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Abstract

Using low level video data, features can be extracted from images to predict search time and
statistical saliency in a way that models the human visual system. The statistical saliency
model helps explain how visual search and attention systems direct eye movement when
presented with an image. The statistical saliency of a target object is defined as distance in
feature space of the target to its distractors. This thesis presents a real-time, full through-
put, parallel processing implementation design for the statistical saliency model, utilizing
the stability and parallelization of programmable circuits. Discussed are experiments in
which real-time saliency analysis suggests the addition of temporal features. The goal of
this research is to achieve accurate saliency predictions at real-time speed and provide a
framework for temporal and motion saliency. Applications for real-time statistical saliency
include live analysis in saliency research, guided visual processing tasks, and automated
safety mechanisms for use in automobiles.
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Chapter 1

Introduction

Understanding humans visual search can lead to understanding of how the visual system

extracts information from the environment. Visual search is guided by both top-down mech-

anisms under conscious control and bottom-up mechanisms that cause certain features to

pop out from their surroundings. Modeling visual search allows us to predict whether find-

ing objects in clutter is difficult. With an accurate prediction model, we can infer statistical

saliency for objects as they are encountered, where saliency is inversely proportional to search

difficulty.

This thesis focuses on the problem of computing statistical saliency in real-time. The

work describes an implementation using high throughput circuit design for parallel processing

capable of performing the calculations in real time. Implementing the statistical saliency

model in circuitry allows for live analysis and facilitates exploration of temporal features

that are difficult to examine with still images.

1.1 Thesis Overview

Statistical saliency is the measure of how far a target lies from distractors in features space.

Using appropriate features spaces, statistical saliency helps explain nontrivial characteristics

of visual search. Chapter 2 describes the statistical saliency equations that are implemented
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directly in circuits.

Real-time statistical saliency calculation is inefficiently performed using conventional im-

plementations. Many arithmetic operations and image filters do not utilize parallelization

or pipelining and result in wasted time and space in implementation. Chapter 3 describes

the design of high throughput circuitry that is made to maximize parallel processing and

pipelining. In high throughput design, minimal state is stored, few operators are idle, and

independent calculations are parallelized.

Using high throughput circuit design, Chapter 4 describes the implementation of the sta-

tistical saliency equations in Chapter 2. The implementation is highlighted by its modularity.

The features from the model are included, but can be easily exchanged for others.

Chapter 5 discusses the benefits of the static saliency real-time system. Two experi-

ments demonstrate the utility of the time domain in saliency problems. Also discussed is an

additional saliency feature that addresses the problems encountered in the experiments.
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Chapter 2

The Statistical Saliency Model

Deterministically inferring meaning from visual stimuli requires quantifiable properties be

calculated from the image. A direct approach aimed at mimicking biological vision involves

performing image segmentation and object recognition using the image data. This method

requires significant computational resources to be applied in real-time. Research shows there

are features for which efficient mathematical calculation on local image regions produces a

measurable property, namely saliency [5]. Saliency is inversely proportional to the difficulty

of searching for a target among distractors [5], demonstrated by the asymmetries of otherwise

complementary searches [7].

2.1 Search Asymmetries

A quantitative measure of a search task is the mean search time required to accurately

identify a target amidst distractors [6]. Asymmetries in search time exist between identifying

a target with feature, in a field of distractors with another feature and identifying a target

exhibiting feature in distractors with feature. For example, it is more difficult to search for

a stationary target among mobile distractors than it is to search for a mobile target among

stationary distractors. Simple bottom-up explanations predict the asymmetry is the result of

the unequal distributions of detectors for features target and distractor [8]. Explanations that
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impose constraints on amounts of detectors are difficult to generalize to human behavior.

Predicting difficulty as a measure of target saliency better fits with our understanding of

human behavior.

Experiments can be presented in both symmetric and asymmetric form. Switching the

target and distractors in one representation of a feature space may predict equal search time,

while in another representation predict different search difficulty. For example, a search task

for a target in a field of distractors with differing velocities may be symmetric when velocity

vectors are represented in cartesian components and asymmetric when expressed in polar

form. Appropriate choice of feature space affects the prediction of search time.

The asymmetries in search tasks could be the result of asymmetric design or asymmetric

mechanisms in the visual system. Because there are fewer search asymmetries than sym-

metries, relying on asymmetric mechanisms could be difficult to resolve with the corpus of

verified results. Instead, the statistical saliency model treats the target as a point in a feature

space and measures search time as a function of the distance to the mean and the covariance

of the distractors. Using an statistical approach to determine search difficulty allows us to

predict the salience of arbitrary targets among distractors.

2.2 Statistical Saliency

In a feature space of one dimension, a target's saliency is measured by its distance in the

feature space from distractors [5]. It is easier to detect a target with a feature that lies

outside the cloud of distracter features, in feature space. The features of the distractors is

characterized by the mean pi and standard deviation -; the distinction between the target

feature and a small, dense distribution is more pronounced than between the target and

a large, sparse distribution in which the target could be confused with a distracter. An-

alytically, the measure of the degree to which the target is an outlier of the distractors is

summarized by the equation:
= -

(2.1)
a'
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(a) Uniform direction (b) Varying directions and speeds

Figure 2-1: (a) Search is easy for targets with among distractors traveling in the same
direction. (b) Search for a target among distractors of varying directions and varying speeds
is more difficult because the covariance of the distractors is larger.

In motion analysis, detecting a moving target with velocity v in a field of distractors

with mean velocity p, the statistical saliency model is can be restated as finding the the

Mahalanobis distance,

A2 = (v - A)TE- 1 (v - p) (2.2)

where E is the covariance matrix. The target is more salient as the distance A between the

target and distribution of distractor features increases. The statistical saliency model model

correctly predicts the search time asymmetry between an oscillating target in stationary

distractors and a stationary target in oscillating distractors. In the former task, the feature

distribution is a point at the origin for all distractors while the target lies at a nonzero vector

in the field. In the latter case, the target feature vector is zero and the distracter distri-

bution surrounds the origin. The stationary target it is within a standard deviation of the

distribution of mobile distractors, but the oscillating target is not. The saliency calculation

is appropriate for a particular feature space representation and disparities between feature

space representations must be accounted for better explain search time results.
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Beyond simple oscillation, the statistical saliency model predicts the difficulty in searching

for a target of unique speed among distractors traveling in the same direction with varying

speed, versus searching for the same target among distractors traveling in varying directions

and speeds, shown in Figure 2-1 [6]. In both situations, the saliency of the target is related

to its distance in feature space to the distractors [7]. Restricted to a single direction, the

distractor distribution results in relatively small and eccentric covariance ellipses. Without

direction restriction, the covariance ellipses are larger to account for the possible directions

and speeds. The target's distance from the distractor mean is changes only slightly for the

case varying directions, but the covariance ellipse is much larger. The resulting saliency

estimate is smaller, predicting longer search times.

2.3 Model Summary

The statistical saliency model quantifies the notion of how far a sample is from its surround-

ing. The model helps explain the different asymmetries observed in searching for various

targets among distractors. Targets are difficult to find when surrounded by distractors of

similar or highly variable features. Conversely, targets are easy to find when the are sur-

rounded by features of different and uniform features. Using the statistical saliency model,

search time estimation can be extrapolated for features in images and studied as a measure

of bottom up pop-out. Though described for object motion, the statistical saliency model

is generalizable to any feature set. In the system proposed, the statistical saliency model

is applied to contrast, orientation, and color. The final saliency calculation is the length of

the vector of contrast saliency, orientation saliency, color saliency. The full saliency value

represents the estimation of feature pop-out in the image.
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Chapter 3

High Throughput Circuit Design

While computer programs and simulations can always be used to demonstrate ideas, ded-

icated and embedded systems are well suited for visual perception research in applications

from car safety to video surveillance. Data-rich problems, such as image analysis, cater to

high throughput, parallel processing design for fast, reliable results. This chapter discusses

full throughput mathematical circuitry for use as components in streaming computational

systems. This chapter explains detailed design of addition, multiplication, and division cir-

cuitry for small integers and then outlines design for digital image filters.

3.1 Field Programmable Gate Arrays and Integrated

Circuits

The medium on which the system is designed is a field programmable gate array (FPGA).

A FPGA is a reprogrammable circuit with little preprogrammed function. Circuit designs,

written in Hardware Descriptor Languages, can be synthesized and transferred to the FPGA

via physical connection, allowing the FGPA to assume any programmable function. Many

tools exist in developing synthesizable circuitry, both free and commercial; techniques in

Hardware Descriptor Languages are outside the scope of this thesis.

FPGA implementation is often used as a prototype for an application specific integrated
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circuit (ASIC). ASICs are significantly cheaper, faster, more stable, and can consume less

power than FPGAs, but lack the ability to be modified once the circuits are printed. For well

defined problems, ASICS may be sufficient and the techniques discussed in this chapter can

be transferred directly. Often, the scope of the problem is changed by its proposed solutions

and the ability to test new approaches becomes important. Scientific experimentation is

better suited for the mutability of programmable gate arrays and for this reason, an FPGA

is preferred.

FPGAs are organized as an array of slices, where each slice is an array of programmable

logic blocks. A single block has one or more lookup tables and connective circuitry. Lookup

tables are used rather than simple gates because they can achieve equivalent behaviors

without physically changing any hardware attributes. With efficient utilization, one logic

block may be used as part of multiple circuits, especially if each circuit requires a mutually

exclusive part of the block. Along a slice, blocks are aligned to facilitate data efficient

transfer and allow grouping. For example, A cascading logic operation such as addition fits

into blocks along a single slice. Along the edges of an FPGA are specialized input/output

blocks, dedicated to managing data traffic in and out of the FPGA through a single pin.

These blocks will be used for video data and graphical output in the design. Last, FPGAs

include increasing amounts of embedded circuits including hardware multipliers, dividers,

memory blocks, buffers, and even microprocessors. These components require less physical

space on the chip then their counterparts in programmable logic and are directly available

to circuits synthesized in the FPGA. Extensive use is made of embedded memory blocks, as

storage is the least efficient use of a logic block.

3.2 Dual Port Random Access Memory Queues

Embedded in FPGAs are numerous small random access memory (RAM) blocks. Because

circuits are easily parallelizable, FPGAs have large numbers of small RAM blocks instead

of a single RAM chip so that each individual circuit can access a RAM block independently

from other circuits. For image filtering problems, in which single pixels are streamed in
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sequentially, many components must retain state until enough data has been calculated. In

particular, image filters often require half of their taps be supplied information before the

filters produce any output. At multiple stages in processing, short segments of the image

must be stored for filtering.

RAM is accessed and modified by ports. A memory block will have a number of pins

for data, other pins for address, and others for enabling logic. Dual port RAM has two

independent ports that can read from the same block of memory, with special rules for

simultaneous operations on the same address in memory. Dual port RAM can be abstracted

to a first-in-first-out queue by controlling the addresses at each port. By maintaining two

counters, one for the start and another for the end, a dual port RAM can be treated as

having a data input port, data output port, an enqueue pin and a dequeue pin. Queues are

preferred over logic blocks for their efficiency and their simple circuitry.

3.3 Binary Arithmetic

Complex calculations performed by a processor can be reduced to binary and floating point

arithmetic. The arithmetic operation performed most is addition. The addition operation is

a design choice that affects the speed an accuracy of computation. As the designed system

works in small integer, floating point calculation is not discussed.

3.3.1 Single Cycle Adder

In high throughput design, the ability to perform an addition in a single cycle is top priority.

The simplest adder circuit is the ripple carry adder. The sum is calculated bit by bit and a

carry signal is required to propagate down the circuit to the most significant bit. When the

propagation becomes too long, ripple carry adders can be segmented into carry look-ahead

adders that skip groups of bits at a time.
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(a) Full Adder (b) Ripple Carry Adder

Figure 3-1: (a) Full adder circuits add single bits with a carry out signal. (b) A sequence
of full adders calculate a sum by adding each pair of bits from the inputs and a propagated
carry bit. Because of the carry propagation, this circuit is a Ripple Carry Adder.

Ripple Carry Adders

Ripple carry adders are comprised of an array of full-adder units. A single full-adder adds

three bits in unary, denoted A, B, and Carry-in, and produces a sum and carry-out value in

binary, shown in Figure 3-1(a). The carry-out value of a full-adder is used as carry-in to the

next full-adder of increasing significance, shown in Figure 3-1(b). The carry-out value of the

most significant full adder can be used to detect integer overflow or underflow as there are

more bits of information than bits in either input. The same value can also be used to store

the sign of the number using twos complement arithmetic. Because the same adder circuitry

works under twos complement, signed integers can be computed with equal efficiency.

The propagation delay of a ripple carry adder is proportional to the number of full-adder

units in its chain. The number of full-adders is equal to the number of bits in addition. Each

full adder performs at most three sequential binary operations on its inputs. For an eight

bit addition, the sum will be valid twenty-four binary operations after the inputs are set.

Carry Look-Ahead Adders

Carry look-ahead adders focus on propagation signals instead of bit addition. In these adders,

a group of four pairs of input bits is used to determine whether the group should generate a

carry bit or propagate the carry bit passed in to the group, while determining four sum bits

in parallel. By propagating the carry signals more quickly, more significant groups can begin
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Carry Lookahead Unit

Figure 3-2: Carry Lookahead blocks use Generate and Propagate signals from full adders to
quickly propagate a carry in past groups of full adders. Within a group, individual bit sums
are calculated the same way as in four-bit Ripple carry adders.

calculation sooner than by ripple carry propagation, but at a slight time penalty and with

additional circuitry. A carry lookahead group of four full adders is shown in Figure 3.3.1.

Because of the added complexity, carry look-ahead adders are only more efficient for sums

of more than sixteen bits. In the presented system, very most additions are of sixteen bits

or less and ripple carry adders are efficient.

3.3.2 Multiplier

Multiplier circuits are computationally and physically much more expensive than adder cir-

cuits. Computer processors have a very limited number of multipliers because they perform

very few concurrent multiplications. FPGAs more embedded multipliers than processors,

but even these numbers may be limiting for applications requiring many parallel multiplica-

tion. Embedded multiplier usage is can be mitigated in two ways: avoiding multipliers for

constant multiplicands and pipelining adders for full throughput.

Twos Complement Binary Multiplication

A multiplication operation is a series of additions. In circuitry, additions can occur sequen-

tially in time or sequentially in space. Iterative addition circuits require the same physical

resources as a single adder, but require many cycles to complete. By cascading the adders

as a large circuit, the multiplication can be performed without requiring a running product,
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o i 0 1 Multiplicand
11 0 0 Multiplier
0000 0x0101 0101 Multiplicand

0000 0x0101 1100 Multiplier
0101 1x0101 0000 0xO0101

0101 1x0101 1111 11x0101
0111100 Product 0111100 Product

(a) Radix 2 Multiplication (b) Radix 4 Multiplication

Figure 3-3: Performing multiplication using a higher radix can speed up computation, but
high radix multiplication requires precomputation of multiples of the multiplicand.

but the the circuitry required is quadratic in the number of bits.

Iterative multipliers store the multiplier, multiplicand, and a running product. During

each cycle, the product is incremented by the multiplier and the multiplicand is decremented.

For an eight bit multiplication, a sixteen bit product can be computed in eight cycles by

shifting and adding.

Pipelining Multiplication

Cascading multipliers perform the addition and shifts are achieved by arranging adders

in a cascaded and shifted pattern. Naive implementations may propagate a single n-bit

multiplication across n2 full-adders, while the other adder units remain unused. A more

careful approach propagates the multiplier and multiplicand with each addition, allowing for

each cascaded adder to perform a respective addition of the multiplication.

Multiplication can be achieved in fewer cycles by performing the additions with a higher

radix. Using two bits instead of one multiplies uses the radix four instead of two, and

completes the multiplication in half as many steps. Figure 3-3 demonstrates radix two

multiplication in contrast to the speed of radix four multiplication.

Radix four multiplication requires the pre-computation of the three times the multiplier.

This can be done by either adding the multiplier to twice the multiplier, where multiplication

by two is shifting one bit towards the most significant bit. The extra adder can be avoided

if 112 is Booth recoded as a subtraction by 012 for the next two more significant bits [3].
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Subtraction and negative number support is possible because of twos-complement adders.

Multiplications are expensive operations, but when well pipelined, the cost of a full

throughput 10-bit multiply can be that of five ripple carry adders.

3.3.3 Divider

Two types binary division algorithms exist: approximation and recurrence. Approximate

methods are faster, converging in few cycles, but rely on analog division hardware. Division

operations can be often avoided by application specific design choices. For the few necessary

division operations, division can be done by approximate methods if hardware is available

and by recurrence methods otherwise.

Approximate Methods

Newton-Rhapson division[4] involves estimating the reciprocal of the divisor and multiplying

it to the dividend to find the quotient. The approximation successively calculates

ria = ri(2 - d x ri) (3.1)

where ri is the ith approximation to the reciprocal of the divisor d. This equation holds

for divisions scaled such that 1 < r < 1. The quotient is estimated by multiplying ri to2

the dividend. This method has higher accuracy if run for more cycles, but also relies on

the denominator being greater than }, which cannot be guaranteed for arbitrary numbers

between -1 and 1.

The Goldschmidt method[2 computes a quotient by successively multiplying dividend

and divisor by a computed factor until the divisor converges to 1. Because numerator

and denominator are multiplied by the same factor, the ratio remains constant. For the

same reasons as the Newton-Rhapson method, additional cycles product higher accuracy for

Goldschmidt division. The method also requires the divisor be scaled to be between 0.9 and

1.1.
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Recurrence Methods

In an image analysis tool, time necessary to perform integer division is two orders of magni-

tude smaller than the time spent on image filtering. While the approximate division schemes

converge to solutions quickly, their strict requirements of inputs are not worth the added

complexity to scale the divisor. Though direct computation of integer division must be done

bit by bit, there are no special cases necessary.

Integer division follows from the recurrence equation [3]:

Pj+1 = R x P - q,-(j+,1) x D (3.2)

where P is the partial remainder of division, R is the radix, qj is the ith bit of the quotient,

n is the number of bits in the quotient, and D is the denominator. The quotient is computed

by comparing finding the largest bit value for which the divisor is less than the dividend at

each bit, which is equivalent to long division radix 2.

Other implementations may include lookup tables for dividend-divisor pairs, but the

speed gained requires exponential space. For eight and sixteen bit division, integer division

is accurate and fast enough to be done without approximation.

3.3.4 Square Root

Square root algorithms also exist in both approximate and recurrence form with the same

respective characteristics as division counterparts.

Approximate Methods

Newton-Rhapson root-finding methods[4] calculate square roots by solving for zeros of the

equation:

x 2 - n = 0 (3.3)

where x is the square root of n. Because the Newton-Rhapson method approximates roots

by tangent estimation, convergence in the is dependent upon the input interval of search.
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A good guess of the root will converge quickly while a poor guess may not. In general,

the Newton-Rhapson method converges quadratically; the number of correct digits in the

approximation doubles in each iteration.

An equivalent method is the Babylonian method, which can be derived from the Newton-

Rhapson method. To find the square root of a number n, an initial value x is chosen, and each

successive approximation is calculated as the mean of x and '. Like the Newton-Rahpsonx

method, the Babylonian method converges quadratically.

For small integers, square root can be implemented as a lookup table. The size of the

table is exponential in the number of bits in the radical. For inputs of with more than eight

bits, a lookup table requires more space than logic of the arithmetic calculation

Restoring Method

Sixteen bit integers, in the absence of division hardware, can be computed using the principal

equation[1],

(102 x Q+D) 1 0
2 = 1002 x Q102 + D x (1002 x Q + D) (3.4)

where each number is represented base 2, Q is the root calculated so far, and D are the digits

remaining in the input number. As described by the equation, restoring methods construct

the root one bit at a time. For each bit, to additional digits from the input are used to

calculate the incremental quotient. Therefore, a n-bit square root method that performs

2 additions and reconstructs 1 bits requires 2 full-adders. For a particular square root22 2

operation, only one adder unit is required and the rest can be used to pipeline subsequent

square root calculations.

3.4 Digital Filters

Digital filters operate on images by point multiplying each pixel within the filters' support

with a weight for each tap and then summing the weighted values. The operation is highly

parallelizable because the multiplications are independent and the summing can be arranged

29



in logarithmic tree. Filters make heavy use of adder circuits described in section 3.3.

3.4.1 Kernel Pooling

How a particular filter computes a value is dependent upon the size, weighting, and shape

of the filter kernel. Most saliency calculation is done on Gaussian filtered image data. Four

different discrete Gaussian kernels are described and compared: Gaussian pyramid, small

Gaussian, large Gaussian, and upsampling kernels. In performing saliency calculation of a

particular image feature, less general kernels are used, including a difference-of-Gaussians

kernel, and four difference-of-oriented-Gaussians kernels.

Kernel output computation is the sum of the pixel values at each tap, weighted by

a constant. For the filters used in the Saliency implementation, the tap weights are no

more than five bits, and can be achieved by fewer than two additions. Instead of using

multiplication units, the tap weighting can be implemented with ripple carry adders of bit-

width from five to fifteen. The weighted tap values can then be summed pairwise in a tree

of adders, requiring computation time logarithmic in the number of taps.

Gaussian Symmetric Filters

Gaussian filters can be separated to a horizontal and vertical decomposition. Isolating the

horizontal filtering allows the kernel to be applied directly to input data, buffered by a shift

register. For each new image pixel, data in the buffer is shifted so that the first pixel that

was inserted is removed and the new pixel takes the place of the previous pixel in the buffer.

The output of the horizontal kernel is stored in a queue (described in section 3.2).

When the queue has accumulated enough lines of image data, depending on the kernel

size, pixels from the queued lines can be used as input to the vertical kernel. When a pixel

from the first queued line is used, it can be discarded because the filter will no longer use

the pixel in any more calculation. The output of the vertical kernel is data that has been

filtered by both kernels and is the output of the entire digital filter.
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Asymmetric Filters

Many feature selective filters are constructed as Gabor functions or oriented Gaussians and

cannot be expressed as the convolution of orthogonal kernels. For asymmetric filters, enough

lines must be queued to match the full support of the filter. As a new image pixel is read, the

buffer of pixels used as filter taps is shifted by one horizontally. The column of least recently

added pixels is discarded, remaining pixels shifted by one, and the the next column of queue

data and the next pixel are read to the buffer. Though simpler in design, asymmetric filters

require buffers of size proportional to the kernel size, while radially symmetric filters require

buffers of length equal to the sum of the component kernel sizes.

3.4.2 Line Buffering

Filtering is a local image operation and can be performed without a full image. As image

pixels are streamed in, only enough lines to fill the kernel support are necessary. Until enough

image lines have been read, each line is enqueued to memory such that a single column can

be retrieved in a dequeue operation. This can be accomplished by dequeuing the column

as a datum arrives, and then enqueuing the column with the new datum Following this

procedure, the length of data in the queue never exceeds that of the width of the image

3.5 Design Summary

The chapter describes the binary arithmetic and digital filter implementations that all have

full throughput; given streaming data input, the results of computation are streamed as

output after a delay. For streaming video input, full throughput circuit design is necessary

for real-time computation.
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Chapter 4

Statistical Saliency Visual System

The statistical saliency visual system is a streaming video analysis tool that outputs real-

time statistical saliency information. Using the high throughput circuit designs presented

in Chapter 3, the system can stream output while maintaining minimal state. The system

is designed to be modular; the number of dimensions in a feature determine the saliency

calculation scheme, while features can be interchanged. Implementation details can be found

in Appendix A, including Verilog implementations and filter kernel tables.

Video data enters the system through RCA connection using the NTSC video standard.

Video data is stored in one of two external RAM chips. A RAM reader module reads the

memory for the video data and outputs luminance and chrominance signals to the saliency

module. Inside the module, data is first blurred and downsampled to construct a level of a

Gaussian pyramid. The pyramid data is immediately written to the video RAM to be used

as input for the next pyramid level. Luminance pyramid data is used as input by the contrast

and orientation filters and transmitted directly to the one dimensional and two dimensional

saliency modules, respectively. All pyramid data channels are used as input to the three

dimensional color saliency module. As the each saliency module finishes, the calculations

are coalesced into a single saliency value and stored in the second external RAM chip. When

all three modules are finished, the process is repeated with the first pyramid level as input,

which writes the second pyramid level to video RAM. The calculations are repeated one last
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Figure 4-1: A block diagram of the statistical saliency visual system. Information enters
from the NTSC video module, is processed by the saliency modules, and is displayed by the
XVGA output module.

time with the second pyramid level as input. Then, the saliency stored on the second RAM

is read and coalesced into a single saliency value for an image coordinate.

4.1 Video Input

NTSC video is decoded by a module that occupies input/output blocks connecting to a

analog-to-digital converter that reads video data. Video signals are often compressed such

that only one of the two chrominance values are sent with each luminance value. This lack of

color information is justifiable because the human visual system and the statistical saliency

visual system use luminance data more than chrominance. Pixel chrominance values are

interpolated from neighboring pixels when absent. NTSC video is also interlaced horizontally.

A frame of video data has either odd lines or even lines. NTSC video is read at 27MHz,

while the rest of the system operates at 65MHz. Because of the difference in clock speeds,

video is written directly to RAM so that calculation can continue uninterrupted.

Video data is stored in 18-bit segments in a single RAM chip that stores 36-bit words. The

upper ten bits store luminance and the remaining eight bits store two four-bit chrominance

values. A single address in memory stores two pixel values. Because video data arrives

at half the speed of computation, four pixel values can be read between consecutive video

memory writes, show in Figure 4.1.
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Figure 4-2: Video RAM Timing Diagram
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Figure 4-3: Video RAM Memory Layout

NTSC video is the standard used for the prototype system. Any video input can be used

as input to the saliency modules, so long as the contrast and orientation filters are run on

luminance data.

4.2 Gaussian Pyramid

Pixel data read from RAM is read to a Gaussian pyramid filter that blurs and downsamples

the image. The radially symmetric blurring kernel has horizontal and vertical basis vectors

with five pixel support. Horizontally filtered data is stored in the line buffers which are

filtered by the vertical kernel. Only vertically filtered data for even horizontal and vertical

image coordinates is output as valid pyramid data. The filter outputs downsampled hor-

izontal and vertical image coordinates, filtered data, and an enable signal to control the

subsequent filters and modules.

The pyramid data and coordinates is written back to video RAM for use as input to the

next pyramid level. Pyramid data video RAM writes occur in between reads and opposite

NTSC data writes, labeled WPYR in Figure 4.1. Pyramid data levels require decreasing
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Figure 4-4: The contrast filter response is zero for flat regions and amplifies high frequency
changes.

amounts of memory and the unused video RAM has space available, shown in Figure 4.2.

Pyramid data, coordinates, and enable signal continue to the contrast filter, orientation, and

color saliency modules.

When the pyramid data is read in as input, this module will blur and downsample the

image again. Halving the image in size in each dimension white the feature detectors remain

constant size is equivalent to doubling the feature size each level. The Gaussian Pyramid

module mimics the levels and distributions of cells by increasing receptive field size.

4.3 Contrast Filter

Luminance pyramid data is passed through a difference-of-Gaussians filter to measure con-

trast. A difference-of-Gaussians filter is similar to an on-center, off-surround receptive field

in that it will produce high values when luminance is high at pixels near its center taps and

low at pixels at outer taps. When luminance is even, the positive center and the negative

lobes cancel out resulting in low contrast. A contrast response to a one dimensional signal is
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Figure 4-5: The original signal is a series of sinusoidal patterns, incrementally rotating by

20 degrees. The orientation energy responses to the signal favor orientations of a particular

direction. Orientation filters are sensitive to 0 degrees, 45 degrees, 90 degrees, and 135

degrees.

shown in Figure 4.3. Contrast filtered data is used

to calculate contrast saliency.

by the one-dimensional saliency module

4.4 Orientation Filter

In addition to contrast, luminance pyramid data is also used in orientation selection. Pixel

orientations are calculated as an energy optimization: an orientation at a pixel is the ori-

entation that maximizes the the energy responses of four difference-of-oriented-Gaussians,

separated by 2 radians. The difference between horizontal and vertical squared responses
4

approximates the sine of twice the orientation angle. Similarly, the difference between the

diagonal squared responses approximates the cosine of twice the angle. A orientation energy

responses to a sequence of images with varying orientation in Figure 4.4. The sine and cosine

values are used by the two-dimensional saliency module to calculate orientation saliency.
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Figure 4-6: Target and Distractor Kernels

4.5 Saliency Modules

The saliency modules accept feature data as input and output streaming saliency values

as output. Saliency is calculated as the target mean distance from the distractor mean

normalized by the covariance. Each saliency module calculates target and distactor mean

values, calculates the inverse covariance matrix, and computes a saliency value. For the

one-dimensional case, the inverse covariance matrix is equivalent to division by the standard

deviation. The output of the saliency calculations is coalesced for display.

4.5.1 Approximating Target Mean and Distractor Mean

The target mean at a pixel value is the response of the image region to a small Gaussian

filter. The distractor mean is calculated as the difference between the target mean and the

the response of the filtered image region to a large Gaussian filter, shown in Figure 4.5.1.

This calculation is sensitive to objects that are the size of the small Gaussian filter, as

they will increase the response of the target, but not the distractor. In subsequent pyramid

levels, the smaller image size effectively increases the receptive field size of the target versus

distractor.
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4.5.2 Estimating Covariance

The covariances between each pair of dimensions i and j can be calculated using the covari-

ance equation:

Cov(Xi, Xj) = E(Xi -Xj) - E(Xi)E(Xj) (4.1)

Using the target means as an estimation for the expected value, the equation becomes

Cov(X, Xi) = Tx.x, - Txi Tx, (4.2)

which can be easily calculated by filtering the product of two dimensions and subtracting

the product of the individual dimensions' target means. To account for the distractors, this

formula is reapplied. The target mean covariance is smooth with the large Gaussian filter

and the product of the dimensions' distractor means is subtracted from the result. The final

covariance estimate measures how targets vary with eachother and with respect to how the

distractors vary.

Using covariance calculations, the covariance matrix E can be constructed such that

Eij = Cov(Xi, X) (4.3)

where i and j are both the row and column in the covariance matrix and dimensions of

saliency features.

In the one dimensional saliency module, the variance is calculated using only the dis-

tractor means, and the standard deviation is used in saliency calculation rather than the

variance.

4.5.3 Covariance Matrix Inverse

The ratio of eigenvalues of the covariance matrix define the ratio of major and minor axes

of covariance ellipses of constant standard deviation. From the inverse covariance matrix,

targets-distractor differences can be scaled to the dimensions of the ellipse. Matrix inversion
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is straightforward: the inverse is the transpose of the matrix of cofactors divided by the

determinant of the matrix. To prevent the covariance matrix from being singular, noise is

added along the diagonal. In one dimension, inverting the variance is simply division.

4.5.4 Saliency Calculation

The saliency calculation involves multiplying the vector of target-distractor mean differences

by the inverse covariance matrix. For each dimension, the distractor mean is subtracted from

the target mean and multiplied by each element in the dimension's column of the inverse

covariance matrix. The saliency is the length of the resulting vector. This formula can be

expressed as a matrix equation:

s = [T T - DT I T-1 [TT - DT] (4.4)

where E is the covariance matrix, T is a row vector of target mean values, and D is the

row vector of distractor mean values. The calculated statistical saliency is the length of the

vector s. In one dimension, the saliency calculation is the target mean minus the distractor

mean divided by the standard deviation.

The saliency calculation results in calculating the length of the difference of target and

distractor means normalized by the covariance estimate. For data sets with very low variance,

targets that lie far from the distractor mean are considered highly salient. Conversely, if the

data set has high variance distractors then the same distance will lie within an ellipse of

lower standard deviation and the saliency estimate will be lower.

4.6 Scale-Space Pooling

The saliency calculation for a pyramid level is the square root of the sum of squared saliency

estimates for each feature. Lower dimensional saliency modules finish before higher dimen-

sional models and their outputs must be delayed to synchronize output. Using queues, the

contrast and orientation saliency calculations must be delayed to the color saliency estimate.
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Figure 4-7: Gaussian Upsampling Kernel

Using the three values, the final eight-bit saliency value is calculated for the pixel, at the

particular level. Four eight-bit saliency values can fit in the RAM chip for a single address.

The second RAM chip is written every fourth cycle with four pixels of saliency calculations.

Before the second and third levels are written to the RAM chip, they are upsampled

to the size of the original pyramid level. Upsampling is performed by a modified Gaussin

pyramid filter. The Gaussian upsampling kernels are zero for every other tap, twice the

magnitude for nonzero taps, and twice as wide. The upsample kernel is shown in Figure

4.6. While the third pyramid level is upsampled, the output is used in the final scale-space

pixel saliency estimation. For each pixel, the saliency value for each level is squared and

summed. The square root of the sum is the final saliency calculation for the pixel. This

value is written to in place of the third pyramid, leaving space for the first two levels to be

overwritten by the next frame's calculations. The layout of the saliency RAM is shown in

Figure 4.6.

4.7 VGA Output

The saliency values are displayed as grey scale values under the XVGA standard. The display

is 1024x768 pixels refreshed at 60MHz. Saliency values are presented in screen coordinates

with the origin in the top left. This standard is chosen to be most compatible with display
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Figure 4-8: Saliency RAM Memory Layout

devices.

4.8 Implementation Summary

This chapter describes the implementation of the streaming statistical saliency visual system.

The calculation follows from the statistical saliency equations in Chapter 2 and is possible

by the high throughput circuit designs presented in Chapter 3.
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Chapter 5

Real-Time Saliency Experiments

The statistical saliency visual system allows for experiments to incorporate time dependent

variables. Without encroaching on motion saliency, real-time saliency experiments can sug-

gest augmentations to the algorithm. This chapter discusses two experiments in which the

control and probe tests have identical static saliency calculations, but the changes in probes

suggest they may be more salient.

The two experiments are variants of the same idea. For a distractor distribution, a given

saliency measurement may be caused by different targets. Should the target change to any

other state along the same covariance ellipse, the saliency calculation will not change, but

subjects may be more attentive to the change. The two experiments describe discrete and

continuous changes to the target, respectively, without changing the saliency calculation.

The model is capable of handling these cases. For each experiment, individual solutions

are presented that address the specific problem. In the final discussion, a more general

partial derivative saliency calculation method is proposed that captures the idea of change

saliency.
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5.1 Flicker Experiments

Human vision is attentive to flashing and flickering patches of light. Even though no motion

may be observed, sudden changes in image brightness, color, pattern, or orientation may

have higher saliency than the steady state before and after the change. A flicker experiment

can be constructed in which a target alternates between two states at equal distance from

the distractors in feature space. It is predicted that, though saliency does not change, the

flickering target is considered more salient.

5.1.1 Methods

The control is a target circle of 75% brightness among distractor circles of 50% brightness.

The circles all have identical properties except brightness. The probe is an identical ar-

rangement of circles, except the target circle alternates between 75% and 25% brightness.

The control and probe are presented on opposite sides of the visual field. Surrounding each

group of circles are identical instances of the letter 'T' at 50% brightness. In one of the

groups of letter 'T' is a single letter 'L.' The group with the ' is randomly selected on for

each presentation. Upon presentation, subjects are asked to find the 'L' in the fields of 'T'

distractors.

The statistical saliency model predicts that the control and probe have equal saliency and

should not influence the search time whether the ' is near the control or near the probe.

5.1.2 Results

Because the brightness of the probe target circle transitions discontinuously, the saliency

calculation cannot measure the transition. As a result, the circles offer no calculable low

level cues in the search. Observations suggest the flickering target will bias search towards

the probe, until subjects learn there is no correlation. A bias towards the probe suggests the

flickering target is more salient than its distractors.
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Figure 5-1: The flicker experiment compares search times for the letter 'L' among distractors
of the letter 'T' while circles distractors give a irrelevant cue. The center circle on the right
alternates between dark and light colors that are equally distant from the distractor colors.
If the flickering circle is more salient, search times should be lower when the 'L' is on the
right side.

5.1.3 Discussion

In one-dimensional feature spaces, a saliency value can result from two possible states. When

targets make discontinuous transitions between the two states, the model can only calculate

saliency before and after the change. The change itself may be more salient than either state,

but it cannot be measured in a single frame of video.

One possible solution to measuring change is to update saliency values by exponentially

decay rather than zero order hold. Two saliency calculations occur per pixel than video

updates. Discrete transitions would have a few frames of intermediate saliency before con-

verging to the transitioned state. The rate of decay would affect the persistence of the

previous state. Choosing a parameter too high would make intermediate states too close

to the transitioned state and a small resulting saliency calculation. Choosing a parameter

too low would smooth transitions and filter high frequency transitions, creating inaccurate

saliency results.

The example described a saliency ambiguity for brightness, such transitions can occur
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in any feature space. The control and probe target circles could have equal size difference

from the distractors. They could have oriented patterns equal angular distances from the

oriented patterns of distractors. They could exhibit motion in directions equally divergent

from distractors. For discrete transitions, exponential decay of the saliency calculation could

reveal saliency differences.

5.2 Covariance Ellipse Tangential Change Experiments

The continuous analog to the flicker experiment is the experiment in which the target transi-

tions continuously along the covariance ellipse for the given saliency value. Exponential decay

may cause an intermediate salient state between discrete transitions, continuous transitions

along the covariance ellipse contour never transition through states of different saliency.

Though choice of color-space is controversial, the experiment is best illustrated in color

saliency. It is predicted that a target of revolving or pulsating color will be more salient than

an unchanging target, even if both targets are equally salient among distractors.

5.2.1 Methods

The control is a target circle of a particular color among distractor circles of varied color.

The circles all have identical properties except color. The probe is an identical arrangement

of circles, except the target circle color transitions continuously along the covariance ellipse

incident with the control color. The control and probe are presented on opposite sides of the

visual field. Surrounding each group of circles are identical instances of the letter 'T' with a

fixed color. In one of the groups of letter 'T' is a single letter 'L.' The group with the 'L' is

randomly selected on for each presentation. Upon presentation, subjects are asked to find

the 'L' in the fields of 'T' distractors.

The statistical saliency model predicts that the control and probe have equal saliency and

should not influence the search time whether the 'L' is near the control or near the probe.
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Figure 5-2: Similar to the flicker experiment in Figure 5.1.1, the tangential change experiment
compares search times for the letter 'L' among distractors of the letter 'T' while circles
distractors give a irrelevant cue. The center circle on the right smoothly transitions to colors
that have the same feature distance from thh distractors circles. Under the model, the circle
never changes saliency. If the changing circle is actually more salient, search times should
be lower when the 'L' is on the right side.

5.2.2 Results

For the same reasons as the flicker experiment, the statistical saliency model predicts the

model and probe have equal saliency and search will be unbiased. Observations suggest

search is biased towards the changing color. As the speed with which the probe circle

changes color increases, the probe circle becomes much more salient. At one extreme, the

probe circle appears to either be changing too slowly to be noticed and just as salient as

the control. At the other extreme, the probe circle is changing wildly and will, with high

probability, be the first point of focus upon presentation.

5.2.3 Discussion

In the continuous transition case, exponential decay will never create intermediate states

of different saliency. The only measurable difference between the target and distractors is

the rate of change within the feature space. Again, a single frame computation will also be
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insufficient to measure changes in time. A solution to the problems of the flicker experiment

and the tangential change experiment is a partial derivative saliency computation. The

partial derivative must be taken relative to the changing feature. For example, partial

derivatives in color may not correctly characterize changes in orientation, though both use

the luminance channel.

Because the statistical saliency visual system is modular, additional saliency calculation

can be performed in parallel after a module is created to calculate the new feature. Calcu-

lating first derivatives does not require any additional memory. Before writing to a memory

address, the data at the address must be read and subtracted from the new value. The

difference is the approximation to the derivative and the new data is overwrites the old data

to repeat the computation in the next frame.

5.3 Overall Discussion

Real-time statistical saliency allows for the exploration of saliency in the time domain. The

discussed experiments demonstrate two instances in which the model can easily be augmented

to handle time varying situations. Including partial temporal derivatives involves a module

to calculate the frame-to-frame differences and an additional instance of one of the saliency

calculation modules. Though motion saliency was not discussed, local motion vectors can be

computed and added to the saliency computation in a similar manner to derivatives. Easy

addition of temporal features make the statistical saliency visual system a valuable tool in

testing new feature spaces.
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Chapter 6

Concluding Remarks

This thesis presents a real-time saliency analysis tool, implementing the statistical saliency

model, and easily extensible to features in the time domain. The ability to stream output

comes from the high throughput and parallel processing design of the modules. This tool

is designed to work as a stand-alone saliency analysis system or as a tool for testing and

evaluating saliency features.

6.1 Contributions

The most important contribution of this work is a system from which statistical saliency

information can be calculated online for any live scene. Real-time saliency information can

be used in industry to assist designers in reducing clutter, in vision tasks to direct expensive

computation to important regions, and in automotive to detect salient objects in driving

environments.

Experiments using streaming saliency information helps identify ways to include temporal

saliency features in the computation. Simple feature changes can be represented as temporal

derivatives and calculated efficiently. Other possible temporal extensions include higher

order derivatives and motion analysis. Using the saliency calculation modules, testing the

effectiveness of candidate features can be performed rapidly on live data.
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The tool is a stand-alone system; with a camera input and monitor output, statistical

saliency information can be made available. The design can be implemented on a printed

circuit for low power and low cost production. Circuit design benefits from stability of

immutability. A working embedded system will always work unless physically damaged.

6.2 Future Work

The design presented is a prototype for streaming visual applications. The first aspect

to improve is data input. Other video standards exist that are more flexible and higher

quality. A more appropriate method for input is FireWire or Ethernet connection. These

methods allow for higher bandwidths and more flexible data formats. Because the saliency

calculation modules require only channel input, the method by which the video data arrives

can be independent.

A similar improvement can be made for the output. Aside from VGA output, the system

could be used for rapid data collection. For this to be possible other forms of output are

necessary, namely RS-232 or WiFi. The only changes would be to output circuitry and

saliency calculation circuitry would remain unchanged.

Most of the future work is in developing motion saliency features in real time. Though

motion estimation is a local calculation, many methods compute motion vectors by finding

the best and nearest matching image region. Streaming design is not built to facilitate

random access as data is quickly discarded. Real-time motion analysis may require additional

memory and different calculation modules. The next steps in real-time statistical saliency

calculation will involve motion saliency calculation.
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Appendix A

DESIGN DETAILS

A.1 Arithmetic Units

A.1.1 Variable Width Adder.v

'timescale ins / ips

// Company:

// Engineer:

//
// Create Date: 12:52:25 01/18/2007

// Design Name: Variable Width Adder

// Module Name: adder

// Project Name: Statistical Saliency

// Target Devices: Xilinx Virtex-II XC2V6000

// Tool versions: Xilinx ISE Foundation 9.1

// Description: Ripple Carry Adder with bit with parameter

//
// Dependencies:

//
// Revision

// Revision 0.01 - File Created

// Additional Comments:

51



//

module adder(a, b, sum, add);

parameter BITS=8;

input[BITS:O] a, b;

output[BITS:O] sum;

input add;

wire[BITS:O] a, bb, c, ci,sum;

assign bb = add? b : ~b;

assign ci = {c [BITS-1:0],~ add};

assign c[BITS:O] = (a & bb) I (ci & (a I bb));
assign sum[BITS:O] = a bb ^ ci;

endmodule
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A.1.2 Ten Bit Booth Recoded Multiplier.v

'timescale Ins / Ips

// Company:

// Engineer:

//
// Create Date: 12:52:25 01/18/2007

// Design Name: 10 Bit Radix-4 Booth Recoded Multiplier

// Module Name: multl0br4

// Project Name: Statistical Saliency

// Target Devices: Xilinx Virtex-II XC2V6000

// Tool versions: Xilinx ISE Foundation 9.1

// Description: Integer binary radix-4 booth recoded multiplication module

//
// Dependencies:

//
// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

module multl0br4(clk , reset

//10 bits , booth recoding ,

, enable , a, b, p);

radix 4 (pipelined with delay 5)

parameter BITS=9;

parameter BITS2=BITS*2+1;

parameter CYCLES=4;

input clk , reset , enable

input [BITS:O] a, b;

output [BITS2:0] p;

reg [BITS2+1:0] product [CYCLES:0];
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wire [BITS2:0] p = product [CYCLES][BITS2:0];

reg[BITS:0] m[CYCLES:0];// multiplicand;

reg c[CYCLES:0]; //carry

wire [BITS+1:0] p1 [CYCLES:0]; / / product +/- 1* multiplicand

wire [BITS+1:0] p2 [CYCLES:0]; / / product +/- 2* multiplicand

wire[BITS+1:0] mli,m2i; //initial product

//initialial calculation

adder #(BITS+i) ali( 11'd0,

adder #(BITS+1) a2i( li'dO,

{a[BITSj,a}, mli, 1'bO);

{a,i'd0}, m2i, l'bO);

adder #(BITS+i) ala(product [O]fBITS2+1:BITS+1],

{m[0] [BITS] ,m[0]} , p1 [0] , ~product [0] [1]);

adder #(BITS+1) alb(product [1][BITS2+1:BITS+1],

{m[i] [BITS] ,m[1]} , pl{l], ~product [1][1]);

adder #(BITS+) alc(product [2] [BITS2+1:BITS+1,

{m[2] [BITS] ,m[2]} , pl [2] , ~-product [2][1]) ;

adder #(BITS+) ald (product [3] [BITS2+1:BITS+1],

{m[3] [BITS] ,m[3]} , pl[3] , ~product [3][1]);

adder #(BITS+i) ale (product [4] [BITS2+1:BITS+1],

{m[4][BITS] ,m[4]} , pl[4] , ~product [4][1]);

#(BITS+i) a2a(product

#(BITS+i) a2b(product

#(BITS+i) a2c(product

#(BITS+i) a2d(product

#(BITS+1) a2e (product

[0] [BITS2+1:BITS+i],{m[0]

[i][BITS2+:BITS+1],{m[i]

[2] [ BITS2+1:BITS+1] ,{m[2]

[3][BITS2+1:BITS+I] ,{m[3]

[4] [BITS2+1:BITS+] ,{m[4]

,1 'b0}, p2[0] c [0]);

,i 'bO}, p2[1] c[1]);

,1 'bO}, p2[2] , c [2]);

,1 'bO}, p2[3] c [3]);

, 1 'bO } , p2 [4] , c [ 4]);

wire [BITS+1:0] init;

assign init =

b[1:0]==2'bO0 ?

b [1:0]==2 'b01 ?

11'd0 :

{a[BITS] ,a}:
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b[1:0]==2'b1O ? m2i:

mi;

integer i;

always@ (pose dge clk) begin

if (reset) begin

for ( i=0;i<=CYCLES; i=i+1) begin

product [ i]<=O;

m[ i ] <=O;

c[ i]<=O;

end

end else if (enable) begin

product [0] <= {init [BITS+1], init {BITS+1], init ,b[BITS:2]};

m[O] <= {a};

c[O] <= b[1];

f o r (i=1; i<=CYCLES; i=i +1) begin

case ( {product [i -1][1:0] ,c [i -1]} )

3'bOl1: product [i]<={p1[i -1][BITS+1],pl[i -1][BITS+1],

pl[i -1][BITS+1:0], product [i -1][BITS:2]};

3'b010: product [ i]<={p1[ i -1][BITS+1],pl[ i -1][BITS+1],

p1[i -1][BITS+1:0] product [i -1][BITS:2]};

3'b0lO: product [i]<={p2[i -1][BITS+1],p2[i -1][BITS+1],

p2[i -1][BITS+1:0] product [i -1][BITS:2]};

3'blO: product [i]<={p2[i -1][BITS+1],p2[i -1][BITS+1],

p2[i -1][BITS+1:0],product [i -1][BITS:2]};

3'bl.01: product [ i]<={p1 [i -1][BITS+1],p [ i -1][BITS+1],

p1[i -1][BITS+1:0], product [i -1][BITS:2]};

3'bl 10: product [ i]<={p1 [ i -1)][BITS+1], pl[ i - 1] [BITS+ 1],

p1 [i - 1] [BITS +1:01], product [i - 1] [BITS:2]}

default: product [i]<={product [i -1][BITS2+1],

product [ i -1][BITS2+1], product [ i -1][BITS2+1:2]};
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endcase

c [i]<=product [i -1] [1];

m[ i]<=m[ i - 1];

end // for ()

end //if(reset) else if (enable)

end //always@(posedge clk)

endmodule
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A.1.3 Sixteen Bit Divider.v

'timescale ins / ips

/ Company:

// Engineer:

//
Create Date:

Design Name:

Module Name:

Project Name:

Target Devices:

Tool versions:

Description:

12:52:25 01/18/2007

16 Bit Divider

div16

Statistical Saliency

Xilinx Virtex-II XC2V6000

Xilinx ISE Foundation 9.1

Integer binary restoring recurence division module

Dependencies:

Revision:

Revision 0.01 - File Created

Additional Comments:

module div16(clk , reset ,enable , dividend

parameter BITS=15;

parameter BITS2=31;

input clk , reset , enable

input [BITS:0] dividend , divisor;

output [BITS:0] quotient , r;

reg[BITS:01 d[BITS:0];

reg[BITS2:0] qr[BITS+1:0];

wire[BITS:O] quotient, remainder;

divisor , quotient , remainder);
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assign {remainder , quotient } = qr [BITS+1];

wire [BITS+1:0] diff [BITS:0];

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

#(BITS+1)

aO( qr[0][BITS2:BITS]

al( qr[1][BITS2:BITS]

a2( qr[2][BITS2:BITS]

a3( qr[3][BITS2:BITS]

a4( qr[4][BITS2:BITS]

a5( qr[5][BITS2:BITS]

a6( qr[6][BITS2:BITS]

a7( qr[7][BITS2:BITS]

a8( qr[8][BITS2:BITS]

a9( qr[9][BITS2:BITS]

alO(qr [10][BITS2:BITS]

all(qr [11][BITS2:BITS]

a12(qr [12][BITS2:BITS]

a13(qr [13] [BITS2:BITS]

a14(qr [14][BITS2:BITS]

a15(qr [15] [BITS2: BITS]

,{ 1

,{ 1

,{ 1

'dO, d [0]}

'dO, d[1]}

'dO, d[2]}

'dO, d[3]}

'dO, d[4]}

'dO, d[5]}

'dO, d[6]}

'dO , d[7]}

'dO , d[8]}

'dO, d[9]}

'dO , d[1]}

'dO , d [11]}

'dO, d[12]}

'dO, d [13]}

'dO, d [14]}

'dO,d[15]}

diff [0]

diff [1]

d if f [2]

diff [3]

d iff [4]

d if f [5]

dif f [6]

d if f [7]

dif f [8]

diff [9]

diff [10]

diff [11]

diff [12]

diff [13]

diff [14]

diff [15]

bO

bO

bO

bO

bO

bO

bO

bO

bO

bO

bO

bO

bO

bO

bO

bO

integer i;

alwaysO(posedge clk)begin

if(reset) begin

for (i=O;i<=BITS; i=i+1) begin

d[ i]<=1;

qr [ i]<=O;

end

qr [BITS+1]<=0;

end else if(enable) begin

d[0]<=divisor;

qr [0] <={8'dO, dividend };

for (i=1;i<=BITS; i=i+1) begin

d[ i]<=d[ i -1];// pipe intermediate opperations
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end

for (i=1;i<=BITS+1;i=i+1) begin

if(diff[i -1][BITS+1])// if highest bit is 1 (negative)

qr[i]<={qr[i-1][BITS2-1:0],1'dO};

//shift remainder and append 0 to quotient

else

qr[i]<={diff[i-1][BITS:O],qr[i-1][BITS-1:0],1'dl};

//replace remainder , 1 to quotient

end

end //if(reset) else if

end //always@(posedge clk)
(enable)

endmodule
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A.1.4 Sixteen Bit Square Root.v

'timescale ins / ips

// Company:

// Engineer:

//
// Create Date: 17:33:20 03/03/2007

// Design Name: 16 Bit Square Root

// Module Name: sqrt16

// Project Name: Statistical Saliency

// Target Devices: Xilinx Virtex-II XC2V6000

// Tool versions: Xilinx ISE Foundation 9.1

// Description: Integer binary square root module

//
// Dependencies:

//
// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

module sqrt16 (clk , reset , enable, sq, r);

parameter BITS=15;

input clk , reset , enable

input[BITS:0] sq;

output [BITS:0] r;

reg[30:0] rsq [7:0];

reg[7:0] root[7:0];

reg add[7:0];

wire [16:0] d [7:0];

adder #(BITS+1) addO ({ rsq [0][30:14]} ,{7 'dO, root [0] ,add [0], 1 'bl}, d [0] ,add [0]);
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adder #(BITS+1) add1({rsq[1][30:14]} ,{7 'dO,root [1] ,add[1] ,1 'bl},d[1] ,add[1]);

adder #(BITS+1) add2({ rsq [2][30:14]} ,{7 'dO, root [2] , add [2], 1 'bl}, d [2] , add [2]);

adder #(BITS+1) add3({ rsq [3][30:14]} ,{7 'd0,root[3] ,add [3] ,1 'bl},d[3] , add [3]);

adder #(BITS+1) add4({ rsq [4][30:14]} ,{7 'dO, root [4] ,add [4] ,1 'bl},d [4] , add [4]);

adder #(BITS+1) add5({rsq[5][30:14]},{7'dO,root [5],add[5],1'b1},d[5],add[5]);

adder #(BITS+1) add6({ rsq [6][30:14]} ,{7 'd0, root [6] ,add [6] ,1 'bl},d [6] , add [6]);

adder #(BITS+1) add7({ rsq [7][30:14]1} ,{7 'dO, root [7] ,add [7] ,1 'bl},d [7] , add [7]);

integer i;

always@(posedge clk) begin

if(reset) begin

for (i=0; i<=7; i=i+1) begin

rsq [ i] <=0;

root [ i]<=0;

add[ i]<= 0;

end

end else if(enable) begin

rsq[0] <={15'dO, sq};

root [0] <=0;

add[0] <=0;

for (i=1; i<=7; i=i+1) begin

rsq[i]<={d[i-1][16],d[i-1][13:0],rsq[i-1][13:0],2'd};

root [i]<={root [i -1][6:0] ,d[i -1][16]};

add [ i]<= d[i - 1][16];

end

end

end

wire[BITS:0] r= {8'dO,root [7][6:0],d[7][16]};

endmodule
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Tap 1 2 3 4 5
Weight 13 63 103 63 13

Table A.1: Gaussian Pyramid kernel

Tap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Weight 0 0 0 2 6 15 31 47 54 47 31 15 6 2 0 0 0

Table A.2: Contrast Filter Inner Gaussian kernel

A.2 Kernel Tables

A.3 Saliency Modules

A.3.1 Target-Distractor Estimator

'timescale ins / Ips

// Company:

// Engineer:

//
// Create Date: 15:30:51 02/16/2007

// Design Name: Target and Distractor estimator

// Module Name: targetdistractor

// Project Name: Statistical Saliency

// Target Devices: Xilinx Virtex-JI XC2V6000

// Tool versions: Xilinx ISE Foundation 9.1

// Description: Measures approximate difference of pixel from surroundings

//
// Dependencies:

//
// Revision:

// Revision 0.01 - File Created

Tap 1 2 3 4 15 6 7 8 9 10 11 12 13 14 15 16 17
Weight 1 2 5 9 14 21 27 32 34 32 27 21 14 9 5 2 1

Table A.3: Contrast Filter Outer Gaussian kernel
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Tap 1 2 3 4 5 6 7 8 9 10 11 12 13
Weight 0 0 0 0 -1-1 -1 -1 -1 0 0 0 0

0 0 0 -1 -2 -2 -2 -2 -2 -1 0 0 0
0 0 0 -1 -2 -3 -4 -3 -2 -1 0 0 0
0 0 0 -1 -2 -3 -3 -3 -2 -1 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 1 2 3 5 6 5 3 2 1 0 0
0 0 1 3 5 7 8 7 5 3 1 0 0
0 0 1 2 3 5 6 5 3 2 1 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 -1 -2 -3 -3 -3 -2 -1 0 0 0
0 0 0 -1 -2 -3 -4 -3 -2 -1 0 0 0
0 0 0 -1 -2 -2 -2 -2 -2 -1 0 0 0
0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0

Table A.4: Orientation Filter Horizontal Difference of Oriented Gaussians kernel

Tap 1 2 3 4 5 6 7 8 9 10 11 12 13
Weight 0 0 0 0 0 00 00 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0
0 -1 -1 -1 0 2 3 2 0 -1 -1 -1 0

-1 -2 -2 -2 0 3 5 3 0 -2 -2 -2 -1
-1 -2 -3 -3 1 5 7 5 1 -3 -3 -2 -1
-1 -2 -4 -3 1 6 8 6 1 -3 -4 -2 -1
-1 -2 -3 -3 1 5 7 5 1 -3 -3 -2 -1
-1 -2 -2 -2 0 3 5 3 0 -2 -2 -2 -1
0 -1 -1 -1 0 2 3 2 0 -1 -1 -1 0
0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.5: Orientation Filter Vertical Difference of Oriented Gaussians kernel
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Tap 1 2 3 4 5 6 7 8 9 10 11 12 13
Weight 0 0 0 0 0 0 0 -1 -1 0 0 0 0

0 0 0 0 0 0 -1 -1 -1 -1 0 0 0
0 0 0 0 0 0 -1 -2 -3 -2 -2 0 0
0 0 0 1 1 1 0 -2 -3 -4 -2 -1 0
0 0 0 1 3 4 3 0 -3 -3 -3 -1 -1
0 0 0 1 4 6 6 4 0 -2 -2 -1 -1
0 -1 -1 0 3 6 8 6 3 0 -1 -1 0

-1 -1 -2 -2 0 4 6 6 4 1 0 0 0
-1 -1 -3 -3 -3 0 3 4 3 1 0 0 0
0 -1 -2 -4 -3 -2 0 1 1 1 0 0 0
0 0 -2 -2 -3 -2 -1 0 0 0 0 0 0
0 0 0 -1 -1 -1 -1 0 0 0 0 0 0
0 0 0 0 -1 -1 0 0 0 0 0 0 0

Table A.6: Orientation Filter Left Diagonal Difference of Oriented Gaussians kernel

Tap 1 2 3 4 5 6 7 8 9 10 11 12 13
Weight 0 0 0 0 -1 -1 0 0 0 0 0 0 0

0 0 0 -1 -1 -1 -1 0 0 0 0 0 0
0 0 -2 -2 -3 -2 -1 0 0 0 0 0 0
0 -1 -2 -4 -3 -2 0 1 1 1 0 0 0

-1 -1 -3 -3 -3 0 3 4 3 1 0 0 0
-1 -1 -2 -2 0 4 6 6 4 1 0 0 0
0 -1 -1 0 3 6 8 6 3 0 -1 -1 0
0 0 0 1 4 6 6 4 0 -2 -2 -1 -1
0 0 0 1 3 4 3 0 -3 -3 -3 -1 -1
0 0 0 1 1 1 0 -2 -3 -4 -2 -1 0
0 0 0 0 0 0 -1 -2 -3 -2 -2 0 0
0 0 0 0 0 0 -1 -1 -1 -1 0 0 0
0 0 0 0 0 0 0 -1 -1 0 0 0 0

Table A.7: Orientation Filter Right Diagonal Difference of Oriented Gaussians kernel
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Tap 1 2 3 4 5 6 7 8 9 10 111 12 13 14 15
Weight 3 7 11 16 21 26 29 30 29 26 21 16 11 7 3

Table A.8: Small Gaussian Filter kernel



Tap 1 2 3 4 5 6 7 8 9 10
Weight 2 2 2 2 2 3 3 3 4 4
Tap 11 12 13 14 15 16 17 18 19 20
Weight 4 5 5 5 6 6 6 6 7 7
Tap 21 22 23 24 25 26 27 28 29 30
Weight 7 7 7 8 8 8 8 8 7 7
Tap 31 32 33 34 35 36 37 38 39 40
Weight 7 7 7 6 6 6 6 5 5 5
Tap 41 42 43 44 45 46 47 48 49 50
Weight 4 4 4 3 3 3 2 2 2 2
Tap 51
Weight 2

Table A.9: Large Gaussian Filter kernel

Tap 1 2 3 4 5 6 7 8 9
Weight 26 0 128 0 204 0 128 0 26

Table A.10: Gaussian Upsample Filter kernel

// Additional Comments:

//

module targetdistractor(clk, reset, enable, hin, vin,

hout, vout, target-dout , distractor-dout

din,

parameter WIDTH = 360;

parameter HEIGHT = 243;

parameter DATABITS = 8;

parameter VGABITS = 10;

parameter DATABITS2 = 2*DATABITS+1;

parameter DATADIFF = DATABITS+1;

//buffer length is 25 lines * width + 25 samples + 4 cycles for mult

parameter DELAYBGF = 25*WIDTH;

parameter BUFFTRLENGTH = DELAYBGF;
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parameter DELAYLENGTH = 105;

input elk , reset , enable;

input [VGABITS:O] hin, vin;

input [DATABITS:O] din;

output [VGABITS:O] hout, vout;

output [DATABITS:O] targetdout , distractordout;

//apply small g filter to input

wire [VGABITS:0] sgfh , sgf-v;

wire [DATABITS:0] sgf-d;

smallgfilter #(WIDTH,HEIGHT,DATABITS) sgf(clk , reset , enable,

hin , vin , din,

sgfh , sgfv , sgf-d);

//apply big g filter to small g filter output

wire[VGABITS:0] bgf-h, bgf-v;

wire [DATABITS:0] bgf-d;

biggfilter #(WIIDTH, HEIGHT, DATABITS) bgf(clk , reset , enable,

sgfh , sgf-v , sgf-d,

bgf-h, bgf-v, bgf-d);

reg [DATABITS:0] sgfdd;

wire [10:0] fifosgf-count;

wire fifosgf-full , fifosgf.empty;

wire fifosgf-we = enable && sgf-h<WIDTH && sgf-v<HEIGHT;

wire fifosgf-re =enable &&

(fifosgf-count>=BUFFELENGTH-1 H
//(sgfh>=77&&sgfv>=25) 11

(sgf-v>HEIGHT && ! fifosgf-empty ));

wire [8:0] fifosgf out ;

wire [DATABITS:0] sgfdd = fifosgf-out [DATABITS:0];

wire [8:0] fifosgf-in {sgf-dd};

fifo2048x9 fifosgf (clk , fifosgf.re , fifosgf-we

66



fifosgf.in , reset , fifosgf-out ,

fifosgf-full , fifosgf.empty , fifosgf.count )

r eg [DATABITS:0]

integer i;

alwaysO (

d elay [DELAYLENGTH: 01 ;

posedge clk) begin

if (reset ) begin

sgfdd <=0;

delay [01 <=0;

end else if(enable) begin

sgf-dd<= sgf-v<HEIGHT? sgf-d : 0;

delay [0]<=sgfdd;

end

for(i=1; i <=DELAYLENGTH; i=i+1) begin

if (reset ) begin

delay[ i <= 0;

end /**/else if(enable) begin

delay[i] <= delay[i-1];

end

end

end

wire [DATABITS2+2:0] stw;

reg[DATABITS:0] sd , st;

reg[DATABITS:0] sdwd[3:0];

//mult8r4 msd(clk ,reset ,enable ,{8'd1}/*bigk=1.06~1*/,bgf-d ,sdw);

multl0br4 mst(clk, reset ,enable ,{10'd17}/*smlk=.068~17/256*/,

{ d e lay [DELAYLENGTH- 5] [DATABITS] ,d elay [DELAYLENGTH-5]} ,st w);

wire [DATABITS:0] diff;

adder #(DATABITS) a(sd,st,diff,1'd0);
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//assign outputs

reg[VGABITS:O] houtb[4:0], voutb[4:0];

reg (DATABITS:0] target.dout , distractor.dout;

reg[VGABTS:O] hout;

reg[VGABITh:0] vout;

alwaysO(posedge clk) begin

if (reset ) begin

sd<=0;

st <=0;

target.dout <= 0;

distractor-dout <= 0;

{houtb[4],houtb[3],houtb(2],houtb[1],houtb[0]} <= 0;

{voutb[4] ,voutb[3] ,voutb[2] ,voutb[1],voutb[O]} <= 0;

{sdwd[3] ,sdwd[2] ,sdwd[1] ,sdwd[0]}<=O;

end else if(enable)begin

//sd<=sdw[DATABITS:0];//*1/1

{sd,sdwd[3] ,sdwd[2], sdwd[1] ,sdwd[0]}<={sdwd[3], sdwd[2] ,sdwd[1] ,sdwd[0, bgf

st<=stw [16:8];//*17/256

target-dout <= bgf.h>4&&bgf-h<=WIDTH+4 ? delay [DELAYLENGTH] [DATABITh:0]

distractordout <= bgf-h>4&&bgf-h<=WIIT+4 ? diff : 0;

{hout,houtb[4] ,houtb[31 ,houtb[21 ,houtb[1] ,houtb[0J}

<= {houtb [4] ,houtb[3] ,houtb[2] ,houtb[1] ,houtb [0] ,bgfh};

{vout,voutb[4] ,voutb[3] ,voutb[2] ,voutb[1] ,voutb[0]}

<= {voutb[4] ,voutb[3],voutb[21 ,voutb[1},voutb[0], bgfv};

end

end

endmodule
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A.3.2 Pairwise Filter

'timescale Ins / ips

// Company:

// Engineer:

//
// Create Date: 17:37:33 02/25/2007

// Design Name: Pairwise Filter

// Module Name: pairfilter

// Project Name: Statistical Saliency

// Target Devices: Xilinx Virtex-II XC2V6000

// Tool versions: Xilinx ISE Foundation 9.1

// Description: calculates the squared target

//
Dependencies:

Revision:

Revision 0.01 - File Created

Additional Comments:

module pairfilter (clk , reset , enable

hin , vin , a, b,

hout, vout, dout

parameter

parameter

parameter

parameter

parameter

parameter

WIDTH = 360;

HEIGHT = 243;

DATABITS = 8;

VGABITS = 10;

DATABITS2 2*DATABITS+1;

DATADIFF DATABITS+1;
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input clk , reset

input [VGABITS: 0]

input [DATABITS:0]

output [VGABITS:0]

output [DATABITS:0]

enable;

hin , vin;

a, b;

hout , vout;

dout;

wire [DATABITS2+2:0] prod;

multl0br4 m(clk , reset , enable ,{a [DATAI

reg [VGABITS:0] dhin [3: 0];

reg [VGABITS:0] dvin [3:0];

reg[DATABITh:0] d;

always@(posedge clk) begin

if (reset ) begin

d<=n;

{dhin [3] ,dhin [2] ,dhin

{dvin [3] ,dvin [2] ,dvin

end else if(enable) begin

d<=prod [16:8];

{dhin [3] ,dhin [2] ,dhin

{dvin [3] ,dvin [2] ,dvin

end

end

BITS] ,a},{b[DATABITh] ,b},prod);

[1]

[1]

[1]

[1]

dhin

dvin

dhin

dvin

[0]}<=0;

[0]} <=0;

[0]}<={dhin [2] , dhin [1] , dhin [0] , hin };

[O]}<={dvin [2] , dvin [1] , dvin [0] , vin };

wire[VGABITS:0] ho,vo;

wire [DATABITS:0] dd;

smallgfilter #(WIDTH,HEIGHT,DATABITS) sgf(clk ,reset ,enable,

dhin [3] , dvin [3] , d,

ho, vo, dd);

assign

assign

assign

hout [VGABITS:0]= ho [VGABITS: 0];

vout [VGABITS:0]= vo [VGABITS: 0 ] ;

dout [DATABITS:0]= dd [DATABITS: 0];
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endmodule
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A.3.3 Covariance Matrix Element

'timescale 1ns / ips

// Company:

// Engineer:

//
// Create Date: 15:30:51 02/16/2007

// Design Name: Covariance Matrix Element

// Module Name: covmatrix

// Project Name: Statistical Saliency

// Target Devices: Xilinx Virtex-II XC2V6000

// Tool versions: Xilinx ISE Foundation 9.1

// Description: Calculates a single element of a covariance matrix

//
// Dependencies:

//
// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

module covmatrix (clk , reset , enable

hin , vin , a, b, c, d, e, const,

hout , vout , elt

parameter

parameter

parameter

parameter

parameter

parameter

WIDTH = 360;

HEIGHT = 243;

DATABITS = 8;

VGABITS = 10;

DATABITS2 2*DATABITS+1;

DATADIFF DATABITS+1;

//expected delays:
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b: start+O

: end-7

e: end-7

input clk , reset ,

input [VGABITS:O]

input [DATABITS:]

output [VGABITS:0]

output [DATABITS: ]

enable;

hin , vin;

a, b, c, d, e, const;

hout , vout;

elt ;

wire [DATABITS2+2:0] abprod, deprod;

multlObr4 mab(clk , reset ,enable ,{a[DATABTS], a},{b[DATAB1TS] b},abprod);

multlObr4 mde(clk , reset ,enable ,{d [DATABITS] ,d},{e [DATABITS] , el ,deprod);

reg[VGABITS:0] dhin[4:0];//delay input coords to synch multiplication output

reg[VGABYrS:Oj dvin[4:0];//to filter input

reg[DATABITS:O] ab, de;//, ded;

always@g(posedge clk) begin

if (reset ) begin

ab <= 0;

de <= 0;

{dhin [4] ,dhin [3] ,dhin [2] ,dhin [1] ,dhin [0]}<=0;

{dvin [4] ,dvin [3] ,dvin [2], dvin [1] ,dvin[0]}<=0;

end else if (enable) begin

ab<=abprod [16:8];

de<=deprod [16:8];

{dhin [4] ,dhin [3] ,dhin [2] ,dhin [1] ,dhin[0]}<={dhin [3] ,dhin [2] ,dhin [1] ,dhin [0

{dvin [4], dvin [3] ,dvin [2], dvin [1], dvin[0]}<={ dvin [3] ,dvin [2] ,dvin [1, dvin [0

end

end

wire[VGABITS:0] dhoutf, dvoutf;

wire [DATABITS:O] about;

biggfilter #(WIDTH,HEIGHT,DATABITS) bgf(clk ,reset ,enable,
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dhin [4] ,dvin [4] ,ab,

dhoutf , dvoutf , about);

reg[DATABITS+1:0] sd, st;

reg[DATABITS+1:0] tmd, demconst, cov;

wire[DATABITS2+2:0] stw;//scale by bigk and smallk

reg[DATABITS+1:0] sdwd[3:0];

//multl0br4 msd(clk ,reset , enable ,{8'dl}/*bigk=1.061*/,{ about [DATABTS] ,about },sdw);

multl0br4 mst(clk ,reset ,enable ,{10 'd17}/*smlk=.068~17/256*/,{c [DATABITS] , c},stw);

wire [DATAB1TS+1:0] tmdw;//subtract (scaled) c from ab

adder #(DATABITS+1) atd(sd,st ,tmdw,1'bO); -

wire [DATABITS+1:0] demconstw;//subtract const from de

adder #(DATABITS+1) adec ({ de [DATABITS] ,de}, { const [DATABITS] ,const } ,demconstw ,1' bO);

wire [DATABITS+1:0] covw;//subtract everything so signs work

adder #(DATABITS+1) aall (tmd,demconst ,covw,1 'bO);

reg[VGABITS:O] dhout[6:0];

reg [VGABITS:0] dvout [6:0];

always©(posedge clk) begin

if (reset) begin

{dhout [6] , dhout [5] , dhout [4] ,dhout [3] ,dhout [2] ,dhout [1] ,dhout [0]}<=0;

{dvout [6] , dvout [5] ,dvout 4] , dvout [3] ,dvout [2] , dvout [1] ,dvout [0]}<=0;

sd<=0;

st <=0;

tmd<=0;

demconst <=0;

cov <=0;

{sdwd [ 3] sdwd [2] sdwd [1] sdwd[0]}<=0;

end else if(enable) begin

{dhout[6] ,dhout[5] ,dhout[4] ,dhout[3] ,dhout[2] ,dhout[1] ,dhout[0]}

<={dhout[5],dhout[4] ,dhout[3] ,dhout[2] ,dhout[1] ,dhout[0] ,dhoutf};

{dvout[ 6) ,dvout[5] ,dvout[4),dvout[3] ,dvout[2] ,dvout[1] ,dvout[0]}
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<={dvout [5] ,dvout [4] ,dvout [3] ,dvout [2] ,dvout[1] ,dvout [0] ,dvoutf};

//sd<=sdw[DATABITS:0] ;//*1/1

{sd,sdwd[3] ,sdwd[2] ,sdwd[1] ,sdwd[0]}<={sdwd[3] ,sdwd[21 ,sdwd[1] ,sdwd[O, {ab.

st<=stw [17:8];//*17/256

tmd<=4mdw;

demconst<=demconstw;

cov<=covw;

end

end

assign elt = cov[DATABITS:O];

assign hout = dhout [6];

assign vout = dvout [61;

endmodule
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A.3.4 Determinant

'timescale 1ns / ips

// Company:

// Engineer:

//
// Create Date: 11:34:19 02/10/2007

// Design Name: 3x3 Matrix Determinant

// Module Name: determinant3x3

// Project Name: Statistical Saliency

// Target Devices: Xilinx Virtex-II XC2V6000

// Tool versions: Xilinx ISE Foundation 9.1

// Description: Cacluclates a symmetric matrix determinant

//
// Dependencies:

//
// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

module determinant3x3 (clk , reset , enable

hin, vin,

c1l, c12, c13, c22, c23, c33,

hout, vout , det

parameter WITH = 360;

parameter HEIGHT = 243;

parameter DATABITS = 8;

parameter VGABITS = 10;

parameter DATABITS2 = 2*DATABITS+1;

parameter DATADIFF = DATABITS+1;
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parameter MULTCYCLES = 4;

input clk , reset , enable;

input [VGABITS:O] hin,vin;

input [DATAB1TS:O] c1l , c12, c13, c22, c23, c33;

output [VGABITS:0] hout , vout;

output [DATABITS:0] det;

vgadelay #(WIDTH,HEIGHT,VGABITS,11 ,0) vgd(clk ,reset ,enable ,hin,vin ,hout,vout);

//5 for first round of mults, 4 for second round of mults, 3 adds

wire [DATABITS2+2:0] m1122 , m1212, m1223;

multlObr4 mla(clk ,reset ,enable ,{cll[ DATABITS]

multl0br4 m1b(clk , reset , enable ,{ c12 [DATABITS]

multlObr4 m1c( clk , reset ,enable ,{ c12 [DATABITS]

wire [DATABITS2+2:0] m2312,m2313,m2213;

multlObr4 m2a(clk , reset , enable , { c23 [DATABITh]

multl0br4 m2b(clk ,reset , enable ,{ c23 [DATABITS]

multl1br4 m2c(clk , reset ,enable ,{ c22 [DATABITS]

, cl1},{ c22 [DATABITS]

, c12 } ,{c12 [DATABITS]

, c12},{ c23 [DATABITS]

, c23} ,{ c12 [DATABITS]

, c23} ,{ c13 [DATABITS]

, c22} ,{ c13 [DATABITS]

, c22} ,m1122);

, c12} ,m1212);

, c23} ,m1223);

, c12},m2312);

, c13} ,m2313);

, c13} ,m2213);

reg [DATABITS: 0] c13d [MULTCYCLES: 0 ] ;

reg [DATABITS: 0] c33d [MULTCYCLES: 0 ] ;

reg [DATABITS:0] m2312d[MULTCYCLES:0];

reg [DATABITS:0] m2313d[MULTCYCLES:0];

reg [DATABITS:0] m2213d[MMULTCYCLES:0];

reg[DATABITS+1:0] sumi, sum2, sum3, sum13, sum2d;

reg[DATABITS:O] det;

wire [DATABITS2+2:0] m112233,m121233,m122313 ;

multlObr4 m3a(clk ,reset, enable , m1122 [17:8] ,{ c33d [MULTCYCLES] [DATABITS] , c33d [MULTCYCLES]} ,m

multl0br4 m3b( clk , reset , enable , m1212 [17:8], { c33d [MULTCYCLES] [DATABITS] , c33d [MULTCYCLES]} , m
multl0br4 m3c(clk ,reset , enable , m1223 [17:8 ,{ c13d [MULTCYCLES] [DATABITS] , c13d [MULTCYCLES]} , m
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wire[DATABITS+1:0] sumiw, sum2w, sum3w, suml3w, detw;

adder #(DATABTS+1) al (m112233 [17:8] ,{ m2312d [MULTCYCLES] [DATABITS] , m2312d [MULTCYCLES]} ,sum

adder #(DATABITS+1) a2 (m121233 [17:8 , { m2313d [MULTCYCLES] [DATABTS] , m2313d [MULTCYCLES]} ,sum:

adder #(DATABTS+1) a3 (m122313 [17:8 ] ,{ m2213d [MULTCYCLES] [DATABITS] , m2213d [MULTCYCLES]} ,sum,

adder #(DATABITS+1) a13(suml, sum3, suml3w,1'bl);

adder #(DATABITS+1) a123(sum13,sum2d,detw, l'bo);//maybe reverse

integer i;

always@(posedge clk) begin

if (reset ) begin

for (i=O;i<MULTCYCLES; i=i+1) begin

c13d [i]<= 0;

c33d [i]<= 0;

m2312d[iJ<= 0;

m2313d[i]<= 0;

m2213d [ i]<= 0;

end

sumi <= 0;

sum2 <= 0;

sum3 <= 0;

sum13 <= 0;

sum2d <= 0;

det <= 0;

end else if(enable) begin

cl3d[0]<= c13;

c33d[0]<= c33;

m2312d[O]<= m2312[17:8];

m2313d[O]<= m2313[17:8];

m2213d[O]<= m2213[17:8];

for (i=1; i<4MULTCYCLES; i=i+1) begin

c13d [ i]<= c13d [ i -1];
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c33d [ i]<=

m2312d [ i]<=

m2313d [ i]<=

m2213d [ i]<=

c33d [i -1];

m2312d [i -11;

m2313d [i - 1];

m2213d [i -1];

<= sumiw;

<= sum2w;

<= sum3w;

<= suml3w;

<= sum2;

<= detw[DATAB1TS:O];

end

end

endmodule

79

end

sumi

sum2

sum3

sum13

sum2d

det



A.3.5 Matrix Inverse

'timescale 1ns / ips

// Company:

// Engineer:

//
// Create Date: 19:20:10 02/17/2007

// Design Name: Matrix Inverse Element

// Module Name: matinvert

// Project Name: Statistical Saliency

// Target Devices: Xilinx Virtex-II XC2V6000

// Tool versions: Xilinx ISE Foundation 9.1

// Description: Computes an element of a symmetric matrix inverse

//
// Dependencies:

//
// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

module matinvert (clk , reset , enable,

hin , vin ,

a, b, c, d, det,

hout , vout , elt

parameter WIDTH = 360;

parameter HEIGHT = 243;

parameter DATABITS = 8;

parameter VGABITS = 10;

parameter DATABITS2 = 2*DATABITS+1;

parameter DATADIFF = DATABITS+1;
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parameter DIVCYCLES = 7;

input clk , reset

input [VGABITS: ]

input [DATABITS:]

output [VGABITS:0]

output [DATABITS:0}

enable;

hin , vin;

a, b, c, d, det;

hout , vout;

elt ;

vgadelay #(WIDTH,IHEIGHT,VGABITS,15 ,0) vgd (clk , reset , enable , hin , vin , hout , vout);

//5 mult, 1 add, 8 div

reg[DATABITS+1:0] ab,cd,s;

wire [DATABITS2+2:0] abw;

mult10br4 mab(clk , reset , enable ,{ a [DATABITS] , a},{b[DATABITS] , b},abw);

wire [DATABITS2+2:0] cdw;

multlObr4 mcd(clk ,reset ,enable ,{ c [DATABITS] , c} ,{d[DATABITS] ,d} ,cdw);

wire [DATABITS+1:0] sw,nsw;

adder #(DATABITS+1) add(ab, cd, sw,1'bl);

adder #(DATABITS+1) answ(10'dO,sw,nsw,1'bO);

wire [DATABITS:O) ndetd4;

reg[DATABITS:O] detd[5:0];

adder #(DATABITS) andet(9'dO,detd[4] ,ndetd4 ,1 'bO);

reg [DIVCYCLES:0] neg;

reg [DATABITS:0] el t

wire [7:O] inv , rem;

div8 div (clk , reset , enable , s [7:0] , detd[5]==O?8'd255: detd [5][7:0] ,inv ,rem);

wire [DATABITS:0] ninv;

adder #(DATABITS) aninv(9'dO,{1'dO,inv},ninv,1'bO);

always©(posedge elk) begin
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if(reset) begin

ab<=0;

cd<=O;

s <=0;

detd [0] <= 1;

detd [1] <=1;

detd [2] <= 1;

detd [3] <=1;

detd [4] <=1;

detd [5] <=1;

neg <=0;

elt <=0;

end else if(enable) begin

neg [DIVCYCLES:O]<={neg [DIVCYCLES-1:0], (sw [DATAB1TS+1]^ detd [4] [DATABITS])&&

ab <=abw[ 17: 8];

cd <=cdw [17: 8];

s <=sw [DATABITS+1]?nsw: sw;

{detd [5] , detd [4] , detd [3] , detd [2] , detd [1] , detd[0]}<=

{detd [ 4][DATABTS]? ndetd4: detd [4 , detd [3] , detd [2] ,detd [1] , detd [0],

elt<=neg[DIVCYCLES]?ninv:{1 'dO,inv};

end

end

endmodule
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A.3.6 Saliency Calculation

'timescale Ins / ips

// Company:

// Engineer:

//
// Create Date: 12:01:25 02/15/2007

// Design Name: Saliency Calculation for 3 dimensional features

// Module Name: saliencycalc3

// Project Name: Statistical Saliency

// Target Devices: Xilinx Virtex-II XC2V6000

// Tool versions: Xilinx ISE Foundation 9.1

// Description: (t-d)^T Sigma^{-1} (t-d)

//
// Dependencies:

//
// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

module saliencycalc3 (clk , reset , enable

hin , vin ,

icl ,ic12 ,ic13 ,ic22 ,ic23 ,ic33

tl ,dl,ta,da,tbdb,

hout, vout, s);

parameter

parameter

parameter

parameter

parameter

parameter

WIITH = 360;

HEIGHT = 243;

DATABITS = 8;

VGABITS = 10;

DATABITS2 = 2*DATABITS+1;

DATADIFF = DATABITS+1;
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elk , reset

[VGABITS: 0]

[DATABITS: 0]

[DATABITs:0]

[VGABITS:0 ]

[DATABITS: 0]

enable;

hin , vin;

icl1 , ic12 , ic13 , ic22 , ic23 , ic33;

tl ,dl ,ta,da,tb,db;

hout , vout;

S;

vgadelay #(WIDTH,HEIGHT,VGABITS,19 ,0) vgd (clk , reset , enable , hin , vin , hout , vout);

//1 add, 4 mult, 1 add,1 add,1 add,1 add,

wire [DATABITS+1:0] lw ,aw,bw;

adder #(DATAB1TS+1) al({tl[DATABITS]

adder #(DATABITS+1) aa({ta[DATABITS}

adder #(DATABITS+1) ab({tb[DATABITS]

, tl },{ dl [DATABITS] , dl} , lw,1 'b0);

,ta},{da[DATABITS] ,da},aw,1 'bO);

,tb},{db[DATABITS] ,db},bw,1 'bO);

reg [DATABITS: 0] r1 , r12 , r13 , r22 , r23 , r33;

reg [DATABITS+1:0] 1 , a, b;

reg[DATABITS+1:0] ld[5:0],ad[5:0],bd[5:0];

always@(posedge elk) begin

if (reset ) begin

1 <=0;

a<=0;

b<=0;

r 1<=0;

r12 <=0;

r13<=0;

r22 <=0;

r23 <=0;

r33 <=0;

Id [0] <=0;ad[0] <=0;bd[0] <=0;
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Id [1] <=0;ad[1] <=0;bd[1] <=0;

Id [2] <=0;ad [2] <=0;bd[2] <=0;

Id [3] <=O;ad[3] <=O;bd [3] <=0;

Id [4] <=0;ad [4] <=0;bd [4] <=0;

Id [5] <=0;ad [5] <=0;bd [5] <=0;

end else if(enable) begin

I<=lw ;

a<-aw;

b<=bw;

ad[0] <=a;

ad[1]<=ad [0];

ad[2]<=ad 11];

;ad[3]<=ad [2];

ad[4]<=ad [3];

ad[5]<=ad [4];

bd[0]<=b;

bd[1]<=bd [0];

bd[2]<=bd [1];

bd[3]<=bd [2];

bd[4]<=bd [3];

bd[5]<=bd [4];

wire [DATABITS2+2:0] 11 ,

multl0br4 m11(clk , reset

multl0br4 m12(clk ,reset

multl0br4 m13(clk ,reset

wire [DATABITS2+2:0] al,

mult10br4 m21( clk ,reset

multl0br4 m22(clk ,reset

12 ,13 ;

enable

enable

enable

a2 , a3;

enable

enable

r11 [DATABITS]

r12 [DATABITS

r13 [DATABITS]

,a,{ r12 [DATABITS]

,a,{ r22 [DATABITS]
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r11<=i c 11

r12<=ic 12

r13<=ic 13

r22<=i c 22

r23<=i c 23

r33<=ic33

ld[0]<= 1;

ld[1]<=ld

ld[2]<=ld

ld[3]<=ld

ld [4]<=ld

ld [5]<=ld

[0]

[1]

[2]

[3]

[4]

end

end

,12 );

,13);

r11}

r12}

r13}

r12}

r22 }



multI0br4 m23(clk , reset ,enable ,a, { r23 [DATABITS] , r23} ,a3);

wire [DATABITS2+2:0] hi , b2 , b3;

multl0br4 m3i(clk ,reset ,enable ,b,{r13[DATABITS]

multl0br4 m32(clk ,reset ,enable ,b,{ r23[DATABITS]

multi0br4 m33(clk ,reset ,enable ,b,{r33 [DATABITS]

wire [DATABITS+1:0] la1w, la2w, la3w;

adder #(DATABITS+1) alal (11 [17:8] ,al [17:8] ,la1w

adder #(DATABITS+1) ala2(12[17:8],a2[17:8],la2w

adder #(DATABITS+1) ala3(13[17:8],a3[17:8],la3w

reg[DATABITS+1:0] lal, la2, la3,

always©(posedge elk) begin

if (reset ) begin

lal <=0;

la2 <=0;

la3 <=0;

bid <=0;

b2d <=0;

b3d <=0;

end else if(enable) begin

lal <=laiw;

la2 <=la2w;

la3 <=la3w;

bid <=bi;

b2d <=b2;

b3d <=b3;

end

end

bid, b2d, b3d;

wire [DATABITS+1:0] labiw, lab2w, lab3w;

adder #(DATABITS+i) alabl (lal ,b1d, labiw , 1 'bi);

adder #(DATABITS+1) alab2 (la2 ,b2d, lab2w, 1 'bi);
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adder #(DATABITS+1) alab3 (la3 , b3d , lab3w , 1' bi);

reg[DATABITS+1:0] labl , lab2, lab3;

always©(posedge clk) begin

if (reset ) begin

labi <=0;

lab2 <=0;

lab3 <=0;

end else if(enable) begin

labi <=lablw;

lab2 <=lab2w;

lab3 <=lab3w;

end

end

wire [DATABITS2+2:0] lab 11w , lab2aw , lab3bw;

multl0br4 ml(clk , reset ,enable , labl , ld [51 , labllw);

rnultl0br4 ma(clk ,reset , enable , lab2 ,ad [5] , lab2aw);

multl0br4 mb( clk , reset , enable , lab3 ,bd [5] , lab3bw);

reg [DATABITS2+2:0] labil , lab2a , lab3b;

alwaysA (posedge clk) begin

if (reset ) begin

labil <=0;

lab2a <=0;

lab3b <=0;

end else if (enable) begin

labil <=labllw;

lab2a <=lab2aw;

lab3b <=lab3bw;

end

end
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wire [DATABITS+1:0] labll2aw, sumw;

reg [DATABITh+1:0] lab1l2a , lab3bd, sum;

adder #(DATABITS+1) alabl2 (labll [17:8] , lab2a [17:8] , labll2aw ,1 'bl);

adder #(DATABITS+1) alabl23(labll2a ,lab3bd ,sumw,1 'bl);

alwaysO(posedge elk) begin

if (reset ) begin

labll2a <=0;

lab3bd <=0;

sum <=0;

end else if(enable) begin

labll2a <= labll2aw;

lab3bd <= lab3b [17:8];

sum <= sumw;

end

end

reg [DAT

wire [7:0

sqrt8 sc

always@ (

ABITS: 0]

I sw;

s ;

ale ( clk , reset , enable ,sum [7: 0] sw);

posedge elk) begin

if ( reset ) begin

s <=O;

end else if(enable) begin

s <={1'd0 , sw};

end

end

endmodule
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