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Abstract

As air travel has become an essential part of modern life, the air traffic control system has be-
come strained and overworked. This problem is occurring because the capacity of the current
air traffic control system is severely limited by the capabilities of its human operators. There-
fore, if we are to increase the capacity of the air traffic control system, then we must develop
new automated systems for air traffic control.

In my thesis, I take a distributed approach to automated air traffic control. I use a wireless
ad-hoc network to simulate a layer of Virtual Stationary Automata, or VSAs, which are virtual
machines located at fixed locations in space. These VSAs can then be used to help coordinate
the aircraft in the air traffic control system.

I model the air traffic control system as a directed graph, showing how the continuous real
world air traffic can be abstracted into a discrete graph representation. Using this graph rep-
resentation, I provide two algorithms to perform safe and efficient air traffic control and prove
their effectiveness.

Thesis Supervisor: Nancy Lynch
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

As air travel has become an essential part of modern life, the air traffic control system has be-

come strained and overworked. Frequency and routing of flights are often limited by the ca-

pabilities of the modern air traffic control system, and the problem is getting worse every year.

Compounding the problem, demand for a new class of very light aircraft threatens to further

clog the system, rendering it ineffective.

The most significant reason for this capacity problem is the fact that ATC has not evolved as

air travel has grown. While the tools and systems have improved with modem technology, the

system is still limited by the capabilities of the air traffic controllers that operate it. Therefore, in

order to adapt the air traffic control system for the demands of the coming years, we must begin

to devise automated systems for air traffic control.

My approach, detailed in this thesis, uses distributed algorithms to allow aircraft to control

themselves, without the need for a fixed air traffic control infrastructure. There are many ad-

vantages to this approach: the computing and communications hardware are already installed

on the aircraft; no expensive new infrastructure needs to be deployed for the system to work;

and the system can be deployed in locations where it is either too costly or simply impossible to

install static infrastructure. That said, without static infrastructure, many difficulties and com-

plexities arise, which must be accounted for in the interest of safety.

At a high level, my method is to utilize a wireless ad-hoc network to implement a number of

Virtual Stationary Automata, a system which simulates reliable virtual machines at specific lo-

cations in space. The aircraft's computation and communication ability can be used to simulate



these virtual machines reliably. Using these virtual machines, distributed solutions to problems

become much easier, as I can rely on these virtual machines as a point of communication, data

storage, and decision making.

1.1 Outline of the Thesis

I will begin in Chapter 2 by discussing the background of the research. First, I will summarize

some of the current practices in air traffic control at a relatively high level so that the reader can

be properly introduced to the issues at hand. Next, I will introduce the theoretical concept of

Virtual Stationary Automata (VSAs), and the relevant work done in the field. After that, I will

connect the two topics, explaining how the concept of Virtual Stationary Automata can be used

to help create an algorithm for air traffic control.

After completing discussion on the background of the research, I will present a series of mod-

els for the network layer of the system. In Chapter 3, I will specify the capabilities of the aircraft

and the capabilities of the wireless ad-hoc network which will be run on the aircraft. Then, in

Chapter 4, I will specify the VSA layer, a virtual networking layer that runs on top of the physical

network. Throughout these two chapters, I will make appropriate assumptions which will allow

us to get to the core of the problem and avoid being concerned with extraneous details of the

operation of the network layer and emulation of the VSA layer.

I will then provide a model for the system called the Known Path Model in Chapter 5. The

model will represent a limited free-flight system of air traffic control. This means that there are a

number of predetermined paths through airspace that must be followed, but the pilot can inde-

pendently choose which of these paths to follow. I will begin by providing a modified VSA layer

which contains a representation of this model. Then, I will describe the physical world that the

system will run in, and explain how the physical world is abstracted into a graph representation

to represent the known paths.

After that, I will specify two algorithms for air traffic control using the Known Path Model.

This first, presented in Chapter 6, will be called the FIFO Algorithm, named for its handling of

conflicts using a queueing system. It will focus on keeping the aircraft safely separated from one

another. The second, presented in Chapter 7, will be called the Heuristic PriorityAlgorithm, and

it replaces the simple queueing system with a method for heuristically prioritizing aircraft when



conflicts arise. It will focus on efficiently moving the aircraft to their destinations while ensuring

that the separation requirement still holds.

Finally, I will briefly discuss where this research leaves us, and make some suggestions on

future avenues of research that would be interesting, ending with my conclusions about the

algorithms provided within.



Chapter 2

Background

In this chapter, I will discuss the background of this research into a distributed algorithmic ap-

proach to air traffic control. I will begin by giving a short primer on the current system of air

traffic control, how it works, and some new developments in the area. I will then proceed to

discuss ad-hoc networks, some recent research, and how the research led to the formalization

of the Virtual Stationary Automaton. Finally, I will present some previous work with Virtual Sta-

tionary Automata, showing how the concept can be applied to my goal of designing an air traffic

control system.

2.1 Air Traffic Control

In order to understand the problem domain, a brief history of the current system of air traffic

control (ATC) will be helpful. The majority of the information in this section on the history of air

traffic control, and the current air traffic control system can be attributed to either texts on air

traffic control, such as Nolan [9], or to general information encyclopedias [10,11].

In the earliest days of flight (before the 1930s), air travel was primarily performed during the

day under clear visibility conditions. Because the traffic was so visible and there was so little

of it there was no need for an organized system of air traffic control; safety could be left up to

the pilots. When airplane instrumentation evolved to allow safe control of flight without having

good visibility, a new set of rules for flight called instrument flight rules (IFR) were developed.

This introduced the problem that pilots were able to fly without being able to see other aircraft



in the sky. As IFR flight became more common, and pilots started flying in increasingly hostile

conditions, the need for a formal system of air traffic control became obvious.

2.1.1 Structure of the ATC System

Although the technology has evolved significantly in the past few decades, the system of air traf-

fic control currently employed in the United States and around the world is quite similar to the

system implemented in the mid 1960s. The airspace is divided up into a number of parts each of

which is independently controlled. A plane flying from one part to another is passed off between

the authority in one part to that of the next part so its route can be continued safely. We examine

the way that the US airspace is divided up as a start of our discussion of ATC.

The United States airspace is divided up into twenty-one zones called centers. Each center

is run by an Air Route Traffic Control Center (ARTCC), which manages the airspace of the entire

center except for small areas of airspace around airports. Each center is then divided further

into a number of sectors comprising most of the airspace in the center, and a small number

of special portions of airspace around some airports called Terminal Radar Approach Control

(TRACON) airspace. The TRACON airspaces are monitored by special facilities, while the sectors

are monitored by the controllers in the ARTCC.

Within each ARTCC, aircraft in each sector are monitored and separated by a controller re-

sponsible for that individual sector. That controller instructs each pilot how to remain safely

separated (either horizontally, vertically, or both) from other aircraft in the area. If congestion in

the area gets too bad, airplanes can be forced into a holding pattern, staying in a sector until the

congestion subsides and the air traffic controller allows the pilots to continue along their route.

2.1.2 En-Route Control

One of the most conceptually difficult matters of air traffic control is the handoff of a plane

between controllers when a plane moves from one sector to another. How do the controllers

seamlessly transfer a plane's information from one to another, ensuring that there will be no

problems?

Each plane has a flight progress strip which includes all the necessary data for tracking the

flight. These strips are either on paper or electronic, and they get passed between controllers,



and between ARTCCs, as the flight progresses. Adjacent ARTCCs have Letters ofAgreement with

one another, dictating appropriate altitudes and locations for planes to fly in when passing be-

tween the centers. Within each ARTCC, controllers of adjacent sectors also have agreements

similar to the Letters of Agreement between the ARTCCs. But when special circumstances arise,

it is up to the controllers of each sector to maintain proper separation when a plane transitions

between them.

Other than the transitions, the en-route control of an aircraft, or the control that occurs while

flying between airports, is relatively straightforward. Controllers keep the planes in established

airways, depending on the origin and destination of the flight, and make sure the plane is using

the correct altitude, heading, and velocity to remain separated from other aircraft in their sector.

This separation must conform to the FANs minimum of (under normal conditions) 1000 feet

vertical separation or 3 nautical mile horizontal separation. Changes occur sometimes due to

bad weather or turbulence in which case the pilot may request changes in altitude or course, and

the controller must make sure that these changes will not result in any of the rules of separation

being violated. Weather and traffic can also cause the controller to redirect or hold an aircraft

in a specific sector, although this holding is much more commonly done in the area around the

destination airport.

2.1.3 Terminal Control

The other half of the air traffic control equation is called terminal control, in which the takeoff

and landing patterns of the aircraft are determined. These are the functions performed by the

special portions of airspace at either the TRACON facilities or local airports' tower operators.

This terminal control also covers control of the runways, taxiways, and terminals: including both

planes and airport ground vehicles. This takes place in TRACON facilities, using radar and the

other electronic monitoring technologies that are in place at the airport. Terminal control also

takes place in airports' control towers, which use electronic tools as well as visual identification

of aircraft and vehicles to control the local area.



2.1.4 Looking Ahead

As I stated earlier, the system that was in place nearly forty years ago is very similar to the system

that is used today. This is problematic for a number of reasons. First of all, the sheer volume of air

traffic has increased so much in that time that the old methods may not be as useful to provide

safe control of the increased number of aircraft that are now operational. Second, the technology

level has increased rapidly in that time, and the current system is having a hard time catching

up. While many new technologies have been added to the ATC system in the past forty years,

the overall workflow is very much the same, and it may be a limiting factor to the technologies'

integration. For example, the recently developed Traffic Collision Avoidance System (TCAS),

which alerts pilots to possible collisions and instructs them to adjust course accordingly, has

caused a small number of in-air collisions or near misses when the TCAS and the local air traffic

controller gave pilots conflicting instructions.

From an efficiency perspective, the rigidity of the current system wastes a lot of resources;

certain airways might be reserved for a certain pattern of traffic that is not occurring at that mo-

ment, but could maybe be used for a different pattern of traffic to relieve temporary congestion

problems. Limitations of human controllers have led to a very rigid framework, in order to make

the traffic control problem manageable for controllers.

In an effort to help alleviate these limitations, institutions such as NASA, working with the

FCC[14], are developing systems to return the air travel community to a system of free flight,

allowing pilots to control the course of their aircraft without the need for en-route ATC. Using the

new systems being developed for discovering nearby aircraft, avoiding mid-air collisions under

IFR conditions is now possible. Using the current system, a lot of our airspace is wasted due to a

lack of controllers for all sectors. Free flight could allow pilots to utilize the entire airspace, but

may cause serious problems in heavily congested areas around major flight routes.

Advances in computing and technology, though, can now allow individual aircraft to coordi-

nate with other aircraft to perform air traffic control in a decentralized manner. By developing

a new system to ensure air safety, the human errors involved can be minimized and the volume

of air traffic supported can be increased significantly while maintaining or improving safety. A
hybrid system, somewhere between the free flight system and the current ATC system, seems to

be the most likely candidate for use.



2.2 Distributed Algorithms and Virtual Stationary Automata

Now that we have an understanding of the air traffic control system that is currently in place,

the methods for developing an algorithm to control air traffic can be explained in detail. While

there is a large amount of research going on in the creation of a number of new next-generation

air traffic control systems, this research will take a different stance in that it will be primarily a

distributed algorithm, one that needs little or no centralized control, and that could theoretically

be run using only hardware similar to that already installed in modern aircraft.

2.2.1 Wireless Ad-hoc Networks

The current system of air traffic control and its communications features comprise what is called

a basestation-type wireless network. While communication between an aircraft and the ATC

center is done through a wireless signal, the infrastructure of the network (the ATC centers) is

static. The task of coordinating the large number of aircraft in the area becomes (at a high level)

an aircraft asking the center for instructions, the center analyzing the data that is available to it

in order to make the best decision, and the center replying to the aircraft. This system has a great

benefit in the static nature of the center: the aircraft always know where and how to reach each

center as they travel, and the center will always be there to respond to the aircraft. That benefit

can also be a detriment, though, when we realize that this single static ATC center can become a

bottleneck or a single point of failure if problems were to arise.

Therefore, we will consider the case where this is no static physical infrastructure in our com-

munications network. Without fixed infrastructure, we are left with a large number of mobile

physical nodes (aircraft), which may be entering and exiting sectors constantly and entering

and leaving communications range with other aircraft without significant warning. This type of

network topology comprises a wireless ad-hoc network, one that gets created by the combined

capabilities of the clients in range of one another.

An ad-hoc network has a complementary set of problems to those of the basestation-type

network: there is no static node to interact with. For example, a plane flying into a sector con-

trolled by an ad-hoc network can see a completely different set of network connections every

time it enters the network.

The problem becomes one of determining how each client can get the information it needs



and safely coordinate with other clients, but without the benefit of a reliable controller to interact

with. This problem is an important concern in research into distributed computing over ad-hoc

networks.

2.2.2 Earlier Work in Ad-hoc Networks

To solve the problem, we can consult a great deal of recent previous work in the area. A naive

approach to coordinating over a wireless ad-hoc network could attempt to treat communication

similarly to a wired static ethernet, discovering the other computers which could be reached by

the communication link, and communicating until the link was broken due to movement or

failure. It would be impossible to tell when a link was likely to go down, as the wireless ad-hoc

network contained no information about the relative locations of the clients to one another.

By adding the use of geographical information into the system, though, the highly dynamic

nature of the network becomes more predictable. If each client has the ability to determine

its location through a service such as the Global Positioning Satellite (GPS) system, the local

network topology becomes easy to examine at any time. A theoretical client on this network

could use the geographical information to make important decisions about whether another

client is likely to be in communications range in the near future, or coordinate behavior with

other clients based on their locations. Under the assumption that clients have access to this

geographical information, the possibility arises for reliable algorithms to coordinate clients on

an ad-hoc network.

An interesting problem in distributed computing is to provide a long-range routing service

over an ad-hoc network, in order to transmit data wirelessly further than could be done over a

single link. Algorithms such as GeoCast [5] and GOAFR [4] both use the location of the clients

to provide a mobile routing solution. Each client can determine which of the others in com-

munication range is most likely to be able to continue the transmission of a message to a given

location, and could therefore pass the message to that client, who would continue to pass it until

it either reached its destination or the destination is determined to be unreachable.

Another problem is more local: storing data in a certain geographical location so that any

clients who come within range will have access to it. Storing the data on an individual client

could not in itself work, as that client may leave the area where the data needs to remain. A



proposed solution to this problem by Dolev, Gilbert, Lynch, Shvartsman, and Welch is called

Geoquorums [1]. As the name suggests, the algorithm uses geographical information to achieve

agreement between a number of clients: specifically, to solve the aforementioned problem of

storing atomic data reliably in a specific location without any static infrastructure to store the

data on.

The key idea of Geoquorums is that it uses an emulated virtual machine to store this data.

Clients on the network are therefore able to communicate with a single static machine in a spe-

cific location, and do not have to worry about the dynamic nature of the ad-hoc network. The

algorithm was not originally very reliable, as once the data storage point failed, clients were

never able to recover the lost data. This problem has since been rectified by Tulone [18] using a

slightly changed implementation and set of mobility constraints to guarantee data availability.

Work has also been done by Dolev et. al. [15] on Virtual Mobile Nodes, which were given the

ability to change position along preplanned trajectories. Virtual Mobile Nodes were formalized

as simple Input/Output Automata (or I/O Automata) [16, 17] and they could take an input, pro-

cess that input, and provide an output. While they still had a virtual location in space, they were

mobile, not fixed as Virtual Stationary Automata would be.

2.2.3 Virtual Stationary Automata

As previously stated, I use Virtual Stationary Automata in this thesis, an idea which drew influ-

ence from the work mentioned in the last section. Virtual Stationary Automata [3,7,8] are fixed

in space as in the Geoquorums work, can react and process information like the Virtual Mobile

Nodes, but are given access to not only a GPS service, but a real-time clock service as well.

A VSA is a Timed I/O Automaton [19], with access to a real-time clock and a local broad-

cast service allowing it to communicate with clients in its region and VSAs in the neighboring

regions. The mobile physical nodes in an ad-hoc network emulate this machine, but how does

this emulation of the VSA work?

The idea behind the VSA is to separate the total area of the network into some number of

regions. Within each region is a Virtual Stationary Automaton (also known as VSA or virtual
node). For simplicity, we can consider the center of the region to be the point that contains
the VSA. We choose the size of the region such that under normal operation, any physical node



within the region will be able to communicate with any other physical node within that or a

neighboring region.

The physical nodes within each region do the work to emulate the VSA within the region.

A physical node is elected as leader to act as the node that actually sends all communication

from the VSA of that region, and to handle the arrival of new physical nodes. To achieve fault-

tolerance in the maintenance of the VSA state, the state of the VSA is replicated at some number

of physical nodes in the region.

All communication within a region is done through broadcasts, allowing all physical nodes

in the region to receive the message. If the VSA needs to send a message, the leader performs

that send function. When the leader leaves the region, a new leader is elected to take its place,

and since the other physical nodes have seen the same messages as the leader, no state should

be lost. When a new physical node enters the region, the leader sends the state of the VSA to it

so it can start emulating the machine at the same point as the rest of the physical nodes.

The VSA has become an effective framework for writing distributed algorithms. A number of

papers have been written building on the work done in formulating the VSA to perform a wide

variety of coordination tasks [7,8,12,13]. One algorithm uses VSAs to coordinate the motion of

mobile devices [7], instructing clients to go where they are needed to fill in an area on a curve

in space. Another set of algorithms [8] solves the problem of routing messages between clients

over long distances using a multitiered approach. First, a service is created to route a message to

a certain location in space. Second, a service for locating clients in the global network is created,

using a VSA at the client's home location to keep track of the client's current position. Using

those two services, a client-to-client message routing service is created, allowing messages to be

routed over long distances without the use of static infrastructure.

Some work has also been done to expand the VSA out of the theoretical realm [12, 13]. A

framework for running a restricted version ofVSAs has been written in Python and run on mobile

devices. Programs for both the client and the VSA can be plugged into the system, allowing it to

perform virtually any task that a non-timed, reaction-based VSA system can do. A simulation of

a traffic light in space was implemented and tested, using the mobile devices to display the state

of the light. This, in a preliminary way, is one of the main inspirations for the upcoming work

in air traffic control. While there are currently no plans to implement the proposed ATC system,



the fact that it is possible in the future certainly is interesting.

2.3 VSAs and Air Traffic Control

In the previous section, I attempted to give some background on the concept of Virtual Station-

aryAutomata, but I have not yet discussed exactly why the concepts behind the VSA fit the prob-

lem of air traffic control so well. By connecting the problem of air traffic control to the theory of

VSAs, it becomes clear why this research is interesting from two perspectives: the perspective of

someone looking for a novel method of air traffic control, and the perspective of an algorithms

researcher looking for interesting new ways to use VSAs.

The specific problem that I am solving is the modeling of en-route air traffic control using

VSAs. The problem of terminal control is separate, and will not be covered. While this will be a

theoretical treatment of the problem, the goal is to make reasonable assumptions about the sys-

tem, keeping it similar to the real world. I will also justify a number of simplifying assumptions,

which should allow readers from both theoretical and programming backgrounds to understand

the algorithms presented.

While the current air traffic control system has been around for a long time, a distributed

approach such as this has only been conceived of recently, for a number of reasons:

* Until recently, the ability to have enough computing power to run an air traffic control

algorithm locally on all aircraft was not possible. While large jet liners have had significant

computation power for years, these large aircraft are not the only aircraft in the sky. A

complete air traffic control system must also work with smaller, single-engine aircraft. One

could easily implement this system on modern laptops or small devices stored in even the

smallest single-engine aircraft.

* The invention and refinement of the GPS system has allowed aircraft to have detailed and

accurate information about their position without using ground-based radar. If the radar

of an ATC center were necessary to position the airplane, there would be little reason to

distribute control of the air traffic -the infrastructure would be necessary for the operation

of the system. But since each aircraft now has the ability to determine its own position, we

can think about the possibility of distributing ATC work to aircraft themselves.



* There may not have been appropriate methods for handling the complexity of ATC in a

distributed manner. The concept of VSAs is new, and the difficulty of creating a safe dis-

tributed algorithm for ATC may have been too difficult without such a concept.

* The air travel system has expanded greatly over the past few years, and with the prospect of

cheaper, smaller, personal aircraft, it will expand even further in the near future. Therefore,

an examination of the ATC system and how to improve upon it is extremely important and

relevant right now.

Why should a VSA system be used instead of a new infrastructure-based approach, or a dif-

ferent type of distributed algorithm? The main benefit is that it allows us to think about a decen-

tralized air traffic control system as if it were a basestation-type system. Once we have set up a

stable VSA layer, we can treat the distributed problem of ATC as if it was a centralized problem,

which is much easier.

If we wanted to use infrastructure-based automated air traffic control, we could still use the

VSA system as a backup. We can allow the ground-based infrastructure to function as the leader,

simulating a Virtual Stationary Automaton at the same location. In the event of a failure in the

infrastructure, the aircraft can seamlessly take over the work, simulating the VSA as if nothing

happened to the infrastructure. This eliminates the single point of failure at the infrastructure

point.

Finally, it removes the human factor that limits the capacity of air traffic control, while adding

to the scalability of the system. The free flight aspect of the system allows pilots to navigate

around weather and congested airspace as they see fit. The VSA system can scale with the in-

creasing size of the air traffic control system, adding new routes without the problem of instruct-

ing human controllers on how to use them.

Therefore, by electing to use this VSA system for the air traffic control, we could be keeping

all the benefits of reliable infrastructure while improving the scalability of the air traffic control

system, letting it grow with the air travel industry's needs.

2.4 Chapter Summary

In this chapter I have:



* Reviewed the literature of the current air traffic control system, and explained some previ-

ous work done in the field of distributed algorithms.

* Introduced the reader to the concept of Virtual Stationary Automata, explained what has

been done with them, and outlined how they are used.

* Explained why the problem of air traffic control fits into the framework of Virtual Station-

ary Automata, and why I use it in my algorithms for air traffic control.

2.5 Global Constants

2.5.1 Overview

Before I begin discussing the first model for the Physical Network Layer, I will define a number

of global constants that will be used throughout the thesis.

2.5.2 Definitions

* The finite set I represents the set of names that can be used to identify an aircraft.

* The finite set J represents the set of names that can be used to identify a region.

* The function nbrs : J -+ 2J returns, on input j, the set of j's neighbors. It is required that

for all j, j' e J, if j' e nbrs(j), then j E nbrs(j').

* The data type Msg is our finite message alphabet.

* The connected deployment space R c R3 represents the airspace in the system.



Chapter 3

The Physical Network Layer

This chapter is concerned with the networking capabilities that are required for my air traffic

control algorithms. In it, I present the Physical Network Layer (or just Network Layer), which is

the lowest layer of abstraction in the air traffic control system. The Network Layer is comprised

of the aircraft, functioning as physical nodes; a communications service; and a representation

of the real world that the system operates in.

3.1 Architecture of the Network Layer

The network layer is comprised of the set A = {ai, a2 , ... , an), with n E Z+ , of aircraft - timed

input-output automata [19] that function as our physical nodes; a timed input-output automa-

ton RealWorld, which represents the physical world that the aircraft operate in; and the timed

input-output automaton Bcast, which represents the broadcast medium for the network layer.

A physical node ai has an input GPSinput(loc)i from RealWorld, with loc E R3, which func-

tions as the aircraft's GPS oracle. A physical node ai also has an output action bcast(msg)i which

outputs a message to Bcast, and brcv(msg)i which receives a message string msg from Bcast.

An output from ai, move(p, t)i to RealWorld also exists, which will be used to allow the soft-

ware on a1 to control what occurs in RealWorld. The action will be used to control ai's represen-

tation in RealWorld, moving it to p within time t.

The remainder of the chapter is concerned with specifying the details of each component of

the Network Layer, and putting them together as the formal definition for the Network Layer. I



Figure 3-1: Architecture of the Network Layer for I = {1, 2, ..., n}

begin each section with an overview of the component, including some motivation for decisions

I make within. Then, formal definitions for each component are specified at the end of each

section.

3.2 Aircraft - The Physical Nodes

3.2.1 Overview

Aircraft serve as the physical nodes in our system. Each is equipped with a wireless commu-

nication device with the ability to broadcast and receive messages. As they are aircraft, I must

assume that their communication is reliable, and that spontaneous hardware failures happen

very rarely. That said, one goal is to design a system that is able to recover from these failures

when they do happen.

While spontaneous failures are assumed to be rare, the network topology is constantly chang-

ing. Since all the physical nodes are traveling, the set of physical nodes that any one physical

node is in contact with may change dramatically between two points in time. Therefore, our



model must not rely on two specific physical nodes being in communication for any large pe-

riod of time.

In addition to a communication device, our physical nodes have some computational power.

In our simulations, a simple desktop computer has more than enough power to run the algo-

rithms that we will be using. For the purposes of the model, though, we will formalize their

computational abilities in terms of abstract machines.

Therefore, I formalize the physical nodes as timed input-output automata [19]. They have

the ability to receive inputs, corresponding to the receipt of a message through the wireless net-

work. They also have the ability to output, broadcasting their output over the wireless network.

In addition, physical nodes have access to a GPS oracle, which provides each node with its own

location information as it moves throughout space.

Aircraft also have an internal real-time clock, which we will assume to be synchronized with

the clocks of other physical nodes in the system. The problem of clock synchronization is not

trivial, and there is significant research into methods of clock synchronization over wireless net-

works. That said, the use of a GPS service includes the use of an accurate clock for positioning,

and since the algorithms in this thesis are not sensitive to small inconsistencies in time, for sim-

plification we assume the aircrafts' clocks are synchronized.

3.2.2 Definitions

The type Msg is our finite message alphabet.

The set I represents the aircraft names that can be used to identify a unique aircraft.

For each i E I, ai represents a physical node in the Network Layer. The set of all such a2 is

called A. Each ai E A is a timed input-output automaton with the following actions:

* The output bcast(msg)i action outputs a message msg E Msg to Bcast.

* The input brcv(msg)i action receives a message msg e Msg from Bcast.

* The input GPSinput(loc)i action receives i's location loc E e 3 from RealWorld.

* The output move(p, t)i action to RealWorld, with t E R > 0 and p E R3, which will be used

to control i, moving it to p within time t.



For all messages msg E Msg output by as in a bcast(msg)i action, msg is a globally unique

message. This can be achieved by requiring that all msg e Msg include a field for the sender of

the message msg.sender = i and a field for the time of the message msg.time = now. The actual

message sent is simply msg.

In addition to these actions, ai may have other actions which must be internal, which are

unspecified here.

The state of ai includes:

* now E R > 0, which is initialized to 0 and increases with rate 1.

Sloc R3 , which is updated on each GPSinput.

In addition to these variables, ai may have other state variables. Its transitions and trajecto-

ries are unspecified, except as noted above.

3.3 Communications - The Bcast Service

3.3.1 Overview

As previously stated, the aircraft will be operating on a wireless ad-hoc network; there is no fixed

infrastructure present to provide a reliable point of communication. A physical node on the net-

work has only the ability to broadcast a message to all other physical nodes, of which some are

able to receive the message, but those out of communications range neither receive the message

nor any indication that they have missed a message. The physical nodes have no ability to send

a message to a single desired recipient, nor determine what other physical nodes are in range.

I represent this communication network with the timed input-output automaton Bcast which

receives messages from physical nodes and outputs those same messages to all physical nodes

in communications range.

Communications Range

The range of a physical node's communications capability is fixed at a radius r, a distance in

3-space. No other physical nodes outside that range will receive broadcasts made by the phys-



ical node. Many complications arise from this assumption in a physical system that we, for the

purposes of this model, can safely ignore, for these reasons:

* First, the communications range of different physical nodes will vary considerably based

on the power of their transmitter. This is not a concern in this system, as we assume aircraft

are all equipped with similar, standardized communications equipment.

* Second, the range may be affected by physical objects in the way, or interference from

other equipment. Again, considering the space which we expect our network to be operat-

ing in (thousands of feet above the ground), obstructions will not occur, and interference

is prevented due to aircraft's use of dedicated frequencies for communication.

* Third, problems with signal strength arise in real systems, as some physical nodes may re-

ceive corrupt or incomplete data at the edge of communication range. We assume that our

assumed radius of communications r is such that within that range, anyone who receives a

broadcast receives the complete message. While signal strength outside of the radius may

vary, our algorithms will not depend on such messages, as you will see in the subsequent

chapters.

Therefore, we are safe to assume that our broadcasts occur in a fiked radius r from the phys-

ical node.

Communications Reliability and Delay

When a physical node broadcasts a message, all other physical nodes within range will receive

the message, and all messages are received in the order which they are broadcast. While these

may seem like bold claims or oversimplifications, they are justified ones.

On perfect reliability, this is a thesis about the abstraction of the Virtual Stationary Automa-

ton and their use in developing an algorithm for free flight air traffic control. This is not in-

tended to be a thesis about network reliability. There are many methods for performing com-

munications reliability: our implementation of the VSA emulator uses an absolute ordering on

messages along with rebroadcasts and state synchronization to ensure that each physical node

within range receives all messages. This is not the only way to provide reliability, and an imple-



mentor may wish to choose a different one. Therefore, for the purposes of this thesis, I assume

that the reliability problem has been solved at a lower level.

On perfect ordering, I turn back to our implementation of the VSA emulator [12, 13], which

contains a built-in service to provide message ordering. There are a number of ways to imple-

ment message ordering, and that is again, up to an implementor and beyond the scope of this

thesis.

I will not assume that messages are delivered instantaneously. Due to the rebroadcasts that

may be required to ensure reliability and ordering, it may take a non-trivial amount of time to get

a message from one physical node to another in range. That said, our bound on the reception

range allows us to assume a high probability of delivery which we can use to define an upper

bound on the message delay. We will call this bound d, and we can assume that any message

broadcast by a physical node will reach all other physical nodes in range within that time d.

There are two reasons this system will support such a bound:

* While broadcasts may occur quite often, the upper bound on range allows us to assume

retransmissions are rare. Therefore, we can assume that most of the time, the network is

not saturated, and no physical node will be required to wait a long time to transmit.

* There are no multiple-hop connections being made. Every message is a broadcast directly

from the sender of the message. As a broadcast can be made only when there are no trans-

missions occurring already, the message will never be queued and will be delivered at the

speed of the transmission medium immediately when sent.

Therefore, the claims of reliable message delivery and bounded transmission delay are jus-

tified for the purposes of this thesis. While some of the justifications of the claims I have made

are not fully explained at this point, they should be made clear as the algorithm is presented.

3.3.2 Definitions

A timed input-output automaton Bcast(d, r) represents the communications network in the
Network Layer.

The parameters of Bcast are:



* d E R, the upper bound on message delay between inputting a message and outputting it

to the appropriate physical nodes.

* r E R, the communications range.

For each i e I, Beast has the following actions:

* The input bcast(msg)i action, which receives a message msg E Msg from ai.

* The output brcv(msg)i action, which sends a message msg E Msg to ai.

* The input GPSinput(loc)i action receives i's location loc E R3 from RealWorld.

Beast contains a state variable locs, which is an array of locations, indexed by i E I, such that

locs[i] E R3 gets updated upon each GPSinput(loc)i action.

The behavior of Beast is as follows. Upon inputting bcast(msg)i from ai, within time d, Beast

will output brcv(msg)j to each aj such that as and aj are within r distance of each other according

to locs at the time the bcast was received by Beast. Note that this means a2 will always receive its

own broadcast.

Other requirements for the behavior of Beast include, for any three i, j, k e I where i, j, k

may or may not be equal:

* Message Ordering: If a bcast(msgl)i event precedes a bcast(msg2)j event, and if brcv(msgl)k

and brcv(msg2)k both occur, then the brcv(msgl)k event precedes the brcv(msg2)k event.

* Message Integrity: Each output brcv(msg)j must have been preceded by an input action

bcast(msg)i such that msg in the two actions is the same and the brcv(msg)j occurs at most

d time after the bcast(msg)j action.

* Message Uniqueness: No two brcv(msg)i events occur for the same msg and the same i.

In addition to these variables, Beast may have other state variables. Its transitions and tra-

jectories are unspecified, except as noted above.



3.4 RealWorld

3.4.1 Overview

The physical world in the air traffic control system will be represented in the Network Layer by

the timed input-output automaton RealWorld. The main goal of RealWorld is to keep track of

the physical locations of the aircraft in the system, and to use that information to act as a GPS

oracle to the physical nodes in A.

Airspace

The airspace for the air traffic control system is some contiguous subset of three-dimensional

space. The airspace is represented by a connected deployment space R C R3. Aircraft are able

to move freely in R, and we assume that they either never leave R, or if they do, then we are no

longer concerned with them.

GPS Service

For each aircraft name i E I in the state of RealWorld, there is a corresponding physical node

ai E A for which RealWorld outputs periodic GPS updates. These updates are performed by the

output GPSinput(loc)i action, which is an input to both ai and Bcast.

These outputs are periodic with period e. The period E is chosen to be small enough that

my algorithms can easily tolerate any slight inaccuracy in the location of aj. This is intended

to closely resemble the behavior of real GPS devices, which update their location extremely fre-

quently.

3.4.2 Definitions

The connected deployment space of the system is R C R3 .

A timed input-output automaton RealWorld(e, v_max) represents the physical state of the

real world in the Physical Layer. The parameter e E R > 0 is the GPS update period, and is

assumed to be small. The parameter vmax E R+ is the maximum velocity the aircraft can

achieve.



Constants:
E , the GPS update frequency

ER >O
v_ max , the maximum aircraft velocity

E R+

Signature:
Output GPSinput(loc)i , i E I, loc E R
Input move(p, t)i , p E R3, t E R > 0
InternalfinishMovej , i E I
Internal Takeoff , i E I
Internal Landings , i E I

State:
GPSdone, an array of booleans for each i E I

and for k E {0, 1, 2, 3...
initialized to false

aircraft, an array of type AircraftRecord
for each aircraft[i], initialized to:
aircraft[i].loc +- loc- NULL
aircraft[i].moving +- false
aircraft[i].movingtime +- 0
aircraft [i].movingto +- loc- NULL

now: R

Trajectories:
evolves

d(now) = 1
for each i E I, with a[i] = aircraft[i]:

if (a[i].loc= loc_-NULL) then
constant a[ i].loc

else
0 < Id(a[i].loc)l < v-max

invariant
if (a[i].moving= true) then

dist(a[i].loc, a[i].movingto) <
v_ max(a[i].movingtime - now)

stops when
any precondition is satisfied

Actions:
Output GPSinput(loc)i
Precondition:

now= ke A
GPSdone[i, k] = false A
loc = aircraft[i].loc

Effect:
GPSdone[i, k] <- true

Input move(p, t)i
Effect:

if (dist(aircraft[i].loc, p) _ v_-max tA
aircraft[i]. moving = false A
choose bE {true, false}) then

aircraft[i]. moving <- true
aircraft[i].movingtime +- now+ t
aircraft[i].movingto +- p

Internal finishMovei
Precondition:

aircraft[i].loc = aircraft[i].movingto A
aircrafti]. moving = true

Effect:
aircrafti]. moving - false

Internal Takeoffs
Precondition:

now = aircraft[i]. t_- takeoffA
aircraft i ].loc = loc_-NULL

Effect:
aircraft[i].loc - aircraft[i]. loc_- takeoff

Internal Landingi
Precondition:

aircraft[i]. loc = aircraft i ]. loc_- landing
Effect:

aircraft[i]. loc loc_-NULL

Figure 3-2: TIOA Code for RealWorld



The constant location loc_ NULL e R3 - R is some location outside the deployment space

which is used to initialize the location of aircraft before they enter the system.

The data type AircraftRecord is a record with fields:

* t_takeoff E R > 0, the time the aircraft enters the system.

* loc_takeoff e R3, the location at which the aircraft enters the system.

* loc_landing E R3 , the location at which the aircraft leaves the system.

* loc e R3, the current location of the aircraft.

* moving, a boolean representing whether or not this aircraft is being controlled by a move

action.

* movingtime E R > 0, the deadline for finishing a move action.

* movingto E R, the location in R that the aircraft is moving to.

RealWorld also has a single output action, which is periodic with period E, as well as an input

action:

* The output GPSinput(loc)i action, where loc = aircraft[i].loc, and the output is received by

ai and Bcast. This output occurs for each i E I at now = 0, e, 2e, ....

* The input move(p, t)i action from ai, with t E R > 0 and p E R3, which will be used to

control i, moving it to p within time t. If a subsequent move(p', t')i occurs while the aircraft

is moving, the subsequent action is ignored.

The path that i takes is nondeterministic, and nondeterministic flight resumes after reach-

ing p. If the move action would force i to exceed the maximum velocity v_max, the action

is ignored. The action can also be declared to be invalid nondeterministically.

The state of RealWorld includes:

* now ER > 0, which is initialized to 0 and increases with rate 1.



* An array of AircraftRecords, aircraft, indexed by i E I. For each of these aircraft[il,

aircraft[i].t_takeoff, aircraft[i].loc_takeoff, aircraft[i].loc_landing are set in the initial

state of RealWorld. The values of aircraft[i].loctakeoff and aircraft[i].loc landing must

be in R. The current location, aircraft[i].loc is initialized to loc_NULL.

The most important behavior of RealWorld is the motion of the aircraft. Upon initialization

of the automaton, for each i E I, the value of aircraft[i].loc is set to the constant loc NULL.

At now = aircraft[i].ttakeoff an internal Takeoffi action occurs, and aircraft[i].loc's value

changes to aircraft [i].loc_ takeoff. The value of aircraft[i].loc then changes nondeterministi-

cally with a continuous, bounded derivative in R3, such that I d(aircrafti .lo < vmax.

Upon receiving a valid move(p, t)i action, aircraft[i].moving is set to true, aircraft [i].movingto

is set to p, and aircraft[i].movingtime is set to now + t. The aircraft i then moves to p within time

t, resuming its normal, nodeterministic movement after reaching p.

When aircraft[i].loc = aircraft[i].loc_landing, we consider i to have left the system, and

an internal Landingi action occurs. This action changes aircraft[i].loc to loc_NULL and the

trajectory which changes the value of aircraft[i].loc halts. The value of aircraft[i].loc does not

change again.

3.5 The Physical Layer

I define the Physical Layer of our system, PLayer(R, E, vmax, d, r), depicted in Figure 3-1 at the

beginning of this chapter, to be the composition of these components: a single Bcast(d, r) TIOA,

a single RealWorld(e, vmax) TIOA, and n physical node TIOAs which comprise the set A.

3.6 Chapter Summary

In this chapter I have:

* Enumerated the capabilities of the aircraft that will serve as physical nodes in our air traffic

control system.

* Discussed the communications service Bcast, while making simplifying assumptions about

its behavior.



* Described the RealWorld automaton, which models the physical state and motion of the

world that the system operates in.

* Defined the Physical Network Layer, the lowest level layer in the air traffic control system.



Chapter 4

The Continuous VSA Layer

The motivation behind the Continuous VSA Layer, or just the VSA Layer, is to use the volatile

mobile network described in the previous section to simulate a number of virtual stationary

automata, or VSAs, at various locations in space. We can think of these VSAs as virtual machines

which are able to perform computations and store data, and are located in a stable location.

Therefore, the VSA Layer provides us a stable platform for implementing applications that can

rely on the locations of the VSAs.

In reality, of course, these VSAs are not present in the world, but instead they are emulated by

a number of nearby physical nodes. This emulation is a protocol to ensure that the VSA remains

active during both small and large changes in the network topology.

A number of previous models for the VSA have been previously developed. A theoretical

in-depth treatment has been described in "Timed Virtual Stationary Automata for Mobile Net-

works" [31, and more recently, a Python-based implementation has been described in "The Vir-

tual Node Layer: A Programming Abstraction for Wireless Sensor Networks." [131. Other papers

involving algorithms using the VSA also provide appropriate models for the VSA Layer [7, 8].

The VSA Layer will be specified in this chapter, including the architecture and the interac-

tions of the layer. I will then describe some of the details of the VSA Layer's emulation, but this

discussion will forgo some of the complex theoretical concerns of this emulation. Additional

details of the emulation, if desired by the reader, can be found in Dolev, Gilbert, Lahiani, Lynch,

and Nolte [3].

Aside from the section on emulation, this chapter is concerned with specifying the details



of each component of the VSA Layer, and putting them together as the formal definition for the

VSA Layer. I begin each section with an overview of the component, including some motivation

for decisions I make within. Then, formal definitions for each component are specified at the

end of each section.

4.1 Regions

4.1.1 Overview

In order for the VSA Layer to work, the area that our network inhabits must be divided up into

regions. A single VSA is contained within each region. Each region also has a set of neighbors,

which are the nearby regions that the VSA in the region is able to communicate with.

The size of the regions and the set of neighbors for a region are chosen in order to satisfy the

requirement that no matter where in a region a client is, its broadcast is able to reach every other

client in the same region, and every other client in the region's neighbors. In general, this might

mean that one region could be directly adjacent to another, yet not be considered a neighbor, if

there are parts of the two regions that are not able to communicate with each other.

We choose the size and layout of the regions in our system to satisfy three requirements:

1. Each region's border is shared with another region (there are no regions that have a border

that does not have another region on the other side of it) unless that region is on the edge

of the system.

2. Every region's neighbors are exactly the regions that share a border with it.

3. The maximal distance between any point in any region and any point in one of its neigh-

bors is less than or equal to a communications range r parameter for the Continuous VSA

Layer, CVLayer(d, r, E, v_max).

Adhering to these requirements will result in our space being partitioned into regions, within

which a physical node is able to communicate with all other physical nodes in both its own

region and neighboring regions.



4.1.2 Definitions

The parameter r E R+ is the communications range within the layer.

The set J represents the region names, as defined in the global constants of Section 2.5.

The function region : R -- J maps a point in R to its region name. Each point in R has

exactly one region name associated with it. A region is a subset S of R such that for some j e J,

S = {p e Rlregion(p) = j}. I assume that each region is connected.

The function inRegion : J, R3 -+ true, false is a predicate that returns true if a point in R3

is in the appropriate region in J, and false otherwise. This function satisfies the condition that

region(p) = j +-+ inRegion(j,p) = true.

The function nbrs : J - 2J returns, on input j, the set of j's neighbors. It is required that for

all j, j' E J, ifj' E nbrs(j), then j E nbrs(j').

The following constraints are required for all regions j E J:

* Every region's neighbors are exactly the regions that share a border with it.

* For every point p such that region(p) = j, and all p' such that region(p') E {j} U nbrs(j),

p-p' <I r.

4.2 Architecture of the VSA Layer

The VSA Layer CVLayer(d, r, E, v_max) contains two sets of timed input-output automata[19]:

the VSAs, fixed in a specific location in space, and the clients, which are mobile. Also, like the

physical network layer, the VSA layer has a timed input-output automaton which represents the

real world and another timed input-output automaton which represents broadcast communica-

tions. In the VSA Layer, though, the broadcast communications automaton only allows a client

to send messages to the VSA in its region, and receive messages from that same VSA. It does not

allow for direct client-to-client communications. The VSA Layer also adds a timed input-output

automaton to represent the communication between neighboring VSAs.

In many ways, the VSA layer looks similar to the network layer described in the previous

chapter. The VSA layer includes the set A = {ai, a2 , ..., an} of aircraft - timed input-output au-

tomata that function as our clients; a timed input-output automaton RealWorld, which rep-



Figure 4-1: Architecture of the VSA Layer, for I = {1, 2, ..., n} and J = {1, 2, ..., k}
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Client Automaton aj, for i E I

Signature:
Input brcv(msg)i , msg Msg
Input GPSinput(loc)i , loc E R
Output bcast(msg)i , msg E Msg
Output move(p, t)i , t E R>O, p E R

State:
loc E R, the client's current location in space
now : R, the current real time

2

4

6

8

10

resents the physical world that the aircraft operate in; and the timed input-output automaton

Bcast, which represents the broadcast medium for clients and VSAs.

In the VSA layer, we also have a set VN = {vnl, vn2, ..., vnk} of Virtual Stationary Automata,

which are also timed input-output automata. In addition, a timed input-output automaton

VtoVcast represents the communications service between neighboring VSAs.

A client ai has an input GPSinput(loc)i from RealWorld which functions as the aircraft's GPS

oracle. The input occurs periodically with some small period e.

A client a2 also has an output action bcast(msg)i which outputs a message to Beast, and

brcv(msg)i which receives a message from Bcast. The recipient of the message does not receive

information on who the sender of the message was.

AVSA vnj has an output action bcast(msg)j which outputs a message to Bcast, and brcv(msg)j

which receives a message from Bcast.

The VSA also has an output action VtoVsend(m)j,dest which outputs a message to VtoVcast

with destination VSA vndest. Also, the VSA has an input action VtoVrcv(m)src,j which receives a

message from VtoVcast from source VSA vn,,rc. Note that vndest and vnsrc must be neighbors of

vnj for VtoVcast to output these actions to their destination.

Figure 4-2: TIOA Signature for Clients and VSAs in the VSA Layer

Virtual Stationary Automaton vnj, for j E J

Signature:
Input brcv(msg)j , msg E Msg
Input VtoVrcv(msg),,c,j , msg E Msg
Output bcast(msg)j , msg E Msg
Output VtoVsend(msg)j,dest , msg E Msg

State:
now : R, the current real time
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4.3 Clients

4.3.1 Overview

Clients are the mobile processes in the VSA Layer. They correspond very closely to the phys-

ical nodes in the Network Layer, with similar capabilities and actions. A client can broadcast

and receive messages, has access to a GPS oracle, and has an internal real-time clock which is

synchronized with the other clients and Virtual Stationary Automata.

In the VSA Layer though, all outgoing messages from a client will be received only by a VSA.

No messages are delivered to other clients. Conversely, a client only receives messages from a

VSA, not from other clients.

4.3.2 Definitions

The set I represents the aircraft names that can be used to identify a unique aircraft.

For each i E I, in the VSA Layer ai represents a client. The set of all such ai is called A. Each

ai E A is a timed input-output automaton with the following actions:

* The output bcast(msg)i action outputs a message msg E Msg to Bcast.

* The input brcv(msg)i action receives a message msg E Msg from Bcast.

* The input GPSinput(loc)i action receives i's location loc E R3 from RealWorld.

* The output move(p, t)i action to RealWorld, with t E R > 0 and p E R , which will be used

to control i, moving it to p within time t.

In addition to these actions, a2 may have other actions which must be internal, which are

unspecified here.

The state of ai includes:

* now E R > 0, which is initialized to 0 and increases with rate 1.

* loc E R3, which is updated on each GPSinput.

In addition to these variables, a2 may have other state variables. Its transitions and trajecto-

ries are unspecified, except as noted above.



4.4 Virtual Stationary Automata

4.4.1 Overview

Virtual Stationary Automata are the primary new addition to the VSA Layer. They are machines

fixed in specific locations in space, with the ability to send and receive messages, store data, and

perform computations. They also have access to internal real-time clocks which are synchro-

nized with the clients and other Virtual Stationary Automata.

As they are located at specific locations in space, VSAs are also associated with specific re-

gions. Each VSA is associated with the region that contains its location. A VSA can broadcast

messages to clients and receive messages from clients in the same region. A VSA is also able to

send and receive messages from VSAs in neighboring regions.

4.4.2 Definitions

Recall, from earlier in the chapter, the set J, which represents the region names that can be used

to identify the unique VSA in each region.

For each j E J, vnj represents a Virtual Stationary Automaton in the VSA Layer. The set of all

such vnj is called VN.

Each vnj e VN is a timed input-output automaton with the following actions:

* The output bcast(msg)j action outputs a message msg E Msg to Bcast.

* The output VtoVsend(m)j,dest action outputs a message m E Msg to VtoVcast intended for

destination vndest.

* The input brcv(msg)j action receives a message msg e Msg from Bcast.

* The input VtoVrcv(m)src,j action receives a message m E Msg from VtoVcast which was

originally sent by source vn,,,r.

* The input VtoVrcv(m) 3,j action, with m E {STARTUP, SHUTDOWN}, receives a special

startup or shutdown message from VtoVcast.

In addition to these actions, vnj may have other actions which must be internal, which are

unspecified here.



The state of vnj includes a real time clock, now E R > 0, which is initialized to 0 and increases

with rate 1.

In addition to this variable, vnj may have other state variables.

When vnj receives a VtoVrcv(SHUTDOWN)O, input, it stops all outputs. All state variables

except for now are set to null, and no trajectories change values of any variables except for

now. The automaton ignores all inputs until a VtoVrcv(STARTUP) 0,j input is received, at which

point all state variables except now are reset to their initial values, and trajectories resume their

changes to variables, as if the VSA were just initialized.

Its transitions and trajectories are unspecified, except as noted above.

4.5 Intraregional Communication - Bcast

4.5.1 Overview

A client is able to communicate only with a VSA in its region, not with other clients in the region,

clients in neighboring regions, or VSAs in neighboring regions. It communicates with the VSA

through the Bcast channel. Conversely, a VSAis able to communicate with all clients in its region

through broadcasting messages on the Bcast channel.

The Bcast automaton filters messages sent through it to prevent disallowed communica-

tions. The parameter d represents message delay in the VSA layer's Bcast.

4.5.2 Definitions

The timed input-output automaton Bcast(d) represents the intraregional communications net-

work in the VSA Layer. For each client ai or VSA vnj, with i E I and j E J, Bcast has the following

actions:

* The input bcast(msg)i action, which receives a message msg e Msg from ai and the input

bcast(msg)j action, which receives a message msg E Msg from vnj.

* The output brcv(msg)i action, which sends a message msg E Msg to ai and the output

brcv(msg)j action, which sends a message msg e Msg to vnj.

* The input GPSinput(loc)i from RealWorld, with loc E 3 .



The parameters of Bcast are:

d, the message delay between inputting a message and outputting it to the appropriate

clients or VSA.

Becast contains a state variable locs, which is an array of locations in R, indexed by i E I.

The behavior of Bcast is as follows:

Upon inputting bcast(msg)i from client ai, within time d, Bcast will output brcv(msg)j to the

VSA vnj which is associated with the region j such that at the time Bcast received the bcast input,

region(locs[ij) = j. No other outputs will occur.

Upon inputting bcast(msg)j from VSA vnj, within time d, Bcast will output brcv(msg)k to all

clients ak such that at the time Bcast received the bcast input, region(locs[k]) = j. No outputs

will occur to clients outside of region j.

Upon inputting GPSinput(loc)i from RealWorld, locs[i] E ]R3 in Bcast gets updated to loc.

Other requirements for the behavior of Bcast include:

* Message Ordering: If a bcast(msgl)i event precedes a bcast(msg2)j event, and if brcv(msgl)k

and brcv(msg2)k both occur, then the brcv(msgl)k event precedes the brcv(msg2)k event.

* Message Integrity: Each output brcv(msg)j must have been preceded by an input action

bcast(msg)i such that msg in the two actions is the same and the brcv(msg)j occurs at most

d time after the bcast(msg)i action.

* Message Uniqueness: No two brcv(msg)i events occur for the same msg and the same i.

4.6 Interregional Communication -VtoVcast

4.6.1 Overview

A VSA is able to communicate with any specific neighboring VSA through the VtoVeast channel.

This channel enables point-to-point communication between VSAs, as opposed to the broad-

cast communication performed by Bcast. While the VSA sends a message to a specific neigh-

boring VSA, it has no way to know if that VSA is active or not, and it receives no specific acknowl-

edgment that the message has been received.



The VtoVcast automaton passes messages sent through it to the appropriate VSA. Like the

Becast channel, a message delay parameter d is present in VtoVcast. Due to the requirements of

the network layer and the region layout, if a neighboring VSA is active, the message will always

be received.

The VtoVcast automaton also starts up each VSA when a client enters that VSA's region, and

shuts the VSA down when all clients leave that region. It keeps a state variable status, with an

entry for each VSA representing whether that VSA is active (has clients in its region), or inactive

(has no clients in its region).

4.6.2 Definitions

The timed input-output automaton VtoVcast(d) represents the interregional communications

network in the VSA Layer. For VSA vni and VSA vnj, with i, j E J, and j e nbrs(i), VtoVcast has

the following actions:

* The input VtoVsend(m)i,j action receives a message m e Msg from vni intended for vn3 .

* The output VtoVrcv(m)j,i action outputs a message m e Msg to vnr that was originally sent

by vnj.

Other actions in VtoVcast include:

* The output VtoVrcv(m)0,j action outputs a message m E {STARTUP, SHUTDOWN} to

yvn. This form of the action is not subject to the Message Integrity or Message Uniqueness

requirements to be given later in this section.

* The input GPSinput(loc)i from RealWorld, with loc E R3, for each i E I.

The parameters of VtoVcast are:

* d, the message delay between inputting a message and outputting it to the appropriate

VSA.

VtoVcast contains a state variable locs, which is an array of locations, indexed by i E I. This

variable gets updated upon each GPSinput(loc)i input, by setting locs[i] to loc.



VtoVcast also contains a state variable status, which is an array indexed by j E J with each

element in the set {ACTIVE, INACTIVE}. This array is initialized to INACTIVE for all j,

and is updated upon VtoVrcv(STARTUP)0,j and VtoVrcv(SHUTDOWN)0 j actions.

The behavior of VtoVcast is as follows. Upon inputting VtoVsend(m)i,j from VSA vni, within

time d, VtoVcast will output VtoVrcv(m)i,j to vnj if and only if status[j] = ACTIVE at the time

of the VtoVsend input.

Also, for all j E J, whenever status[j] = INACTIVE and there is some i E I such that

region(locs[i]) = j, VtoVcast will, within time d, output a VtoVrcv(STARTUP)0,j to vnj and set

the value of status [] to ACTIVE.

Similarly, whenever status[j] = ACTIVE and for all i E I, inRegion(j, locs[i]) = false,

VtoVcast will, within time d, output a VtoVrcv(SHUTDOWN),3j to vnj and set the value of

status[j] to INACTIVE.

Other requirements for the behavior of VtoVcast include:

* Message Ordering: If a VtoVsend(msgl)i,k event precedes a VtoVsend(msg2)j,k event, and if

VtoVrcv(msgl)i,k and VtoVrcv(msg2)j,k outputs both occur, then the VtoVrcv(msgl)i,k event

precedes the VtoVrcv(msg2)j,k event.

* Message Integrity: Each output VtoVrcv(msg)ij must have been preceded by an input ac-

tion VtoVsend(msg)i,j such that msg in the two actions is the same and the VtoVrcv(msg)i,j

occurs at most d time after the VtoVsend(msg)ij, action.

* Message Uniqueness: No two VtoVrcv(msg)j,i events occur for the same msg and the same

4.7 RealWorld

4.7.1 Overview

The RealWorld timed input-output automaton is the same in the VSA Layer as it is in the Net-

work Layer.



4.8 The Continuous VSA Layer

I define the Continuous VSA Layer of our system, CVLayer(d, r, E, v_max) as pictured in Figure

4-1 at the beginning of the chapter, to be the composition of these components: a single Bcast(d)

TIOA, a single VtoVcast(d) TIOA, a single RealWorld(E, vmax) TIOA, the client TIOAs ai for i E I

comprising the set A, and the Virtual Stationary Automata TIOAs vnj for j E J comprising the

set VN.

4.9 Emulation of the VSA Layer

The VSA Layer is emulated by the physical layer of physical nodes and the wireless network that

they operate. This section will specify some of the details of how this emulation is performed.

As stated earlier, more details on the emulation of VSAs may be found in Dolev, Gilbert, Lahiani,

Lynch, and Nolte [3].

4.9.1 Emulation of the Clients

Emulation of clients is trivial. Each physical node corresponds to a client. A physical node uses

its networking capabilities to emulate the communications channels specified in the VSA layer

by broadcasting messages for the client and delivering to the client only messages the client is

able to receive. The physical node's real-time clock and GPS input messages are simply delivered

to the client.

We can therefore think of each physical node ai as a composition of the corresponding client

and some part of the emulation of a VSA.

4.9.2 Emulation of the VSAs

Again, this thesis is not concerned with implementation-level details, but the emulation of sta-

ble Virtual Stationary Automata using physical nodes is not trivial, and therefore requires some

discussion.

The emulation of the VSA is carried out by the physical nodes in the VSA's region. A local

copy of the state of the VSA is kept on some number of physical nodes (possibly all of them) that



are in the VSA's region. While this may seem wasteful, it is very important for the VSA to not lose

information due to network volatility, and if many physical nodes have a replicated copy of the

VSA, as long as one of them remains, the emulation can continue.

We designate one physical node to be the leader. This physical node is in charge of giving any

new physical nodes that enter the region a copy of the VSA state so they can maintain their local

copy when new messages are received. While we assume our messaging is reliable, the leader

can also provide message ordering and consistency for the other physical nodes in the region,

making sure that every physical node has the same copy of the VSA state.

We can elect this leader in a number of ways, ranging from the simple (the first physical node

is the first leader, and then some random physical node becomes leader when the old one leaves)

to the more intelligent (choosing a leader based on position and motion, so that we can mini-

mize the number of times leadership needs to be transfered). In any situation when the leader

leaves the region or fails, any other physical node in the region is able to resume the emulation

with minimal interruption. By keeping track messages that are received while waiting for a new

leader to be appointed we can ensure that even with no leader present, the VSA's behavior will be

able to be emulated by some physical node. Therefore, aside for some short startup time, we can

assume that the VSA in a region will be active unless there are no physical nodes in the region to

emulate it. This process is emulated with a specific leader election subroutine running on the

physical nodes.

The clock in a VSA is also maintained by the physical nodes. Since we assume the clocks of

each physical node are synchronized, we can allow the leader to use his clock as the VSA's clock.

When there is no leader for some period of time, a catch-up mechanism synchronizes the clocks

and deals with actions that occur during the period without a leader.

While there is much more to be said about emulating a VSA, further details are not extremely

important to understanding the algorithms in this thesis. Interested readers are advised to con-

sult the works cited in the beginning of this chapter [3, 7, 8, 13].

4.10 Chapter Summary

In this chapter I have:



* Specified how our deployment space is divided up into regions, specifying the way to iden-

tify those regions.

* Enumerated and defined the capabilities of the clients and the VSAs in the VSA Layer.

* Presented a new version of the communications service Bcast, as well as a new virtual

communications service VtoVcast.

* Explained how the VSA layer is emulated by the physical nodes.

* Provided the appropriate background to understand how the algorithms in the following

chapters work.



Chapter 5

The Known Path Model

Air Traffic Control is a real world system which behaves in a continuous manner. For the pur-

poses of performing the duties of ATC algorithmically, I would rather think of the world using a

more discrete representation. Therefore, the goal of this chapter is to abstract the continuous

motion model from the previous chapters with a discrete graph model that will be used in the

following chapters' algorithms.

Let us assume that we have access to a map of allowable air routes, which we can use to

navigate each aircraft through each sector. This is an assumption based on the real world ATC

system: using Letters of Agreement between sectors and predefined airways that are used within

each sector, we have available to us a map of paths connecting all airports in the system.

I model the real world as this map in two steps. The first step is to partition areas of airspace

into bounding boxes and bounding cylinders. Partitioning the airspace into bounded areas will

allow us to require aircraft to remain within a specific boundary. If the bounding areas are sep-

arated appropriately, the problem of keeping aircraft safely separated reduces to the problem of

making sure only one aircraft is within a bounding area at any given time.

The second step is to arrange the bounding areas into the predetermined map of air routes.

Since the boundaries allow us to ignore the exact location of an aircraft, representing the air-

craft's position by only the boundary it is within, we can arrange the boundaries into a con-

nected, directed graph. Then I can represent an aircraft's location in space by a single edge in

the graph, and can use graph-theoretical algorithms on the VSAs to implement the air traffic

control system.



But first, I present a modified version of the generic VSA layer described in the last chapter,

which I call the Known Path VSA Layer KnownPathVL(G, E, d, t_ advance). While most aspects of

the layer remain the same, I replace the RealWorld automaton with a GraphRealWorld automa-

ton which represents the real world with aircraft on edges of a graph instead of aircraft moving

continuously through space.

I then present a method for using the given map of air routes to abstract RealWorld into

GraphRealWorld. Using that, I prove that, under a set of assumptions, we can use RealWorld

to emulate GraphRealWorld, and that doing so allows us to safely consider GraphRealWorld as

the representation of the system.

5.1 Architecture of the Known Path VSA Layer

5.1.1 Overview

The architecture that I will be using for my air traffic control algorithms is nearly identical to the

Continuous VSA Layer described in Chapter 4. Each component, while sharing the name of its

counterpart in the VSA Layer, has been modified slightly with changed inputs and different data

types for some state variables. As an overview, the layer is changed in these ways:

1. I replace the RealWorld automaton with a GraphRealWorld automaton, the specifics of

which are presented in Section 5.3.

2. A client a2 now has an input GPSinput(j, e)i from GraphRealWorld, where j e J and e E E,

where E is the set of edges of the graph which will be described in this chapter. This input

replaces the GPSinput(loc)i input from RealWorld that was described in Chapter 4. The

GPSinput(j, e)i output from GraphRealWorld still is input by ai, Bcast, and VtoVcast as in

Chapter 4.

3. In all automata in which locations of clients are stored, the old representation of a location

as a point in R3 is replaced by the representation of a location as a region and an edge. This

allows the communications automata to determine the region of a client directly from the

stored GPS input, instead of mapping the client's location to a region, as was done in the

previous layers.



Figure 5-1: Architecture of the Known Path VSA Layer, for I = {1, 2, ..., n}, J = {1, 2, ...k}
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4. The input move(p, t)i action from ai to RealWorld is replaced with an advance(e)i action to

GraphRealWorld, with e being an edge in the graph representation. The functionality is

similar, in that a move action moves an aircraft to a point p E R, while an advance action

moves an aircraft to e E E.

Parameters of the layer are the graph representation G = (V, E), the GPS update period E, the

message delay d, and the time required for an advance action tadvance.

While no additional outputs are added to GraphRealWorld, we would like the clients and

VSAs to have access to the actual graph representation of the real world, so that they may deter-

mine the layout of the edges and vertices. I therefore provide a number of functions that allow

clients and VSAs to access the graph representation. I include this representation as a parameter

of the Known Path VSA Layer.

5.2 Graph Representation and Regions

5.2.1 Overview

The first step in specifying GraphRealWorld is to specify the graph representation that the sys-

tem will use. This representation will be accessible by all automata in the Known Path VSA Layer,

as it is a parameter of the layer.

We model the map of routes as a directed graph G = (V, E). A subset of vertices T C V

represents the terminal vertices, source and exit points for aircraft in the system. These vertices

are connected by directed edges in E to other vertices in V. The graph is strongly connected, so

each vertex is reachable from any other vertex in the graph.

The definition of regions must also be changed in order to use this graph representation as

the representation of the world in GraphRealWorld. In Chapter 4, I defined a region as a con-

nected subset of R. For the Known Path VSA Layer, a region is a subset of V that may not be

connected. Later in this chapter, you will see more of how this definition connects to the contin-

uous definition of regions. These regions also have a set of neighbors, and draw region names

from the set J.

Using this definition of regions, we can place a constraint on the graph's layout. This con-

straint is that for any two vertices v and v' connected by an edge e = (v, v') e E, the two vertices



(a) Three regions and two vertices that are incompatible with the model.

(b) Three regions and three vertices that are compatible with the model.

Figure 5-2: A Constraint on the Layout of Vertices and Regions

are either in the same region, or in neighboring regions. For a graphical representation of this

constraint, see Figure 5-2, which shows an invalid placement in 5-2(a), and a valid placement in

5-2(b).

This constraint is important for our air traffic control algorithms due to the model for com-

munication between clients and VSAs. Since a VSA can only communicate with a neighboring

VSA, it is imperative that an edge's endpoints are in neighboring regions. You will see more on

why this is needed while discussing the FIFO Algorithm in Chapter 6.

5.2.2 Definitions

We define the graph representation of the system to be the strongly connected directed graph

G = (V, E).

The source and exit points of the graph are the set of terminal vertices T C V.

We also define a number of functions exposing information about the graph:

* getRegion : V -+ J, mapping a vertex v E V to its region name j E J.
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* getRegions : E - 2J, mapping an edge (v, v') E E to {j, j'} with j,j' E J such that

getRegion(v) = j and getRegion(v') = j'. This function is constrained so that for all

(v, v') e E, getRegion(v') E {getRegion(v)} U nbrs(getRegion(v)).

* vertexAfter : E -+ V, mapping an edge (v, v') E E to its target vertex v'.

5.3 GraphRealWorld

5.3.1 Overview

Now that the graph representation has been defined, I can use that to define the timed input-

output automaton GraphRealWorld, our new discrete model for the physical behavior of the

system.

5.3.2 Definitions

A timed input-output automaton GraphRealWorld(E, tadvance) represents the discretized phys-

ical state of the real world in the Known Path VSA Layer. Code for this TIOA is presented in Figure

5-3.

The parameter e E R > 0 is the GPS update period, it is assumed to be small. The parameter

t6 E R 2 0 is the maximum transition time that an aircraft takes to move from one edge to the

next.

The constant eNULL represents a dummy edge outside the set E. It is the initial location

of an aircraft before it enters the system.

The constant e_ DONE represents a dummy edge outside the set E. It is the location of an

aircraft after it has left the system.

The constant r NULL represents a dummy region outside the set J. It is the initial region of

an aircraft before it enters the system.

The data type GraphAircraftRecord is a record with fields:

* t_takeoff E R > 0, the time the aircraft enters the system.

* v_takeoff E V, the vertex at which the aircraft enters the system.



Constants:
e, the GPS update frequency

ER>2 0
t-advance, the time between an advance action

and the corresponding state update
ER >O

Signature:
Output GPSinput(j, e)i , i EI, j E I, e E E
Input advance(e)1 , i E I, eE E
Internal doAdvancei , i E I
InternalTakeoff(e)i , iE I, eE E
Internal Landingi , i E I

State:
GPSdone, an array of booleans for each i E I

and fork E {0, 1, 2, 3...}
initialized to false

aircraft an array of type GraphAircraftRecord
for each aircraft[i], initialized to:
aircraft[i].e +- eNULL
aircraft[i].region *-- j NULL
aircraft[i].auth +- false
aircraft[i].authtime 4-- 0
aircraft[i].authedge -- eNULL

now: R

Ikajectories:
evolves

d(now) = 1
constant aircraft, GPSdone

stops when
((aircraft[ i ].e= (u, aircraftfi] ._landing) v

aircraft[i].auth = true) A
now= aircraft[i].authtime]) v
(now= ke A GPSdone[i, k] = false)

Actions:
Output GPSinput(j, e)i
Precondition:

now= ke A
GPSdone[i, k] = false A
j = aircraft[i]. region A
e= aircraft[i].e

Effect
GPSdone[i, k] +- true

Input advance(e)i
Effect:

(V, v') -e
if (vertexAfter(aircraft[i].e) = A

aircrafti].auth = false) then
aircraf[fi].auth *- true
aircraft[i].authtime -now+ Ltadvance
aircraft[ i].authedge -- e

Internal doAdvancei
Precondition:

now E [aircraft[i].authtime -tLadvance,
aircraft[i].authtime] A

aircraft[i].auth = true
Effect:

aircraftfi].auth - false
aircraft[i].authtime -- now + tadvance
aircraft[i].e -- aircraft[i].authedge
tempv 4- vertexAfter(aircraft[ i .e)
aircraft[ i].region -- getRegion(tempv)
aircraft[i].authedge 4- e.NULL

Internal Takeoff (e)
Precondition:

e= (aircraft[i].v- takeoff, ) A
now > aircraft4i]. -takeoff A
aircraft[i].e= eNULL A
Vk, aircraft[k].e# e

Effect
aircraft[i].e+- e
aircraft[ i ].region -- getRegion(v)

Internal Landingi
Precondition:

aircraft[i].e= (v, aircraft[i].vMlanding) A
now E [aircraft[i].authtime -tadvance,

aircraft[il.authtime]
Effect:

aircraft[ i].e +- eDONE

Figure 5-3: TIOA Code for GraphRealWorld



* v_landing E V, the vertex at which the aircraft leaves the system.

* e E EU {eNULL, e_DONE}, the current location of the aircraft.

* region e J U {j_NULL}, the current region of the aircraft.

* auth, a boolean representing whether the control software allows the aircraft to move at

this time.

* authtime E R, the time an authorization ends.

* authedge E E U {e_NULL, e_DONE}, the edge that the aircraft was authorized to move

to.

GraphRealWorld has a single output action, which is periodic with period e, as well as a

single input action:

* The output GPSinput(j, e)i action, where j = aircraft[i].region and e = aircraft[i].e. The

output is received by ai, Bcast, and VtoVcast.

* The input advance(e)i action from ai, with e E E, which represents the air traffic control

software telling GraphRealWorld that aircraft[i] is allowed to make a transition to e.

This output occurs for each i E I at now = 0, E, 2, ....

The state of GraphRealWorld includes:

* now E R > 0, which is initialized to 0 and increases with rate 1.

* aircraft, an array of GraphAircraftRecords, indexed by i E I. For each of these aircraft[i],

aircraft[i].t_takeoff, aircraft[i].v_takeoff, aircraft[i].vlanding are set in the initial state

of GraphRealWorld. The values of aircraft[i].v_takeoff and aircraft[i].vlanding must

be in T. The current location, aircraft[i].e is initialized to eNULL, the current region,

aircraft[i].region is initialized to j_NULL, and aircraft[i].auth is initialized to false.

The most important behavior of GraphRealWorld is the motion of the aircraft. Upon initial-

ization of the automaton, for each i E I, the value of aircraft[i].e is set to e_NULL and the value

of aircraft[i].region is set to j_NULL.



At now = aircraft[i].t_ takeof f an internal Takeoff (e)i action occurs, the value of aircraft[iJ.e

changes to e = (aircraft[i].v_takeoff, v) E E, and aircraft[i].region's value changes to the value

of region(v).

Upon GraphRealWorld receiving an advance(e)i input from ai, aircraft[i].auth will be set to

true. Then, within t_advance, the values of aircraft[i].e, aircraft[i].region, and aircraft[i].auth

make a transition if vertexAfter(aircraft[i].e) = v for (v, v') = e:

* aircraft[i].e = (v, v') E E changes to aircraft[i].e = (v', v") = e.

* aircraft[i].region = j E J changes to aircraft[i].region E {j} U nbrs(j).

* aircraft[i].auth = true changes to aircraft[i].auth = false.

When aircraft[i].e = (v, aircraft[i].vlanding), within t_advance we consider i to have left

the system, and an internal Landingi action occurs. This action changes aircraft[i].e to e_DONE

and the value does not change again.

5.4 The Known Path VSA Layer

5.4.1 Overview

While much of the Continuous VSA Layer from Chapter 4 is left unchanged in the Known Path

VSA Layer, small changes are necessary to each component in the layer. Since most of these

changes simply involve changing the data type of a variable containing a location in R to one

containing an edge in E or a region in J, significant discussion is not necessary, but the defini-

tions are included in this section for completeness. At the beginning of each set of definitions,

I explain the changes that were made to that component. At the end of the section, I formally

define the Known Path VSA Layer.

5.4.2 Client Definitions

The changes to the clients are minor. Instead of receiving a GPSinput containing a location in

3-space, a client receives one containing its region and the edge that it is on. Where it would

store its location, the client now stores currentRegion and currentEdge.



For each i E I, in the Known Path VSA Layer as represents a client. The set of all such as is

called A. Each ai E A is a timed input-output automaton with the following actions:

* The output bcast(msg)i action outputs a message msg E Msg to Beast.

* The input brcv(msg)i action receives a message msg E Msg from Beast.

* The input GPSinput(j, e)i action receives i's region j E J and current edge e E E from

GraphRealWorld.

* The output advance(e)i action to GraphRealWorld, with e E E will be used to control i,

moving it to e within time t_ advance.

In addition to these actions, as may have other actions which must be internal, which are

unspecified here.

The state of a1 includes:

* now E R > 0, which is initialized to 0 and increases with rate 1.

* currentRegion E J and currentEdge E E, which are updated on each GPSinput.

In addition to these variables, as may have other state variables. Its transitions and trajecto-

ries are unspecified, except as noted above.

5.4.3 VSA Definitions

No changes are made to the VSAs between Chapters 4 and 5.

Recall the set J, which represents the region names that can be used to identify the unique

VSA in each region.

For each j e J, vnj represents a Virtual Stationary Automaton in the Known Path VSA Layer.

The set of all such vnj is called VN.

Each vnj E VN is a timed input-output automaton with the following actions:

* The output bcast(msg)j action outputs a message msg E Msg to Beast.



* The output VtoVsend(m)j,dest action outputs a message m E Msg to VtoVcast intended for

destination vndest.

* The input brcv(msg)j action receives a message msg E Msg from Bcast.

* The input VtoVrcv(m),c,,j action receives a message m E Msg from VtoVcast which was

originally sent by source vn,,c.

* The input VtoVrcv(m) 0j, action, with m E {STARTUP, SHUTDOWN}, receives a special

startup or shutdown message from VtoVcast.

In addition to these actions, vnj may have other actions which must be internal, which are

unspecified here.

The state of vnj includes a real time clock, now E R > 0, which is initialized to 0 and increases

with rate 1.

In addition to this variable, vnj may have other state variables.

When vnj receives a VtoVrcv(SHUTDOWN)O,j input, it stops all outputs. All state variables

except for now are set to null, and no trajectories change values of any variables except for

now. The automaton ignores all inputs until a VtoVrcv(STARTUP)O,j input is received, at which

point all state variables except now are reset to their initial values, and trajectories resume their

changes to variables, as if the VSA were just initialized.

Its transitions and trajectories are unspecified, except as noted above.

5.4.4 Beast Definitions

In Bcast, I change the data type of a couple of components. Instead of receiving a GPSinputi

containing a location in 3-space, Bcast receives one containing i's region and the edge that i is

on. It stores the regions for each i in the array reg instead of storing locations in the array locs.

The timed input-output automaton Bcast(d) represents the intraregional communications

network in the Known Path VSA Layer. For each client a2 or VSA vnj, with i E I and j E J, Bcast

has the following actions:

* The input bcast(msg)i action, which receives a message msg E Msg from ai and the input

bcast(msg)j action, which receives a message msg E Msg from vnj.



* The output brcv(msg)i action, which sends a message msg E Msg to ai and the output

brcv(msg)j action, which sends a message msg E Msg to vnj.

* The input GPSinput(j, e)i from RealWorld, with j E J and e E E.

The parameters of Bcast are:

* d, the message delay between inputting a message and outputting it to the appropriate

clients or VSA.

Becast contains a state variable reg, which is an array of regions in J, indexed by i e I.

The behavior of Bcast is as follows:

Upon inputting bcast(msg)j from client ai, within time d, Beast will output brcv(msg)j to the

VSA vnj which is associated with the region j such that at the time Bcast received the bcast input,

reg[i] = j. No other outputs will occur.

Upon inputting bcast(msg)j from VSA vnj, within time d, Bcast will output brcv(msg)k to all

clients ak such that at the time Bcast received the bcast input, reg[k] = j. No outputs will occur

to clients outside of region j.

Upon inputting GPSinput(j, e)i from RealWorld, reg[i] gets updated to j.

Other requirements for the behavior of Bcast include:

* Message Ordering: If a bcast(msgl)i event precedes a bcast(msg2)j event, and if brcv(msgl)k

and brcv(msg2)k both occur, then the brcv(msgl)k event precedes the brcv(msg2)k event.

* Message Integrity: Each output brcv(msg)j must have been preceded by an input action

bcast(msg)i such that msg in the two actions is the same and the brcv(msg)j occurs at most

d time after the bcast(msg)i action.

* Message Uniqueness: No two brcv(msg)i events occur for the same msg and the same i.

5.4.5 VtoVcast Definitions

In VtoVcast, I change the data type of a couple of components. Instead of receiving a GPSinput,

containing a location in 3-space, VtoVcast receives one containing i's region and the edge that i

is on. It stores the regions for each i in the array reg instead of storing locations in the array locs.



The timed input-output automaton VtoVcast(d) represents the interregional communica-

tions network in the Known Path VSA Layer. For VSA vni and VSA vnj, with i, j E J, and j E

nbrs(i) VtoVcast has the following actions:

* The input VtoVsend(m)i,j action receives a message m E Msg from vni intended for vnj.

* The output VtoVrcv(m)j,i action outputs a message m E Msg to vni that was originally sent

by vnj.

Other actions in VtoVcast include:

* The output VtoVrcv(m)0,j action outputs a message m E {STARTUP, SHUTDOWN} to

vnj. This form of the action is not subject to the Message Integrity or Message Uniqueness

requirements to be given later in this section.

* The input GPSinput(j, e)i from RealWorld, with j E J and e E E, for each i E I.

The parameters of VtoVcast are:

* d, the message delay between inputting a message and outputting it to the appropriate

VSA.

VtoVcast contains a state variable reg, which is an array of regions in J, indexed by i E I.

This variable gets updated upon each GPSinput(j, e)i input, by setting reg[i] to j.

VtoVcast also contains a state variable status, which is an array indexed by j E J with each

element in the set {ACTIVE, INACTIVE}. This array is initialized to INACTIVE for all j,

and is updated upon VtoVrcv(STARTUP)0,j and VtoVrcv(SHUTDOWN) 0j actions.

The behavior of VtoVcast is as follows. Upon inputting VtoVsend(m)ij from VSA vni, within

time d, VtoVcast will output VtoVrcv(m)~j, to vnj if and only if status[j] = ACTIVE at the time

of the VtoVsend input.

Also, for all j E J, whenever status[j] = INACTIVE and there is some i E I such that

reg[i] = j, VtoVcast will, within time d, output a VtoVrcv(STARTUP) 0,j to vnj and set the value

of status[j] to ACTIVE.

Similarly, whenever status[j] = ACTIVE and for all i E I, reg[i] # j, VtoVcast will, within

time d, output a VtoVrcv(SHUTDOWN) 0,j to vnj and set the value of status[j] to INACTIVE.



Other requirements for the behavior of VtoVcast include:

* Message Ordering: If a VtoVsend(msgl)i,k event precedes a VtoVsend(msg2)j,k event, and if

VtoVrcv(msgl)i,k and VtoVrcv(msg2)j,k outputs both occur, then the VtoVrcv(msgl) i,k event

precedes the VtoVrcv(msg2)j,k event.

* Message Integrity: Each output VtoVrcv(msg)2,j must have been preceded by an input ac-

tion VtoVsend(msg)ij such that msg in the two actions is the same and the VtoVrcv(msg)i,j

occurs at most d time after the VtoVsend(msg) i j action.

* Message Uniqueness: No two VtoVrcv(msg)j,i events occur for the same msg and the same

5.4.6 Known Path VSA Layer Definition

I define the Known Path VSA Layer, or KnownPathVL(G, e, d, t_advance) to be the composition

of a VtoVcast(d) TIOA, a Bcast(d) TIOA, the TIOAs in VN for the VSAs, the client TIOAs in A,

and a GraphRealWorld(E, t- advance) TIOA. Parameters of the layer are the graph representation

G = (V, E), the GPS update period E, the message delay d, and the time required for an advance

action t_ advance.

5.5 Bounding Areas

5.5.1 Overview

Now that we have two models of the physical movement of the system, it is necessary to show

how I can use the RealWorld model, representing the physical continuous motion of aircraft, to

emulate the GraphRealWorld model, representing the discrete motion of aircraft between edges

in a graph.

To do this, constraints can be put on the RealWorld model in order to represent our graph of

safe paths. These constraints will be in the form of bounding boxes and bounding cylinders that

can be used to partition R into a number of separate flight areas.

The bounding boxes and cylinders can be as large or as small as needed, with one simple re-

quirement: that all aircraft can remain within any box or cylinder indefinitely. Since the motion



of aircraft is continuous and the velocity is non-zero, this means that all aircraft must be able to

loop around within all bounding areas. Since those details (such as aircraft turning radius) are

extraneous to this discussion, we assume the requirement is satisfied.

The goal of the next section is to arrange the bounding areas into a graph-like structure that

we can use to emulate GraphRealWorld with RealWorld, while ensuring they are arranged in a

way that preserves the above separation requirements.

5.5.2 Definitions

I define the set B = (bi, b2, ..., blEJ), where each bi is a bounding box, a connected subset of R.

While we call the elements of B boxes for convenience, they may not actually be in the shape of

rectangular prisms.

I define the set C = (Cl, c2..., clvI), where each ci is a bounding cylinder, also a connected

subset of R. Each ci is defined by (r, h, loc) which represents a cylinder of space centered at

loc E R with radius r and height h. The cylinder is oriented vertically, so that the projection of ci

onto the xy-plane is a circle.

5.6 Arranging the Bounding Areas

5.6.1 Overview

We can arrange these bounding boxes and cylinders in R to create our desired "map of allowable

air routes" by arranging them in a graph-like structure. The next section will discuss this in

detail, but for now let us turn to the safety requirements we wish to enforce in the system.

Recall that in the real-world ATC system there is a separation requirement of three miles lat-

eral distance or 1000 feet altitude. Let us generalize these requirements, letting d,,ep represent

the minimum vertical separation distance (the minimum difference in altitudes that is consid-

ered safe), and letting dhsep represent the minimum horizontal separation distance.

These separation distances for aircraft in RealWorld become the basis for how we separated

our bounding areas. If we restrict aircraft to fly within bounding areas in an appropriate way and

separate the bounding areas in a way that spaces them out by enough distance, we can use the

bounding areas to ensure safety in the air traffic control system.



Table 5.1: Parameters for the minimum safe separation distances in RealWorld

Since we have sets of bounding areas B, C of the deployment space R and a condition for

their separation, our next step in emulating GraphRealWorld using RealWorld is to organize

the bounding areas into a collection of separated routes that aircraft can travel on. We do this

by showing how the directed graph described in Section 5.2 can be represented in 3-space using

bounding areas.

In order to ensure separation, I specify subsets of each bounding area as inner bounding ar-

eas, which are separated from the outer edges of their own bounding areas by dhsep horizontally

and dvsep vertically.

5.6.2 Definitions

For each vertex v E V, with getRegion(v) e J, let loc(v) be a point in R such that region(loc(v)) =

getRegion(v). Then, place a bounding cylinder c E C such that c is centered at loc(v). For all

points p such that p E c, region(p) = getRegion(v). The exact process of choosing the radius r

and the height h is unspecified, but in 5.6.3 I will explain why choosing them should be possible

to accomplish.

Now, for each outgoing edge e = (v, v') from v, place a bounding box b E B connecting

a portion of the outer surface of the cylinder c centered at loc(v) with a portion of the outer

surface of the cylinder c' centered at loc(v'). b does not need to be a rectangular prism, but must

be connected.

Finally, for each bounding area ba E B U C, the inner bounding area iba C ba is a set of points

pi E ba such that the distance between pl and the surface of ba is at least dhsep horizontally and

d,,se vertically.

I also specify a number of functions that connect the graph representation G, the bounding

area construction, and the continuous deployment space R:

* loc : V -- R, maps a vertex in V to its location in R.

dhsep the minimum lateral separation between two aircraft

d,,,s the minimum vertical separation between two aircraft



Figure 5-4: Cross Sections of Bounding Area ba and Inner Bounding Area iba
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* vertexToCyl : V - C, maps a vertex in V to its corresponding bounding cylinder c e C. It

is required that loc(v) E c.

* cylToVertex : C -, V, vertexToCyl(v) = c +-+ cylToVertex(c) = v for v E V, c e C.

* edgeToBox : E - B, maps an edge in E to its corresponding bounding box b E B.

* boxToEdge : B -, E, edgeToBox(e) = b +-+ boxToEdge(b) = e for e E E, b E B.

* objectAt : R -- V U E, maps a location in R to the unique vertex v E V or edge e E E

that corresponds to the bounding area at that location, or, if that location is outside of any

bounding area, maps the location to the dummy edge e_NULL.

* inner : B U C -- 2R, maps a bounding area in B or C to the subset of that bounding area

which comprises the inner bounding area.

* outer : B U C - 2R, maps a bounding area in B or C to the subset of that bounding area

which comprises the outer bounding area.

The bounding areas must satisfy the size requirement that for all bounding areas ba E B U C,

inner(ba) : 0 and an aircraft's motion can be contained within inner(ba) for an indefinitely long

period of time.

The bounding areas must also satisfy the following four separation requirements:

1. For any points pi and p2 in any two bounding boxes bl and b2 respectively, where bl # b2,

pi and P2 are separated by either dh,,ep horizontally, d,,ep vertically, or both.

2. For any points pi and p2 in any two bounding cylinders cl and c2 respectively, where cl # c2,

pi and p2 are separated by either dhsep horizontally, dvaep vertically, or both.

3. For any points pi and p2 such that pl E bl and p2 E C2 where bl is a bounding box in B and

c2 is a bounding cylinder in C, we let e = objectAt(pl) and v = objectAt(p2 ). If e $ (v, v')

and e 0 (v', v) for some v' E V, then pl and p2 are separated by either dhsep horizontally,

dse, vertically, or both.

4. For any bounding box bi E B and bounding cylinder c2 E C, we let e = boxToEdge(bl) and

v = cylToVertex(c2). If e = (v, v') or e = (v', v) for some v' E V, then bl and c2 meet at the

border of the two bounding areas. Points in b, need not be separated from points in c2.



Figure 5-5: Bounding Boxes bl and b2 Meeting at Bounding Cylinder C3

5.6.3 Discussion and Justifications

While the separation between boxes and other boxes, and cylinders and other cylinders is quite

easy to visualize, it is quite difficult to understand what these requirements mean for each cylin-

der that multiple edges border. An example of this situation is depicted in Figure 5-4. Assuming

the two boxes are not sufficiently vertically separated, they are placed around the cylinder so

that all points are horizontally separated. As you can see, this figure shows condition 4, that a

bounding box such as bl with a cylinder such as c3 at its endpoint is not separated from that

cylinder, but is separated from all other boxes such as b2.

A natural and difficult question now arises - is it even possible to lay out such a configuration

while satisfying all separation requirements? First, I will justify this by saying in the real air

traffic control system, a similar layout already exists. Specific altitudes and areas in the airspace

are designated for certain routes, and putting them all together creates a similar layout.

Second, the fact that the required separation distances are so small compared to the large

size of each region implies that it should be possible to accomplish such a layout. The size of

the regions are bounded above by the communications radius in the physical layer, but this ra-

dius is extremely large compared to the separation distances. For standard sizes and parameter

values, there is the vertical space for nearly thirty boxes to be incident on the same cylinder be-

fore even having to increase the cylinder's radius to accommodate more edges horizontally. In



most configurations of the layers, the size of each region will be much larger than the separation

requirements, making such a placement much more likely to be possible.

The exact arrangement of such a placement would be difficult to perform algorithmically

due to the massive size of the problem space. There are an infinite number of ways to arrange

bounding areas for a given R and G, and for a system with small regions, a dense graph with

many vertices, and large separation requirements, an arrangement may not even be possible.

But for a region size, graph, and separation requirements that are similar to the real world ATC

requirements, a proper arrangement is likely to be possible.

For those reasons, we can assume that such an arrangement exists, and that our defined sets

satisfy all defined requirements.

5.7 Emulating the Known Path Layer with the Continuous Layer

5.7.1 Overview

Now that the bounding area construction is clear, we can show that the Known Path VSA Layer

can be emulated by the Continuous VSA Layer. Much of this process is trivial, though, since there

are no differences in the VSAs between the layers, and the differences between Beast, VtoVcast,

and the clients of the two layers are minor.

In Beast and VtoVcast, the only change that must be made is the changed data type of the

GPSinput action, from the Continuous VSA Layer's locations in 3-space to the Known Path VSA

Layer's region and edge. But within the code of both Beast and VtoVcast, the locations stored

in the Continuous VSA Layer are merely translated into a corresponding region to determine

whether or not Beast or VtoVcast delivers a message. In the Known Path VSA Layer, the input

still contains each region, giving both automata the exact same functionality as before.

The interesting and more difficult component, though, is the emulation of GraphRealWorld

using RealWorld, and that is what we must discuss in order to prove that the emulation can be

done correctly.



Figure 5-6: Emulation of the Known Path VSA Layer, for I = {1, 2, ...n}, J = {1, 2, ..., k}
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5.7.2 Translation Automata

In order to show the emulation of the Known Path VSA Layer using the Continuous VSA Layer,

we must show that GraphRealWorld can be emulated by RealWorld. In order to do so, I create

translation automata that translate continuous outputs from RealWorld into the discrete out-

puts that GraphRealWorld would provide, as well as translating the discrete inputs expected by

GraphRealWorld into continuous inputs expected by RealWorld.

5.7.3 Definitions

For each i E I, let CDi be a timed input-output automaton, for which the set of CD0 for all i

function as our translation automata.

The translation automaton CDi, for each i E I has the following actions:

* The input action GPSinput(loc)j, for loc e R, which inputs the continuous GPS location

from RealWorld.

* The output action GPSinput(j, e)i, for j E J and e E E, which outputs the discrete GPS

location to a2..

* The input action advance(e)i, for e E E, which inputs a control action from a2 to move

aircraft[i].e to e.

* The output action move(p, t)j, for t E R+ and p E R, which outputs a control action to

RealWorld to move aircraft[i].loc to point p within time t.

CDj also stores a state variable location E R, which is the most recently seen location of

aircraft i in RealWorld. The variable is initialized to loc NULL. We enforce an invariant on

location, and after changing from loc_NULL, the value of location will always be inside some

inner bounding box, the most recent inner bounding box that i was in.

The behavior of CDi is as follows. Upon inputting GPSinput(loc)i, first, CDi tests whether

objectAt(location) E E and loc = loc NULL. If this test is true (the aircraft has landed), CDi sets

GPSlanded to true in order to immediately output a GPSinput(j, e)i action for j = region(location)

and e = eDONE.



Constants:
t-advance, the time between an advance action

and the corresponding state update
ER>O

Signature:
Input GPSinput(loc)i , loc E R
Output GPSinput(j, e)i , j E ,

ee E E { eNULL, eDONE}
Input advance(e)i , eE E
Output move(p, t)i , p E R, tE R > 0

State:
location, E R, i's most recently input

location which is located inside an
inner bounding box,
initialized to loc- NULL

GPStodo, a boolean, initialized to false
GPSlanded, a boolean, initialized to false
move, a boolean, initialized to false
moveto, an edge in E U {e- NULL, e DONE}
now: R1

Trajectories:
evolves

d(now) = 1
constant location, GPStodo

move, moveto
stops when

any precondition is satisfied

Actions:
Input GPSinput(loc)i
Effect

if (location E b for some b E B A
loc = locNULL) then

GPSlanded +- true
else

for be B:
if (loc E inner(b)) then

location -- loc
GPStodo - true

Output GPSinput(j, e)i
Precondition

GPSlanded = true A
j= region(location) A
e= elDONE

Effect
GPSlanded + false

Output GPSinput(j, e)i
Precondition:

GPStodo = true A
j = region(location) A
e = objectAt(location)

Effect
GPStodo -- false

Input advance(e)i
Effect

v +- vertexAfter(objectAt(location))
if (e = (v, z/') for some I/ E V) then

move +- true
moveto -- e

Output move(p, t)i
Precondition:

move = true A t = t_advance A
p E (inner(edgeToBox(moveto)) n

region(vertexAfter( moveto)))
Effect:

move - false

Figure 5-7: TIOA Code for Translation Automaton CDi, for i E I



If the above test is false, CDj tests whether, for some e' E E, if loc E inner(edgeToBox(e')).

If that test is true, CDi sets location to loc. Performing this test before updating location ensures

that our desired invariant is true, and objectAt(location) is always an edge in E. CDi then sets

GPStodo to true (whether or not location was updated) in order to immediately output a GPSin-

put(j, e)i action, with j = region(location) and e = objectAt(location).

Upon inputting advance(e)i, CDi lets v = vertexAfter(objectAt(location)), which is always

defined because of the invariant on location's value, and tests whether e = (v, v') for some v' e V.

If that test fails, the advance input is invalid, and CDi does nothing. Otherwise the advance input

is valid, and CDi sets move to true and moveto = e in order to immediately output a move(p, t)i

action, with t = t_advance, and p E (inner(edgeToBox(e)) n region(vertexAfter(e))), so that the

aircraft moves to a location inside the inner bounding box corresponding to e which is also in

the region of e's target vertex.

5.7.4 Emulation

Now we prove that, using the translation automata, an execution of RealWorld can emulate an

execution of GraphRealWorld. In order to do this, though, I must restrict the motion allowed

within RealWorld so that the locations which aircraft are allowed to travel in RealWorld corre-

spond to the bounding areas B U C. Using that assumption, we can prove Theorem 5.1 about

the emulation of GraphRealWorld with RealWorld.

I amend the behavior of RealWorld to adhere to a number of constraints based on the graph

representation. I have amended the code of RealWorld in Figure 5-8 to further specify the move-

ment of the aircraft with these assumed constraints:

1. The connected deployment space R = (UIJ bj) u (U(K ck). That is, the union over all

bounding areas encompasses the entire deployment space for the Continuous VSA Layer.

2. For all i E I, in RealWorld the value of aircraft[i].loctakeo ff = p is restricted to values of

p such that objectAt(p) = (v, v') E E for some vertex v E T in the set of terminal vertices,

and that p E inner(edgeToBox(objectAt(p))). That is, all aircraft enter the system inside

the inner bounding box of some edge outgoing from a terminal vertex.

3. For all i E I, in Real World the value of aircraft[i].loc_landing = p is restricted to values of



Constants:
E, the GPS update frequency E R > 0
v-max , the maximum aircraft velocity E R+

t-advance, the time between an advance action
and the corresponding state update
ER> 0

Signature:
Output GPSinput(loc) i , i E I, loc E R
Input move(p, t)i , p E R3, tER > 0
Internal finishMove2 , i E I
Internal Takeoff1 ,i E I
Internal Landing , i E I
Internal updateLastBox , i E I

State:
GPSdone, an array of booleans for each i E I and

for k E Z > 0 initialized to false
aircraft an array of type AircraftRecord

for each aircraft[i], initialized to:
aircraft[i].loc +- loc- NULL
aircraft[i].lastbox -- loc NULL
aircraft[i].moving 4- false
aircraft[i].movingtime + 0
aircraft [i].movingto - loc- NULL
aircraft[i].movingfrom +- loc- NULL
aircraft[i].loc- takeoff E inner(b) for v E T

and b = edgeToBox((v, v')), (v, v') E E
aircraft[i].loc landing E inner(b) for v' E T

and b = edgeToBox((v, v')), (v, v') E E,
now: R

Trajectories:
evolves

d(now) = 1
for each i E I, with a[i] = aircraft[i]:

if (aircraft[ i].loc = locNULL) then
constant a[i].loc

else
0 < Id(a[i].loc) <5 v-max

invariant
if (a[i].moving= true) then

dist(a[i].loc, afi].movingto) 5
v- max (a [i].movingtime - now)

if (objectAt(a[i].movingfrom) = eE EA
objectAt(a[i].movingto) = e' E EA
vertexAfter(e) = vsuch that (v, v/) = e')

then a[i].loc E edgeToBox(e)U
edgeToBox(e') U vertexToCyl(v)

else a[i].loc E inner(b) such that
b = edgeToBox(objectAt(a[i].loc))

stops when
any precondition is satisfied

Actions: .
Output GPSinput(loc)i
Precondition:

now= ke A
GPSdone[i, k] = false A
loc = aircraft[i].loc

Effect:
GPSdone[i, k] <-- true

Input move(p, t)i
Effect

if ((dist(aircraft[i].loc, p) < vmax t) A
(aircraft[i].moving= false) A
(objectAt(p) = (v, 1/) E Esuch that v=

vertexAfter(objectAt(aircraft[ i].loc))))
then

aircraft[i].moving *-- true
aircraft[i].movingtime *- now + t
aircraft[i].movingto 4- p
aircraft[ i].movingfrom -- aircraft[ i].loc

Internal finishMovei
Precondition:

aircrafti .loc = aircraft i ].movingto A
aircraft[i]. moving = true

Effect
aircraft[i]. moving -- false
if (aircraft i ].loclanding E

edgeToBox(objectAt(aircraft[i].loc)) then
aircraftli].moving -- true
aircraft[ i].movingtime +- now+ tadvance
aircraft[i].movingto - loc.landing
aircraft[i].movingfrom *- aircraft[i].loc

Internal Takeoff2
Precondition:

now = aircraft[i.LttakeoffA
aircrafi ].loc = locNULL

Effect
aircraft[ i ]. loc +- aircraft[i]. loctakeoff

Internal Landingi
Precondition:

aircraft[i].loc = aircraft[i]. loclanding
Effect:

aircraftfi].loc 4- locNULL

Internal updateLastBoxi
Precondition:

aircraft[i].loc E inner(b) such that
(b E BA aircraft[i].lastbox ' inner(b))

Effect:
aircraft[ i].lastbox 4- aircraft[i].loc

Figure 5-8: TIOA Code for RealWorld with Graph Constraints



p such that objectAt(p) = (v, v') E E for some vertex v' E T in the set of terminal vertices,

and that p E inner(edgeToBox(objectAt(p))). That is, all aircraft leave the system at some

point inside the inner bounding box of an edge incident on a terminal vertex.

Also, once objectAt(aircraf t[i].loc) = objectAt(aircraft[i] .loc_ landing), aircraft[i].loc will

move to loc_landing within time t_advance. In other words, once an aircraft has reached

the bounding box before its landing vertex, it will land within t_advance time.

4. If aircraft[i].loc is inside a bounding box b E B with boxToEdge(b) = e E E, with the value

of aircraft[i].moving = false, the value of aircraf t[i].loc is restricted to remain within the

inner bounding box inner(b).

When a move(p, t)i action occurs, we first to check if it is valid. A valid move action requires

that the distance between aircraft[i].loc and p is not too large to be traversed in t_max

time, that objectAt(p) = e E E such that objectAt(aircraft[i].loc) either is an edge incident

on e's source vertex, is that source vertex itself, or is the outer bounding box of some edge

with a source vertex the same as e's.

If the action is valid, then let b = objectAt(aircraft[i].loc), (v, v') = e' = objectAt(p), let

c = vertexToCyl(v), and let b' = edgeToBox(e'). Then, until aircraft[i].loc reaches p,

aircraft[i].loc is restricted to remain within b U c U b', at which point it must remain within

inner(b') until a subsequent input move(p', t')%.

If a second valid move occurs before aircraft[i].loc reaches p, the original request is aborted

and i moves to the new location. For this second move to be valid, the same conditions

apply as above.

In summary, each aircraft's nondeterministic motion must remain inside an inner bound-

ing box until told to move to another bounding box. Then, it must move through a bound-

ing cylinder into another inner bounding box.

Theorem 5.1

Let system S be the composition of RealWorld and the CDj automata for all i E I. For every
execution ar of S, there exists an execution ag of GraphRealWorld such that:



* ar and ag have the same actions occur at the same times at the external boundary of

GraphReal World.

* There is a correspondence between states of S and states of GraphRealWorld which in-

cludes the fact that at all times 1, for aircraft i in GraphRealWorld:

- If GRW.aircraft[i].e = e for some e E E, and GRW.aircraft[i].auth = false, then

e = objectAt(RW.aircraft[i].loc), RW.aircraft[i].loc E inner(edgeToBox(e)), and the

value of RW.aircraft[i].moving = false, as well as the converse. That is, an aircraft on

an edge in GraphRealWorld corresponds to that aircraft being inside that edge's inner

bounding box in RealWorld.

- If aircraft[i].auth = true and aircraft[i].authedge = e in GraphRealWorld, then

aircraft[i].moving = true and e = objectAt(aircraft[i].movingto) in RealWorld, as

well as the converse. That is, an aircraft being authorized to pass through a vertex

in GraphRealWorld corresponds to that aircraft's motion being able to pass through

that vertex's bounding cylinder in RealWorld.

Assuming the above restrictions, if we compose RealWorld and the CDi automata for all

i e I, the behavior of that composition emulates the behavior of GraphRealWorld, as seen by the

other components in the Known Path VSA Layer, and the state of GraphRealWorld corresponds

as above to the state of RealWorld.

Proof

Our primary goal is to show that the state of GraphRealWorld and the state of S correspond

during all trajectories and after all actions through these relations for all i E I:

* GRW.now = RW.now

* If CDi.GPStodo = false then, for all k E Z > 0:

- GRW.GPSdone[i, k] = RW.GPSdone[i, k]

'Saying at all times is not exactly true. Between multiple actions that occur at the same time, the states may
not always correspond. More formally, we are saying that for each finite prefix of execution a,, we can create some
finite prefix of a, with the same size (in time) in which the state correspondence is satisfied at the end. Moreover,
successive extensions to the prefix of a, should result in extensions of ag of the same size.



* GRW.aircraft[i].t_takeoff = RW.aircraft[i].t_takeoff

* GRW.aircraf t[i].v_takeoff = vl(v, v') = objectAt(RW.aircraf t[i].loc_ takeoff)

* GRW.aircraft[i].vlanding = vl(v', v) = objectAt(RW.aircraft[i].loc_ landing)

* GRW.aircraft[i].e = objectAt(RW.aircraft[i].lastbox)

* GRW.aircraft[i].region = region(RW.aircraft[i].loc)

* If CDi.move = false then:

- GRW.aircraft[i].auth = RW.aircraft[i].moving

- GRW.aircraft[i].authedge = objectAt(RW.aircraft[i].movingto)

- GRW.aircraft[i].authtime = RW.aircraft[i].movingtime

Now, let us fix execution ar of S. The state of GraphRealWorld in ag will then have initial

state which corresponds to the initial state of S as follows:

* For all i E I, k E Z > 0, RW.GPSdone[i, k] = GRW.GPSdone[i, k] = false.

* RW.now = GRW.now = 0

* For all i I:

- RW.aircraft[i].loc = RW.aircraft[i].lastbox = loc_NULL

GRW.aircraft[i].e = objectAt(loc_ NULL) = e_NULL.

- region(RW.aircraft[i].loc) = GRW.aircraft[i].region = j_NULL

- RW.aircraft[i].loc_takeoff = p E R (as constrained by Assumption 2).

GRW.aircraft[i].v_takeoff = vi(v, v') = objectAt(p)

- RW.aircraft[i].loc_landing = p E R (as constrained by Assumption 3).

GRW.aircraft[i].vlanding = vl(v', v) = objectAt(p)

- RW.aircraft[i].moving = GRW.aircraft[i].auth = false

- RW.aircraft[i].movingto = loc_ NULL

GRW.aircraft[i] .authedge = objectAt(loc_ NULL) = e_NULL

75



- RW.aircraft[i].movingtime = GRW.aircraft[i].authtime = 0

This initial state of S in execution ar therefore corresponds to GraphRealWorld's initial state

in ag with the required relations. Now I show that in any step of the execution of ar, we can

construct a step of ag such that the required state correspondence is maintained.

Assume the correspondence has held through step n of ar and ag. Now, given the possibilities

for step n + 1 in ar, I construct all possibilities of step n + 1 in ag, and show that ag can be

constructed so that the state correspondence still holds:

* Say that step n + 1 involves a passage of time in which no actions occur in a, and for

some i E I, aircraft[i].moving = false. The value of now increases by some amount,

and the value of each aircraft[i].loc changes at some rate, yet remains within an inner

bounding box. In a,, the value of now can increase by the same amount, and for the same

i, aircraft[i].auth = false since the value corresponds to the value of aircraft[i].moving

in RealWorld. Since aircraft[i].loc in RealWorld never changes bounding boxes, we know

that aircraft[i].lastbox remains the same and in GraphRealWorld, aircraft[i].e does not

change, keeping the correspondence intact.

If no actions occur in a, but for some i E I, aircraft[i].moving = true, that aircraft may

leave its bounding box on its way to some other bounding area. That aircraft does not yet

reach aircraft[i].movingto, as doing so would trigger a finishMove action. In ag, the value

of aircraft[i].auth is true, but a doAdvance does not occur, so i does not yet advance onto

aircraft[i].authedge, keeping the correspondence intact.

* Say that at step n + 1 of a , , RealWorld outputs a GPSinput(loc)i action to CDi. This step

corresponds to no change in ag. The equality of GRW.GPSdone and RW.GPSdone does

not remain, as the output from RealWorld is input by CDi and the flag CDi.GPStodo is set

to true.

* Say that at step n + 1 of a,, CDj outputs a GPSinput(j, e)i action which was translated

from a GPSinput(loc)i action as specified in Section 5.7.2. This sets CDi.GPStodo to false.

Then, in ag, GraphRealWorld outputs a corresponding GPSinput(j, e)i action. Since the

values of now correspond, the value of now in GraphRealWorld must be equal to ke for



some k, since the values of aircraft correspond, j and e in the two outputs must be the

same, and since the values of GPSdone were equal until the preceding GPSinput(loc)i oc-

curred, GraphRealWorld must have GPSdone[i, k] = false. Therefore, it will be enabled

to perform this action. After the action, both automata have set GPSdone[i, k] = true, and

CDi.GPStodo = false, so the state correspondence holds after step n + 1.

* Say that at step n + 1 of a,, CDi receives an input advance(e)i action from ai. If the in-

put is valid, this action sets CDi.move to true in order to output a translated move ac-

tion. Let us assume that the input is valid. The corresponding a, has a advance(e)i in-

put to GraphRealWorld. It sets aircraft[i].auth to true, aircraft[i].authedge to e, and sets

aircraft[i].authtime to now + t_advance. After this, the states of those variables no longer

correspond with RealWorld, but CDi.move is true as required.

* Say that at step n + 1 of ar, CDi outputs a move(p, t)i action as specified in Section 5.7.2.

RealWorld receives this move(p, t)i, let us assume it is valid. It sets aircraft[i].moving to

true, aircraft[i].movingto to p, aircraft[i].movingtime to now + t, where t = t_advance

as specified by CDi. Also, CDi.move is set to true. Since the aircraft[i].moving variables

were updated to correspond with the aircraft[i].auth variables in GraphRealWorld, the

correspondence holds as required.

If the advance(e)i action was invalid because it violates the graph requirements, in a,, CDi

will not pass it through to RealWorld, and in ag, GraphRealWorld will also have ignored

the action. If the action was invalid in Real World because aircraft[i].moving = true, then

we know that aircraft[i].auth = true in GraphRealWorld, allowing GraphRealWorld to

ignore the action as well.

* Say that at step n + 1 of an, an internal finishMovei occurs. Due to the motion invariant of

RealWorld, and the fact that all move actions to RealWorld from CDi have t = t_advance,

this must have occurred at most t_advance time after such a move2 action. As specified

by finishMovei, aircraft[i].loc = aircraft[i].movingto, which, by the specifications of CDi

is within the inner bounding box of the edge e from the original advance(e)i input that

was received by S. Therefore, an updateLastBoxi must occur, updating aircraft[i].lastbox

to some location in inner(edgeToBox(e)). The value of aircraft[i].moving is set to false



and its associated variables get reset as specified.

In step n + 1 of ag, an internal doAdvancei action occurs. We know this is possible, because

now must be at most tadvance time after an advance(e)i action and aircraft[i].auth must

be true, as it is equal to aircraft[i].moving in RealWorld. Therefore, aircraft[i].e gets up-

dated to e, which is equal to the updated objectAt(aircraft[i].lastbox), keeping them equal.

The value of aircraft[i].auth is also set to false with its associated variables, keeping them

in correspondence with the aircraft[i].moving variables in RealWorld.

* Say that at step n + 1 of ar, a Takeoff, action occurs in RealWorld. Since the variables corre-

spond as above, a Takeoff(e)i action occurs, with objectAt(RW.aircraft[i].loctakeoff) = e,

in execution ag of GraphRealWorld, and the values of aircraft[i].e and aircraft[i].region

are updated to correspond.

* Say that at step n + 1 of ar, a Landingi action occurs. This must have been preceded by time

tadvance by a movei action which put aircraft[i)].loc into the inner bounding box which

aircra ft [i].loclanding is also in. The value of aircraft[i].loc is then set to loc NULL. In a9 ,

a Landingi occurs in GraphRealWorld, which can occur since it must have been preceded

by an advancei action which caused the movei action in ar. The value of aircraft[i].e is

updated to correspond.

Since every step in ar of S has a directly corresponding step in ag of GraphRealWorld that

preserves the state correspondence above, throughout the two executions, the state of S corre-

sponds to the state of GraphRealWorld. Since every step in S is able to occur in GraphRealWorld,

S is able to emulate GraphRealWorld.

Q.E.D.

Now, using Theorem 5.1, I prove a corollary.

Corollary 5.2

Let system S, as described in Theorem 5.1, composed with the Continuous VSA Layer compo-

nents Bcast and VtoVcast be called system S'.

For every execution ar of system S' composed with the Known Path VSA Layer clients and

VSAs, there exists an execution ag of KnownPathVL such that:



* Let any two actions with the same name, but possibly with different parameters, be called

similar actions. In ar and a9 , ignoring the translation actions between RealWorld and the

CDj automata in ar, similar actions will occur at the same times in the two executions.

* There is a correspondence between states of S and states of GraphRealWorld which in-

cludes the fact that at all times 2, for aircraft i in GraphRealWorld:

- If aircraft[i].e = e for some e E E, and aircraft[i].auth = false in GraphRealWorld,

then e = objectAt(aircraft[i].loc) and aircraft[i].moving = false in RealWorld, as

well as the converse.

- If aircraft[i].auth = true and aircraft[i].authedge = e in GraphRealWorld, then

aircraft[i].moving = true and e = objectAt(aircraft[i].movingto) in RealWorld, as

well as the converse.

Proof

By Theorem 5.1, we know that if inputs to S and GraphRealWorld occur at the same times, then

corresponding outputs from both S and GraphRealWorld occur at the same times and states of

S and GraphRealWorld correspond as above.

I now show that actions in CVL.Bcast correspond to actions in KPVL.Bcast, and that ac-

tions in CVL.VtoVcast correspond to actions in KPVL.VtoVCast, where CVL is the Continu-

ous VSA Layer, and KPVL is the Known Path VSA Layer.

This correspondence, though, is trivial. GPSinput(loc)i actions occur at the same time as

GPSinput(j, e)i actions, and region(loc) = j, as shown in Theorem 5.1. Since the Continuous

Bcast and VtoVcast use this location information only to determine region(loc), there is a di-

rectly corresponding state between the Continuous and Known Path versions of the automata.

Since the actions both automata take depend solely on this corresponding state and inputs from

RealWorld or GraphRealWorld, their actions correspond as well.

Therefore, system S' and KnownPathVL have corresponding executions a, and a. such that

actions in both occur at the same time, and states in S' correspond to states of KnownPathVL.

Q.E.D.
2 See note 1. The same inexactness in saying at all times applies here as well.



5.7.5 Safety

Now we can prove that, as arranged, during corresponding executions of the Continuous VSA

Layer and the Known Path VSA Layer, that keeping aircraft separated in the Known Path VSA

Layer implies that aircraft are separated by the separation requirements from Section 5.6.1.

Recall that the separation requirement is that no two aircraft ever get within dhaep of each

other laterally or d,,s, of each other vertically. If we require the motion in RealWorld to follow

the requirements enumerated in 5.7.4., we can ensure safety and prove this theorem.

Theorem 5.3

Let ar and ag be corresponding executions, according to the correspondence given in Corollary

5.2, of the Continuous VSA Layer and the Known Path VSA Layer respectively. Assume that, in

ag, for all i, k E I:

* In GraphRealWorld, aircraft[i].e 4 aircraft[k].e unless both are e_NULL or eDONE,

throughout the execution ag. That is, no two aircraft ever occupy the same edge.

* In GraphRealWorld, for each vertex v E V, if aircraft[i].authedge = (v, v') then for all k,

aircraft[k].authedge # (v, v") throughout the execution ag. That is, no two aircraft are

authorized to pass through the same vertex at the same time.

Then, on corresponding execution ar of RealWorld, for i, k E I, the values of aircraft[i].loc

and aircraft[k].loc are always separated by dhsep horizontally, dvsep vertically, or both, throughout

the execution.

Proof

First, by Theorem 5.1, we know that aircraft occupying the same edge in GraphRealWorld corre-

sponds to those same aircraft being in the same bounding box in RealWorld. Similarly, we know

that aircraft being authorized to pass through the same vertex in GraphRealWorld corresponds

to those aircraft (possibly) being in the same bounding cylinder in RealWorld.

Therefore, I can rephrase the theorem as: if no two aircraft are in the same bounding area in

RealWorld, all aircraft are separated by dhsep horizontally, dsep vertically, or both.



By the bounding area construction, we know that all aircraft in ba E BUC must remain within

the inner bounding area inner(ba) = iba except while passing through a vertex. By the definition

of bounding areas, we know that an aircraft in a bounding box is separated from all other aircraft

in all other bounding boxes. Now we show that an aircraft in a bounding cylinder is separated

from all aircraft in bounding boxes with a shared boundary.

Since we assume from the theorem statement that no two aircraft attempt to pass through

a vertex at the same time, it follows that at any shared boundary between bounding areas bal

and ba2 in which aircraft[i].loc e bal and aircraft[k].loc E ba2 , only one aircraft is in the outer

bounding area, say bal, and the other aircraft is in the inner bounding area inner(ba2). Since

all points in the inner bounding area inner(ba2) are separated from all boundaries of ba2 by dhsep

horizontally and dvep vertically, aircraft[i].loc and aircraft[k].loc must also be separated by dhsep

horizontally and dvep vertically.

Therefore, if no two aircraft occupy the same edge or attempt to pass through the same vertex

at the same time in GraphRealWorld on execution a,, each aircraft is separated by dhaep hori-

zontally, d.sep vertically, or both, from all other aircraft in RealWorld on corresponding execution

ar.

Q.E.D.

5.8 Chapter Summary

The physical system has therefore been constrained so that aircraft are able to move from their

loc_takeoff to their loclanding by simply moving through the bounding cylinders and boxes.

Since we have arranged the bounding areas appropriately, if we assume that no two aircraft

ever occupy the same bounding area, it follows that the separation requirements are satisfied.

Therefore, while the aircraft move continuously throughout space, we are able to discretize their

movement as transitions from one bounding area to an adjacent one.

This discrete interpretation of the aircraft's movement makes our goal much simpler, as in-

stead of caring exactly where each aircraft is, we can consider any aircraft within a bounding box

bk to be on the corresponding edge e E E. This is exactly what is desired, as we can now use a

graph-theoretical approach to solving the open problems in the air traffic control system, that

is, ensuring that no two aircraft occupy the same bounding area, and efficiently moving aircraft



from their origin to their destination.

To summarize, In this chapter I have:

* Defined a discrete model for the physical behavior of the air traffic control system.

* Developed a system of constraints for the continuous system called bounding areas, which

can be used to organize the space into a number of paths.

* Abstracted the paths of bounding areas into a graph representation for the air traffic con-

trol system that can be used in graph-theoretical algorithms for performing the functions

of air traffic control.

For the next two chapters, it will be useful to briefly reiterate the model that was developed

in this chapter. While the physical model of the system involves aircraft that move continuously

through space, our use and arrangement of bounding areas allows us, for the purposes of the

algorithm, to consider the model of a directed graph as a model for the system.

The directed graph contains a number of vertices, of which some correspond to the entrance

and exit points of the air traffic control system (terminal control areas), and some simply func-

tion as a point where two or more edges meet. An edge in the graph represents a partition of

airspace, each edge separated from all other edges, that our planes can use to travel between all

vertices. We consider an aircraft to be on an edge if and only if it is within the corresponding

bounding box. Aircraft move nondeterministically from their entrance vertex to their exit vertex

along edges.

Remember that while at a lower level layer, aircraft move continuously through space and

have locations in 3-space, I have proven that fact is safely abstracted away by the Known Path

VSA Layer. We can consider the graph to represent the system and wish to satisfy one important

requirement in order to prove safety: each bounding area must always contain zero or one air-

craft. If this is satisfied, then the aircraft can fly freely within that bounding area with no adverse

effect on safety, so ensuring the satisfaction of that requirement becomes a primary goal for the

air traffic control algorithms.



Chapter 6

The FIFO Algorithm

In the previous chapter, I abstracted our earlier continuous model for the motion of aircraft into

a discrete directed graph model for use in my algorithms. Each aircraft can be considered to be

on a single edge in the graph of air routes. The problem of ensuring safety in such a system, by

Theorem 5.3, becomes the problem of ensuring only a single aircraft is on any edge or is cleared

to pass through any vertex at any time.

To do this we employ the Known Path VSA layer discussed in Chapter 5. For each of the

regions in J, a VSA controls the traffic in that region. When an aircraft i wishes to progress from

its current edge to a new edge, it makes a request to do so from the region's VSA. In order for the

movement to be safe, the VSA determines whether the desired edge is empty or not.

If the desired edge is empty, the VSA must determine whether it has given another aircraft

clearance to pass through the same vertex, where each vertex functions as an intersection that

aircraft must pass through to get from one edge to another. If no other aircraft has clearance, i is

given clearance, and progresses from the current edge to the desired edge.

The simplicity of the algorithm is a direct result of using the Known Path VSA layer, and this

chapter will show how simple it is to control a complex system with a relatively small algorithm

when a VSA layer is used. In this chapter I will specify the problems that this algorithm will

solve, provide the details of the algorithm in both TIOA pseudocode and detailed explanation,

and prove that the algorithm solves the problems.

The algorithm is called the FIFO Algorithm, due to the fact that it resolves conflicts between

multiple aircraft requesting clearance using a simple first-in-first-out queue. In the next chapter



I will propose an improvement upon the algorithm by resolving conflicts in a more intelligent

manner.

6.1 Problem Specification

The problem that the FIFO Algorithm solves has two main parts.

The first part is safety, where we must ensure that no two aircraft violate the separation

requirements of dhsep minimum lateral separation and d,,ep minimum vertical separation. As

shown in Theorem 5.3, our graph model simplifies this problem for us, allowing us to restate the

problem in terms of the graph of air routes. The problem of safety can therefore be stated as: no

two aircraft may occupy the same edge or progress through the same vertex at any time.

The second part is progress. While we make no requirements that the overall movement of

the aircraft is efficient (as the nondeterministic movement of said aircraft makes that impossi-

ble), we would like to require that when there is a conflict between multiple aircraft requesting

clearance, one of those aircraft will eventually be cleared. The problem of progress can therefore

be stated as: given a set ofaircraft that wishes to move onto some empty edge e, one will be allowed

to do so in bounded time.

6.2 Capabilities of the Known Path VSA Layer

While the capabilities of the VSAs were discussed in depth in Chapter 4, recall these few short

points about their capabilities which we will be concerned with when developing the FIFO Al-

gorithm.

* AVSA is only active if there is at least one aircraft in its region. For our purposes, we assume

the problems of starting it up and keeping it up are trivial, and therefore assume that if

there is an aircraft in a region, the VSA associated with it is active and has not experienced

failures, with the exception of a reasonable startup time, of the message delay d, as a single

aircraft enters the region when there were previously none.

* Aircraft do not communicate directly with other aircraft. They have the ability to broadcast

to Bcast, which will be received by the VSA in the aircraft's region through a brcv action. The



VSA can also communicate with all aircraft in its region with a bcast action, and the aircraft

will receive them with a brcv action.

* A VSA can communicate with any neighboring VSA which is alive using a VtoVsend. The

neighboring VSA will receive the message with VtoVrecv. We assume that a communication

between two active VSAs cannot fail.

Before I present the algorithm, it would be helpful to recall some of the functions defined in

the last chapter that will be used in the algorithm. All clients and VSAs have access to the graph

representation of air routes G = (V, E), and the functions getRegion : V -- U mapping a vertex

to the region that contains it, and getRegions : E -+ U which maps an edge to the one or two

regions that contain it. The function vertexAfter : E - V maps an edge in E to the vertex that

(directed) edge leads to.

6.3 Algorithm

6.3.1 Overview

The high level idea of the FIFO Algorithm is to use each VSA to keep track of the state of its region.

A VSA stores information about which edge each aircraft in its region is on. The VSA also stores

an array of queues, one for each vertex in its region, in order to determine in which order aircraft

should be cleared to pass through each vertex. Each client periodically updates the VSA in its

region with position updates, so that the VSA can keep its state up to date.

When an aircraft i wishes to progress to an adjacent edge e, a2 requests clearance from the

VSA in its region vnj. The VSA then puts i in a queue for the vertex between i's current edge and

e. When i reaches the front of the queue, the VSA informs i's client ai that the vertex is reserved

for i, and that it can therefore safely advance to e.

Whenever an aircraft has reached the front of the queue, safely advanced, and updated the

VSA to the aircraft's new position, the VSA removes that aircraft from the front of the queue, and

moves the next aircraft, who has requested an edge that is now empty, to the front of the queue.

The moving of an aircraft that wants to progress to an empty edge ensures progress is made, and

aircraft that want to progress to an empty edge do not need to wait in the queue for aircraft that



Constants:
t,,it, the time to wait before assuming a

neighboring VN has no active clients

State:
queues, an array, indexed by vertex for each

vertex in j, of queues, initially empty, which
contain elements of type (i, e) ii E I, e E E

aircraftOn, an array of aircraft in I or i,
initially I, indexed by
edges in E for all edges in j

vnReqs, a list, initially empty, of outstanding
requests of the form (v, i, time)
v E V, i E I, time E R > 0

bcastQ, a list, initially empty, of messages of
the form (v, i, color) where v E V, i E I
color E {red, yellow, green}

vtovQ, a list, initially empty, of messages of the
form (obj, i, type) where i E I, v E V, eE E
obj E { v, e, 1}
type E {red, yellow, green, REQ, UPD}

now: R, the current real time

Signature:
for v E V, e E E, i E I,
replyColor E {red, yellow, green}

Output bcast(ColorReply(v, replyColor, i))j
Output VtoVsend(ReqVN(u, j, i, e))j,dest
Output VtoVsend(ReplyVN(v, replyColor, i))j,dest
Output VtoVsend(UpdateVN(e, i))j,dest
Input brcv(ColorReq (v, i, e))j
Input brcv(PositionUpdate(e, z))j
Input VtoVrcv(ReqVN(u, un, i, e)),,,,j
Input VtoVrcv(ReplyVN(v, replyColor, i))r,,,j
Input VtoVrcv(UpdateVN(e, i)),,c,j
Internal advanceQueue (u, i)j
Internal reqTimeout(v, i)j

Tkajectories:
evolves

d(now) = 1
constant bcastQ, vtovQ, vnReqs,

queues, aircra ftOn
stops when

Anyprecondition is satisfied

Figure 6-1: TIOA State for VSA vnj for j E J

want to progress to an occupied edge. Safety is ensured by only allowing an aircraft to progress

onto an empty edge, and requiring that all previous aircraft have completely cleared a vertex

before allowing the next aircraft to progress through it.

Now, for both the VSA and the Client, the FIFO Algorithm can be described in detail.

6.3.2 The VSA State

On VSA vnj e VN, with j E J, we store an array of queues called queues indexed by each vertex

v such that getRegion(v) = j. Each of these queues can be accessed with queues[v], and each is

initially empty when the execution begins.

Additionally, the VSA stores an array of aircraft in I called aircraftOn for each edge e such

that j E getRegions(e). For any edge e' that has no aircraft on it, aircraftOn[e'] = I. Each of

these aircraft can be accessed with aircraftOn[e], and for each edge in the array, the value is

initialized to _L.

These two arrays represent the overall state of the region according to the VSA: all aircraft

in the region are represented in the aircraftOn array, indexed by their edge in the graph, and



the queues of aircraft that wish to be cleared to pass through each vertex are represented in the

queues array.

A number of message queues are also stored in the VSA state. First is the bcastQ, which stores

messages tobe sent using a bcast action. There is also a vtovQ, which stores messages to be sent

using a VtoVsend action.

Since the VSA does not know whether or not a neighboring VSA is alive, it also stores a list

of outstanding requests in vnReqs. These represent messages that have been sent out through

a VtoVsend, but have not yet been responded to via a corresponding VtoVrcv. The VSA contains

access to a global constant twait, and when the VSA has gone twait time without receiving a re-

sponse to a message kept in vnReqs, it will assume the neighboring VSA is not alive, and respond

appropriately as described in the next subsection.

Finally, as specified earlier, the VSA has a real-time clock variable now.

6.3.3 The VSA Actions

The actions of the VSA are the most significant part of the algorithm. The VSA vnj must keep

track of where each aircraft in its region j E J is and the state of the queue for each vertex in j. It

must also communicate with VSAs in neighboring regions and aircraft in its own region.

Whenever an aircraft i in the region moves from one edge to another edge e (after being

cleared to do so by the VSA), ai will send a PositionUpdate< e, i > message, which the VSA will

receive with a brcv action. When the VSA receives the message, it uses getRegions(e) to deter-

mine what regions e is in. It updates aircraftOn[e] to be i, and if e is in a second region, adds a

message to vtovQ. Then, vnj sends an update to that region's VSA, outputting a VtoVsend to the

VSA vndest with an UpdateVN< e, i > message and removing the message from the vtovQ. It also

clears the state of aircraftOn[e'] for any edges e' 4 e such that aircraftOn[e'] = i.

When vnj receives an UpdateVN< e, i > message on the VtoVrcv channel from a neighboring

VSA, it updates the state of aircraftOn[e] to i. While having the VSA know about incoming air-

craft does not impact correctness to any significant degree, updating a neighboring VSA about

an edge that has been cleared is quite important, so that progress can occur.

The other message from an aircraft that the VSA vnj must handle is the ColorReq< v, i, e >

message which the VSA will receive on the brcv channel. The message includes the aircraft i



Actions:
Input brcv(PositionUpdate(e, z))j
Effect:

for all e' E Esuch thatj E getRegions(ed)
if aircraftOn[d ] = i

aircraftOn[d ] -- 0
if jgetRegions(d) I = 2

vtovQ.append((d, 0, UPD))
for all u E getRegions(e)

if u= jthen
aircraftOn[e] *-- i

else
vtovQ.append((e, i, UPD))

Output VtoVsend(UpdateVN(e, i))j,dest
Precondition:

(e, i, UPD) E vtovQ A
dest= (getRegions(e) -J)

Effect
vtovQ.remove((e, i, UPD))

Input VtoVrcv(UpdateVN(e, i))src,j
Effect:

aircraftOn[e] -- i

Input brcv(ColorReq(v, i, e))j
Effect:

if getRegion(v) = jthen
queues[ v].append((i, e))
If (front(queues[v]) = i A

aircraftOn[e]= 0 )then
color = green

else
color= red

bcastQ.append((v, i, color))
else

vnReqs.append((v, i, now))
vtovQ.append((v, i, REQ))

Output bcast(ColorReply(v, replyColor, i))
Precondition:

(v, i, replyColor) E bcastQ
Effect:

bcastQ.remove((v, i, replyColor))

Output VtoVsend(ReqVN(v, j, i, e))j,dest
Precondition:

(v, i, e, REQ) E vtovQ A
dest = getRegion(v)

Effect
vtovQ.remove((v, i, e, REQ))

Input VtoVrcv(ReqVN (v, vn, i, e)),rc,,
Effect

if getRegion(v) = jthen
queues[ v].append((i, e))
if (front(queues[v]) = i A

aircraftOn[e] = 0)then
color = green

else
color= red

vtovQ.append((v, i, color))

Output VtoVsend(ReplyVN( v, replyColor, i))j,dest
Precondition:

(v, i, replyColor) e vtovQ A
replyColor e {red, yellow, green} A
dest = getRegion(v)

Effect
vtovQ.remove((v, i, replyColor))

Input VtoVrcv(ReplyVN( v, replyColor, zi))sr,j
Effect

vnReqs.remove((v, i, [now -t,it, now]))
bcastQ.append((v, i, replyColor))

Internal advanceQueue (v, i),
Precondition:

getRegion(v) = j A
front(queues[v]) = (i, e) A
3 t/ 0 vsuch that aircraftOn[(v, t')] = i

Effect
queues[v].remove((i, e))
(f', d) -- earliest elt in queues[v] such that

aircraftOn[d ] = 0
queues[ v].moveToFront((f, de))

Internal reqTimeout(v, i)j
Precondition:

(v, i, now -twit) E vnReqs
Effect

vnReqs.remove((v, i, now -twit))
bcastQ.append((v, i, yellow))

Figure 6-2: TIOA Actions for VSA vnj for j E J



which is making the request, the edge e that it wishes to move onto, and the vertex v that it must

pass through to do so. Now, depending on whether the request is for a vertex in region j or not,

there are two possible ways for vnj to handle it.

If the region of v is j, then vnj will be able to handle the request without a neighbor. It does so

by first adding (i, e) to queues [v]. If (i, e) is at the front of the queue, the reply color is green, which

means that i is clear to progress to e, otherwise the color is red, and the aircraft must hold on its

current edge until cleared. Then, by adding an appropriate message to bcastQ, vnj will output a

ColorReply< v, replyColor, i >, where v is the vertex requested, i is the aircraft that requested it,

and replyColor is the color signifying whether or not i is clear to move through v.

If the region of v is not j, and is actually j', then the request is forwarded to vnj's neighbor

vnj,, by having vnj send a ReqVN< v, n, i, e > message to vndest with dest = j'. The VSA vnj

stores a copy of that message in the vnReqs list. The VSA Vndest chooses a reply color in the same

way that VNn did in the preceding paragraph, and responds with a ReplyVN< v, replyColor, i >

message. Upon receiving such a message, vnj then forwards the replyColor to the appropriate

aircraft just as if it was determined by vnj and not by vndest, and removes its copy of the message

from vnReqs.

Finally, the VSA has two internal procedures. When a message kept in vnReqs has gone more

than twait without a reply, the reqTimeout procedure will remove it from vnReqs and reply to the

aircraft i with the yellow replyColor, meaning that the neighboring VSA is not alive, and that

i should wait until it enters the neighboring region to request clearance. When the aircraft i

that has clearance to pass through v has moved onto the requested edge e, the queue must be

updated with the advanceQueue procedure, which dequeues (i, e), advancing the next request to

pass through a vertex onto a currently empty edge onto the front of the queue.

6.3.4 The Client State and Actions

The client program running on the aircraft at is simpler than the code running on the VSAs. It

needs to keep track of what region i is in and what edge i is on, storing them in currentRegion

and currentEdge respectively. When the client starts, currentRegion +- region(vtakeoff ), and

currentEdge +- (vtakeof f, v').

The client ai keeps track of two edges related to the movement of the aircraft: nextEdge rep-



Constants:
tretr•, the time to retry a ColorReq after

receiving a red or yellow response
nextPath(e) :=

choose e' E {(v, v') v = vertezA fter(e) }
a nondeterministic function that
returns the next edge that i wishes
to move onto

Signature:
for v E V, e E E
replyColor E fred, yellow, green}

Output bcast(ColorReq(v, i, e)),
Output bcast(PositionUpdate(e, i)))
Output advance (e)i
Input brcv(ColorReply(v, replyColor, i)))
Input GPSinput(j, e),, j E J
Internal progressi

State:
currentRegion, a region in J, initially j_ NULL
currentEdge, an edge in E, initially e_ NULL
bcastPos, a boolean, set to true in order to

broadcast i's position, initially false
nextEdge, an edge in E that i

wishes to move to, initially e- NULL
destination, an edge in E that i

is currently moving to, initially e- NULL
t-reply, the time E R when ai last received a

ColorReply message, initially oo
now: R, the current real time

Trajectories:
evolves

d(now) = 1
constant currentRegion, currentEdge,

bcastPos, nextEdge, destination, t-reply
stops when

any precondition is satisfied

Actions:
Input GPSinput(r, e)i
Effect

if (r# currentRegion v eZ currentEdge) then
bcastPos = true

currentRegion +- r
currentEdge -- e

Output bcast(PositionUpdate(e, z))
Precondition:

bcastPos = true A
e = currentEdge

Effect
bcastPos = false

Output advance(e)i
Precondition:

e = destination A
destination # null A
currentEdge # destination

Internal progressi
Precondition:

nextEdge = null A currentEdge = destination
Effect

destination - null
nextEdge +- nextPath(currentEdge)
t- reply +- 0

Output bcast(ColorReq(u, i, e))i
Precondition:

(t_reply + tre•, <• now) A
v= vertexAfter(currentEdge) A
e= nextEdge

Effect
t-reply - oo00

Input brcv(ColorReply(e, replyColor, i))i
Effect:

if (replyColor= green) then
destination +- nextEdge
nextEdge - null
t-reply - oo

else
t-reply -- now

Figure 6-3: TIOA Code for Client Automaton ai for i E I



resents the next edge that a1 wants to move to, and destination represents an edge that ai is

moving to, as it has already output an advance to do so. The nondeterministic movement of the

aircraft is abstracted into the function nextPath, which will return the next edge that ai wishes

to move to.

Whenever the client receives a GPSInput(j, e)i, the client ai updates its currentRegion and

currentEdge to j and e respectively, and sets bcastPos to true, which will trigger a PositionUp-

date< e, i > message to be output through a bcast action, with e = currentEdge. The local VSA

will receive this message and update ai's position in its state.

The other actions the client takes are related to moving the aircraft from edge to edge. After

the aircraft has progressed to a new edge, the internal procedure progress will be called, which

will reset the state of destination, and use the nondeterministic nextPath function to determine

what the new nextEdge should be. It also sets treply to 0, which will trigger a ColorReq message.

The ColorReq< v, i, nextEdge > message requests clearance to pass through the vertex v

onto nextEdge from the VSA in currentRegion. The VSA should then reply with a ColorReply<

nextEdge, replyColor, i > message; if replyColor is green, ai sets its destination - nextEdge,

and outputs an advance(e)i action to RealWorld with e = destination which allows i to move to

destination in RealWorld. Otherwise, it sets treply +- now, waiting tretry before trying another

ColorReq.

Such a polling procedure is not necessary for correctness of the FIFO Algorithm given our

assumptions of perfect reliability for the VSAs. We could simplify the algorithm by having ai

only request a vertex once, and having the VSA wait to respond until i has reached the front

of the queue. Were the assumptions on VSA reliability to be weakened, polling the VSA and

expecting an immediate response could be a useful indicator on whether the local VSA is alive

or not.

6.4 Proofs of Safety and Progress

Returning our attention to the system requirements, there are two that we must prove that the

algorithm satisfies: safety and progress.

Recall the safety requirement, which was derived in Theorem 5.3, that no two aircraft may



occupy the same edge or progress through the same vertex at any time. Using our algorithm, we

can prove this theorem about safety:

Theorem 6.1

The FIFO Algorithm ensures that no two aircraft ever occupy the same edge or attempt to pass

through the same vertex at the same time.

Proof

We know that the internal Takeoff action in GraphRealWorld does not allow any aircraft to enter

the system on an edge that is occupied by another aircraft. Therefore, the FIFO algorithm must

simply ensure that if an advance(e)i action is output by ai to GraphRealWorld then, for all aircraft

i' E I, at the time of the advance(e)i action, all aircraft[i'].e : e.

As specified in line 53 of the code for client ai, a advance output must be preceded by the

setting of destination to some edge, which can only occur, by line 76, after a ColorReply message

is received with replyColor = green.

The VSA vnj, with j E J = ai.currentRegion will only send such a message, as specified in

line 40 of the code for VSA vnj, as well as line 32 of the same code, if the aircraft i E I made a

previous ColorReq, and i is in the front of the queue for the vertex v E V such that e = (v, v') and

aircraftOn[e] is empty.

Since the VSA vnj knows, through the specification of the PositionUpdate message, the loca-

tion of every aircraft i' e I such that aircraft[i'].region = j in GraphRealWorld, either its state is

accurate, and the theorem is proven, or there actually is an aircraft i' such that aircraft[i'].e = e

in GraphRealWorld, and the update has not yet been broadcast to vnj.

This second case, though, is impossible, since if such an update has not yet been broadcast,

i' must have been cleared to move through v to advance to e, which contradicts the require-

ment in line 30 of the code for vnj, that front(queues[v]) = i, and the ColorReply message with

replyColor = green could not have been sent to (and received by) ai.

Therefore, i could only progress through v to e if both e is empty, and i is on the front of the

VSA vnj 's queue for v, and the next aircraft will only be cleared to pass through v only after ai has

sent a PositionUpdate to vnj which means i is through v and already on e.



Since the FIFO algorithm never allows an aircraft to progress onto a non-empty edge, and

GraphRealWorld does not allow an aircraft to start on an edge that is occupied, the algorithm

ensures that no two aircraft will ever occupy the same edge. Since the FIFO algorithm only allows

the aircraft on the front of a vertex's queue to pass through that vertex, and only allows the next

aircraft to progress once it has received confirmation that the vertex is clear, it ensures that no

two aircraft attempt to pass through the same vertex at the same time.

Q.E.D.

Now, I prove a corollary showing that the FIFO algorithm ensures safety in the continuous

system as well.

Corollary 6.2

Assume that the Continuous VSA Layer can be correctly emulated by the Physical Network Layer

such that the states of RealWorld for the two are equal throughout the execution.

Then, the FIFO Algorithm guarantees that in RealWorld of the Physical Network Layer, all

aircraft are separated at all times by dhsep horizontally, d,,,s vertically, or both.

Proof

We know, from Theorem 6.1, that the FIFO Algorithm ensures that no two aircraft ever occupy

the same edge or attempt to pass through the same vertex at the same time in GraphRealWorld.

This means, by Theorem 5.3, that in a corresponding execution of the Continuous VSA Layer,

that in RealWorld all aircraft are separated at all times by dhsep horizontally, dvaep vertically, or

both. Since we assume at all times on a corresponding execution, the state of RealWorld in

the Physical Network Layer is equal to the state of RealWorld in the Continuous VSA Layer, I

conclude that in RealWorld of the Physical Network Layer, all aircraft are separated at all times

by dhsep horizontally, dvsep vertically, or both.

Q.E.D.

Now recall from Section 6.1 that our progress requirement is that given a set of aircraft that
wish to move onto an an empty edge e (through vertex v), one will be able to do so in bounded

time. Using the FIFO Algorithm, we can prove this theorem about progress:



Theorem 6.3

Given a set of aircraft {il, i2, ... , in) on incident edges to vertex v that wish to progress to empty

edge e which is an outgoing edge from v, the FIFO Algorithm ensures that one of these aircraft

will be able to progress onto edge e in bounded time.

Proof

The proof is relatively straightforward. Assume, in the worst case, that all outgoing edges are

empty, and that the first aircraft, say il, that wishes to progress to e is behind the aircraft that

wish to progress to all other edges in the queue, which is stored as queues[v]. Therefore, for each

of the (queues[v] I - 1 aircraft before i1 , I calculate how long it will take for each to pass through

the vertex v.

When the VSA vnj in j E J = getRegion(v) has received the PositionUpdate saying that an

aircraft has moved to the next edge, it will advance the queue to the next aircraft that wishes to

progress through v onto an empty edge. It will take at most tretry + d for the VSA to receive a

request from that next aircraft, and that aircraft will receive the request in time d. Then, that air-

craft will output a advance action to GraphRealWorld, which will move the aircraft to an empty

edge in time tadvance. It will take at most E time after that before the aircraft receives its next

GPSinput, and will therefore send a PositionUpdate to vnj where j' e {j} U nbrs(j), which will

arrive at vnj in at most 2d time, and the process will repeat for the next aircraft.

Therefore, each aircraft before il takes at most 4d + tretry + t_advance + E time to clear the

vertex v, and il will move onto empty edge e within at most lqueues[v]J of these steps. The upper

bound on ii moving to e is therefore jqueues[v]I * (4d + tretry + tadvance + E).

Why is the worst case that all outgoing edges are empty? The algorithm ignores the request

of any aircraft in the queue that wishes to progress to an occupied edge until that edge is empty.

If all edges are empty, then all aircraft in the queue before ii will have to progress through the

queue before il is allowed. If some of the edges are occupied, il could have to wait for fewer

aircraft to progress.

The discussed case, where all outgoing edges are empty, is therefore the worst, and the above

upper bound on il's advancing to e holds.

Q.E.D.



6.5 Chapter Summary

In this chapter I have:

* Presented an algorithm which allows the VSAs to control when aircraft move from one edge

to another in our graph representation of the air traffic control system.

* Shown that the algorithm satisfies two important properties:

- Safety, since no two aircraft will occupy the same edge or progress through the same

vertex at any time.

- Progress, since given a given a set of aircraft that wish to move onto an an empty edge,

one will be able to do so in bounded time.

The algorithm is extensible, though, and I will continue using it in the next chapter in order

to introduce a measure of efficiency to the algorithm's desired properties. Where in this chapter

we use a simple queue to determine which aircraft is given clearance to pass through a vertex,

in the next chapter I will discuss how to specialize this process to give preference to aircraft that

need to be given clearance first.

Note that there is nothing special about using a first-in-first-out queue to ensure safety, so

the algorithm could have decided which aircraft gets clearance randomly, nondeterministically,

or using some other method with no impact on the safety of the system. We rely on this fact to

know that the algorithm in the next chapter will also satisfy the safety requirements, as it merely

changes the method to decide which aircraft gets clearance.



Chapter 7

The Heuristic Priority Algorithm

In the previous chapter, I presented an algorithm for air traffic control that focuses on safety,

that is, ensuring that no two aircraft are in the bounding area corresponding to the same edge

or vertex at the same time. I also proved that the algorithm has a desired progress property, that

given a number of aircraft that wish to progress onto an empty edge, one will be able to do so

in bounded time. While this means that each vertex will be as locally efficient as possible, no

claims have been made about the efficiency of the system as a whole.

This chapter will make small modifications to the FIFO Algorithm that will result in a system

that has improved global efficiency while maintaining the nondeterminism inherent in a free-

flight air traffic control system. Absolute proofs of global efficiency will not be possible due to

the possibility of aircraft making decisions that disrupt that efficiency. Nonetheless, we can still

determine a heuristic for a best-effort improvement of global efficiency.

I call the modified algorithm the Heuristic Priority Algorithm, as it replaces the first-in-first-

out queue at each vertex from the FIFO Algorithm with a priority queue. The front element in a

priority queue is the element with the highest priority, which we will determine using a greedy

heuristic.

This chapter will begin by discussing efficiency in the system, including why it is impossible

to find the most efficient choices of aircraft to give clearance to in this free-flight system. I will

then choose the heuristic that will be used, discussing a number of different options before de-

ciding on a single one. Finally, I will show how it can be integrated into the FIFO Algorithm to

provide better global efficiency in the system.



7.1 Efficiency in a Free-Flight System

In the current air traffic control system, entire routes are planned by controllers in order to get

an aircraft from their origin to their destination with minimal interruption of progress. Due to

this pre-planning, when factors such as weather or ground delays occur, entire routes must be

changed, flights need to be cancelled, and passengers get inconvenienced. This is because the

pre-planned system cannot react effortlessly to small changes in the same way that a free-flight

system can.

While that benefit of a free-flight air traffic control system is important, the efficiency of the

aircraft routes in a free-flight system may suffer. One problem with efficiency in this free-flight

model of air traffic control is that in many situations, we have no idea where an aircraft wishes

to go next. If we assume each aircraft uses a shortest-path algorithm, we could route them ac-

cording to that assumption. If an aircraft deviates from that assumption, though, it could create

far-reaching effects similar to the ones in the pre-planned system.

Additionally, since we are attempting to create a distributed air traffic control system, it be-

comes more difficult to intelligently decide how to move an aircraft when the state of its final

destination is unknown to us. It is possible that clearing aircraft i to pass over Chicago before

aircraft k will result in i having to wait longer in Los Angeles, while if we cleared k first, neither

flight would encounter any traffic at all, moving directly to their destinations.

Therefore, it would be neither possible nor prudent to attempt to design an algorithm for

which we can prove global efficiency properties in this free-flight system, and we must resort to

a best-effort attempt to prioritize some aircraft over others using a local, greedy heuristic.

7.2 The Time to Arrival Heuristic

In order to add efficiency to our system, we must ask the question, "What type of efficiency do

we wish to enforce?" This is a difficult question, and there may be a number of good answers to

it, but I would like to propose one heuristic that we can use in this section. I call this heuristic

the Time to Arrival Heuristic.

Since we have no control over the path length of an aircraft (one may choose to take a longer

path due to congestion, weather, or turbulence), enforcing efficiency of total distance travelled



would be impossible. Attempting to avoid traffic would be possible locally, but may result in

undesirable global behavior, and again, the free-flight aircraft may not wish to cooperate with

this type of guidance.

One property that is important in air traffic control (which we have not yet seen in our

model), is a scheduled arrival time. The goal of air traffic controllers is not to get an aircraft

to its destination as quickly as possible, but to get an aircraft to its destination as close before

the scheduled arrival time as possible. Arriving early is of little benefit to an aircraft, as it must

wait in terminal control until it has been cleared to land. Therefore, our efficiency goal should

be to get an aircrafti to its landing vertex v_landing as closely to its arrival time as possible.

The one time our air traffic control algorithm needs to make a decision that effects this goal

is when multiple aircraft, say i and k, wish to progress through a vertex v to empty edges el and

e2 (which could be the same edge) respectively. In this case, we want to prioritize the aircraft

which has less extra time to get to its destination by its arrival time. In other words, we prioritize

the aircraft for which the ratio of the distance remaining to its destination and the distance it

can travel in the time remaining to reach its destination is greatest. I call this value the Time to

Arrival Heuristic, or TTA:

TTA = dist(loc(vertexAfter(currentEdge)), loc(v_ landing)) (7.1)
(tarrival - now) I A(loc(vertexAfter(currentEdge)))

A(now)

The numerator of this value is the straight-line distance from the aircraft's next vertex to its

destination, and the denominator is the time remaining until the scheduled arrival time multi-

plied by the total change in distance over time. It should be clear that the numerator is a lower

bound on the distance the aircraft must travel, as it must travel within the bounding areas, and

cannot, in most cases, take a direct path to its destination.

Normally, the value of the function will be below 1, as the lower bound on the distance to be

travelled should be less than the amount of distance that can be travelled in that time. Valued

at or close to 1, the aircraft will be barely able to reach its destination by the arrival time at its

current rate of travel, so it should be given priority clearance by the VSAs.

There are a number of benefits to this heuristic. First, it is easy and efficient for the clients

to calculate its value and send it to the VSAs. Second, it does not require adding any new com-
munications to the VSA code; I merely need to add the value of the TTA to update messages.



Constants:
tait, the time to wait before assuming a

neighboring VN has no active clients

State:
queues, an array, indexed by vertex for each

vertex in j, of priority queues, initially
empty, which contain elements of type (i, e)
Ii E I, e E E, prioritized by values in R

aircraftOn, an array of aircraft in I or I,
initially I, indexed by
edges in E for all edges in j

vnReqs, a list, initially empty, of outstanding
requests of the form (v, i, time)
v E V,i E I, time E R > 0

bcastQ, a list, initially empty, of messages of
the form (v, i, color) where v E V, i E I
color E {red, yellow, green}

vtovQ, a list, initially empty, of messages of the
form (obj, i, type) wherei E I,v E V, eE E
obj E {v, e, I}I
type E {red, yellow, green, REQ, UPD}

TTA, an array of real numbers indexed by
aircraft in I, initialized to 0

now: R the current real time

Signature:
for v E V, e E E,i E I, tta E R
replyColor E {red, yellow, green}

Output bcast(ColorReply(v, replyColor, i))3
Output VtoVsend(ReqVN(vp,, i, e, tta))j,dest
Output VtoVsend(ReplyVN(v, replyColor, i))j,dest
Output VtoVsend(UpdateVN (e, i))j,dest
Input brcv(ColorReq(v, i))j
Input brcv(PositionUpdate(e, i, tta))j
Input VtoVrcv(ReqVN(v, vn, i, e, tta)) re,,
Input VtoVrcv(ReplyVN(v, replyColor, i))src,,
Input VtoVrcv(UpdateVN(e, z)).s,,j
Internal advanceQueue (v, i)j
Internal reqTimeout(v, z)j

Trajectories:
evolves

d(now) = 1
constant bcastQ, vtovQ, vnReqs,

queues, aircraftOn, TTA
stops when

Any precondition is satisfied

Figure 7-1: TIOA State for VSA vnj for j E J

Finally, it will satisfy the goal of getting aircraft to their destination as close to their arrival time

as possible.

7.3 Algorithm

For this algorithm, we must add a small amount of information to the algorithm already devel-

oped in Chapter 6. The edits will be minor, though, and should look quite similar to the code

you have seen already.

The arrival time t_arrival is decided on by the client, and can change when needed. The
client uses this to report its TTA to the VSA in its region, which then uses it to prioritize aircraft.

7.3.1 The VSA State

To implement the Time to Arrival Heuristic in the VSA state, we change the type of data stored

in the array queues from regular queues to priority queues. With a priority queue, instead of



inserting an object and retrieving it in a first-in-first-out manner, we insert an object with a

given priority, and the front of the priority queue will be the object with the highest priority.The

VSA also stores an array of reals, TTA[i] indexed by i E I, that gets updated upon PositionUpdate

messages.

7.3.2 The VSA Actions

The VSA Actions need to be modified slightly to implement the Time to Arrival Heuristic. Specif-

ically, when advanceQueue gets called to determine which aircraft is next in the priority queue,

instead of simply looking at the front of the priority queue, all elements are removed, the TTA of

each is looked up, and they are inserted into a new priority queue. This ensures that all priorities

are kept current, so the highest priority aircraft is on the front.

Also, whenever position updates occur for any aircraft i, the TTA[i] value is updated. When

one VSA updates a neighboring VSA on an aircraft's position, it looks up that aircraft's TTA and

sends it.

7.3.3 The Client State and Actions

The client must simply keep track of its desired arrival time t_arrival, calculate their TTA upon

each PositionUpdate message sent to the VSA in currentRegion, and append the value of their

TTA to that PositionUpdate message. In order to calculate its TTA, the client must also keep

track of how far it has traveled since it entered the system.

7.4 Chapter Summary

In this section, I have:

* Discussed how efficiency can be measured in a free-flight air traffic control system.

* Created a heuristic called the Time to Arrival Heuristic, a measure of how much extra time

the aircraft has to get to its destination before its arrival time.

* Modified the FIFO Algorithm by prioritizing the vertex queues, resulting in the Heuristic

Priority Algorithm.
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Actions:
Input brcv(PositionUpdate(e, i, tta))j
Effect:

TTA[ i] = tta
for all e' E Esuch thatj e getRegions(ed)

if aircraftOn[e' ] = i
aircraftOn[e'] -- 0
if IgetRegions(e) = 2

vtovQ.append((e', 0, UPD))
for all u E getRegions(e)

if u = jthen
aircraftOn[e] *- i

else
vtovQ.append((e, i, UPD))

Output VtoVsend(UpdateVN (e, i, tta))j,dest
Precondition:

(e, i, UPD) E vtovQA
dest= (getRegions(e) -j) A
tta= TTA[i]

Effect:
vtovQ.remove((e, i, UPD))

Input VtoVrcv(UpdateVN (e, i, tta))sr.,,
Effect:

aircraftOn[e] ~ i A
TTA[ i ] +- tta

Input brcv(ColorReq(v, i, e))j
Effect:

if getRegion(v) = j then
queues[ v].append((i, e), TTA[i])
if (front(queues[v]) = i A

aircraftOn[e] = 0 )then
color = green

else
color= red

bcastQ.append((v, i, color))
else

vnReqs.append((v, i, now))
vtovQ.append((v, i, REQ))

Output bcast(ColorReply(v, replyColor, i))j
Precondition:

(v, i, replyColor) e bcastQ
Effect:

bcastQ.remove( (v, i, replyColor))

Output VtoVsend(ReqVN (v,j, i, e, tta))j,dest
Precondition:

(v, i, e, REQ) e vtovQ A
dest = getRegion(v) A
tta = TTA[i]

Effect:
vtovQ.remove((v, i, e, REQ))

Input VtoVrcv(ReqVN(v, vn, i, e, tta))sr.,,
Effect:

if getRegion( ) = j then
queues[v].append((i, e), tta)
if (front(queues[ v]) = i A

aircraftOn[e] = 0 )then
color = green

else
color= red

vtovQ.append((v, i, color))

Output VtoVsend(ReplyVN(v, replyColor, i))j,dest
Precondition:

(v, i, replyColor) E vtovQ A
replyColor E {red, yellow, green} A
dest = getRegion(u)

Effect:
vtovQ.remove((v, i, replyColor))

Input VtoVrcv(ReplyVN (v, replyColor, i))sc,,
Effect:

vnReqs.remove((v, i, [now -twit, now]))
bcastQ.append((v, i, replyColor))

Internal advanceQueue (v, i)j
Precondition:

getRegion(v) = j A
front(queues[v]) = (i, e) A
3 t/' vsuch that aircraftOn[(v, t/')] = i

Effect:
queues[ v].remove( (i, e) )
newPQ +- empty priority queue
for each (i', e') E queues[v]

newPQ - newPQ U (( r, e'), TA[ ])
queues[v] *- newPQ

Internal reqTimeout(v, i)j
Precondition:

(v, i, now -tait) e vnReqs
Effect:

vnReqs.remove((v, i, now -tit))
bcastQ.append((v, i, yellow))

Figure 7-2: TIOA Actions for VSA vnj for j E J
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Chapter 8

Conclusions

In this thesis, I have modeled the air traffic control system in a way that allowed us to apply

recent techniques in distributed algorithms to the problem. This chapter will conclude the thesis

with some final remarks about the work that has been done and the related research that can

follow from this paper.

I will begin by explaining the contributions to research in algorithmic air traffic control and

distributed algorithms that this thesis has made. Knowing that, I will be able to suggest some

further lines of research that are related to this work. Finally, I will conclude the thesis with

some personal thoughts and remarks about the research.

8.1 Contributions

As I stated at the opening of the thesis, its contributions can be seen in two areas: research

into the specific system of air traffic control, and research in distributed algorithms, namely, in

Virtual Stationary Automata.

In the field of air traffic control, this thesis has:

* Discussed some benefits and drawbacks of a free-flight air traffic control system, including:

- The difficulty in planning efficient routes for a free-flight system

- The ability of a free-flight system to react to small changes in the system
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- The measures of efficiency that one could be interested in when designing an algo-

rithm to control a free-flight system.

* Developed a formal model that can be used in many applications of air traffic control,

specifically the modeling of the continuous motion of aircraft in designated bounding ar-

eas as the discrete transition between different edges in a graph representation.

* Presented two algorithms for performing algorithmic air traffic control, and proved that

they are safe.

And in the field of distributed algorithms, this thesis has:

* Explained the history of algorithms designed to run on ad-hoc wireless networks, including

the ability to coordinate effectively based on location data received from a GPS oracle.

* Presented a generalizable method of discretizing a problem which originally involved con-

tinuous motion.

* Designed two new algorithms using Virtual Stationary Automata to provide a stable lo-

cation for storage, communication, and computation in a wireless network with highly

dynamic topology.

8.2 Future Work

In this section, I would like to suggest some future lines of research that this thesis has opened

up.

8.2.1 Implementation and Simulation of ATC

As I stated previously, a simulator for the Virtual Stationary Automata layer was implemented in

Python in 2006. An obvious next step for the air traffic control algorithms in this paper would be

to implement them in Python, using the simulator to observe performance of the system.

In this case, instead of having a single heuristic to determine how aircraft get cleared through

a vertex, we could simulate multiple heuristics, observing the performance of each of them. This
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would give powerful evidence whether or not the efficiency arguments I give in Chapter 7 will

hold in a real-world implementation of the Heuristic Priority Algorithm.

An impediment to this research, though, is the simplicity of the movement model imple-

mented in the simulator. The simulator does not currently support the type of nondeterministic

movement assumed of the aircraft in the Known Path Model, making simulation of the algo-

rithms impossible. If the ability to simulate the movement of our aircraft was implemented in

the simulator, it would be straightforward to implement and test the algorithms in this paper.

8.2.2 ATC Without Known Paths

Another line of research would be to throw out the graph representation, designing an algorithm

to control free-flight air traffic using a continuous movement model. While the graph represen-

tation allows us to describe the system in a computationally efficient manner, it is somewhat

restrictive in the freedom pilots have to plan their routes.

Instead, we could use VSAs for collision avoidance, keeping track of the locations and ve-

locities of all aircraft in the region. When two aircraft get close and appear to be in danger of

colliding, the VSA mediates the conflict by instructing both pilots how to avert the collision.

One problem with this is that our assumptions about the network layer, specifically the per-

fect reliability and bound on message delivery, would need to be removed for this application.

In our clearance-based system, only one aircraft can be allowed to enter a bounding area at a

time, and a simplified view of the message delay never causes problems with safety. In a system

that uses VSAs for collision avoidance, message delay becomes very important, as a delayed or

dropped message could result in a violation of separation requirements, or even a collision.

Another possible ATC algorithm would involve allowing bounding areas to be created as

needed. When an aircraft enters a region, it creates and reserves a bounding area with the VSA,
which it can use until the aircraft leaves the region. This is an interesting solution to the problem,

but could be computationally intensive and difficult to implement.

8.2.3 Other Applications for VSAs

One important aspect of VSA theory is how generally applicable the idea is to a ad-hoc network-

ing problem. We can use a VSA layer any time it is impossible or too expensive to use physical
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infrastructure in a wireless network, but we would still want the ability to communicate with a

stable location in space.

For example, a military application could be the coordination of nearby troops on a battle-

field. It is often difficult or impossible to deploy infrastructure in an active battlefield, but the

communication between multiple groups of soldiers is essential to success. VSAs could be used

to coordinate locations of different groups of soldiers, or to collaborate on a strategy involving

nearby groups of soldiers who would be unable to communicate directly.

Commercial applications of Virtual Stationary Automata could involve physical social net-

working, where individuals leave notes and data for others at specific locations in space. Other

applications, such as collaboration between users at a conference, or coordination of medical

and police personnel during a disaster, would also be great uses of VSAs.

While these applications for VSAs would be interesting lines of research, the use of the Known

Path VSA Layer can make many applications much easier and more intuitive. We saw how sim-

ple a distributed air traffic control algorithm could be when the motion is discretized using the

bounding areas method, and this sort of continuous-to-discrete conversion can be used in a

variety of new applications.

8.3 Closing Comments

I'd like to close by commenting on the two main aspects of my research: air traffic control and

Virtual Stationary Automata. While I have stated what I believe the contributions of this thesis

are to both domains, it remains to be said what importance it has in each.

Concerning air traffic control, the importance of the research is difficult to say. Right now

there are many competing ideas on where the future of air traffic control will be, and nobody

has any perfect answers on what the results will be. In general, a distributed solution for air

traffic control is not likely to be adapted for commercial air travel. There is already a great deal

of infrastructure in place, and the difficulties of adapting commercial travel to free-flight may be

too great, with too little benefit.

On the other hand, I believe a solution like this would be extremely effective for air traffic con-

trol of civil aviation. The development of fast, fuel-efficient, small aircraft will cause a dramatic

increase in the numbers of civil aviators in upcoming years, and an inexpensive automated so-
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lution will need to be created to accommodate them. If aviation reaches a point where a large

number of citizens commute to work using very-light aircraft, a solution such as the one in this

paper would be quite effective: it has similarities to streets and roads that people are already

comfortable navigating, and it requires no expensive infrastructure to deploy or maintain.

The future of Virtual Stationary Automata, in my opinion, is extremely bright. As wireless

networks become ubiquitous in our everyday lives, the ability to coordinate with nearby clients

will be more and more important. Using Virtual Stationary Automata, the development of inno-

vative applications for the ad-hoc wireless networks in everyday life will be quicker, easier, and

less expensive. The deployment of such applications will become trivial as well.

In my opinion, a stable, efficient implementation of the VSA layer will have a huge number

of uses in the networking world. The steps we have taken so far are still early, but will prove

extremely important to the continued development of such a useful, widely-applicable idea.
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