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Abstract:

This thesis focuses on the design and implementation of a tool to interpret the meaning of
box-and-pointer diagrams drawn in digital ink. The tool was designed to work with the
Classroom Learning Partner presentation system. The interpreter was designed to use
state of the art sketch recognition tools to recognize shapes, and state of the art text
recognition tools to recognize text. The results of each are then combined to interpret the
meaning of the diagram.
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1. Introduction

Classroom Learning Partner (CLP) is a presentation system designed to increase

interaction between students and instructors during class. It uses Tablet PCs to allow

students to write answers with digital ink and send completed exercises to the instructor

during a lecture. The ink submissions from the students are automatically interpreted and

classified together with other answers that are similar, and the instructor can view

summary results which give an overview of students' understanding and

misunderstanding. Given this information, the instructor can modify a lesson during

class, skipping material if she sees that students understand, and going into more detail if

the do not. The system has previously been used successfully for exercises with answers

that were alphanumeric strings [Koile et al 2007].

The goal of this thesis is to extend CLP so that students also can provide sketched

answers. Adding such answers will increase the types of exercises that an instructor can

use in a class, thereby giving students opportunities to learn material not well presented

as text. To investigate the plausibility of adding sketched answers to CLP, the prototype

built for this thesis focuses on the interpretation of a commonly used diagram

introductory computer science---what is called a box and pointer diagram in MIT's

introductory computer science course. Such diagrams are commonly used when teaching

the concepts of data structures and linked lists.

The interpreter was designed with three goals in mind. (1) We wanted a student to

be able to sketch a diagram as easily as on paper and not be interrupted by being asked to

check the validity of CLP's interpretation; we thought the interruption would be

distracting to the student. (2) In keeping with the idea that students should be able to
5



easily sketch in CLP, we wanted the interpreter to work without asking users to train CLP

with samples of their sketches; we wanted anyone to sit down and use CLP without a

learning curve or delay, and without giving instructions that the diagrams be drawn in a

specific way. (3) We wanted the interpreter to integrate easily with the existing CLP

system, which means that it should operate offline, so that all interpretation is done after

the entire diagram has been drawn. The architecture was chosen in this way because

research has shown that there are no accuracy benefits to running an interpreter online,

and an offline interpreter can be run on a different machine than the one being written on.

[Rbeiz 2006]

This document provides an overview of Classroom Learning Partner, followed by

a description of box-and-pointer diagrams, and the potential issues faced when

interpreting hand-drawn diagrams. Background information is then presented about

sketch recognition and the blackboard problem-solving model used in the box-and-

pointer interpreter. The prototype implementation of the box-and-pointer diagram

interpreter for CLP is described and challenges discussed. The results of accuracy and

performance testing on the interpreter then are presented, followed by a discussion of

possible areas of improvement for the system that could be done in future work.
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2. Classroom Learning Partner Overview
Classroom Learning Partner is a Tablet-PC-based wireless presentation system

designed to support real-time feedback and assessment of in-class exercises. The system

has been in development in the Computer Science and Artificial Intelligence Laboratory

at the Massachusetts Institute of Technology from 2005-2007. The goal of the project is

"to develop innovative technology to improve student experiences in large classes by

increasing interaction between instructors and students." [Koile and Shrobe 2006, Koile

and Singer 2006] The system is built on top of Classroom Presenter, a presentation

system developed at the University of Washington that allow an instructor to display in-

class exercises on her machine, a public display, and on students' Tablet PCs, Students

can write with a digital pen on a Tablet PC screen, taking notes as if they were using a

pen and paper. Students also can work out exercise solutions which then can be sent

wirelessly and anonymously to the instructor, who can choose particular solutions to

display on the public screen [Anderson 2003]. Figure 1 shows an example of a student's

submission during class. Figure 2 shows the instructor's view of the exercise slide.

Figure 1: Sample Student Submission
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Problem 2

-. Wrth am-re m deted after et-re. which takes a stream and a number n and returns
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Figure 2: Instructor View; note that the instructor answers are not visible in the student
view; the filmstrip to the left shows the presentation slides and can be made visible on the
student machines (if the instructor allows the 'full navigation" option)

Initial studies to judge the impact of Classroom Presenter style systems have

shown the system to be beneficial to some students. In one course, 44 out of 45 students

who used Classroom Presenter indicated that they felt CP had a positive effect on

learning. [Anderson 2005] Another three studies conducted at MIT by Dr. Kimberle

Koile in her 6.001 recitations have shown that students were much less likely to perform

in the bottom 25% of the class on an examination after participating in classes in which

Classroom Presenter or Classroom Learning Partner and Tablet PCs were used by the

instructor and each student [Koile and Singer 2006, Koile et al 2007 a, 2007b]. Another

study is being conducted this term.
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2.1 Classroom Use
The underlying Classroom Presenter system supports wireless transmission of ink

from instructor to student (and vice versa). Even with the use of Classroom Presenter to

increase student-instructor interaction, however, the number of student submissions that

an instructor can view and provide feedback about during a class is small compared the

number of student submissions. In large classes, it would be hard for an instructor to gain

a complete understanding of the students' comprehension by looking through the large

number of submissions, without slowing down the pace of teaching. The goal of

Classroom Learning Partner is to provide the instructor with summary information about

student submissions for in-class exercises. We hypothesize that this information will

allow the instructor to provide immediate feedback to the students, and to maximize the

number of students who receive feedback. Figure 3 shows an example of a histogram

produced after aggregation.

20 (4 16 (9 18 3

Figure 3: Results ofAggregation as Seen by Instructor
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This summary information consists of "bins" of student answers, with each bin

corresponding to an equivalence class of student answers. The bins are generated by the

automatic interpretation and aggregation of student submissions. Interpretation is the

process of converting a student's submission from hand drawn digital ink into a

representation of the semantics of the answer. This representation is read by a program

called an aggregator, which groups together answers with similar semantics. The results

of the aggregation are displayed to the instructor in the form of a histogram, with each

student submission given a color-coded label that indicates in which bin it has been

placed. By viewing the histogram, the instructor can see how many students submitted

right answers, how many submitted wrong answers, and then can dynamically change the

content of the lesson based on the students' understanding and misunderstanding.

Interpretation of answers consisting of alphanumeric characters and sequences of

alphanumeric characters was started in 2006 [Rbiez 2006]. Research into the

interpretation of these types of answers is continuing [Tay 2007]. Aggregation of these

types of answers was started by [Smith 2006] and has been extended by [Pal 2007].

Figure 4 shows an example of an ink sequence and its corresponding semantic

representation.

<Answer type = "sequence">(foo bar)</Answer>

Figure 4: Drawn sequence and interpreted semantic representation
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2.2 System Architecture
The architecture of Classroom Learning Partner consists of the components shown in

Figure 5. The components run on either the instructor tablet or the student tablets, as

indicated in Figure 5.

Before class:
1. Instructor creates presentation and exercises using IAT; exercises are stored in

database, slides on file server.

During class:
2. Instructor retrieves presentation from database (or it is resident on her machine

already).

3. In Classroom Presenter, presentation slides are broadcast to student machines; in
CLP slides are automatically loaded onto student machines when they log in to
their Tablet PCs.

4. When a slide with an exercise is displayed, student enters ink answer, which is
interpreted on his or her machine.

5. Each student's ink answer and interpretation are transmitted to database via
wireless peer-to-peer (P2P) network.

6. When instructor indicates end of student exercise period (e.g., orally), she clicks
on aggregator icon, which causes aggregator to retrieve the interpreted ink
answers, aggregate them, and produce summary data.

7. Summary data is transmitted to the database via wireless P2P network.

8. Summary data is displayed on instructor's machine. [Koile et al 2007]
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Figure 5: Architecture of Classroom Learning Partner.

Figure 6 shows the hardware and networking configuration that supports the use

of Classroom Learning Partner. The instructor, student, and projector Tablet PCs are

connected to each other and to the central database computer via a wireless peer-to-peer

network. The projector machine provides a means for displaying slides and student

responses for in-class discussion. The database computer also serves as a gateway,

giving the Tablet PCs access to the internet for automatic loading of instructor slides onto

student machines at the beginning of each class. Student submissions are transmitted to

the instructor machine, the projector machine, and to the database. In very large classes,

the submissions will only be sent to the database; the summary results displayer will

select a small number of representative submissions and transmit them to the instructor

and projector machines.)
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In a large lecture with over 100 student tablets submitting answers

simultaneously, if all student tablets tried to send submission data to the instructor over

the in-class wireless network, a bottleneck would be created and many of the submissions

would be lost. In order to scale the system to large classes, the networking configuration

will need to consist of several computers acting as wireless access points for the Tablet

PCs, rather than just the database computer also acting as the only wireless access point.

(Note: In our first implementation, the database was on an external computer reached via

the internet, but repeated connectivity problems forced a move to a computer on the in-

class wireless network.)
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2.3 Interpretation
When an answer to an in-class exercise is submitted to the instructor, the ink

interpreter runs in the background on the student Tablet PC, creates a representation of

the meaning of the submission, and stores that representation in the database. The

student does not see the results of the interpretation, as we did not want the student to get

distracted correcting a possible wrong interpretation. In CLP, the interpreted value of the

input is not as important as the seamless interaction between the student and the user

interface. Some interpretation errors are fine; the instructor is trying to understand the

overall understanding in the class rather than looking at correct interpretations of every

student response. This design decision differs from other software programs that

interpret user input. In many applications, the user is aware that the interpreted value of

the drawing will be used as input to a program. Such a program will often convert drawn

shapes to a computer rendered version, and the user can correct any errors in the

interpretation before the input is used. In many cases this user interface design choice is

a critical one [Blostein 2002].

The first version of our interpreter was able to interpret answers that were a string,

a sequence, a Scheme expression, a number, or a true-false answer [Rbeiz 2006]. Most

of the exercises that are completed in 6.001 recitations fall into one of these categories.

The accuracy rate of the interpreter for these types has been improved in the current

version [Tay 2006], by allowing the instructor to specify more explicit types, such as

sequence of number, or sequence of strings. Two new types being added are the box and

pointer diagrams, described in this thesis, and marks, which are user ink strokes whose

semantics depends on a background image [Koile, et al 2007a, Wu 2007].
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2.4 Aggregation
Once the answers are interpreted and stored in the database, the instructor can

aggregate the submissions. Aggregating submissions is the process of grouping

submissions together with other submissions that have a similar meaning. The first

version of our aggregator clusters alphanumeric answer types using edit distance, a

similarity measure for two strings, to compute a score for each pair of answers [Smith

2006]. The aggregator clusters the answers into bins, up to a maximum number of bins.

After the maximum number of bins has been reached, bins with similar answers are

grouped together. The instructor then can see a description each bin and the number of

students whose answers are in each bin.

16



3. Cons and the Box-and-Pointer Diagram

In the introductory computer science course at the Massachusetts Institute of

Technology, called Structure and Interpretation of Computer Programs, students learn

the Scheme programming language. In the language there exists a construct known as

"cons", which pairs together two references. After two references have been paired with

a "cons" statement, the first reference can be accessed with the "car" operator, while the

second can be accessed with the "cdr" operator. In order to pair the two symbols "foo"

and "bar" together, the statement "(cons foo bar)" is evaluated. By combining multiple

cons statements, more complicated data structures can be created. In Scheme, lists and

trees can be created by using multiple, nested cons statements. In order to visualize and

represent these complicated structures, students learn to create box-and-pointer diagrams.

These diagrams use three kinds of shapes to represent cons statements. Rectangles split

in half, known as a box, represent the cons structure. Words represent symbols that can

be referenced by the cons statement. Arrows, known as pointers, indicate what the car

and cdr reference. The car and cdr can reference another box (cons statement) or a

symbol. An example of a box-and-pointer diagram is shown in Figure 7.

By simply combining multiple cons statements, very complicated data structures

can be created in Scheme. In a singly linked list, there is a cons for each position in the

list. The car references the content at that position, while the cdr references the next cons

structure in the list. The final cons statement in the list contains the value null. An

example of the two element list "(foo bar)" is shown in Figure 7. In order to create a tree,

the content of an element in a list can refer to another list. An example of a tree structure

is shown in Figure 8. In order to help visualize these structures, box-and-pointer

17



diagrams are used in recitations and lectures. Using these diagrams helps some students

quickly learn the characteristics of data structures that are long and complicated when

written out in code.

bar

foo bar

foo baz

Figure 7: Simple box-and-pointer Figure 8: Complicated box-and-pointer
diagram diagram

When we start to think about interpreting box-and-pointer diagrams, there are

certain factors that should be considered. One important thing to note is that there are

often many ways to draw box-and-pointer diagrams. Figures 9b-d show three drawn box-

and-pointer diagrams. Each diagram is drawn differently, but each one has the same

meaning. Some of the differences in style that do not affect the meaning, or the

semantics of the diagram include whether or not arrows start inside or outside of the box,

whether arrows point up or down, and boxes location relative to other boxes. These are

just some of the ways that diagrams can be drawn by students in class, and because the

stated goal of allowing students to use Classroom Learning Partner without any training

or instructions on how to draw box-and-pointer diagrams, all of these styles should be

considered when implementing the interpreter as long as the style does not change the

semantics of the diagram. Two features are important for the semantics of a drawing.

18



The boxes must be drawn horizontally with a vertical dividing line in the box. The left

half is assumed to be car, and the right half is assumed to be cdr. Arrows must be drawn

with a head on one and only one side. While some people use lines to connect objects in

box-and-pointer diagrams, the meaning of these lines can sometimes be ambiguous.

Drawing each arrow with a head ensures that the proper referencing is chosen. If these

two rules are met, the interpreter should be able to interpret the diagram.

.ll
~1~

Figure 9: Box-and-pointer diagram and three
different ways to draw it. Notice the different

directions the arrows are drawn and the
arrows starting inside and outside of the boxes.

Figure 9c

~40

'cr

Figure 9b

foo bar

Figure 9d
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When we think about the semantic representation of box-and-pointer diagrams, or

the way in which we represent the meaning of the diagrams so that the automatic

aggregator can use it, a few options come to mind. Many instances of box and pointer

diagrams can be represented in a list format. A list format sequence is an alphanumeric

sequence that can be used to represent lists and trees in Scheme. The mapping between

box-and-pointer diagrams and list representations is deterministic, and two box-and-

pointer diagrams that have the same meaning will share the same list representation.

However, many box-and-pointer diagrams cannot be represented as lists. If a diagram

contains a loop, as in Figure 10, then trying to convert the diagram to list structure will

result in infinite recursion, and no representation could possibly be found. Also, list

structures cannot represent many of the errors that are interesting to an instructor. The

box-and-pointer diagram shown in Figure 11 has more than one pointer emanating from

the cdr position of the first box. This is not a valid box-and-pointer diagram, and could

not be created in Scheme nor represented as a list. When it comes to use in Classroom

Learning Partner, it is much more important to record why a student's answer is wrong

than whether or not it is a valid box-and-pointer diagram. If many students are drawing

the diagram with an extra pointer, the instructor should see this and cover in class why

this is wrong. If the instructor only knows that the diagram was not valid, she might miss

an opportunity to help students understand the course content.

20



4/0 4,
Figure 10: Loop box-and-pointer
diagram
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Figure 11: Illegal box-and-pointer
diagram - 2 pointers from one box



4. Recognition
In order to classify student answers into groups so that an instructor can view the

results of aggregation, each student's written response must be interpreted. Interpreting

an answer drawn on a tablet with digital ink involves tagging sections of the drawing that

contain information about the semantics, or meaning, of the answer. [Rbeiz 2006] This

process is different depending on the type of exercise that was completed. The box-and-

pointer interpreter is different from the interpreters that have been used with CLP to date

because it involves shape recognition. Sketch recognition involves recognizing different

shapes, like rectangles and circles, as opposed to text recognition that is focused on words

or numbers. Much of the challenge in completing a box and pointer interpreter is

recognizing both written text and drawn shapes in the same drawing. Because the shape

and text recognition processes are so different, research has focused on each task

separately. Simultaneously there has been great improvement in the ability of

recognizers to recognize shapes, and there has been improvement in the ability of text

recognizers to correctly interpret written digital ink. Because of this and the lack of a

general purpose shape and text recognizer, the box-and-pointer interpreter will use two

separate recognizers to perform shape recognition and text recognition.

4.1 LADDER Shape Recognizer
More applications are using sketch recognition as input as the number of tablet

input devices in use increases. [Blostein 2002] Applications often have different needs,

and the set of shapes that need to be recognized and editing actions that can be applied to

these shapes are known as the domain of the application. Each time a new domain was

encountered a new shape recognizer needed to be written. To simplify this process,

22



Tracy Hammond created the LADDER domain description language. [Hammond 2005]

The goal of the language was to provide one general purpose shape recognition engine,

and allow users to define their own domains by combining certain primitives, like lines

and points, into shapes. Each shape was defined by listing the primitives or other

previously defined shapes and the constraints that exist between the different

components. The constraints can be chosen from a list of predefined constraints, such

as 'near" or "perpendicular" or they can be written as a Java procedure. An example of a

shape definition for an arrow is shown in Figure 12. LADDER also provides support for

defining how a shape should be displayed and ways for the user to edit the shapes. These

properties are used in modal programs, where after a shape is drawn, it is replaced by a

computer rendered version. CLP does not use this functionality.

23



(define shape Arrow
(isA Shape)
(components

(Line shaft)
(Line headi)
(Line head2)

(constraints
(near shaft.pl headl.pl)
(near headl.pl head2.pl)
(equalLength headi head2) Figure 12: LADDER definition of an

(acutee sha di ha f) arrow. The hand drawn arrow, and the
(acuteMeet shaft head2) recognized lines displayed by the

LADDER Recognizer Software
(aliases

(Point head shaft.pl)
(Point tail shaft.p2)

(display
(color green)

The LADDER based shape recognizer that is used in the box-and-pointer

interpreter is one implemented by Tracy Hammond. The recognizer first preprocesses

the strokes into a primitive Point, Line, or Curve. [Sezgin 2001] Then, the constraints are

tested on the components and new shapes are found. The recognizer ensures that no two

shapes share the same subcomponent.

4.2 Blackboard Systems
The Blackboard problem solving model is an easy to understand model for

solving complicated problems. The system is analogous to a group of experts standing

around a blackboard. Each expert can make changes to the information on the

blackboard, and each one is an expert in a different field. As the problem progresses, the

experts take turns making improvements to the solution until no more improvements can

be made. The system consists of three components. The information known to the

24



system is contained within the blackboard. The blackboard is a data structure that can

contain information of any type. Before a blackboard system begins to solve a problem,

the input to the system is contained in the blackboard. Knowledge sources act on the

information in the blackboard, and each try to make improvements to the solution. Each

knowledge source uses a different rule to improve the accuracy of the solution. The last

important component of a blackboard system is the dispatching system for knowledge

sources. Only one KS can act on the blackboard at once. At any time, a knowledge

source can request to make a change to the blackboard. If no other knowledge source is

making a change, it is allowed. When no more improvements can be made, the solution

is read from the blackboard.

The blackboard problem solving model was first used in the Hearsay speech

understanding project in the late 1970s. Since then the model has been formalized and

used in many different applications. The model has shown to be a simple to understand

but advanced problem solving model and has be used in many different applications.

25



5. Implementation

The box-and-pointer interpreter was designed in four sections. In the first section,

the digital ink from a student submission is run through the Microsoft Text Recognizer.

This recognizer produces a list of all words that it thinks were contained within the ink.

At the same time, the digital ink is passed into the LADDER shape recognizer that has

been tuned for use in the box-and-pointer domain. The shapes that are recognized in this

stage are combined with the text items that were found in the text recognizer, and this

collection of possible text and shape are the hypothesized objects in the diagram. The

hypothesized objects are then input into the clean-up stage of the interpreter. The clean-

up stage produces a list of objects that are actually in the diagram from the list of possible

objects that were recognized. The list of actual objects is often much shorter than the list

of possible objects, as it eliminates combinations of objects that are impossible, such as

one stroke representing an arrow and the text "->". After the actual objects are known,

the list of actual objects is passed through the geometric section that tracks where arrows

are pointing and what they point from. After this is finished, all of the semantics have

been extracted from the digital ink, and the interpretation process is complete.

26



Microsoft Text Text
SReoognizer

Digital ink Clean Up Stage Objects Semaniic
(Blackboard System) Representation

LADDER Shape SWs
Recognizer

Box-and-Pointer Interpreter

Figure 13: The four stages of box-and-pointer interpretation

5.1 Microsoft Text Recognizer
Tablet PCs that run Windows operating system use Microsoft Text Recognizer for

the recognition of written text. This is also the recognizer that was chosen to recognize

the text portions of box-and-pointer diagrams. This recognizer was chosen because it is

the most stable and accurate text recognizer available, and is installed on all of the Tablet

PCs used in the Classroom Learning Partner project. When the interpreter begins, it

sends a copy of the digital ink to the text recognizer. All of the words that are recognized

in the drawing are added to a list of objects recognized in the diagram. In Figure 14, the

text was correctly recognized as the word "foo" and the word "bar". The output of the

recognizer is often wrong. It often is not able to separate the words in the diagram from

the shape part of the diagram. Words that have been recognized often contain strokes

from shapes, and that creates errors in the recognized text objects. In Figure 15, the

output of the text recognizer included the word "sis", which it recognized from the

highlighted arrow pointing to the word "foo". It is the goal of the clean-up stage to

correct these errors.

27



Figure 14: Text recognized as two
Figure 15: The highlighted area was

objects, 'foo" and "bar" incorrectly recognized as "sis"

The recognizer also creates errors by not recognizing text that does not form an

English word. The recognizer is biased to recognize words in English. Many words

which are written in box-and-pointer diagrams are not English words, such as "foo" and

"bar". These words are commonly used in 6.001 due to their occurrence in the textbook

for the class, Structure and Interpretation of Computer Programs. In order to recognize

these words, it is necessary to add them to the dictionary of words to which the Microsoft

recognizer compares hypotheses. A list of common words used in box-and-pointer

diagrams is added to the Microsoft Text Recognizer dictionary before interpretation

begins.

5.2 LADDER Shape Recognizer
To recognize the shapes present in a box-and-pointer diagram, the LADDER

shape recognition system is used. The LADDER shape recognizer takes as input digital

ink and returns a list of shapes it has recognized. The shapes it can recognize are

specified in a domain description. Each shape is defined as a collection of primitives or

other shapes. In the box-and-pointer domain, all shapes are created from the Line

28



primitive. For box-and-pointer domain, there are two possible shapes that can be

recognized. A box is a horizontal rectangle split down the middle by a vertical line. An

arrow consists of three lines which meet at one end of the longest line, and the other two

lines meet with an acute angle to the longest line. Any other lines that are recognized but

not attributed to a shape are returned by the recognizer along with the list of shapes.

These orphan lines may actually be part of a shape that was missed by the shape

recognizer, and could be recognized by the clean-up stage of the interpreter.

Classroom Learning Partner is written in C# running on .NET technology and

uses Microsoft Ink data structure to store the ink information. The LADDER system is

written in Java and uses an array of points with timestamps to represent the ink

information. In order to run the recognizer it is necessary to start the LADDER system in

a different process and pass information about ink strokes from C# to Java, and

information about recognized shapes from Java to C#. When the interpreter is called for

the first time from Classroom Learning Partner or another program, the interpreter creates

a new process that starts the Java virtual machine. The C# program creates a new socket,

and passes the address of this socket to the new Java process. All communication

between CLP and the shape recognizer takes place through this socket. The new process

creates an instance of the LADDER shape recognizer and a wrapper that marshals

information to and from the socket. This process is only started once, and subsequent

calls to the shape recognizer use the same port. This minimized the time lost to creating

the process.

After the process is created, the wrapper listens for connections on the socket.

CLP then connects to the socket and requests a new recognition instance. The wrapper
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accepts the new recognition instance and begins listening for strokes. A stroke is a list of

two dimensional Euclidian coordinate and timestamp pair. Each element in the stroke is

sent over the socket. When the stroke is completely sent, the recognizer performs

recognition on the stroke. The LADDER recognizer operates on one stroke at a time,

recognizing primitives from the new stroke, then building shapes from the new stroke and

shapes recognized from previously recognized strokes. After the recognizer is finished

processing the stroke, it sends a message over the socket asking for the next stroke.

When the last stroke has been sent and recognized by LADDER, CLP sends a message

informing the wrapper to read back shape information, and that recognition is complete.

The wrapper then sends information about each shape and primitive recognized through

the socket, which is read by CLP and used to create a list of shapes recognized in the

diagram. This interaction protocol is shown in Figure 17.

Although the recognizer is tuned to recognize shapes in the box-and-pointer

domain, often recognizes shapes incorrectly. There are two common errors that affect

recognition results. The first error involves recognizing shapes in strokes that are

actually words. Because there is no separation of text strokes and shape strokes before

recognition takes place, the recognizer tries to find primitives in every stroke, including

ones that are part of text. Because text is often more complicated than shape strokes (in

the case of cursive writing) or have many more strokes that comprise the object (in the

case of printed letters) many lines are found by the LADDER recognizer. Not only does

this slow down the recognizer, as constraints are applied to each primitive when trying to

find a shape, but it also provides false shapes which must be pruned by the clean-up

stage. Figure 16 shows a box and pointer diagram that has been run through the
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LADDER shape recognizer. In this simple diagram, 11 extra lines were recognized

because of the two words. The word "foo" resulted in five false lines, and the word "bar"

was recognized as six false lines.

Figure 16: The 'o' was misrecognized as three lines

The other common error occurs when the shape recognizer misses an actual

shape. This can occur from any number of reasons. Often the Microsoft ink library does

not record information at a high enough resolution or the shape was drawn in a way that

hinders recognition. This can happen when a student draws a shape sloppily, so that it

can be recognized by a trained human eye, but does not fit the rigid constraints set forth

in LADDER. In this case, the shape is not returned by the recognizer, but instead the

individual lines are returned. The clean-up stage tries to find these shapes by performing

analysis on orphaned lines with an alternate set of constraints than the LADDER

recognizer uses. In Figure 16, the arrow connecting the two boxes was not recognized as
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an arrow, but as four lines. This was caught in the clean-up stage, and correct

interpretation was possible.
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Recognition Protocol

CLP Interpreter
(O#) Socket LADDER Wrapper

(Java)

B e g R e o og n t o n

Ackniowledgs Begin
Recogtion

Sd Point...

(Repeat)

Stgke End

Repeat Until All Strokes Sent

Read Bwck Shapes

Create List of Shapes

Send Shape
Irdkmakin

Figure 17: Protocol for communicating with Java LADDER recognizer from C# - There
are long pauses when the LADDER recognizer recognizes the stroke, which is why

recognition is multi-threaded on the C# side.
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5.3 Clean-up Stage
When the ink has been recognized by the shape and text recognizers, the output of

the two is passed into the clean-up stage of the interpreter. The recognized shapes and

text, known as the recognized objects, often contain many errors. Because the two

recognizers operate independently, the output of the two often conflict, creating a set of

hypothesized objects that is not valid. A set of objects is invalid if one piece of a stroke

is recognized as two different objects. This often happens when the shape recognizer

finds shapes in written text, and when the text recognizer recognizes shape strokes as

text. The goal of the clean-up stage is to locate and fix the conflicting hypothesized

objects, and produce a valid set of objects. These output shapes and text are the objects

that are used when computing the semantic representation of the drawn box-and-pointer

diagrams.

The input to the clean-up stage is a set of recognized objects. As the clean-up

stage progresses, different knowledge sources act on the set, and can remove or add

shapes to this set. When a knowledge source deems an object to be correct, the shape is

moved to a list of known objects. When the clean-up stage completes, all objects in the

output set form a valid hypothesis. There are seven different knowledge sources that

operate on the hypothesized object set. The first knowledge source attempts to find

boxes that were not recognized by the shape recognizer. The constraints used to

recognizes boxes are relaxed, and if a set of lines conforms to the new relaxed constraint,

the box is added as a possible shape. The second knowledge source does the same for
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pointers. The third knowledge source moves objects from the input list to the output list

if no other object shares the same ink.

The remaining knowledge sources are designed to fix common recognition errors.

With these recognition errors corrected, it is easier for the first three knowledge sources

to fix conflicts. The fourth knowledge source uses the fact that when a box is recognized

by the LADDER recognizer, it is nearly always a box. The constraints are set very tight,

and the false positive rate of boxes in the shape recognizer is very low. When this

knowledge source is used, it removes all text objects that share a stroke with a recognized

box.

The first four knowledge sources are able to fix some of the conflicts, but most of

the time the clean-up stage reaches a point where no more optimizations can be made, but

there are still many objects left in the input set. Two very common recognition errors

that are not fixed by the first four knowledge sources are the misrecognition of text as

lines and arrows. Because written text is very complicated, the shape recognizer divides

the words into many lines. Often times these lines fit the constraints of an arrow, and are

recognized as such. One knowledge source then tests each arrow whose ink is also part

of a recognized text object. If the arrow is separate from the rest of the text object, it is

saved. If the arrow is in the middle of the rest of the text object, it is removed. Another

knowledge source does the same for lines were recognized inside of text objects. Once

these arrows and lines are removed, the text can be moved to the output object list.

The final knowledge source rerecognizes text. Often times, the text recognition is

wrong because shapes are recognized as part of a text. After some of the ink has been

interpreted as shapes, the ink is rerecognized, so that only text ink is run through the text
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recognizer. This oftentimes results in more accurate text recognition. This knowledge

source is often able to improve the results after other knowledge sources have moved

objects to the output list. The knowledge sources make changes to the input and output

object sets until no more improvements are possible. After this has occurred, the output

set consists of the objects recognized by the interpreter.

An example of the clean-up system running is shown in Figure 18. The original

ink input to the interpreter is shown.

Figure 18: Original drawn box-and-pointer diagram

After text and shape recognition, the list of recognized objects is shown in table 1.

Notable errors include the word "hello" being interpreted at nine lines in the shape

recognizer. The text recognizer found the word "hex" in the ink that forms the arrow and

box. Also, the shape recognizer missed the arrow and box completely, instead

recognizing three lines for the arrow and six lines for the box. These errors must be

corrected in the clean-up stage. First, the knowledge sources that look for arrows and

boxes operate on the set of hypothesized objects. The box finder finds a box out of six

lines, and the arrow finder recognizes an arrow from three lines. The arrow recognizer

also adds three arrows to the list of shapes, all of which were found from the lines in the

word "hello". All objects share ink with another object, so there are no valid objects to

place in the output list.
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Table 1: The recognition results for each set of
and the IADDER recognizer.

strokes returned by Microsoft Interpreter

The next knowledge source removes the box from the text object "hex". The text

recognizer then tries to rerecognize the arrow, which does not produce a recognized text

object. The box and arrow then do not share ink with another shape and so the two

shapes are moved to the output set. The last two knowledge sources then act on the input

list, and remove the arrows and lines from set. This leaves only the text "hello", which is

added to the output set.
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Text: hex

3 Lines
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Text: hello

6 2 Lines
3 Arrows

Text: hex

Arrow

Box

Table 2: The results after the box finder and arrow finder have made improvements to
recognition in the clean-up stage.

Text: hello

2 Lines
3 Arrows

Output: Arrow

Output: Box

Table 3: After text that shared the strokes from the box were removed, the arrow and box
shared strokes with no text, and are moved to the list of output objects.
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The output set of objects now contains all of the objects that exist in the box-and-

pointer diagram. This list is then used to create the semantic representation for the

diagram.

Vei6  Output: Text: hello

Output: Arrow

Output: Box

Table 4: Results of interpretation after orphaned lines are removed.

5.4 Semantic Representation
Classroom Learning Partner stores the meaning of an interpreted student

submission in a format known as the semantic representation. The original design for

semantic representations of alphanumeric strings was created by Michel Rbiez. Two

properties that a semantic representation must have are the ability to store all information

about the meaning of a submission, and the ability to store the information in the form of

text, so that the information can be read to and from a database. Rbiez implemented this

storage format by using XML, which is also used in box-and-pointer semantic
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representations. The original semantic representations could be rendered into a human

readable format. This rendered version was used for aggregation purposes. However,

box-and-pointer diagrams often have no succinct way of representing the meaning in a

string form. For this reason, two libraries were created to simplify the use of box-and-

pointer semantic representations.

5.4.1 XML Format
In order for the interpreted answer to be used in the aggregator, the semantic

representation must be saved to the database. It is saved to the database in XML format.

In order to do this, an XML node is created for each object in the diagram, either a text,

arrow, or box. The XML node contains all of the information that in needed to

understand the meaning of the document. The different fields of information that are

saved for each type is shown in table 5. A XML parsing function is provided to convert

from the XML representation to the C# representation object and back.
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Object Property Description

Box ID The object unique identification number for this box.

NuliCar 0 if the car of this box is null.
1 if the car of this box contains contents.

NullCdr 0 if the cdr of this box is null.
1 if the cdr of this box contains contents.

Arrow ID The object unique identification number for this arrow.

The identification number of the object that this arrow
points from.

CAR if this arrow points from the car position of a box.
FromHalf CDR if this arrow points from the cdr position of a box.

NONE if this arrow does not point from a box.

The identification number of the object that this arrow
points to.

Text ID The object unique identification number for this box.

Content The alphanumeric string that was drawn.

Table 5: List of information saved in XML semantic representation.

5.4.2 Semantic Representation Builder
The semantic representation builder is a library to simplify the creation of box-

and-pointer semantic representations. The process to create a new semantic

representation involves two parts. First, the shapes and text objects that are found in the

diagram are input into the builder. The builder then computes how the objects relate to

each other. Information about what arrows point to and from is essential in
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understanding the meaning of a box-and-pointer diagram. For each arrow recognized in

the diagram, an arrow tracking algorithm calculates which other object it points to and

from. The angle from each point on each bounding box to the line on which the arrow

lies is checked, and if the bounding box straddles the line on which the arrow lies, the

arrow points to or from that object. Then, the closest object to or from the arrow is

recorded. If the arrow points from a box, then the portion of the box which the line

intersects is found. For each arrow, the box or text which the arrow points to is recorded,

as well as the box or text which it points from. This information is stored in the semantic

representation.

5.4.3 Semantic Representation Reader
The semantic representation is available to developers who wish to use

information about the meaning of a box-and-pointer diagram. However, parsing the

XML document is tedious, and a simple representation is not available for some box-and-

pointer diagrams. For this reason, a library was created to help developers read box-and-

pointer diagrams. The semantic representation reader provides support for most

operations which a developer of an aggregator or other application would need to extract

information from a box-and-pointer representation. The functions that are included in the

reader are shown in table 6.
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Function Description

Attempts to find the head of the box-and-pointer tree. If the
FindHead() diagram is a connected, acyclical tree, the head is returned.

Otherwise, returns no shape.

CarContents(Box) Returns the shape or text that the first half (car) of this box
points to.

CdrContents(Box) Returns the shape or text that the second half (cdr) of this box
points to.

GetBoxeso Returns a list of all of the boxes in the diagram.

GetArrows() Returns a list of all of the arrows in the diagram.

GetTextsQ Returns a list of all of the text objects in the diagram.

IsLabel(Text) Returns true if the text points to another object. False if no
arrow points from the text to another object.

LeadingArrowo Returns true if there is an arrow pointing to the head of the
diagram, false otherwise.

LabelPointsTo(Text) Returns the text or box that the label points to, if the text is a
label. Returns no shape otherwise.

GetDescription( Attempts to create a list description of the diagram. Returns
nothing if diagram is cyclical or not connected.

Table 6: Functions provided by the Semantic Representation Reader for other
applications that wish to interpret box-and-pointer diagram.
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Most of the functions provided are straightforward, but there are two that are

worth noting. The first function to note is the FindHead function. If the diagram drawn

represents a connected tree, this returns the head of the tree. The tree can either be a box

or a text. The function retains a set of each text and box in the diagram. It then removes

from the set the object which each arrow points to. It then iterates through the list of

arrows, and if the arrow points from something, the object to which it points is removed

from the set of objects. After viewing each arrow, if more than one object remains, there

is no head. If there is one object remaining, that is the head. If more than one object

remains, there is more than one head, and the function returns no shape.

Another function worth noting is the GetDescription() function. This function

attempts to create a list description of the diagram. This is the most succinct description

for the diagram that retains all of the semantic information. This type of description is

used in 6.001, and can be easily understood by humans. However, not all box-and-

pointer diagrams can be parsed into a list description. In particular, if there is a loop in

the diagram, or if there is a loop anywhere in the diagram, there is no list representation.

The function finds the head of the list, and then recursively walks through the tree

producing the list representation.

5.5 Discussion
It would have been nice to use the list representation of each box-and-pointer

diagram as the semantic representation. The list representation retains all semantic

information and can be easily understood by humans. The problem with representing the

diagram with that representation is that many diagrams cannot be represented in this

manner, due to loops (which are allowed in box-and-pointer diagrams) or to errors in the
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diagram. Simple labeling these as degenerate cases is not acceptable in Classroom

Learning Partner, where the goal is to understand how the students are thinking about

wrong answers, as well as right answers. Thinking about the problem more led to the

conclusion that in many cases, even humans cannot understand box-and-pointer diagrams

without traversing the diagram tree. We can automate the traversal in certain cases with

the simplified representation, but in many cases, this is simply not possible.
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6. Results
The interpreter was completed late in the Spring of 2007. Testing was conducted

to obtain information about the accuracy and performance of the interpreter on real data

sets. Two aspects of the performance of the interpreter were analyzed. The accuracy of

the interpreter is an important characteristic, as well as the time elapsed during

interpretation. Because the Classroom Learning Partner was being used in an actual

lecture, the interpreter was deployed in class for two days, and information about

interpretation accuracy was collected.

There are two aspects of accuracy that can be explored with respect to the box-

and-pointer interpreter. The first aspect is shape level accuracy, which is the accuracy of

the interpreter when trying to label each individual shape or text in the diagram. The

second aspect of accuracy is stricter and involves measuring the ability of the interpreter

to interpret the correct meaning of the handwritten diagram. Both aspects are useful

when measuring the accuracy of an algorithm. The shape based measure of can help

determine under what circumstances the interpreter encounters accuracy problems. If this

information is known an instructor can bias the exercises to focus more on diagrams

which the interpreter can recognize well. If the shape based accuracy is high, then even if

the entire diagram was not interpreted correctly, the meaning can be inferred from the

shapes that were interpreted correctly. On the other hand, if no error correction is going

to be done in the aggregator, then the semantic accuracy rate is the important measure of

the accuracy of the system.

Samples of drawn box-and-pointer diagrams were collected from users who have

taken 6.001. Each user provided eight different diagrams. Table 7 shows the accuracy
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rates for each type of object. The data showed that boxes were recognized 70% of the

time, arrows were recognized 45% of the time, and the existence of a text object was

recognized 54% of the time. The content of the text was recognized correctly 21% of the

time. Out of the samples taken, the interpreter produced the correct semantic

representation 25% of the time. However most of the successful interpretations were

executed on very simple diagrams. The accuracy fell dramatically when the diagram

became complex.

Shape Accuracy Rate

Box 70%

Arrow 54%

Text 56%

Text Content 21%

Semantics 27%

Table 7: Recognition rates for different objects in box-and-pointer diagrams. Text is
counted as correct if the interpreter is correct in recognizing that a text object exists in a
group of strokes. If it is interpreted correctly, then Text Content is also counted.

When analyzing the accuracy of the interpreter, a strange interpretation problem

appeared. If the user drew a shape quickly, the LADDER recognizer would incorrectly

create lines from the shape. And example is shown in Figure 19. The highlighted part of

the diagram shows one stroke that comprises three sides of a box. In most cases, this

stroke would be processed and three lines would be created. In this case, the

preprocessor fails to accurately segment the stroke, and the two thin lines shown on the

diagram were created from the stroke. The top and side lines were not created, and

instead a line was created that spanned from the top left of the box to the bottom right.
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One assumption that was made when the interpreter was designed was that the

preprocessor would correctly segment the strokes. The accuracy of the clean-up stage

and the interpreter depend on this assumption. While this error does not account for all

of the errors in interpretation seen in the results, around 5% of the incorrectly recognized

boxes were a result of incorrectly segmented strokes.

Figure 19: Polyline misrecognized as one line

Box-and-Pointer Diagram Average Running Time

Yar 12.2 Seconds
foo

bar 102.3 Seconds

foo baz

Table 8: The average running time of the interpreter on two box-and-pointer diagrams.
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Another measure of the performance of the system is the running time of the

interpreter on diagrams of differing levels of complexity. Two different diagrams were

drawn by different users who have taken the introductory computer science course at

MIT and are familiar with box-and-pointer diagrams. These diagrams were run through

the interpreter and the running time of the interpreter was measured. During the course

of an application, the LADDER shape recognition process only needs to be started once,

and on subsequent interpretations the process is already running, the time to start this

process, about 5 seconds on the HP TabletPCs used in the experiment were not counted

in the running time totals. The average running time increases with the number of strokes

in the diagram. In particular, it increases dramatically with the number of text strokes.

When the text was removed from the more complicated diagram shown in table 8, the

average running time decreased to 25 seconds. This is because the text strokes are

divided by the shape recognizer into more primitives. There are more lines found in each

text object, and each of the lines is used when the recognizer tests constraints to find new

shapes.
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7. Discussion and Future Work

While the accuracy of the box-and-pointer interpretation system for Classroom

Learning Partner has been shown to approach 70% element recognition for boxes, and

around 50% recognition for text and arrows, there are many ways to improve the

accuracy and speed of the system. One way to improve the accuracy would be to

implement the algorithm described by Shilman and Viola for recognition and grouping of

strokes into text and shape strokes. [Shilman 2002] Much of the time used to interpret a

box-and-pointer diagram is spent recognizing shapes in the LADDER interpreter. During

this computation, much time is spent recognizing the shapes contained in text strokes.

Because text strokes are normally much more complex than strokes drawn for shape

objects, the text strokes are divided into more primitives. More lines are detected in the

average text stroke than the average shape stroke. These primitives are then used to find

other shapes in the LADDER interpreter. The constraint testing in LADDER is

exponential in the number of primitives, so the amount of time to recognize all of the

shapes in the LADDER interpreter increases dramatically when text is written. If we

could separate the text strokes from the shape strokes, the amount of time used by the

LADDER interpreter would decrease, making classroom interaction that much more real

time and connecting the instructor and students. The method described by Shilman and

Viola finds the optimal chunking of the diagram into sections that contain only text or

only shapes. A search tree that contains all possible stroke chunking is created. This tree

is then traversed, recognizing text and shapes for each chunking hypothesis, until the

optimal recognition results are found. In order for this strategy to work, the recognizer
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must be called many times. The LADDER recognizer could not be used in this way, as it

is too slow.

Another issue that could be resolved is the dependence on the LADDER

interpreter written in the Java programming language. Because Classroom Learning

Partner was written in the C# programming language, and the two languages are run in

separate virtual machines, the when recognizing shapes, the interpreter must create a new

Java process to start the LADDER shape recognizer. CLP must then pass stroke

information through a socket to LADDER, which then recognizes the strokes and passes

the shape information back through the socket to CLP, where the information is

marshaled into C# objects so that the clean-up phase of the interpreter can use the shape

information in the interpretation. Starting the LADDER process is only done once per

instance of CLP, and takes 3.2 seconds. Passing the stroke information takes about 7

seconds for a medium complexity box-and-pointer diagram. Passing the shape

information back to CLP takes a negligible amount of time. Overall, using the Java

LADDER implementation can add up to 10.2 seconds for a medium complexity diagram

interpretation. The speed of interpretation is a major factor in the usefulness of

interpretation in class, and implementing LADDER in C# would improve the speed

performance of the interpreter greatly.

In addition to the problems associated with the LADDER recognizer running in a

different process and language, the recognition speed is incredibly slow. While

separating the text ink from shape ink would greatly improve the speed of the shape

recognizer, it still may not be fast enough to run on the student machines. A better,

although more expensive system architecture could involve one or more very fast
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computers dedicated to interpreting the submitted diagrams. These computers could take

the load off of the already taxed, slower student Tablet PCs, and improve the speed of

interpretation. This would again improve the speed of the interaction that can take place

between the students and instructor, allowing the instructor to more immediately receive

feedback on how the students understand the material.

The box-and-pointer interpreter was designed with a few goals in mind. The need

for off-line interpretation, non-modal user interface, and lack of either student or

algorithmic training ensured that the interpreter could be used in Classroom Learning

Partner without distracting students and fitting into the existing architecture. These

design goals presented challenges. To overcome these challenges, the system was

designed to use different state of the art recognizers for shapes and text objects. The

results were then combined into the results of interpretation. However, because the text

recognizer produces many errors when presented with a shape, and the shape recognizer

produces many errors when presented with a text object, this approach is unable to

account for all of the errors, and the interpretation rate is very low. The system, however,

provides a base which can be extended to improve recognition results to a point where it

can be used successfully in Classroom Learning Partner.
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