
and serve as a motivation for the approach used in this research.

3.1.1 Time Domain versus Frequency Domain Solution
Techniques

Given that many solution techniques exist for non-linear equations,
one must look at the form in which the solution is preferred. In general the
characteristics of coupled dynamic systems are defined in terms of the
natural frequencies and damping ratios. This is best illustrated by the one
degree-of-freedom spring/mass problem. Let:

WI



m (t) + d (t) + kx(t) = F ocos ( t)

be the governing differential equation describing the motion of a
spring/mass system. The natural frequency is given by:

n =  (3.2)

and the damping ratio by:

d 1
2 mk (3.3)

The maximum amplification for sinusoidal excitation, is given by:

ADynamic 
1

A Static 2= (3.4)

and this maximum occurs when the excitation frequency (0) is equal to the
natural frequency (cn). The dynamic characteristics can also be defined by

the amplitude versus excitation frequency solution. Eq. 3.5 states the
amplitude of vibration as a function of the excitation frequency (0).

A 1Dynamic 
1

A Static 2 2
1 - + (On 2 (3.5)

FO
where A tatic - k (3.6)

This solution form is well known to control engineers and structural
dynamists. For non-linear systems, in general, the natural frequencies and
damping ratios are a function of the excitation amplitude (Fo). The forced

amplitude of vibration solution (eq. 3.5) is thus also a function of the
excitation amplitude. For a single degree-of-freedom system we can state
that:

On = C n(F o )

ý = ý(Fo) (3.7)

(3.1)



A Dynamic
and that A is not only a function of the natural frequency (con) and

Static

damping ratio (Q) but also a non-linear function of the excitation amplitude
(Fo). From a control engineering point of view one can consider the limits
of the frequency and damping ratio dependence as tolerances on the control
plant parameters. The structural dynamist, similarly, could consider these
as limits for dynamic analyses. Given the information contained in this
solution form, one may conclude that control engineers and structural
dynamists should prefer that the results of an acceptable non-linear solution
technique be in a similar form.

Such a preference would exclude time integration techniques since
these methods result in time domain solutions. The main drawback of
these methods are that they lack the insight provided by frequency domain
techniques, that their results are very dependent on the initial conditions,
and that they are computationally expensive. One must note that some
frequency domain insight can be obtained by transforming the time domain
results into the frequency domain (Fourier transforms) but that these
methods do not generally provide the researcher with the dependence of the
natural frequencies and damping ratios on excitation amplitude. Time
integration methods would therefore fail to provide the control engineers
and structural dynamists with tolerance limits. The rest of this chapter will
concentrate on frequency domain solution methods for non-linear dynamic
systems.



3.1.2 Frequency Domain Solution Techniques

Many different approaches exist to solve non-linear equations
[Nayfey, 1981] and a list (albeit an incomplete one) is:

* Straightforward Expansion
* Averaging Technique
* Describing Function Method
* Multiple Time Scales
* Harmonic Balance
* Lindstedt-Poincare
* Fitting Techniques

Each of these methods have advantages and disadvantages over the
others. The major disadvantage of Straightforward expansion, Lindstedt-
Poincare and Multiple Time Scales methods are the complexity involved
when multiple degree-of-freedom systems are considered. Peterson [1987]
solved the non-linear planar fluid slosh problem with the Multiple Time
Scales (MTS) method The simplified algebra, for this four degree-of-
freedom problem, spanned more than thirty pages. Extending the problem
to include the non-planar degrees-of-freedom would yield an algebraic
problem too complex to solve. Not only is the expansion of the non-linear
equations into the perturbation equations error prone, but the solution of
the resultant perturbation equations for the amplitude dependence of the
frequencies, would require MACSYMA or an equivalent mathematical
manipulation program. A further drawback of these methods is that they
fail to yield the dependence of the damping ratio on the excitation
amplitude. With the MTS-method Peterson [1987] was able to predict the
experimentally observed frequencies shifts as a function of excitation
amplitude but failed to predict the amplitude dependence of the
magnification factor on the excitation amplitude.

Given the complexity involved when multiple degree-of-freedom
systems are considered, techniques that solve the non-linear problem
without algebraic manipulation have a considerable advantage over those



that do not. At present, the previously mentioned methods require
algebraic manipulation, but the averaging, describing function and fitting
methods can be numerically implemented to solve the non-linear equations
without algebraic manipulation of the non-linear governing differential
equations.

By comparing the harmonic balance method with the describing
function method, without going into detail, one can conclude that they are
equivalent if, in the describing function method, only the first frequency
term in the Fourier expansion of the non-linear function is retained.

The averaging technique, for a one degree of freedom system, yields
the frequencies and damping ratios as averaged over one cycle. However,
with multiple degree-of-freedom systems, it is unclear over which averaging
period the frequencies and damping ratios must be averaged. Van Schoor
[1988] showed that the frequencies and damping ratios converge as the
period over which the non-linear functions are averaged is increased. An
increased averaging period is accompanied with increased computational
effort, making this method less attractive. The least squares fitting
technique, discussed in the last section of this chapter, also requires a long
time period for an assumed solution to be fitted to the non-linear response.
The ability to find the higher harmonic terms however, makes this method
an alternative to the harmonic balance method.

In conclusion one must emphasize, given the infinite number of
non-linear systems, that none of these methods can be discarded. A suitable
solution technique will depend largely on the nature and complexity of the
non-linear problem. Also, that solutions obtained with numerical
techniques do not provide the researcher with a closed form solution.
Except for finding trends by perturbing the coefficients, relative importance
of terms in the non-linear governing differential equation can not be
determined.

3.2 Harmonic Balance Method

In this research, the harmonic balance method was selected to
determine forced response characteristics from the nonlinear analytical
model developed in Chapter 2. This section will discuss the harmonic



balance method and numerical implementation of this method. The first
step will be to approximate the nonlinear equations with a describing
function. The describing function is obtained by expanding the nonlinear
equations in a Fourier series. In the next step the describing function is
truncated to retain only the harmonic term. In doing so, the force associated
with the component of the response oscillating at the excitation frequency is
matched with the external forcing, hence the name; harmonic balance.

A periodic function f(t) can be expressed as a series of sine and cosine
terms [Arfken, 1970]. Let eq. 3.8 be a set of coupled non-linear, time
dependent, differential equations, similar to the equations presented in
Appendix B.

N2 2 2N(3.8)

Where the qi's are the modal degrees of freedom. Assuming a sinusoidal
solution for the modal degrees-of-freedom, qi's, that is:

q i(t)= A .+ [Ane jt + A e-jmt
Sn =1

where: A = Complex = a + jb ;j = i

and A = Complex conjugate of A (3.9)

Plugging these assumed solutions into equation 3.8 and also expanding N
into a Fourier series, yields:

( o o2  _ 02
N+= N A,A J ,...,A jA ,.i.,A ,...

+ [ N A A 2 A ,A...) COs (nct)
n=l 1

+ n A° ,AA 2...)sin(n~t)
n=1 J J J (3.10)

The first term is the so called DC term. The matrices N a and Nb are non-

linear and time independent matrices. These matrices are known as the
Fourier coefficient matrices and can be determined as:



N =  2nN cos (nlat)d(it)

and Nb = 1f 2"N sin(not)d(ot)n = •o0 (3.11)

At this point it must be noted under which conditions such an
expansion is valid. The Sturm theorem [Arfken, 1970] guarantees the
validity of the expansion for functions that satisfy the Dirichlet conditions.
The Dirichlet conditions are [Arfken]:

* The function has a finite number of finite discontinuities,
* and the function has a finite number of extreme (maxima or

minima) values.

Functions that satisfy these conditions are called piecewise regular. In this
research, N is a non-linear function of linear, quadratic, cubic, etc powers of
the degrees-of-freedom (qi) and their time derivatives. N is thus a
continuous function of time, satisfying the first Dirichlet condition. Given
that N is a function of the powers of the degrees-of-freedom it can be shown
that N has a finite number of extreme values, satisfying the second Dirichlet
condition. However, note that contrary to linear systems, where the
response to an infinite number of sinusoids completely defines the response
to all inputs, this is not the case for non-linear systems. In this research, the
excitation is harmonic (single frequency) and the results obtained will not be
valid for excitations other than harmonic.

Up to this point the derivation is in essence the describing function
method. When a Fourier series is used to approximate a periodic function,
the choice of t is obvious; namely the frequency of oscillation which is the
inverse of the oscillation period. Given that for most nonlinear systems, at
least the one considered in this research, the dominant response (after the
homogeneous terms have died away) to harmonic excitation would be at the
frequency of excitation, the best choice for a is the frequency of excitation
(92). The problem however is that higher harmonic terms (nt or no) may
or may not coincide with the other components in the non-linear response.
Clearly the expansion of eq. 3.9 would fail to predict the sub-harmonic
resonances observed in a single degree-of-freedom system with a non-linear
cubic stiffness. The use of non-integer multiples of a comes to mind but it



must be noted that in doing so the orthogonality conditions in eq. 3.11, are
violated.

Section 3.4 will address the problem of sub- and super-harmonics but
at this point it will be assumed that (a = Q and the Fourier expansion of N is
truncated to retain only the first harmonic. That is, let:

N=N A A,A ,.. .,A ,... (at) +
-2 :2 Ijc

N ,Aj ,...,AA ,.. sin(t) (3.12)

The requirement that eq. 3.8 must be satisfied for all time (t), yields
two non-linear sets of equations which can be solved to yield the modal
amplitudes (A = a + jb). Let A = (A1, A2, ....*T and dropping the subscript

denoting the first harmonic term, these two equations are:

Na (A,A 2, . . .,A, 2 , . . .) =0
and

Nb (A,A2..,A A,...) = 0 (3.13)

In the next paragraph, it will be shown how these equations can be

manipulated to solve for the coefficients (A) numerically.

3.2.1 Numerical Implementation of the Harmonic Balance
Method.

The governing differential equations obtained with the analytical
model developed in Chapter 2, can be written in a structural dynamic
equivalent form as:

M(q,lq,q) l + D(q,,qi)i + K(q,q,lq)q - F cos(ft)= 0 (3.14a)

with M, the nonlinear mass matrix, D the nonlinear damping matrix and K
the nonlinear stiffness matrix. F is the forcing vector. The origin of the
terms decides the matrix placing. If a term of the form, q q, originated from
the kinetic energy expression, the term will be included as a mass term. If
the term originated from the potential energy expression, the term will be



Terms of the from, q t, will be included as

damping terms.
Comparing eq. 3.14a to 3.8, the non-linear matrix N is :

N = M(q,q,l)q + D(q,i,q)l + K(q,q,q)q - F cos (9t) (3.14b)

In the harmonic balance method, the assumed solution for a modal
degree-of-freedom (qi) is of the form:

qi = A ie jot + A ie- jot
(3.15)

and using eq.'s 3.13, the problem can be formulated as:

Na A,A .., ,..)A +

N a (A,A2,...,A 2 ,...)A =Fa
A (3.16a)

and

b(2 -- 2 \
N bA,A ,...,AA ,...)A +

b (A - - 2 )=
N LA AA A )A =O

(3.16b)

The matrices are the Fourier coefficient matrices, with:

Na

2N

N a = i

K -_ 2M + jD] e jcos (2t)d(Gt)
(3.17a)

K - 0 2M + jD] e-jot cos (0t)d(9t)
(3.17b)
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NbA =  K - 2M + jQD] ej'tsin(t)d(Qt)
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(3.17c)

(3.17d)

included as a stiffness term.
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2n

Fa = F cos (2t)cos (2t) d(f0t)
0 (3.17e)

Eq. 3.16b can be used to express A in terms of A:

-1

Placing this result in eq. 3.16a, yields:
-1

A = N a - N b N b  aN F a

A [ A- A (3.19)

Note that the matrices (N) are functions of both A and the complex

conjugate of A. This formulation is slightly different from the formulation
used by Bowden [1988]. In this form, if m is the number of modal degrees-of-

freedom, the amplitudes (A) can be determined by two matrix inversions.

Given that the number of calculations required to invert a matrix of order m
is m3 , the required number of calculations to solve for the modal
amplitudes, A, in this formulation is 2m3 . If the formulation of Bowden

[1988] was used, the number of calculations would have been (2m)3. The
formulatig used in this research, since (2m)3 > 2m 3, significantly reduced

the computational effort required to solve for the modal amplitude vector

(A).

3.3 Numerical Solution of Time Independent Non-linear
Equations

Eq. 3.19 of the previous section is a non-linear equation in terms of
the modal amplitudes (A). The solution of nonlinear equations is not
trivial as illustrated by the following quote from "Numerical Recipes" [Press,
et al, 1987], "There are no good, general methods for solving systems of more
than one non-linear equation ". In this research an inverse iteration scheme
and a Newton-Raphson scheme were used to solve for the modal
amplitudes (A) from eq. 3.19. An alternative method, although not used in
this research, will also be outlined. The method, known as the
Continuation Method, requires undesirable algebraic manipulation of the



governing differential equations. However, based on the limiting results
obtained with the other two methods, future researchers may be inspired to
implement this method. The next paragraphs will outline the three
methods; the inverse solution technique (3.3.1), the Newton-Raphson
method (3.3.2) and the continuation method (3.3.3).

3.3.1 Inverse Solution Technique

In the inverse solution technique, the matrices in eq.'s 3.19 are
calculated using the solution for the modal amplitude at the previous
iteration step. If n denotes the iteration step number, the process is:

* For iteration n, calculate the matrices N a,Na ,Nb and NbA A A A
using eq.'s 3.17 and the solution for An-1 at the previous
iteration step.

* Solve for An using eq.'s 3.16a and 3.16b.
* Repeat the procedure until convergence.

As in all non-linear solution methods, it was found in practice that the
method performed well if the initial guess for A was close to the final
solution. This method yielded good results for moderate forcing levels but
failed to converge for high force excitation levels, especially when jump
phenomena occurred. Convergence was improved by implementing an
adaptive under-relaxation solution technique. The modal amplitude of
mode (i) at the next iteration was calculated as follows:

8A n -1

n An- 1
A. =A. +L

1 1

1

where 8An-1 = A - An-1 andi i i

A = Solution from eq .3.16 (3.20)

The power (p) was adjusted to yield the fastest convergence and the value
used in this research was p = 2. This approach yielded better results than the



standard under-relaxation method. In the results presented in Chapter 6,
the forced response characteristics were predicted by calculating the modal
amplitudes for various forcing frequencies and amplitudes. The linear
solution for A, with all the non-linear terms set to zero, was used as an
initial guess at the lowest excitation frequency (if the forcing frequency was
increased) or the highest excitation frequency (if the forcing frequency was
decreased). At forcing frequencies other than these frequencies, the solution
at the previous excitation frequency was used as an initial guess.

3.3.2 Newton-Raphson Method

An alternative solution approach to the inverse solution technique, is the
Newton-Raphson method. For the Newton-Raphson method, eq. 3.19 can
be written as:

I -1
Nf(A) = A -N a -NNb a Fa = 0fA NA A (3.21)

Nf can be expanded into a Taylor series, namely:°m N N
N (A + 8A)= N (A)+ 1 1~8A + (o A2)k=1 k (3.22)

where N is the i'th equation of Nf. By neglecting terms of 6A2 and higher,

eq. 3.22 yields a linear set of equations for the corrections (SA) that
simultaneously move each function (i) closer to the zero , namely:

ffS i8A =-Nf
k=1 k (3.23)

m aN f

The Jacobian J = ~ }A was calculated numerically using 8A of
k=faA k

the previous iteration step. The same adaptive under-relaxation scheme
used in the inverse iteration scheme was used in this method to improve
the convergence. The Newton-Raphson method yielded better results than
the inverse iteration scheme and converged for almost all combinations of
excitation amplitudes and frequencies that were used.



The solution process is:

* Starting out with the linear solution, calculate the Jacobian

().
* Find the correction term (SA) from eq. 3.23.
* Calculate the updated modal amplitude vector (A) using

eq. 3.20.
* Repeat with updated solution until convergence is reached.

3.3.3 Continuation Method

The continuation method [Ricther and DeCarlo, 1983] arises from

branches in mathematics not widely studied in engineering circles

(Algebraic Topology and Differential Topology) and is best illustrated by a

simple example. Let:

F(z) = z2 + z + 1 (3.24)

The objective is to find F(z) = 0. The solutions can easily be obtained as:

1,2 = 2 (3.25)

In the continuation method, H(z,r) is defined as:

H(z,r) = z2 + rz +1 (3.26)

with r = [0,1]. Note that at r = 1, H(z,r) = F(z) and at r = 0, H(z,r) = +

Differentiating H with respect to r, yields:

dH(z(r),r) dz rdz
dr- - = 2z-- + r + z = 0
dr dr dr (3.27)

which reduces to the following initial value problem for z(r).

dz -z(r)
dr - 2z(r) + r
where

z(0) = + V-1 (3.28)



Solving the initial value problem, yields:

z(r)= 2 (3.29)

Eq. 3.29 could also have been obtained from solving eq. 3.28 numerically. H
is known as the Homotopy function. In other words this method is the
integration of the derivative with respect to the variable (r) from the known
linear solution (r=O) to the required nonlinear solution (r=1). This method
can also be applied to systems of non-linear equations. The only problem is
the algebraic manipulation required to obtain equation 3.27. This method
however, presents the possibility of finding all the roots of a non-linear
system of equations which may justify the additional effort required. The
reader is referred to Keller [Keller and Rabinowitz, 1977] for a more detailed
discussion.

3.3.4 Note on Numerical Integration

The non-linear solutions methods used in this research were iterative
and required evaluation of the non-linear, amplitude dependent matrices
(eq.'s 3.17) at each iteration step. Given that the time functions, in this
research, are continuous, the integrations of eq.'s 3.17 could be performed
outside the iteration loop. This not only speeded up the solution but also
made it more accurate. The accuracy was improved by using many
integration points over the integration integral. If the integration was inside
the iteration loop, more integration points would have slowed down the
solution method. For example, by defining:
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I= [ [eirot cos (t)1 d(2t)
0 (3.30a)

2n

I [e - crit Cos (00] d(rt)
o (3.30b)

20

Is 1 [ejratsin(ft)] d(9t)
0 (3.30c)



27c

Ir = " e- Le sin(0t) d(Gt)
0 (3.30d)

a term in NaA of the form C q , with C being a coefficient, could be

evaluated as:

[C q] e cos (ft) d(W0 = C AI + A I

I0 (3.31)

or a term in Nb of the form C q 2 as:
A

'ij- [C q14q] ejat sin(2t)d(t) =

jQC[A A 2 3+A + A 211 +A 1A2 +A 1A 1  (3.32)

The evaluation of the non-linear matrices (eq.'s 3.31) thus becomes a
simple multiplication of the matrix coefficients, the modal amplitude(s) and

the pre-evaluated integral expressions (I).
Although the integrals could have been evaluated by hand,

numerical integration (Simpson's rule) was used. Using this method

instead of doing the integrations inside the iteration loop, the time spend

solving for the modal amplitudes was reduced by a factor of 8. This

approach cannot be used for systems with discontinuous (or piecewise

linear) elements (mass, damping or stiffness).

3.3.5 Presentation of Results

The output from the force response analysis was the excitation
amplitude and frequency dependent amplitudes. The modal amplitudes
could be linearly combined to yield the slosh force amplitudes and the tank
displacement. Amplitude versus excitation frequency curves could be
obtained, for force excitation amplitudes corresponding to experimental
values. The magnitude of the modal amplitudes were calculated as follows:



from A ie  + ie -  = 2aicos (Wt) - 2b in(t) (3.33)from i 1

if = a jb (3.34)

then A e  t + Ai e  = R icos (t + i) (3.35)

if Ri=2ai2 + b 2
if 2 a i (3.36)

.= tan' aand 1an (3.37)

The relative modal amplitudes could also be graphically presented by
drawing the fluid free surface for various phase angles. Given a solution
(As) for the modal amplitudes, the equivalent linear frequencies and
damping ratios were calculated by plugging the solution into the
homogeneous equivalent of eq. 3.15. That is, a solution of the form:

- S
qs = A Se t+A se t (3.38)

is assumed, where (I) is the complex conjugate of . = ý+jcw. Using this

assumed solution, the homogeneous equation can be written as:

[).2M (qs, ilS,iis,) + D (qSSS,ilS,X) +

K(qs s.s, )A seLt + [I2MJ(qsq,4 S?) +

+ XD (q s, iS 4s1 X) + K (q ss,i s s,)]A s ext = 0 (3.39)

It can be shown that eq. 3.39 is satisfied if:

f() = [2M ( q s s, 1 s,X) + XD (q s,ilS,i S,) +

K(qs, q s,')]A SeXt
= 0 (3.40)

Eq. 3.40 is a nonlinear equation with time dependent coefficients. If
the damping ratios (ý) are small, that is: C << 1, the equation can be



linearized by expanding f( ) as a Fourier series. Let X = jet and retaining
only the first term in the Fourier series, f(.) can be approximated as:

f()= [a ) - jb 1,()] A e et (3.41)

where

1 2na 1= f ( cos ( ct) d (ct)
0 (3.42a)

1 r2b1= [J fR( ) sin (cot) d(cot)
o (3.42b)

The eigen-values are obtained by finding the roots of the determinant
of the characteristic equation (eq. 3.43).

[a 1() - jb ((1)]A'= 0 (3.43)

In this research, the eigen-values were calculated using Muller's method
[Press, et al, 1987]. The eigen-frequencies (co) and the eigen-damping ratios
(C) thus obtained can be compared with their linear values to quantify the
effects introduced by the nonlinear terms.

3.4 Least Squares Method

Another way to approach the problem of predicting the dynamic
characteristics of coupled nonlinear systems is to pose the problem as a
standard curve fit problem. Consider the following set of nonlinear
equations:

M(q,qq,t,...)q + D(q,+,q,t,...)q +

K(q,q,qi,t,...)q = F cos (t) (3.44)

Eq. 3.44 can be conveniently written as:

M(q,4,q,t,... )4 + D(q,,,t,... ) + K (q,i,q,t,...)q -
F cos (t) = E(q,il,4,t,... ) = 0 (3.45)



A solution of the form:

qi=A os (0t + )+ A cos (W )+(346)2 2 (3.46)

is assumed for each of the modal degrees-of-freedom (qi). The error
function is defined as:

Tu
e(q,'q)= fT [E(q'c,4,lt)T[E(qqq-,t] d t

(3.47)

The integration limits (T1 and Tu) will be determined by the accuracy
required and the period over which the assumed function must be valid.

The least squares solution for the unknown coefficients can be
obtained defining the Norm (known as the the L2 Norm or Least Squares
Norm):

L2 = (qq,) (3.48)

Posing the problem in this fashion allows for the unknown coefficients

(A ,1wj and 0') to be determined with standard least squares numerical

methods. The difference between this approach and the harmonic balance
method discussed in the previous section is that the equivalent norm for
the harmonic balance method would be:

Fe(4qqq) = 2 E(q,q4,q,t)}cos (2t)d(t) (3.49)

Note that the number of terms in the assumed solution of eq. 3.42 is
arbitrary and that the frequencies are not fixed to be equal to the excitation
frequency (Q). More complex assumed solutions can also be assumed, for
example: saw tooth, square wave, exponential functions, etc. This method,
given the correct initial conditions and assumed solution functions, will
yield the correct solution for time transient non-linear behavior. The
method is best illustrated by applying it to the well known non-dimensional
one-degree-of-freedom spring/mass oscillator with a cubic spring. The
governing differential equation is:

+ +ic +o x + k,3x 3 os (0t (3.50)



Assuming a solution of the form:

x =A 1cos (t + 1) + A 2cos (3 2t + 2) (3.51)

and using the following values for the non-dimensional coefficients:

d=0.1

k= 1.0
k3 =0.15

= 1.0 (3.52)

the least squares method was used to solve for the unknown coefficients in
eq. 3.51. Fig. 3.1 plots the least squares obtained frequencies (WO and 02)
versus the least squares obtained amplitudes A1 (curve 1) and A2 (curve 2).

A three term assumed solution was also used but yielded an insignificant

increase in accuracy.

Fitted Amplitudes for two term assumed solution

3

60
I I I I 1 !

0.70 0.80 0.90 1.00 1.10 1.20 1.30

Frequency

Amplitudes as Predicted with Least Squares and Harmonic
Balance Methods.

Note: Curve 1 is the amplitude versus frequency curve obtained with the
harmonic balance method and curve 2 the amplitude versus frequency
of the first term in the least squares assumed solution. These two
curves fall on top of each other. Curve 3 is the amplitude versus
frequency for the second term in the least squares assumed solution.
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Harmonic Balance versus Least Squares Fit
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Harmonic Balance versus Least Squares Method.

Note: The Harmonic balance method solution is plotted as a line and the
least squares method solution is plotted with the dots. Plotted on
linear scale for clarity.
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Residual Time Traces.

Note: Trace 1 is the forcing signal and trace 2 is residual after the least
squares solution is subtracted from the forcing signal
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Fig. 3.2 compares the amplitude A1 with the amplitude obtained with
the harmonic balance method discussed in the previous section. The two
curves are almost identical. Fig. 3.3 shows how well the least squares
solution fits the forcing function. Curve 1 is the forcing function and curve
2 is a time plot of the error E(q,qi,i,t).

At this point it is important to point out a peculiar feature of the least
squares method. The accuracy of the least squares method depends on the
assumed solution. For example; if only one term was used in the assumed
solution, namely, let:

x = A lcos (Olt + 0 1) (3.53)

the amplitude versus frequency curve obtained with the least squares
method will not match the results obtained with harmonic balance method.
Fig. 3.4 illustrates this behavior. Curve 1 is the amplitude (A1) versus
frequency (ol) as obtained with the least squares method and the assumed
solution of eq. 3.51.

Fitted Amplitudes for Fitting to Residual Function4n n '
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Amp
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0.01
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0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30
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Figure 3.4 Amplitudes as obtained by Least Squares Method.
Note: Curve 1 is the predicted amplitude versus frequency obtained by fitting

a single term assumed solution to the problem. Curve 2 is the
amplitude predicted by the least squares method if another single
term assumed solution is fitted to the residual of the first fit.



Residual Time Traces

Residual
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Figure 3.5 Residual Time Traces for the Least Squares Solution of
Fitting Sequentially to the Residual Functions.

Note: Trace 1 is the forcing function, trace 2 the residual after the first least
squares solution is subtracted from the forcing function and trace 3 after
the second least squares solution is subtracted from trace 2.

This curve is different from the solution obtained with the two term
solution of eq. 3.51 and the harmonic balance solution. This behavior can be

explained by noting that as the least squares method increases the amplitude
A1 to minimize the error in the "harmonic" (co1 = 0) term, the cos2(3o01t)

term increases.. Since the least squares method does not have a matching
term in the assumed solution to cancel this term, the method tries to
minimize the two terms and yields an amplitude A 1 smaller than the

amplitude predicted by the harmonic balance method. This point is
illustrated by fitting a second solution to the residual time function of the
first least squares solution. Define the new error function as:

E (x,i,t) = F cos (t) + [Co0 - KA cos (Cot + )-

aA sin(o1t +01) - 3A:o s 3(ot +1) (3.54)

and fit the following assumed solution to the resultant error function:

x'= A 2cos ( o02t + 2) (3.55)



Curve 2 in Fig. 3.4 depicts the result of this step. Fig. 3.5 depicts the
error time residual functions. Curve 1 being the original forcing function,
curve 2 the residual time trace after subtracting the first solution (A1 and co1)
from the forcing term and curve 3 is the residual time trace after subtracting
the second solution (A2 and 0 2) from the first residual time trace. The
presence of a component oscillating at the harmonic frequency is clear in
curve 3, indicating that the first solution yielded an amplitude A1 smaller
than expected.

One more observation must be made as to the integration limits of
eq. 3.47. The convergence and thus the accuracy of the least squares method
was found to be sensitive to:

(a) The number of oscillations in the integration time limits
(b) and the number of points per cycle.

As a rule of thumb, it was found that at least 10 cycles were required to yield
an accurate frequency estimates and at least 20 points per cycle for accurate
amplitude estimates. The number of required cycles refers to the maximum
frequency of interest which was in the cubic spring example, the super-
harmonic term.

3.4.1 Summary of the Least Squares Method

The least squares method is an attractive method to predict the
nonlinear behavior of coupled nonlinear systems. The advantages of this
method over the harmonic method discussed in the previous section are:

* Determination of response amplitudes at frequencies other
than the excitation frequency.

* Prediction of transient nonlinear behavior.
* Use of non-sinusoidal functions.
* Can be combined with the harmonic balance method to

determine the location of the dominant sub- and super-
harmonic terms.



The method has several disadvantages, namely:

* Requires time integration at each least squares iteration.
* Requires insight in order to select a "complete" assumed

solution.
* Requires many cycles and points per cycle for accurate

estimates of the frequencies and amplitudes.

The first and last points make this method unattractive for use in this
research but future research may benefit by combining this method with the
harmonic balance method to determine the sub- and super-harmonic terms
or determining the impulse characteristics of non-linear systems.

3.5 Conclusion

In this chapter the methodology to solve for the dynamic
characteristics of the non-linear fluid behavior has been discussed and
outlined. In Chapter 6, the Harmonic balance method will be used to
determine the non-linear dynamic fluid slosh behavior experimentally
observed in the study models. Chapter 6 will also investigate the power of
the Inverse solution and Newton-Raphson methods.



Chapter 4

Experimental Apparatus and Procedures

The experimental apparatus used to investigate the nonlinear
dynamic characteristics of contained fluids is described in this chapter. The
first section discusses the motivation behind the experimental design, the
second describes the apparatus and the theory of operation, the third
outlines the actual experimental procedure, while the final section gives the
equipment calibration results.

4.1 Design Philosophy

Full scale testing of a fluid-spacecraft system is neither practical nor
efficient for determining the nonlinear dynamic characteristics of fluid-
spacecraft systems.. The cost associated with full scale testing and the
question of the validity of extrapolating the full-scale results to other fluid
(fluid tank)/spacecraft configurations, are the main drawbacks. Sub-scale
model testing is an attractive alternative. Sub-scale model testing is not only
cheaper but many configurations can be tested to model many
fluid/spacecraft configurations. The size and weight of sub-scale models are
also suitable for testing on board the space shuttle. Other arguments against
full-scale testing is the hazard involved and the long turn around time
between tests.

In order to determine whether sub-scale models can be used, the
relevant scaling parameters must be determined. Assuming a rigid-wall
container, the relevant non-dimensional parameters governing the fluid-
spacecraft motion are:

Non-dimensional Fluid Scaling Factors:

pga2
Bond Number = Bo -

o (4.1a)



Capillary Viscous Parameter = N. 2= V (4.1b)

Contact Angle = 0 (4.1c)

Non-dimensional Fluid-Spacecraft Coupling Parameters:

fluid
Mass ratio = m (42a)

spacecraft (4.2a)

sloshFrequency ratio = v =
spacecraft (4.2b)

Most spacecraft fluid tanks are large enough that these are the only
parameters that must be matched in a sub-scale model.

4.1.1 Matching the Bond Number and Selecting a Model
Fluid

Low full scale Bond numbers can be achieved by changing the model
tank radius, a, the density of the fluid, p, the surface tension, a, or by placing
the test article in reduced gravity. Fig. 4.1 depicts the Bond number as a
function of the tank displacement from the spacecraft center of gravity for
three representative spacecraft propellants namely; hydrazine, liquid oxygen
and liquid hydrogen in a 2 meter diameter tank. In studying this figure a
typical Bond number range of 10 - 200 can be defined.

Past research [Peterson] has shown that impulse tests are unreliable in
determining the nonlinear characteristics of a fluid system. The main
reason is that the results of many impulse tests under the same g-level and
initial conditions are required to obtain a reliable data base. Harmonic tests
in which the test article is excited long enough for the homogeneous terms
to decay, are considered the best way to determine the nonlinear behavior.
The 0-g time of the KC135 Reduced Gravity Test Facility (approximately 40 -
50 seconds), is too short for harmonic tests but random initial conditions
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Figure 4.1 Typical Spacecraft Bond Numbers. (Repeat of Fig. 1.1).

and the varying g-level, during the 0-g period, yields scattered impulse test
results. The other alternative is in-orbit testing but shuttle availability ruled
this out as an option for this research. Thus, although g levels other than 1-
g can be achieved, a 1-g test environment was decided on for this research.
A follow-up experiment, designated the MODE experiment, has been
scheduled to fly on the shuttle in the near future. The purpose of this
experiment will be to validate the 1-g results obtained in this research. By
properly choosing model fluids, the Bond number of actual systems can be
matched in a 1-g test.setup by scaling the tank geometry, (a), thus properly
scaling the fluid vibration dynamics.

The scaled model tank radius is given by:

am=a mgm (4.3)m f s Pm 8mc fs (4.3)
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in which the subscript m denotes model and the subscript fs denotes full
scale or actual tank. The size of the scaled model tank is determined by the
specific surface tension a/p, of the full scale propellant (or liquid) and the
selected scale model fluid. In this research, model tanks with dimensions
ranging from 1.5 cm to 2 cm were used that covered a Bond number range of
30 - 120. This Bond number range is typical for present fluid/spacecraft
systems.

At this point something must be said about the selection of a scale
model fluid. Water, with its high specific surface tension, (al/p), and inert
nature is a likely candidate. The high specific surface tension of water will
yield the same Bond number for a much larger model tank than any other
non-reactive fluid. Water also has been approved for in orbit use. The
main drawback of water is that it has a high contact angle hysteresis in glass
containers. The nonlinear effects of contact hysteresis angle makes the
prediction of the linear fluid characteristics difficult [Dodge, 1967]. While no
liquid vapor can be hysteresis free, it is usually very small for spacecraft
propellants [Abramson, 1966]. In order to minimize the effects of contact
angle hysteresis, a 2% photoflo-water solution was selected as a modeling
fluid. Photoflo is a surfacant (wetting agent) used in photographic
processing which reduces the surface tension of water by a factor of two and
reduces the contact angle to near 00 (50 - 150 experimentally). Finally Table
4.1 is a summary of the properties of selected spacecraft propellants and
possible model fluids.

The non-dimensional parameter, contact angle (eq. 4.1c), is the
requirement that the contact angle of the model fluid must match the
contact angle of the actual fluid. The contact angle of a 2% Photoflo-water
solution approaches zero which matches the "wetting" contact angle found
with most spacecraft propellants.
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Table 4.1 Properties of Spacecraft Propellants and Model Fluids

Fluid Density Kinematic Surface Kinematic
Viscosity TensionSurface

Tension p v Y aO/p
(gm/cm3) (cm2/sec2) (dyne/cm) (cm 3/sec 2)

Typical Propellants:

Liquid Hydrogen 0.07 0.0020 1.9 26.8
Liquid Qxygen 1.14 0.0017 13.2 11.6
Hydrazine 1.01 0.0097 63.2 62.7

Typical Modelling Fluids:

Water 1.00 0.0101 72.8 72.9
Methanol 0.79 0.0075 22.6 28.5
2% Photoflo/ 1.00 0.0100 36.0 36.0
Water

Given the properties of a 2% Photoflo-Water solution, the scaled
Bond number is given by:

BMode =27 778a 2g (4.4a)

or for testing in a 1-g environment:

Bo Model = 272 500 a2
(4.4b)

Equations 4.4 are valid for a in meter.

4.1.2 Matching the Capillary Viscous Parameter

In contrast with the Bond number that scales with a2, the capillary
viscous parameter scales with a-1/ 2. Therefor, given a specific model fluid
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(with a given kinematic viscosity), matching the Bond number will result in
a mismatched capillary viscous parameter. The viscosity will increase as the
tank size decreases and the relative strength of viscous forces to gravity and
surface tension forces are inflated. As with wind tunnel testing, some
mismatch in the viscosity scaling is acceptable. The primary effect of
viscosity is to increase the fluid damping ratio. Peterson [1987] showed that
if the fluid damping is small, its effects on the fluid vibration dynamics is at
least the order of the nonlinearities. The expected increased fluid damping
ratios (due to the viscous effects) in very small tanks, will alter the
nonlinear behavior of the fluid. Thus very low Bond numbers cannot be
investigated using 1-g Bond number scaled models. In general Bond
numbers below 20 are considered to be too low to yield accurately scaled 1-g
models. This conclusion restricted the use of the 1-g experimental apparatus
discussed in this chapter to scale models with Bond numbers exceeding 20.

4.1.3 Matching the Mass and Frequency Ratios

In order to accurately simulate the coupled dynamics of the
fluid/spacecraft in the sub-scale model, the fluid mass fraction, g and
frequency ratio, v, must be matched. A simple spring/mass model of the
spacecraft mode is an obvious choice. However, mechanical friction, high
model tank weight versus fluid weight, manufacturing tolerances and lack
of flexibility, led the design to be a more sophisticated compliant actuator.
With this device, the motion of the spacecraft mode (single degree-of-
freedom) was simulated by using the measured fluid reaction slosh force as
the excitation for an analog representation of the spacecraft dynamics. The
dry mass inertia force was subtracted from the measured force signal to
allow for higher mass ratios.

This device allowed for mass ratios as high as 0.4 and frequency ratios
ranging from 0.5 to 1.5. With the analog simulation of the spacecraft mode,
the modal damping could also be altered (in a range 4 = 0.02 to 0.12).
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4.2 Experimental Apparatus

As outlined in the introduction, several model tanks were tested.
The geometry and design of each of these model tanks will be discussed in
Chapter 5. In general, the tanks were made of stock pyrex, the base and end
cap of the tanks were made of black delrin. Delrin is easy to machine
precisely, has a low density, and is chemically inert. The top plates were
Lexan, 0.125" thick. The fluid mass in the test article was specified by the
height above the bottom of the tank.

Fig. 4.2 is a schematic block diagram of the experimental apparatus.
Fig. 4.3 is a video image of the primary test equipment. Each component in
the block diagram performs a unique function. The slosh reaction balance
and resolver measured and amplified the planar (x) and non-planar (y)
reaction forces as well as the acceleration vector of the model tank. The dry
mass compensator removed the dry mass inertia force component from the
measured force and the spacecraft mode simulator is an analog computer
which solved the differential equation of motion for the spacecraft one
degree-of-freedom mode. The electro-mechanical shaker moved the tank as
specified by the output of this simulator. The actual displacement of the
tank base was measured with a non-contact proximeter probe. A personal
computer, hooked to a CAMAC data acquisition crate, generated the external
excitation signal and recorded the measured forces, accelerations and the
tank displacement. The personal computer was also programmed to
perform most of the experimental tests automatically.

The measurement of the fluid slosh reaction forces is only an indirect
measurement of the fluid dynamics. The dynamic motion of the free
surface was recorded, for selected cases, by a video camera with a
macroscopic lense.

The subsequent paragraphs will describe each of the components in
greater detail.
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Experimental Apparatus Component Block Diagram.
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Figure 4.3 A Video picture of a Part of the Experimental Setup.
The Modal Tank, Reaction Balance, Shaker and Proximeter are visible.
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4.2.1 Slosh Force Reaction Balance and Resolver

The reaction slosh forces produced by sub-scale model tanks are very
small. Peterson [1987] showed that for tank sizes with characteristics
dimensions of 25 - 50 mm, the expected reaction forces are in the 10-3 to 10-1
Newton. These forces are of the same magnitude as the dry mass inertial
forces, and the external environmental forces, such as air currents [Dodge
and Garza, 1970]. The force balance and resolver used in this experiment is

the one developed by Peterson [1987]. The model tank was mounted on this

balance, which measured horizontal components of the fluid slosh force
against the tank walls. The reaction balance (Fig. 4.4) consisted of a triad of
sensitive piezoelectric force transducers mounted on a statically determinant
structure. The planar (Fxs), non-planar (Fys) slosh forces and vertical
reaction slosh moment (Mzs) could be obtained from the measured

transducer signals by applying the reaction balance force and moment
equilibrium equations [Peterson, 1987]. This linear transformation was
performed by a signal conditioning circuit.

A similar triad of accelerometers, see Fig. 4.4, measured the
acceleration of the reaction balance in the horizontal plane. The planar and
non-planar acceleration components were resolved using a electronic circuit
similar to that of the force resolver. Using the measured accelerations, the
dry mass inertial force was subtracted electronically from the measured force
signal. The remaining force signals are a direct measurement of the fluid
reaction slosh forces.

The load path between the tank model and the transducers are
provided by three stainless steel flexures, each 0.005" thick, 0.5" wide and
0.75" long. The bending stiffness of the flexures are considerably smaller
than their axial stiffness. The thickness ratio, t/l = 0.7%, was small enough
for the flexures to be modeled as providing only axial stiffness, making the
force balance system statically determinant. Eq. 4.5 gives the relationship
between the measured forces and required forces.
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where F1, F2 and F3 are the transducer outputs and
the transducers from the center of the force balance.

rt is the offset radius of

4.2.2 Dry Mass Compensator

The force applied to the reaction balance is the sum of the fluid slosh
reaction forces and the D'Alembert force of the dry mass. The force is:

[FX] D'Alembert - D 0 0 -I ax

M 0 0ID }Y (4.6)

where mD is the dry mass of the tank and support structure (between the
tank and the load cells) and Iz the moment of inertia about the z-axis of the
tank and support structure
transformation for the measured
eq. 4.6 is given by equation 4.7.

Ia X1

tay6~

(between tank and load cells). The
accelerations to the desired components in

2 1
3 3

0 3
3

1
3ra

1
3ra

1
3

3
1

3ra

a2a: 1
(4.7)

ra being the radial offset from the force balance center to the accelerometer
position. Finally the desired slosh force components are given by:

D'AlembertF xs Fx]
IFys IFX
IM zs J [M j

F x

M j (4.8)
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4.2.3 Signal Conditioning

Fig. 4.5 is a schematic representation of the slosh force conditioning
process. The force measurements (F1, F2, F3) were provided as the output
voltages of the transducer signal conditioning amplifiers with a nominal
sensitivity of 112 mV/N. The acceleration measurements were the output
from their transducer signal amplifiers with a nominal sensitivity of 100
mV/g. The next stage in the signal conditioning process was a differential
amplifier input stage to remove any possible electrical ground loops which
might otherwise corrupt the signals with noise. The output voltages from
the transducer amplifiers were thereby referenced to the equipment rack
power supply ground voltage. The gain of each signal was also adjusted to
yield an equal gain for all the transducers. Three special electronic units
transformed the amplified and equalized transducer signals to slosh force
measurement signals (Eq. 4.8).

Force Pre-
Amplifiers

F

F 2

F I
- L

I I I
Dry Mass

-. Instrumentation Compensator Fys
Charge Amplifiers CircuitsAmplifiers

a l
a

a

3 i

h !

Figure 4.5 Schematic of the Slosh Force Signal Conditioning Process.
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The first unit performed the matrix multiplications on the force and
acceleration signals, the second compensated for the dry mass inertia, and
the final stage amplified the resultant slosh force output signals.

4.2.4 Measuring the Tank Motion

The actual planar (x) displacement of the tank was measured with a
non-contact Bentley-Nevada 25 mm proximeter probe (Fig. 4.6). This
measurement provided the time history of the simulated spacecraft
response.

x(t)

Mount

Micrometer mrt
MM

Overall Ex erimental 
Su ort

Proximeter Assembly.
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The device was mounted on a separate support structure in line with the
shaker axis and a target plate of ANSI 4101 turbine steel was attached to the
reaction balance assembly. The proximeter measured the width of the gap
between the target plate and the proximeter head. The nominal sensitivity
was 0.79 V/mm and the proximeter, when used with the chosen target
material and plate size, has a linear range of +/- 12 mm.

The proximeter was mounted with a non-rotating micrometer head
to facilitate calibrations. The micrometer could measure the

proximeter/target gap with an accuracy of 0.03 mm. The proximeter had its

own power supply and was amplified via a AD521 differential
instrumentation amplifier to reference the output voltage to the primary
ground voltage used in the analog equipment rack.
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4.2.5 Compliant Actuator

The compliant actuator calculated the tank displacement which would
correspond to the motion of the two degree-of-freedom spacecraft mode,
using the measured slosh forces and tank displacement. The simulation
circuit is an analog computer circuit [Peterson, 1987] which computed the
desired tank motion in real-time. The required motion was provided by a
electromagnetic shaker. The second order differential equation that
describes the motion of the tank is:

mi +cx + kx= Fex + Fxs (4.9)

Excitation

Stiffness

Table 4.7 Spacecraft Mode Simulator Block Diagram.

The commanded voltage to the shaker can be solved for since the fluid slosh
force Fxs is a measured function of time. Fig. 4.7 is a block diagram of the
analog model of the spacecraft mode. Let Kx, be the proximeter gain and Kf,
the slosh force gain, then the equations for the mass, damping and stiffness
of the simulator are:
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(RC) 2K x
SGmKf (4.10a)

G RC K
CGK

GmK f (4.10b)

k-
Gm K f (4.10c)

From elementary dynamics, the modal frequency and damping ratios are:

1 k GW
S2n m - 2•-RC (4.11)

c G_

2mo - 2G (4.12)

The gains, Gm, G, and GC, could be set via potentiometers. A Ling 420
electro-mechanical shaker, powered by an Altec amplifier, was used to move
the force reaction balance and model tank assembly. In order to compensate
for certain unwanted shaker dynamics, a close loop servo was used. The
actual displacement of the shaker, as measured with the proximeter, was
compared with the desired displacement to generate an error signal. The
error signal was fed through a compensator to remove the unwanted
dynamics. The net effect of the servo controller was to provide both
position and rate feedback to the shaker motion.

4.2.6 Data Acquisition and Experimental Control

An IBM PC was used to control the experiment, as well as acquire and
store the measured force, acceleration and displacement signals. The
nonlinear characteristics of the fluid was determined by driving the model
tank with a sinusoidal excitation signal of varying amplitude and frequency
(harmonic excitation). Fig. 4.8 is a flow diagram of the control program.

A control program, written in FORTRAN, given the user selected
frequency and amplitude ranges, generated the excitation signal . The user
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also selected the number of excitation levels, but the number of frequency
steps were determined by program. The frequency of the excitation signal
was matched with the discrete frequencies possible with the Fast Fourier
Transform (FFT) used to determine the amplitudes of the measured signals.
Instead of calculating and storing the complete FFT's of each of the channels
for each excitation frequency and amplitude, only the complex amplitude of
the signals at the excitation frequency was calculated (using an FFT) and
stored. This reduced the amount of data to be stored, facilitated data
reduction and gave results matching the results obtained with the harmonic
balance method used in the analysis (Chapter 3). The program could also
store the time traces but this was only done in a few selected cases. The
excitation frequency was matched with the discrete FFT frequency bin's
center frequency to minimize spill-over errors.
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Figure 4.8 Control Program Flow Diagram.
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The frequency difference between points in an FFT is given by:

1 1
T NAt (4.13)

where 1/At = sampling frequency at which the data was taken, N =
number of data points in the time trace, and T = NAt = total time length of
the data trace. The excitation frequency was set, by selecting the correct D/A
output rate, to be a multiple of Af.

The control program could also excite the fluid system with an
impulse input of variable amplitude and time width. The program also
programmed the CAMAC crate's A/D sampling parameters, namely;
sampling rate, number of post trigger samples and number of active
channels. A summary of the program sequence is:

The program prompted the user for the number of amplitude
levels, the range of amplitude levels (as a percentage of the
maximum D/A voltage output of +/10 Volts), the type
required(sinusoidal or impulse) and the excitation frequency
range. Note that the level of excitation was determined by a
series of gains (this included the gain of the D/A).

* The program then programmed the A/D for the number of
required channels, the sampling rate and number of post-trigger
samples,

* generated the excitation signal (the sinusoid was generated with
a nominal frequency and the selected amplitude) and loaded
this signal into the D/A's memory. The required frequency of
excitation was achieved by altering the D/A's output frequency.
The excitation signal had to be re-calculated for each new
amplitude level.

* The program started the test by triggering the D/A to send out
the excitation signal. The signal, filtered with a smoothing
filter, was added to the spacecraft mode output (for coupled
tests) to drive the electro-mechanical shaker.
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The A/D was triggered after a 5 second delay to store the
incoming force, acceleration and displacement signals. The
delay period ensured that the non-homogeneous terms, excited
by the initial conditions, decayed before the data was taken.

* On completion of the data acquisition cycle, the program stored
the data time traces on disk (if required) and performed FFT's
on the data signals. Only the amplitudes corresponding to the
excitation frequency were retained and stored on disk.
The cycle was repeated for each of the excitation frequencies and
amplitude levels.

* On completion of the test, the amplitude versus excitation
frequency results were graphically checked before a different
fluid system was tested.

Table 4.2 summarizes the relevant test parameters.

Table 4.2 Test Parameters

Parameter Description Value Units

D/A:
Output Range: +/- 10.0 Volts
Number of points describing excitation signal 8000

A/D:
Number of data points per channel 4096
Number of active channels 4
Sampling Frequency 200.0 Hz
Input Voltage Range +/- 5.0 Volts
Time delay between start of excitation and 5.0 seconds
start of data acquisition
Total time of data acquisition 25.5 seconds
Equivalent FFT frequency step (Af) 0.4883 Hz
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Figure 4.9 Effect of Smoothing Filter.
Output from D/A for three forcing excitation amplitudes (Fex).

The smoothing filter (a low pass filter) between the D/A output and
the shaker was used to remove the high frequency effect of the quantized
signal. This filter had a corner frequency at 6 Hz which effectively made the
excitation signal slightly frequency dependent (See Fig. 4.9). This frequency
dependence was taken into account in the analysis.

4.3 Test Procedures

This section will describe the various test procedures followed in this
research.

4.3.1 Pre-Test Procedure

The pre-test procedure was followed for both the uncoupled and coupled
tests. In the uncoupled test, the spacecraft mode simulator was by-passed.
The uncoupled tests were performed to identify the linear fluid eigen-
characteristics and for comparison with coupled tests. The experimental
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apparatus was calibrated before a new tank geometry was tested. The
calibration procedures and results are described in the next section. The pre-
test procedures were:

Model Tank Test Article Preparation:

The tanks were carefully washed before each test to ensure the glass
surface free of airborne oils and dust particles. First the tanks were rinsed
with distilled water, then reagent grade methanol was poured into the tank
to wet the entire surface. The methanol was kept in the tank for
approximately fifteen minutes. Afterwards, the tank was dried by turning it
upside down on a glassware towel. The tank's dry mass was determined and
recorded with a unique tank identification number. The next step was to
add the correct amount of modeling fluid. This was done by placing the
empty tank on a mass balance, zeroing the mass balance and adding the fluid
until the correct fluid mass was reached. The mass balance could determine
the mass to within 0.01 grams.

Determination of Dry Mass Null Gain (Coupled Tests only)

The dry mass null gain was determined by placing the clean, empty
model tank on the force balance, shaking the balance with a known
sinusoidal signal with a known frequency and amplitude, while the gain
was adjusted until the observed slosh force, Ffxs, was zero. The residual dry
mass was limited by system noise but a residual dry mass of less than 1 g
could be inferred from the measured residual slosh force voltage.

4.3.2 Test Procedure

The only difference between the uncoupled tests and the coupled tests
were that the spacecraft simulation circuit feedback path was removed from
the loop. The output from the D/A was connected directly to the input port
of the servo control circuit. This was the only difference between the
uncoupled and coupled tests. The computer control program allowed for
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both an impulse and a harmonic excitation signal but only a harmonic
signal was used in this research. The test sequence was:

* Configure the spacecraft simulation circuit (only for the coupled
tests).

* Supply power to all the test equipment, except the shaker
amplifier.

* Run the control program (FST) on the personal computer.
* Select the type of excitation (Harmonic or Impulse).
* Set the excitation amplitude range
* and the number of logarithmic amplitude increments.
* Set the excitation frequency range.
* Select whether the time traces must be stored or not.

At this point the program would calculate the excitation signal and down-
load the signal to the D/A's memory. The program also provided the
researcher with a digital voltmeter of the measured signals. The next step
was to check the signals measured for the stationary tank:

* Check that the measured planar force voltage, Vfxs, was 0.0 V
+/- 20 mV.

* Check that the measured non-planar force voltage, Vfy s, was

0.0 V +/- 20 mV.
* Check that the measured tank displacement voltage, Vx,f, was

3.5 V +/- 20 mV.
* Check that the measured planar acceleration voltage, Vfys, was

0.0 V +/- 20 mV.

These checks were required to ensure that none of the A/D's channels were
saturated during the initialization process. The tank displacement
proximeter was adjusted to yield a output voltage of 3.5 Volts for the
stationary tank, to ensured that the measured voltage (during the harmonic
tests) would not exceed the +/- 5 Volts input range of the A/D. At this point
the computer program adjusted the D/A's output voltage to zero and
notified the researcher that power could be supplied to the shaker amplifier.
The researcher then initiated the test sequence, in which the fluid response
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was recorded for a range of excitation frequencies and amplitudes. On
completion of the test, the researcher was reminded to cut power to the
shaker amplifier (to protect the experimental setup) and in which files the
FFT results were stored.

4.3.3 Post-Test Procedure

On completion of a series of tests on a model tank geometry, the
calibration of the experimental setup was verified before the next tank
geometry was tested. The results of the experimental tests, in the form of an
amplitude and phase file (or time traces of the measured results) was
transferred from the IBM PC to a MicroVax (using the standard
communications package: KERMIT) and from the MicroVax to a Mactintosh
(again using KERMIT). The data was then scaled, according to the scaled
calibration parameters (see next section), and graphically displayed with a
graphics package developed specifically for this purpose.
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4.4 Calibration

The different components of the experimental apparatus were
individually calibrated before each test. The calibration procedure for each
of these components are described in the next sections and the results are
summarized in section 4.5.4.

f (Hz) = 0.065 + 2.77 Gw, RA2 = 1.000

0 1 2 3 4 5

Figure 4.10 Determination of the Constant RC.

4.4.1 Calibration of the Compliant Actuator

The spacecraft mode simulator circuit was calibrated to determine the
constant RC in eq.'s 4.10. The simulator was driven by a random signal
from a spectrum analyzer (HP) and by recording the frequency of the
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measured resonance. A range of gains, G., were used to determine the
value of RC in eq. 4.11. Fig. 4.10 depicts the results, while the results of a
linear regression are summarized in Table 4.4. The linearity of the
compliant actuator, with respect to excitation amplitude, is shown in Fig.
4.11.

t1 of)

x (m)

x10 3

2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25

f(Hz)

Figure 4.11 Verification of Compliant Actuator Dynamics.
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4.4.2 Proximeter Calibration

The proximeter was calibrated by measuring the output voltage of the
proximeter signal conditioning circuitry as the gap between the proximeter
and the force balance target disc was varied. The results of one of the
calibration tests are depicted in Fig. 4.12 and the linear regression results (of
fitting a straight line through the experimental data) are summarized in
Table 4.4.

x = 0.00037 + 0.00129 Volts, RA2 = 0.999
0.012

0.011

0.010

0.009

0.008

0.007
2 3 4 5

Volts

Figure 4.12 Proximeter Calibration.
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4.4.3 Calibration of the Force Resolver Signal Conditioning
Electronics

A careful calibration of the analog signal processing electronics was
required to ensure accurate planar and non-planar force signals. The gains
of this particular circuitry were seen to drift over several weeks and were
adjusted before each new tank model geometry was tested. The calibration
process consisted of four steps: offset adjustment, input amplifier stage gain
adjustment, resolver stage gain adjustment and mass output gain
adjustment. The electronics were allowed to settle down (about twenty

minutes) before the offset nulls of each amplifier in the electronics were

adjusted to yield a zero output for a zero input. Then a reference voltage,

1.000 Volt DC (measured by a VDC), was applied to the input stage of each
channel. The gains of each input stage were adjusted to yield a net gain for
each transducer signal (112.13 mV/kg {or 500 mV/lb) for the force transducer
and 100 mV/g for the accelerometers). The individual gains were
determined by individual calibration tests (Peterson [1987]) performed on the
force transducers and accelerometers. Table 4.3 presents the channel gains
for this calibration.

Table 4.3 Input Stage Amplifier Gains

Channel Transducer Sensitivity Ideal Gain

F1  119.08 mV/N 0.94163
F2  121.90 mV/N 0.91985
F3  119.60 mV/N 0.93753

a1  98.98 mV/g 1.01031
a2  98.55 mV/g 1.01468
a3  99.70 mV/g 1.00296

Next, the gains of the force and accelerometer stages were adjusted.
The gain of each stage in the resolver circuit represented the entries in the
transformation matrices of eq.'s 4.5 to 4.8. When two of the three transducer
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voltage input channels were set to zero, the net gain of the resolver stage
would equal the matrix element corresponding to the non-zero channel
entry. Thus, when a known voltage (1.000 Volts DC) was applied to the non-
zero input stage channel, the net gain of the resolver stage equaled the
transducer sensitivity multiplied by the resolver gain for the element in the
transformation matrix. The analog adjustment was performed for each
resolver transformation element independently.

The final step in the analog circuitry calibration was the adjustment of
the slosh force isolation and amplification stage. A 1.000 Volt (RMS) signal
at 10 Hz was applied to the input stage for F2, with the remaining channels
zeroed (set to ground). Note that the F2 signal appears in all three the
resolver transformations. The output stage gain was then adjusted to
achieve the desired force sensitivity.

4.4.4 Calibration of the Planar Slosh Force Measurement

As an overall calibration test, the planar slosh force was calibrated by
mounting a known mass (a total of three different masses were used) on top
of the force balance. A computer control program (FST) via the CAMAC's
D/A provided the excitation signal for the shaker to oscillate the reaction
balance. The measured planar force voltage Vfxs and the proximeter voltage
corresponding to the excitation frequency were obtained from an FFT on the
measured signals. These amplitudes were stored for the different excitation
frequencies and amplitudes. The excitation frequencies ranged from 2 to 8
Hz and the excitation amplitudes from 10% to 90% of the maximum output
voltage of the D/A. The equation relating the measured planar slosh force
voltage to the calibration mass (mc), the proximeter voltage (Vx), the
residual mass (mr) of the force reaction balance, the excitation frequency (f)
and the planar slosh force gain (Kf), is:

2V
Ff s = Kf(mc + mr) (2rf) V

K X(4.14)

where Kx is the proximeter calibration factor (See Table 4.4). This equation
can be rearranged to yield an expression suitable for linear regression.
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Sfr V x(27)v 2
(4.15)

The linear regression results are summarized in Table 4.4.

4.4.5 Summary of the Calibration Results

Table 4.4 summarizes the calibration results. The value p, is the
linear correlation coefficient and is a measure of how well the data is
approximated by a linear curve.

Table 4.4 Calibration Sensitivities

Quantity Measurement Sensitivity Units Value p

Fxs Vfxs Kf Volts/N 11.351 0.990
Fys  Vfys Kf Volts/N 11.351 0.990
x Vx  Kx  Volts/m 775.194 0.999
ax  Vax Ka mV/g 100.000 0.995

f RC seconds 0.057 1.000

4.5 Summary

The experimental apparatus, procedures and calibration of this
research have been discussed in this chapter. The response of the fluid was
measured primarily by a sensitive force reaction balance that provided the
planar (in the direction of the tank excitation) and the non-planar slosh
forces. A spacecraft mode was coupled to the fluid slosh motion using an
analog simulation circuit. The experimental apparatus was controlled by a
computer which also reduced and stored the measured data.

The extensive set of calibration tests ensured the accuracy of the
measured results.
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Chapter 5

Experimental Results

This chapter presents the experimental results of the dynamic
behavior of fluids in the three tank models studied in this research. The
three study models are; a spherical, a square and a rectangular tank. The
uncoupled and coupled tests results for each study tank will be presented
and discussed separately. Section 5.1 outlines the uncoupled and coupled
tests and presents the reader with mechanical linear models of these two
tests. The next section (5.2) presents the experimental results for the
spherical tank, section 5.3, presents the square tank results and section 5.4,
the rectangular tank results.

In section 5.5, a cylindrical tank model, tested by Peterson (1987], is
presented. This model was not tested in research but the experimental
results obtained by Peterson will be used in Chapter 6 to investigate and
verify the analytical model. This section will not repeat or discuss the
experimental results obtained by Peterson [1987].

The final section of this chapter (5.5) is a short summary of the
experimentally observed dynamic behavior of fluids in spherical, square and
rectangular tests.

5.1 Non-Dimensionalization and Data Presentation

This section describes how the experimental results were non-
dimensionalized and presented in the subsequent sections. Linear
mechanical models of the uncoupled and coupled tests are also presented.
These models would describe the dynamic response characteristics if the
fluid motion is linear.

5.1.1 Uncoupled Tests

The uncoupled dynamic characteristics of the fluid slosh were
determined by measuring the fluid slosh forces while the tank was
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sinusoidally excited at various forcing amplitudes and frequencies (Fig. 5.1).
In the mechanical linear model of Fig. 5.1, only a portion of the fluid (XmF)
participates in the motion, where (k) is the mass fraction. The response zero
, from eq. A23, occurs at:

fs

-VI-X(5.1)

The position of the response zeros will be used to verify the slosh mass
fractions predicted by the analytical program.

In the uncoupled tests, the response to 5 harmonic excitation levels
were studied. As indicated in Table 5.1, the 5 excitation amplitudes form a
logarithmic (Log 1 0) series. This table also summarizes the graphic symbols

used to plot both the coupled and uncoupled test results. The uncoupled

test results are plotted on a logarithmic scale. On a logarithmic scale, linear

system responses will be spaced equally for all five excitation levels, but will

be spaced differently for nonlinear responses.

Table 5.1 Applied Harmonic Excitation Levels for Uncoupled Tests

Resonance Number I FexI Loglo I FexI Graph Symbol

(N)

1 0.264 -0.578 x
2 0.373 -0.428 *

3 0.527 -0.278 +
4 0.746 -0.127 A
5 1.057 0.024 0

The following forces were measured:

Fxs The fluid slosh force in the direction of excitation (Planar slosh

force).
Fys The fluid slosh force in the nonplanar direction.



The calibration factors given in Chapter 4 were used to transform the
measured signals to forces measured in Newton.

Uncoupled Test

Mechanical Model of Linear Fluid Motion

(1 - X)mV m,

Figure 5.1

ex

(m + mF)x + Xm •t1 = F ex

,mFix+ Xmql+eCq q1 + mFO2q i=0

with
Fxs = - m - Xm

Mechanical Model of Uncoupled Tests

131

ex



5.1.2 Coupled Tests

In the coupled tests, the compliant actuator was coupled to the fluid
tank system to simulate a spacecraft mode. A test matrix with a range of
spacecraft mass, damping and stiffness properties was used to determine the
effect of these properties on the dynamic behavior of the coupled system. As
with the uncoupled tests, the coupled dynamic characteristics of the

Coupled Test

k

F ex

x(t)
SI I

Mechanical Model of Linear Fluid/Spacecraft Motion

F

Figure 5.2

(m + m) i + hmFl + ci + kx= Fex

4+),M F02 q =kmFx+ m Fql+ Cq 1 + oq

Mechanical Model of Coupled Tests
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fluid/spacecraft system were determined by measuring some of the
system parameters while the tank was sinusoidally excited at various forcing
amplitudes and frequencies. The following parameters were measured:

Fxs The fluid slosh force in the direction of excitation (Planar slosh
force).

Fys  The fluid slosh force in the nonplanar direction.
x The displacement of the spacecraft degree of freedom.
Ax  The acceleration of the spacecraft degree of freedom.

In order for the results to be extrapolated to tanks of other sizes, the
above mentioned parameters and the input excitation force (Fex) were non-
dimensionalized as follows:

Table 5.2 Non-dimensionalization

Parameter Non-dimensionalized by dividing by:

Fex kd
Fxs kd
Fys  kd

x d
ax g

Where:

A characteristic length associated with the tank geometry.
In this research d = h, h being the fluid depth.

= Gravity acceleration (g = 9.81 ms-2)
= The stiffness of the spacecraft mode, where:

(2 f s) 2 mF
k=

2

fs = 1st Fluid slosh frequency
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mF = Fluid mass (5.4)

mFF
- m - Mass ratio (5.5)

where m is the mass of the spacecraft mode.

f,v- = - Frequency ratio
fo (5.6)

with fo being the frequency of the spacecraft mode. The non-dimensional
excitation force (sex) is defined by:

F ex
-ex- kd (5.7)

Important to remember when interpreting the results:
Unfortunately, in the experiments, the force excitation levels were varied
for each test to yield acceptable fluid amplitudes. The varying range of force
excitation levels makes the comparison of the test results difficult but at the
time of the experiments, this was deemed necessary for safety arguments
and also to ensure the validity of the experimental results. In the coupled
tests, the response to 5 harmonic excitation levels were studied. The
excitation was increased from the minimum value to the maximum value
in logarithmic (Logl 0) increments. These minimum and maximum
excitation levels will be summarized in the section that discusses the results
of the coupled tests performed on the different model tanks.

The fill height in all the tests, except for two of the uncoupled
spherical tests, was calculated as follows:

h=d Surface Area
e Circumference (5.8)

The equivalent diameter (de) is a single measure of the tank surface area and
surface shape. The equivalent diameter is equal to four times the hydraulic
radius, a term often used in fluid mechanics [Daugherty and Franzini, 1977].
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5.2 Spherical Tank Model

Fig. 5.3 is a drawing of the spherical tank used to investigate the

dynamic behavior of a fluid contained in a spherical tank. The tank is a

standard chemical spherical glass flask. The inside geometry was

determined by pouring water into the flask and recording the volume of

fluid added as well as the fluid height. Figure 5.4 depicts the measured

results and also the least squares curve that best fitted the results. The

spherical radius obtained from this least squares fit was 29.5 mm.

F

Umm

5mm

V

10-32 Locking Coil

Figure 5.3 Spherical Study Model

The details of the dynamic test, test parameters and test procedures are
discussed in chapter 3. The relevant tank parameters are summarized in
Table 5.3.
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Table 5.3 Spherical Tank Parameters

Parameter Symbol Value

Spherical Radius R 29.50 mm

Fill Height h 20.60 mm*

Normalization Factor d 20.60 mm

Bond Number Bo 117

Empty Mass mE 86.62 g

Fluid Mass mF 30.00 g*

1st Fluid Slosh Frequency fs 3.29 Hz

In the uncoupled tests SU2 and SU3 the fluid mass was 50 g and 60 g
respectively. The corresponding fluid level heights are 28.10 mm and
31.78 mm. See Table 5.4.
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Figure 5.4 Measured and Predicted Fluid Volume versus Fluid
Height
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5.2.1 Spherical Tank Test Matrix

A series of uncoupled tests were performed to determine the low-
amplitude linear characteristics of the fluid and also for comparison with
the coupled test results. Each test has a unique test identifier and this
identifier is used to identify the experimental results presented in this
chapter. Table 5.4 summarizes the uncoupled (fluid alone) test matrix and
Table 5.5 the coupled (fluid/spacecraft) test matrix. A 2% photoflo/water
solution was used in all these tests except for Test SU4. The excitation
frequency ranged from 2 Hz to 5 Hz.

Table 5.4 Spherical Uncoupled Test Matrix

Test Id Fill Height Fluid Mass Fluid Figures

SUl 20.60 30 2% Photoflo/Water 5.5, 5.6
SU2 28.10 50 2% Photoflo/Water 5.7, 5.8
SU3 31.78 60 2% Photoflo/Water 5.9, 5.10
SWi 20.60 30 Distilled Water 5.11, 5.12

In the uncoupled tests, the fluid/spacecraft system was harmonically
excited over a frequency range covering the first fluid slosh mode resonance
and in the coupled tests also covering the spacecraft resonance. A total of 5
logarithmically spaced (Log1 o) force excitation levels were used to determine

the dynamic characteristics. The force excitation levels used in the
uncoupled tests are summarized in Table 5.1. This table also identifies the
graphic symbols used to present the experimental results. In Table 5.6, the
minimum force level and maximum force level for the coupled tests are
summarized. The intermediate force levels are logarithmically spaced
between these minimum and maximum values. Note that the applied
force, Fex, is non-dimensionalized by dividing with (kd) to yield the non-
dimensional force =ex-
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Table 5.5 Spherical Coupled Test Matrix

Test ID 9 v C (%) Figures

SC3 0.091 0.87 0.19 5.13 - 5.14
S12 0.063 0.87 1.94 5.17 - 5.20

S13 0.063 0.87 7.76 5.21 - 5.24

S14 0.160 0.90 8.00 5.25 - 5.28

S15 0.320 0.90 8.00 5.29 - 5.32

S16 0.160 0.85 8.00 5.33 - 5.36

S17 0.160 1.10 8.00 5.37 - 5.40
S18 0.160 0.90 4.00 5.41 - 5.44

S19 0.160 0.95 8.00 5.45 - 5.48

Note: v = Frequency Ratio = fSlosh/fSpacecraft = fs/fo

g = Mass Ratio = mfluid/mspacecraft Mode = mF/m

Table 5.6 Minimum and Maximum Non-dimensional Experimentally

Applied Harmonic Excitation Levels for the Spherical Tank Coupled Tests

Test ID 6I.exnI ''ex max

Graphic Symbol: x 0

SC3 0.0060 0.0241

S12 0.0018 0.0167
S13 0.0006 0.0050
S14 0.0075 0.0680
S15 0.0037 0.0340

S16 0.0017 0.0151
S17 0.0045 0.0406
S18 0.0030 0.0272
S19 0.0033 0.0303
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5.2.2 Spherical Tank Experimental Results

Paragraph 5.2.2.1 discusses the uncoupled test results and Paragraph
5.2.2.2 the coupled test results.

5.2.2.1 Discussion of the Uncoupled Test Results

The linear eigen-characteristics of the first fluid slosh mode are
required for the analytical analysis, described in Chapter 2 (and reported in
Chapter 6). The damping ratios were obtained with the half-power-band-
width method from the lowest force excitation level results and are
summarized in Table 5.7. Figures 5.5 to 5.12 give the results of the

uncoupled tests (also see Table 5.4 for a more detailed identification of the
figures). The vertical solid line in these figures indicates the position of the
resonance peak as predicted by linear theory. Any shift of the resonance
peak away from this vertical line represents nonlinear fluid slosh behavior.

Table 5.7 Measured Linear Eigen-characteristics (Spherical Tank)

Test ID Fill Level Slosh Mass Natural Damping

Fraction Frequency Ratio
(mm) X (Hz) (%)

SU1 20.60 0.40 3.29 2.1
SU2 28.10 0.41 3.52 1.9
SU3 31.78 0.38 3.71 1.8
SW 1 20.60 0.43 3.33 4.3

The very high damping ratio associated with the first fluid mode of
test SW1 (see Fig. 5.11), where water was used as test fluid, disqualifies water
as a model test fluid. The damping ratios of the 2% Photoflo/Water
solution tests are more typical of space-bound fluids, and this solution was
subsequently used in all the model tests. A softening trend (a decrease in the
frequency of the first fluid slosh resonance) is apparent in all the uncoupled
tests.

139



5.2.2.2 Discussion of the Coupled Test Results

In the coupled tests, the mass ratios, frequency ratios and damping
ratios were varied to determine the effect of these parameters on the coupled
behavior of the fluid/spacecraft system. The coupled test results are reported
in Figures 5.13 to 5.48 (also see Table 5.5 for a more detailed identification of
the figures). As with the uncoupled tests, the vertical solid lines in these
figures indicate the positions of the resonance peaks as predicted by linear
theory. Any shift of the resonance peaks away from this verticals line
represent nonlinear behavior.

Studying Figures 5.25 to 5.28 (Test S14) it can be seen that both the first
fluid mode and the spacecraft mode exhibit moderate softening (decrease in
resonant frequency with an increase in force excitation amplitude)
characteristics and that the damping ratios of these modes are amplitude
independent. The nonplanar response is at least one order of magnitude
smaller than the planar motion (Fig. 5.26) except for the highest force
excitation level where a jump phenomenon occurs and the nonplanar force
equals the planar force. This jump phenomenon occurs between the first
fluid mode and the simulated spacecraft mode resonant frequencies and is
associated with a swirling motion which was experimentally observed. This
motion will be discussed in greater detail in Chapter 6. Taking this test (S14,
4=0.16, v=0.90, 4=8.00%) as the nominal configuration, the following
conclusions can be made on:

The Effect of Mass Ratio: From Fig. 5.23 (Test S13, g=0.063, v=0.87) and
Fig. 5.31 (Test S15, g=0.32, v=0.90), it can be concluded that lower mass
fractions result in more nonlinear behavior.

The Effect of Frequency Ratio: From Fig. 5.35 (Test S16, g=0.16, v=0.85)
and Fig. 5.39 (Test S17, g=0.16, v=1.1) it can be seen that configurations with
frequencies ratios close to unity are more nonlinear. This is only true for
frequency ratios less than unity. For frequency ratios exceeding unity, the
filtering effect introduced by the spacecraft mode (the spacecraft mode acts as
a second order filter), reduces the amplitude of the first fluid slosh mode and
thereby the nonlinear behavior exhibited by that mode.

The Effect of Damping Ratio: Little can be deduced from Fig. 5.43
(Test S18, p[=0.16, v=0.90, 4=4.00%). However, one could argue that the
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widening (for increased damping ratios) of the spacecraft resonant peak may
extend the fluid nonlinear characteristics into the spacecraft dynamics,
resulting in the jump phenomenon occurring at lower force excitation
levels.

In conclusion, the nonlinear behavior is fluid motion amplitude
dependent and any effect that lowers the fluid motion will reduce the
nonlinear behavior of the fluid. This observation is of particular
importance to control engineers, in that if the amplitude of the fluid motion
can be kept below a critical value, the fluid/spacecraft system can be modeled
with a linear model.
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Test SU1, Planar Slosh Force (Fx).
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Test SU1, Nonplanar Slosh Force (Fy).
(Spherical tank, uncoupled, harmonic excitation, Fluid Mass = 30 g and
Fluid = 2% Photoflo/Water Solution)
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Test SU2, Planar Slosh Force (Fx).
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Test SU2, Nonplanar Slosh Force (Fy).

(Spherical tank, uncoupled, harmonic excitation, Fluid Mass = 50 g and
Fluid = 2% Photoflo/Water Solution)
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Figure 5.10 Test SU3, Nonplanar Slosh Force (Fy).

(Spherical tank, uncoupled, harmonic excitation, Fluid Mass = 60 g and
Fluid = 2% Photoflo/Water Solution)

144

1.0

0.1

Fx (N)

0.01

0.001

0.0001
2.00

Figure 5.9

4 f~
I .U

0.1

Fy (N)

0.01

0.001

0.0001
2.00

i



Fex (N)
Ix= 0.26est SW1, Run 1 (Note: Water)

2.50 3.00 3.50 4.00 4.50 5.00 5.50

f(Hz)

Figure 5.11 Test SW1, Planar Slosh Force (Fx).
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Figure 5.12 Test SW1, Nonplanar Slosh Force (Fy).

(Spherical tank, uncoupled, harmonic excitation, Fluid Mass = 30 g and
Fluid = Water)
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Figure 5.14 Test SC3, Non-dimensional Force (Fy/kd).
(Spherical tank, harmonic excitation, coupled system.
Parameters; gp=0.091, v=0.87, C=0.19%, Bo=251)
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Test SC3, Non-dimensional Displacement (x/d).
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Test SC3, Non-dimensional Acceleration (Ax/g).
(Spherical tank, harmonic excitation, coupled system.
Parameters; pL=0.091, v=0.87, C=0.19%, Bo=251)
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Figure 5.18 Test S12,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Spherical tank, harmonic excitation, coupled system.
Parameters; Bo=251)
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0.1-

0.01.

Ax/g

0.001-

0.0001-

0.00001-

30 0.70 0.80 0.90 1.00 1.10 1.20 1.30

f/fo

Test S12, Non-dimensional Displacement (x/d).

Test S12, Run 1

K XX X
X X

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30
f/fo

Figure 5.20 Test S12, Non-dimensional Acceleration (AxIg).
(Spherical tank, harmonic excitation, coupled system.
Parameters; jg=0.063, v=0.87, C=1.94%, Bo=251)
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Test 513, Non-dimensional Nonplanar Slosh Force
(Fy/kd).

(Spherical tank, harmonic excitation, coupled system.
Parameters; 1g=0.063, v=0.87, C=7.76%, Bo=251)
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Test S13, Non-dimensional Acceleration (Ax/g).
(Spherical tank, harmonic excitation, coupled system.
Parameters; g=0.063, v=0.87, C=7.76%, Bo=251)
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Figure 5.26 Test S14,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Spherical tank, harmonic excitation, coupled system.
Parameters; 4i=0.16, v=0.90, C=8.00%, Bo=251)
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Figure 5.28 Test S14, Non-dimensional Acceleration (Ax/g).
(Spherical tank, harmonic excitation, coupled system.
Parameters; p=0.16, v=0.90, (=8.00%, Bo=251)
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Figure 5.30 Test S15, Non-dimensional
(Fy/kd).

Nonplanar Slosh Force

(Spherical tank, harmonic excitation, coupled system.
Parameters; p.=0.32, v=0.90, C=8.00%, Bo=251)
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Figure 5.32 Test S15, Non-dimensional Acceleration (Ax/g).

(Spherical tank, harmonic excitation, coupled system.
Parameters; 4=0.32, v=0.90, C=8.00%, Bo=251)
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Figure 5.34 Test S16,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Spherical tank, harmonic excitation, coupled system.
Parameters; g=0.16, v=0.85, C=8.00%, Bo=251)

156

Fx/kd

fp .4
U. I

0.01

0.001

0.0001
0.60

0.60



Test S16, Run 1

0.70 0.80 0.90 1.00 1.10 1.20 1.30

f/fo

Figure 5.35 Test S16, Non-dimensional Displacement (x/d).
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Figure 5.36 Test S16, Non-dimensional Acceleration (Ax/g).
(Spherical tank, harmonic excitation, coupled system.
Parameters; g=0.16, v=0.85, C=8.00%, Bo=251)
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Figure 5.37 Test S17, Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 5.38 Test S17,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Spherical tank, harmonic excitation, coupled system.
Parameters; pg=0.16, v=1.10, C=8.00%, Bo=251)
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Figure 5.40 Test S17, Non-dimensional Acceleration (Ax/g).
(Spherical tank, harmonic excitation, coupled system.
Parameters; gi=0.16, v=1.10, C=8.00%, Bo=251)
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Figure 5.42 Test S18, Non-dimensional
(Fy/kd).

Nonplanar Slosh Force

(Spherical tank, harmonic excitation, coupled system
Parameters; g=0.16, v=0.90, t=4.00%, Bo=251)
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Figure 5.44 Test S18, Non-dimensional Acceleration (Ax/g).
(Spherical tank, harmonic excitation, coupled system.
Parameters; g1=0.16, v=0.90, C=4.00%, Bo=251)
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Figure 5.46 Test S19,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Spherical tank, harmonic excitation, coupled system.
Parameters; g=0.16, v=0.95, C=8.00%, Bo=251)
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Figure 5.48 Test S19, Non-dimensional Acceleration (Ax/g).
(Spherical tank, harmonic excitation, coupled system.
Parameters; g=0.16, v=0.95, C=8.00%, Bo=251)
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5.3 Square Tank Model

Figure 5.49 is a drawing of the square tank used to investigate the

dynamic behavior of a fluid contained in a square tank. The details of the

dynamic test, test parameters and test procedures are as discussed in chapter

4. The relevant tank parameters are summarized in Table 5.8.

Table 5.8 Square Tank Parameters

Parameter Abbreviation Value

Width (Inside) W 29.64 mm

Tank Height H 90.00 mm
Fill Height h 29.64 mm
Normalization Factor d 29.64 mm

Bond Number Bo 61

Empty Mass mE 85.16 g
Fluid Mass mF 26.68 g

1st Fluid Slosh Frequency fs 5.09 Hz
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10-32 Locking Coil 3mm

Figure 5.49 Square Study Model
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5.3.1 Square Tank Test Matrix

A series of uncoupled tests were performed to determine the low-
amplitude linear characteristics of the fluid and for comparison with the
coupled test results. The angle between the tank symmetry axis (See Fig.
5.50) was varied to determine the effect of non-planar excitation. Each test
has a unique test identifier and this identifier will be used to identify the
experimental results presented in this chapter. Table 5.9 summarizes the
uncoupled (fluid alone) test matrix and Table 5.10 the coupled
(fluid/spacecraft) test matrix. A 2% photoflo/water solution was used in all
these tests and the excitation frequency ranged from 3.5 Hz to 6.5 Hz.

Table 5.9 Square Uncoupled Test Matrix

Test ID Excitation Angle Figures

VU1 00 5.51, 5.52
VU2 150 5.53,5.54
VU3 300 5.55, 5.56
VU4 450 5.57, 5.58

A0o

50

00

Figure 5.50 Explanation of Excitation Angle
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Table 5.10 Square Coupled Test Matrix

Test ID Excitation Angle . v ( %) Figures

V16 00 0.16 0.92 8.00 5.59 - 5.62
V17 00 0.32 0.92 8.00 5.63 - 5.66
V18* 00 0.16 0.87 8.00 5.67 - 5.69
V19 00 0.16 0.92 4.00 5.70 - 5.73

V20 150 0.16 0.92 8.00 5.74 - 5.77
V21 150 0.32 0.92 8.00 5.78 - 5.81

V22 300 0.16 0.92 8.00 5.82 - 5.85
V23 300 0.32 0.92 8.00 5.86 - 5.89

V24 450 0.16 0.92 8.00 5.90 - 5.93
V25 450 0.32 0.92 8.00 5.94 - 5.97

Note: v = Frequency Ratio = fSlosh /fSpacecraft = fs/fo
p. = Mass Ratio = mFluid/mSpacecraft Mode = mF/m

= Damping Ratio of Spacecraft Mode

* = Loss of one of the measured signals.

In the uncoupled tests, the fluid/spacecraft system was harmonically
excited over a frequency range covering the first fluid slosh mode resonance
and in the coupled tests also covering the spacecraft resonance. A total of 5
logarithmically spaced (Log1o) force excitation levels were used to determine

the dynamic characteristics. The force excitation levels used in the
uncoupled tests are summarized in Table 5.1. This table also identifies the
graphic symbols used to present the experimental results. In Table 5.11, the
minimum force level and maximum force level for the coupled tests are
summarized. The intermediate force levels are logarithmically spaced
between these minimum and maximum values. Note that the applied
force, Fex, is non-dimensionalized by dividing with (kd) to yield the non-
dimensional force -ex-
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Table 5.11 Minimum and Maximum Non-dimensional Experimentally
Applied Harmonic Excitation Levels for the Square Tank Coupled Tests

Test ID = ex. ainex

Graphic Symbol: x 0

V16 0.0025 0.0231
V17 0.0025 0.0231
V18 0.0014 0.0129
V19 0.0008 0.0069
V20 0.0016 0.0144
V21 0.0013 0.0116
V22 0.0013 0.0116
V23 0.0019 0.0173
V24 0.0013 0.0116
V25 0.0019 0.0173

5.3.2 Square Tank Experimental Results

Section 5.3.2.1 discusses the uncoupled test results and section 5.3.2.2
the coupled test results.

5.3.2.1 Discussion of the Uncoupled Test Results

The linear eigen-characteristics of the first fluid slosh mode, as
obtained from the uncoupled tests, are summarized in Table 5.12. The
damping ratios were obtained with the half-power-band-width method from
the lowest force excitation level results. Figures 5.51 to 5.58 give the results
of the uncoupled tests (also see Table 5.9 for a more detailed identification of
the figures). The vertical solid line in these figures indicates the position of
the resonance peak as predicted by linear theory. Any shift of the resonance
peak away from this vertical line represents nonlinear fluid slosh behavior.
The direction of excitation is also indicated on each figure.
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Table 5.12 Measured Linear Eigen-characteristics (Square Tank, with 2%
Photoflo/Water Solution)

Test ID Excitation Angle Natural Damping Slosh Mass
Frequency Ratio Fraction

(Hz) (%)

VU1 00 5.09 2.9 0.41
VU2 150 5.09 3.0 0.41
VU3 300 5.09 2.9 0.42
VU4 450 5.09 2.8 0.42

In the uncoupled test results, the fluid slosh mode exhibits a softening
tendency (decreasing resonant frequency) with increasing force excitation
amplitudes. Above moderate excitation amplitudes, the fluid motion
jumps from the expected linear planar motion to a combined planar,
nonplanar swirling motion. The regions of swirling motion indicated in
the figures are based on experimental observations.

5.3.2.2 Discussion of the Coupled Test Results

In the coupled tests, the mass ratios, frequency ratios and damping
ratios were varied to determine the effect of these parameters on the coupled
behavior of the fluid/spacecraft system. Figures 5.61 to 5.97 give the results
of the coupled tests with the square tank (also see 5.10 for a more detailed
identification of the figures). As with the uncoupled tests, the vertical solid
lines in these figures indicate the positions of the resonance peaks as
predicted by linear theory. Any shift of the resonance peaks away from this
verticals line represent nonlinear behavior. The direction of excitation is
also indicated on each figure.

Studying the Figures 5.55 to 5.60 (Test V16) it can be seen that both the
first fluid mode and the spacecraft mode exhibit softening (decrease in
resonant frequency with an increase in force excitation amplitude) trends
and that the shape of the resonant peaks are amplitude dependent. At low
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force excitation amplitudes, the fluid and spacecraft motion exhibit linear
planar motion but for moderate force excitation amplitudes, the motion
jumped from the expected planar motion to a stable nonplanar swirling
motion (as experimentally observed). The swirling motion occurs roughly
between the two resonant peaks and the nonplanar reaction slosh force is
equal to the planar reaction slosh force in this region. Taking this test (V16
g=0.16, v=0.92, 4=8.00%) as the nominal configuration, the following
conclusions can be made concerning:

The Effect of Mass Ratio: From Fig. 5.65 (Test V17, p=0.32, v=0.92,
4=8.00%) it can be concluded that, contrary to the results obtained with the
spherical tank, higher mass fractions result in more nonlinear fluid
behavior. In this figure, for high force excitation amplitudes, the swirling
motion completely dominates the dynamics and instead of two resonant
peaks, there is only one. This peak occurs roughly between the two linear
resonant peaks.

The Effect of Frequency Ratio: The lack of experiments with varying
frequency ratios makes a conclusion on the effect of this parameter on the
system dynamics difficult. From Fig. 5.68 (Test V18, g=0.16, v=0.87, •-8.00%),
however, one could conclude that configurations with frequencies ratios

close to unity are more nonlinear.
The Effect of Damping Ratio: It is clear from Fig. 5.72 (Test V19,

g=0.16, v=0.92, 4=4.00%) that configurations, with lower spacecraft modal
damping ratios, are more nonlinear.

The Effect of Excitation Angle: From Fig. 5.61 (Test V16, Excitation
Angle=00 ), Fig. 5.76 (Test V20, Excitation Angle=150 ), Fig. 5.82 (Test V22,
Excitation Angle=300 ) and Fig. 5.92 (Test V24, Excitation Angle=450 ) it can be
concluded that the excitation angle only effects the low force excitation level
results. The observed swirling motion, associated with the jump
phenomenon, is a combination of the two repeated eigen-modes (the first
planar and the first nonplanar fluid slosh modes). This swirling motion
dominates above a critical force excitation level and since the motion is
already a combination of the two repeated eigen-vectors (the planar and
nonplanar modes), the excitation angle has little effect on the dynamics.

In conclusion, the square tank tests indicate that the coupled
dynamics of these configurations are very nonlinear. For force excitation
amplitudes exceeding a critical value the motion jumps from the linearly
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expected planar motion to a very stable nonplanar, swirling motion. The
critical force amplitude above which this jump phenomenon occurs is
configuration dependent but the indications are that this motion will be
very difficult to avoid, complicating any control design.
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Figure 5.51
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Figure 5.52

Test VU1, Planar Slosh Force (Fx).

Test VU1, Run 1
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Test VU1, Nonplanar Slosh Force (Fy).
(Square tank, uncoupled, harmonic excitation, Excitation angle=00 and
Fluid=2% Photoflo/Water Solution)
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Test VU2, Run I
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Figure 5.53
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Test VU2, Planar Slosh Force (Fx).
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Figure 5.54 Test VU2, Nonplanar Slosh Force (Fy).

(Square tank, uncoupled, harmonic excitation, Excitation angle=15*
and Fluid=2% Photoflo/Water Solution)

173

Fx (N)

U. I

0.01

0.001

0.0001

]

3.50

4



Test VU3, Run 1 F ex (N)
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Figure 5.55
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Test VU3, Planar Slosh Force (Fx).
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Figure 5.56 Test VU3, Nonplanar Slosh Force (Fy).
(Square tank, uncoupled, harmonic excitation, Excitation angle=300

and Fluid=2% Photoflo/Water Solution)
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F ex(N)
x = 0.26Test VU4, Run 1
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Figure 5.57
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Figure 5.58

Test VU4, Planar Slosh Force (Fx).

Test VU4, Run 1
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f(Hz)

Test VU4, Nonplanar Slosh Force (Fy).
(Square tank, uncoupled, harmonic excitation, Excitation angle=90*
and Fluid=2% Photoflo/Water Solution)
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Test V16, Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 5.60 Test V16, Non-dimensional Nonplanar Slosh Force
(Fy/kd).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; gt=0.16, v=0.92, C=8.00%, Bo=61, Excitation angle=00 )
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Test V16. Run 1
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Figure 5.61 Test V16, Non-dimensional Displacement (x/d).
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Figure 5.62 Test V16, Non-dimensional Acceleration (Ax/g).
(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.92, C=8.00%, Bo=61, Excitation angle=00 )
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Figure 5.63 Test V17, Non-dimensional Planar Slosh Force (Fx/kd).
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Test V17, Non-dimensional Nonplanar Slosh Force
(Fy/kd).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.32, v=0.92, C=8.00%, Bo=61, Excitation angle=00 )
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Test V17, Run 1
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Figure 5.65 Test V17, Non-dimensional Displacement (x/d).
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Figure 5.66 Test V17, Non-dimensional Acceleration (Ax/g).
(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.32, v=0.92, C=8.00%, Bo=61, Excitation angle=00 )
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Test V18, Run 1
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Figure 5.67 Test V18, Non-dimensional Planar Slosh Force (Fx/kd).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.87, C=8.00%, Bo=61, Excitation angle=00 )
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Test V18, Run 1
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Figure 5.68
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Figure 5.69 Test V18, Non-dimensional Acceleration (Ax/g).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; gI=0.16, v=0.87, C=8.00%, Bo=61, Excitation angle=00 )
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Test V19, Run 1
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Figure 5.70 Test V19, Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 5.71 Test V19, Non-dimensional
(Fy/kd).

Nonplanar Slosh Force

(Square tank, coupled, harmonic excitation, Coupled system
parameters; p=0.16, v=0.92, C=4.00%, Bo=61, Excitation angle=00 )
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Test V19, Run 1
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Figure 5.73 Test V19, Non-dimensional Acceleration (Ax/g).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; jg=0.16, v=0.92, C=4.00%, Bo=61, Excitation angle=00 )
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Figure 5.75 Test V20,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Square tank, coupled, harmonic excitation, Coupled system
parameters; jL=0.16, v=0.92, C=8.00%, Bo=61, Excitation angle=150 )
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Test V20, Run 1
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Figure 5.77 Test V20, Non-dimensional Acceleration (Ax/g).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.92, C=8.00%, Bo=61, Excitation angle=150 )
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Test V21, Non-dimensional Nonplanar Slosh Force
(Fy/kd).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; g.=0.32, v=0.92, C=8.00%, Bo=61, Excitation angle=150 )
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Test V21, Run 1
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Test V21, Non-dimensional Acceleration (Ax/g).
(Square tank, coupled, harmonic excitation, Coupled system
parameters; p=0.32, v=0.92, C=8.00%, Bo=61, Excitation angle=150 )
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Figure 5.82
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Figure 5.83 Test V22, Non-dimensional Nonplanar Slosh
(Fy/kd).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.92, C=8.00%, Bo=61, Excitation angle=300 )
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Test V22, Run 1
Swirling Motion

0.70 0.80 0.90 1.00 1.10 1.20 1.30

f/fo

Figure 5.84
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Figure 5.85 Test V22, Non-dimensional Acceleration (Ax/g).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.92, C=8.00%, Bo=61, Excitation angle=300 )
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Figure 5.87 Test V23,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.32, v=0.92, C=8.00%, Bo=61, Excitation angle=300 )
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Figure 5.89 Test V23, Non-dimensional Acceleration (Ax/g).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.32, v=0.92, C=8.00%, Bo=61, Excitation angle=300 )
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Figure 5.91 Test V24,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Square tank, coupled, harmonic excitation, Coupled system
parameters; !g=0.16, v=0.92, C=8.00%, Bo=61, Excitation angle=450 )
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Test V24, Run 1
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Test V24, Non-dimensional Acceleration (Ax/g).
(Square tank, coupled, harmonic excitation, Coupled system
parameters; p=0.16, v=0.92, C=8.00%, Bo=61, Excitation angle=450 )
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Figure 5.95 Test V25,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Square tank, coupled, harmonic excitation, Coupled system
parameters; g=0.32, v=0.92, C=8.00%, Bo=61, Excitation angle=45°)
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Test V25, Run 1
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Figure 5.97 Test V25, Non-dimensional Acceleration (Ax/g).

(Square tank, coupled, harmonic excitation, Coupled system
parameters; gi=0.16, v=0.92, ý=8.00%, Bo=61, Excitation angle=450 )
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5.4 Rectangular Tank Model

Figure 5.98 is a drawing of the rectangular tank used to investigate the
dynamic behavior of a fluid contained in a rectangular tank.

CI0
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10-32 Locking Coil 3mm

Figure 5.98 Rectangular Study Model
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The details of the dynamic test, test parameters and test procedures are

as discussed in chapter 3. The relevant tank parameters are summarized in

Table 5.13.

Table 5.13 Rectangular Tank Parameters

Parameter Abbreviation Value

Width (Inside) W 25.40 mm

Length (Inside) L 51.50 mm

Tank Height H 90.00 mm

Fill Height h 33.90 mm

Normalization Factor d 33.90 mm

Bond Number Bo 78

Empty Mass mE 112.33 g

Fluid Mass mF 43.70 g

1st Fluid Slosh Frequency fs 3.76 Hz

2nd Fluid Slosh Frequency f2 5.41 Hz

5.4.1 Rectangular Tank Test Matrix

A series of uncoupled tests were performed to determine the low-

amplitude linear characteristics of the fluid and for comparison with the

coupled test results. The angle between the tank symmetry axis (See

Fig. 5.99) was varied to determine the effect of non-planar excitation. Each

test has a unique test identifier and this identifier will be used to identify the
experimental results presented in this chapter. Table 5.14 summarizes the
uncoupled (fluid alone) test matrix and Table 5.15 the coupled
(fluid/spacecraft) test matrix. A 2% photoflo/water solution was used in all
these tests and the excitation frequency ranged from 3 Hz to 6 Hz.
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Table 5.14 Rectangular Uncoupled Test Matrix

Test ID Excitation Angle Figures

RU1 00 5.100,5.101
RU2 300 5.102,5.103
RU3 600 5.104, 5.105
RU4 900 5.106, 5.107

F cos (Qt)

300

600

900

Figure 5.99 Explanation of Excitation Angle
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Table 5.15 Rectangular Coupled Test Matrix

Test ID Excitation Angle A v (%) Figures

R16 900 0.16 0.90 8.00 5.108 - 5.111
R17 900 0.32 0.90 8.00 5.112 - 5.115
R18 900 0.16 0.85 8.00 5.116 - 5.119
R19 900 0.16 0.90 4.00 5.120 -5.123

R20 600 0.16 0.90 8.00 5.124 - 5.127
R21 600 0.32 0.90 8.00 5.128 - 5.131

R22 300 0.16 0.90 8.00 5.132 - 5.135
R23 300 0.32 0.90 8.00 5.136 - 5.139

R24* 00 0.16 0.90 8.00 5.140 -5.142
R25 00 0.32 0.90 8.00 5.143 - 5.146

Note: v = Frequency Ratio = fSlosh/fSpacecraft = fs/fo
J = Mass Ratio = mFluid/mSpacecraft Mode = mF/m

= Damping Ratio of Spacecraft Mode

* = Loss of one of the measured signals

In the uncoupled tests, the fluid/spacecraft system was harmonically
excited over a frequency range covering the first fluid slosh mode resonance
and in the coupled tests also covering the spacecraft resonance. A total of 5
logarithmically spaced (Log1 o) force excitation levels were used to determine

the dynamic characteristics. The force excitation levels used in the
uncoupled tests are summarized in Table 5.1. This table also identifies the
graphic symbols used to present the experimental results. In Table 5.16, the
minimum force level and maximum force level for the coupled tests are
summarized. The intermediate force levels are logarithmically spaced
between these minimum and maximum values. Note that the applied
force, Fex, is non-dimensionalized by dividing with (kd) to yield the non-
dimensional force wex-
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Table 5.16 Minimum and Maximum Non-dimensional Experimentally

Applied Harmonic Excitation Levels for the Rectangular Tank Coupled Tests

Test ID I ex m ex max

Graphic Symbol: x 0

R16 0.0012 0.0110

R17 0.0019 0.0175

R18 0.0016 0.0147

R19 0.0015 0.0137
R20 0.0021 0.0192

R21 0.0024 0.0219
R22 0.0020 0.0186

R23 0.0024 0.0219

R24 0.0019 0.0175

R25 0.0019 0.0175

5.4.2 Rectangular Tank Experimental Results

Section 5.4.2.1 discusses the uncoupled test results and the following

section, section 5.4.2.2, discusses the coupled test results.

5.4.2.1 Discussion of the Uncoupled Test Results

The linear eigen-characteristics of the first fluid mode, from the

uncoupled fluid tests, are summarized in Table 5.17 and those for the second

fluid mode in Table 5.18. The damping ratios were obtained with the half-

power-band-width method from the lowest force excitation level results.
Figures 5.100 to 5.107 give the results of the uncoupled tests (also see
Table 5.14 for a more detailed identification of the figures). The vertical
solid line in these figures indicates the position of the resonance peak as
predicted by linear theory. Any shift of the resonance peak away from this
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vertical line represents nonlinear fluid slosh behavior. The direction of
excitation is also indicated on each figure.

Table 5.17 Measured 1st Mode Linear Eigen-characteristics (Rectangular

Tank, with 2% Photoflo/Water Solution)

Test ID Excitation Angle Natural Damping Slosh Mass

Frequency Ratio Fraction

(Hz) (%)

RU1 00
RU2 300 3.76 2.9 0.09
RU3 600 3.76 2.5 0.24

RU4 900 3.76 2.5 0.35

Table 5.18 Measured 2nd Mode Linear Eigen-characteristics (Rectangular
Tank, with 2% Photoflo/Water Solution)

Test ID Excitation Angle Natural Damping Slosh Mass

Frequency Ratio Fraction

(Hz) (%)

RU1 00 5.41 3.1 0.20
RU2 300 5.42 2.9 0.19
RU3 600 5.41 3.7 0.10
RU4 900

In the uncoupled test results, both the first and second fluid slosh
modes exhibit a softening tendency with increasing excitation amplitudes.
The strength of these nonlinearities are fluid motion amplitude dependent
and thus dependent on the excitation angle. The relative amount of energy
transferred to these two slosh modes is dependent on the excitation angle.
In test RU1, the excitation angle is such that the first slosh mode is not
excited and in test RU4 such that the second fluid slosh mode is not excited.

201



The jump phenomenon observed in the square tanks, where the fluid
swirls, was not observed in the rectangular uncoupled tests. The spectral
separation of the first two eigen-modes must be seen as the reason for this
behavior. For the square tanks the first two modes are repeated planar and
nonplanar modes. Energy exchange between these repeated modes is more
likely than energy exchange between modes that are spectrally separated.

5.4.2.2 Discussion of the Coupled Test Results

In the coupled tests, the mass ratios, frequency ratios and damping
ratios were varied to determine the effect of these parameters on the coupled
behavior of the fluid/spacecraft system. Figures 5.108 to 5.146 the results of
the coupled tests with the rectangular tank (also see Table 5.15 for a more
detailed identification of the figures). As with the uncoupled tests, the
vertical solid lines in these figures indicate the positions of the resonance
peaks as predicted by linear theory. Any shift of the resonance peaks away
from this verticals line represent nonlinear behavior. The direction of
excitation is also indicated on each figure.

Studying the Figures 5.110 to 5.113 (Test R16) it can be seen that both
the first fluid mode and the spacecraft mode exhibit moderate softening
(decrease in resonant frequency with an increase in force excitation
amplitude) trends and that the shape of the resonant peaks are slightly
amplitude dependent. Using this test (R16 g=0.16, v=0.90, 4=8.00%) as the
nominal configuration, the following conclusions can be made concerning:

The Effect of Mass Ratio: From Fig. 5.114 (Test R17, g=0.32, v=0.90,
4=8.00%) it can be concluded that, as was observed in the spherical tank
results but contrary to the square results, lower mass fractions result in more
nonlinear fluid behavior.

The Effect of Frequency Ratio: The lack of experiments with varying
frequency ratios makes a conclusion on the effect of this parameter on the
system dynamics difficult. From Fig. 5.118 (Test R18, g=0.16, v=0.87,
4=8.00%), however, one could conclude that configurations with frequencies
ratios close to unity are more nonlinear. Note: Different force excitation
levels were used for tests R16 and R18.
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The Effect of Damping Ratio: It is clear from Fig. 5.122 (Test R19,
p=0.16, v=0.92, ý=4.00%) that configurations with lower spacecraft modal
damping ratios are more nonlinear.

The Effect of Excitation Angle: From Fig. 5.112 (Test R16, Excitation
Angle=900), Fig. 5.126 (Test R20, Excitation Angle=600 ), Fig. 5.134 (Test R22,
Excitation Angle=300) and Fig. 5.141 (Test R24, Excitation Angle=00 ) it can be
concluded that the effect of the excitation angle can be determined from the
frequency ratio conclusion. When the excitation angle is such that the first
mode is not excited (Test R24, Excitation Angle=00 ), the spacecraft mode is
linear and the second fluid slosh mode exhibits the same nonlinear
behavior observed in the uncoupled tests. For this excitation angle, the
frequency ratio between the spacecraft mode and the second fluid slosh
mode is greater than unity and the spacecraft mode motion is linear. As the
excitation angle increases, the excitation of the first fluid slosh mode
increases, yielding a more nonlinear spacecraft mode.
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Figure 5.100
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Test RU1, Nonplanar Slosh Force (Fy).
(Rectangular tank, uncoupled, harmonic excitation, Excitation
angle=00 and Fluid=2% Photoflo/Water Solution)
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Figure 5.103 Test RU2, Nonplanar Slosh Force (Fy).
(Rectangular tank, uncoupled, harmonic excitation, Excitation
angle=300 and Fluid=2% Photoflo/Water Solution)
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Figure 5.105 Test RU3, Nonplanar Slosh Force (Fy).

(Rectangular tank, uncoupled, harmonic excitation, Excitation
angle=600 and Fluid=2% Photoflo/Water Solution)
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Figure 5.106 Test RU4, Planar Slosh Force (Fx).
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Test RU4, Nonplanar Slosh Force (Fy).
(Rectangular tank, uncoupled, harmonic excitation, Excitation
angle=900 and Fluid=2% Photoflo/Water Solution)

207

Fx (N)

0.1

0.01

0.001

0.0001
3.50

T(
'



Test R16, Run 1

F ex
ex kd

x= 0.0012
= 0.0021

6
3
0

xxX

U

0.80 0.90 1.00 1.10 1.20 1.30 1.40

f/fo

Figure 5.108

0.01-

Fy/kd
0.001

0.0001

0.00001-
0.

Test R16, Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 5.109 Test R16,
(Fy/kd).

Non-dimensional Nonplanar Slosh

(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; !g=0.16, v=0.90, C=8.00%, Bo=78, Excitation angle=900 )
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Figure 5.111 Test R16, Non-dimensional Acceleration (Ax/g).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; pg=0.16, v=0.90, C=8.00%, Bo=78, Excitation angle=900 )

209

_ i

0.7



0.1-

0.01.

Fx/kd

0.001-

0.0001-

0.00001
0.7

Figure 5.112

Fy/kd

0.01-

0.001-

0.0001-

0.00001-

Test R17, Run 1

F ex
ex kd

x= 0.0019
Fex

1900

x xx~
Xx X

X

'0 0.80 0.90 1.00 1.10 1.20 1.30 1.40

f/fo

Test R17, Non-dimensional Planar Slosh Force (Fx/kd).

Tr-.. 0 17 D.... 1

xx
X

0.70
I I I I - I

0.80 0.90 1.00 1.10 1.20 1.30 1.40

f/fo

Figure 5.113 Test R17,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.32, v=0.90, ý=8.00%, Bo=78, Excitation angle=900 )
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Figure 5.115 Test R17, Non-dimensional Acceleration (Ax/g).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.32, v=0.90, t=8.00%, Bo=78, Excitation angle=900 )
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Figure 5.117 Test R18,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.85, C=8.00%, Bo=78, Excitation angle=900 )

212

0.1

0.01

Fx/kd

0.001

0.0001

0.00001
0.70



0.80 0.90 1.00 1.10 1.20 1.30 1.40

f/fo

Figure 5.118 T est R18, Non-dimensional Displacement (xld).
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Figure 5.119 Test R18, Non-dimensional Acceleration (Ax/g).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; .=0.16, v=0.85, C=8.00%, Bo=78, Excitation angle=900 )
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Figure 5.121 Test R19,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.90, =--4.00%, Bo=78, Excitation angle=900 )
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Figure 5.123 Test R19, Non-dimensional Acceleration (Ax/g).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.90, ~=4.00%, Bo=78, Excitation angle=900 )
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Figure 5.125 Test R20,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; p=0.16, v=0.90, C=8.00%, Bo=78, Excitation angle=600 )
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Figure 5.127 Test R20, Non-dimensional Acceleration (Ax/g)

(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.90, C=8.00%, Bo=78, Excitation angle=600 )

217

0.1-

x/d

0.01-

0.001-
0.70

0.70

|

-



Fx/kd

0.1-

0.01-

0.001-

0.0001-
0.7

Figure 5.128

Test R21, Run 1

F ex
ex - kd

x = 0.0024
" = 0.0042

Fex

nK

x a0xx&'- xx.
ýx.

70 0.80 0.90 1.00 1.10 1.20 1.30 1.40

f/fo

Test R21, Non-dimensional Planar Slosh Force (Fx/kd).

Fex

Test R21, Run 1

C-

I I ~

0.80 0.90 1.00 1.10 1.20 1.30 1.40

f/fo

Figure 5.129 Test R21,
(Fy/kd).

(Rectangular tank,
parameters; pg=0.32,

Non-dimensional Nonplanar Slosh Force

coupled, harmonic excitation, Coupled system
v=0.90, C=8.00%, Bo=78, Excitation angle=600 )

218

Fy/kd

U.1-

0.01.

0.001-

0.0001-

x
X
-

0.70

_

3-

0.7

•a d

I

I



Test R21, Run 1
0.1-

x/d

0.01-

0.001
0.70

Fex/

0.80 0.90 1.00 1.10 1.20 1.30 1.40

f/fo

Figure 5.130

0.1-

0.01-
Ax/g

0.001-

0.0001
0

Test R21, Non-dimensional Displacement (x/d).

Fex
Test R21, Run 1 /

600

x

'.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40

f/fo

Figure 5.131 Test R21, Non-dimensional Acceleration (Ax/g).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; gp=0.32, v=0.90, C=8.00%, Bo=78, Excitation angle=600 )
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Figure 5.133 Test R22, Non-dimensional Nonplanar Slosh Force
(Fy/kd).

(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.90, C=8.00%, Bo=78, Excitation angle=30°)
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Figure 5.134 Test R22, Non-dimensional Displacement (x/d).
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Figure 5.135 Test R22, Non-dimensional Acceleration (Ax/g).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; !g=0.16, v=0.90, ý=8.00%, Bo=78, Excitation angle=300 )
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Figure 5.137 Test R23, Non-dimensional Nonplanar Slosh Force
(Fy/kd).

(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; p=0.32, v=0.90, C=8.00%, Bo=78, Excitation angle=300 )
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Figure 5.138 Test R23, Non-dimensional Displacement (x/d).
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Figure 5.139 Test R23, Non-dimensional Acceleration (Ax/g).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.32, v=0.90, C=8.00%, Bo=78, Excitation angle=300 )
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Figure 5.140 Test R24, Non-dimensional Planar Slosh Force (Fx/kd).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.16, v=0.90, C=8.00%, Bo=78, Excitation angle=00 )
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Figure 5.141 Test R24, Non-dimensional Displacement (x/d).
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Figure 5.142 Test R24, Non-dimensional Acceleration (Ax/g).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; gp=0.16, v=0.90, C=8.00%, Bo=78, Excitation angle=00 )
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Figure 5.144 Test R25,
(Fy/kd).

Non-dimensional Nonplanar Slosh Force

(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g-=0.32, v=0.90, C=8.00%, Bo=78, Excitation angle=00)
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Figure 5.145 Test R25, Non-dimensional Displacement (xld).
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Figure 5.146 Test R25, Non-dimensional Acceleration (AxIg).
(Rectangular tank, coupled, harmonic excitation, Coupled system
parameters; g=0.32, v=0.90, ý=8.00%, Bo=78, Excitation angle=00 )
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5.5 Cylindrical Tank Model

The experimental results obtained by Peterson [1987] on the dynamic
behavior of fluids in cylindrical tanks were used to developed, investigate
and verify the harmonic balance method. The harmonic balance method is
used in this research to predict the forced response characteristics from the
nonlinear governing differential equations (Appendix B) obtained from the
assumed mode model developed in Chapter 2. In order to present the
harmonic balance verification results and other solution issues, this section
(5.5) presents the cylindrical model used by Peterson and summarizes the
configurations used in the verification. The cylindrical tank results will also
be used to validate the analytical model. The actual experimental results
will not be presented in this section but in Chapter 6 (Section 6.2), the
chapter that discusses the harmonic balance method.

Fig. 5.147 depicts the geometry of the cylindrical tank. Three tests
(Identification numbers: 420-1, 331-1 and 410-1) were selected from
Peterson's work to investigate the harmonic balance method and to verify
the analytical model. The relevant parameters of the test articles are
tabulated in Table 5.19.

The results presented in Chapter 6 will be identified with the
identification numbers 420-1, 331-1 and 410-1. The coupled system
parameters for the these three configurations are tabulated in Table 5.20.

228



.V-JL L,%JýhJ E j JZL L

Figure 5.147 Geometry of the 3.1 cm Cylindrical Tank Model.
Note: 4.1 cm Model Tank Geometry is identical to 3.1 cm Model Tank except

for inner diameter and outer diameters.
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Table 5.19 Cylindrical Tank Parameters

Parameter Symbol Value

Inner Diameter D
(420-1 & 410-1) 31.0 mm
(331-1) 41.0 mm
Tank Height H 90.0 mm
Fill Height h, d
& Normalization Factor

(420-1 & 410-1) 31.0 mm
(331-1) 41.0 mm

Empty Mass mE
(420-1 & 410-1) 339.0 g
(331-1) 379.0 g
Fluid Mass mF
(420-1 & 410-1) 23.40 g
(331-1) 54.10 g

1st Natural Slosh Frequency fs
420-1 5.43 Hz
410-1 5.28 Hz

331-1 6.65 Hz
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Table 5.20 Coupled System Parameters

Test ID Model Fluid Bond Number p v M (%)

420-1 Photoflo 66 0.16 0.90 9.3
331-1 Water 58 0.16 0.90 9.8
410-1 Water 33 0.16 0.89 9.1

Note: v = Frequency Ratio = fSlosh/fSpacecraft = fs/f
= Mass Ratio = mfluid/mspacecraft Mode = mF/m

= Damping Ratio of Spacecraft Mode

5.6 Summary

All three fluid model tanks exhibit softening behavior. This behavior
was observed in both the uncoupled and the coupled tests. In the coupled
tests, the simulated spacecraft mode also exhibits this softening behavior.
The observed nonlinear behavior was very dependent on the amplitude of
the fluid motion and in the axi-symmetric tanks (spherical and square) a
jump phenomenon was observed. At the jump, the fluid motion changed
from the expected linear planar motion to a combined planar/nonplanar
swirling motion. This behavior was not observed in the rectangular model
tank where energy exchange between the spectrally separated first and
second fluid slosh modes are unlikely.
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Chapter 6

Analytical Results

In this chapter the analytical model developed in Chapter 2 will be
used to predict the forced response characteristics of the study models
considered in this research. The analytical results will be compared with the
experimental results of Chapter 5. In addition to the spherical, square and
rectangular tanks investigated in Chapter 5, the analytical model will also be
used to predict the forced response characteristics of fluids in cylindrical
tanks. The predicted results will be compared with experimental results
obtained by Peterson [1987]. At the time that the harmonic balance method
(Chapter 3) was implemented, only Peterson's experimental results were
available to investigate and verify the method. The cylindrical tank results
are thus used to discuss the harmonic balance method and serve as
additional verification of the analytical model.

This chapter is organized into four parts, the first section (6.1)
discusses the issues involved in developing the analytical model. This
section outlines how the linear eigen-mode shapes were calculated with the
finite difference method developed in Chapter 2 and the calculation of the
coefficients of the nonlinear analytical model. The results include the
equilibrium free surface shapes for the tank models, verification of eigen-
routines and the linear mode shapes used in the assumed mode analytical
model.

In the next section (6.2) the harmonic balance method is used to
predict the forced response characteristics of fluids in a selected cylindrical
tank configuration. This section uses the cylindrical tank experimental
results of Peterson [1987] to investigate issues such as, the use of numerically
determined mode shapes as assumed modes, model truncation, the value of
the Newton-Raphson method and Inverse Solution technique as nonlinear
equation solvers and the dependence of these methods on the initial guess
at the modal amplitudes.

In section 6.3, the analytical models (developed in section 6.1) are used
to predict the forced response characteristics of a few selected model tank
configurations that were experimentally investigated. The analytical
predictions are compared with the corresponding experimental results to
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determine the validity and limitations of the analytical model. The final
section (6.4) summarizes the results presented in this chapter.

6.1 Analytical Modeling Issues

The analytical model developed in Chapter 2 requires a set of
assumed mode shapes. The conclusion in Chapter 2 was that the eigen-
mode shapes of the linearized model form a good set of assumed modes.
Using the linear eigen-mode shapes will ensure that at least the linear
dynamics are correctly modeled. Given a set of assumed mode shapes, the
coefficients of the nonlinear governing differential equations can then be
calculated.

In order to correctly model Bond number effects, the analytical model
requires that the equilibrium free surface shape must be used to define the
fluid surface geometry. In the first sub-section (6.1.1) of this section, the
equilibrium free surface shapes, as calculated with the method developed in
Chapter 2, will be presented for the four tank models.

In the next sub-section (6.1.2) the finite difference method, with which
the linear eigen-mode shapes will be calculated, is verified. In general the
method is verified by comparing the eigen-characteristics, obtained with this
method, with theoretically known values. Sub-section 6.1.3 discusses the
inclusion of contact angle hysteresis effects and in 6.1.4 the analytical models
developed for the different tank models are discussed.

6.1.1 Equilibrium Free Surface

The Bond number effects are modeled by using the equilibrium free
surface to define the fluid equilibrium free surface geometry. The Bond
number relates the relative importance of capillary forces to gravitation
(acceleration) forces. The equilibrium free surface changes from a flat free
surface at infinite Bond number to a spherical shape at very low Bond
numbers. The capillary energy associated with the free surface motion is
correctly modeled if the equilibrium free surface is included in the fluid
geometry.
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As discussed in section 2.3.1, the equilibrium free surface is calculated
by expressing the time independent energy terms as a variational problem
(eq. 2.72). A finite difference approximation of the resultant nonlinear
governing differential equation (eq. 2.77) is used to solve for the equilibrium
free surface as a function of the fluid Bond number. This program was
verified by repeating a few example cases presented in Myshkis [Myshkis, et
al, 1987] and repeating the cylindrical tank equilibrium free surface results
obtained by Peterson [1987]. The slope of the equilibrium free surface shape
at the wall must satisfy the required liquid-vapor-wall contact angle. Based
on experimentally observed values, a 100 contact angle (() was used for cases
where a 2% Photoflo/water solution was used as a model fluid and a 60'
contact angle was assumed for the cases in which water was used as model
fluid. In Chapter 5 the relevant Bond numbers are presented; Table 5.3
(Spherical tank), Table 5.8 (Square tank), Table 5.13 (Rectangular tank) and
Table 5.20 (Cylindrical tanks).

Using the symmetry of the model tanks, the determination of the
equilibrium free surface is significantly simplified. In the cylindrical and
spherical tank cases the shape is completely defined by the shape in the
radial direction. Figure 2.8 presents the equilibrium free surface shapes for
the cylindrical tank cases (See section 5.4 for a description of the cylindrical
tank models) and Fig. 6.1 depicts the predicted equilibrium free surface
shapes for the spherical tank model. In the square and rectangular cases
only one quarter of the tanks was modeled. In Fig. 6.2 (Square tank) and Fig.
6.3 (Rectangular tank), the thick solid lines indicate the axes of symmetry. In
all the predictions, a non-uniformly spaced mesh was used. As can be seen
in the figures, a finer mesh was used near the wall where the equilibrium
free surface is changing rapidly.
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Free Surface Shape for Spherical Tank

0.01 0.02 0.03

Radius (m)

Fluid Free Surface Shape for the Spherical Tank (Bo = 117).

235

0.003

0.002

f (m)
0.001

0.000

-0.001
0.00

Figure 6.1



Square Tank: Bo = 61.31, Alpha = 10.0
Equilibrium Shape

Figure 6.2

yX

Equilibrium Fluid Free Surface Shape for the Square Tank.

The dashed lines are the finite difference mesh and the thick solid
lines are the axes of symmetry.

Rectangular Tank: Bo = 78.1, Alpha = 10.00
Equilibrium Shape

Figure 6.3

Z

V

Equilibrium Fluid Free Surface Shape for the Rectangular
Tank.

The dashed lines are the finite difference mesh and the thick solid
lines are the axes of symmetry.
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6.1.2 Calculation of the Linear Eigen-Mode Shapes

In this section, the program that calculates the linear eigen-mode
shapes, used in the assumed mode analytical model, is verified. Thorough
verification of this program was required to ensure a good set of assumed
modes for the analytical model and that the analytical model accurately
models the linear fluid behavior. The finite difference model used to model
the linear eigen-characteristics is discussed in section 2.3.2. Given that this
program uses different coordinate systems for the different tank geometries,
the program will be verified for each model tank. Since theoretical
solutions only exist for flat free surface cases, a flat free surface was assumed
in all the verification cases. This allows the predicted eigen-frequencies to be
compared with the values predicted by linear theory. Although the mode
shapes could be verified by checking the orthogonality between the predicted
and theoretical mode shapes, only the eigen-frequencies were compared.

Calculation of the Linear Eigen-characteristics of Fluids in Cylindrical
Tanks: For the cylindrical tanks, a cylindrical coordinate system was used to
calculate the small deflection (motion) eigen-mode shapes. The program
was verified by calculating the eigen-characteristics for a 3.1 cm diameter
cylindrical tank, containing a fluid with a flat free surface, and comparing
the results with theory [Blevins, 1987]. For a cylindrical tank, the linear
(small motion) eigen-mode shapes are Bessel functions in the radial
direction and sinusoids in the azimuth direction. These exact mode shapes
are obtained from the linear governing differential equations, by separation
of time and spatial variables and application of the boundary conditions. In
order to compare the finite difference results with the exact solution, it
contact angle hysteresis effects were ignored. The fill height equaled the
tank diameter and the comparison is summarized in Table 6.1.

237



Table 6.1 Comparison of Predicted and Theoretical Eigen-Frequencies for
a Cylindrical Tank (Diameter=Fill height=3.1 cm)

Mode Number Natural Frequency (Hz) Difference

Finite Difference Exact (%)

1 0.00 0.00 0.0
2 5.42 5.43 0.2
3 5.42 5.43 0.2
4 6.99 7.00 0.1
5 6.99 7.00 0.1
6 7.95 7.84 1.4
7 8.18 8.21 0.4
8 8.18 8.21 0.4
9 9.16 9.25 1.0

10 9.16 9.25 1.0

Based on these results, it can be concluded that the finite difference
program will yield reliable mode shapes for a cylindrical geometry.

Calculation of the Linear Eigen-characteristics of Fluids in Spherical
Tanks: For the spherical tank a cartesian mesh was used, and the boundary
conditions, that are not aligned with the spherical boundaries, were imposed
with shape functions (as discussed in Chapter 2, sub-section 2.3.2). This
program differs from those used to predict the linear eigen-characteristics in
cylindrical and rectangular tanks, in that the mesh is not aligned with the
fluid boundaries. In the cylindrical and rectangular cases, a simple curvi-
linear coordinate system can be found that is aligned with all the fluid
boundaries. In the spherical container problem this is not possible since the
equilibrium free surface in the spherical container is not aligned with any of
the spherical coordinates. Given the special implementation of the
boundary conditions, a thorough verification of the program was required.
The program was verified in two ways:

(a) By predicting, with the cartesian mesh spherical finite difference
(FD) program, the eigen-characteristics of a fluid, with an equilibrium flat
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free surface, contained in a spherical tank and comparing the results with an

analytical solution that uses Legendre assumed functions in a Ritz approach

[Moiseev and Petrov, 1966].
Figure 6.4 depicts the results of the first verification case. The x-axis in

the figure is the fluid height non-dimensionalized with the spherical radius.

The y-axis is a multiplier (k), such that the first fluid frequency is given by:

1

f 2s r2 (6.3)

Where r is the spherical radius and g the gravity acceleration constant.

6.00

4.50

Lambda
X

3.00

1.50

0.00
0.00

Verification of Spherical Finite Difference Program

0.28 0.57 0.85 1.14 1.42 1.71

h/r

2.00

Figure 6.4

Note: 1.
2.

Comparison of the Normalized Frequency for Spherical
Geometry
h is the fluid depth and r the spherical radius.
Curve 1 is the analytically predicted result from [Moiseev
and Petrov] and curve 2 is the results as obtained with the
spherical finite difference program.

239



(b) The program was also verified by, using this cartesian mesh finite

difference program to predict the eigen-characteristics of the cylindrical tank

verification example (a fluid, with a flat free surface, contained in the 3.1 cm
diameter cylindrical tank) and to compare the results with the exact solution

presented in Table 6.1 (See Table 6.2). The fill height was equal to the tank
diameter and a total of 197 surface nodes were used in finite difference
mesh. The mesh had 10 mesh levels in the fluid depth direction. The mode
shapes were also checked to verify that the predicted modal order is correct.

Table 6.2 Comparison of Predicted and Theoretical Eigen-Frequencies for
a Cylindrical Tank, using a Cartesian Mesh

Theory Spherical Difference
FD Program

Mode Number Frequency Frequency
(Hz) (Hz) (%)

1 0.00 0.00 0.0
2 5.43 5.48 0.9
3 5.43 5.48 0.9
4 7.00 7.11* 1.6
5 7.00 7.12* 1.6
6 7.84 8.13 3.7
7 8.21 8.44 2.8
8 8.21 8.44 2.8
9 9.25 9.61* 3.9

10 9.25 9.63* 4.1

Frequencies should be equal but differ because of non-axi-symmetric
grid. See discussion below.

Fig. 6.4 and Table 6.3 indicate that the spherical finite difference
program can reliably predict the linear eigen-characteristics of fluids
contained in spherical containers and that boundary conditions which are
not aligned with a mesh grid can be imposed using the shape function
approach discussed in Chapter 2. The cartesian grid used results in a non-
axi-symmetric model of the fluid (See Fig. 6.5 ). This leads to modes that
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Verification of Spherical Finite Difference Program

(b)

/

(a)

z x

Figure 6.5 Non-axi-symmetric mesh
cylindrical test problem.

Mode with nodal lines (a) will be slightly
nodal lines (b).

for the axi-symmetric

different from Mode with

should have equal frequencies actually have slightly different frequencies.
The difference between frequencies will decrease as the mesh size decreases.

Calculation of the Linear Eigen-characteristics of Fluids in Square and
Rectangular Tanks: One program was used to predict the eigen-
characteristics of fluids in both the square and rectangular tanks. The finite
difference (FD) program used a cartesian mesh that was aligned with the
tank walls. The program was verified by predicting the linear eigen-
characteristics of a fluid (flat equilibrium free surface) contained in a
rectangular tank and comparing the results with theory [Blevins, 1987] (See
Table 6.3). The theoretical solution is obtained by solving the linear (small
motion) governing differential equations exactly. The dimensions of the
container equaled those of the rectangular model tank used in the
experimental studies, a surface area of 3 cm by 3 cm and a fill height of 3 cm
(see section 5.3).
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Table 6.3 Verification of the Square and Rectangular
Program

Finite Difference

Finite Difference Theory Difference
Program

Mode Number Frequency Frequency
(Hz) (Hz) (%)

1 0.00 0.00 0.00
2 3.84 3.83 0.3
3 5.56 5.50 1.1
4 5.61 5.54 1.3
5 5.94 5.85 1.5
6 6.72 6.57 2.3
7 6.88 6.74 2.1
8 7.66 7.41 3.4
9 8.05 7.84 2.4

10 8.20 7.96 3.2

Similar results were obtained for a square tank. Table 6.3 shows that
the finite difference program can reliably predict the linear eigen-
characteristics of fluids contained in square and rectangular tanks.

One final point must be made on the calculation of the linear eigen-
mode shapes used in the assumed mode analytical model. In order to obtain
the best possible set of mode shapes, the equilibrium free surface shape was
included in the finite difference mesh describing fluid geometry. In the
cylindrical and spherical tank models, this was easily achieved by linear
interpolation of the equilibrium free surface shape to obtain the shape at the
finite difference mesh nodes. The interpolation was required since the
mesh used in the calculation of the equilibrium free surface shapes was
different from the one used in the determination of the eigen-characteristics.
In the square and rectangular models, a more complex two-dimensional
spline fit to the equilibrium free surface was used to obtain the free surface
shape at the mesh nodes of the eigen-characteristics program.
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6.1.3 Contact Angle Hysteresis Effects

Except for two cylindrical cases where water was used, a 2%
Photoflo/water solution was used as a model fluid. This solution has
almost no contact angle hysteresis. Water however, has significant contact
angle hysteresis, so much so that the fluid slosh frequencies are significantly
higher for tanks with water as model fluid compared to tanks with the
Photoflo solution as model fluid. This behavior is a linear effect and true
for low amplitude (linear) vibrations. The first order effect of contact angle
hysteresis is thus to increase the eigen-frequencies and modify the eigen-
mode shapes. Satterlee and Reynolds [1967] showed that the linear effect of
contact angle hysteresis can be included in the linear model (and thus in the
eigen-finite difference program) as an inhomogeneous boundary condition.
The boundary condition is, from Chapter 2:

in{san gd on contact surface (2.100)

In the finite difference program, the hysteresis constant (T) was set to
yield the experimentally observed eigen-frequencies. The hysteresis
constants that yielded the correct linear eigen-frequencies are presented in
Table 6.4. This table also summarizes the experimentally observed linear
eigen-characteristics of the cylindrical tank cases. See section 5.4 for more
detail on the cylindrical test cases.

Note that an analytical model based on eigen-mode shapes that was
calculated without including contact angle hysteresis effects, would fail to
correctly predict the linear forced response characteristics.
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Table 6.4 Model Parameters

Test ID Fluid fs (Hz) ql1 (%) F

420-1 2% Photoflo/Water 5.43 3.49 0.00
331-1 Water 5.28 4.20 -3.40
410-1 Water 6.65 4.64 -5.95

6.1.4 Analytical Models

The previous sub-sections discussed the calculation of the
equilibrium free surface, the verification of the program that will be used to
calculate the linear eigen-mode shapes and the inclusion of contact angle
hysteresis effects in the linear model. At this point it can be assumed that a
representative set of assumed mode shapes (the linear eigen-mode shapes) is
available for the analytical model. The assumed mode shapes are used to
calculate the coefficients in the nonlinear governing differential equations
(Appendix A and B). Section 6.1.4.1 will discuss which modes were included
in the analytical model and present some of the assumed mode shapes in
detail. Section 6.4.1.2 discusses the modeling of fluid dissipation effects.

6.1.4.1 Assumed Mode Shape Selection

In Chapter 2 (2.1.5) it was noted that the best approach in an assumed
mode model is to progressively increase the number of modes used in order
to determine convergence. Truncation of the assumed set however, is
possible at two points in the analysis process. In Chapter 2, the kinematic
boundary condition is satisfied in a "least squares sense" by expressing the
flow potential generalized coordinates in terms of the free surface
generalized coordinates (eq. 2.36).

N (0) N N (1) N N N (2 )

Pm=  1 mnqn+ 1 E mn n9rqq+ I I 1 .nrs)qqrqs
n=1 n=lr=l n=lr=ls=l (2.36)
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The wavelength matrices (1) are a summation of matrices and the linear
correction to the wavelength matrix, for example, is given by:

(1) (0) (1) (1) (0) (0)
1 = kmi d - 7, k k d"mnr mi ijk nki=1 j= 1k= (2.34)

The accuracy of these wavelength matrices will depend on the number of
modes used. Thus, in order to obtain the best possible "least squares" match
between the fluid flow potential and free surface generalized coordinates,
many modes can be used to calculate the wavelength matrices,s but the
nonlinear governing differential equations can be truncated after this step to
retain only the first (M) modes. The two truncation points are thus; (a) the
number of modes used in the calculation of the wavelength matrices and (b)
the number of modes retained in the nonlinear governing differential
equations. The second truncation can be justified on the grounds of modal
separation.

In this research, the set of modes, used to calculate the wavelength
matrices, was obtained by progressively increasing the number of modes,
while tracking the change in the nonlinear coefficients. The number of
modes included were truncated as soon as additional modes failed to change
the coefficients by more than 5%. Section 6.2 of this chapter will discuss the
truncation of the model on the grounds of spectral separation of the modes.

The same type of assumed mode shapes (modal numbers and
description) were used in the cylindrical, spherical and square tank models.
In Appendix A and B two models are developed, a planar and nonplanar
model. The planar model includes the spacecraft degree-of-freedom and the
first three planar/axi-symmetric fluid slosh modes. In the nonplanar
model, two nonplanar slosh modes are added to the planar model. The
modes used in these models, for the axi-symmetric tanks, are summarized
in Table 6.5 (Also see Table BI).
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Table 6.5 Fluid Modes used in Planar and Nonplanar Models

Mode Node Lines Degree-of- Planar Nonplanar

Description Circular Square Freedom in Model Model

Tanks Tank Analytical
Model

x-Translation x 4 4

Primary, Planar q l 4

Primary, Nonplanar q 2- .4

Axi-symmetric , q3 ' 4

Secondary, Planar q4 4 4

Secondary, Nonplanar 1¶i q5 -

Culindrical Tanks: The finite difference mesh used to calculate the

eigen-characteristics of the cylindrical tanks had a total of 384 surface nodes

(32 in the angular direction and 12 in the radial direction) and 10 mesh

levels in the fluid depth direction. Fig. 6.6 to Fig. 6.10 presents the mode

shapes for the model tank in which a 2% Photoflo/Water solution was used

as a model fluid (Test 420-1). In these figures, the dotted mesh is the
undeformed equilibrium free surface. Studying these figures yields a better

understanding of the nomenclature used in Table 6.5. The figures are only

the mode shape at the fluid surface. The mode shapes are required as a

function of fluid depth in order to calculate the wavenumber (k) matrices

(see 2.1.6) in the assumed mode model. The finite difference program does
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calculate the mode shapes as a function of fluid depth but for clarity the
mode shapes are not displayed for the whole fluid volume.

Fig. 6.11 and Fig. 6.12 depict the primary planar slosh modes of
Test 331-1 and Test 410-1 in which water was used as model fluid. These two

figures illustrate how the eigen-mode shapes are modified by the effect of
contact angle hysteresis and must be contrasted with Fig. 6.6 which depicts
the primary planar slosh mode of Test 420-1. In Test 420-1, a 2%
Photoflo/water solution which has no contact angle hysteresis, was used as a
model fluid.

Cylindrical Tank, ID: 420-1
Mode No 2 Frequency= 5.431 Hz

Y .X

Figure 6.6 Cylindrical Test 420-1. Assumed Mode Shape for the ql
Degree-of-Freedom of the Analytical Model.
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Cylindrical Tank, ID: 420-1

Mode No 3 Frequency = 5.431 Hz

Y -X

Cylindrical Test 420-1. Assumed Mode Shape for the q2
Degree-of-Freedom of the Analytical Model.

Cylindrical Tank, ID: 420-1
Mode No 6 Frequency = 8.014 Hz

Y
-X

Cylindrical Test 420-1. Assumed Mode Shape for the q3
Degree-of-Freedom of the Analytical Model.
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Cylindrical Tank, ID: 420-1
Mode No 4 Frequency =

Cylindrical
Degree-of-

Test 420-1.
Freedom.

Assumed Mode Shape for the q4

Cylindrical Tank, ID: 420-1
Mode No 5 Frequency = 7.106 Hz

Y

Figure 6.10 Cylindrical Test 420-1. Assumed Mode Shape for the q5
Degree-of-Freedom of the Analytical Model.
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Cylindrical Tank, ID: 331-1
Mode No 2 Frequency = 5.346 Hz

Y
-X

Figure 6.11 Cylindrical Test 331-1. Assumed Mode Shape for the ql
Degree-of-Freedom of the Analytical Model.

Cylindrical Tank, ID: 410-1

Mode No 2 Frequency =

Figure 6.12 Cylindrical Test 410-1. Assumed Mode Shape for the ql
Degree-of-Freedom of the Analytical Model.
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Spherical Tank: Given that the assumed mode model is only valid

for tanks with straight and parallel walls (see section 2.1.6), an analytical

model for the spherical tank was developed that assumed straight walls for

the spherical tank. This assumption is dearly not valid but Fig. 6.13 shows

this assumption can be justified for moderate fluid amplitudes. Fig. 6.13

shows the change in projected fluid surface area for a range of fluid heights.

In this figure it was assumed that the motion is only the first fluid slosh

mode. As expected, the error is a function of the fill height. Given that the

non-dimensional fill height used in the spherical tests (Chapter 5) was 35%,
the error is less than 10% for non-dimensional fluid amplitudes less than

15%.
For the spherical tank, a total of 317 surface nodes and 10 mesh levels

in the fluid depth direction were used. Fig. 6.14 and 6.15 are examples of the

spherical tank eigen-modes. Also clear from these figures is the cartesian

grid used in the spherical tank model.

Area Error versus Fluid Response Height
24

18

- AArea
Area

12

6.

0.
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Fluid Height/Tank Diameter (%)

Figure 6.13 Change in Projected Fluid Surface Area versus 1st Fluid
Slosh Mode Amplitude.

(Spherical Tank. Given fluid height, the area is the fluid surface
area projected on the horizontal (el, e2) plane.)

251



Spherical Tank
Mode No 3 Frequency = 3.400 Hz

Figure 6.14

Spherical Tar

Mode No

Spherical Tank. Assumed Mode Shape for the ql Degree-
of-Freedom.

nk
6 Frequency = 5.568 Hz

v X

Figure 6.15 Spherical Tank. Assumed Mode Shape for the q3 Degree-
of-Freedom.
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Sauare Tank: In the square tank case, a total of 361 surface nodes
(19 x 19) and 10 mesh levels in the fluid depth direction were used. Fig. 6.16
to 6.18 are examples of the square tank eigen-modes.

Square Tank

Mode No 2 Frequency = 5.188 Hz z

yX

Figure 6.16 Square Tank. Assumed Mode Shape for the ql Degree of
Freedom.
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Square Tank
Mode No 6 Frequency = 7.499 Hz

Z

yX

Figure 6.17

Square Tank
Mode No

Square Tank. Assumed Mode Shape for the q3 Degree of
Freedom.

4 Frequency = 6.267 Hz

Oy%

Figure 6.18 Square Tank. Assumed Mode Shape for the q5 Degree of
Freedom.
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Rectangular Tank: The same mesh used in the square tank case, was
used for the rectangular tank. The rectangular tank however, does not have
the repeated eigen-values of the axi-symmetric tanks (Cylindrical, spherical
and square) and a different set of assumed mode shapes was used for the
rectangular model. The mode shapes used are summarized in Table 6.6
along with the corresponding figure numbers. In Table 6.6, the long side
refers to the long side of the rectangular tank, and the short side to the short
side of the tank.

Table 6.6 Fluid Modes used in Rectangular Tank Model

Mode Description Nodal Lines Degree-of- Figure
Freedom used in
Analytical Model

x-Translation Mode x

1st Axi-symmetric Mode EIZ qi 6.19
(Long Side)

1st Axi-symmetric Mode J--- - q2 6.20
(Short Side)

1st Skew Symmetric - q3 6.21

1st Symmetric Mode q4 6.22

(Long Side)

1st Symmetric Mode --- q5 6.23

(Short Side)
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Rectangular Tank
Mode No 4 Frequency = 5.673 Hz

Figure 6.20 Rectangular Tank. Assumed Mode Shape for the q2
Degree-of-Freedom.

Rectangular Tank

Mode No 3 Frequency = 5.656 Hz

X

Figure 6.21 Rectangular Tank. Assumed Mode Shape for the q3Degree-of-Freedom.
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Rectangular Tank

Mode No 10 Frequency = 8.290 Hz

Figure 6.22 Rectangular Tank. Assumed Mode Shape for the q4
Degree-of-Freedom.

Rectangular Tank

Mode No 5 Frequency =

Figure 6.23 Rectangular Tank.
Degree-of-Freedom.

Assumed Mode Shape for the q5
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Fluid Dissipation Effects

All the coefficients in the analytical model can be calculated from a
knowledge of the fluid geometry (including boundary conditions), fluid type
and acceleration field, except for the fluid damping coefficients. Modeling of
the viscous boundary layer dissipation effects is extremely difficult. For
small motions, this effect can be sufficiently modeled by a small, linear
viscous damping term. The experimentally observed fluid damping ratios
in the uncoupled fluid slosh tests were used as an estimate of the resulting
modal damping terms.

6.2 Forced Response Characteristics

In this section, the Harmonic Balance method will be used to predict
the forced response characteristics of one of the cylindrical tank cases
(Test 410-1). In test 410-1 water which has significant contact angle
hysteresis, was used as a model fluid. At the time that the Harmonic
Balance method was implemented, only the cylindrical tank experimental
results (obtained by Peterson [1987]) were available. The verification and
investigation of the method were thus performed by comparing the forced
response characteristics of the fluid contained in the cylindrical tank, as
predicted by the Harmonic Balance method, with the cylindrical tank
experimental results.

The following implementation questions will be addressed in sub-
section 6.2.1:

Can the Harmonic Balance method be used to predict the
forced response characteristics using the nonlinear
governing differential equations obtained from the assumed
mode model developed in Chapter 2. How does the
Harmonic Balance results compare with the Multiple-Time-
Scales method used by Peterson [1987].
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Can this method predict jump phenomena and find
multiple solutions (roots).
How dependent is the Newton-Raphson solver on the initial
guess.
Which non-linear equation solver is the best? Inverse
solution versus Newton-Raphson.

In order to determine whether the assumed mode model can be made
more general by the use of numerically determined mode shapes, the
question posed is: What is the loss in accuracy when such mode shapes are
used instead of theoretical mode shapes? This question is addressed, in the
next sub-section (6.2.2), by comparing the results obtained with an analytical
model based on theoretical mode shapes with the results obtained with a
model based on numerically determined mode shapes. Model truncation,
based on spectral separation of the modes is also discussed in this section.
Finally sub-section 6.2.2 shows that the analytical model, if slightly
perturbed, can predict the swirling motion observed in the experiments.

6.2.1 Implementation Issues

In order to simplify the analysis, all the results presented in this sub-
section are based on a truncated planar model of the cylindrical tank. The
planar model summarized in Table 6.5 was further truncated to retain only
the spacecraft x-translation mode and the first primary planar fluid slosh
mode. This truncation will be justified in section 6.2.2. The coefficients of
the planar model were obtained by exact integration of theoretical mode
shapes [Blevins, 1987]. A FORTRAN program, named DCONS (Dynamic
Characteristics of Non-linear Systems) was developed which implemented
the Harmonic Balance method, as described in Chapter 3. An entry
subroutine to DCONS read the coefficients of the nonlinear governing
differential equations from a data file and also calculated the Fourier
integration coefficients (See eqs 3.30). Given an initial guess for the modal
amplitudes, DCONS iteratively solved for the modal amplitudes using one
of two solution techniques: the Inverse solution technique and the Newton-
Raphson method (See Chapter 3). A subroutine evaluated the Fourier
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coefficients (eqs 3.17), using the integration coefficients calculated by the
entry subroutine, during the iterative solution procedure.

The following paragraphs will address the implementation issues
outlined in the introduction of this section (6.2).

Verification of the Harmonic Balance method: In Fig. 6.24 the results
are shown for the case in which the Harmonic Balance method was used to
predict the forced response characteristics for the cylindrical tank (Test 410-1).
The Newton-Raphson solver was used to solve for the modal amplitudes,
and the initial guess for each forcing frequency and amplitude was taken to
be the solution at the previous forcing frequency. In this prediction, the
forcing frequency was increased from the minimum (f/fo = 0.6) to the
maximum value (f/fo = 1.3). At the minimum forcing frequency, the initial
guess was taken to be the modal amplitudes predicted by the linearized
model. The forcing level was increased in logarithmic (Logl 0) steps to match

the forcing levels used in the experiments. In the figures, the solid lines are
the Harmonic Balance predictions, the curved vertical lines, the Multiple-
Time-Scales (MTS) method predictions and the symbols are the
experimental results.

The results show that the analytical model combined with Harmonic
Balance method can be used to predict the forced response characteristics of
fluids in cylindrical tanks. The predicted shift in resonant peaks by the
Harmonic balance method is as good as the Multiple-Time-Scales prediction
but the ability of the Harmonic Balance method to predict the amplitude
dependent dissipation rates is a significant improvement over the MTS
method. As will be seen in the following paragraph, multiple solutions
exist at the higher excitation level and that these solutions can be found if
different initial guesses are used in the nonlinear equation solvers.
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Test 410-1. Non-dimensional Tank Displacement (x/d).

ethod
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Test 410-1. Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 6.24 Comparison between Analytical and Experimental
Results. "Increasing" Excitation Frequency.

(Cylindrical tank, Test 410-1, Bo=33, d=3.1 cm. Coupled system
parameters: 9.=0.16, v=0.89 and C=9.1%)
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Multiple Solutions and lump Phenomena: In Fig. 6.24 the forcing
frequency was increased from low to high. The initial guess at each new
forcing frequency was thus based on the solution at a lower frequency. In
Fig. 6.25, the forcing frequency was decreased from the maximum (f/fo = 1.3)
to the minimum (f/fo = 0.6). The initial guess used in the Newton-Raphson
solver was thus the solution at the preceding higher frequency. This figure
shows that the solver can find multiple roots, given different initial
conditions. In particular, the ability of the Newton-Raphson solver to
predict the jump at the first resonance peak in Fig. 6.24, is satisfactory proof
that the method can handle jump phenomena.

The ability of the model to correctly predict the multiple solution in
the region marked (a) supports the conclusion that the analytical model
combined with the Harmonic Balance method can predict the forced
response characteristics of fluids. The planar slosh force prediction
however, indicates that the response is not correctly modeled in this region
by this simplified truncated model.
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Test 410-1. Non-dimensional Tank Displacement (x/d).
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Test 410-1. Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 6.25 Comparison between Analytical and
Results. "Decreasing" Excitation Frequency.

Experimental

(Cylindrical tank, Test 410-1, Bo=33, d=3.1 cm. Solid lines=Harmonic
balance method, Symbols=Experiment. Coupled system parameters:
g=0.16, v=0.89 and C=9.1%)
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Dependence on Initial Guess: It is well known that almost all

nonlinear equation solvers are very dependent on the initial guess. In order
to determine this dependence and to determine whether it would be
possible to converge on different solutions by using different initial guesses,
the solution to the linearized equations was used as an initial guess (Fig.
6.26). Studying this figure, one must conclude that the Newton-Raphson
method is dependent on the initial guess and that in order to obtain a
reliable prediction, the best initial guess must be used. In this research, the
best initial guess is the solution at a previous forcing frequency. Finely
spaced forcing frequencies will yield better initial guesses and improve the
convergence of the Newton-Raphson method.

Newton-Raphson versus Inverse Solution Technique: The Inverse

Solution technique does not require the Jacobian to be evaluated during
each iteration, making the method much faster than the Newton-Raphson
method per iteration loop. In Fig. 6.27 however, it is shown that the Inverse
Iteration method fails to converge at the higher excitation levels. The
method also took more iterations to converge at moderate excitation levels
compared to the Newton-Raphson method. Given this result, the Newton-
Raphson method was used for the remainder of the analytical predictions.
However, the speed of the Inverse Iteration method, suggests that the best
approach is to use this method at low forcing amplitudes and to switch to
the Newton-Raphson method at higher forcing levels, when convergence of
the Inverse Iteration method begins to fail.
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Test 410-1. Non-dimensional Tank Displacement (x/d).
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Dependence on Initial Guess. Prediction Obtained using
Linear Solution as an Initial Guess.

Test 410-1. Non-dimensional Tank Displacement (x/d).
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Figure 6.27 Evaluation of the Inverse Solution Technique.
(Cylindrical tank, Test 410-1, Bo=33, d=3.1 cm. Solid lines=Harmonic
balance method, Symbols=Experiment. Coupled system parameters:
p.=0.16, v=0.89 and C=9.1%)
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6.2.2 Modeling Issues

In this section certain modeling issues will be discussed. In the first
part model truncation is investigated, in the second, the use of numerically
determined mode shapes is justified. This section also shows that the
analytical model, if perturbed, can predict the swirling motion that was
experimentally observed by Peterson [1987]. In the final part, for
completeness, the frequency and damping ratio shifts are predicted for the
cylindrical test article (Test 410-1).

Model Truncation: The modal truncation of the analytical model is
possible at two stages of the modeling process, as described in sub-section
6.1.4.1. As explained in this section, the number of modes used in the
analysis can be truncated before and after the wavelength matrices are
calculated. In this research, the number of modes used in the calculation of
the wavelength matrices were determined by checking the convergence of
the matrix entries as the mode number was increased. In theory it is
possible to retain all the modes used to calculate the wavelength matrices
but in practice this is undesirable. Including more modes in the analysis
significantly increases the solution time of the Newton-Raphson solver.
Thus, although it was possible to use many modes in the calculation of the
wavelength matrices only the modes indicated in Tables 6.5 and 6.6 were
retained in the governing differential equations.

Given that the cylindrical model used to predict the forced response
characteristics in the previous section included two secondary modes, the
question is whether spectral separation of the modes can be used to truncate
the model further so that only the spacecraft x-translation and first planar
fluid slosh modes are retained. Fig. 6.28 compares the results obtained with
the truncated two mode model with results obtained with the planar model
of Table 6.5. The two models are identical except for the failure of the 4
mode model to converge in the region between the resonant peaks and the
different solution predicted by the 4 mode model in region (a). The failure
of the more complex model to converge is expected and the different
solution in region (a) can be explained either by the fact .that the 4 mode
model does have an additional solution in that region or by the fact that
given a different model, the Newton-Raphson solver converged on a
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Test 410-1. Non-dimensional Tank Displacement (Fx/kd).
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Figure 6.28 Model Truncation. 2 Mode Model versus 4 Mode Model.

(Cylindrical tank, Test 410-1, Bo=33, d=3.1 cm. Solid lines=2 Mode
Model, Symbols=4 Mode Model. Coupled system parameters: g1=0.16,
v=0.89 and C=9.1%)

different solution. Based on these results, it can be concluded that model

truncation, based on modal separation, can be justified.

Numerically Determined Mode Shapes: The coefficients of the planar

model used to predict the analytical results up to this point were calculated
by exact integration of the theoretical mode shapes for a cylindrical tank. In

order to make the analytical method applicable to more general problems,

the use of numerically determined mode shapes is desirable. Given that the

calculation of the coefficients of the nonlinear governing differential

equations require first and second order derivatives of the mode shapes as

well as integration over the volume and free surface area, the question
posed is: what is the loss in accuracy if numerically determined mode shapes
are used? Errors are introduced by (a) numerical integration of the mode
shapes and (b) by the use of numerically determined mode shapes.
Although not presented, it was determined that the errors introduced by
numerical integration of the mode shapes are insignificant.

In Fig. 6.29, the coefficients of the planar (see Table 6.5) model were
obtained by numerical integration of the numerically determined mode
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shapes (see section 6.1.4). It can be concluded that the model based on the
numerical integration of the numerically determined mode shapes (to
calculate the coefficients) is different from the one obtained by the exact
integration of the theoretical mode shapes. A true measure of the validity of
the numerical model is to compare the results with the experiment (Fig.
6.30). Comparing these figures with those of Fig. 6.24, it can be concluded
that the theoretical mode shapes yields a better prediction of the planar slosh
force but that the numerical mode shapes better predicts the tank
displacement near the first resonance peak.

Two reasons exist for the differences between the two models. There
are the errors introduced by using numerically determined mode shapes and
there is the fact that the numerical mode shapes were obtained by including
the equilibrium free surface in the fluid geometry. The theoretical mode
shapes assumed a flat free surface.

Although the model based on the numerically determined mode
shapes is not identical to the model based on the theoretical mode shapes,
the results of Fig. 6.30 indicate that the "numerical" model will yield
adequate predictions of the forced response characteristics of fluids in
cylindrical containers. Section 6.3 addresses the question whether this
conclusion can be extended to tanks of other geometry.
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Test 410-1. Non-dimensional Tank Displacement (x/d).

Model based on numerically determined mode shapes

30

f/fo

A A A

Fx/kd

x10

Test 410-1. Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 6.29 Comparison of Models Based on
Numerically Determined Mode Shapes.

Theoretical and

(Cylindrical tank, Test 410-1, Bo=33, d=3.1 cm. Solid lines=Nonplanar
model based on numerically determined mode shapes, Symbols=Planar
model based on theoretical mode shapes. Coupled system parameters:
g=0.16, v=0.89 and C=9.1%)
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Test 410-1. Non-dimensional Tank Displacement (x/d).
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f/fo

Test 410-1. Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 6.30 Comparison between Analytical and Experimental
Results. Nonplanar model based on Numerically
Determined Mode Shapes. "Increasing" Excitation
Frequency.

(Cylindrical tank, Test 410-1, Bo=33, d=3.1 cm. Coupled system
parameters: g=0.16, v=0.89 and C=9.1%. Solid lines=Nonplanar model
based on numerically determined mode shapes, Symbols=Experiment)
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Swirling Motion: Peterson [1987] observed that the fluid motion in
cylindrical tanks jumps from the expected planar motion to a combined
planar/nonplanar swirling motion. The nonplanar model discussed in the
previous paragraph failed to predict this response but when a small mass
coupling term between the spacecraft degree-of-freedom and the nonplanar
slosh mode was added to the non-homogeneous governing differential
equations, this swirling motion was predicted. The coupling term added
was 2% of the mass coupling between the spacecraft mode and the planar
slosh mode and was added in the corresponding spacecraft/nonplanar
primary slosh mass matrix entries. The possible existence of such a coupling
term can be explained by either (a) unmodeled nonplanar characteristics of
the excitation system or (b) small perturbations in the geometry of the tank
that would couple the planar and nonplanar modes. The results of the
perturbed analysis are depicted in Fig. 6.31 and 6.32. Fig. 6.31 depicts the first
planar and nonplanar slosh mode amplitudes. The fluid motion jumps,
near the first resonance, from a pure planar motion to a motion that has
equal planar and nonplanar fluid motion amplitudes.

In Fig. 6.32, the fluid motion, amplified for clarity by a factor of 2, at a
forcing frequency (~/fo = 0.73) and at the highest forcing amplitude is
plotted (see Fig. 6.31). Each picture represents the fluid shape at different
phase angles. The phase angle between the two repeated eigen-values (first
planar and first nonplanar modes) is roughly 900 and the motion closely
resembles the swirling motion observed in the experiments.

Prediction of the swirling motion with the nonplanar model based on
the numerically calculated mode shapes is one of the major successes of this
research. A planar model cannot predict this motion. As shown in this
section, the response is very sensitive to small nonplanar inputs and at
moderate excitation levels, a small nonplanar input can result in significant
planar/nonplanar (swirling) motion. It is believed that the electro-
mechanical shaker is not perfectly rigid in the nonplanar direction and that
in order to correctly model the swirling motion, an accurate model of this
shaker nonplanar degree-of-freedom will be required.
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Test 410-1. Planar Fluid Slosh Mode (ql/d).
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Figure 6.31

Test 410-1. Nonplanar Fluid Slosh Mode (q2/d).

Point for which swirling motion is plotted
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Jump Phenomenon Resulting in Swirling
Note: "Increasing" Excitation Frequency.

Motion.

(Cylindrical tank, Test 410-1, Bo=33, d=3.1 cm. Coupled system
parameters: jg=0.16, v=0.89 and C=9.1%. Solid lines=Nonplanar model
based on numerically determined mode shapes, Symbols=Experiment)
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Shift in Model Frequencies and Damping Ratios: Given the modal

amplitudes predicted by the analytical model, the equivalent linear modal
frequencies and damping ratios can be inferred (See section 3.3.5). The
importance and meaning of these amplitude and frequency dependent
frequencies and damping ratios are that a linear system with these eigen-
characteristics will yield the same forced response characteristics as the
nonlinear fluid/spacecraft system at the given forcing amplitude and
frequency. These values can be used by a control engineer as tolerance limits
for his control design.

In order to complete the analysis of Test 410-1, the shifts in linear
frequencies and damping ratios are presented. Fig. 6.33 and Fig. 6.34 depict
the shift in model frequencies and damping ratios of the first two coupled
modes. These graphs predict frequency shifts as high as 20% for the fluid
slosh (coupled) mode and 7% for the spacecraft mode. The maximum
predicted shift in damping ratio is 45% for the fluid slosh mode and 12% for
the spacecraft mode. The numbers in the graphs indicate the corresponding
experimental forcing levels (Chapter 5).
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Figure 6.33 Cylindrical Tank, Test 410-1. Predicted Shift in Coupled
Frequencies.

(Cylindrical tank, Test 410-1, Bo=33, d=3.1 cm.
Numbers=Corresponding experimental excitation level. Note: Results
are eigen-characteristics of coupled fluid/spacecraft system: .g=0.16,
v=0.89 and C=9.1%.)
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Test 410-1. Shift in Spacecraft Mode's Damping Ratio.
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6.2.3 Summary

In section 6.2, it has been shown that the analytical model combined
with the Harmonic Balance method can be used to predict the forced
response characteristics of coupled fluid systems. Given the results in
section 6.2.1, the rest of the analytical predictions will be performed with: (a)
the Newton-Raphson solver, (b) using the solution at the previous forcing
frequency as the initial guess and (c) a nonplanar analytical model based on
numerically determined mode shapes. The next section (6.3) will compare
the analytical results of a few selected cases with the experimental results.

In Section 6.2, model truncation has been justified on the grounds of
modal spectral separation and it was shown that with a small perturbation
of the analytical model, the experimentally observed swirling motion can be
predicted.

6.3 Comparison of Analytical and Experimental Results

In this section, the analytical models (section 6.1) will be used to
predict the forced response characteristics of a few selected cases. In section
6.3.1, two more cylindrical cases are presented (Test 420-1 and Test 331-1),
section 6.3.2 compares the analytical results of spherical test S14 with the
experimental results presented in Chapter 5. In section 6.3.3, the predicted
forced response characteristics for a square tank case (V16) is compared with
experimental results and in section 6.3.4 two rectangular cases (R16 and R20)
are studied.

6.3.1 Cylindrical Model Tanks

Using the mode shapes obtained from the finite difference program
(Section 6.1), the coefficients of the nonlinear governing differential
equations were numerically calculated. The Harmonic Balance method was
used to predict the results presented in Fig. 6.35 to 6.36 (Test 420-1) and Fig.
6.37 to 6.38 (Test 331-1). In Test 420-1 a 3.1 cm diameter cylindrical tank was
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used with a 2% Photoflo/water solution as modeling fluid. This test can be
compared with the results of Test 410-1, in which the same tank geometry
was used but water as modeling fluid. Test 331-1 examined the coupled fluid
behavior of water in a 4.1 cm diameter cylindrical tank.

By comparing the analytical results with the experimental results, one
can conclude that the analytical model does a credible job for low to
moderate excitation amplitudes. At the highest excitation amplitude, the
correlation is more complex. For example, examining the planar slosh force
prediction for Test 331-1 as an example (see Fig. 6.38), the analytical model
predicts (at high excitation levels) the response correctly in region (a) if the
increasing excitation frequency result is used. In region (b) the prediction is
correct if decreasing excitation frequency result is used and in region (d),
either one of the results can be used. The model fail to predict the response
in region (c), where the motion jumps from the linearly predicted planar
motion to the exotic planar/nonplanar swirling motion.

Except for the prediction of the swirling motion, one can conclude
that the nonlinear cylindrical model, based on the numerically calculated
mode shapes, can be used to predict the forced response characteristics of
coupled fluid/spacecraft systems. The unmodeled nonplanar characteristics
of the excitation system (no matter how small) is believed to be one of the
major reasons why the nonplanar model fails to accurately predict the
motion between the first and second resonant peaks.

Note on Chaotic Motion: A second reason explaining the failure of
the nonplanar model in the region between the first and second resonant
peaks, is the possibility of chaotic behavior. Given that two solutions exist
in this region, it is possible that the motion jumps from one to the other and
that the experimentally measured results are actually an average of the two
motions. The motion will be dependent on the initial conditions, which
can be seen as random and the measured results will be an average of the
chaotic motion.
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Test 420-1. Non-dimensional Tank Displacement (x/d).
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Test 420-1. Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 6.35 Comparison between Analytical and
Results. "Increasing" Excitation Frequency.

Experimental

(Cylindrical tank, Test 420-1, Bo=66, d=3.1 cm. Solid lines=Harmonic
balance method, Symbols=Experiment. Coupled system parameters:
4t=0.16, v=0.90 and C=9.3%. Model fluid=2% Photoflo/Water
solution.)
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Test 420-1. Non-dimensional Tank Displacement (x/d).
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Test 420-1. Non-dimensional Planar Slosh Force (Fx/kd).
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Comparison between Analytical and Experimental
Results. "Decreasing" Excitation Frequency.

(Cylindrical tank, Test 420-1, Bo=66, d=3.1 cm. Solid lines=Harmonic
balance method, Symbols=Experiment. Coupled system parameters:
gl=0.16, v=0.90 and C=9.3%. Model fluid=2% Photoflo/Water
solution.)
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Test 331-1. Non-dimensional Tank Displacement (x/d).
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Test 331-1. Non-dimensional Planar Slosh Force (Fx/kd).
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Figure 6.37 Comparison between Analytical and
Results. "Increasing" Excitation Frequency.

Experimental

(Cylindrical tank, Test 331-1, Bo=58, d=4.1 cm. Solid lines=Harmonic
balance method, Symbols=Experiment. Coupled system parameters:
gt=0.1 6, v=0.90 and C=9.8%. Model Fluid=Water.)
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Test 331-1. Non-dimensional Tank Displacement (x/d).
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Comparison between Analytical and Experimental
Results. "Decreasing" Excitation Frequency.

(Cylindrical tank, Test 331-1, Bo=58, d=4.1 cm. Solid lines=Harmonic
balance method, Symbols=Experiment. Coupled system parameters:
gi=0.16, v=0.90 and C=9.8%. Model fluid=Water.)
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6.3.2 Spherical Model Tank

In this section the spherical model will be used to predict the forced
response characteristics of the S14 spherical experimental test. The results
will indicate how well the analytical model will be able to model tank
geometries with non-straight or non-parallel walls.

The response in figures 6.39 were calculated using an increasing
excitation frequency, and figures 6.40 by using a decreasing excitation
frequency. Note that only the results of three of the experimental force
excitation levels (levels 1, 3 and 5) are retained in these figures. As with the
cylindrical predictions, 2% of the planar coupling term (between spacecraft
displacement and planar slosh mode) was added to the nonplanar equations,
thus coupling the spacecraft mode with the nonplanar slosh mode. The
results indicate a small mismatch in the resonance peak of the spacecraft
mode. The model predicts swirl motion (Fig. 6.41) but not at the same
excitation frequencies as experimentally observed. Extending the predicted
curve (highest excitation frequency), one may conclude that the model may
predict swirl motion at the experimentally observed excitation frequencies if
the Newton-Raphson solver was able to find all the roots of the nonlinear
equations. Even though the slosh amplitudes are as high as 30% of the tank
diameter, the slosh force predictions are surprisingly accurate.

In figures 6.42 and 6.43, the predicted changes in the coupled resonant
equivalent linear frequencies and damping ratios for the first two modes are
plotted. These graphs predict frequency shifts as high as 16% for the coupled
fluid planar slosh mode and 7% for the spacecraft mode. The maximum
predicted shift in damping ratio is 60% for the fluid planar slosh mode and
18% for the spacecraft mode.

The analytical predictions obtained with spherical model, indicates
that the straight and parallel model assumptions can be relaxed and the
analytical model developed may be used for more complex tank geometries.
The applicability will be decided by the change in surface area and boundary
conditions as a function of fluid height (of which Fig. 6.13 is an example).
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Test S14. Non-dimensional Tank Displacement (x/d).
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Results. "Increasing" Excitation Frequency.

(Spherical Tank, Test $14, Bo=117. Solid lines=Harmonic balance
method, Symbols=Experiment. Coupled system parameters: g=0.16,
v=0.90 and C=8.0%. Model fluid=2% Photoflo/Water solution.)
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Test S14. Non-dimensional Tank Displacement (x/d).
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Figure 6.40 Comparison between Analytical and Experimental
Results. "Decreasing" Excitation Frequency.

(Spherical Tank, Test S14, Bo=117. Solid lines=Harmonic balance
method, Symbols=Experiment. Coupled system parameters: 4=0.16,
v=0.90 and C=8.0%. Model fluid=2% Photoflo/Water solution.)
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Figure 6.41 Spherical Test S14. Predicted Swirling Motion near First
Resonant Peak.
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Test S14. Shift in Planar Slosh Mode's Frequency.
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4=8.0%. Model fluid=2% Photoflo/Water solution. Numbers=

Corresponding experimental excitation level.)
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Test S14. Shift Planar Slosh Mode's Damping Ratio.----------- --- ---- --- -- -------0.01-

-14.99.
Slosh Mode

Slosh Mode
-29.99-

(%)

-45.00-

-60.00-

--- 4 .,Q Q Q Q6XN~C~rr Jru U U U Uyyyyyy

+ "* 1 *- .... -
s.e

-"-"u o"".-

3 ++*+f*4+++++ +++++++
++++ ++

+'

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

f/fo

20.00-

10.00.
ATspacecraft

ýSpacecraft

-0.00-

(%)

-10.00-

-9n13 nn

Figure 6.43

Test 514. Shift in Spacecraft's Mode Damping Ratio.

5

3 ++
+ .0'+ + +

,IcT_ ... ±....+ +H++ +....

~-H+

c +
+ +

++·e
.-· ·_·~··~···~·_·_·_·_r-- -tf~Ct+rLL~ i I

1+
+

+

+

+

0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30

f/fo

Spherical Tank, Test S14. Predicted Shift in Coupled
Damping Ratios.

(Spherical tank, Test 514, Bo=117. Note: Results are eigen-
characteristics of coupled fluid/spacecraft system: g1=0.16, v=0.90 and
C=8.0%. Model fluid=2% Photoflo/Water solution. Numbers=
Corresponding experimental excitation level.)

288

~;i~L1ZI~Cllrrr44·+~Y

r

.... I I I I - - - -11 -Ann . . I~Yl nn~W ( ~IIICC · II· · ·

I I I I I 1

r-

t++t*mm
~f

~

L

.-



6.3.3 Square Model Tank

The applicability of the analytical model to square tank geometries
was investigated by predicting the forced response characteristics of a square
experimental test (V16). In this test the direction of the excitation was
parallel to one of the tank sides. The ability to handle different excitation
angles is investigated in the next section (6.3.4). The coefficients of the
nonlinear governing differential equations (Appendix B) were obtained by
numerical integration of the mode shapes obtained with finite difference
program (see section 6.1.4).

The results are depicted in Fig.s 6.44 and 6.45. The results obtained
with the square model are disappointing. The model does predict the shift
in the coupled fluid mode's frequency but fails in the region of the spacecraft
mode resonance. The major reason for this failure, is the very strong
swirling motion behavior observed in the experiments. Even for moderate
excitation amplitudes, the motion jumps from the expected planar motion
to a very stable swirling motion. The analytical model can predict this
swirling motion, as shown in Fig. 46 but a more detailed model of the
nonplanar excitation system degree-of-freedom will be required to correctly
model this behavior.

In Fig. 6.47 and 6.48, the predicted changes in the coupled resonant
(eigen) frequencies and damping ratios for the first two modes are plotted.
These graphs predict frequency shifts as high as 24% for the fluid slosh mode
and 8% for the spacecraft mode. The maximum predicted shift in damping
ratio is 60% for the fluid slosh mode and 24% for the spacecraft mode.
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Test V16. Non-dimensional Tank Displacement (x/d).
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Comparison between Analytical and
Results. "Increasing" Excitation Frequency.
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(Square tank, Test V16, Bo=61. Solid lines=Harmonic balance method,
Symbols=Experiment. Excitation angle=00 . Coupled system
parameters: g=0.16, v=0.90 and C=8.0%. Model fluid=2%
Photoflo/Water solution.)
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Test V16. Non-dimensional Tank Displacement (x/d).
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Figure 6.45 Comparison between Analytical and Experimental
Results. "Decreasing" Excitation Frequency.

(Square tank, Test V16, Bo=61. Solid lines=Harmonic balance method,
Symbols=Experiment. Excitation angle=00 . Coupled system
parameters: gp=0.16, v=0.90 and C=8.0%. Model fluid=2%
Photoflo/Water solution.)
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Figure 6.46 Square Test V16.
Resonant Peak.

Predicted Swirling Motion near First
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Damping Ratios.

(Square tank, Test V16, Bo=61. Excitation angle=00 . Note: Results are
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6.3.4 Rectangular Model Tank

The ability of the model to predict the forced response characteristics
of fluids systems that do not have repeated eigen-modes is studied in this
section. The analytical model is used to predict the forced response
characteristics of Test R16. In test R16 (see Chapter 5), the direction of
excitation is aligned with the long side of the rectangular tank. In predicting
the behavior of Test R20, the ability of the analytical model to analyze the
characteristics of tanks in which the excitation is not aligned with one of the
principle axis, is investigated. In this test, the direction of excitation was
aligned at a 600 angle with the short side's axis.

Test R16: The results of the analysis are depicted in Fig. 6.49
(increasing excitation frequency) and Fig. 6.50 (decreasing excitation
frequency). The results depicted in these figures clearly illustrate the power
of the analytical model to predict the forced response characteristics of tanks
which do not have repeated eigen-modes. Tanks without repeated eigen-
modes are unlikely to exhibit the swirling motion so frequently observed in
tanks with repeated eigen-modes. Energy exchange between spectrally
separated modes is less likely than energy exchange between the repeated
planar and nonplanar slosh modes of the axi-symmetric tanks.

In Fig. 6.51 and Fig. 6.52, the predicted changes in the coupled
resonant (eigen) frequencies and damping ratios for the first two modes are
plotted for Test R16. Frequency shifts as high as 11% for the fluid slosh
(coupled) mode and 6% for the spacecraft mode are predicted. The
maximum predicted shift in damping ratio is 47% for the fluid slosh mode
and 15% for the spacecraft mode.
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Test R16. Non-dimensional Tank Displacement (x/d).
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Figure 6.49 Comparison between Analytical and Experimental
Results. "Increasing" Excitation Frequency.

(Rectangular tank, Test R16, Bo=78. Solid lines=Harmonic balance
method, Symbols=Experiment. Excitation angle=900 . Coupled system
parameters: jg=0.16, v=0.90 and C=8.0%. Model fluid=2%
Photoflo/Water solution.)
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Test R16. Non-dimensional Tank Displacement (x/d).
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Comparison between Analytical and Experimental
Results. "Decreasing" Excitation Frequency.

(Rectangular tank, Test R16, Bo=78. Solid lines=Harmonic balance
method, Symbols=Experiment. Excitation angle=900 . Coupled system
parameters: g=0.16, v=0.90 and C=8.0%. Model fluid=2%
Photoflo/Water solution.)
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Test R16. Predicted Shift in Coupled

(Rectangular tank, Test R16, Bo=78. Excitation angle=900 . Note:
Results are eigen-characteristics of coupled fluid/spacecraft system:
jg=0.16, v=0.90 and t=8.0%. Model fluid=2% Photoflo/Water solution.
Numbers= Corresponding experimental excitation level.)
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Figure 6.52 Rectangular Tank, Test R16. Predicted Shift
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in Coupled

(Rectangular tank, Test R16, Bo=78. Excitation angle=90*. Note:
Results are eigen-characteristics of coupled fluid/spacecraft system:
gl=0.16, v=0.90 and C=8.0%. Model fluid=2% Photoflo/Water solution.
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Test R20: The results for test R20 are depicted in Fig. 6.53 (increasing
excitation frequency) and in Fig. 6.54 (decreasing excitation frequency). The
results for test confirm the conclusion of the previous section, namely; the
analytical model yields good results for systems which do not have repeated
eigen-modes. The failure of this model for non-dimensional frequencies
above the unity (f/fo > 1.2), can be attributed to the number of modes
included in the analytical model. In the analytical model only one
secondary mode was added for each of the first slosh modes in the long side
and short side directions of the rectangular tank. Inclusion of more modes
may enable the model to correctly predict the higher forcing frequency
behavior. The different results obtained, near the lowest resonance peak, for
increasing and decreasing excitation frequencies, indicate that the fluid
behavior in this tank also have multiple solutions.

Note that the nomenclature in this test case can be misleading. Planar
slosh force means, the slosh force measured in the direction of excitation.

The maximum frequency shift for Test R20, from Fig. 6.55, is 10% for
both the coupled fluid slosh mode and the coupled spacecraft mode. The
maximum shift in damping ratios (Fig. 56) for this case is; 50% for the fluid
slosh mode and 40% for the spacecraft mode.
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Test R20. Non-dimensional Tank Displacement (x/d).
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Figure 6.53 Comparison between Analytical and
Results. "Increasing" Excitation Frequency.

Experimental

(Rectangular tank, Test R20, Bo=78. Solid lines=Harmonic balance
method, Symbols=Experiment. Excitation angle=60*. Coupled system
parameters: A.=0.16, v=0.90 and C=8.0%. Model fluid=2%
Photoflo/Water solution.)
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Test R20. Non-dimensional Tank Displacement (x/d).
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Figure 6.54 Comparison between Analytical and
Results. "Decreasing" Excitation Frequency.

Experimental

(Rectangular tank, Test R20, Bo=78. Solid lines=Harmonic balance
method, Symbols=Experiment. Excitation angle=60*. Coupled system
parameters: jg=0.16, v=0.90 and C=8.0%. Model fluid=2%
Photoflo/Water solution.)
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(Rectangular tank, Test R20, Bo=78. Excitation angle=60'. Note:
Results are eigen-characteristics of coupled fluid/spacecraft system:
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(Rectangular tank, Test R20, Bo=78. Excitation angle=60*. Note:
Results are eigen-characteristics of coupled fluid/spacecraft system:
p=0.16, v=0.90 and C=8.0%. Model fluid=2% Photoflo/Water solution.
Numbers= Corresponding experimental excitation level.)
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6.4 Summary

The results presented in this chapter shows that the analytical model,
developed in Chapter 2, can be used to predict the nonlinear forced response
characteristics of fluids in cylindrical, spherical and rectangular (square)
tanks. The conclusion is also that the harmonic balance method, combined
with the Newton-Raphson solver, can be used to determine the modal
amplitudes associated with the harmonic term and that numerically
determined eigen-mode shapes can be used as assumed modes without a
significant loss in accuracy.

The nonlinear model of the coupled fluid/spacecraft system
consistently predicts the experimentally observed shift in eigen-frequencies
but failed to predict the correct shape of the forced response curves in the
region where the system exhibits swirling motions. A better identification
and model of the nonplanar characteristics of the excitation system will be
required to correctly model the fluid response in this region. It is also
possible that the measured response is the "average" of more than one stable
state and it will be necessary to find all the solutions of the nonlinear
system, to correctly predict the forced response characteristics.
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Chapter 7

Conclusions and Recommendations

This chapter first presents a brief summary of the work accomplished
along with the conclusions that can be drawn from the experimental and
analytical results. Finally possible future research directions are presented.

7.1 Summary

This research studied the nonlinear dynamics of spacecraft interacting
with contained fluids. A general nonplanar model describing the
fluid/spacecraft dynamics was developed and verified by comparing
analytical with experimental results. The analytical and experimental
results contributed to a general understanding of the complex behavior of
fluid/spacecraft dynamic systems.

The nonlinear model of the fluid/spacecraft system, developed in this
research, is accurate to third order in terms of the fluid motion amplitudes.
In a assumed mode approach, the kinematic free surface boundary
condition, posed as a variational problem, provided the relationship
between the assumed free surface generalized coordinates and the fluid flow
potential coordinates. Given the generalized coordinate description of the
fluid, linear and nonlinear capillary forces, along with the standard energy
terms, are included in the fluid Lagrangian. The method is valid for tanks
with straight and parallel walls but the spherical tank analytical results,
presented in this document, showed that this method can be extended to
tanks of more complex geometry.

The nonlinear set of equations obtained by applying Lagrange's
principle to the fluid Lagrangian, was solved for the forced response
characteristics by numerical implementation of the harmonic balance
method. The nonlinear time independent equations provided by this
method was solved using an Inverse Iteration technique as well as a
Newton-Raphson solver.

Three scaled fluid tank models, spherical, square and rectangular,
were experimentally tested to determine the nonlinear characteristics of
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fluids contained in these types of tanks. The tanks were scaled to yield Bond
numbers representative of actual spacecraft fluid tanks. Both uncoupled
(tank alone) and coupled forced planar excitation tests were performed. In
the coupled tests, the fluid slosh force was fed to an analog simulation of a
spacecraft control mode, thus coupling the fluid and spacecraft dynamics.
The effects of system mass ratio, frequency ratio and damping ratio on the
nonlinear coupled behavior was investigated.

The analytical model was verified by comparing analytical with
experimental results for a few selected test cases. In addition to the three
tank models mentioned in the previous paragraph, the experimental
cylindrical tank results obtained by Peterson [1987] were also used in the
verification process.

7.2 Conclusions

The following important conclusions, supported by both the
analytical and experimental results, give insight as to the nonlinear
dynamics of coupled fluid/spacecraft systems:

* The coupled system, contrary to the linear modal superposition
result, exhibits strong nonlinear behavior for both the fluid
slosh mode and the spacecraft mode.

* All the fluid model tanks exhibit softening behavior. This
behavior was observed in both the uncoupled and the coupled
tests. In the coupled tests, the simulated spacecraft mode also
exhibited this softening behavior.

* The observed nonlinear behavior was very dependent on the
amplitude of the fluid motion. Defining the equivalent
diameter (four times the surface area divided by the surface
circumference) as the characteristic dimension, it was found
that wave heights > 5% of the equivalent diameter show
noticeable nonlinear behavior. Vibrations exceeding 10-15% of
the equivalent diameter showed multi-valued responses
(characterized by a jump phenomenon).
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In the axi-symmetric tanks (cylindrical, spherical and square) a

jump phenomenon was observed. At the jump the fluid

motion changed from the expected linear planar motion to a

combined planar /nonplanar swirling motion. This behavior

was not observed in the rectangular model tank where energy

exchange between the spectrally separated first and second fluid

slosh modes is unlikely.

The complete nonplanar model developed in this research can

predict the nonlinear forced response behavior and the

experimentally observed swirling motion. However, a better

model of the nonplanar characteristics of the excitation system

will be required to accurately predict the forced response

characteristics when swirling occurs.
Convective (kinematic) nonlinearities are important for all

Bond numbers and capillary nonlinear effects must be included

for Bond numbers as high as 60.

For all the study models, the nonlinearities were the strongest

for frequency ratios between 0.8 and 1.0, as well as for those

coupled systems with lighter mass fractions. The nonlinearities

were also stronger for light damping of the spacecraft mode.

In addition to these specific conclusions on the fluid behavior , the

analytical results also showed that a linear model is only accurate for very

low fluid motion amplitudes and that the nonplanar model developed in

this research can predict all the important nonlinear characteristics. The
research also demonstrated that numerically determined linear eigen-modes
can be used in the assumed mode model without a significant loss of
accuracy. The Harmonic balance method, combined with the Newton-
Raphson solver, yields forced characteristics close to the measured results.
The ability of the Harmonic balance method to predict the shape of the
forced response curves is a significant improvement over the multiple time
scales method used by Peterson [1987].

Although this research did not attempt to identify Bond number
effects on the fluid dynamic characteristics, it is important to note that a
decrease in Bond numbers will increase the nonlinear characteristics of the
fluid/spacecraft system. Two factors contribute to this effect, the first being
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that as the Bond number decreases, the nonlinear capillary forces increases.
The second is that as the Bond number decreases, the secondary modes,
essential to the fluid dynamics, are closer to the critical coupled system
frequencies, thus strongly effecting the motion. This conclusion may
require more assumed modes to be included for low Bond numbers cases.
Considering the size of the Bond number-dependent nonlinear coefficients ,
it can be concluded that Bond number effects must be included for Bond
numbers as high as 60. This conclusion is supported by the work of Satterlee
and Reynolds [1966]. They concluded that if Bond number effects are
ignored in cylindrical tanks, for Bond numbers less than 60, the error in the
fluid slosh frequencies will exceed 5%. Note that the Bond number of the
study models, considered in this research, ranged from 33 to 117.

The nonplanar model of the coupled fluid/spacecraft system
consistently predicts the experimentally observed shift in eigen-frequencies
but failed to predict the correct shape of the forced response curves in the
region where the system exhibits swirling motions. Although the
nonplanar model can predict swirling motion, a better model of the
nonplanar characteristics of the excitation system will be required to
correctly model the fluid response in this region. It is also possible that the
response is the "average" of chaotic motion and it will be necessary to find
all the solutions of the nonlinear system in order to correctly predict the
forced response characteristics.

This research suggests the following guidelines to avoid nonlinear
response in a fluid/spacecraft coupled system, namely;

* Avoid the linear coupled eigen-frequencies close to unity and if
possible place the spacecraft mode before the first fluid slosh
mode. The spacecraft mode will act as a second order filter that
will reduce the fluid slosh amplitude and thus the nonlinear
behavior of the system.
Avoid containers with repeated eigen-modes. These tanks
exhibit very dominant and stable swirling motions. The
repeated modes can be separated by either changing the tank
geometry or by installing baffles [Abramson, 1966].

* Avoid low mass fractions for which the excitation of the
spacecraft mode more efficiently resonates the fluid.
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Design optimal controllers with severe penalties on the fluid
motion degree-of-freedom. This may degrade performance but
would avoid nonlinear behavior of the system.

The experimental results of this research contributes to the already
vast database available on the subject of fluid sloshing and the nonlinear,
nonplanar analytical model developed can serve as a valuable prediction
tool for structural and control engineers. The method can not only predict
the forced response characteristics of fluid/spacecraft systems, but can also be
used to design and verify control designs.

7.3 Recommendations

The results of this research suggest several future research directions.
The first problem to be addressed is to improve the solution of the
nonlinear system equations obtained from the Harmonic balance method.
The continuation method [Ricther and DeCarlo, 1983] may find all the
solutions and thereby predict the multi-valued response observed at higher
excitation levels. Implementation of this method will require careful
manipulation of the nonlinear equations but the results may justify the
effort.

The Harmonic balance method used in this research, yields only the
harmonic response amplitudes of the harmonically forced system. This
method cannot predict super- or sub-harmonic resonances. The describing
function method or the least squares fitting technique, both of which were
discussed in this research, may be used to characterize these responses. The
least squares fitting technique may succeed in predicting transient behavior
which is of importance in control applications.

The analytical method developed in this research is formulated to
facilitate the use of numerically determined eigen-mode shapes. The value
of the analytical method can be demonstrated by applying the method to
tanks with internal baffles or to tanks of more complex geometry. The effect
of internal baffles can be included by using the linear eigen-modes of the
baffled tank. The power of this method can also be enhanced by expanding
the theory to account for flexible containers. An additional set of
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generalized coordinates, describing the flexible motion of the tank walls, can
be related to the fluid surface motion set of generalized coordinates by
applying the wall boundary conditions. The present experimental setup and
flexible container can be used to verify such a model.

311



References

Abramson, H. N., Chu, W. and Garza, L.R., "Liquid Sloshing in Spherical
Tanks," AIAA Journal, Vol. 1, No. 2, pp. 384-389, Feb. 1963.

Abramson, H. N., ed., "Liquid Sloshing in Spherical Tanks," NASA-SP106,
1966.

Agrawal, B. N. and James, P., "Energy dissipation due to liquid slosh in
spinning spacecraft," Dynamics and Control of Large Flexible
Spacecraft Symposium, 439-452, 1981.

Agrawal, B.N., "Interaction between Liquid Propellant Slosh Modes and

Attitude Control in a Dual-spin Spacecraft," Proceedings of the 28 th
Structures, Structural Dynamics and Materials Conference, Monterey,

CA, pp. 774-780, AIAA Paper 87-0928, 1987.

Anderson, D.A., Tannehill, J.C., and Pletcher, R.H., Computational Fluid

Mechanics and Heat Transfer, McGraw-Hill Book Company,
Washington, 1984.

Arfken, G., Mathematical Methods for Physicists, Academic Press, New

York, 1970.

Arnold, V.I., Geometrical Methods in the Theory of Ordinary Differential
Equations, Springer-Verlag, Berlin, 1983.

Berry, R.L., Demchak, L.J., Tegart, J.R. and Craig, M.K., "An Analytical Tool

for Simulating Large Amplitude Propellant Slosh," Proceedings of the
22 th Structures, Structural Dynamics and Materials Conference,
Atlanta, GA, pp. 55-61, AIAA Paper 81-0500, 1981.

Balindra, T., Ang, K.K., Paramasivam, P. and Lee, S.L., "Free Vibration
Analysis of Cylindrical Liquid Storage Tanks," Int. J. Mech. Sci., Vol.
24, No. 1, pp. 47-59, 1982.

Bauer, H.F. and Eidel, W., "Non-linear Hydroelastic Vibrations in
Rectangular Containers," Journal of Sound and Vibration, 1988, 125(1),
pp. 93-114.

312



Blevins, R.D., Formulas for Natural Frequency and Mode Shape, Robert E.
Krieger Publishing Company, Florida, 1987.

Chu, W., "Fuel Sloshing in a Spherical Tank Filled to an Arbitrary Depth,"
AIAA Journal, Vol. 2, No. 11, pp. 1972-1979, Nov. 1964.

Daugherty, R.L., and Franzini, J.B., Fluid Mechanics with Engineering
Applications, Mcgraw-Hill, London, 1977.

Hildebrand, F. B., Advanced Calculus for Applications. Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

Hildebrand, F. B., Methods of Applied Mathematics, Prentice-Hall,

Englewood Cliffs, New Jersey, 1965.

Hutton, R. E., "An investigation of resonant, nonlinear, nonplanar free
surface oscillations of a fluid," NASA TN D-1870, 1963.

Hughes, P.C., Spacecraft Attitude Dynamics , John Wiley and Sons, New
York, 1986.

Ibrahim, R.A., and Barr, A.D.S., 1975a, "Autoparametric resonance in a
structure containing a liquid, Part I: Two Mode Interaction", Journal of

Sound and Vibration, Vol. 42, No. 2, pp. 159-179, 1975.

Ibrahim, R.A., and Barr, A.D.S., 1975b, "Autoparametric resonance in a
structure containing a liquid, Part II: Three Mode Interaction", Journal

of Sound and Vibration, Vol. 42, No. 2, pp. 181-200, 1975.

Ibrahim, R.A., and Heinrich, R.T., "Experimental Investigation of Liquid
Sloshing under Parametric Random Excitation," Proceedings of the
28 th Structures, Structural Dynamics and Materials Conference,
Monterey, CA, AIAA Paper 87-0712, 1987.

Kanan, D.D., "A Model for Nonlinear Rotary Slosh in Propellant Tanks,"
Journal of Spacecraft, Vol. 24, No. 2, pp. 169-177, 1987.

Kaplan, M.H., Modern Spacecraft Dynamics and Control, John Wiley and
Sons, New York, 1976.

313



Keller, H.B., Rabinowitz, P.H., (ed.), "Applications of Bifurcation Theory -

Numerical Solution of Bifurcation and Nonlinear Eigenvalue
Problems," Academic, pp. 359, 1977.

Komatsu, K., "Non-linear Sloshing Analysis of Liquid in Tanks with
Arbitrary Geometries," Int. Journal of Non-linear Mechanics, Vol. 22,
No. 3, pp. 193-207, 1987.

Kozlov, L.F. and Nikitina, G.D., "Possibility of Using Quasistationary Models
in Calculating Free Oscillations of Fluids," Institute of
Hydromechanics, Academy of Sciences of the Ukranian SSR, Kiev.
(translated from Prikladnaya Mekhanika vol 15, no 12, pp. 95-100),
1979.

Kuttler, J.R., and Sigillito, V.G., "Sloshing of Liquids in Cylindrical Tanks,"
AIAA Journal, Vol. 22, Feb. 1984, pp. 309-311..

Lapidus, L., and Pinder, G.F., Numerical Solution of Partial Differential

Equations in Science and Engineering, John Wiley and Sons, New
York, 1982.

Limarchenko, O. S., "Variational formulation of the problem on the motion
of a tank with fluid," Dopov. Akad. Nauk Ukrsr. Ser. A (USSR) no. 10,
pp. 903-907. in Ukranian, 1978a.

Limarchenko, O. S., "Direct method for solution of nonlinear dynamics
problems for a tank with fluid," Dopov. Akad. Nauk Ukrsr. Ser. A
(USSR) no. 11, pp. 999-1002. in Ukranian, 1978b.

Limarchenko, O. S., "Variational-method investigation of problems of
nonlinear dynamics of a reservoir with a liquid," Soviet Applied
Mechanics (translated from Prikladnaya Mekhanika vol 16, no 1, pp.
99-105), 1980.

Limarchenko, O. S., "Effect of Capillarity on the Dynamics of a Container-
Liquid System," Soviet Applied Mechanics (translated from
Prikladnaya Mekhanika vol 17, no 6, pp. 124-128), 1981.

Limarchenko, O. S., "Direct method of solving problems on the combined
spatial motions of a body-fluid system," Soviet Applied Mechanics
(translated from Prikladnaya Mekhanika vol 19, no 8, pp. 77-84), 1983a.

314



Limarchenko, O. S., "Application of a variational method to the solution of
nonlinear problems of the dynamics of combined motions of a tank
with fluid," Soviet Applied Mechanics (translated from Prikladnaya
Mekhanika vol 19, no 11, pp. 100-104), 1983b.

Luke, J. C., "A variational principle for a fluid with a free surface," J.Fluid
Mechanics, Vol. 27:2 pp. 395-397, 1967.

Miles, John W., "Internally resonant surface waves in a circular cylinder,"
J.Fluid Mech., Vol. 149 pp. 1-14, 1984a.

Miles, John W., "Resonantly forced surface waves in a circular cylinder,"
J.Fluid Mech., Vol. 149 pp. 15-31, 1984b.

Miles, John W., "Resonant, nonplanar motion of a stretched string," J.
Acoust. Soc. Am., Vol. 75:5 pp. 1505-1510, 1984c.

Miles, John W., "Resonant motion of a spherical pendulum" Physica,
Vol. 11D, no 3, pp. 309-323, 1984d.

Miles, John W., "Parametrically Excited Solitary Waves," Journal of Fluid
Mechanics, Vol. 148, pp. 451-460, 1984e.

Miles, John W., "Nonlinear surface waves in closed basins," J.Fluid Mech.,
Vol. 75, part 3, pp. 419-448, 1976.

Miles, John W., "Surface-wave damping in closed basins," Proc. Roy. Soc.
Lon. A, Vol. 297, pp. 459-475, 1967.

Miles, John W., "Stability of forced oscillations of a spherical pendulum,"
Quart. Appl. Math, Vol. 20, pp. 21-32, 1962.

Moiseev, N.N. and Petrov, A.A., "The Calculation of Free Oscillations of a
Liquid in a Motionless Container," Advances in Applied Mathematics,
Vol. 9, 1966.

Myshkis, A.D., Babskii, V.G., Kopachevskii, N.D., Slobozhanin, L.A. and
Tyuptsov, L.A., Low-Gravity Fluid Mechanics, Springer-Verlag, New
York, 1987.

315



Nakayama, T. and Washizu, K., "Nonlinear Analysis of Liquid Motion in a

Container Subjected to Forced Pitching Oscillations," Int. Journal for

Numerical Methods in Engineering, Vol. 15, pp. 1207-1220, 1980.

Nakayama, T. and Washizu, K., "The Boundary Element Method Applied to

the Analysis of Two-dimensional Nonlinear Sloshing Problems," Int.

Journal for Numerical Methods in Engineering, Vol. 17, pp. 1631-1646,
1981.

Nayfeh, A.H., Introduction to Perturbation Techniques, John Wiley and

Sons, New York, 1981.

Nayfeh, A.H. and Mook, D. T., Nonlinear Oscillations, John Wiley and Sons,

New York, 1979.

Peterson, L.D., Crawley E.F. and Hansman, R.J., "The Nonlinear Coupled
Dynamics of Fluids and Spacecraft in Low Gravity," MIT Space

Systems Laboratory Report, No. SSL 22-87, 1988.

Press, W.J., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical

Recipes - The Art of Scientific Computing, Cambridge University

Press, 1987.

Rayleigh, Lord, "Deep water waves, progressive or stationary, to the third

order of approximation," Proc. Roy. Soc. Lon. A, Vol 91, pp. 345-353,
1915.

Reynolds, W. C., Saad, M. A. and Satterlee, H. M., "Capillary Hydrostatics

and Hydrodynamics at Low g," TR LG-3, Mechanical Engineering

Department, Stanford University, 1964.

Reynolds, W.C. and Satterlee, H.M., "Liquid Propellant Behavior at Low and
0-G," in Abramson, 1966.

Richter, S.L. and DeCarlo, R.A., "Continuation Method: Theory and
Application," IEEE Transaction on Automatic Control, Vol. AC-28,
No. 6, June 1983.

Salzman, J.A. and Masica, W.J., "An Experimental Investigation of the
Frequency and Viscous Damping of Liquids during Weightlessness",

NASA TND-5058, 1969.

316



Satterlee, H.M. and Reynolds, W.C., "The Dynamics of the Free Liquid

Surface in Cylindrical Containers Under Strong Capillary and Weak

Gravity Conditions," Stanford University TR-LG-2, 1964.

Sayar, B.A., and Baumgarten, J.R., "Pendulum Analogy for Nonlinear Fluid

Oscillations in Spherical Containers," Journal of Applied Mechanics,

Vol. 48, pp. 769-772, 1981.

Schilling, U., and Siekmann, J., "Numerical Calculation of the Natural
Frequencies of a Sloshing Liquid in Axial Symmetrical Tanks under
Strong Capillary and Weak Gravity Conditions," Israel Journal of
Technology, Vol. 19, pp. 44-50, 1981.

Simmons, G.F., Differential Equations- with Applications and Historical
Notes, McGraw Hill, 1972.

Stavrindis, C., "Evaluation of Techniques for Determination of Loads due to
Fluid-Structure Interaction --- Spacecraft Structures," Final Report,

Erno Raumfahrtechnik G.M.B.H., NTIS HC A11/MF A01, June 1985.

Tegart, J.R., Berry, R.L. and Craig, M.K., "Measurement of Forces due to
Liquid Motion in Propellant Tanks," Proceedings of the
22 th Structures, Structural Dynamics and Materials Conference,
Atlanta, GA, p. 295-302, AIAA Paper 81-0566, 1981.

Whitham, G.B., "Non-linear Dispersion of Water Waves," Journal of Fluid

Mechanics, Vol. 27, part 2, pp. 399-412, 1967.

Yeh, G.C.K., "Free and Forced Oscillations of a Liquid in a Ax-Symmetric
Tank at Low-Gravity Environments," Journal of Applied Mechanics,

Vol. 34, No. 1, pp. 23-28, March 1967.

Yu, B. Nash, W.A., and Kirchhoff, "A Nonlinear Analysis of Sloshing in
Circular Cylindrical Tanks by Perturbation Method," Special Volume
on Fluid/Structure Vibrations and Liquid Sloshing, ASME Pressure
Vessels and Pipes Conference San Diego, June 1987.

317



Appendix A

Nonlinear Fluid/Spacecraft Equations of
Motion

This appendix gives the nonlinear equations of motion obtained by
applying Lagrange's Principle (eq. 2.101) to the Fluid Lagragian developed in
Chapter 2. In the last section of this chapter, the equations of motion are
non-dimensionalized by appropriate scaling. Appendix B gives the
nonlinear matrixes (non-dimensionalized) for a truncated planar and a
nonplanar model.

A1.0 Nonlinear Equations of Motion

The governing equations obtained by applying Lagrange's Principle to
the Fluid Lagrangian are:

Equation 1:

(m + mF) x + m xqq 1 + C x + kxx = Fex (Al)

Equation 2:

(m + mF) + mi2 + cyy + kyy = Fey (A2)
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Equation 5, etc: (Valid for i=3, 4, 5,...)
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where mxq is given by:

m xq = pff(x) dS
s (A6)

and myq:

m = pff(y2)dS
s (A7)

Eq. 2.106 is valid for all qi's (except ql ,q2) included in the modal series
expansion. The coefficients in eq.'s Al to A5 can be evaluated numerically
given the linear eigen-characteristics of the fluid and the equilibrium fluid
free surface shape.

In eq.'s Al to A5 linear viscous damping was added for each of the
system generalized coordinates while other nonlinear viscous and contact
angle forces were ignored.
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A2.0 Model Truncation and Simplification

In this research, the spacecraft mode's frequency will be set to be close
to the lowest slosh mode natural frequency. The fluid response is expected
to be dominated by the low frequency fluid slosh modes. The theoretical
and experimental work of Hutton [1964] for nonlinear slosh at high Bond
numbers, has shown that the nonlinear motion of the primary modes are
strongly coupled to the motion of the 'secondary' slosh modes. In general, if
the amplitude of the primary slosh modes is of order e, (e a small number),
the amplitude of the secondary modes is of order E2. There may also be an
infinite number of higher order modes which are coupled to the primary
modes but Miles [1976, 1984a and 1984b] has shown that the three lowest
frequency modes contribute at least ten times as much as the remaining
secondary modes to the fluid Lagrangian.

In this research, given the relative amplitudes of the primary and
secondary modes, e and E2 respectively, all coefficients in eq.'s Al to A5 that
are multiplied by E and higher were set to zero. The number of assumed
modes were determined by starting out with the first ten linear modes, as
determined with the finite difference program, and then, while keeping
track of the change in the nonlinear coefficients, the number of assumed
modes were reduced. The modes retained were those that significantly
contributed to the nonlinear coefficients. It must be noted that the retained
modes are tank geometry specific as shown in Chapter 6. For all the study
models, however, only three secondary modes were found to be needed.

Note also that eq.'s Al to A6 can be simplified if the orthogonality of
the mode shapes are used and if the symmetry of some of the coefficients are
taken into account. For tanks of arbitrary geometry, most of eq.'s Al to A5
coefficients will be non-zero but for the study models considered in this
research, eq's Al can be significantly simplified. Using orthogonality,
truncating the model to retain only three secondary modes and setting terms
of E3 and higher equal to zero, the following set of governing differential
equations describes the coupled nonlinear fluid/spacecraft motion.
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Equation 1:

(m+mF) + mxqlql+mxq22+ cx+ kxx= Fex (A8)
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Equation 3:
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Equation 6:

pa i+cq4 5s+[ g 255+ 5  (2)]q5 +

pa 512q 1q 2 + pa 521 q 1 2

p a 521 512 12]5 1J 2 + 4S+2 521 1 2 =0 (A13)

where Gmm is given by:

Gmm = ff dS,
(A14)

Note that ql is the planar, (x-direction), primary fluid slosh mode and
q2 the nonplanar, (y-direction), primary fluid slosh mode.

A3.0 Non-dimensionalization

Equations A8 to A13 were non-dimensionalized to reveal the
inherent scaling in system dynamics. The unit of time was selected to be the
inverse of the spacecraft mode's natural frequency, "o-. The unit of
displacement was the fluid height h = d. Using these non-dimensionalizing
parameters, the following relationships are obtained;

x Idx

q n dq n In d codn

2 o= 2dx

Sn - 2dq n

The spacecraft mode is scaled by
modes by pSa(°) 2d. Using11 "

dividing with mco2d and the fluid slosh
these transformations, the truncated,

nonlinear, nonplanar equations of motions are:

324

(A15)



Equation 1:

(1+ g) + xqlql + 2 2 + 2 + x +x= ex (A16)
Equation(A6)

Equation 2:

xq1 x1 +q + 2+lvqit +v 2 q1 +

(Xa 13 lq 3 + a 31143qq + (x 1141lq4 + (X4114 4q I +

a 125 2q 5 + a 512 q 5q 2 + O1134 14 3 + a 114 4 14 4 +
[a 125 + a 512 - a 521]4 2q 5 +[a 2121 + a 2112] 22q1 q 2 +

2o 2211 qlq 2 12 + [a(2121 + (X2112 - q 2211] ql 2+a2 +.2

c 22111q 2 1111 + 111 1, qq 1 +

V2 
113 lq 3 +V2 114q 14 + V2125 q 2q 5+

V2 0 2121 q 1q 2+ V2 1111 3 = 0(A17)2 1 (Al7
Equation 3:

Sxq 2 •g X + 9 22 4 2 + 2 2 2V 2 + 22V2 2+

a223 2 3 + 322 3q 2 + a 224 q 2q 4 + a422 4 4q 2 +

[a125 + a 521 - a 5121 lq 5 + a 521 45q, +a223 424 3+
°224 42i 4 + X125 1q 5 +[(X2121 + a 2112]1 lqlq 2+

2[a2211 lql1 2 + [ 2121 + a 2112 - a 2211] qlq22 2

a lq2q 2 q2q
S2211 q1 2 + a2222  ( 2 22222

223 q2 q3 + 224 2q 4 + 2 125 qq 5

V2 2121 V222 2222 3 =0 (A18)P 1, q +2 (A1 8)
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Equation 4:

33 [ q 3 + 23q 3 3+23 3 ]+C% 311q 191+

1 2 2 2

2 3113  223 2 = 0 (A19)

Equation 5:

44 [q4 + 2q v4q 4 2q4]+a 411q 1q +

[ 1 .2 . 1 2
o 411 2 114] + 422 2 2 422 - 2 q 24 ] 2

1 21 2
2 114 q 224 q = 0 (A20)

Equation 6:

Where:

gxq - m m

-2

Xxqi a(O
11

(0)
m mm- mmF mmm
-m a(0)

11 valid for m > 1

1 g/1 2S 1
V2 = oa 11 Bo

a(0)
11

2
2s

(0

d (1)
dma nr

mnr - a(0)
mn

- (0) (2)
2 a2 11 GmmBo +2Smm

S(0) 2 (2)
m mm L G 11Bo +  

11

valid for m>1.

d= ()amnrs a ( -

2 (2)
mnrs
(0)
mn
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d[ (3) .(3)1
- 2S +4S01s 311 113J
G 1Bo + 2S")]

d [_(3) (3)-[2S2 +4S 3]
a 322 223

223 (2)'[GI Bo + 2S ()]

dr- (3) +4S(3)1a-2Ssn + 4S JT 521 125
[G 11Bo+2S ()]

2

d 4S (4)
S4S1111

H1111 -[GBo+2S7 :]

adr (3) (3)12S +4S
_ 411 114

114 - [G11Bo + 2S'(1J

d 2S (3) (3)
a L 422 224

224 = [G11Bo + 2S(11]

(4) 8S(4)I + 2112 2121
2121 [GBo + 2S()]

=[G 1 Bo +2S7(2]

(A22)

The slosh mass fractions xqi is important in that, for forced

harmonic excitation, the coupled system has response zeros at the following
forcing frequencies.

f.=

• - •i (A23)

A4.0 Summary

Eq.'s A17 to A21 can be written in equivalent matrix form, facilitating
implementation of the harmonic balance solution technique discussed in
Chapter 3. Appendix B gives these matrices for the full nonplanar model
(eq.'s A17 to A21) and a planar model, where the nonplanar degrees of
freedom were set to zero.
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