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Abstract

Human perceptual abilities play a crucial role in the optimal design of virtual reality
and teleoperator systems. This thesis is concerned with the human perception of vir-
tual objects that can be touched and manually explored through a stylus, in addition
to viewing them graphically. Two sets of psychophysical experiments were designed
and conducted to investigate (1) the relative importance of force and torque feedback
in locating virtual objects purely haptically and (2) the effect of 3D perspective visual
images on the visual and haptic perception of size and stiffness of virtual objects.

In the first set of experiments, a novel hardware arrangement consisting of two
force-reflecting haptic interfaces connected by a common stylus was used in conjunc-
tion with a new haptic display algorithm called ray-based rendering. The ability of
subjects to identify the location of a thin plate orthogonal to the stylus was tested
under several conditions ranging from reflecting only the force at the stylus tip to
full force and torque feedback. The results show that it is important to display both
force and torque if the objects whose location needs to be identified can lie anywhere
within the haptic work space.

In the second set of experiments, virtual slots of varying length and buttons of
varying stiffness were displayed to the subjects, who then were asked to discriminate
their size and stiffness respectively using visual and/or haptic cues. The results of
the size experiments show that under vision alone, farther objects are perceived to be
smaller due to perspective cues and the addition of haptic feedback reduces this visual
bias. Similarly, the results of the stiffness experiments show that compliant objects
that are farther are perceived to be softer when there is only haptic feedback and
the addition of visual feedback reduces this haptic bias. These results demonstrate
that our visual and haptic systems compensate for each other such that the sensory
information that comes from visual and haptic channels is fused in an optimal manner.

Thesis Supervisor: Mandayam A. Srinivasan
Title: Principal Research Scientist, Dept. of Mechanical Engineering
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Chapter 1

Introduction

1.1 Hardware and Software Development in VEs

Virtual Environments (VEs), referred to as Virtual Reality in the popular press, are

computer generated environments with which users can interact in real-time. These

environments can be multimodal and immersive as well and can be used to perform

tasks that are dangerous, expensive, difficult or even impossible in real environments.

Some of the application areas for VEs include Industry, Education, Medicine, Enter-

tainment, and Marketing. The research work described in this thesis was conducted

using a desktop VE system consisting of a computer monitor for visual display and

a force reflecting haptic interface (PHANToM) to enable the user to touch and feel

virtual objects. Since the use of haptic interfaces in perceptual experiments is quite

new, a brief review of haptic machines and display software is described below (see

also Srinivasan, 1995; Srinivasan and Basdogan, 1997).

One of the first force-reflecting hand controllers to be integrated into VEs was at

the University of North Carolina in project GROPE (Brooks et al., 1990). Around

the same time, two haptic interfaces were built at MIT: the MIT Sandpaper, a force-

reflecting 2-DOF joystick able to display virtual textures (Minsky et al., 1990); the

Linear Grasper, which consisted of two vertical parallel plates whose resistance to

squeezing was determined by two motors controlled by a computer (Beauregard and

Srinivasan, 1997). In Japan, desktop master manipulators were developed in Tsukuba

10
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(Iwata, 1990; Noma and Iwata, 1993). At the University of British Columbia 6-

DOF, low-inertia and low friction hand controllers were built by taking advantage

of magnetic levitation technology (Salcudean et al., 1992). The haptic interface we

used in this research, PHANToM, was designed at the MIT Artificial Intelligence

Laboratory (Massie and Salisbury, 1994). It is a low-inertia device with three active

degrees of freedom and three additional passive degrees of freedom, which can convey

the feel of virtual objects through a thimble or a stylus.

Since haptic interfaces for interacting with VEs are quite recent, the software for

generating and rendering tactual images is in the early stages of development. The

development of efficient and systematic methods of rendering in a multimodal en-

vironment is essential for a high-quality simulation. The methods for point-based

touch interaction with virtual objects was first developed by Salisbury et al. (1995).

A constraint-based god-object method for generating convincing interaction forces

was also proposed, which modeled objects as rigid polyhedra (Zilles and Salisbury,

1995). Haptic display of deformable objects was also accomplished in the same year

(Swarup, 1995). Compact models of texture, shape, compliance, viscosity, friction,

and deformation were then implemented using a point force paradigm of haptic in-

teraction (Massie, 1996).

At the MIT Touch Lab, several haptic display algorithms and the associated ren-

dering software have been developed. To display smooth object shapes, a haptic

rendering algorithm called "Force Shading" was developed (Morgenbesser and Srini-

vasan, 1996). It employs controlled variation in the direction of the reflected force

vector to cause a flat or polyhedral surface to be perceived as a smooth convex or

concave shape. To facilitate rapid building of specific virtual environments, a tool

kit called "MAGIC" has been developed (Hou and Srinivasan, 1998). It provides the

user with virtual building blocks that can be displayed visually and haptically. The

user can select primitive shapes such as cylinders, spheres, cubes and cones; move

them and change their size, stiffness, and color; combine several primitive shapes

to form a new, more complex object; save the scene for future use. Besides, a new

haptic rendering software called "HaptiC-Binder" was developed to enable the user

11
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to interact with general polyhedral objects (Basdogan and Srinivasan, 1996). All the

haptic rendering software discussed above uses so called "point-based" method (see

Srinivasan and Basdogan, 1997, for a review). In this procedure, the probe is sim-

ply modeled as a point, and the force applied depends only on the depth the point

penetrates into the objects.

A "ray-based" rendering procedure was later proposed (Basdogan et. al., 1997),

in which the probe is modeled as a line segment. The ray-based haptic interaction

technique handles collisions of objects with the side of the probe in addition to those

with its tip, and therefore can provide additional haptic cues for conveying the exis-

tence and properties of objects. To implement this new rendering methodology, some

modification of hardware setup became necessary due to the need for the reflected

resultant force to be located at any point along the stylus. Two PHANToMs were

attached to the two ends of a stylus so that both force and torque could be reflected

to the user. In the next chapter, we describe an experiment that was designed and

carried out to investigate the influence of force and torque on human perception of

virtual object location under purely haptic feedback.

1.2 Multisensory Perception in VEs

Over the past few years, the topic of multisensory perception in virtual environments

has aroused the interest of many researchers owing to a wide variety of applications of

VEs. With recent advances in haptic interfaces and rendering techniques (Srinivasan

and Basdogan, 1997), we can now integrate vision and touch into VEs to study

human perception and performance. Compared to the experiments in the real world,

the VE technology enables better control over the stimuli needed to gain insight into

human multimodal perception. In particular, understanding the sensory interactions

between vision and touch can have a profound effect on the design of effective virtual

environments.

Ample evidence based on real world experiments has shown that visual information

can alter the haptic perception of spatial properties like size, range, location, and

12
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shape (reviewed by Heller and Schiff, 1991). For example, it is known that for spatial

information, we rely more on the visual cues than kinesthetic ones when the visual

information conflicts with the haptic information. However, it is not clear under what

conditions this is true. For example, previous research studies have shown that visual

and haptic modalities not only work in competition, but sometimes the combined

information from the two can improve the human perception of objects properties

(Heller, 1982; Manyam, 1986).

In studies concerning multimodal perception in VEs, it has been shown that vi-

sion and sound can affect the haptic perception of stiffness (Srinivasan et al., 1996;

DiFranco et al., 1997). In the study investigating the relationship between visual and

haptic perception, strong dominance of visual position information over kinesthetic

hand position information resulted in a compelling multimodal illusion (Srinivasan

et al., 1996). Spring stiffnesses that were easily discriminable under purely haptic

conditions were increasingly misperceived with increasing mismatch between visual

and haptic position information, culminating in totally erroneous judgments when the

two were fully in conflict. In the study on perceptual interactions between sound and

haptics, it was shown that sharper impact sounds caused many subjects to overesti-

mate the stiffness of the object they were tapping, but this illusion was not uniformly

strong for all the subjects (DiFranco et al., 1997).

In Chapters 3 to 5 of this thesis, our investigation on the influence of perspective

visual cues on the human perception of object properties has been described. The

role of 3D perspective graphics in multimodal VEs is important since it is a natural

representation of a wide field visual scene, but involves nonlinear transformation of

object geometries and therefore could result in a variety of perceptual illusions. Two

separate sets of experiments were designed and conducted to investigate the effect of

3D visual perspective on the visual and haptic perception of object size and stiffness.

The motivation behind each experiment is explained, along with the details of the

experimental design and the results obtained.

13
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Chapter 2

Haptic Exploration of Virtual

Objects Using a Stylus

2.1 Point and Ray Based Collision Detection Pro-

cedure in VEs

The conceptual differences between point and ray based haptic rendering is illustrated

in figure 2-1. In the middle of the figures are the visual images displayed to the sub-

jects. On the left, the type of collision detection and the associated force computation

method is shown. In point-based rendering, the end-effector of the haptic interface

is represented as a point cursor and the force reflected depends only on its depth of

penetration into the sphere. But in ray-based rendering, the collision of the whole

stylus, tip as well as side, with virtual objects is taken into account. The force as

well as torque reflected depends on the depth of penetration of both the plane below

contacting the tip of the stylus and the cube above contacting its side. The figures

on the right indicate that only pure force is reflected back in the case of point-based

methods, whereas both force and torque can be reflected back in the case of ray-based

rendering.
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Figure 2-1: (a)Point-based rendering (b)Ray-based rendering.

2.2 Force and Torque Considerations

Irrespective of the capabilities of the rendering algorithms to capture only force or

force and torque to be reflected, with the use of a single PHANToM device only

a resultant force can be displayed to the user. In spite of the absence of torque,

we felt an illusion of side collisions even when a single PHANToM was used in our

preliminary experiments. A similar experience has been reported by Hancock, 1996.

This illusion may be explained as due to our ability to perceive invariants during

active explorations with the hand in a specified geometric environment. For example,

as shown in figure 2-2, several straight lines representing the successive positions and

orientations of the stylus can intersect at only one point whose position in space is

invariant, that may be how we can perceive the existence of the cube vertex even in

the absence of torque feedback.

In order to sort out the roles of force and torque in perceiving location of contact

with objects, we connected two PHANToMs with a common stylus (figure 2-3). The
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Figure 2-2: The illusion of torque resulting from ray-based rendering implemented on
a single PHANToM.

resulting device was capable of reflecting back force and/or torque to the user.

2.3 Rendering for Side Collision

A simplified haptic environment was designed specifically for investigating side col-

lisions with this improved hardware setup and is shown schematically in figure 2-4.

The virtual object contacting the stylus is always a vertical plate below the stylus.

The plate is assumed to be infinitesimally thin and without friction so as to eliminate

any cues other than a vertical contact force in detecting the position of the plate.

The collision detection model is as shown in figure 2-5: it is only necessary to detect

whether the point on the stylus with the same z position as the plate (point H) is

below the top of the plate. If so, an appropriate force proportional to the depth of

penetration is calculated ('R' in figure 2-6), and the corresponding forces (F1 and F2)

whose resultant is R are sent from each of the PHANToMs. The algorithm used for

16



PHANToM 2

Stylus

Tip Tail

Figure 2-3: The setup for reflecting forces and torques using two PHANToMs.

detecting collision and calculating the reaction force R is given below.

Get tip and tail coordinates

Find the point H with the same

Z coordinates as the plate

4-
Check if point H is lower

than the plate top

4 Yes

Calculate force R from

depth d by Hooke's Law

(X1, Y1, Z1) = GetPos(PHANToM1)

(X2, Y2, Z2) = GetPos(PHANToM2) + (0, O, L)

Zh= Zp

Yh = Y1 + (Y2 - Y1)(Zh - Z1)/(Z2 - Z1)

IF((d = Yh- Yp) < 0)

R = -STIFFNESS * d

Because of the simplicity of the haptic environment and the rendering method,

very high update rates (up to 17000 updates/sec) were achieved and led to a high

quality of the feel of contact between the stylus and the vertical plate.

17
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Hand
Side View Stylus

Virtual Plate

Figure 2-4: Rendering for side contact.

(Stylus position with no collision) Tail

Ti___---- (Stylus position during collision
with the vertiaLplte)

d H

I Plate height

Reaction Force R (Upward) = - STIFFNESS * d

Figure 2-5: The collision detection model.
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TL T/.'

(X1,Y,Z1

t Position
F1 R F2

Applied from Reaction Force Applied from
PHANToM 1 Calculated PHANToM 2

Figure 2-6: The calculated force R is realized through the applied forces F1 and F2.

2.4 Experiment

An experiment was run using this rendering model to test the role played by forces

and torques in object position detection.

2.4.1 Experimental Design

The stimulus is still the virtual vertical plate, but the position of the plate is varied

as front, middle, and back, as shown is figure 2-7. Four kinds of force displays were

considered: tip force, pure force, pure torque, and force with torque.

The tip force condition is identical to using only one PHANToM connected to the

front tip. The force is of the same magnitude as the calculated R, but is reflected at

the tip with PHANToM 1 only. In the pure force condition, the forces reflected at the

tip and tail with each of the two PHANToMs will result in a resultant force with the

same magnitude as the calculated R, but is located at the grasp point so that there is

no torque with respect to the human hand. In the pure torque condition, the forces

reflected at the tip and tail will result in the same torque at the grasp point as that

from the calculated R, but the resultant force with respect to the hand will be zero.

In the force with torque condition, the forces sent at the tip and tail will result in the

19
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Side View

Plate

Front

V-

Figure 2-7: The stimulus for experiment.

same force magnitude and torque at the grasp point as that from the calculated R.

These four conditions are listed below (The variables are defined in figure 2-6.).

Tip Force

Pure Force

Pure Torque

Force+Torque

F1=R

F2 =0

F1+F2

L1x F1

F1 +F2

Llx F1

F1 +F2

Ll x Fl

=R

+L2 xF2 =0

= 0

+L2 x F2= L

= R

+L2 x F2 = L

In this experiment, there were totally 12 conditions. 10 subjects participated

in this experiment, with each stimulus repeated 20 times. Each time the subject

explored the virtual plate with the stylus and judged the position of the plate by

20
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Monitor instructed the subjects to

Move Forward or Backward if
the stylus was moved more than
±3mm range along the stylus axis.

C. .;t- -A ..... th , IrPvhnirrd to indicate

tne pOSltlOl1 Ut Lc1UMIt v 1itu-1 ,l V.'IL.-

plate.

PHANToM 1

Back 

Hardware for
haptic exploration PHANToM 2

Figure 2-8: The experimental setup.

picking 'front', 'middle', or 'back' as the response.

2.4.2 Experimental Setup

The experimental setup is as shown in figure 2-8. Because all the 10 subjects were

right-handed, the haptic device was placed on the right. The keyboard was for the

subjects to indicate their response - 'front', 'middle', or 'back' - after they explored

the virtual plate. To prevent the subjects from moving the stylus too far out along its

axis with respect to its initial zero position, the monitor was programmed to display

"Move Forward" or "Move Backward" if the stylus was moved out of a r±3mm range

along the forward or backward direction.

2.4.3 Experimental Results

The results of the experiment are shown in figure 2-9. In the case of the tip force,

the subjects almost always perceived the vertical plate to be in the front. It shows

21
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% Response
Stimulus Pure Torque Stimulus

Frontl Mid Back

Fron 97 96.5 85.5

Mid 3 3.5 12

Bac 0 0 2.5

ce Stimulus

Front Mid Back

Fron 20 0.5 4.5

id 79.5 97.5 74

Bac 0.5 2 21.5

O

v
0.

O

X

Force+T4
0
C.,
0
0.
C,
V04

Front Mid Back

Fron 99 17 0.5

Mid 0 63 0

Bac 1 20 99.5

orque Stimulus

Front Mid Back

Fron t 96 1 0.5

Mid 4 93 1.5

ac 0 6 98

Figure 2-9: Experimental results.

that the illusion we mentioned in section 2.2 is only restricted to the cases when the

virtual object is close to the tip. The display of 'pure force' caused the subjects to

judge the vertical plate to be in the center in most of the trials. Although it seems

to give very poor cues in judging object positions, in some cases the subjects did

perceive the true position, as indicated by approximately 20% correct responses for

the front and back positions. In the case of pure torque, the subjects could judge

pretty well when the plate was in the front or back, but performance was poor when

the plate was at the middle. In the force with torque case, the subjects judged all

the three object positions extremely well.

From these results, we can see that torque plays a vital role in object position

detection, and reflecting both forces and torques is important when the object is

located anywhere along the stylus.
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Virtual Stylus Real Stylus

Virtual Tip H Tip (Hand) Tail

4iP
R F1 (by PHAN1) F2 (by PHAN2)

Figure 2-10: The extension of the physical stylus by adding a virtual one at the tip
(or tail).

2.5 Stylus Extension

2.5.1 Virtual Stylus

When two PHANToMs are connected for force + torque feedback, due to the limited

length of the stylus and a reduction of the haptic workspace, the reachable objects

need to be located within a small region around the stylus. But with proper display of

forces with the two machines, this limitation can be overcome by virtually extending

the stylus.

The general idea of extension of stylus is shown in figure 2-10. The physical stylus

of the PHANToM is extended by adding a virtual stylus to the tip (or tail). The

collision detection algorithms are modified to include the virtual stylus. Then F1 and

F2 are applied from each of the machines to result in appropriate forces and torques

at the grasp point. The general algorithm is shown as below.
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Get tip and tail coordinates

of the real stylus

(X1, Y1, Z1) = GetPos(PHANToM1)

(X2, Y2, Z2) = GetPos(PHANToM2) + (0, O, Lr)

4-
Find virtual tip coordinates

from tip and tail coordinates

VirTip(X, Y, Z) = Tail(X, Y, Z)+

(Tip(X, Y, Z) - Tail(X, Y, Z)) * (LILr)

Use virtual tip as the stylus tip

(with tail) to detect collision

-
Calculate & send appropriate

forces via PHANToMs 1 & 2

(R, H(Xh, Yh, Zh)) = CollisionDetection

(VirTip(X, Y, Z), Tail(X, Y, Z))

F1 = R * (1 + (Lv - Lp)lLr)

F2 = R * ((Lp- Lv)/Lr)

2.5.2 Smoothness Loss and Improvement

When reaching and touching the objects that are far away using the virtual extension

to the stylus, sometimes there is loss of the original smoothness of contact, or even

vibrations can occur. The reason, as shown in figure 2-11, is that it is more difficult

to control the tip of the stylus when the tip is far away. Even when the hand moves

very little, the point on the stylus near the virtual tip can transverse a large distance.

If we use vertical plates with the same height as before, in the same time interval,

the virtual stylus penetrates the object (A) much more than object B. But the force

reflected back is not a smooth curve over time if it is updated with a frequency of

about 1 kHz. Therefore, in the same time interval, according to the elastic law (force

proportional to depth of penetration), the force increases due to contact with the

farther object is larger and the force vs. time curve is steeper. Therefore, the force

does not increase as smoothly for farther objects as for closer collisions.

Some methods to improve haptic rendering in this situation is shown in figure 2-

12. The original case is shown in the top row. The force vs. time curve is steeper at

the virtual tip when it collides with virtual objects. One way to solve this problem
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A B

Figure 2-11: The cause of vibration.

is to increase the update frequency as shown in the second row. In this way, even

though the slope of the force vs. time curve is still steeper, the force increase has

more steps and therefore is smoother. The second way is to adjust the object stiffness

depending on the distance of the objects (or collision point) to the hand position. The

difference in the slopes of the force vs. time curves can then be reduced as shown in

the third row in the figure. It should be noted that even with two real objects with

equal stiffness, when contacted with a rigid stick, the force rate for the farther object

will be higher than for the one closer to the hand. In addition to these two fixes,

proper damping can be added instead of using pure elastic law, in order to smooth

out the transients.
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Figure 2-12: Suggested solutions for minimizing vibration with virtually extended
stylus.
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Chapter 3

Size Discrimination Experiments

3.1 Experimental Goal

Experiments were designed to test the effect of visual perspective on the visual and

haptic perception of object size. Due to the visual perspective, objects that are

farther from us appear smaller in 3D space. The purpose of these experiments is

to investigate how well subjects allow for this nonlinear distortion during purely

visual discrimination, the corresponding perceptual performance during purely haptic

exploration of the objects, and the perceptual interactions when both visual and

haptic displays are used.

3.2 Experimental Design

3.2.1 Apparatus

These experiments were conducted with an A-Model (version 1.5) high resolution

PHANToM haptic interface (figure 3-1) and an SGI workstation. The subject sat in

a chair approximately 27 inches away from a 19-inch monitor. Since all the subjects

were right-handed, the PHANToM was located to the right hand side of the subject

and a black curtain was hung to prevent the subjects from viewing their hands during

the experiments. The computer keyboard was located in front of the subject for
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Figure 3-1: The PHANToM.

recording their answers. The experimental setup is shown in figure 3-2.

3.2.2 Slots

The stimuli were a pair of virtual slots, which were placed either side-by-side (S-S)

or rear-and-front (R-F). The slots in the haptic environment were 4mm in width and

3mm in depth, embedded on a virtual plate with dimension 200mm * 100mm * 20mm.

The length of the right (or front) slot was kept at 30mm, referred to as the stan-

dard slot, with the length of the left (or rear) slot varying among increments of

-20%, -10%,-5%, +5%, +10%, +20%, +30%, and +40% of the standard one, re-

ferred to as the variable slot. The details of variations in slot lengths are shown in

table 3.1 and in figure 3-3. The slots were graphically displayed to the subjects using

3D OpenInventor, with the perspective visual display parameters as shown in fig-

ure 3-4 and the sizes shown on the screen under this condition are listed in table 3.2.

Each pair of slots was displayed to the subjects at the same time and the length of the

variable slot was altered from trial to trial in random order. However, the sequence

of stimuli that were displayed to each subject was the same.

28

_ __ I I_____



Kill

Black Screen

Figure 3-2: Experimental setup.

Variation Side by Side (S-S) Rear and Front (R-F)
Percentage Right(Std.)(mm) Left(Var.)(mm) Front(Std.) (mm) Rear (Var.) (mm)

-20% 30.00 24.00 30.00 24.00
-10% 30.00 27.00 30.00 27.00
-5% 30.00 28.50 30.00 28.50
5% 30.00 31.50 30.00 31.50

10% 30.00 33.00 30.00 33.00
20% 30.00 36.00 30.00 36.00
30% 30.00 39.00 30.00 39.00
40% 30.00 42.00 30.00 42.00

Table 3.1: Slot sizes used in the experiments.
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Figure 3-3: The configuration of the slot sets (mm).

Camera 
30

20

10

0

-10

-20

--n

Figure 3-4: The perspective display parameters for the slot sets (mm).
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Variation Side by Side (S-S) Rear and Front (R-F)
Percentage Right(Std.)(mm) Left(Var.)(mm) Front(Std.)(mm) Rear(Var.) (mm)

-20% 63.46 54.11 63.46 10.34
-10% 63.46 58.93 63.46 11.46

-5% 63.46 61.23 63.46 12.00
5% 63.46 65.61 63.46 13.06

10% 63.46 67.70 63.46 13.58
20% 63.46 71.71 63.46 14.60
30% 63.46 75.49 63.46 15.58
40% 63.46 79.06 63.46 16.54

Table 3.2: Slot sizes shown on the screen.

3.3 Experimental Procedure

Ten right handed subjects (four females and six males) aged 18 - 30 participated

in these experiments. None of them had any prior experience with the PHANToM.

Before each session, the subject was asked to read the instructions for the experiment

and sign a consent form for participating in the experiment. A practice session lasting

15 minutes was offered to make sure that the subjects understood how to use the

PHANToM and felt comfortable with handling the stylus. At the start of each block

of trials, the subject was asked to center the stylus of PHANToM to ensure the same

starting position for each trial. At the end of the experiments, the subjects were

encouraged to describe the strategy they used in performing the assigned task.

Each subject was required to attend three sessions over a period of 3 to 7 days, and

participated in discrimination experiments under a total of 48 stimulus conditions (8

variations in the variable slot size, 2 slot pair configurations (S-S, R-F), and 3 display

cases (visual, haptic, and visual + haptic) as described below), with 20 trials for each

stimulus condition.

3.3.1 Experiments with Both Visual and Haptic Cues

In the first session, each subject was asked to view the 3D perspective graphics on the

screen (figures 3-5 and 3-6) and move the stylus to explore both the slots and judge

which slot was longer. A visual cursor was displayed to help the subject navigate in
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Figure 3-5: The visual cues in size discrimination experiments for the S-S case.

the 3D virtual world and explore the slots easily. The blocks of trials with S-S and

R-F conditions were alternated to minimize any possible effect of training in biasing

the results for one condition relative to the other. The answers input by the subjects

to indicate which slot was longer were either "+-" key for the left slot and "-+" key

for the right slot, or "" key for the rear slot and " key for the front slot.

3.3.2 Experiments with Visual Cues Only

In the second session, the subjects were asked not to use the PHANToM, but to

judge the length of the slots based only on the 3D perspective graphics display on

the screen.

3.3.3 Experiments with Haptic Cues Only

In this session, each subject was asked to use the PHANToM again, but instead of

showing the images of the slots, the screen only offered information on whether the

stylus was on the left (or rear) or right (or front) side, as in figure 3-7, to help the
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Figure 3-6: The visual cues in size discrimination experiments for the R-F case.

subjects with locating the slots. In this way, their judgment of the length depended

only on haptic cues.

3.4 Experimental Results

We analyzed the results in terms of the percentage of trials in which the subject

judged that the variable slot (the left one in S-S case and the rear one in R-F case)

was longer.

3.4.1 Experiments for Side-by-Side Slots with Both Visual

and Haptic Cues

The results for this experiment are listed in table 3.3. The values for each subject

have been averaged over the 20 trials in each condition. The plot for the average over

all the subjects and its range for 95% confidence in the results is shown in figure 3-8.

33

_ _ � �II II�� I__



Figure 3-7: The screen instructions for the haptic cues only condition.

3.4.2 Experiments for Rear-and-Front Slots with Visual and

Haptic Cues

The results for this experiment are listed in table 3.4. The values for each subject

have been averaged over the 20 trials in each condition. The plot for the average over

all the subjects and its range for 95% confidence in the results is shown in figure 3-9.

3.4.3 Experiments for Side-by-Side Slots with Visual Cues

Only

The results for this experiment are listed in table 3.5. The values for each subject

have been averaged over the 20 trials in each condition. The plot for the average over

all the subjects and its range for 95% confidence in the results is shown in figure 3-10.

3.4.4 Experiments for Rear-and-Front Slots with Visual Cues

Only

The results for this experiment are listed in table 3.6. The values for each subject

have been averaged over the 20 trials in each condition. The plot for the average over
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%Response the Variable Slot perceived Longer(in %)
S -20% -10% -5% 5% 10% 20% 30% 40%
1 0 0 0 100 100 100 100 100
2 0 0 0 100 100 100 100 100
3 0 0 0 100 100 100 100 100
4 0 0 0 95 100 100 100 100
5 0 0 0 100 100 100 100 100
6 0 0 0 100 100 100 100 100
7 0 0 0 100 100 100 100 100
8 0 5 10 85 100 95 100 100
9 0 0 5 100 100 100 100 100
10 0 0 5 100 100 100 100 100

|| Av 0.0+0.0 0.5+1.1 2.0±2.5 98.0±3.4 100.0±0.0 99.5±1.1 100.0±0.0 100.0±0.0

Table 3.3: The results for
cues.

each subject for side-by-side slots with visual and haptic

all the subjects and its range for 95% confidence in the results is shown in figure 3-11.

3.4.5 Experiments for Side-by-Side Slots with Haptic Cues

Only

The results for this experiment are listed in table 3.7. The values for each subject

have been averaged over the 20 trials in each condition. The plot for the average over

all the subjects and its range for 95% confidence in the results is shown in figure 3-12.

3.4.6 Experiments for Rear-and-Front Slots with Haptic

Cues Only

The results for this experiment are listed in table 3.8. The values for each subject

have been averaged over the 20 trials in each condition. The plot for the average over

all the subjects and its range for 95% confidence in the results is shown in figure 3-13.
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%Response the Variable Slot perceived Longer(in %)
S -20% -10% -5% 5% 10% 20% 30% 40%
1 25 35 45 80 85 100 100 100
2 5 10 40 80 100 95 100 95
3 10 30 50 85 100 100 100 100
4 0 0 5 30 40 80 90 100
5 0 0 0 5 30 55 80 100
6 0 5 15 55 80 100 100 100
7 5 10 10 20 15 45 60 80
8 5 15 20 50 25 70 65 90
9 0 55 30 45 65 90 85
10 5 0 25 25 25 55 75 95

Av 5.5±5.4 11.0±8.8 21.5i12.8 46.0±20.2 54.5i23.7 76.5+15.2 86.0+10.9 94.5±5.1

Table
cues.

3.4: The results for each subject for rear-and-front slots with visual and haptic

%Response the Variable Slot perceived Longer(in %)
S -20% -10% -5% 5% 10% 20% 30% 40%
1 0 0 0 100 100 100 100 100
2 0 0 0 100 100 100 100 100
3 0 0 0 100 100 100 100 100
4 0 0 0 100 100 100 100 100
5 0 0 0 100 100 100 100 100
6 0 0 0 100 100 100 100 100
7 0 0 5 100 100 100 100 100
8 0 0 0 100 95 100 100 100
9 0 0 5 100 100 100 100 100
10 0 0 0 100 100 100 100 100
Av 0.0±0.0 0.00tO.0 1.0i1.5 100.0+0.0 99.5i1.1 J 100.0+0.0 100.0+0.0 J 100.0i0.0 

Table 3.5: The results for each subject for side-by-side slots with visual cues only.
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%Response the Variable Slot perceived Longer(in %)
S -20% -10% -5% 5% 10% 20% 30% 40%
1 0 10 5 55 75 95 100 95
2 0 0 0 25 60 100 100 100
3 0 0 0 15 25 75 95 100
4 0 0 0 10 15 45 100 100
5 0 0 0 0 10 60 95 100
6 0 0 0 5 50 85 100 100
7 0 5 25 95 90 100 100 100
8 0 5 0 0 30 45 70 95
9 0 0 0 0 0 5 50 70
10 0 5 0 25 35 90 100 100

Av 0.0±0.0 2.5i2.5 J 3.0±5.6 23.0±21.8 39.0±20.9 70.0±22.1 91.0±12.2 96.0±6.7

Table 3.6: The results for each subject for rear-and-front slots with visual cues only.

%Response the Variable Slot perceived Longer(in %)
S -20% -10% -5% 5% 10% 20% 30% 40%
1 0 5 15 70 75 100 100 100
2 0 0 0 30 25 80 100 100
3 0 5 20 75 75 95 100 95
4 15 25 55 85 80 95 100 -100
5 0 5 20 55 90 100 100 100
6 0 5 15 65 90 100 100 100
7 0 10 50 50 75 90 100 100
8 0 0 0 100 95 100 100 100
9 10 30 50 55 90 90 95 100
10 5 5 20 55 55 85 90 95

Av 3.0±3.8 | 9.0±7.3 24.5±14.4 64.0±14.0 75.0±15.0 93.5±5.0 98.5±2.4 99.0±1.5 

Table 3.7: The results for each subject for side-by-side slots with haptic cues only.
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%Response the Variable Slot perceived Longer(in %)
S -20% -10% -5% 5% 10% 20% 30% 40%
1 5 15 40 70 85 95 100 100
2 0 10 35 65 80 100 100 100
3 15 35 60 80 90 100 100 100
4 10 55 50 80 65 85 90 100
5 0 0 5 35 40 70 95 100
6 0 5 25 80 90 100 100 100
7 0 25 20 55 70 90 95 95
8 0 5 0 0 30 45 70 95
9 5 5 45 35 75 75 90 95
10 5 45 55 65 60 90 95 100

Av 1 4.0±3.6 20.0+13.6 33.5+14.7 56.5+18.6 68.5i14.6 85.0+12.5 93.5±6.5 98.5±1.7

Table 3.8: The results for each subject for rear-and-front slots with haptic cues only.

%Response the Variable Slot perceived Longer
1

Co

0
a.
(1)

-20 -10 0 10 20 30 40

-20 -10 0 10 20 30 40

Length Increment for the Variable (Left) Slot (%)

Figure 3-8: The average results for side-by-side slots with visual and haptic cues.
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%Response the Variable Slot perceived Longer
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Figure 3-9: The average results for rear-and-front slots with visual and haptic cues.
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%Response the Variable Slot perceived Longer
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Figure 3-10: The average results for side-by-side slots with visual cues only.
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%Response the Variable Slot perceived Longer
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Figure 3-11: The average results for rear-and-front slots with visual cues only.
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%Response the Variable Slot perceived Longer
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Length Increment for the Variable (Left) Slot (%)

Figure 3-12: The average results for side-by-side slots with haptic cues only.
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%Response the Variable Slot perceived Longer
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Figure 3-13: The average results for rear-and-front slots with haptic cues only.
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Chapter 4

Stiffness Discrimination

Experiments

4.1 Experimental Goal

Experiments were designed to investigate the effect of visual perspective on the visual

and haptic perception of object stiffness. Due to 3D perspective graphics, a compliant

object that is farther from us appears to deform less than when it is nearer to us, under

the same force. The purpose is to investigate if it would be perceived as softer/stiffer

when its stiffness characteristics are explored via a haptic device with or without

accompanying visual display.

4.2 Experimental Design

4.2.1 Apparatus

The experimental setup was the same as described in section 3.2.1.

4.2.2 Spring Buttons

The stimuli were a pair of virtual buttons, which were placed either side-by-side (S-S)

or rear-and-front (R-F) (figure 4-1). They were graphically displayed on a monitor
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Figure 4-1: The configuration of the button sets (mm).

screen in perspective projection (figure 4-2). When the subjects pressed a virtual

button with the stylus of the PHANToM, the button deformed the same amount as

the displacement of the tip of the cursor. During the experiment, the stiffness of the

left (or rear) button was kept fixed, referred to as the standard button; the stiffness

of the right (or front) button, referred to as the variable button, varied as 0.7 0.8,

0.9, 1.0, 1.1, 1.2, and 1.3 times that of the standard one. The details of variations in

stiffness are listed in table 4.2.2. The stiffness of the variable button was altered from

trial to trial in random order. However, the sequence of stimuli that were displayed

to each subject was the same.
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Figure 4-2: The perspective display parameters for the button sets (mm).

Stiffness Side by Side (S-S) Rear and Front (R-F)
Ratio Left(N/mm) Right(N/mm) Rear(N/mm) Front(N/mm)

0.7 0.20 0.14 0.20 0.14

0.8 0.20 0.16 0.20 0.16

0.9 0.20 0.18 0.20 0.18

1.0 0.20 0.20 0.20 0.20

1.1 0.20 0.22 0.20 0.22

1.2 0.20 0.24 0.20 0.24

1.3 0.20 0.26 0.20 0.26

Table 4.1: The stiffness variation of the buttons.

46

JU



4.3 Experimental Procedure

Ten right handed subjects aged 18 - 30 participated in these experiments. All of

them had previously participated in several other experiments using the PHANToM.

Because this experiment involved dynamically pressing virtual objects, their previous

experience was beneficial in reducing any effects resulting from the unease in using the

PHANToM. Before each session, the subject was asked to read the instructions for the

experiment and sign a consent form for participating in the experiment. A practice

session lasting 15 minutes was offered to make sure that the subjects understood the

experimental procedure. At the start of each block of trials, the subject was asked

to center the stylus of PHANToM to ensure the same starting position for each trial.

At the end of the experiments, the subjects were encouraged to describe the strategy

they used in performing the assigned task.

The subjects came to participate in the experiment only once for about an hour

and a half within which there were two sessions as described below. As shown in

table 4.2.2, there were totally 28 stimulus conditions (7 variations in the variable

button stiffness, 2 button pair configurations (S-S, R-F), and 2 display cases (visual

+ haptic and haptic only)), with 12 trials for each stimulus condition.

4.3.1 Experiments with Both Visual and Haptic Cues

In the first session, the subjects were asked to view the 3D graphics on the screen

(figure 4-3) and manipulate the stylus to judge which button was softer. A visual

cursor was displayed to help the subject navigate in the 3D virtual world and explore

the buttons easily. They pressed "1" on the keyboard to pick the left (or rear) one,

or "2" to pick the right (or front) one, as shown on the screen. There were totally

10 blocks, with the odd numbered blocks representing the S-S case, and the even

numbered blocks representing the R-F case.
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Figure 4-3: The 3D graphics shown for visual and haptic cues experiments.

Figure 4-4: The 2D top-view shown for haptic cues only experiments.

4.3.2 Experiments with Haptic Cues Only

In the second session, the subjects were asked to view the top-view (2D) graphics

on the screen (figure 4-4) and move the stylus judge which button was softer. They

pressed either "1" (left, rear) or "2" (right, front) on the keyboard, as shown on the

screen. In this session, the subjectd had no visual information about the compliance

of the buttons, so it was a haptic cues only condition.
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4.4 Experimental Results

4.4.1 Experiments for Side-by-Side Buttons with Both Vi-

sual and Haptic Cues

The results for this experiment are listed in table 4.2. The values for each subject

have been averaged over the 12 trials in each condition. The plot for the average over

all the subjects and its range for 95% confidence in the results is shown in figure 4-5.

4.4.2 Experiments for Rear-and-Front Buttons with Both

Visual and Haptic Cues

The results for this experiment are listed in table 4.3. The values for each subject

have been averaged over the 12 trials in each condition. The plot for the average over

all the subjects and its range for 95% confidence in the results is shown in figure 4-6.

4.4.3 Experiments for Side-by-Side Buttons with Haptic

Cues Only

The results for this experiment are listed in table 4.4. The values for each subject

have been averaged over the 12 trials in each condition. The plot for the average over

all the subjects and its range for 95% confidence in the results is shown in figure 4-7.

4.4.4 Experiments for Rear-and-Front Buttons with Haptic

Cues Only

The results for this experiment are listed in table 4.5. The values for each subject

have been averaged over the 12 trials in each condition. The plot for the average over

all the subjects and its range for 95% confidence in the results is shown in figure 4-8.
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%Response the Variable Button perceived Softer(in %)
0.7 0.8 0.9 1.0 1.1 1.2 1.3

S1 100.00 100.00 75.00 33.33 0.00 8.33 0.00
S2 100.00 100.00 91.67 58.33 0.00 0.00 0.00
S3 100.00 100.00 100.00 75.00 0.00 0.00 0.00
S4 100.00 91.67 100.00 66.67 33.33 16.67 8.33
S5 100.00 100.00 100.00 6.67 0.00 0.00 0.00
S6 100.00 100.00 100.00 33.33 8.33 0.00 0.00
S7 100.00 100.00 100.00 66.67 0.00 0.00 0.00
S8 100.00 91.67 91.67 41.67 8.33 0.00 0.00
S9 100.00 100.00 91.67 33.33 0.00 0.00 0.00
S10 100.00 100.00 100.00 41.67 0.00 8.33 0.00

Ave _100.0±0.0 98.3±2.5 | 95.0±5.7 45.6±14.9 5.0±7.5 3.3±4.1 0.8±1.8 ]

Table 4.2: The results for each subject for side-by-side buttons with visual and haptic
cues.

%Response the Variable Button perceived Softer
1

o

Q)
CI

a)
C

0.7 0.8 0.9 1 1.1 1.2 1.3
Stiffness Increment for the Variable (Right) Button (%)

Figure 4-5: The results for side-by-side buttons with visual and haptic cues.
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%Response the Variable Button perceived Softer(in %)
0.7 0.8 0.9 1.0 1.1 1.2 1.3

S1 100.00 100.00 91.67 66.67 25.00 0.00 0.00
S2 100.00 100.00 75.00 8.33 8.33 0.00 0.00
S3 100.00 100.00 91.67 50.00 16.67 0.00 0.00
S4 100.00 100.00 91.67 50.00 8.33 0.00 0.00
S5 100.00 100.00 83.33 33.33 0.00 8.33 0.00
S6 100.00 100.00 100.00 91.67 33.33 0.00 0.00
S7 100.00 100.00 100.00 41.67 8.33 0.00 0.00
S8 100.00 100.00 100.00 91.67 75.00 33.33 33.33
S9 100.00 100.00 91.67 41.67 0.00 0.00 0.00
S10 100.00 100.00 100.00 41.67 0.00 8.33 0.00

Ave 100.0±0.0 100.0±0.0 92.5±5.9 51.6±18.3 17.5±16.4 5.0±7.5 3.37.5

Table 4.3: The results for each subject for rear-and-front buttons
haptic cues.

with visual and
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Figure 4-6: The results for rear-and-front buttons with visual and haptic cues.
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%Response the Variable Button perceived Softer(in %)
0.7 0.8 0.9 1.0 1.1 1.2 1.3

S1 100.00 100.00 75.00 50.00 0.00 0.00 0.00
S2 100.00 100.00 91.67 33.33 0.00 0.00 0.00
S3 100.00 100.00 100.00 75.00 8.33 0.00 0.00
S4 100.00 100.00 100.00 83.33 25.00 8.33 8.33
S5 100.00 100.00 100.00 91.67 16.67 0.00 0.00
S6 100.00 91.67 58.33 16.67 8.33 0.00 0.00
S7 100.00 100.00 100.00 100.00 58.33 0.00 0.00
S8 100.00 100.00 91.67 58.33 58.33 8.33 8.33
S9 100.00 100.00 100.00 83.33 0.00 8.33 0.00
S10 100.00 100.00 58.33 16.67 0.00 0.00 0.00

Ave 100.0±0.0 [ 99.1±1.8 87.5±12.3 60.8±21.9 17.5±16.4 2.5±2.8 1.6±2.5

Table 4.4: The results for each subject for side-by-side buttons with haptic cues only.
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Figure 4-7: The results for side-by-side buttons with haptic cues only.
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%Response the Variable Button perceived Softer(in %)
0.7 0.8 0.9 1.0 1.1 1.2 1.3

Si 100.00 91.67 33.33 8.33 0.00 0.00 0.00
S2 91.67 41.67 50.00 0.00 0.00 0.00 0.00
S3 100.00 100.00 100.00 91.67 41.67 0.00 0.00
S4 100.00 50.00 16.67 0.00 8.33 0.00 0.00
S5 100.00 91.67 8.33 0.00 0.00 0.00 0.00
S6 100.00 100.00 100.00 66.67 25.00 25.00 0.00
S7 100.00 91.67 58.33 0.00 0.00 0.00 0.00
S8 91.67 58.33 41.67 50.00 41.67 0.00 8.33
S9 100.00 91.67 41.67 8.33 8.33 0.00 0.00
S10 83.33 50.00 25.00 0.00 8.33 0.00 0.00

Ave 96.6±4.1 76.6+16.8 47.5±22.4 J 22.5+24.3 13.3+11.9 2.5+5.6 1 0.8±1.8

Table 4.5: The results for each subject for rear-and-front buttons with haptic cues
only.
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Figure 4-8: The results for rear-and-front buttons with haptic cues only.
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Chapter 5

Discussion on Size and Stiffness

Discrimination Experiments

5.1 Size Discrimination Experiments

From the results listed and plotted in section 3.4, we can see that in the experiments

providing both visual and haptic cues, the subjects' ability to discriminate the slot

lengths was very close to the expected results when the subject has perfect resolution

without perceptual bias (as in figure 5-1) in the S-S case, with very small differences

between subjects (figure 3-8). However, the subjects' performance was not so close

to the ideal in the R-F case, with larger differences between subjects (figure 3-9).

In the experiments in which only visual cues were provided, the trend was even

more obvious (figures 3-10 and 3-11): the average results in S-S case were even more

close to the ideal, with very small differences between subjects, and the average results

in R-F case deviated considerably from the ideal, with even larger differences between

subjects.

In the experiments in which only haptic cues were provided, the results for both

S-S and R-F cases were not close to the ideal, with approximately the same amount

of deviation (figures 3-12 and 3-13).

These results are replotted in the following sections for comparison and discussion.

The average values are shown by the solid curves and in some plots the range of data
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%Response the Variable Slot perceived Longer
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Figure 5-1: The
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expected result corresponding to perfect discrimination in both S-S
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for 95% confidence level are represented by the short vertical bars (plotted on only one

side of the curves for clarity), with the ideal curve(figure 5-1) shown for comparison.

5.1.1 The Performance when Only Visual Cues were Pro-

vided

We can see from figure 5-2 that under the visual cues only condition, the subjects'

performance was very close to the ideal curve for the S-S configuration. However,

the results deviate from the ideal curve for the R-F configuration and indicate the

presence of a bias as well as a decrease in resolution. For example, the 50% response

(i.e. PSE: Point of Subjective Equality) in figure 5-2 corresponds the variable slot

being about 14% longer than the standard slot. It means that when only visual cues

were provided and the actual length of the rear slot was about 1.14 times the length

of the front one, the two slots were perceived to be of the same size, i.e. a visual

bias of 14%. This result clearly shows that farther objects are perceived to be shorter

when only visual feedback is available. Moreover, the length increment of the variable

slot that is discriminable from the standard one is > 22% for longer variable slots

(corresponding to 75% response) and < 6% for shorter variable slots (corresponding

to 25% response). By subtracting the visual bias of 14% at PSE, we can infer a visual

resolution of 8%.

5.1.2 The Performance when Only Haptic Cues were Pro-

vided

For the haptic cues only condition, the results do not show any haptic bias since the

length increment for the variable slot is almost zero at the PSE for both S-S and R-F

configurations (figure 5-3). However, the haptic resolution is, on the average, poorer

than the visual resolution for each of the two slot configurations: about 5 to 10% for

S-S and 9 to 14% for R-F.
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%Response the Variable Slot perceived Longer

-20 -10 0 10 20 30

Length Increment for the Variable (Left in S-S, Rear in R-F) Slot (%)
40

Figure 5-2: The results when only visual cues were provided.
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%Response the Variable Slot perceived Longer
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Length Increment for the Variable (Left in S-S, Rear in R-F) Slot (%)

Figure 5-3: The results when only haptic cues were provided.
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%Response the Variable Slot perceived Longer
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Figure 5-4: The results when both visual and haptic cues were provided.

5.1.3 The Performance when Both Visual and Haptic Cues

were Provided

The results when both visual and haptic cues were provided (figure 5-4) suggest that

there is some form of sensory fusion: the performance in S-S configuration is about

the same as that for visual only case which is better than that for the haptic only case;

the performance in R-F has a reduced bias of 8% compared to the visual only case,

but a poorer resolution of around 12%. These results are better shown in figures 5-5

and 5-6, where the results for the visual + haptic condition are between the haptic

only and visual only curves. In other words, visual and haptic modalities of our

sensory system seem to work together along the direction of gaze (the direction in

which the perspective effects are dominant) in perceiving object size.
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Figure 5-5: The results for the side-by-side case.
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%Response the Variable Slot perceived Longer

Length Increment for the Variable Slot (%)

Figure 5-6: The results for the rear-and-front case.
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%Response the Variable Button perceived Softer

0.7 0.8 0.9 1 1.1 1.2
Stiffness Proportion for the Variable Button

Figure 5-7: The expected results corresponding to perfect discrimination performance.

5.2 Stiffness Discrimination Experiments

The results described in section 4.4 are replotted in the following sections for com-

parison and discussion. The average values are shown by the solid curve and in some

plots, the range of data for 95% confidence level are represented by the vertical solid

bars (plotted on only one side of the curves for clarity). Where appropriate, the ideal

curve (figure 5-7) is also shown for comparison.

In the stiffness discrimination experiments, when only haptic cues were available

(HO condition), for the S-S configuration the bias is approximately zero and the

resolution is about 6 to 8%. In the R-F configuration, the subjects felt the rear

button to be haptically softer than the front one. This effect can be seen in the curve

for the R-F configuration in figure 5-8: when the stiffness coefficient of the variable

button (the front one) is the same as the standard one (the rear one), the rear button

is perceived to be softer in about 80% of the trials. As determined by the PSE, the
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%Response the Variable Button perceived Softer

O-

Q)

Ca)0
C/)

n-

-30 -20 -10 0 10 20 30
Stiffness Increment for the Variable (Right in S-S, Front in R-F) Button (%)

Figure 5-8: The results when only haptic cues were provided (with 2D visual cues).

haptic bias for the R-F configuration is approximately -10% and the resolution is

about 10% under the HO condition. This bias disappears and the resolution improves

to about 5% for both S-S and R-F configurations when visual cues are added to the

scene (see figure 5-9).

From figure 5-11, we can also see that the effect of the visual feedback on the R-F

configuration is to shift the R-F curve to the right (i.e. reduction of bias) and make

it steeper (i.e. better resolution). This results in the standard button (the rear one)

being perceived as stiffer. It should be noted that there is no significant difference

between the curves corresponding to S-S and R-F configurations when visual and

haptic cues are both available to the subjects (figure 5-9).
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%Response the Variable Button perceived Softer

U)
Cv
C

CO
Q)
n-

-30 -20 -10 0 10 20
Stiffness Increment for the Variable (Right in S-S, Front in R-F) Button (%)

30

Figure 5-9: The results when both visual and haptic cues were provided (with 3D
visual cues).
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-30 -20 -10 0 10 20 30

Figure 5-10: The results for the side-by-side case.
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Figure 5-11: The results for the rear-and-front case.
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5.3 Conclusions

The results of the experiments described here show that the 3D perspective visual

displays in VEs indeed generate visual and haptic illusions due to biases in perception

such that the farther objects are perceived to be (1) shorter in length when there are

only visual cues and (2) softer when there are only haptic cues. However, when

both sensory cues are provided, sensory data is fused such that vision and touch

compensate for bias due to each other.

The results displayed in figure 5-6 can be interpreted in terms of the relative roles

played by vision and haptics as follows. For each length increment of the variable slot,

the difference in the response (%) between the visual + haptic case and the visual only

case can be thought of as the effect of haptics on vision. Similarly, the difference in

response (%) between haptic only and visual + haptic cases can be thought of as the

effect of vision on haptics. Normalizing the sum of the values to 100%, we obtain the

bar graph shown in figure 5-12. We only plot the range from -10% to +20% because

it seems that outside this region, due to obvious differences in the lengths of slots,

the judgment is not a typical compromise between the two senses. In figure 5-12, we

can see that as the lengths of the two slots presented to the subjects get closer, the

subjects rely more on haptic information which has no bias (figure 5-3).

In particular, the result that the farther objects are perceived to be softer when

only haptic cues are present is interesting and perhaps suggests a new concept of

haptic perspective. To ensure that this result was not an artifact of the robot arm

(i.e. position and force errors due to the kinematics of the haptic device) or our

experimental design, we performed three different tests, but the result did not change.

The haptic device was rotated 90 degrees and the experiment was repeated for both S-

S and R-F configurations. The calibration of the device was checked by hanging known

weights and by measuring the displacement of the stylus. Force and displacement data

showed perfect agreement. To further verify the results, the left and rear buttons were

designated as the variable button and the experiments were repeated for S-S and R-F

configurations, respectively. Based on the fact that these tests did not change the
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Data Fusion for Size Experiment
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Figure 5-12: Fusion of sensory data in the size discrimination experiment.

result, we speculate that this perceptual illusion may be due to the human kinesthetic

system. We observed that the subjects typically pressed each button one at a time

and palpated it using vertical oscillatory up and down motion until they made a

decision. During this process, only the wrist and elbow joints of the arm were active

if the button was close to the subject. However, if the button was further away, the

subjects extended their arm to reach the button and their elbow and shoulder joints

were activated and thus contributed to the judgment of stiffness.

In these stiffness perception experiments, we did not observe any significant dif-

ference in the response of subjects for S-S and R-F configurations when visual and

haptic cues were both provided to the subjects. We believe that there are two effects

that contribute to the outcome. These effects cancel each other, leading to no observ-

able difference between the curves: (1) Due to perspective effects, visually perceived

deformation of a button that is farther from us is less than the closer one. Hence, the

button that is farther from us is expected to be perceived as stiffer if only visual cues

are available. (2) Due to the attributes of human kinesthetic system, we have also
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seen that (see discussion above) the objects that are farther from us are perceived to

be softer when there is no perspective cue in the visual scene. Hence, it seems that

these two effects cancel each other and our sensory system successfully integrates

the information coming from haptic and visual modalities, resulting in a practically

unbiased perception.

69



Chapter 6

Future Work

6.1 Real Environment Experiments on Haptic Per-

spective

Many psychophysicists have been interested in human haptics research. The research

work mentioned in Chapters 3 - 5 can also be done in the real environment with

appropriate hardware setups. Then the results from experiments with real and vir-

tual objects can be compared and both visual and/or haptic displays in VEs can be

modified for more realistic interactions.

6.2 Improvement Work on the (Extended) Stylus

Inertia and/or friction need to be added to the (extended) stylus to make it approxi-

mate the real environment better. Human perceptual experiments in real and virtual

environments can be conducted to improve the rendering quality in VEs.
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6.3 Human Experiments on the Extension of Sty-

lus

Previously, some research has been done on the haptic perception by wielding a long

rod or contacting objects using a rod (e.g. probing) (Carello et al. 1992; Chan, 1994).

These experiments investigated the human capability to estimate distance and/or rod

length. The results show that the inertia of the rod is an important factor. After

adding inertia and other object properties to the stylus of a haptic interface through

software, we can also conduct similar research on this topic in VEs. By comparing

the results, we can modify the current VE displays to match the data obtained in

real environments so as to have realistic VEs.

6.4 The Expansion of 5 DOF to 6 DOF

In the ray-based rendering, with two PHANToMs connected, the device can reflect

appropriate 3D force and torque in two directions. But the feedback resulting from

external torque in the axial direction cannot be applied with this setup. Dr. Iwata has

suggested a method to overcome this limitation with a clever screw motion mechanism

(Iwata, 1993). In addition, a corresponding rendering method needs to be developed

to apply this technology.

6.5 Application of the Idea of Extending Stylus

to Other Areas

After the stylus is virtually extended with two haptic devices connected, the range

of reach can be extended and VEs in which humans use long hand tools to touch

farther objects can be constructed. The extension need not necessarily be linear,

and other shapes such as a bent stick can be virtually created and appropriate forces

can be applied using the two haptic devices. This enables many more possibilities

concerning the shape of the tool, which will not be limited to a short stick. But using
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shapes other than a straight stylus will result in torques in the axial direction and

the technology mentioned in the section above needs to be developed first.
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