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ABSTRACT

Optical-mode converters are needed to efficiently couple light from an optical fiber to a
photonic circuit by matching and transforming the propagating modes. This work is
based on a horizontally-tapered coupler, in which light from an optical fiber is coupled
into a large polymer waveguide and then gradually transferred to a smaller silicon
waveguide whose width increases with distance along the guide. Several devices were
designed and fabricated to measure the efficiency of the coupler. E-beam exposure doses
and writing strategies were optimized to create the tapered silicon waveguides. A
fabrication process was developed to form the polymer waveguides without etching the
underlying silicon, and a set of marks was created to achieve sub-micron alignment
between the two waveguides. Fabrication results showed that the coupler successfully
transfers light between the two waveguides and that there is low loss in the polymer. A
more accurate characterization of the coupler's efficiency was delayed due to fabrication
problems not related to the developed process.

Thesis Supervisor: Henry I. Smith
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

There is a constant need to improve performance in communication systems to increase

data rates and transmission distances. So far, electronic communications has been very

successful mainly because of advances in the integration of microelectronic devices. The

need to decrease device sizes and increase the number of transistors integrated into a

single chip is driving electron-based communications to its limit as data rates now exceed

1 Gb/s. Photonics provides one alternative to microelectronic circuits.

Optical systems are currently used in applications where the transmission length

exceeds 100 m. Telecommunications, Ethernet and Storage-Area Networks are among

the applications where optics is widely used. The ability to fabricate small devices and

integrate them into optical circuits is essential to the development of photonic

communications. In terms of size, photonic devices are limited by the wavelength of

light used. Monolithic integration, on the other hand, reduces fabrication cost, eliminates

alignment problems and reduces coupling loss.

Coupling is an issue of particular importance in photonics since optical fibers are

used to carry data. That data, in the form of light-pulses, needs to be transmitted

(coupled) from the fiber to the chip. Fiber-to-chip coupling is difficult because the large

difference in size and refractive index between the fiber core and the chip's waveguide
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core creates a modal mismatch that results in power loss. A special type of optical

coupler is thus needed between the fiber and the chip to reduce coupling loss.

Several coupler designs have been proposed, including tapered waveguides and

grating waveguides. In this work we present a coupler, called the horizontal coupler,

based on two sets of waveguides: a thin, horizontally-tapered waveguide and a thick,

straight waveguide. The emphasis of the present thesis is to address the challenges of

fabricating a multi-mode horizontal coupler using silicon for the tapered waveguides and

a polymer, called Cyclotene, for the straight waveguides.

The thesis is divided into six additional chapters. A brief overview of the theory

of high refractive-index-contrast (HIC) photonic devices and optical couplers is presented

in Chapter 2. This chapter, combined with the introductory chapter, allows the reader to

understand where the need for optical couplers arises, what the biggest challenges are in

designing the type of horizontally tapered coupler that is presented, and some of the more

general fabrication challenges. Chapter 3 explains the particular design to be fabricated.

The design specifications that must be met during fabrication are listed in the first section

of the chapter, along with the aspects of the design that are most susceptible to fabrication

errors. The second section of Chapter 3 discusses and illustrates the devices that will be

fabricated to measure and characterize the efficiency of the coupler.

Chapter 4 presents a detailed description of the fabrication process, including the

sets of experiments that were conducted, and the challenges faced during the process.

This chapter is divided into four sections: one section for the fabrication process of each

of the two sets of waveguides, one section that describes the sets of marks that were used

for lithographic alignment, and another section that details the cleaving process used to
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cut the chips. Chapter 5 then presents the measurements and fabrication results obtained

to date. Problems in the fabrication are addressed in this chapter. Finally, Chapter 6

summarizes the work performed and discusses future work. The discussion of future

works includes preliminary considerations for the fabrication process of a single-mode

horizontal coupler.
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Chapter 2

Background

This chapter presents the reader with an overview of the most common devices used in

photonic circuits as well as a basic explanation of the theory behind them. Some of the

optical devices that can be integrated in a photonic circuit include waveguides, filters,

polarization splitters, and switches. The first section of the chapter introduces devices

required for optical-network communications. The second section elaborates on the

theory and behavior of waveguides; the building blocks of optical-mode converters.

Section three discusses the key attributes of Silicon-on-Insulator (SOI) substrates for the

fabrication of photonic devices.

2.1 Devices in Optical Networks

The capacity of a single optical fiber, which at present is about 1 Gb/s, could soon exceed

1014 bits/s. This capacity exceeds the total current traffic of voice and data in the United

States (aproximately1 012 bits/s) and could make optical fiber the dominant form of

communication in the near future [1]. Nodes in an optical network communicate with

one another on specific wavelengths, which are all multiplexed into a single optical fiber

in a narrow spectral band centered at 1.55 prm. This technique is called Wavelength-

Division Multiplexing (WDM) and requires an optical add-drop multiplexer (OADM) at

every node [2].
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Before considering the operation of OADMs, it is important to present the most

basic optical component: the waveguide. Waveguides direct the optical signal by

confining light in a core layer surrounded by cladding materials of lower refractive-index.

Electromagnetic modes propagate through a waveguide, according to the principle of

Total Internal Reflection (TIR), when light is coupled into it. If only the fundamental

mode propagates, the waveguide is called single-mode. Optical fibers are an example of

cylindrical waveguides with low refractive-index-contrast.

Waveguides are used to route light between optical devices within a substrate, and

between a substrate and an optical fiber. If the propagating modes of the connected

devices are different, power is lost at the boundary due to the modal mismatch. This

problem is particularly important when connecting an optical fiber, which has low

refractive-index-contrast and dimensions of over 5 ptm, to a photonic chip with high-

index contrast (HIC) and dimensions of approximately 100 nm. An efficient optical-

mode converter is needed to match and transform the modes inside the optical fiber to

propagation modes that will not leak into the under-cladding of the photonic circuit.

Additionally, it must match the effective indices of the optical fiber and the connecting

photonic device to prevent power loss due to Fresnel reflection at the boundary [3]. The

reflection coefficient is given by

R =n2 _ - )2 (2.1)
n2+ ni

Optical add-drop filters are more complex photonic devices and form the basis

for OADMs. These devices must drop a data stream at a given wavelength and replace it

by a new stream at the same wavelength. There are various designs for the fabrication of
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optical add-drop filters, including microring-resonators and racetrack-resonators as

shown in Fig. 2.1. For a detailed explanation of their behavior refer to [2]. Waveguides,

couplers, and microring-resonators can also be combined to create frequency-selective

switches and wavelength converters which are needed for all-optical network routers. An

in-depth description of the requirements, advantages and weaknesses of all-optical

networks can be found in [4] and [5].

t
Through Add Input Through

Drop Add
Input IDrop

Fig. 2.1: Schematic of microring-resonator (left) and racetrack-resonator (right). Both devices can be used
as optical add-drop filters.

2.2 Waveguides

Waveguides in photonic circuits consist of a core layer of material, where light is

confined, sandwiched between two other materials. A schematic representation of a

waveguide is show in Fig. 2.2. When light propagating through the core reaches the

boundary of one of the cladding layers it can either reflect back into the core or transmit

through the cladding. If the angle of incidence exceeds the critical angle given by

Oc = arcsin - (2.2)
n2
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all the light is reflected back into the core. Based on this principle, the refractive index of

the core material in a waveguide must be higher than that of the claddings, and larger

refractive-index contrasts result in better light confinement.

Over-clad (n3) ' TE

TM

Fig. 2.2: Schematic cross-section of a rectangular waveguide. Light is confined in the core which has a
higher refractive index than both cladding materials. The over-clad can be air, as is the case of the
fabricated waveguides reported in this thesis, which has a refractive index of 1.

The modes that can propagate in a waveguide are determined by its dimensions

and material. Light is an Electro-Magnetic (EM) wave that behaves according to

Helmholtz equation:

(V 2 - E 2 )E= (2.3)
at2

For the following analysis let us assume that light propagates through the waveguide in

the z direction and that the EM wave is TE polarized (electric field perpendicular to the

plane of incidence). A similar analysis can be extended to a TM polarized waveguide. A

solution to (2.3) under these assumptions is of the form:

Ex(y, z) = e-jkz (Ae jkyy + Be jkyy) (2.4)

To get a basic understanding of how the dimensions and material of the waveguide

determine the propagation modes, consider first the simplest structure: parallel plate

waveguide. The distance between the parallel plates is d, and the parameters pt and & are

the permeability and permittivity intrinsic in the core material as shown in Fig. 2.3 (a).
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a) b)

y
-Y=d

y
p, E x

Y=o z U

a

Fig. 2.3: Illustration of parallel-plate waveguide (a) and rectangular waveguide (b).

If no light is to propagate outside the waveguide, the boundary conditions dictate that

E,= 0 at y = 0 and y = d. We can then get an expression for the y and z components of

the wave vector, which lead to the guidance condition.

ky d (2.5)
d

k= o 2 e -ky (2.6)

0 > M(2.7)

Equation (2.5) indicates that propagating modes constructively interfere every two

reflections. The guidance condition dictates that only modes (m values, where m is an

integer) that satisfy equation (2.7) can propagate in the waveguide. A mode is evanescent

if the corresponding z component of the wave vector has an imaginary part. Evanescent

modes decay exponentially from the boundary of the waveguide. If the same analysis is

applied to a rectangular waveguide, such as the one shown in Fig. 2.3 (b), the expressions

for wave vector and guidance condition are as follow:
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k- (mt) 2 + (n 72 (2.8)
a b

it mit n2(29
0> ( )2 + (-)2 (2.9)

a b

The integers m and n in equations (2.8) and (2.9) determine the modes in rectangular

waveguides.

The most important metric of a waveguide's performance is power loss. Loss in a

waveguide is a result of optical absorption of the material and light scattering. Optical

absorption can be caused by impurities in the material and distortions in the lattice that

trap photons. Scattering is mostly due to surface roughness. These sources of loss lead

to an exponential attenuation as light propagates and should be minimized.

2.3 SOI Selection for HIC Devices

SOI substrates offer various benefits to the fabrication of photonic devices. The

refractive-index contrast between the Si layer and a buried oxide is 3.5 to 1.45. This high

contrast provides strong light confinement if Si is used as a waveguide core and oxide is

used for the under-clad, and reduces the waveguide dimensions needed to achieve single-

mode propagation. The strong confinement also allows the fabrication of devices with

sharp bends and the geometries needed for microring-resonators [6]. Another favorable

characteristic of SOI substrates is that both layers are optically transparent at the 1.55pm-

wavelength commonly used in optical networks. Several techniques are currently used to

produce SOI substrates, including Smart-Cut@, Separation by IMplantation of OXygen,
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and Bond and Etch back Silicon-On-Insulator. More information on the different

techniques can be found in [7].
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Chapter 3

Design

This chapter discusses the specifications of the horizontal coupler's design. The

dimensions, choice of materials and optimization parameters are presented in the first

section. Also included in the first section are the aspects of the design most susceptible

to fabrication errors. The design and simulations presented in this section were done by

A.M Khilo. The second section of the chapter presents the devices that will be fabricated

to characterize the performance of the coupler. These devices were designed to

compensate for probable errors in the fabrication and to measure their effect on the

performance of the coupler.

3.1 Design Specifications

The design of the horizontal coupler is based on a straight polymer waveguide and a

horizontally-tapered silicon waveguide. An optical fiber is connected to the polymer

waveguide and power from the fiber is coupled into the waveguide. The Si waveguide

starts inside the polymer and its width is increased over a certain length. Power from the

fundamental mode inside the polymer is gradually transferred to the Si waveguide as its

width increases. All the power should be transferred by the time the Si waveguide

reaches its final width. The width of the Si waveguide is constant as it exits the polymer

and carries the power into a photonic circuit. We omit the photonic circuit in our work

18



and simply connect the Si waveguide to another coupler that carries the power to an

output optical fiber. A schematic of the input coupler is shown in Fig. 3.1.

S'02

Fig. 3.1: Schematic of the horizontal coupler showing the silicon oxide under-cladding, the straight
polymer waveguide and the tapered Si waveguide

The substrate used to fabricate the coupler is Silicon-on-Insulator (SOI). The

buried oxide layer provides the necessary under-cladding because the refractive index of

silicon dioxide is 1.45, where as that of silicon is 3.5. It also prevents optical modes from

reaching into the substrate as long as its thickness is larger than the length of the

evanescent fields of the optical modes. The main four contributors to power loss on the

structure in Fig. 3.1 that are addressed in the design are: the boundary between the optical

fiber and polymer waveguide, the boundary between the Si tip and polymer waveguide,

the taper region, and the end of the polymer waveguide.

The parameters that can be optimized to minimize power loss at the fiber-polymer

waveguide boundary include the polymer's refractive index, and the width and height of

the polymer waveguide. Simulations show minimum coupling loss when the refractive

index of the polymer is 1.5 (at a wavelength of 1.55 ptm). Cyclotene was the polymer

selected because its refractive index at the wavelength of interest is 1.53, it has high

19



optical transparency and was readily available at MIT. The mode field diameter, radius

and refractive index of the optical fiber have to be considered to optimize the width and

height of the polymer waveguide. For a multi-mode fiber with a mode-field diameter of

4.35ptm and an outer radius of 5 pm, the optimal width and height for the polymer are 5.2

pm and 4.3 pm respectively.

Loss in the boundary between the Si tip and the polymer waveguide depends on

the horizontal offset between the two waveguides and on the size of the Si tip. Signal

deterioration due to destructive interference occurs when power is coupled into higher-

order modes and then back into the fundamental mode. A horizontal shift between the tip

of the Si waveguide and center of the polymer waveguide can cause the destructive

coupling back into the fundamental mode. To avoid a large coupling this offset should be

kept below 1 pm. The size of the Si tip should be kept below 50 nm to keep the optical

mode in the tip small. These two constraints require accurate lithographic alignment

between the two waveguides and dimensional control.

Loss in the taper region of the Si waveguide is minimized by slowing the modal

transformation between the polymer and the Si. This is done by increasing the length of

the taper region. The length cannot be made arbitrarily large because an inherit problem

of the fabrication process used to create the Si waveguide creates an offset every 100 pm.

This fabrication problem, called stitching error and explained in Chapter 4, causes

additional power loss. Because there is a tradeoff between minimizing the number of

stitching errors and slowing down the modal transformation, three different lengths of the

taper region will be fabricated. The thickness of the buried oxide layer and the top Si

layer in the available SOI substrate are 2 pim and 240 nm respectively. The final width of
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the Si waveguide is optimized for those given values. Simulations show that the optimal

width for the straight section of the Si waveguide is 400 nm.

The fourth component of loss occurs at the interface where the polymer

waveguide ends. At this interface the Si is no longer covered by the polymer and there is

a modal mismatch. If the transition between completely covered by polymer and

completely uncovered is gradual then the loss due to the modal mismatch is lower than

for an abrupt transition. With that in mind, the end of the polymer waveguide was

designed to go off at an angle. The width of the angled section was chosen at 4.6 pim and

the length, at 50 pm. These dimensions result in an angle of 5.250. A schematic with the

dimensions of the Si and polymer waveguides is shown in Fig. 3.2. In addition to the

specifications already mentioned, the fabrication process must also keep surface

roughness in both waveguides at a minimum. Roughness in a waveguide produces

scattering loss, which is dependent on the overlap between the optical mode and the

rough surface.

5.25*
50 pm

300 pm
400 pm

Not to scale 600 pm

5.2 pm

Fig. 3.2: Top-view schematic of the horizontal coupler. The dimensions not shown are the size of the Si tip
(50 nm), the final width of the Si waveguide (400 nm), and the length and width of the slanted polymer
section (50 pm and 4.6 pm).
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3.2 Devices for Optical Characterization

A total of 44 devices were be fabricated in each chip to characterize the performance of

the coupler. Marks for lithographic alignment, lines used to cleave the chips, and lines to

test lithographic resolution were also designed. A CAD drawing of one of the chips is

shown in Fig. 3.3. The alignment marks are discussed and illustrated in Chapter 4. All

devices are spaced apart by 100 ptm and have a 4mm length.

... . ...... .. ........ .- ----

Fig. 3.3: CAD drawing of a horizontal coupler chip, showing all 44 devices.

The first six devices (bottom six in Fig. 3.3) form a set of Si "paperclips"

connected to input and output horizontal couplers. Each paperclip consists of straight and

curved Si sections. While the length of the curves is the same for each paperclip, the

length of the straight sections increases by 1 cm between adjacent paperclips. This

allows each paperclip to have different total lengths while fitting the device between the

same input/output coordinates. The purpose of these devices is to determine the loss/cm
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of the Si waveguides in the coupler, which can be affected by stitching errors, sidewall

roughness and material absorption. A closer view of one of the paperclips is shown in

the CAD drawing of Fig. 3.4.

Fig. 3.4.: Close-up CAD drawing of a Si paperclip.

The next 10 devices consist of 2400pjm-long straight Si waveguides connecting

two horizontal couplers. The taper region of all the couplers in the chip was designed by

creating a series of rectangles with linearly increasing width. The length of the taper

region was divided into 32 rectangles and starting with the tip-size of 50 nm, each

consecutive rectangle increased in width by 12 nm until reaching the final width. This

writing strategy was used to minimize bugs in the e-beam write, as explained in Chapter

4. The dimensions were chosen to be multiples of the e-beam step size. In addition to

trying the three different taper lengths already discussed, the devices were designed to

account for possible misalignment errors during photolithography. Three horizontal

offsets were designed for the polymer waveguides (-2/3gm, 0, 2/3 pm). Combined with

the 3 different taper lengths, this gives us nine combinations. One additional device was
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designed in which the polymer does not have the slanted end section, to test if there really

is an advantage to using it. A second set of 10 devices was designed identically, but the

length of the connecting Si waveguide was reduced to 100 pm. If there is significant loss

in the Si layer, these devices will give us better results.

Couplers cascaded front-to-back were designed to more accurately determine the

total loss of the horizontal coupler by obtaining average measurements. Three

input/output-coupler-pairs are cascaded in one device, nine in another device, and fifteen

in another one. Some of the couplers are connected through straight Si waveguides,

while others are connected through U-turn waveguides. The three different horizontal

offsets were used in these devices, giving a total of 9 devices, and the taper length was

fixed at 400 pm. Fig. 3.5 shows the cascaded couplers.

Fig. 3.5.: CAD drawings of the cascaded horizontal couplers. The image on the left shows all nine devices
(3 sets of 3, 9 and 15 cascaded couplers). The right image shows a closer look of the cascaded couplers at
the output terminal.
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The remaining 9 devices are either pure polymer or pure Si. The first three are

straight polymer waveguides used to test if there is high loss associated with the polymer.

The last 6 devices are another set of Si paperclips, but not connected to any couplers.

These can be used to measure the loss in the Si waveguides in case the polymer is too

lossy, or to determine if there is a problem purely related to the Si layer.
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Chapter 4

Fabrication

Chapter 4 presents a detailed description of the fabrication process needed to create the

couplers. The major challenges addressed are dimensional control of the waveguides,

lithographic alignment and etching of the polymer waveguides. Fabrication can be

divided into two main processes, one to form the silicon waveguides out of the initial SOI

substrate, and a second process to create the polymer waveguides above the silicon layer.

It should be noted that these two processes cannot be treated independently, and some of

the greatest fabrication difficulties arise from making them compatible. Precise

alignment between the silicon and polymer waveguides is explained separately in a sub-

section that describes the alignment marks created on each layer.

After the fabrication of both sets of waveguides is completed, the chips must be

carefully cleaved to allow for good optical characterization. Obtaining a clean and

smooth cleave is not trivial and the process used, called assisted-cleave, will also be

explained in this chapter.

4.1 Silicon-Waveguide Fabrication

Fabrication of the Si waveguides is based on scanning-electron-beam lithography

(SEBL). This part of the overall fabrication process requires the most complex shapes,

smallest feature sizes and highest resolution. All design specifications must be met while
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maintaining low roughness on the waveguides' sidewalls. A diagram of the process is

shown in Fig. 4.1.

(a) Starting (b) HSQ
SOI substrate Deposition

HSQ (65 nm)

Si02 (2 pm) Sioz (2 PM)

(c) E-Beam (d) RIE (e) HSQ Mask
Lithography Removal

Fig. 4.1: Si waveguides fabrication-process overview (a) Initial SOI substrate formed 240nm of silicon and
2 pm of buried silicon oxide. (b) 65 nn of HSQ are spun on the substrate. (c) Scanning-electron-beam
lithography and HSQ development. (d) Reactive-ion etching of top silicon layer. (e) HF removal of
remaining HSQ mask

The starting substrate for the fabrication consists of 240 nm of silicon, out of

which the waveguides are fabricated, and 2 gm of silicon oxide undercladding. The first

step of the fabrication process consists of depositing 65nm of hydrogen silsesquioxane

(HSQ). HSQ, commonly used as low-k dielectric, acts as a non-chemically-amplified

high-resolution negative resist. Negative resists can be directly written using SEBL,

because areas of the resist that are exposed to the electron beam are chemically modified

to be less soluble to a developer than non-exposed areas. HSQ is a good choice because

sub-50 nm resolution is achievable, it can be easily developed, and when cured it

becomes a porous oxide that acts as an etching mask with good selectivity over silicon.
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A mask thickness of 65nm is enough to withstand a 240nm Si etch and can be obtained

by spinning XR- 1541 HSQ at 2500 rpm for 60 seconds. Immediately after the spin, a

hotplate bake at 90 C for 60 seconds is used to harden the film, and improve adhesion and

uniformity.

The second step in the fabrication, e-beam lithography, is done with a Raith 150

SEBL system and several exposure parameters need to be optimized to obtain the desired

features. The first parameters to be considered are e-beam energy, aperture and step size.

Higher e-beam energies improve resolution and, thus, in order to achieve the sub-50 nm

feature sizes required the maximum energy of 30 KeV was chosen. In selecting a good

step size there is a tradeoff between increasing the writing speed at larger step-sizes and

increasing deflection errors, which affect the position and size of the exposed structures,

at smaller step-sized. A size of 6nm was found to be a good compromise between the

two [2]. It is important to note that once a step size is selected, the dimensions of the

devices must be selected to be multiples of that size in order to maximize accuracy when

the devices are discretized. Finally, an aperture of 30 pm was found to work well for

HSQ exposures at 30 KeV.

The next key parameter that needs to be optimized is exposure dose, but before

discussing that topic it is worth mentioning one of the limitations inherited with the Raith

150, the stitching error. Structures to be written in the Raith are divided into 1OOxl00

pm fields. Exposures are done by scanning one field and then moving the stage where

the sample is mounted to the next field. At the boundary between two fields there is a

field-stitching error that creates an offset in any structure that crosses the boundary. The

stitching error has a mean of zero and a standard deviation of 20nm if the fields are
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perfectly calibrated prior to the exposure. Any rotational error in the calibration would

increase the mean of the stitching error. These stitching errors can create considerable

loss in the signal at every boundary and, thus, can quickly add up over the length of large

structures.

With respect to the parameters that need to be optimized, it is now essential to

optimize exposure dose. The optimal dose is inversely proportional to the width of the

structure to be written. The minimum dose required to generate each desired line width

was chosen as the optimal dose, as higher doses increase sidewall roughness. Fig. 4.2

shows two 402-nm-lines exposed with different doses; it can be seen that the line with

higher dose has significantly worse sidewall roughness. Additionally, all doses used

must exceed the clearing dose, defined in [2] as the minimum dose required for the

developer to dissolve the entire resist in a given time.

Fig. 4.2: Impact of dose-increase on sidewall roughness. Both lines have the same width, but the right line
has a higher dose and the resulting sidewall roughness is worse.

Two calibration runs were performed to determine the optimal doses to be used

for each line-width and analyze any errors in the writing strategy. One calibration was

done on a silicon substrate and consisted of a dose matrix, three 4-mm lines, and four

500-pm trapezoids. Each element in the dose matrix consisted of five lines with widths
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ranging from 450 nm to single-pixel lines. The purpose of the matrix was to determine

the minimum doses required along the Si taper and the straight Si waveguides. Doses

used for single-pixel lines must de defined in the Raith as line doses, whereas the other

doses are defined as area doses. Only one area and one line dose can be specified at the

time of exposure, but each structure can be designed to have a different percentage of the

specified corresponding dose. The specified percentage cannot exceed 3000%, as this

will lead to errors in the exposure.

The 4-mm lines were used to determine the average magnitude of the stitching

error. The trapezoids were created to determine if a simple trapezoid figure divided into

different segments of different doses was good enough to produce the desired taper.

From this run it was determined that defining the tapered waveguides as trapezoids was

not adequate as it was hard to produce a smooth and linearly decreasing transition

between the areas with different doses, especially across field boundaries. This was the

main reason why the writing strategy detailed in Chapter 3 had to be used. Because this

calibration run was done on a Si substrate, not SOI, it was not ideal to obtain the optimal

dose values from this run but rather an estimate.

The second calibration run was done on an SOI substrate and incorporated the

writing strategy for the tapers that was mentioned in Chapter 3. In addition to the tapers,

this run also included a dose matrix, as explained earlier, and 4-mm lines. From this

calibration run it was determined that the new writing strategy for tapered waveguides

worked better than the one based on trapezoids. It was found that using an exponential

profile for the doses along the tapers was the best approach to obtain the desired

dimensions and slope. Abrupt jumps in the size of the tapers can be avoided by properly
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selecting the slope of dose's exponential profile; this is particularly important for the

smaller-sized sections of the taper. It was also determined that the base doses used were

too large to achieve the smallest target dimensions. Finally, measurements of the

stitching error were on the order of 44 nm. Fig. 4.3 summarizes these findings.

200 nm 200 nm

a) b)

c) d)

Fig. 4.3: SEM results of SOI calibration run after exposure and development. a) Tapered waveguide
showing a smooth and small transition between the two largest-sized rectangles. b) Tapered waveguide
showing a steeper size change between the two smallest-sized rectangles. c) The lowest-dose single pixel
line had a measured width of 70nm. d) The average stitching error in the 4-mm boxes was 44 nm.

Because of time constraints and to avoid the cost of another calibration run, it was

decided to use the information obtained from the previous two calibrations to extrapolate

the optimal doses. SEM micrographs were taken of the exposed and developed Si and

SOI samples and of the SOI sample after etching and mask removal. SEM measurements

have a 5% error, but this number is acceptable when analyzing the most critical features

which have a width of 50 nm.
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The un-etched Si and SOI samples were compared to find structures with

overlapping doses and determine the bias between the two. The un-etched and etched

SOI structures were then compared to quantify the amount the size changed after etching.

Adding this number to the previous bias gives us the total width bias that must be added

to a structure in the Si calibration to find the corresponding size in an etched SOI sample.

Development and etching conditions are discussed later this chapter.

The strategy used to extrapolate the doses consists of four steps. The first step is

to find the dose in the Si calibration that would create a 402-nm-wide rectangle after

adding the total bias described above. The second step is to find the dose in the Si

calibration that would create 62-nm-wide rectangle after taken into account the total bias.

Note that the design specification for the tip of the tapered waveguide is a width of 50

nm. As described in Chapter 3, the writing strategy for the taper is to create a set of 31

such that the width difference between adjacent boxes is 12 nm. Therefore, the required

width of the second smaller rectangle in the taper is 62nm. Once the required dose for

the 402-nm-wide and 62-nm-wide rectangles are known, the doses for the 29 rectangles

between can be extrapolated by fitting the data to an exponential function of the form

(A)eBx. In order to reach the 50-nm-width of the smallest rectangle we use a single-pixel

line, and in the last step of the extrapolation we find the required line dose in the Si

calibration that would result in a 50-nm-wide rectangle after adding the total bias. This

dose represents the 3 2nd and final data point on the exponential curve.

The bias measurements are summarized in table 4.1. Using a base area-dose of

398 pC/cm2 the resulting parameters of the exponential fit are A = 151.52 and B =

0.0462. These values correspond to an exponential fit between the area doses and the
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corresponding rectangle number (1-32). Each rectangle corresponds to a specific width

(402nm - 62nm), thus the positive-exponential fit above can be converted to a negative-

exponential plot, shown in Fig. 4.4, which indicates the percentage of the base area-dose

required for each width. Additionally, the line dose required for the 50-nm-wide

rectangle is 3,659 pLC/cm.

Table 4.1

Bias Measurements from the Calibration Runs

Intended Average Bias Average Bias Average Total
Width #1 #2 Bias

402 nm 30 nm 16 nm 46 nm
30 nm 16 nm 4 nm 20 nm

single pixel 20 nm 10 nm 30 nm

Average bias #1 corresponds to the width difference between identical structures in the developed
SOI sample and the developed Si sample. Average bias #2 corresponds to the increase in width
after the structures in the SOI sample are etched and the mask is removed.

98 134 170 206 242 278

Rectangle Width (nm)

314 350 386

Fig 4.4: Exponential fit for the percentage of the 398sC/cm 2 area-dose used in each of the segments of the
tapered waveguide, not including the 50-nm-wide tip.

After the sample is exposed with the correct doses, the following step in the

fabrication process is development. The sample is developed in 25%
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Ttetramethylammonium hydroxide (TMAH) for 2 minutes at room temperature. TMAH

is an ammonium-salt solution that dissolves the HSQ that was not e-beam exposed. After

this step the sample has the desired patterned-etch-mask.

Etching of the silicon waveguides needs to be highly anisotropic and have good

selectivity over the oxide undercladding. A highly anisotropic etch is one in which

almost no horizontal etch occurs and thus the sidewalls have a vertical profile.

Selectivity, on the other hand, is defined as the ratio of the etch rate of two films.

Selectivity between the silicon and the etch mask also need to be high, but if selectivity

over the oxide underclad is high then it should also be high over the mask because cured

HSQ is essentially porous silicon oxide. Our etching requirements can be met by using

reactive ion etching (RIE) with either a chlorine based chemistry or hydrogen bromine

(HBr). In RIE, the etchant gas is flowed into a chamber where an RF plasma is created.

Ions and free radicals create a combination of physical and chemical etching, where the

ratio of the two is affected by the voltage drop and gas composition. HBr was chosen for

our application because it produces more vertical sidewalls and has higher selectivity

over oxide than a Cl-based chemistry [7].

The etching step was divided in two to obtain the desired results. The first step

requires a high-voltage bias for a short period of time. A high voltage is required initially

in order to break through the native oxide present on top of the silicon. A thin native-

oxide-layer of a few Armstrongs always forms whenever a silicon layer is exposed to air.

Because HBr does not chemically etch silicon oxide, the physical component of RIE must

be increased so that the ions can sputter away the oxide. However, this high-voltage step

cannot last for long because both mask erosion and sidewall roughness are higher as the

34



voltage is increased. An initial step of 10 seconds at 350 V was found to be enough to

remove the native oxide without significantly etching the mask or increasing roughness.

A second step of 18 minutes at 150 V was then used to etch the 240 nm of silicon. Both

steps are done at a pressure of 10 mT and with an HBr flow of 20 sccm. It was found that

40 nm of the HSQ mask were removed during etching. For improved accuracy, all height

measurements were taken with a Dektak depth profiler. A Dektak scans a stylus tip

across a surface and the height of a structure can be determined by a plot of the stylus's

vertical position. Fig. 4.5 shows the resulting silicon waveguide after RIE. The

remaining HSQ is removed in the following fabrication step.

Fig. 4.5: Straight Si waveguide after RIE. Width was measured at 400 nm and height at
265 nm, including 25 nm of the HSQ mask.

Once the RIE is completed, the sample is cleaned in a solution water:ammonium-

hydroxide:hydrogen-peroxide (5:1:1) at 85 C. This cleaning step ("RCA") removes any

metal contaminants that may be present in the sample and that could lead to silicide

formation during subsequent fabrication steps. Silicide formation, which occurs when
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metallic residue reacts with Si at high temperatures, prevents light from propagating

through the waveguides via optical absorption. The RCA clean damages the remaining

HSQ mask, increasing the roughness at the top of the Si waveguides, and requires it to be

removed. The remaining HSQ can be removed with a hydrofluoric (HF) acid wet-etch.

Etch of the oxide under-cladding is not a major concern for the multi-mode coupler

because the Si waveguides do not have an over-clad. If significant etch of the under-clad

occurs it can lead to an undercut of the Si waveguides and, in turn, poor coverage of the

over-clad. Although creating and undercut is not a critical concern in this application, we

still want to minimize etching of the oxide and develop the HF etch accordingly. A

highly-diluted 49%-HF:water solution (1:400) was found to have the highest selectivity

of HSQ over oxide. Immersing the sample in the solution at room temperature for 4

minutes completely removes the remaining HSQ while etching only 5-10nm of oxide.

This step completes the fabrication process for the Si waveguides.

4.2 Lithographic Alignment

Precise alignment between the Si and polymer waveguides is critical in minimizing

coupling loss, as described in Chapter 3. One set of alignment marks, based on Moire

patterns, was created on the Si substrate and a complimentary set was defined in the

photomask for the polymer waveguides such that the misalignment between the two

would be less than 1 pm. A schematic of the first set of marks is shown in figure 4.6.

The alignment mark shown in Fig. 4.6 is based on six sets of gratings and a cross

for coarse alignment. The cross on the right side has four 5Ox5gm quadrants and is

complimented on the photomask by a set of four 5Ox5Opm boxes. The two
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complimentary sets are used to obtain an initial alignment. The six gratings, used twice

in the alignment mark, are then used to obtain a more precise alignment both vertically

and horizontally. A second set of alignment marks is defined in another position of the Si

substrate and the photomask, and used to prevent rotational misalignment. The gratings

with periods P1 and P2 are positioned side by side, with P1 on the Si substrate facing P2

on the photomask and vice-versa. Interference fringe patterns, also called moire patterns,

form when the sample and mask are imaged. Alignment is done by moving the sample

with respect to the mask, which causes the fringe patterns to move in opposite directions.

Alignment is obtained when the spatial phase of both sets of fringes match [8]. This is

better illustrated in Fig. 4.7.

P1 and P2 were chosen to produce the required alignment of 1 pm. P3 and P4

work in the same way, but were designed with smaller values in order to achieve a

stricter misalignment of 500 nm. Two additional sets of gratings, Pf and PP*, are needed

because alignment as defined above is periodic. When the substrate is moved by a

certain distance, called capture range in [8], the fringes will re-align. The values of Pf,

which faces PP* on the photomask, and Pf*, which faces Pf on the photomask, are

designed such that if the resulting fringe patterns are also matched then we have reached

the desired alignment. Finally, it should be noted that all sets of fringes fit within a

I00x 100 pm window in order to prevent stitching errors during SEBL.
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P1 P2 P3 P4

50pm

50pm

5Oti

Pf

Fig. 4.6: Schematic of the alignment marks created on the Si layer. The cross on the far right provides
coarse alignment. P1 and P2 are 4.5 pm and 3.7 pm, and provide alignment accuracy of I gm. P3 and P4
are 2.2pm and 2.0 pm, and provide alignment accuracy of 500nm. Pf and Pf* (20.83 pm and 22.0 pm)
ensure that all sets of fringes align only once within the 100 pm window. Gratings on the top half provide
vertical alignment, and gratings on the bottom half provide horizontal alignment.

(a) (b)

Fig. 4.7: Images of interference fringe patterns. (a) The spatial-phase difference on the left indicates
misalignment. (b) The spatial-phase match on the right corresponds to proper alignment. Figure taken
from [8].
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4.3 Polymer-Waveguide Fabrication

This section of Chapter 4 presents the process flow used to create the Cyclotene polymer-

waveguides above the Si layer. Discussion of the fabrication process includes: uniform

deposition of the polymer on top of the sample, proper thermal solidification of the

polymer, selection of the etch masks used to define the waveguides, and Si-compatible

etching of the polymer. An overview of the process is illustrated in Fig. 4.8.

(a) Chip with
Fabricated Si
Waveguides

Fsi2 (2 pm)

(c) Mask
Depositions

Oxide 500nm

SiO2 (2 pm)

(b) Cyclotene
Deposition

Cyclotene (4.1 pm)

(d)
Photolithography

SiO 2 (2 pm)

1 SiO2 (2 pm) I

(e) RIE

Si2(2 pm)

Fig. 4.8: Polymer waveguides fabrication-process overview (a) The sample initially contains 240-nm-tall
Si waveguides and a silicon oxide underclad of 2pm. (b) 4.1 lam of the Cyclotene polymer are spun on the
sample. (c) 500 nm of silicon oxide used as a hard mask are CVD-deposited, followed by 1.5pm of
photoresist. (d) The photoresist is selectively-exposed using contact lithography and then developed to
define an etch mask for the oxide. (e) RIE of the oxide hard mask followed by RIE of the Cyclotene
complete the process.

Cyclotene is available in two types, photosensitive and dry-etch. The first type

can be directly patterned by photolithography, but has a very short shell-life which makes

it impractical for research applications. There are also different versions of dry-etch
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Cyclotene, which can be spun up to different thicknesses. The dry-etch Cyclotene

already available for this work was model 3022-35. The first step of the fabrication,

spinning the polymer unto the sample, requires great care. The surface of the sample

must be free of particles and residue, which create comet-style defects in the film and

could also lead to poor adhesion. Contamination in the dispense mechanism will also

result in film defects. Prior to Cyclotene coating, the surface of the sample should be

covered with an adhesion promoter. The Dow Chemical Company recommends the

AP3000, a promoter composed mostly of propylene glycol monomethyl ether, to prevent

lamination of the polymer. The adhesion promoter was statically dispensed, spread at

600 rpm for 7 seconds and then at 3000 rpm for 30 seconds. It is important that the

adhesion promoter is uniformly and cleanly deposited, because problems in this step will

translate into a poor Cyclotene coating. Pre baking the sample at 90 C for 5 minutes was

found to help in the quality and uniformity of the film.

In order to obtain the desired polymer thickness, two separate spins are required

because the maximum thickness achieved by the 3022-35 model is approximately 2.2

pm. To achieve high thickness, each spin must be done at low speeds, which make it

difficult for the polymer to spread evenly across the sample. The process found to

minimize this problem is to statically dispense the Cyclotene in the center of the sample

and use an amount that covers most of its area. The polymer should then be initially

spread at 500 rpm for 7 seconds and then increase the speed to the desired value and

spread for 30 more seconds. A final speed of 1000 rpm for the first spin and 1300 rpm

for the second spin resulted in an average total film thickness of 4.1 pm. The thickness

was found to change by up to +/-100 nm across a quarter-six-inch wafer. 4.1 pm was the
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target thickness instead of the original 4.3 tm for reasons that are explained later in this

section. If Cyclotene is deposited on the backside of the sample during the spin it is

important to clean it with a solvent before proceeding to bake the sample, because the

high temperature will cause the backside to adhere to the surface it is placed on.

A 5-min bake at 90 C was done immediately after each spin to stabilize the film

prior to any following processing. After the first Cyclotene spin the sample needs to be

baked to achieve a partial thermal cure. This cure should reach about 80%

polymerization of the Cyclotene and improves adhesion between the two polymer layers.

The extent of polymerization depends on the temperature and duration of the cure, and

the recommended partial polymerization is obtained with a 40-min cure at 240 C.

Adequate curing is of key importance in the fabrication of the polymer waveguides. If

Cyclotene is exposed to oxygen at temperatures above 150 C the cyclobutene group can

be oxidized; this would be detrimental to the waveguides' performance. It is important

that the cure is done in an inert ambient. Furthermore, a slow temperature ramp is

preferred in order to improve planarization of the film. The partial cure was done by

placing the sample in an oven at 90 C and then flowing nitrogen. The oven was left at 90

C for 30 minutes before raising the temperature to 150 C for another 30 minutes. After

one hour of curing, the temperature was slowly ramped to 240 C and left at that value for

40 minutes. The process for the final cure, which is done after the second Cyclotene spin

and achieves a polymerization of over 95%, only differs in that the final temperature is

set to 250 C for 60 minutes. It is important, for both cures, that the oven be allowed to

cool down below 150 C before removing the sample and that the samples be placed

horizontally to minimize any polymer flow that could affect uniformity. Cracking of the
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polymer film was observed during subsequent processing if the final cure was not done

properly.

The following fabrication step, etch-mask deposition, depends strongly on the

RIE process that is used on the final step. For that reason, both steps will be discussed

simultaneously. Because the type of Cyclotene used is not photosensitive, a layer of

photoresist is needed to transfer the desired patter from a photomask through contact

lithography. Photoresist has a poor etch selectivity of almost 1:1 over the Cyclotene, and

cannot be used as an effective etch mask if vertical sidewalls are required. A hard mask,

either metallic or inorganic, needs to be deposited before spinning the photoresist. If a

metallic mask is used it must be removed after etching without damaging the Cyclotene

waveguides. This would add great complexity to the fabrication process that can be

avoided by using an inorganic mask. Silicon oxide was chosen as the hard mask because

of its ease of deposition and compatibility with the other materials.

A series of experiments were performed to optimize plasma etching of the

Cyclotene. Oxygen is required in the plasma to attack the benzocyclobutene (BCB) and

benzene rings from which Cyclotene is derived. Cyclotene is different from most

polymers in that silicon is present in its backbone, and fluorine is generally required to

complement the oxygen plasma. Although fluorine is recommended to etch Cyclotene,

etching of BCB with pure oxygen plasma has been reported [9] and was investigated in

the first set of experiments. The presence of fluorine in the plasma etch is undesired

because it causes mask erosion. The rate at which the hard mask is eroded has to be

considered, not only to avoid its total etch, but also because it affects the sidewall profile
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of the waveguides. Erosion at the edge of the mask is both vertical and lateral, and as

illustrated in Fig. 4.9 as the etch progresses this results in slanting of the sidewall.

mask-+ mask - mas
Thin film
Substrate Substrate Substrate

Fig. 4.9: Effects of mask erosion on sidewall profile. A facet forms as the mask erodes horizontally, which
leads to a slanted sidewall-profile on the film.

To test etching with pure oxygen plasma, 80 nm of silicon oxide were CVD-

deposited to serve as hard mask and 1 pm of OCG-835 positive photoresist was spun on

top of the oxide. After spinning and pre-baking the photoresist, the sample was aligned

to the photomask as explained in section 4.2 and then exposed. The exposure system

used has a wavelength of 320 nm and delivers 4mW/cm 2. Good contrast in the resist was

obtained with an exposure time of 45 seconds and development in OCG-934 for 1

minute. The photomask pattern is then transferred to the hard mask by etching the oxide

in those areas not covered by the remaining photoresist. This was done in an RIE

chamber using CHF 3 plasma at 300 V for 3 minutes. A cross-section of a test sample

after the oxide RIE is shown in Fig. 4.10.

43



Photoresist

Oxide

Cyclotene

Silicon

Fig. 4.10: Cross-section showing the different layers in a polymer waveguide after the oxide hard mask is
selectively-etched. Only 2 pm of Cyclotene were deposited in the sample shown.

The first RIE conditions tried were 20 sccm of pure oxygen plasma at 300 V and

500 V for 5 minutes. The total etch at 300 V was 0.4 pm, while at 500 V it was 0.45 pm.

Experiments with longer etch times showed that in the absence of fluorine only 0.5 pm of

Cyclotene were cleanly etched. After this initial etch, a "grassy" layer forms in the

surface and cannot be sputtered. This occurs because in the absence of fluorine

amorphous silicon oxide forms on the surface of a sample and slows the etch rate [10].

A plasma containing 10% CF 4 (1 8sccm 02: 2sccm CF4) was investigated next.

At 300 V this plasma could not sputter away the "grassy" layer around the waveguides.

The layer started to be sputtered at 500 V, but the fluorine concentration was still too low.

Before further increasing the ratio of fluorine in the plasma, a thicker mask of silicon

oxide is needed to withstand the etch. Fig. 4.11 shows the result of this last etch as well

as some of the previous tests.

From the experiments conducted with the 80-nm oxide mask, it was determined

that in a 0 2/CF 4 (18:2) plasma the selectivity between Cyclotene and silicon oxide was
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roughly 11:1. Selectivity is a function of the percentage of CF 4 in the plasma as well as

bias, but the 11:1 ratio provides us with a good idea of what thickness to use for the new

hard mask (> 400 nm). The next set of experiments was done using 500 nm of silicon

oxide and a thicker photoresist layer of 1.5 im. The selective etch of the hard mask was

done in three seven-minute intervals using CHF 3 plasma at 300 V. The etch was split in

three because as it progresses the chamber gets dirty and this causes fluctuations in the

power. Stopping the etch every 7 minutes and cleaning the chamber prevented the power

from increasing by more than 50%.

A new test was done by etching the Cyclotene for 48 minutes in a16:4 (0 2 /CF 4)

plasma at 500 V. This etch showed significant improvement in etch rate and in removing

the "grassy" layer at the surface, but was still not enough. By increasing the ratio of

CF 4 in the plasma to 16:8 (0 2:CF 4) we obtain a clean etch of the Cyclotene where the

entire residue in the surface is finally removed. Cross-sections showing the result of

these two etches are shown in Fig. 4.12.
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a) b)

c) d)

Fig. 4.11: Initial RIE results for polymer waveguides with an 80-nm hard mask. (a) Pure oxygen plasma at
500 V for 5 minutes. (b) A "grassy" layer forms in the surface after an initial clean etch and cannot be
sputtered in the absence of fluorine. (c} A plasma containing 10% CF 4 at 500V completely removes the
oxide hard mask. (d) The "grass" starts getting sputtered under the last etch conditions, but is still not
enough. Notice that in all of these images the width of the waveguides exceeds the desired 5.2 jim, but as
etching is optimized the width will shrink to the correct value.

Several key observations can be made from the results shown in Figure 4.12.

First, the etch rate of Cyclotene increases as the percentage of CF 4 in the plasma goes

from 0 to 33%. This finding agrees with what is reported in [11], where it was found that

maximum etch rates occur with about 60% CF 4. Second, mask erosion resulted in a non-

perfectly-vertical sidewall profile. The width of the waveguides was measured at 5.2 pm

(the designed value) at the base and 4.8 pm at the top. This represents a change in width

of 8% and a sidewall angle of 870. It was also found that, on average, 200 nm of the

oxide mask remained un-etched. Simulations performed to account for the 8% difference
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in width indicate no significant change in the performance of the coupler, while

simulations performed to account for the remaining oxide mask indicate a negligible

effect if the height of the polymer is reduced by the amount of the remaining mask

[simulations performed by A.M. Khilo]. In order to compensate for the additional 200

nm of oxide, Cyclotene was spun to a total thickness of to 4.1 pm instead of the original

4.3 ptm as indicated previously.

210 nm

5.2 pm

a) b)

Fig. 4.12: RIE results of polymer waveguides with a 500-nm hard mask. (a) An increase in the percentage
of CF 4 in the plasma from 10% to 20% shows significant improvement in Cyclotene etch. (b) Etching with
a 33%-CF 4 plasma at 500V resulted in waveguides with a 5.3-pLm-wide base, a sidewall slope of
approximately 870, and 210 nm of remaining oxide mask.

Once we know that the 2:1 ((0 2:CF4) plasma at 500 V etches the Cyclotene

cleanly we do not want to further increase the percentage of CF4 and need to determine if

the Si waveguides will be partially etched under those conditions. Fluorine atoms etch

silicon with a rate that is linearly dependent on their concentration. The etch mechanism

is mostly chemical and based on the formation of SiF 2 groups onto the silicon surface

[12]. An initial test to determine the extent of the Si etch was done based on the
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perceived color change in an SOI sample. Changes in the thickness of a thin Si film

affect its reflectance, which in terms changes the perceived color of the film. A reflected

wavelength spectrum can be calculated by considering the thickness and refractive index

of the substrate and the Si layer. This spectrum can be converted into color-scheme (such

as RGB) parameters [13]. The result is a plot that shows the power reflectivity percentage

of each color of the scheme over a range of Si thicknesses. An SOI sample can be

visually compared to the plot to determine where it falls. The curve that each color traces

in the plot is periodic and each color has a different period. Thus, the color seen in the

SOI sample may belong to a set of different Si thicknesses. The plot used was generated

by T. Barwicz.

An un-patterned SOI sample was etched in the 2:1 (0 2:CF4) plasma at 500V for 6

minutes. The resulting color of the sample was marked on the color chart at 2 different

locations. To resolve which was the correct thickness the etch was repeated for another 6

minutes and the new color was marked on the chart. Knowing the location of this new

data point allows us to determine which of the first two points was correct. It should be

noted that this test based on the color chart only provides a rough estimate of the Si etch

rate, but it allows for an estimate without the need to e-beam write the sample which is

both time and money consuming. Test results showed a decrease in Si thickness from

240 nm to approximately 215 nm. Although the number is just an estimate, it was clear

from the test that there was a finite etch rate of Si.

Knowing that a 33%-CF 4 plasma will partially etch the Si waveguides, it is

necessary to switch to a different plasma at the end of the etch. Five new plasmas were

tested based on the SOI color chart to determine which had the lowest Si etch-rates. The
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first three have 0%, 10% and 20% CF 4, respectively, at 500 V. The other two are based

on alternating CHF3 and 02 intervals. In the first, the CHF 3 intervals lasted 15 seconds

and the 02 intervals 45 seconds; both are done at 500 V. For the other recipe the

intervals last 10 seconds and 50 seconds respectively and the CHF3 bias is only 100V.

The idea behind the alternating intervals is that if the pure oxygen plasma leads to a

formation of an amorphous silicon oxide film on the surface, that could be removed by

the CHF3. The test results are shown in table 4.2.

Table 4.2

Approximate Total Si-Etch Under Different Fluorine-Containing Plasmas for 6 mins

Recipe Description Si Etch

0%CF4 at 500V 0 nm

10 % CF 4 at 500V 0 nm

20 % CF 4 at 500V 5 nm

33% CF 4 at 500V 25 nm

CHF3 (15 secs, 500 V) 30 nm
02 (45 secs, 500 V)

CHF 3 (10secs, 100 V) 0 nm
02 (50 secs, 500 V)

These values are rough estimates based on the SOI color chart explained in this section
and are mainly used to determine if there is finite Si etch or not.

Based on these results we can narrow the list of acceptable plasma for the end of

the Cyclotene etch. The CHF3-0 2 interval-etch was tested first to determine how well it

attacks Cyclotene. As shown in Fig. 4.13, the etch rate is extremely slow at only 70 nm

of Cyclotene in 10 minutes. Because the other recipes etch Cyclotene better, this one was

discarded. To test which one of the remaining two recipes is better, they were both used
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to etch a sample that had 500 nm of Cyclotene left. The 10 %-CF 4 plasma successfully

removed the Cyclotene and left the surface clean, while the pure oxygen plasma could

not etch cleanly all the way down. The results are also shown in Fig. 4.13. An SOI

sample with etched Si waveguides was exposed to a 10 %-CF 4 plasma at 500 V for 8

minutes to corroborate the SOI color chart test. As expected, no etch of the Si

waveguides was observed or measured.

a) b)
C)

Fig. 4.13: Test results of different etch recipes considered for the second step of the Cyclotene etch. (a)
The CHF3/0 2 intervals had the worst etch rate, with only 70 nm in 10 minutes. (b) The pure oxygen plasma
could not etch 500 nm cleanly. (c) Zoom-in image showing a clean surface after a 10%-CF 4 plasma etched
500 nm of Cyclotene.

We can use these results to design an etch process for the polymer waveguides.

The first step uses a 33%-CF 4 plasma at 500V. It was found experimentally that the

50



actual etch rate of Cyclotene depends strongly on the power of the plasma. Power

fluctuations are hard to control because even though 0 2/CF 4 plasmas do not allow

contamination of the chamber during the etch, variations in the initial condition of the

chamber can result in power differences of up to 20% between etches conducted on

different days. For this reason, every few minutes the etch is paused and the height of

the waveguides is measured in a Dektak depth profiler. This has the added benefit that

the sample is allowed to cool down between etches, preventing the polymer from

reaching a high temperature. When the measured height is 3.9 pm (4.3 ptm - 400 nm) we

stop and switch to the lower CF 4-concentration plasma. There must be more than 240 nm

of Cyclotene left at the end of the first step so that the Si waveguides are not etched.

Differences in Cyclotene thickness of up tol00 nm were measured across the sample

area, so the process is designed to end the first step when there are 400 nm +/- 100 nm of

Cyclotene left. The lower bound of 300 nm is still high enough to completely cover the

Si waveguides and the upper bound of 500 nm is the maximum thickness that a 10%-CF4

plasma was observed to remove cleanly. The second etch is stopped when the Cyclotene

is completely removed, which occurs when the height of the Si waveguides is measured

at 240 nm (a few minutes of over-etch are added to ensure a clean surface). This is the

final step in the fabrication process for the polymer waveguides.
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4.4 Assisted-Cleave

In order to accurately and uniformly cut each chip to the desired length, a diesaw is used

to make the cuts along the cleave-marks. A standard process in which the diesaw

generates a cut through the entire sample from the top cannot be used because the

diesaw's blade would damage the waveguides and not allow good optical

characterization. A process called assisted-cleave, and illustrated in Fig. 4.14, is needed.

(a) Fabricated Sample
Side -View

SiO2

(c) Diesaw

Adhesive
SiO2

(b) Protective and
Sacrificial-layer

Un-baked Deposition
PMMA

Baked PMMA SiO2

(d) Protective and
Sacrificial-layer

Removal

SiO2

(e) Cleave

Fig. 4.14: Assisted-cleave process overview. (a) Side-view of sample after fabrication is completed. (b) A
PMMA-protective-layer is spun and baked, and a PMMA-sacrificial-layer is spun on top. (c) The sample is
partially cut from the back, while an adhesive tape holds the sample to the diesaw . (d) The sacrificial
layer is removed, along with the adhesive, and the protective layer is removed next. (e) The sample is
cleaved along the groove.

The first step of the process is to deposit two layers on top of the fabricated

sample. One strong layer is needed to cover and protect the waveguides. A second layer

is needed because an adhesive tape will be used to hold the top of the sample to the

diesaw while cutting it from the back. A weaker layer is needed so that when dissolved,
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the adhesive will be lifted off the sample. The layers have to be chosen so that the

protective layer can withstand the removal of the sacrificial layer, and so that both layers

can be removed in solvents that do not attack Cyclotene. PMMA was chosen for the

protective layer because it can be spun to a thickness of over 4.3 pim, can be solidified by

baking, and removed using N-Methyl-2-Pyrrolidone (NMP). NMP at room temperature

was found not to attack cured Cyclotene. To solidify the PMMA, an oven bake at 180C

for two hours was found sufficient. PMMA can also be spun on top of the solidified

layer and, if left unbaked, removed by immersing in acetone. Because acetone will not

dissolve the baked PMMA layer, un-baked PMMA can be used as the sacrificial layer.

Once both layers are deposited, the sample can be diesawed. First, a reference cut

is made on the top of the sample at a known distance from the cleave-marks. The sample

is then flipped and the reference cut is used to find the cleave-marks. Finally, a cut is

made 80% through the back of the sample along the cleave-marks at the lowest possible

speed. The cut is partial to prevent damage to the front of the wafer, and speed is

minimized to decrease roughness along the cut. Once all the necessary cuts are made, the

sacrificial layer is removed in acetone. As the sacrificial layer dissolves, the adhesive is

lifted off the top of the sample. The protective layer is then removed by placing the

sample in an NMP bath at room temperature until all the PMMA dissolves. The final

fabrication step is to carefully cleave the sample along the grooves of the cuts.
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Chapter 5

Results

Results of the first fabrication that integrates all the silicon and polymer devices is

presented in Chapter 5. Unexpected problems in the fabrication occurred, which limited

the extent of performance characterization. The results are presented in two sections, one

that includes optical and Infra Red (IR) measurements for the devices, and one that shows

micrographs of the devices after fabrication. Significant detective work was done to

identify possible causes for the fabrication problems; the findings and conclusions are

presented at the end of section 2.

5.1 Optical and IR Measurements

An initial set of optical measurements was done by coupling a tunable laser to the input

facet of each device from an optical fiber. For a detailed description of each device

please refer to Chapter 3. A photodetector at the output facet showed a strong signal only

for the 10 input-output couplers connected with a short Si waveguide and for the three

straight polymer waveguides. Furthermore, it showed a stronger output signal for the

devices with the shortest Si-waveguide taper-length. No light was detected at the output

facet of any of the remaining devices. We can arrive at three conclusions from these

preliminary results: the polymer waveguides successfully confine light with small loss,
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the horizontal coupler design succeeded in transferring light from the polymer to the Si

and then back to the polymer, there is a higher-than-expected loss associated with the Si

structures that does not allow accurate characterization of the effectiveness of the

coupler.

The three straight polymer waveguides were of the same length, so it is not

possible to accurately determine their loss per unit length. A GaAs IR camera, which can

detect light scattering, was used to look at the waveguides from input to output facet. No

scattering loss was evident in the IR images, which combined with the high-power signal

picked up by the photodetector at the output facet suggests good light confinement and

low attenuation in the polymer waveguides.

The light intensity picked up by the photodetector at the output of the couplers

connected by a 100pm-long Si waveguide was similar to that of the straight polymer

waveguides. Contrary to theoretical expectations, the intensity decreased as the length of

the couplers' taper region increased. This suggests a problem either with the tapered

region itself or with the Si waveguides in general. The average difference in output

intensity compared to the polymer waveguides was approximately 3 dB. Given the

slanted end-section of the polymer waveguides, as shown in Fig. 5.1, it is highly unlikely

that light can be coupled from one polymer waveguide to the other without going through

the Si. Thus, the light shown at the output facet indicates that the horizontal coupler

indeed transfers the propagating modes from the polymer to the Si and back to the

polymer.
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+- Not used

4- Used

Fig. 5.1: Top view illustration of polymer waveguides connected with a short Si waveguide. In the top
figure the polymer is not slanted at the end and light can be radiated from one polymer waveguide to the
next without going through the Si. The slanted end-section in the bottom figure prevents this effect.

The fact that no light was detected at the output of the other coupler devices

which have longer Si sections suggests a high loss associated with this layer. This was

confirmed by measurements in the pure-Si "paperclips" where no light was detected at

the output facet. This also confirms that the problem is with the Si waveguides in

general, and not specific to the tapered region. IR images were taken for all devices and

bright spots corresponding to light scattering where identified every 100 pm. This

pattern corresponds to locations where stitching errors occur, and showed decreasing

intensity at each stitching site. Observing light scattering at stitching sites is common,

and the intensity decrease indicates that there is loss in the Si waveguides due to either

scattering caused by the stitches or light absorption between the stitches. As shown in

Fig. 5.2, the bright spots can be isolated and the loss can be estimated by integrating the

intensity in each spot and subtracting the noise level. Measurements by M. Dahlem and

calculations by A.M. Khilo give a rough estimate of 170 dB/cm power loss in the Si

waveguides. This number is not consistent with the measurements from the couplers
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connected with short Si sections where most of the Si is covered by the polymer. This

suggests a higher loss for the exposed Si. Although the number is a rough

approximation, it indicates an abnormally high loss that prevents accurate

characterization of the horizontal coupler's performance (with theoretical loss of less than

1 dB/cm). It is then necessary to obtain images of the fabrication results to identify

possible causes for the loss.

Input

4 3 2

0

b
0

G.)

45

40

35

30

25

Stitch 1

1 2 3 4 5 6 7 8
stitch no

Fig. 5.2: Estimated loss in Si waveguides based on IR images. The top IR image shows the bright spots
that correspond to light scattering at the stitching sites. The scattered power attenuation was estimated by
isolating each spot, integrating its intensity and subtracting the noise level. The bottom graph plots the
decrease in intensity across the stitching sites and gives a rough estimate of 170 dB/cm loss.
[Measurements by M. Dahlem, calculations by A.M. Khilo]
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5.2 Fabrication Results

Scanning-electron micrographs were taken to show the fabrication results and look for

three probable causes of loss: horizontal misalignment between the polymer and Si

waveguides, stitching errors, and residue present on the surface of the chip. Some of the

devices are shown in Fig. 5.3 from a top view, including the connection between two

horizontal couplers, the cascaded couplers and a section of the Si paperclips. The tapered

region in the Si waveguides cannot be seen in these images because it is fully covered by

the polymer waveguides.

a) b)

c) d)

Fig. 5.3: Top-view micrographs of some of the fabricated devices. (a) Short Si waveguide connecting two
horizontal couplers where the polymer end-section slants. (b) Short Si waveguide connecting two
horizontal couplers in the absence of the polymer slanted section. (c) Five horizontal couplers cascaded
through Si "u-turns" and connected to an output waveguide. (d) Section of the Si paperclips showing the
"u-turns" and "s-bends" used in the device.
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A closer look at the devices shows that the dimensions for the straight Si and

polymer waveguides are, as expected, 400 nm and 5.2 pim respectively. The horizontal

offset between the two sets of waveguides was measured at 0.6 pm, which meets the

design specification of submicron alignment. The micrographs also show two probable

causes of high loss: a large stitching error and a non-uniform residue across the chip. The

SEM images are shown in Fig. 5.4. The average stitching error was 70 +/- 2 nm, and

measurements ranged from 65 nm to 75 nm. The large stitchings are caused by a field

calibration error prior to the e-beam exposure.

a)

b) c)

Fig. 5.4: High-magnification top-view micrographs of the fabricated devices. (a) The horizontal
misalignment between the center of the polymer waveguides and the Si waveguides is 0.6 pm. An over-
hang of the remaining oxide mask can be observed in this image (b) The average stitching error is 70 nm.
(c) As can be seen in this image, along with the previous two, there is a non-uniform residue across the
surface and on top of some of the waveguides.
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Mode-matching (MM) simulations were performed to estimate how much loss

can be caused by stitching error. In MM simulations the stitching is modeled as an offset

between two sections of the waveguide, as shown in Fig. 5.5, and does not take into

account the actual "notch" shape that was observed and which affects loss. Fig. 5.5

shows that for the average stitching error measured, MM simulation estimate a loss of

less than 5 dB/cm. However, the plot also shows that larger stitching errors can account

for losses of over 200 dB/cm [simulation by A.M. Khilo]. It should be noted that the

performed simulation is a conservative estimate, since it does not take into account the

shape of the stitch. Furthermore, the simulation estimates the effect of the stitching error

on the straight section of the Si waveguides (400 nm) and it is likely that the same

stitching causes much higher loss on the tapered section. Taking this into consideration,

it is possible that stitching error accounts for a large part of the measured loss in the Si

waveguides. One way to get a better estimate would be to perform a three-dimensional

finite-difference time-domain (FDTD) simulation.

For the residue, there are two possible origins: remaining PMMA from the

protective layer and unetched Cyclotene. The non-uniform appearance of the residue and

the fact that it shows up on top of some of the waveguides suggests that it is not

Cyclotene. A fabricated chip was immersed in NMP at 80 C to remove the residue if it

was in fact PMMA. For a more detailed discussion of the process please refer to Chapter

4. After the prolonged NMP bath the residue was still present on the chip and optical

measurements were similar to the previous ones. The failed NMP clean prompted the use

of a more aggressive cleaning solution, piranha etch. Piranha is a sulfuric-acid:hydrogen-

peroxide (3:1) wet-etch solution that removes most organic contaminants. It is also one
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of the few wet etches that successfully removes fully-cured Cyclotene [14]. The idea

behind this process was to remove everything from the sample except the Si waveguides

and the oxide undercladding and measure again the loss in the Si. In order to completely

remove the Cyclotene, four 12-minute piranha solutions were needed followed by CHF3

RIE to remove the remaining oxide hard mask.

160 200
Offset (nm)

1 cm = 100 stitches

Fig. 5.5: Mode-matching simulation of stitching-error-induced power loss per stitch. As shown in the
bottom illustrations, mode-matching models the stitching error as a horizontal offset. Although the
simulation estimates a loss of less than 5 dB/cm for the average stitching error observed, it shows that
losses of more than 200 dB/cm can be attributed to larger stitching errors. Because the performed MM
simulation is a conservative estimate, it is possible that stitching error accounts for a large amount of
the measured loss in the Si waveguides. [Simulation by A.M. Khilo]
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Optical measurements once again showed no light in the output facet of the Si

waveguides and approximations based on IR images showed only a slight reduction in

power attenuation (160 dB/cm compared to an initial 170 dB/cm). These measurements,

although complicated by breaks in the Si waveguides that resulted from the chip's

bouncing in the piranha baths, still show high loss in the Si. Cross-sectional and top-

view micrographs from the chip before and after the piranha etch are shown in Figs. 5.6

and 5.7, while Fig. 5.8 shows the breaks in the Si waveguides.

Top View Before Piranha Top View After Piranha

Fig. 5.6: Top-view micrographs comparing a fabricated chip before and after piranha-etch and CHF3 RIE.
The images on the right show significant reduction of residue, but some is still present. There appears to be
an increase in the roughness of the Si waveguides, most likely as a consequence of the aggressive wet etch.
The bottom-right micrograph includes a close-up of a narrow strip of residue that was seen at the edges of
the polymer waveguides. Notice that other than this strip, the surface is clean where the polymer used to
be.
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Fig. 5.6 shows a significant reduction in the residue, but not full removal. The

cross-sections shown in 5.7 reveal that the reduction corresponds to the removal of large

material deposits on the surface of the chip. Besides material deposits, there is a rough

layer on the surface prior to piranha and CHF3 RIE which seems to correspond to a thin

layer of un-etched Cyclotene. Both the deposits and the roughness can contribute to the

loss measured in the Si waveguides. Images after the etches show a rough surface even

after the polymer was fully removed. The new rough surface no longer appears to be a

thin Cyclotene layer, but rather roughness on the oxide undercladding. It is possible that

the thin layer that was previously on the surface acted as a mask during the CHF3 etch

and transferred the rough pattern to the oxide, but if the layer was Cyclotene then it

should have been removed by the piranha prior to the CHF3.

The post-fabrication work done on the chips suggests, aside from the stitching

error, a problem during fabrication not associated with the actual process. Results from

the micrographs are not consistent with fabrication steps discussed in Chapter 4. It is

likely that that chips got contaminated during one of the fabrication steps (contamination

in the HBr RIE chamber for example), and the best solution is to repeat the fabrication.

If in fact there was contamination not related to the fabrication process it is highly

unlikely to reappear, and a better field-calibration during e-beam exposure will reduce the

stitching error. Thus, a second fabrication would allow for much more accurate

characterization of the horizontal couplers.
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Cross-Section Before Piranha

Fig. 5.7: Cross-sectional micrographs comparing a fabricated chip before and after piranha etch and CHF3
RIE. Notice in the left images the presence of large deposits of material, and the roughness of the surface.
The surface looks similar to that of a sample in which the Cyclotene has not been fully etched (see Fig.
4.13), and a closer look in the bottom-right micrograph points to the presence of a thin layer of un-etched
Cyclotene. As shown in the right images, the large material deposits are no longer presents after piranha
and RIE. Although the Si waveguides appear taller, indicating that there is no longer a thin Cyclotene layer
on the surface, roughness is still evident.
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Fig. 5.8: Top-view micrograph of breaks in Si waveguides after piranha etch. The breaks become more
frequent as the width of the waveguide tapers down to 50 nm. This is consistent with the theory that the
breaks were caused by the bouncing of the chip in the piranha bath because thinner waveguides are more
fragile.
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Chapter 6

Conclusions

6.1 Summary

A process for the fabrication of optical-mode converters based on a horizontal coupler

design was developed and tested. The coupler presented is multi-mode consisting of

straight polymer waveguides and tapered Si waveguides, fabricated in SOI substrates.

The main challenges addressed were: dimensional accuracy of Si waveguides, deposition

and patterning of polymer waveguides, compatibility of polymer-waveguide fabrication

process with underlying SOI substrate, and post-fabrication cleaving process.

SEBL exposure doses and writing strategies were optimized to create horizontally

tapered Si waveguides with the specified dimensions and tapered profile. The deposition

and thermal cure processes found to produce the best quality Cyclotene films were

discussed in detail. The material selection and thickness considerations for the two etch

masks needed to pattern the polymer are also presented, along with the photolithography

exposure and development conditions.

The lithographic alignment requirements were discussed, and a set of marks was

created to achieve sub-micron alignment. The main fabrication challenge addresses in

the work was the implementation of an etch process for Cyclotene that is compatible with

the underlying Si waveguides. The process is based on two 0 2:CF4 plasmas of different

ratios, combined with frequent thickness monitoring through Dektak measurements. The
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process was found to create low-loss polymer waveguides and negligible etching of the

Si.

Finally, a cleaving process that allows good optical characterization was

presented. The process uses two protective layers of PMMA and partial diesaw cuts

through the backside of the sample to cleave the chips without damaging the structures.

One fabrication was performed to integrate all the Si and polymer devices. Results from

the fabrication showed that the horizontal coupler transfers the propagating modes from

an optical fiber to the polymer waveguides and then to the Si waveguides. An

unexpected high loss in the Si waveguides prevented accurate characterization of the

coupling efficiency. It is believed that sample contamination during the fabrication

process and large stitching errors are responsible for the unexpected loss.

6.2 Future Work

The first issue to be addressed in the future is the completion of a second fabrication.

Because the problems encountered in the first one are not believed to be related to the

actual fabrication process, it is highly unlikely that they will appear a second time.

Before starting that fabrication it would be worthwhile to rule-out the SOI substrate as the

root of the problem. A simple test consisting of straight Si waveguides can be performed

to confirm that there are no problems with the Si prior to the fabrication. A second test

should be performed to fabricate a few sets of straight Si and polymer waveguides to

make sure the integration of the two does not affect the optical transparency of the Si.

If a second fabrication is successful, the next step is to develop a process for the

fabrication of a single-mode optical converter that can couple light from a standard
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optical fiber. The single-mode coupler will also be fabricated on an SOI substrates and

consist of Si and polymer waveguides. While most of the fabrication techniques

presented in the current work can be used for the new coupler, several key differences

complicate the process.

The single-mode horizontal coupler requires an over-cladding above the Si

waveguides. In the first version of the coupler, the section of the Si waveguides that did

not overlap with the polymer was surrounded by air. This air-clad situation is impractical

for real world applications as the performance of air-clad devices may strongly

deteriorate with time due to environmental contamination. Adding an over-cladding

layer makes the coupler more useful for real-world applications and compatible with

other photonic devices such as OADMs also fabricated at MIT. As discussed in Chapter

4, the use of an overcladding makes the removal of the HSQ mask more difficult. It is

possible to use HSQ as an overcladding, in which case the etch mask does not have to

removed. In this case, the coupler's performance would strongly depend on the refractive

index of HSQ which is affected by the annealing conditions used to harden it.

A second major difference in the single-mode coupler is the step-like patterning

of the polymer waveguides. A cross-section and top-view schematic of the single-mode

coupler is shown in Fig. 6.1. In this geometry, called a rib waveguide, higher-order

modes leak out over short distances and only the fundamental mode propagates through

the entire length. This improves coupling from the large standard fiber to the polymer

waveguide.
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a) b)

Fig. 6.1: Cross-section and top-view schematics of the single-mode horizontal coupler. (a) The cross-

section shows the overcladding around the Si waveguides. (b) This top view shows the shape of the

polymer waveguide, which requires two lithographic steps.

As shown in Fig. 6.1 (b), the single-mode coupler requires two lithographic steps

for the patterning of the polymer waveguides. An initial layer of polymer has to be

deposited above the SOI and the desired pattern must be aligned to the underlying Si

structures. That first polymer layer must be etched completely before depositing the

second layer. A second photo mask has to be designed to pattern the second layer of

polymer and align it to the first. It is important to determine the required alignment

accuracy between both layers before designing the second photo mask. It is also

important to have good step-coverage in the deposition of the second polymer layer.

The dimensions of the polymer waveguides also represent a challenge in the

fabrication of the single-mode coupler. In particular, a height of approximately 10 im is

needed for the polymer to match the dimensions of the single-mode optical fibers.

Cyclotene can be used for in thick layers, but it would be recommended to use a version

thicker than 3022-35 so that fewer coats are needed. Two coats of 3022-46 or a single

coat of 3022-57 can be used to achieve the desired height. Decreasing the number of
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coats not only saves fabrication time and cost, but also reduces adhesion problems.

Although Cyclotene can still be used in the fabrication of the single-mode coupler, there

are two main reasons why another polymer would work best. First, the required

thickness, and multiple lithographic and etch steps makes compatibility with the Si layer

much harder. A polymer than can be etched in a pure oxygen plasma would significantly

simplify the fabrication process. Second, a lower-refractive-index polymer would better

match the refractive index of the optical fiber and thus improve performance.

A list of polymers suitable for optical applications can be found in [15]. The

selected polymer must have a refractive index between 1.45 and 1.55, have low

absorption loss, be dry etchable or photosensitive, and reach a thickness of 10pm.

Halogenated acrylates, deuterated acrylates, and fluorinated polymides are some of the

polymer types available.
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