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Abstract

Energetic minority protons with -100 keV effective temperature are routinely created
in Alcator C-Mod plasmas with the application of ICRF. A new multi-channel Com-
pact Neutral Particle Analyzer is used to make measurements of these distributions
in Alcator C-Mod's unique and reactor-relevant operating space via an active charge-
exchange technique (CX). Using a detailed model that accounts for beam, halo, and
impurity CX, core proton temperatures of 430-120 keV are directly measured for
the first time in lower density (neo0  0.8 - 1.5 x 1020/m 3) Alcator C-Mod plasmas
using only '-0.5 MW of ICRF power. The model found that the minority proton
temperatures are peaked spatially away from r/a=O, even for an on-axis resonance.
Additionally, noticeable phase-space anisotropy is seen as expected for ICRF heating.
The measured effective temperatures scale approximately with the Stix parameter.
The CNPA measurements are also compared with several leading simulation packages.
Preliminary comparisons with results from the AORSA/CQL3D Full-wave/Fokker-
Planck (FW/FP) code using a new synthetic diagnostic show good agreement and
demonstrate that these complex codes are required to simulate Alcator C-Mod's en-
ergetic minority populations with accuracy. These FW/FP analyses represent the
first comparison between predictions of such detailed codes and extensive minority
ion experimental measurements.
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Chapter 1

Introduction

With the potential of providing limitless clean energy, controlled nuclear fusion re-

mains a holy grail of physics and engineering. Now more than ever, the possibility

of a fusion reactor is realistically within sight. The conclusion of site negotiations

for the International Thermonuclear Experimental Reactor (ITER)[1], shown in Fig-

ure 1-1, opens the path to demonstrating the feasibility of commercial fusion power.

ITER is both a physics and engineering experiment, as it allows scientists to study

fusion reactor physics that current machines are just on the fringe of, which requires

assembling a reactor size fusion device.

The work presented in this thesis is composed of experimental and modeling results

performed on the Alcator C-Mod Tokamak[2], an experiment that operates at some

of the same parameters as ITER. The effort involves diagnosis of energetic particles

created from plasma heating, and comparisons with theory. These are active research

areas in fusion plasma physics, and ultimately relate to the viability of fusion as a

commercial power source.

In order to explain further the motivation and scope of the research in this thesis,
a review of fusion energy and the tokamak approach is first given. A comprehensive

overview of both is available from Wesson[3]. The next section introduces the area
of plasma heating, specifically the Ion-Cyclotron-Range-of-Frequency (ICRF) minor-
ity heating scheme, and provides details on the research performed for this thesis.
Following this is a description of the Alcator C-Mod tokamak at the MIT Plasma
Science and Fusion Center, and a detailed outline of the thesis.



Figure 1-1: The International Thermonuclear Experimental Reactor. (From the ITER
site[1])
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1.1 Fusion Energy

Physically, the bases of any near-term fusion device are the following exothermic

reactions:

D + T - He4 + n + 17.6MeV

D + D - He3 + n + 3.27MeV

D + D - T + H + 4.03MeV

D + He3 -- He 4 + H + 18.3MeV

The cross sections for these processes are shown in Figure 1-2. The two D-D

reactions have essentially the same cross section. Because the D-T cross section is

significantly higher than the D-D and D-He3 reactions, it is considered the choice for

first generation fusion reactors. Tritium is not naturally occurring, but can be bred

using the D-T produced neutron via:

Li 6 + n - He4 + T + 4.8MeV

Li 7 + n -- He4 +T + n - 2.5MeV

Conceptually, a D-T fusion reactor is thus simply a fusion reaction volume sur-

rounded by a ,1 m thick neutron blanket designed to moderate and absorb 14.1MeV

neutrons. Additionally, depending on the reactor concept, the energy from the

3.5 MeV a particle is typically released with very short range radiation that heats the

blanket's chamber facing wall (i.e. the first wall). The fusion power is then transferred

out of the blanket through heat exchangers.

The Li 6 reaction has a much higher cross section than the Li7 reaction at thermal

energies. Typically, D-T neutrons are first moderated in the blanket module, than
captured by Li6 for tritium breeding. Different fast neutron multipliers can be inserted

into the front of the blanket to ensure an adequate neutron supply for breeding.

Therefore, from an abstract and fuel cycle point of view, a fusion reactor is not
difficult to fathom. The challenge, however, lies in the physics of initiating and
sustaining the fusion reaction volume.

Because of Coulombic repulsion, the D-T, D-D, and D-He3 fusion reactions only
occur when the reactants have energies in the multi-keV range. This is clearly shown
in Figure 1-2. At these energies the cross sections start to become significant because
of tunneling through the Coulomb barrier. These required energies suggest that at
least one of the reactants must be in the form of a plasma or beam. Thus, one idea
that immediately comes to mind for a fusion reactor is to simply shoot a deuterium
beam into a tritium or deuterium loaded target; however, further analysis shows this
approach to be unworkable. As it turns out, the scattering cross section is always
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Figure 1-2: Cross sections for various fusion reactions. The D-D curve represents the
sum of the two possible reactions.

much higher than the fusion cross section; most of the beam energy goes into heating

of the target, and a net power output can not be achieved.

Hence, the key to a viable fusion reactor has always been the requirement of

holding together a sufficiently dense neutral plasma long enough and at high enough

temperatures for sufficient nuclear fusion reactions to occur. This is known as ther-

monuclear fusion. Simply, the ions must be physically and energetically confined

through many scattering collisions so that they have a chance to fuse. Macroscopi-

cally, this requirement is known in the simplest form as the Lawson criterion[4], based

on a simple steady-state power balance for the plasma:

3nekbTenin2 (av) f + Pin = 3 kbT (1.1)
TE

where nl, n2 are the densities of the fuel ions, multiplied by 1/2 if nl and n2 are

the same species. (av) is the reactivity of the fuel ions averaged over the reactant

velocity distributions, and can be approximated for the D-T reaction in the keV range
as < av >= 1.1 x 10- 24T 2 m3/s, with T in keV, and f is the amount of fusion energy

deposited into the plasma-typically 3.5 MeV per fusion reaction for D-T, since only
the a particle is confined. Pin refers to any externally applied heating power per
unit volume. The 14.1 MeV neutrons produced in D-T fusion escape the plasma
readily but are absorbed in the tritium breeding blanket, as mentioned above. The
first term on the right represents bulk plasma thermal losses, characterized by the



energy confinement time TE. An ideal equilibrated plasma with Zeff= 1 is assumed for

simplicity. Additional losses such as bremsstrahlung and line radiation are represented

by Pl.. These energy losses again heat the first wall of the surrounding structure.

In order for a reactor to be viable, the gain of the plasma, Q, defined as B, must

be much greater than one. When Q -- co, the plasma is ignited, and Pin - 0. In

this state, the fusion power deposited into the plasma is sufficient to balance losses;

only the injection of fuel ions to maintain fuel density and the removal of cooled

fusion products are required. Note that ignition is not required, nor desirable for a

reactor; only high Q. Typically a Q of -, 30 is needed[5]. Ignition is not necessarily

desirable because the power output of a reactor can be more easily controlled with a

finite Q plasma. Rearranging equation 1.1 assuming that the bulk plasmas losses are

greater than PS., and using the (ov) approximation given above, a reactor relevant

rating called the fusion triple product can be calculated. Simply, this is the plasma

density, temperature, and confinement time multiplied together. For D-T ignition, in
keV-s/m 3 :

nirET , 5 x 1021 (1.2)

At the energies required for significant fuel ions to overcome their mutual Columbic

repulsion and fuse, the containment of the plasma can not depend on regular material

walls. Thus, one option for achieving the requirements outlined in equations 1.1
and 1.2 has been to take advantage of a plasma's inherent ability to respond to

electromagnetic fields, and confine the plasma using magnetic fields. On a particle

level, ions and electrons in the plasma gyrate around field lines and are confined

because of the Lorentz force. This is known as magnetic confinement. To satisfy

equation 1.2 using magnetic confinement, densities around -, 1020 /m3 , temperatures
of - 10 keV, and a confinement time on the order of -, 1 s are needed. Another

approach is inertial confinement[6], where plasma confinement is provided by the
inertia of the system and hence very short. This approach requires lasers or other
drivers to compress a small sphere of fuel to ultra high densities to make up for the
short confinement time and essentially creates a small thermonuclear explosion.

ITER is based on a magnetic confinement concept called the tokamak. A schematic
of a tokamak and its main features are shown on Figure 1-3. To date, the tokamak is
the most successful concept for confining plasmas in a controlled manner at the keV
energies necessary for thermonuclear fusion to occur. Figure 1-4 illustrates the fusion
triple product progress in reaching the reactor regime by tokamaks. The tokamak is
a doughnut shaped device with a dominant Tesla-size magnetic field going toroidally
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Figure 1-3: Tokamak overview. (Left graphic from Nuclear Fusion[7])

around the machine, and a weaker poloidal magnetic field sustained by a toroidal cur-
rent in the plasma. These are denoted by BT, Bp, and Jp respectively. Typically, the
poloidal field is approximately an order of magnitude smaller than the toroidal field.
An additional vertical field which results in an inward J, x B, force keeps the plasma
from moving outward from the hoop force. Specifically, the dominant toroidal field
provides stability, while the poloidal field gives equilibrium. Thus, the plasma pres-
sure is roughly an order of magnitude lower than the total magnetic pressure, and the
vacuum fields are not normally altered significantly by the plasma's diamagnetism.

The toroidal field in a tokamak is created by coils surrounding the torus and results
in a vacuum field BT oc 1/R. The plasma current is induced either by transformer
action, with the primary consisting of a solenoid going through the center of the
torus and the plasma serving as the secondary, or via RF waves that interact with
the plasma and accelerate electrons in a preferred direction. Overall, the toroidal
and poloidal fields result in a helical magnetic field line structure around the torus.
Without collisions, electrons and ions in theory would then gyrate endlessly around
the torus, nearly following these field lines. In reality collisions and instabilities occur
and result in the heat losses modeled in equation 1.1. Additionally, these helical
fields, as they travel around the torus, form nested flux surfaces with constant plasma
pressure.

Despite the excellent progress made by tokamaks, the detailed physics of mag-
netic confinement is far from resolved. Key issues such as transport, heating, and
current drive are active areas of research. For example, the confinement time used in
equation 1.1 for the design of ITER is based on an extrapolation of an empirical fit of
all confinement time data available currently. Neoclassical theory predictions, based
on classical plasma orbit collisions modified for tokamak geometry, are available but
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Figure 1-4: Compilation of tokamak nrET results. The next generation tokamak
experiment, ITER, is expected to reach Q=10. (From the JET site[8])

predict a confinement time normally higher than observed in experiment. Thus, im-
portant experiments and studies are ongoing at current fusion devices to prepare for
both ITER operation and to understand further the physics of magnetic confinement.

1.2 Plasma Heating and Thesis Research

An interesting area of active research mentioned above is the use of RF waves to
heat the plasma. In order to reach the hot temperatures required from equation 1.1,
the plasmas in tokamaks are heated by various methods. The initial and primary
manner is Ohmic heating, which is simply heating caused by the toroidal current and
finite resistivity in the plasma. However, since the resistivity of the plasma scales

3

as Te 2, ohmic heating must usually be supplemented by other forms of heating to
reach large gain or ignition conditions. There are two auxiliary heating methods,
the first via the injection of energetic neutrals which can penetrate the plasma and
eventually give up their power to it through collisions. The second is via the injection
of large amounts of power via electromagnetic waves using antennas. Various heating
schemes involving waves are used. A scenario known as ICRF minority heating is very
effective at coupling large amounts of power into the bulk plasma. Here, a minority



Figure 1-5: ICRF power flow for a typical Alcator C-Mod plasma.

species refers to a population that is -< 10% of the bulk plasma. A plasma might

consists of - 95% deuterium, and - 5% hydrogen for minority heating, for example.

This scheme deposits the RF power into this minority population in the core of the

plasma, and tends to create a minority distribution that is much more energetic than

the bulk plasma. These accelerated minority ions are also typically anisotropic in

phase space. This hot minority population slows down on the bulk plasma through

collisions and serves as the RF power conduit for heating the rest of the plasma.

The use of ICRF minority heating in present experiments allows current plasmas to

reach high performance regimes, simulate the existence of a supra-thermal particle

population similar to MeV level fusion products in full scale fusion reactors, and to

study and understand the physics required for heating and maintaining reactor-size

high Q plasmas. A simple power flow chart illustrating the ICRF minority heating

scheme for Alcator C-Mod is shown in Figure 1-5.

This thesis aims to characterize and study the physics of the minority heating

scheme via the diagnosis of this energetic particle distribution sustained in the plasma

by ICRF heating. Previous work to characterize this mechanism on Alcator C-Mod in-

volved studying bulk plasma parameters, such as stored energy, electron temperature,
and neutron rates during RF injection[9]. These studies verified the general effective-

ness of ICRF minority heating and the existence of an energetic minority population.

However, none entailed the experimental diagnosis of the core minority population

itself. Accurate diagnosis of this population is important for detailed understanding

of the ICRF and energetic particle physics involved in Alcator C-Mod's unique op-



erating regime, and for comparisons with theory. Other tokamaks[10, 11, 12] have

diagnosed these energetic populations directly but they do not operate with Alcator

C-Mod's high densities or magnetic fields.

In general, the diagnosis of these minority energetic distributions in fusion plas-

mas is not trivial. Currently, there are three different approaches to making this

measurement. The first two diagnostic methods rely on the the principle of charge-

exchange (CX), where the minority hydrogen ion becomes neutral by taking an elec-

tron from a neutral or not fully ionized donor:

H + + A+b --+ Ho + A+(b+ )  (1.3)

In theory, the velocity of either participant is not affected by this reaction. The

first approach using charge-exchange involves H, spectroscopy; it typically measures

Doppler shifts and broadening of the Lyman-alpha line of charge-exchanged energetic

minority ions in order to infer an effective temperature of the minority species[13].

Usually a neutral beam is required to provide a significant source of neutrals to
overcome the large plasma light background. The use of a neutral beam to provide

electron donors is typically referred to as active CX. Passive CX refers to using only

the plasma's background electron donors. The second minority ion diagnostic tech-

nique, used for this thesis research, directly measures the energetic neutral particles

created through charge-exchange that escape from the plasma[14]. Both passive and

active CX signals can be considered. This method typically requires bulky neutral

particle analyzers and also requires several data extractions steps. The third, the

least employed, is the detection of gamma rays from nuclear reactions between the

fast distribution and bulk ions. The challenge with this method is the typically very
large equipment, in terms of shielding, that is necessary. The absolute signal level

can also be an issue[15].

The basis of this thesis involves both the design, construction, and implemen-
tation of a compact neutral particle analyzer (CNPA) array and the use of cou-
pled Full-wave/Fokker-Planck(FW/FP) codes such as the AORSA/CQL3D[16, 17]
or TORIC/FPPRF[18, 12] packages to study the temperature and RF power deposi-
tion of Alcator C-Mod's fast minority hydrogen ions in the 50-350keV range. FPPRF
and CQL3D are Fokker-Planck solvers which are coupled to wave propagation codes
and can simulate the minority distribution with full tokamak geometry considerations.

In terms of new results, the work in this thesis contributes to three areas: NPA
development, experimental measurements of ICRF minority tails, and comparison of



these results with numerical simulations. Specifically in the first area, the CNPA

involves several NPA innovations, most notable of which are fast digitization tech-

niques to replace traditional real-time analysis systems. Experimentally, first time

measurements of the core Alcator C-Mod minority proton distribution are presented

and analyzed first using a relatively simple model. Temperatures of up to -120 keV

are measured. The model found that the minority proton temperatures are fitted well

by a theoretical scaling calculated by Stix[19], and that these temperatures are peaked

off-axis, even for an on-axis resonance chord. Comparisons with the FW/FP solvers

are adequate and provide a potential explanation for the off-axis peaking result. In

particular the comparison with the new AORSA/CQL3D code is good. Preliminary

results with a full synthetic diagnostic based on the AORSA/CQL3D code also shows

reasonable agreement. These analyses with the FW/FP solvers represent the first

comparison between predictions of such detailed codes and experiment.

Before going into a detailed outline of the thesis, a brief introduction to the Alcator

C-Mod tokamak, where the experimental work for this thesis was performed, is given

below.

1.3 The Alcator C-Mod Tokamak

Presently, Alcator C-Mod is the high field diverted tokamak experiment in the world.

It is a high field, high density, compact device. The primary auxiliary heating system

is ICRF minority heating at 5.4 T for D(H), and 8 T for D(He3). Thus, H and He3

minority tails are routinely created in C-Mod plasmas except at the highest densities,

where the collisionality of the plasma is very high. Figure 1-6 is a schematic of Alcator

C-Mod and Table 1.1 lists it operating parameters. A new diagnostic neutral beam

(DNB)[20], capable of producing up to 7 A of 50 keV hydrogen neutrals for 1.5 s,

can be injected radially into the machine and permits active CX experiments. The

FWHM of the beam is typically -12 cm.

Currently, there are 3 sets of ICRF antennas in C-Mod. Two dipole antennas are

located at D and E Port, each delivering up to 1.5 MW of power at 80 MHz. A 4-

strap antenna with power up to 3 MW is stationed at J, typically operated at 78 MHz,

with a tuneable range of 50-80 MHz. J antenna can also be run at different phasing,

resulting in different k1l. So far, these antennas have coupled up to 5-6 MW of power

into Alcator C-Mod plasmas[2]; however, as shown later, when operating at the lower

density range of Alcator C-Mod (lined-integrated densities of less than -1020/m 3),

it only takes -1 MW for significant ICRF tails to form. It is these lower densities
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Figure 1-6: The Alcator C-Mod tokamak.

plasmas with moderate RF power that allow the use of neutral particle analyzers to
diagnose the energetic minority tail. These plasmas form the basis of this thesis.

A brief description of some of the plasma diagnostics is now given. The emphasis
is on measurements that are used or referred to extensively for this thesis. A complete
overview of the -25 diagnostic systems on Alcator C-Mod is available from Basse[21].

Density and Zeff: the plasma electron density is primarily measured via three
systems, the Thomson scattering system with core and edge channels, the visible
bremsstrahlung diagnostic, and a two-color interferometer system. All three systems
can provide spatial profiles at different time resolutions. Zeeff spatial profiles as a
function of time are available by comparing the results between these diagnostics.

Temperature: the plasma electron temperature is measured by up to four different
systems, depending on electron cyclotron emission cut-offs. These include the Thom-
son scattering system, and three different electron cyclotron emission diagnostics.
The bulk ion temperature is estimated from neutron counters.

For analysis that require detailed spatial density, temperature, and Zeff profiles,
the results from the above systems are combined to give spatial profiles with time
resolution of up to 60 Hz. Examples of these profiles used for this thesis are shown
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Table 1.1: Alcator C-Mod machine parameters (modified from J.Liptac)
Parameter Symbol Range or Value

Toroidal Field Bo 3.0-8.0 T
Plasma Current I, 0.4-2.0 MA
Major Radius Ro 68 cm
Minor Radius a 22 cm

Elongation K 0.9-1.8
Triangularity 6 0.1-0.85

Plasma Volume - 1 m3

ICRF Source Power 8 MW
LH Source Power 3-4 MW
Central Density neo 5 x 1019-2 x 1021 m -

Central Temperature Teo 0.5-5.0 keV
Max pulse length 5 s

in Figure 1-7, based on an IDL program by K. Zhurovich.

Impurity measurements: Alcator C-Mod has a large and flexible array of visible

light charge-exchange recombination spectroscopy channels. They are dominantly

concerned with edge phenomena, but several core channels can measure core boron
impurity densities using the DNB during low density Alcator C-Mod shots. Measure-

ments from these core channels play a role in interpreting the CNPA data set.

Edge gas pressure: several gauges with the ability to measure diagnostic port

neutral gas pressures in the ,0.1 mtorr range with time resolutions better than 1 ms
are available.

Magnetics: a large set of standard magnetic equilibrium diagnostics consisting

of B 0 coils, flux loops, B0 coils, and Rogowski coils are installed in Alcator C-Mod.
Primarily, these measurements are used for reconstruction of the MHD equilibrium
using the EFIT code and real-time control.

Soft x-rays: four soft x-ray (,2-10 keV) diode arrays consisting of a total of
152 channels provide extensive coverage of the plasma. Each diode provides a line
averaged measurement of the soft x-ray emissivity.

H/D ratio: the hydrogen to deuterium ratio of a discharge is estimated by mea-
suring the relative H and D Balmer line intensities from recycling edge neutrals. The
H/D meter is a dedicated photodiode array used for this purpose.

1.4 Thesis Outline and Overview

The rest of the thesis is outlined as follows:



The physics behind ICRF heating and its applicability to C-Mod is quickly re-

viewed in Chapter 2. In addition, the FW/FP packages used in this thesis are dis-

cussed.

In Chapter 3 the diagnostic principles behind energetic neutral particle analysis

and the CNPA diagnostic are examined.

Active and passive CNPA measurements from the 2005 Alcator C-mod campaign

are presented in Chapter 4. A relatively simple model for interpreting CNPA data

is given which includes the effects of impurity CX, beam profiles, and beam halo

neutrals. This simple model permits approximate measurements of the minority

proton temperature and its location, along with the RF power absorption.

Results from the model presented in Chapter 4 indicate phase space anisotropy of

the fast proton distribution, minority proton temperatures that scale with the Stix

parameter, and off-axis peaking of these protons. Comparisons of the flux surface

averaged minority temperature with results from the FW/FP solvers are reasonable

and provide a potential explanation for the observed peaking of the minority tail

off-axis. In particular the comparison with the new AORSA/CQL3D code is good,
while the TORIC5/FPPRF match is found to be relatively poor. An explanation is

provided and discussed.

A general synthetic NPA diagnostic created for this thesis is reviewed in Chapter

5. The coupling of the synthetic diagnostic with the CQL3D code is discussed in the

context of inferring spatial RF power deposition, minority distribution, and profiles

from CNPA measurements. First results are shown and reasonable agreement is again

found between the experiment and the AORSA/CQL3D simulations.

The thesis concludes with a short summary and suggestions for future work in

Chapter 6. Possible future ICRF experiments involving the CNPA are discussed, and

reasonable upgrades for the diagnostic are proposed.



Chapter 2

ICRF Minority Heating

2.1 Introduction

Alcator C-Mod relies on ICRF minority heating[19] as its main auxiliary plasma

heating method. ICRF minority heating is a subset of RF heating methods that uses

waves with frequencies comparable to the ion cyclotron frequency.

In order to heat a plasma to thermonuclear conditions using RF waves, the wave

chosen out of the large number of possible waves must meet several requirements;

the first is that the launched wave must be able to propagate to the region of desired

absorption, typically the center of the plasma. Second, the wave must have a strong

tendency to damp on the ions or electrons at that desired location. Collision-less de-

position relies on either Landau damping for heating in vil, or first to higher cyclotron

cyclotron absorption heating for heating in v±. Specifically, harmonic heating refers

to matching a wave's perpendicular electric field polarization to the gyro-motion of
either the ions or electrons; thus, at the right frequency the ion or electron essen-

tially feels a constant or stationary electric field which provides it with a constant

acceleration. From an engineering point of view, sources must be available at the

desired wave frequency and the launcher structure should not be too complicated.
Realistically, the launcher should also be located on the low field side, or outboard
side, of the tokamak where space is available. It is seen in this chapter that ICRF
minority heating, used on Alcator C-Mod and other tokamaks, satisfies all of these
conditions and therefore is one of the primarily schemes for heating fusion plasmas.

Specifically, ICRF minority heating relies on the compressional Alfvyn, magne-
tosonic, or fast wave. This wave is launched at a frequency that propagates easily
through the bulk plasma, but is damped strongly on a minority resonance via a first
harmonic cyclotron interaction. Typically in Alcator C-Mod, this would be a bulk



deuterium plasma with a minority hydrogen fraction of -5%. Thus, because the

power is deposited mostly into this minority species, an energetic minority distribu-

tion, or tail, is created. This tail then slows down primarily on the bulk electrons and

transfers the wave power to the bulk plasma, as charted in Figure 1-5. These bulk

deuterium plasmas with small amounts of hydrogen are commonly labeled D(H).

This chapter serves as a brief review of the physics behind ICRF minority heating,
and is broken into several sections. The first section reviews the cold plasma dispersion

relationship and the associated electric field polarization of the waves described by it.

Using these two relationships, the two waves that exist in the ion cyclotron regime, the

fast and slow Alfvyn waves, are identified and characterized in terms of propagation

and electric field polarization. It is seen that for a plasma with only one ion species,
neither wave satisfies both the propagation and damping criteria discussed above

for first harmonic fundamental heating. However, when a minority species is added,
both criteria are met when the fast wave is used to heat the minority species. A

typical Alcator C-Mod D(H) discharge is used to illustrate the wave physics behind

this heating scenario. With the heating scheme established, the last two sections

briefly review the expected behavior of the minority species when accelerated by this

non-isotropic RF drive in terms of the Fokker-Planck equation, and discuss the codes

which can simulate this heating scheme in detail.

Several reviews are available for a more comprehensive look at these topics.[22, 3,

23, 24, 25].
This chapter thus establishes the physics and features of the distribution function

that the CNPA measures.

2.2 Waves in the Ion Cyclotron Regime and the

Cold Plasma Model

The relevant plasma waves in the ion cyclotron frequency regime used for ion heating

in fusion plasmas can be easily derived by considering the wave dispersion tensor

for a homogenous cold plasma in an uniform magnetic field[22]. This dispersion

tensor stems from linearizing and coupling the ion and electron equations of motion

along with Maxwell's equations. Here, the polarization notation used in Wesson's

Tokamaks[3] is followed. Assuming a magnetic field aligned with the z-axis and

kI = 0, w(k) and the polarization of each allowed mode can be determined using the

following:
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where w, is the cyclotron frequency and w, the plasma frequency. The sums are taken
over each plasma species j, and the sign of the charge is included in the cyclotron

frequency. n' is the index of refraction. nll is determined by the antenna via[25]:

f=kB 1N m) No, mBo (2.2)
k B= B - N =q R rB,

where q is the safety factor, No the conserved toroidal mode number, m is the

poloidal mode number, typically much less than N4 . For the plasmas in this thesis,
the ICRF power is delivered through either the D or E port dipole antennas. These

dipoles operate with a 0:7r phasing which results in a dominant vacuum N4 of ±10.

kll is then approximately equal to L, since the m/q term is small.

Before going further the electric field polarization must be defined. The co-
ion (E. + iEy = E+) to counter-ion (E. - iE, = E_) rotation of the electric field can
be determined from equation 2.1, giving:

E_+ I = Iicxy + (E- - n2) (2.3)
E _ ie, - (E± - n2)

This ratio indicates how much of the electric field is rotating in the same sense as
the ions. Instinctively, a larger ratio would result in greater heating at the resonant
cyclotron frequency.

Returning to the dispersion tensor, taking the determinant of the 3x3 matrix in



equation 2.1 gives[3]:

EjLnI - [(E± - n2)(q + ell) + E]2 + n E11[(Cq - n2)2 + E] = 0 (2.4)

For frequencies in the ICRF heating regime (-10-100Mhz) with n±>>nl, equa-

tion 2.4 produces two solutions. They are termed the 'slow' and 'fast' waves. In both

of these cases, Ell is negative and much larger than eq and exy. The slow wave can be

derived by considering large n2 (hence 'slow') and balancing the first two terms:

-eo (2.5)

Due to the large and negative cll, n2 is positive only for 0 < Ej < n', and therefore

throughout most of the plasma the slow wave can not propagate. It therefore can not

be used for ICRF heating with a perpendicular launch.

The fast wave, however, bears more fruit. It can be derived by considering the

last two terms in equation 2.4 and again taking Eli to be large:

2 + ( - ) 2
n E2 +(±- ) (2.6)

The dispersion relationship contains two cut-offs and one resonance. The cut-offs

are given by the zeros of the numerator, while the resonance is determined by the

zero of the denominator. One of the cut-offs is associated with the finite kll of the

spectrum and results in a thin evanescent layer at the edge that the ICRF power

must tunnel through. As it turns out, a finite kll also results in Doppler broadening

of the cyclotron resonance and is needed for effective heating. Hence this thin cut-

off layer (-1 cm) is always present. For a purely deuterium plasma, the cut-off

condition is w~,d > 0.75c2k• [3]. With a finite kll, the cyclotron resonance is shifted

to w = wc + kilvll,m, where vli,m is the minority ion velocity parallel to the magnetic

field. The other cut-off and its associated resonance is the ion-ion hybrid pair. This

resonance and cut-off pair always occurs for finite minority density in the cold plasma

model. With finite temperature, the pair only occur when a critical minority fraction,

fc = n,/nb is reached. This critical value can be estimated when kinetic effects are

included[3]:

f 2kUvll,m Ab [2 ki9 ] (2.7)
whrw A, 1 - a2 wa

where the subscripts m and b indicate the minority and bulk species respectively.
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Figure 2-1: Fast wave nj, E+/E_, and wavelength as a function of major radius for a
low density, 5.4 T, 6% H minority Alcator C-Mod plasma using the cold plasma and
WKBJ approximations. Parabolic density and temperature profiles are used, with the
peak values indicated on the top plot. A constant kll of 15/m is used. The dashed line
on the top plot marks the major radius of the minority cyclotron resonance layer. In
the middle plot, the region in between the dashed lines marks the Doppler broadened
cyclotron resonance for a minority distribution with a parallel temperature of -5 keV.

vill,m here is an estimate of the averaged minority ion parallel velocity, CA the Alfvyn

velocity of the bulk ions, A the atomic mass number, and a = ZbAm/Z,Ab. Almost

all of the D(H) plasmas in this thesis are around or above this threshold.

It should be emphasized that this ion-ion hybrid resonance is not where minority
heating occurs but where mode conversion heating can take place.

With the wave dispersion and polarization defined, different heating scenarios can

now be examined. The minority heating scheme is motivated by the fact that the
polarization of the fast wave is basically all in the counter-ion direction near the
cyclotron resonance for the bulk species. This can be seen by solving equation 2.3 for
a single ion species plasma with the fast wave n1 and neglecting the small nll, giving:

E w - Wc,b
E+. W+W,,b

(2.8)
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Figure 2-2: Fast wave ni, E+/E_, and wavelength as a function of major radius for a
low density, 5.4 T, 15% H minority Alcator C-Mod plasma using the cold plasma and
WKBJ approximations. Parabolic density and temperature profiles are used, with the
peak values indicated on the top plot. A constant kll of 15/m is used. The dashed line
on the top plot marks the major radius of the minority cyclotron resonance layer. In
the middle plot, the region in between the dashed lines marks the Doppler broadened
cyclotron resonance for a minority distribution with a parallel temperature of '5 keV.
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Clearly, at w W we,b, the desired polarization is zero. The problem can be solved if a

minority species is added and used for heating, since now w is shifted to the minor-

ity species. Because the polarization is still mainly determined by the bulk plasma

species, it can be estimated by simply inserting the new minority cyclotron resonance

frequency in equation 2.8. For a D(H) plasma, w = 2Wc,d, resulting in E+/E_ - 1/3.

As it turns out, this simple explanation is inadequate as the polarization even for

the minority case is zero at the exact minority cyclotron resonance layer in the cold

plasma approximation. The heating actually comes from the significant E+ polariza-

tion around the exact minority cyclotron resonance when the minority density is low.

Hence, some Doppler broadening is required. Figures 2-1 and 2-2 plot n 2, electric

field polarization, and wavelength as a function of major radius using the WKBJ and

cold plasma approximations for two different plasmas. The first figure shows a low

minority fraction plasma which results in an ion-ion hybrid resonance close to the cy-

clotron resonance. The hybrid cut-off before that resonance has a very high E+/E_

which efficiently heats Doppler shifted minority protons. The second figure shows a

plasma with a high minority fraction which results in the ion-ion hybrid resonance

and the associated cut-off being further inboard. The high polarization region is now

further away from the cyclotron resonance and hence the heating is less efficient.

At a high enough minority density, most of the power makes it past the effective

minority damping area. Some of this power tunnels through the ion-ion hybrid cut-off

to mode convert into different waves at the ion-ion hybrid resonance layer that can

heat either ions or electrons. During a single pass, the maximum amount of power

incident on the cut-off that can be mode converted is 25%[3]. The rest is reflected

at the cut-off back toward the low field side edge cut-off. Finally, these fast wave

packets can again be reflected toward the high field side from either the edge cut-off
or the vacuum vessel itself and can then reach the ion-ion hybrid resonance again.
Hence, multiple passes of the wave must occur for effective mode conversion heating

when the wave is launched from the low field side. In other words, the minority
damping must be very weak for mode conversion heating to be dominant, since the
wave effectively requires multiple passes through the minority cyclotron resonance
layer before significant mode conversion can occur.

It should be noted that the WKBJ approximation used in the above examples
is not really valid for low density (neo - 1020) Alcator C-Mod plasmas, since the

wavelengths are comparable to the size of the plasma. In the real experiment, this
tends to produce poor ICRF wave focusing which results in significant wave power
along the entire resonance layer (R -, 69 cm, Z -1 -20 to 20 cm). Nevertheless,



the above cases are good qualitative examples of how the minority heating scheme

works, and what happens when at high minority fraction that regime is no longer

valid. Lastly, the inclusion of finite temperature effects in the dispersion relationship

will also alter this picture quantitatively but not qualitatively.

For the plasmas in this thesis, nH/nhe is typically -, 6% and the cyclotron resonance

is typically at R=69 cm. Thus, the region of high E+/E_ is encompassed by the

Doppler shift of the minority ions even at thermal energies and hence mode conversion

is expected to be small for these discharges. Mathematically, the fraction of input

power damped on the minority species during a single-pass can be estimated from[24]:

Pabs = 1 - e-2' (2.9)

2 Wp,b nm Zm (W/Wc,b 1(2.10)
2 c nb Zb 1+ 21

S2 m Ab• 2,b 2
S= 1 b - kIvl,m ,(2.11)i 4 nb Am Zb2 2 Il"II m

where again the subscripts b indicate the bulk or majority species, while m is for the

minority species. nm is the minority density, Ab the minority atomic number, Zm the

charge of the minority ion, c is the speed of light, Ro the magnetic axis, and vll,m is an

estimate of the minority parallel velocity. All of these quantities are evaluated at the

resonance. The low D(H) density plasmas in this thesis typically have Wp,d ' 1010/s

and minority parallel temperatures of - 25 keV, giving 2r - 1. This results in Pabs

-60% for single-pass absorption. As it turns out, detailed simulations discussed later

show -90% of the injected power being absorbed by the minority protons for the type

of plasmas studied in this thesis. The experimental data available from the CNPA for

these plasmas also concur with the conclusion that minority heating is the dominant

absorption mechanism.

2.3 The Minority Distribution

With the minority heating scheme defined in the last section, the details of the minor-

ity species under this RF drive can now be described. The situation is complicated as

the distribution can become non-Maxwellian and anisotropic. Here, the main physics

are highlighted with particular emphasis on subjects that are needed for the later

chapters. This review principally draws on Hammett's authoritative discussion of the

topic[12].

Before going into the equations that describe minority heating, a qualitative pic-
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Figure 2-3: Minority ion orbits during successive passes through the heating reso-
nance. For k1l - 0, the particle is heated in v1 only. Without collisions, the particle's
banana tips eventually end up at the resonance layer. The plot on the right quali-
tatively illustrates the climb in v 1 and total energy during each pass. The velocities
on the graph are evaluated at the major radius of the resonance. (Modified from
Figure 1.7 of Hammett's thesis[12])

O res-

I



ture of the physics is given. Simply, when the resonance layer is tuned to a particular

major radius of the plasma, minority ions are given a kick in perpendicular phase

space every time they pass through that major radius. The key feature of minority

ICRF heating in a tokamak is the fact that ICRF power heats the minority ions

dominantly in the perpendicular direction. This results in trapping of the minority

ions due to the 1/R dependence of the tokamak magnetic field and the adiabatic

invariant pi = mv_/2B. This heating tends to trap the fast ions and drive their

banana tips towards the heating resonance layer. Figure 2-3 illustrates this dynamic.

Furthermore, the fast ions with banana tips near the resonance are actually prefer-

entially heated because their v11 is small and thus they spend the longest amount of

time around the resonance. Hence, if pitch angle scattering is small relative to this

RF drive, the minority distribution is anisotropic, with significant density built up

around the heating resonance. In fact, these fast ions with their banana tips at the

resonance layer make up the hottest part of the minority distribution at a particular

flux surface. Figure 2-4 shows such a distribution plotted in mid-plane velocity space

for a specific flux surface. The energetic portions of the distribution are bunched up

around the heating resonance layer; this feature is colloquially referred to as 'rabbit

ears' and technically as resonance localization. As it turns out, for a wave with finite

k1l, the banana tips of the heated particles with Doppler-shifted resonances on either

the inboard or outboard sides of the un-shifted resonance are still pushed towards

the kli = 0 resonance layer. This is because the particles also gain a small increase

in vi1 for each heating pass through the shifted resonance for a wave with finite kll.

Skipping ahead, these are the energetic minority ions mainly measured by the CNPA

diagnostic described in the next chapter.

Specifically, these anisotropic features occur when the fast minority ions are pri-

marily slowing down on the bulk electrons with small pitch angle scattering. The

critical threshold energy between fast ion-ion and fast ion-electron slowing down is

typically around -20 keV for the low density plasmas in this thesis and given by[3]:

Ec = 14.8Te A 2/3 (2.12)

where the sum is taken over the bulk ions.

Mathematically, the time-evolution of the distribution can be described by the
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Figure 2-4: Contour plot of minority proton outboard mid-plane velocity at r/a=0.23
for a low density Alcator C-Mod shot from CQL3D simulations.

bounce-averaged Fokker-Planck equation with a quasilinear RF diffusion term:

af= (C(f)) + (Q(f)) (2.13)

where (C(f)) is the bounce-averaged collision operator, and (Q(f)) the bounce-

averaged quasilinear diffusion operator describing the ICRF forces on the minority

distribution. The full 2-D bounce-averaged (Q(f)) is quite complicated. A simplified

version assuming kll = k- = E_ = Ell = 0 is given by Hammett[12] which illuminates

the physics involved:

(Q) [ H 2rvrB 1 a (V2 PstixRo 1 Of (2.14)

[ITB BOIVllII v v1 iy 1 '\ '2mnR•es v± 9v±J re2s

Pstix = n ZqIE+ 2 1R Rre (2.15)B rlsinl )el) Ro

where the subscript res indicates evaluation at the resonance layer, and the m mi-
nority subscript has been dropped for convenience. Ro is the major radius of the
magnetic axis, 0 the poloidal angle of the minor radii r at the current flux surface
that intersects the resonance layer at Rre,. The mass of the minority ion is m. rB is
the bounce time, or the time the fast ion takes to go between each banana tip. For



passing particles TB is the time the particle takes for one poloidal orbit. H is the
Heaviside step function and is zero for particles that do not see the resonance layer.

Psti is Stix's original calculation for the flux surface averaged absorbed power assum-
ing an isotropic minority distriubtion[19]. As Hammett states, 'The factor in braces

weights Stix's Q by the fraction of time a particle spends in the resonance layer.' In

other words, the effect of preferential heating of trapped particles with their banana

tips near the resonance is clearly seen in this formulation of the quasilinear diffusion

operator; specifically, (Q) is inversely proportional to Ivlll at the resonance. This ac-

tually results in a weak but integrable singularity at the resonance for particles with

very small vil.

The evolution of the minority distribution can thus in turn affect the RF power ab-

sorption spatially, as minority ions that are trapped are preferentially heated. Hence,
a consistent simulation of the minority heating scheme requires iteration between a

wave solver and a Fokker-Planck solver to reach a good steady-state solution. Figure

2-5 illustrates this process schematically. Several codes are available for this calcula-

tion and discussed in the next section. Steady-state is expected in the -100-200 ms

time range for the ~-100 keV effective minority temperatures reached in the low den-

sity Alcator C-Mod plasmas studied in this thesis.

Some analytical steady-state solutions for f are available[19, 23, 27]. The defini-

tive work is Stix's solution for the minority distribution[19]. Stix assumed that the

minority distribution is isotropic and derived an analytical solution which balances

the collision and quasilinear RF operators. Neoclassical effects are not included. Al-

though as stated earlier the minority distribution is anisotropic, it turns out the Stix

distribution describes the energy dependence of the minority ions at a constant pitch

angle adequately. This distribution is used later for fitting the CNPA data. The Stix
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solution is:

In fs,(v) =(T)1+ T )L + T + f( + + K(E/ (2.16)

2
3,

lb = (mb/2Tb)1/ 2

Rb = Zefflb/le

(L= 3T (2.17)
3nTe

mTb m 1 + Rb + ]2/3
mb L 2E(1 + .)

K(x) 1 x du3/2K(x) = _x 1 + u3/

(P±) is the absorbed RF power density and C is the Stix parameter. The free
variable in the calculation is the absorbed power density. The Spitzer slowing down
time is t, and given by:

t, = 1.98 x 1019 AT 2 (2.18)
Z2 e InA 

(2.18)
where t, is in seconds, n, is in 1/m3, Te in keV, and InA - 16.

At high energies the distribution reaches a Maxwellian with an effective temper-
ature of:

T im ~ Te(1 + ()

Figure 2-6 gives examples of this distribution for different input power densities

in a low density Alcator C-Mod plasma.

For any distribution, an effective temperature can be defined by taking an energy
moment:

Tf 2 f mV2 f (V)di3
Te = - (E) =

3 ff (iY)dU

For the isotropic Stix distribution, this becomes:

2 folim ½mv2f ,(v)47rv 2dv
Teff = (E) = fom fs(v)4 2dv (2.19)

where Vlim = X2Elim/m is the velocity of the particle with the largest confined

orbit. This limit can lower the effective temperature noticeably. For example, a
stable distribution with an infinite temperature is flat. However, if Elim is 500 keV,
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Figure 2-6: The Stix distribution using parameters typical of low density Alcator
C-Mod plasmas. The Stix parameter, (, is varied with power densities from 0 to
5 W/cm3 . The distribution is Maxwellian when ( = 0.

the average energy can only be - 250 keV, even if the distribution has no slope.

Typically this effect becomes important when Teff'Elim/5. For the 600 kA discharges
in this thesis, the orbit induced energy limit at the core is in the -1 MeV level.

An analytical distribution that attempts to include the anisotropy of the minor-
ity ions is Hammett's model 2-D distribution based on Stix's results. Hammett[12]
proposed that the anisotropy of the minority ions can be approximately accounted
for in the Stix distribution by multiplying it with a pitch angle factor. The model in
outboard mid-plane velocity coordinates, with p = (Vll/V)mid is:

fsx2d(E, p) = fsx(E)K(E) [e-lA- *I 1/A7 + e-IM+P. 1/ " ] (2.20)

oo = Zeff (2.21)
4A (Z/Ab) 1 + E3/2E2 (2.21)

where p. is the resonance layer in outboard mid-plane velocity coordinates, a, the
characteristic spread in pitch angle of the distribution due to fast ion-ion and fast
ion-electron collisions, and K(E) is a normalization constant such that:

fx(E) = dAfqx2d(E, p)



This outboard mid-plane 2-D distribution is used later to make estimates of aver-
age minority temperatures from anisotropic CNPA data. The flux surface averaged

temperatures are determined from a distribution function using mid-plane coordinates

via equation 51 from Catto[28]. These flux surface averaged temperatures are found

to be very close or equivalent to the mid-plane pitch-angle averaged values. fýa2d is
normalized so that the mid-plane averaged power density and effective temperature

are the input power density and effective temperature of f,x in equation 2.20. It

should be emphasized that this distribution is only a model and has not been derived

from equation 2.13.

Before leaving this section, it should be specifically stated that these distributions

do not include finite orbit or neoclassical diffusion effects. One way the finite orbit

effects could affect the Stix distribution is through t,. For example, an energetic

and trapped minority ion in the core experiences a shorter slowing down time than

the t, calculated from the plasma parameters on its flux surface because part of its

orbit encompasses a much colder part of the plasma due to large banana widths. In

terms of diffusion effects, the dominant one in the core is typically sawteeth[11, 29].

There are also several neoclassical mechanisms, but they are usually small[12]. These

diffusion effects all tend to move the fast ions spatially outward from the center of the

plasma. In essence, when the above distributions are used to fit experimental data

from a specified flux surface, the fit attempts to account for these finite orbit and

neoclassical diffusion effects through varying the input power density. For synthetic

diagnostic comparisons, these effects have to be included in the simulation if they are

important, since by definition there are no free parameters.

For the plasmas in this thesis, the sawteeth are intentionally made smaller by

running 600 kA discharges instead of the typical 800 kA. In fact, active CX CNPA

count rates show little correlation with sawteeth for these discharges. Hence, sawteeth

induced diffusion should be small. As for finite orbit size, the RF power is kept low for

the shots in this thesis in order to keep the peak fast ion temperature below - 100 keV

in order to minimize orbit effects. As discussed later, reasonable agreement between

the experimental data and detailed synthetic diagnostic is found without explicitly

including these effects. However, their inclusion would improve the comparison since

the synthetic minority spectra are spatially closer to r/a , 0 than the experimental

data.



2.4 Coupled Wave and Fokker-Planck Solvers

In this thesis, the experimentally based minority proton temperatures and distribu-

tions are compared with several leading numerical packages with coupled wave and

Fokker-Planck solvers. This includes the TRANSP based TORIC5/FPPRF code,

GENRAY/CQL3D, and AORSA/CQL3D. In this section, a quick description of each

of these packages is given with the appropriate references. None of these codes are

complete and show why ICRF simulation is still an active area of research.

The TORIC5/FPPRF code is based on coupling Brambilla's full wave solver[18]
with Hammett's bounce-averaged Fokker-Planck solver[12]. FPPRF is a 2-D bounce-

averaged Fokker-Planck solver utilizing the physics discussed in the last section for
ICRF heating. As for the wave solver, the TORIC5 code is fully 2-D and can ac-
count for arbitrary plasma equilibria. A symmetric No spectrum with the dominant
mode number is typically used. The main assumption made in the code is k±p < 1
for the hot dielectric tensor[22]. This amounts to assuming that finite Larmor ra-
dius, or FLR, effects are small. Non-thermal species are modeled using equivalent
bi-Maxwellian distributions, specifically Ti and TI1. This means that during each
iteration between TORIC5 and FPPRF, the simulated 2-D distribution from FPPRF
is averaged to calculate an equivalent Ti and TI1. In other words, the details of the
minority distribution, including the trapping effects and density build-up around the
heating resonance are lost. This thesis argues that this incomplete coupling and use of
bi-Maxwellian distributions is the main reason for the observed discrepancies between
the experimental data and the TORIC5/FPPRF simulation results documented in
Chapter 4.

In contrast to TORIC, AORSA[16] is a 2-D full wave solver that makes no approx-
imation to the hot dielectric tensor and can handle arbitrary distributions for the non-
thermal species. The disadvantage to such a complete approach is the large computa-
tion resources required. This wave solver was recently coupled to the CQL3D[17] code
which contains the same physics as FPPRF for ICRF heating. In general, CQL3D is
a more versatile code in that it is also used for other wave-plasma interactions such as
lower hybrid or electron cyclotron heating. The iteration process in AORSA/CQL3D
retains the full 2-D distribution from CQL3D and thus accounts for the the effects
missing in the TORIC5/FPPRF code. A complication with this new package is that
the coupling code can only handle one No at a time. Because the launched fast wave
spectrum for heating is symmetric in NO, the launched power in the simulation should
be distributed evenly between positive and negative No, as done in TORIC5/FPPRF.



At the moment this is approximately simulated in AORSA/CQL3D by averaging the

end results of the positive and negative No cases. Detailed analysis using these pre-

liminary AORSA/CQL3D results with a new synthetic diagnostic written as part of

this thesis shows reasonable agreement with the experimental data. This is given in

Chapter 5.

Lastly, results from the GENRAY/CQL3D package are also used in this thesis

work. GENRAY[30] is a general purpose ray-tracing code. For the work here, the

wave solver uses the cold plasma approximation for propagation. Finite temperature

effects similar to equation 2.9 are used to calculate the absorption. Numerous rays are

used in order to simulate the finite poloidal extent of the antenna and the symmetric

N4 spectrum. As discussed, the WKBJ approximation used in ray-tracing is not valid

for the low density plasmas studied here and the GENRAY/CQL3D results are used

in the synthetic diagnostic to show this. These calculations are also in Chapter 5.

For this thesis, neoclassical diffusion and finite orbit size effects are again not

implemented in the Fokker-Planck solutions discussed above.

2.5 Conclusion

In this chapter, the theory for ICRF minority heating is reviewed in the context of

the experimental and numerical work done for this thesis. First, the physics behind

the minority heating scheme is studied using the cold plasma dispersion relationship.

Efficient absorption of the fast wave is shown and discussed. Second, the details of

the minority distribution under this RF drive is considered with the Fokker-Planck

equation. Analytical steady-state solutions of this minority distribution are given. It

is demonstrated that the details of this distribution are important in the absorption

process. Hence, iteration between a wave and Fokker-Plank solver is required for

detailed simulations of minority heating. Several leading simulation packages with

coupled wave and Fokker-Planck solvers used in this thesis are reviewed.



Chapter 3

The Compact Neutral Particle

Analyzer

3.1 Introduction

In this chapter, a detailed description of the new multi-channel Alcator C-Mod Com-

pact Neutral Particle Analyzer is given. This new diagnostic is a major part of this

thesis work and involved several innovations, such as post-shot pulse height analy-

sis (PHA), compared with standard direct-sight neutral particle analyzers. These

innovations were required for successful operation of the diagnostic in Alcator C-

Mod's challenging plasma environment. PHA here refers to detector systems that

determine the energy of each particle that interacts with the detector.

The rest of this chapter is broken into several sections. First, the design prin-

ciples behind the CNPA are discussed and followed by a review of traditional PHA

systems. Second, the CNPA setup and unique engineering features are described.

Lastly, calibration results, plasma background measurements, and sample CX data

are given.

3.2 Design Criteria and Operating Principles

Employing neutral particle analysis on Alcator C-Mod to measure the energetic mi-
nority tails as described in Chapters 1 and 2 involves challenges such as limited di-
agnostic port space, high plasma densities (nfo - 1020/m 3), and low signal-to-noise.

The desire for multiple viewing chords with limited space prohibits the use of tradi-
tional EIIB neutral particle analyzers with stripping cells and steering electromagnetic



Figure 3-1: A EIIB neutral particle analyzer previously installed on Alcator C-Mod.

fields. One of these large analyzers is shown in Figure 3-1. This difficulty compelled a
unique compact multi-channel Si diode PHA solution with a direct view of the plasma
and operated in post-shot PHA mode using fast digitization techniques. This setup
has the advantages of extreme compactness, lower equipment costs, and relative sim-
plicity compared with traditional mass spectroscopy methods. For the 2005 and 2006
Alcator C-Mod campaigns, this four-channel compact neutral particle analyzer was
implemented and operated in both active and passive NPA mode. Similar diode-based
direct-sight NPA setups have been successfully employed on other fusion devices[31];
but none with Alcator C-Mod's high plasma densities and relatively weak neutral
beam, and then only with real-time PHA. Instead of traditional real-time PHA, the
CNPA digitizes and stores the detector shaping amplifier voltage for post-shot soft-
ware analysis[32]. This arrangement eliminates baseline shifts that can be significant
during plasma events like sawtooth crashes, and allows for potential extraction of
pile-up pulses. There are, however, some trade-offs in employing a Si diode system
versus a normal neutral particle analyzer. First, without a steering electromagnetic
field, the ability to diagnose different types of nuclei is lost. For Alcator C-Mod, this
is not an issue since only energetic protons are created in ICRF heated D(H) plasmas,
and the CNPA measures particles with energies greater than '50 keV (> T k ,u 1-
5 keV) only. Second, the direct-view diode system is susceptible to plasma soft x-ray
and bulk deuterium CX noise, potentially more sensitive to cell EMF pickup, and has
a lower counting capability than an EIjB analyzer. The lowered counting capability
comes from the fact that there are many more detectors on an EIIB analyzer and they
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Figure 3-2: A schematic comparison of a traditional mass spectroscopy based neutral
particle analyzer and a PHA based system with a direct view of the plasma.

do not need to be operated in PHA mode. These constraints impose some limits on

the operation of the CNPA and are illustrated graphically in Figure 3-2.

Before fully describing the CNPA diagnostic, a review of PHA radiation detection

systems is given below.

The CNPA system is based on using fast reversed biased silicon diodes as detectors

for energetic hydrogen neutrals. These types of detectors, when operated in pulse-

height analysis mode, permit detection and energy analysis of particles striking the

detector. An extensive survey of these Si based systems is available from Knoll[33].

Here, a quick review of the principles and characteristics involved is given. For the

purposes here, the energetic neutrals are essentially instantly ionized when they strike

the detector or any other solid surface.

A typical Si diode based PHA system consists of a reversed biased silicon diode

detector, a preamplifier, a shaping amplifier, and a pulse-height analyzer. Figure 3-3

illustrates this setup schematically. First an ion or photon hits the silicon detector

and induces some current in system. This current comes from electron-hole pairs

created in the diode at a rate of 1 hole/pair per f.3.5 eV deposited by the energetic

particle. For a strongly biased, thin, and undamaged diode, these hole-pairs traverse
the entire detector in the nanosecond time range with basically no recombination. As
for the electron hole-pair creation, ions have well defined ranges in materials and hence
give up all of their energy to the detector as long as the diode is thick enough. Ions
dominantly slow down through coulomb collisions with the electrons in the material.
X-rays and gammas, on the other hand, do not have sharply defined ranges since their
interaction mean free paths are large. Hence, only a certain fraction of the incident
photons give up energy to the diode. The energy of the photon can also be deposited

r
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Figure 3-3: Top: A typical Si diode based particle detection pulse height analysis
system. The characteristic shapes of the output voltage pulses for the preamplifier
and amplifier are shown. Bottom: Preamplifier and amplifier voltage pulses during
pile-up, caused by multiple incident particles during an effective collection time.

into the detector via different reactions, such as Compton scattering or photoelectric

absorption. For this thesis, the energy required to create an electron-hole pair is

essentially independent of the type of particle that deposited it. This is not the case

for heavy ions, however.

Once the electron-hole pairs are created, this current is collected by the charge-

sensitive preamplifier. The output of this preamplifier consists of a sharp voltage

peak whose height is proportional to the energy deposited in the diode by the incident

particle. This peak decays via a long exponential decline with fall-times greater than

tens of ps. The fall-time is typically much longer than the transit time of hole-pairs in

the diode to ensure complete charge collection. This pulse is then fed into a shaping

amplifier, which reshapes the pulse into a Gaussian-like peak with a pulse width in the

pis range. The peak is thus amplified and widened so that the pulse height analyzer

can determine the height of the pulse and bin it into the appropriate channel. This

spectrum of counts vs. bins, with the proper calibration, represent the desired counts

vs. energy result.

Several complications can occur with this typical approach to radiation detection.

First, as illustrated in the bottom graph of Figure 3-3, pile-up of voltage pulses

can occur when the incident flux of particles is too large. Most PHA system can

remove this pile-up, but the counts are effectively lost. The state-of-the art real-time

detector systems are hence limited to a count rate of -200k/s. Another problem

is that electronic pickup in the system can result in spurious counts in the spectra.
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Figure 3-4: Schematic of the three channel vertical detector array and the system
sightlines in the plasma. The horizontal detector is mounted on a SMA feedthrough
and uses a traditional NIM preamp with shaping amplifier setup. Its distance to the
plasma axis is -2 m.

This can not be easily diagnosed from the pulse-height analyzer. Related to this
issue is that the baseline could potentially shift during operation, which would result
in incorrect spectra. Lastly, the pulse height analyzer discriminator threshold and
binning widths must be set before the experiment, since the raw shaping amplifier
voltage is not saved.

All of these problems can play a role if a typical direct-sight real-time PHA system
is used on Alcator C-Mod. The CNPA, described in the next section, resolves most of
these issues via fast digitization of the shaping amplifier voltage and post-shot pulse
height analysis.

3.3 Description of the CNPA

The CNPA consists of three vertical and one horizontal sightlines, as illustrated in
Figure 3-4. The horizontal channel is auxiliary and only available during periods
when the Alcator C-Mod lower hybrid antenna is not installed. The sightlines of the
diagnostic are arranged such that the three vertical chords view the phase space of
the neutral distribution that is predicted to be most energetic, while the remaining
horizontal channel sees neutrals that should be slower. The details of these sightlines
and their detector systems are considered below.

The vertical viewing chords use a three channel, 3 x 1 mm 2 IRD AXUV-3ELA
detector array with a nominal 1500 A thick Al foil for shielding visible light, while the
horizontal channel utilizes an IRD AXUVHS5 SMA mount detector with a nominal

?·~ I· 1~1._3 Vencar Chords

nsnmn 
m nnner· j·· · ·- ·-



1000 A Al foil. The actual foil thicknesses are inferred using an alpha source and the

SRIM code[34]. The foils are found to be 1550 A and 1250 A thick respectively. Hy-

drogen neutrals traversing the foil are assumed to be instantly ionized. The detectors

are rated as 25 pm and 35 pm thick, have dead-layers less than 70 A, and are chosen

to minimize response to the plasma neutron and gamma background. In addition

to light shielding, the protective foils shelter the diodes from CX neutral particles

originating from the bulk plasma deuterium ions. The SRIM code predicts that the

1550 A Al foil with an oxide layer is equivalent to a stopping power of ~-14-21 keV for

50-350 keV hydrogen neutrals, and ,12-17 keV for a 1250 A Al foil. Here, an effective

attenuation of 20 and 17 keV is taken; the small error at higher energies is basically

negligible. Consequently, the primary source of non-neutral noise for the diagnostic

is the significant background plasma soft x-rays (-1-10 keV) that are not blocked.

This noise limits the resolution of the CNPA and typically the maximum permissible

neutral count rate. This issue is analyzed in detail in the next section. A variable

knife-edge aperture determines the 6tendue of the vertical detectors; see Figure 3-4.

Normally, the vertical channels are operated with an 6tendue of - 6 x 10-12 m2-str.

The vertical channels cover R from -65 to 70 cm, depending on the aperture setting.

Here they are referred to as Chl to 3, with Chl being the innermost channel, and

Ch3 the outermost. Typically, each diode in the array has a viewing cone width of

-2 cm at the mid-plane and hence there is some overlap between the three channels.

The horizontal channel, or Ch4, employs a permanent 6.3 cm long passivated stainless

tube and pinhole (-0.25 mm D) for collimation. Its viewing cone width is -3 cm

on-axis with an etendue similar to the vertical channels. Figure 3-5 illustrates the

horizontal channel setup.

Currently, the vertical channels view the radial injected DNB perpendicularly,
while the horizontal channel is only available for passive CX experiments. With the

DNB, there is some spatial localization of the CX signal for the vertical channels. All

four channels essentially see particles with local vil/v <~ 5 x 10- 3 . Thus, the vertical

channels are geared toward observing particles with large vj at their banana tips.

Again, the horizontal channel is designed to view a portion of the minority proton

phase space that is weaker. This is discussed further with Fokker-Planck simulations.

Based on RF/Fokker-Planck solvers like GENRAY/CQL3D[17] and FPPRF[12],

energetic minority distributions in low density Alcator C-Mod plasmas are expected

to be noticeably anisotropic in phase space, as discussed in Chapter 2. Figure 3-

6 reviews the CQL3D simulation of a limited L-mode low density Alcator C-Mod

shot which clearly illustrates the anisotropy of the fast proton distribution at the
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Figure 3-6: Contour plot of minority hydrogen outboard mid-plane velocity at
r/a=0.23 for a low density Alcator C-Mod shot from CQL3D simulations. The re-
gions of the distribution viewed by the CNPA are qualitatively highlighted. The
trapped/passing boundary is also indicated.



outer mid-plane. The parts of the distribution viewed by the vertical and horizontal

detectors are highlighted, and show that the vertical channels should view the most

energetic portions of the hydrogen distribution. These energetic 'rabbit ears' in the

outer mid-plane velocity distribution are a result of fast ion resonance localization,
again characterized by energetic minority ions with banana tips near the resonant

major radius. The vertical channels are thus designed to measure these minority ions

at their turning point or banana tips, where the local v11 is - 0.

Electronically, the vertical detectors are connected directly to the integrated elec-

tronics housing via a D-Sub9 vacuum feedthrough. The vertical channel array comes

as an 8-pin DIP and is mounted on a Teflon socket with --2.5 cm long, 30 gauge cop-

per wire connections to the feedthrough. The integrated electronics housing contains

three sets of AC-coupled Cremat CR-110 preamplifiers with 140 As fall-time connected

to fixed gain Gaussian shaping amplifiers with a 1 is pulse width, and mounted on a

primary motherboard. The amplifiers are developed in-house for the Alcator C-Mod

HXR diagnostic[35]. Each set of preamplifiers and amplifiers is shielded from each

other via an internal Al shield in the housing. This significantly reduces cross-talk

between the channels to approximately 8%. The amplifier voltage outputs are then

digitized at 10 MHz by a D-tacq Dt216 CPCI digitizer via 18m of RG316 cables with

SMA connectors. The electronic housing is an iridized Al enclosure and contains

conducting gaskets for RF shielding; this box is placed within an additional Al RF

shield that also covers the detectors. This Al shield eliminates EMF noise and pickup

from the EF coils and DNB due to typical machine operation. The operating range

of the vertical channels is -50-350 keV, limited by the shaping amplifier electronic

rail, the attenuation of the Al foil, and the baseline noise caused by the soft x-ray

flux. Figure 3-7 shows further details of the vertical channels electronics.

The horizontal channel uses a more typical NIM setup, with the detector AC

coupled to an Ortec 142 preamp via a 7.6 cm long RG316 SMA cable. The Ortec

preamp has a fall-time of 44 As. The use of preamps with fast fall times for the

CNPA is critical as slower fall-times allow the non-neutral signal to saturate the

preamplifier quickly. A ~1 m long RG316 cable connects the preamp to an Ortec

572 shaping amplifier usually operated with a shaping time of 0.25 is and a 100x

gain, giving a base width of -1.2 As for each pulse. The amplifier voltage output is

again digitized by a D-tacq Dt216 CPCI digitizer operated at 10 MHz and connected

with 6 m of RG316 cable. Noise and pickup due to EMF are less of an issue for the

horizontal channel because of its location. The electronics limit the horizontal channel

to '4 MeV for PHA for the above settings but because the amplifier parameters
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Figure 3-7: Left: The three channel vertical detector and feedthrough socket. Right:
Interior of the integrated electronics housing for the vertical channels

are easily changeable, different energy ranges can be chosen depending on expected

plasma conditions.

The D-tacq Dt216 digitizer is the basis of the post-shot PHA system. Enough

memory is available on the digitizer for an entire Alcator C-Mod shot, typically around

2 s. These data, usually '30-40 Mb, are then processed after the shot to extract

pulse-height information. The removal of real-time processing constraints allows for

sophisticated PHA software routines, such as fitting of pile-up pulses. In addition,

the full voltage data are instrumental in discerning various electronic pickups, plasma

induced noise, and preamplifier saturation for the CNPA. Currently, the CNPA is run

at maximum count rates of <100k/s, which results in little pileup; hence the PHA

routine employed does not perform Gaussian fits of each pulse. However, the routine

does account for baseline shifts and rejects the small amount of pileup that is present.

3.4 Calibration and PHA routine

The CNPA is calibrated with a combination of sources and the motherboard's built-

in test circuit. The vertical channels with fixed gains are calibrated with an Am241

59.5 keV gamma source, a 60-140 keV deuterium ion beam operated by the PSFC

HEDP group, and the Alcator C-Mod DNB at 33-46 keV during beam-into-gas ex-

J

L
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Figure 3-8: Pulse-height spectrum from the vertical array for a beam-into-gas calibra-
tion with the DNB at 46 keV. The 46 keV DNB neutrals are slowed to -24 keV by the
CNPA protective foil. The FWHM of the DNB fit is 6 keV and involves a convolution
of the energy spread from the detector, the DNB, and the straggling through the Al
foil.

periments. The Rutherford backscattered flux from a thin gold foil is used with the

deuterium beam to minimize potentially damaging fluxes to the detectors. The pro-

tective foil was not installed for the deuterium ion beam calibration. Complete doc-

umentation of these calibration experiments are in Appendix A. The beam-into-gas

DNB data were taken with the protective Al foil in place; DNB neutrals at 33-46 keV

are thus slowed to -13-24 keV before they hit the detector. Additionally, the DNB

calibration points are scaled by -5%, based on known decreased detector efficiencies

at these lower energies[36].

Figures 3-8 and 3-9 show some of the calibration results for Ch3 of the vertical

array using the above sources. The voltage to keV response for the channel is V(E) =
0.011E - 0.043. All three channels have slopes within -5% of each other. In general
the linear calibration fits are excellent. The total error in the calibration is estimated
to be -,8%.

The voltage to keV fits for Chl-3 without the CNPA 1550 A Al protective foil are:

V(E)1 = 0.0117E - 0.0485 (3.1)

V(E)2 = 0.0114E - 0.0412 (3.2)

V(E)3 = 0.0111E - 0.0429 (3.3)

The horizontal CNPA channel is also calibrated with multiple sources; the Am241
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Figure 3-9: Summary of the calibration data for Ch3 of the CNPA

gamma and alpha source, the preamplifier's test circuit, and the DNB at 46 keV.
The ability to switch the voltage gain on the Ortec 572 shaping amplifier permits the
use of the alpha source at 5.5 MeV without an attenuator. The horizontal channel
voltage to keV calibration gives V(E)=0.0026E +/-8% for the settings described in
the previous section.

The PHA routine used for both calibration and plasma operation involves the
following steps: (1) determine an average baseline by smoothing the raw voltage
baseline data over a specific period, typically 0.1ms (2) subtract the voltage data
with this smoothed baseline (3) find voltage peaks above a specified threshold (4)
reject pile-up by considering the length of time between adjacent voltage peaks (5)
find the peak of each pulse and store this value along with the time of the pulse. No
fitting is used to determine the peak so there is a small tendency to underestimate the
real peak value if the digitization rate is low compared with the pulse width. Figure 3-
10 illustrates graphically some of these steps during a large sawtooth crash and clearly
shows the importance of an accurate baseline determination. The figure shows voltage
data from the horizontal channel equipped with the Ortec 572 module which uses an
automatic baseline restoration circuit. Plainly, a traditional PHA approach would
have missed counts with this skewed baseline since the voltage threshold discriminator
is constant, causing a false correlation with sawtooth crashes. The baseline shifts in
the vertical channels are significantly smaller. In general, it is likely that these shifts
are related to the AC coupling time constants between each stage of the electronics
and the sudden large rise in the detector baseline current due to the sawtooth crash.
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Figure 3-10: PHA during a large sawtooth crash from shot 1050818008. The time
axis in the plot is shifted for convenience. The first panel shows the shaping amplifier
voltage from the horizontal channel during the crash, which occurs at t -0.6 ms
(vertical solid line). The soft x-ray flux from the central vertical chord goes from 90
to 60 kW/m 2 during this period. The baseline shift is caused by the sudden burst of
x-rays and light of a large crash. The dash line is the baseline used by the post-shot
PHA routine to correct for this large shift. The second panel shows the corrected
voltage data with counts above 0.2 V marked by the PHA routine. Pulses(PUR)
indicates counts that pass the pile-up check.
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Figure 3-11: Typical baseline standard deviation as a function of soft x-ray flux for
the vertical channels. The data shown is taken from the ramp-up phase of two low
density L-mode discharges (1050818008 and 1050818011) before the application of
RF.

3.5 Response to Plasma Background

The detectors are verified to have almost no response to the neutron and gamma
background, allowing for operation in passive mode without background subtraction.
The maximum neutron rate on C-Mod is typically 41014/s, resulting in only ~10
counts above 50 keV for the CNPA during a shot. The most significant non-neutral
noise induced by the plasma is via soft x-rays, which results in increasing fluctuations
on the baseline and limits the energy resolution of the detected neutral particles.
These x-rays have energies of -1-10 keV, pass through the Al foil easily, and have
mean free paths much less than the detector active thickness. The x-rays also have
the adverse effect of raising the energy threshold of detectable neutrals. Figure 3-11
is a plot of the baseline noise level as a function of soft x-ray emittance for a low
density (neo0 1020/m 3), limited, L-mode shots that have a passive >70 keV neutral
count rate of ,,10k/s. Lower single null(LSN) shots typically have smaller soft x-
ray emittance and thus permit higher count rates with the same resolution. This
count rate/resolution trade-off can make it difficult to study transient fast ion events,
such as fast ion diffusion from sawteeth. With low density plasmas, the DNB can
increase the neutral signal by approximately an order of magnitude. These signal-to-
noise issues with the CNPA are probably unique to Alcator C-Mod, as other devices
typically operate at much lower densities and employ strong heating neutral beams.
Both of these differences can increase the fast neutral signal-to-noise dramatically.
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3.6 Experimental Data

To give an example of spectra taken by the CNPA, a basic low density, LSN, 5.4 T,
600 kA, 0.6 MW, -7% minority ICRF D(H) Alcator C-Mod shot, 1051206002, is now

examined. Both passive and active CX data are available for this discharge as the

DNB fired from t=1 to 1.15 s at full power. The relevant plasma parameters along

with the count rates for the CNPA are shown in Figure 3-12. The raw spectra using

the PHA routine described above are illustrated in Figure 3-13.

Analysis and modeling for this data is fully discussed in the next Chapter; the

raw data are shown here to provide a sample of what the CNPA detects.
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Figure 3-12: Plasma parameters and CNPA count rates for shot 1051206002. The
DNB fires from t=1-1.15 s. A large increase in count rate occurs for the channels
viewing the beam. Fast particles are only detected when the RF is on.

65

40

5 02 0 ......C.u . . .i . .. . .. . . . .

200... . .C PA.. Ch -Counts. - ---------------------- (i m. .......0 0 .... ...... .A. h..C u ts ( . ... .............. ......ý0900--- ------ C1PXth2-Countsfj Oms) ---------------------

5000-- .........CNPA Ch 3Counts (4150ms)---............................

2 0 -- - - --- - ------ - ------------------------ .. ... ... ... .... ... ... ..

100 .. . ...... C NPA -H oiz Counti s ,"C ............ ...........



.10 O
10

e | O Chl, t=0.85-ls
So 0 Chl, t=1-1.15

+ *' *P *= 0z 0 0 6, , ,• •,2

100 150 200 250 300

10 S* 0 Ch2, t=0.85-1s
Si x Ch2, t=1-1.15s

102 0 , ,0

o

102
100 150 200 250 300

. 4
1u

C

S10 2

0

In
0

x Ch3, t=0.85-1s
* Ch3, t=1-1.15s

100 150 200 250 300

* Ch4, t-0.85-1s
S102 * Ch4, t=1-1.15s

10

100°  l . M '
100 150 200 250 300 350 400

Energy(keV) Raw spectra,
1051206002

Figure 3-13: CNPA Chl-4 spectra from t=0.85-1 s and t=1.0-1.15 s. The passive and
active CX spectra from Chl-3 are different and easily distinguished from each other.

, ,4
,,!1

I



Chapter 4

Analysis with Simple Model

4.1 Introduction

In this chapter, a relatively simple model for interpreting the CNPA active and passive

CX data illustrated in the last chapter is discussed. By making some simplifying

assumptions and modeling all the major neutralization electron donors, the peak fast
proton temperatures at different pitch angles and their effective spatial location are

inferred. Flux-surface averaged temperatures are also estimated using Hammett's 2-

D analytic minority ion model distribution. Lastly, for specific scenarios, the CNPA

can provide an estimate of the boron impurity density.

In theory, detailed minority proton temperature and RF power deposition profiles

can be inferred via a full synthetic diagnostic implemented in a coupled RF/Fokker-

Planck solver package. The next chapter documents a synthetic diagnostic imple-

mented for the CQL3D[17] code as part of this thesis. However, because of the

computationally expensive nature of such a simulated diagnostic, the simple model is

more convenient for scaling studies where many shots have to be studied with different

model input parameters.

Using this model, the peak proton temperature data are analyzed and found

to scale approximately with a scaling based on the Stix parameter. Additionally,
contrary to what is typically assumed for Alcator C-Mod discharges with heating
resonance on-axis, the peak proton temperatures for all the analyzed cases are found
to occur off-axis. Here, off-axis refers to flux surfaces greater than r/a = 0. This
conclusion is independently verified by estimates of the r/a - 0 fast proton temper-
ature inferred from a sawteeth reheat analysis. This off-axis effect is a significant
physics result of the thesis. A possible explanation is provided via a comparison
of simulation results between the TRANSP[37] based TORIC5/FPPRF[18, 12] and



AORSA[16]/CQL3D Full wave/Fokker-Planck (FW/FP) codes. This explanation is

further bolstered by the synthetic diagnostic results in the next chapter. To note,

the scaling data with fast protons are first time results for Alcator C-Mod. These

FW/FP analyses represent the first comparison between predictions of such detailed

codes and extensive minority ion experimental measurements.

The rest of this chapter is outlined as follows. First, the simple model or technique

used by JET, JT-60U, and TFTR NPA is reviewed and extended for Alcator C-Mod

plasmas. A significant aside is taken to cover the impurity, background neutral,
diagnostic neutral beam, and halo models required for implementing this modified

technique. Following this, the modified model is applied to sample low density LSN

Alcator C-Mod plasmas. Afterwards, the scaling study is performed. The results

from the model for shots with good CNPA active and passive CX data are shown.

Also discussed are the inferred spatial location of the peak proton temperature. The

sawteeth reheat analysis results are given which independently support the off-axis

heating conclusions of the scaling study. Lastly, the FW/FP simulation results are

displayed to provide an explanation for this off-axis heating discovery.

4.2 Description of the Simple Model

The number of particles with energies between E and E + dE striking one of the

CNPA detectors per second is[38]:

F(E)dE = v2dvoAQ j P(x, o) fV(x, 3O)Usex(vsrel)v,,re.ns(x) dx (4.1)

where the sum is taken over contributions from different electron donor species s. a

and -a are the limits of the sightline, v is the minority proton velocity, fp,(i, x) the

minority proton distribution, a,,x the CX cross section based on the relative velocity

of the minority ion and donor species, P(x, v) the penetrability of the minority neutral

hydrogen after CX out of the plasma, A(t is the 6tendue, and n,(x) represents the

density of the electron donor. Typically this donor is a neutral beam hydrogen or

residue deuterium neutral, but at proton energies greater than --100 keV CX with

background hydrogen-like (HL) impurities can be important[39]; some of these HL

impurity CX cross sections are plotted in Figure 4-1 [40]. A delta function in velocity,
6(0 - 7V,), is assumed for the donor species. The pitch angle taken in fp and vs,rel

is determined by the geometry of the sightline, since an NPA by definition can only
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Figure 4-1: H++Az+ --+H+A(z -l)+ cross sections for various typical light impurities
in Tokamak plasmas. The hydrogen-hydrogen charge-exchange cross section is also
shown for comparison, along with the CNPA F-Port top array energy limit. This plot
is modified from Figure 1 of Winter's paper[40].

detect particles with velocities nearly aligned with its viewing chord. One rigorous

method to interpret CNPA data is to implement a synthetic diagnostic based on

equation 4.1 in CQL3D, similar to the method used by Hammett for passive CX

analysis on PLT[12]. Because the DNB has a finite diameter (FWHM -12 cm) with

spatial and phase space profiles, spatial localization of the CNPA signal using active

analysis is incomplete. Using a synthetic diagnostic technique allows the spatial

RF power deposition and temperature profiles to be inferred from the line-integrated

active or passive CNPA measurements. Even for a well-localized beam, detailed power

and temperature profiles require a synthetic diagnostic for active neutral particle

analysis. This work is documented in the next chapter.

The synthetic diagnostic approach is useful but very time intensive. A much
faster technique is used by several authors to infer an effective or peak minority
distribution from high-energy NPA spectra on large machines like TFTR, JT-60, and
JET during on-axis ICRF heating[41, 42, 39]. These machines all operate(d) with
vertical viewing NPAs and sightlines that are either on or very close to the heating
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FIG. 4. Poloidal cross-section of the JET torus showing
the magnetic configuration of the plasma. The heavy line
is the poloidal projection of the orbit of an 0.5 MeV proton
with ur/v = 2 x 102, with the tip of its banana orbit
located on the NPA line of sight and vertically inside the
ICRF power deposition region.

Figure 4-2: Figure 4 from Korotkov[39] showing the JET vertical NPA sightline and
the orbit of a 500 keV proton detectable by the JET NPA. vz in the figure caption
refers to v±.

resonance layer similar to Chl-3 of the CNPA. Mid-plane based NPA results similar

to Ch4 of the CNPA are also available from TFTR[11]. Theoretically the vertical

NPAs with sightlines on or near the resonance measure the hottest pitch angle, as

discussed in Chapter 2. Figure 4-2 illustrates the setup for the JET experiment. After

reviewing the model and discussing its assumptions, this simple method is modified

and applied to low density Alcator C-Mod plasmas. The simple model assumes that

the bulk of the hot minority proton tail is localized spatially near the center of the

plasma, with a spatial width smaller than the characteristic scale length of the bulk

plasma parameters, and that the electron donors are known. Additionally, impurity

equilibrium models that account for beam-created HL impurity electron donors are

needed if impurity CX is important in the NPA energy range, since these beam-created

impurity populations can not be subtracted out of the background.



Mathematically, for a detector with a radial sightline crossing the center of the

plasma, these assumptions result in a sightline averaged minority proton distribution

given by:
F(E)

faP n,a,(E (E ) (4.2)
Es flaOn,cX (Es,rei)Ea, E1 /2 P(E)

Where P(E) is now the penetrability of minority hydrogen neutrals from the center

of the plasma, Es,r,, the relative collision energy between the minority proton and

electron donor species s, and E the energy of the minority proton. Concerning off-

axis channels, derived distributions from these sightlines not crossing the center of

the plasma are weighted by different minor radii. In ICRF experiments in TFTR

and JET, the distribution at high energies was described by a simple exponential,
exp(-E/Tp), where Tp is an estimate of the minority temperature; it is an approx-

imate peak minority temperature in the sightline if the fitted portion of the NPA

spectra is greater than T,, since the counts in those parts of the spectra are domi-

nated by the hottest piece of the viewing chord. In this thesis, the denominator of

this equation is referred to as the CX factor.

Simplification occurs when a single hydrogen-like impurity is the dominant elec-

tron provider[42, 41, 11]; for these cases the beam therefore serves only to create more

of the dominant HL impurity for charge-exchange and no beam or impurity density

information is needed. For the case of multiple neutralization impurity species, the

beam penetration and profiles have to be modeled accurately enough to infer the rela-

tive densities of the different electron donors. In most cases, however, only the central

impurity densities are modeled because of the localized fast ion tail assumption[39, 42].

In fact, the high energy NPAs on TFTR, JT-60, and JET all operate(d) in the
>300 keV energy regimes where direct CX from hydrogen or deuterium beam compo-
nents and background neutrals are negligible. The localized minority tail assumption

can also be good since even a .500 keV hydrogen ion in these large machines is local-

ized to the core, as shown by Figure 4-2. This simple model with impurity CX allows
reliable measurements of the fast proton tail on these machines. However, because

the neutralization source varies slowly across the plasma, this model as implemented
on these large machines cannot verify that the fast ion tail is not at r/a=O unless it
is drastically off-axis[ll1]. Figure 4-3 illustrates this dynamic.

Applying this JET model on Alcator C-Mod is more complicated, as both direct
beam and HL boron or helium CX are important because the CNPA operates in the
50-350 keV range. Cutting off the spectra below 300 keV is not acceptable because
the fast protons above 300keV are not necessarily representative of the core minority
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Figure 4-3: Graphical illustration of the assumptions used in the JET, JT-60U, and
TFTR simple NPA model. The solid line represents the assumed fast ion temperature
profile. However, because of the relative constant neutralization profile and small
attenuation of the energetic neutral signal, the model is not able to differentiate
between the dash and solid fast ion profiles. The dashed profiles are symmetric
because they are on the same flux surface.

tail, since they have very large banana orbits. Additionally the count rate at these

high energies is relatively low for the CNPA. Hence, the beam components, beam

halo, and beam induced HL impurity all have to be modeled. Additionally, because

of the small size of Alcator C-Mod, spatial details of the neutrals have to be accounted

for. Fortuitously, modeling these processes properly results in an additional output

from the simple model, specifically the approximate location of the peak proton tail.

Lastly, the width of the fast ion profile can be large relative to the scale lengths of

the plasma, further complicating the interpretation. Figure 4-4 schematically shows

this on a poloidal cross-section of a typical LSN discharge. Because of the above

differences, equation 4.2 is modified for the CNPA data. Specifically, fa,p(v) and n,

are now allowed to spatially vary. For simplicity, P(E) is still calculated assuming

the fast proton source at Z = 0; this is approximately correct since even if the fast

protons are located away from the center the profile is symmetric about Z = 0. As

discussed, the fast ion profiles in Alcator C-Mod can have spatial widths wider than

the characteristic scale lengths of the neutral source and sometimes the bulk plasma

parameters. This sort of detail can really only be accounted for with a detailed

synthetic diagnostic. In order to make progress with the simple model, it is assumed

that the fast proton source is peaked at a specific flux surface, and that all the CNPA

data are from that location. With that assumption, by modeling the active and
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Figure 4-4: LSN Alcator C-Mod discharge with ICRF, CNPA, and DNB overlays.
The red vertical highlight indicates the CNPA vertical sightlines. The brown vertical
dash line corresponds to the ICRF resonance layer of a typical 5.4 T D(H) shot, with
the small horizontal black line in the middle indicating the approximate width of the
Doppler-broaden ICRF resonance for a hydrogen ion with vll '20 keV. The green
horizontal highlight shows the region up to the FWHM of the DNB, with the dashed
horizontal black lines representing the 95% mark. The thickened flux surface marks
the r/a-0.4 point. On the right is the plot of the different neutralization sources
and a fast ion profile along the vertical sightlines. In the 50-350 keV range, direct
CX from DNB components and halos, background thermal neutrals, and hydrogen-
like impurity are all significant. Spatially, the donor profiles are not approximately
constant as for the larger machines. Hence, the location of the fast ion peak can be
inferred if the profiles are modeled properly.
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passive CX sources properly and comparing the count rates between the two cases,
an estimate of the location of the peak proton temperature can be made. This Z

location is denoted Zp. As for the proton temperature, it will be shown that the

minority proton temperatures inferred from active CX are not very sensitive to the

assumed source location because halos and third component neutrals dominate the

fast proton neutralization in the lower density Alcator C-Mod plasmas studied for this

thesis. To note, this assumption and the model break down for very hot tails when the

CNPA spectra is no longer dominated by the peak temperature in the sightline, unless

the fast proton spatial profile is approximately a broad step function (i.e. composed

of one effective temperature). This upper peak temperature bound is estimated to

be around 120-130 keV due to various factors best discussed with the sample shot

analyses later in the chapter. Lastly, it should be stated that care must be taken

when using sightline data that does not cross all the concerned flux surfaces, such as

the off-axis data from Chl.

Now, examining the Maxwellian fit used by JET, TFTR, and JT-60U to fit their

NPA data, several modifications are possible. First, this simple exponential fit can

actually provide an estimate of the power deposition density through the Stix param-

eter. As discussed in chapter 2, the Stix distribution reaches an effective temperature

of Tnim = ( 1 + ) Te = (1 +()Te at large energies, where Prf is the minority absorbed

RF power density, -7 is the proton slowing down time, and nm the minority density.
Going one step further, the distribution can be fitted with the entire Stix distribution
which results in an effective temperature Tef = 2 (E) and Prf, the power density. For

(E), the distribution is integrated up to the energy of the proton with the largest

confined orbit; the effect of this limit is not felt until TeaffElim/5. A complication is

that Elim depends on the originating flux surface. For the plasmas in this thesis, the

limit is estimated to be greater than 1 MeV for protons at - r = 0. To be clear,
these Teff and Prf values from each channel are again not the flux surface averaged

values but represent specific pitch angles from those originating flux surfaces.

Minority distributions from the CNPA vertical and horizontal channels calculated

from this minimal model can reveal some details on how resonantly localized and

anisotropic the protons are. One simple comparison is to review the on-resonance

vertical data (Ch3) with the horizontal channel measurements (Ch4). If the dis-

tributions are completely isotropic, the calculated distributions from those channels

should be the same since the measurements are weighted by approximately the same

flux surfaces. The off-resonance vertical channels are more difficult to interpret since

they involve a move off either the plasma axis and/or the resonance layer. These off-



resonance channels theoretically see no signal without collisions and Doppler broad-

ening of the resonance since all the minority ions would otherwise have their banana

tips right on the resonance layer. The effects of the broadening and collisions are indi-

cated by the broadness of the 'rabbit ears' and the degree of anisotropy in Figure 3-6.

The Doppler broadened resonance is typically several centimeters as indicated in Fig-
ure 4-4, and spans the sightlines of the vertical channels for a typical Alcator C-Mod

discharge. Assuming that the average temperature over the flux surfaces covered by

the three vertical channels are roughly the same, the temperatures inferred from the

off-resonance vertical channels using the simple model then is a measure of the effec-

tive resonance layer width. Finally, assuming the signal is coming from dominantly

one flux surface, an estimate of that flux surface's average Teff, denoted Tfa, can be

made by using Hammett's 2-D model distribution based on the Stix distribution.

Overall, this modified simple model using the above approximations allows rapid
estimates of minority proton temperatures and provides some information about their

phase-space anisotropy.

With the general analysis scheme defined, the next section delves into the specifics

of the impurity, beam, and neutral models needed to apply it.

4.3 Beam, Neutral, and Impurity Models

In order to apply the simple model on Alcator C-Mod discharges during active and
passive CX, a beam and neutral penetration, halo, and impurity density models are
needed. They are outlined in the following pages.

Before diving into the details, it will be convenient to make clear the different
coordinate systems that are used. Specifically, in addition to the tradition tokamak
R-Z toroidal geometry, a beam coordinate system and a field-line system are needed.
See Figure 4-5.

4.3.1 Neutral Density and Penetration

For the neutral density, the FRANTIC[43] code in TRANSP is used for passive CX.
'The code provides flux surface averaged neutral density as a function of minor radius.
Figure 4-6 shows one of these profiles for shot 1051206002. The FRANTIC profiles
and absolute densities for discharges similar to some of the shots in this thesis have
been verified by Rice[44]. During active CX, the beam penetration, beam mix, and
source currents are needed to determine the beam neutral density as a function of
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Figure 4-7: Beam penetration results for shot 1051206002 at t=1.08 s from Eisner,
Bravenec, and Rowan's IDL program. Janev's neutral stopping cross-sections are
used[45].

major radius. The methodology is outlined below. The fast neutral penetration out
of the plasma is related to the beam penetration and also discussed.

Both the beam and fast neutral penetration are modeled using Janev's neutral
penetration cross-sections[45]. For the beam penetration, an IDL GUI by E. Eisner,
R. Bravenec, and W. Rowan is used with fitted density and temperature profiles
from Zhurovich's fitting programs. Figure 4-7 gives a sample output from this IDL
program for shot 1051206002. For the plasmas in this thesis, the edge neutral pressure
is sufficiently low (<0.02 mtorr) that attenuation of the beam in the F-Port duct
should be less than 10% for all components and is hence ignored. In equation form
the penetration is:

Pb(R, E) = exp (- nea(R, E)dR (4.3)
--+a

where a, is the Janev neutral stopping cross-section as a function of major radius and
beam energy. The integral is taken from the edge of the plasma on the mid-plane to
the desired major radius.

The initial neutral beam current, In(k) is calculated from outputs of R. Granetz's
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Figure 4-8: Beam profiles at R=67 cm for shot 1051206002. The horizontal axis is rb

IDL DNB analysis program which determines the source currents via a visible spec-

trometer observing the neutralization CX for each shot. Mathematically:

In(k) = I,If(k)H(k)Nf(k) (4.4)

where I, is the total source current in amps, If the fraction of the total source

current for full, half, and third components, H is the number of H neutrals for each

component, namely 1, 2, and 3.4, and Nf is the steady-state neutralization fraction

for each beam component. k is clearly an index for the full, half, and third energy

components of the beam.

As for the beam spatial profiles, measurements on the inner wall during no plasma

shots indicate that the FWHM of the beam is -12 cm, leading to profiles as shown

in Figure 4-8 at R=67 cm. These beam parameters at R=67 cm are used for all the

vertical channels' calculations and represent some averaged penetration from R=65-

70 cm. Janev's cross sections are separately employed for the calculation of P(E).

Figure 4-9 illustrates the neutral penetration from the center of the plasma as a

function of energy for the vertical and horizontal channels during the flattop of shot

1051206002. For the CNPA signal, attenuation due to residue neutral pressure is

included since the detectors are as far as -3 m away from the plasma edge. This is

typically a 10-15% effect at 50 keV for the plasmas in this thesis. Averaged Thomson
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Figure 4-9: Inverse neutral penetration from the center of the plasmas to Chl-4 for
shot 1051206002 during plasma flattop. The attenuation for Ch4 is smaller since
there is less plasma to travel through on the mid-plane, and also because the port
length is shorter.

scattering based plasma parameters are used for the calculation, giving:

P(E) = exp(-r-sa,( ", Te, Zer, E)AXp - nnaii(E)AXd) (4.5)

where AX, is the distance from the center to the edge of the plasma and AXd is the

distance from the edge of the plasma to the detector itself where attenuation due to

residue neutral gas can occur. nn is the neutral gas density in the duct and determined

from the E-top and G-side neutral pressure gauges. The dominant attenuation process

outside of the plasma is neutral impact ionization, given by aio.

For the vertical sightlines, the attenuation is assumed to be the same for all three

channels. Detailed analysis shows that using averaged plasma parameters for the
penetration calculation and neglecting bulk plasma profile details result in negligible
errors for the minority distributions in this thesis. The error bars induced on Teff
from errors in the penetration profile are estimated to be less than 5%. This analysis
can be found in Appendix B.

__



4.3.2 Halo Model

With the beam source defined, the halo profile and density at R=-67 cm can be

determined. Halo neutrals stem from neutralization of bulk deuterium ions due to CX

with the beam. Once created, these halo neutrals can CX again with another bulk ion

and hence they participle in pseudo-random walk diffusion from the originating beam

source. A relatively simple 1-D model in cylindrical coordinates is implemented with

the different beam components as sources for this problem. Defining the cylindrical

coordinate's Z-axis along the beam (i.e. Zb), the halo density as a function of rb is then

determined using averaged core (r/a=0O to 0.5) plasma parameters. The steady-state

rate balance is:
0 , a no 3(

n ro (rb ) = nr -) (rb) (4.6)
k=1

where ak(rb) = ninb,k(rb) (U6Vc,k, with ni corresponding to the given D ion density,

nb,k(rb) the density of the kth component of the DNB, and (av"),k the CX rate.

e = n, (av)ei is the electron impact ionization rate per D neutral. The leftmost term

corresponds to D halo neutral losses from transport, modeled through a diffusion

coefficient based on CX of these D neutrals with bulk plasma ions. The diffusion

coefficient is Dno = kbTi/mdVa, V- here is estimated by njiclz(VD,mp)VD,mp, where

VD,mp is the most probable speed of the bulk D ions based on their temperature. This

number typically is slightly lower than the true average rate in the -1-2 keV range.

Recombination and D ion impact ionization are negligible compared with the birth

and loss rates considered above. Deuterium halo neutral losses through impurity

ionization collisions or impurity CX are not included in this simple halo analysis

but they should be at best a -10% effect. Lastly, at densities around 1020/m 3 , less

than ,1% of the DNB is in the n,=2 state and hence excited DNB neutrals should

not significantly affected the rate balance[38]. At most the total beam-bulk plasma

CX reactivity would increase by -5%. These two small neglected effects might also

somewhat counterbalance each other. Lastly, the steady-state assumption is good

since equilibrium is expected in the less than -1 ms time frame.

The rb in this cylindrical coordinate translated back to the tokamak and field-

line geometry correspond to both Z and xt, where xt is approximately the central

field line. This means that for the active and passive CX comparison, the beam and

halo parameters for a particular Z corresponds directly to rb in the model. Equation

4.6 is solved with modified bessel functions. This model gives a characteristic halo

profile shown in Figure 4-10 for shot 1051206002. The exact details of the model,



including the full derivation and sensitivity to input plasma parameters, can be found
in Appendix C.

These halo density estimates are reviewed with TRANSP based calculations and

found to be comparable. The TRANSP based simulations are based on using the

FRANTIC code with source terms determined from a 3-D Monte-Carlo beam model.

Because of its nature, the TRANSP output is flux averaged and inappropriate for

direct application here.

4.3.3 Hydrogen-like Impurity Model

With all the neutral sources calculated, the density and profiles of the relevant HL

impurities can be estimated. For the concerned energy range, the two pertinent

impurities are helium and boron. Although helium is not normally found in D(H)

Alcator C-Mod discharges, it can be puffed in for various diagnostic purposes. This

is done for some of the discharges studied in this thesis. As for boron, it is typically

the dominant low Z impurity in Alcator C-Mod plasmas[46, 47, 48] and can affect the
CNPA data in the energy range >200 keV. For both of these impurities, their effect

in the dominator of equation 4.2 can be quite different between active and passive
CX.

For passive CX, the core HL density for a specific impurity is approximately

determined by the steady-state rate balance:

nimp,HL (le (Uv), + np (av)e) = +imp (ne (UV)R + no,D (aov,) (4.7)

where nimp,HL is the density of hydrogen-like impurity, nimp the density of the fully
stripped impurity, n, the density of fast minority protons, and no,D the background

D neutral density. The rate brackets on the left are destructive and represent elec-

tron impact ionization and CX with the fast ions. The electron impact ionization
term is dominant but CX with the fast ions can be significant for HL helium in the
T, -50-100 keV range of concern. Luckily, this term is typically just -,10-15% of the
total and the input fast proton temperature for the CX rate can be just estimated
apriori without affecting the total destruction term significantly. If this is not the
case, some iteration of the model would be required since nimp,HL is part of the for-
mula for getting the fast ion temperature. On the right are the birth terms for the
HL impurity ions and are composed of recombination and CX from background D
neutrals. In most cases, recombination dominates. For the analysis here, averaged
core plasma parameters(r/a=0-0.5) are again used for the inputs. Excited states are
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again neglected. Lastly, equilibrium is expected in the -1 ms time frame.

Before moving on to the impurity model for active CX, an aside is needed to

discuss the experimental data used for the nip inputs in equation 4.7.

Pertaining to the fully stripped helium density, no direct spectroscopic measure-

ment of it is available for the core. However, a line-integrated measurement of the

He-II line is available via a diode mounted on the Alcator C-Mod McPherson XUV

diagnostic[49]. On another note, for D(He3 ) plasmas, the helium density can be and

is typically estimated by RF break-in-slope analysis[50]. By combining these two

data, a new method of estimating the core helium density is implemented for this

thesis. Namely, the diode is calibrated with the RF break-in-slope helium density

estimates; a CX dominated scaling is found to reconcile the data in the calibration.

Full details of this work can be found in Appendix D. For the purposes here, this

diode can provide rough estimates of nHe/ne for equation 4.7 during LSN and USN

discharges.

Various methods are available to estimate the boron density. An edge technique

involving D gas puffing and the CHROMEX diagnostic found levels typically in the

--1% range, and higher levels after boronization [46, 47]. In theory, the CXRS di-
agnostic with active CX can give an accurate boron density in the center of the

plasma. For the shots in this thesis, these data are available. However, because

the CXRS system is not and will not be absolutely calibrated within the foreseeable

future, the absolute densities are not derivable. In other words the 6tendue is un-

known. Attempts to calibrate the system with the visible bremsstrahlung background
in the spectra are inconclusive since the boron densities estimated from an 6tendue
calculated based on this background give nB/n,=0.01-0.1%, which are probably too
low to be correct. Fortuitously, as shown in the next several sections, the effective

temperatures derived from the active CX CNPA data are not very sensitive to the
boron density, even though the shape of the inferred minority distribution at energies

greater than 200 keV is. Skipping ahead a bit, for some scenarios, the CNPA can
actually serve as a boron impurity density diagnostic. Typically for the discharges
discussed later, the boron densities with decent fits are around 1.5-2%. Because the
core Mo density is calculated for some of these shots using the XUV diagnostic, some
collaborative evidence is available to indirectly support this percentage since the core
Zeff data are also available.

To note, the relative concentrations of the boron and helium densities for the
discharges in this thesis can be estimated from the available spectroscopic data even
if the 6tendue for these spectroscopic systems are not available.



With the input question settled, the active CX impurity model for the core is

now given. The impurity creation process during active CX is more complicated than

in the passive case because the source terms from the beam are not axi-symmetric.

Specifically, most of the HL impurity ions during active CX originate from the beam.

Neglecting radial transport, these HL impurity ions are free to stream along their

field-lines until destroyed either by electron impact ionization or CX. The simplest

case occurs when the HL impurity ions' mean-free path is greater than -2irRo, or

the length of the central field line for one toroidal transit. Then, the effect of an

toroidally asymmetric birth term is smeared out and the core active CX induced

impurity density balance is approximately:

4

+imp,HL (n, (v)e + + np(ov)) AVor = nimp nb,k (rV)c,k AVbeam (4.8)
k=1

where now the birth terms on the right are from the beam. The '4th' component

represents some average of the halo neutrals. AVt,o refers to the flux tube volume

at the core of the plasma, and AVbeam refers to the intersection volume between the

DNB and that flux volume. If the passive data is not background subtracted out, the

recombination and D neutral CX terms should be added to the right hand side.

As it turns out, the boron impurity typically does satisfy the -27rRo requirement,
but helium does not. In the end, a much more detailed semi-analytic model is used for

this thesis work. A new 1-D field line model with boundary conditions that account

for ion recirculation is applied. In particular, the analytic solution for a thin HL

impurity strip source with recirculation is derived and used to numerically integrate

the Gaussian beam source profiles from the previous section. The very thin 1-D strip

source with recirculating boundary conditions shown in Figure 4-11 has the following

impurity density solution:

nimp,HL = cosh ((t - b) - ev( ' - b )] (4.9)
V 1--y v

4

a(xt, k) = nimp nb,k (OV)cx,k
k=1

/ = ne (flV)e
P27rRO

Y=e v

where a and b are as shown in the figure, and v is the thermal velocity of the HL

impurity, approximately equal to VD,mp/vmimp/fmD. The formula is constructed out
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Figure 4-11: The 1-D strip source with solution given by equation 4.9.

of the solution for a thin 1-D strip source with no recirculation, specifically nimp,HL =

nimp,HL(Xt = O)e-I1xtl". This stems from the solution of 9n/Ox = -np/v.

The final results of the active CX impurity model are illustrated in Figures 4-12

and 4-13 for both boron and helium impurities in shot 1051206002 assuming averaged

core plasma parameters. The boron figure clearly shows a very flat profile along the

field-line and validates the simple estimate from equation 4.8. On the other hand,

the helium figure demonstrates the need for the more detailed 1-D field-line model.

Examining the active impurity model in terms of its role for interpreting CNPA

data, the HL impurity density used in equation 4.2 is the xt = 0 value in Figures 4-

12 and 4-13. This is approximately correct given averaged core plasma parameters

inputs, as long as the fast ions are not dramatically far away from Z = 0.

4.4 Sample shots: 1051206002 and 1051206005

In the last several sections, the electron donor terms as a function of Z for shot

1051206002 were determined for illustrative purposes. In essence the densities in the
denominator of equation 4.2, or the CX factors, has been calculated for a set of input
parameters. Now, this section shows in detail how the rest of the model calculates
effective temperatures for each channel, and infer the approximate ZP(or r/a, when
re-mapped) of the peak minority temperature. The sensitivity of the temperatures
and hence the method to different input parameters are also tested.

The key to a good temperature and Zp analysis from this model is the insensitivity
of the inferred fast ion temperature from active CX when helium is not present.
This results from the fact that for low density Alcator C-Mod plasmas, the dominant
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Figure 4-12: Top: 1-D field-line profiles of the HL boron density for shot 1051206002
assuming a 1.75% ne fully stripped boron density. The density is essentially axi-
symmetric. The contribution from each beam component is shown, along with the
total. Bottom: The beam and halo HL boron impurity source terms.
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Figure 4-13: Top: 1-D field-line profiles of the HL helium density for shot 1051206002
assuming a 0.1% n, fully stripped helium density; the 0.1% assumption is for illustra-
tive purposes only, since no helium puffing is used for this shot. The profiles are not
axi-symmetric. The contribution from each beam component is shown, along with
the total. Bottom: The beam and halo HL helium impurity source terms.



neutralization below 200 keV comes from halos and the third energy component of the

DNB. This means that for the range of Z (0-10 cm) where the fast ions are expected

to be, the active CX factor does not change significantly. Additionally, since the

number of counts in each energy bin decreases relatively fast with increasing energy,
any weighted temperature fit of the inferred minority distribution is dominated by

CX below -200 keV. Hence, the temperature fit itself is not sensitive to the boron

dominant CX region of - 250 keV and therefore the exact boron density. As stated

above, for some scenarios, it is possible to infer a boron concentration from these

temperature fits and use the CNPA as a core boron diagnostic, assuming the model

distribution used to fit the data is approximately correct. This is also the reason for

the earlier stated limit of T, - 120 - 130 keV for the model's ability to find the peak

fast ion temperature. On the other hand, during passive CX, the boron becomes

significant at a much lower temperature, typically around - 150 keV. Thus, passive

only analysis can be very difficult, as accurate boron and background thermal neutral

densities are needed.

When significant helium is present, it can be an important electron provider during

active CX. However, unlike the boron, it does not seem to affect passive CX until a

very large amount is present. Fortunately, a measurement of this impurity is available

via the calibrated HeII diode mentioned above.

The optimum model result occurs when for a given set of known input parameters

the passive and active CX analysis match in terms of both temperature and predicted

count rates.

To illustrate these points, a sample case, shot 1051206002, is first examined. As

a reminder, the bulk plasma parameters and raw CNPA data for this shot can be

found in Figures 3-12 and 3-13. This shot is assumed to have no helium in it, since

no puffing occurred in the shots before it and the baseline on the Hell diode is close

to another shot with similar plasma parameters that occurred right after machine

startup. Shot 1051206002 is representative of the typical discharge in this thesis; it

does not reach the 'perfect' analysis discussed in the last paragraph but is still viable.

From the raw data shown in Figure 3-13, assuming a 1.75% boron impurity,

Zp=7 cm, D neutral density of - 1.3 x 1013/m3 , and using the profiles derived in

the previous sections, the analysis results are summarized in Figures 4-14 and 4-15.

First, Figure 4-14 plots the different CX factors of equation 4.2 for active and

passive CX. The halo and third component of the beam dominates the active CX

factor until about 200 keV, when HL boron CX starts to become important. For

the passive CX factor, the boron clearly becomes important much earlier, around



120 keV. The count rates for active and passive CX are also compared and matches
the model prediction well for Z,=7 cm. For the work in this thesis, the aim is to

chose a Zp that makes a match for Ch2, the mid-channel of the vertical array. This

results in approximate matches for Chl and Ch3.

Next, Figure 4-15 shows the minority distributions and assorted temperature fits

from these CX factors. The data from two different time periods are shown. The

first, tl, corresponds to t=1-1.15 s in the shot when the DNB fired. The second, t2,
corresponds to counts from t=0.8-1 s and t=1.15-1.2 s, representing the passive data

that bracket the beam period. For Ch4, the data is all passive and the two spectra

are just passive CX based distributions from the mentioned time ranges. The first

two temperatures listed in the legend for each channel are for tl. The top one is a
simple weighted exponential fit of the t1 distributions, followed by a weighted Stix

distribution fit and the RF power density associated with that fit. The last fit is

an un-weighted Stix distribution fit of the passive, or t2 spectra. These fits are not
weighted because the passive data tends to have some oscillations in them, making

automated weighted fits very unreliable. For example, a weighted fit of the passive

spectra for Ch2 results in a temperature that is unrealistically high, since the fit is
heavily affected by the 100-150 keV points where a negative distribution slope occurs.
Concerning Ch4, only the t2 data is used for the later scaling analysis because the tl
data has potential contributions from HL impurities streaming from the beam volume
that is not accounted for in the passive analysis. As expected, the Ch4 temperature

is lower than the vertical channels. This validates that indeed the distribution is
anisotropic and that the peak temperatures are at the resonant pitch angles of Ch2
and Ch3.

With the results shown for 1051206002, it is now appropriate to discuss how the
two model input parameters are determined. Specifically the boron input and the
Z, location are relatively unconstrained by other plasma measurements and must be
inferred through the CNPA data itself.

For the boron, the XUV analysis shows that Mo makes up about 0.2 of Zeff - 1
in these types of LSN shots. The core (r/a=0-0.5) Zeff for this shot is estimated
to be -1.5-1.75; the average Zff from the Z-meter is 2.5. This leaves ample room
for a - 1% boron impurity, which would contribute -0.2 also to Zeff - 1. However,
as hinted at before, even if this rough estimate is not available, it can be inferred
from the CNPA data. In particular, Figure 4-16 shows the 1051206002 analysis
with boron set to 0.1%. The active CX data and their associated weighted fits are
hardly affected; however, the inferred passive spectra and their temperature fits are
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Figure 4-14: Summary of charge-exchange parameters for the base 1051206002 anal-
ysis. Top left: 1/P(E). Top right and bottom left: Passive and active CX factors.
These are the denominators from equation 4.2. The beam, specifically the halo and
third component, is clearly dominating the CX during active CX. Bottom right: The
active/passive count rate ratio for Chl-3. The model calculation is the total CX
factors from the active and passive CX plots divided by each other.



1051206002 Fit and Data at tl=1-1.15s & t2-0.8-1.3 for Fit=2, B=1.75%, He=--0.01%
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Figure 4-15: Passive and active CX inferred minority distributions, fp(v), and tem-
perature fits for the default 1051206002 analysis. The error bars include counting
statistics only. tl=1-1.15 s corresponds to the active data, and t2 represents the pas-
sive data taken between t=0.8-1.0 s and 1.15-1.3 s. The Ch4 data is passive only for
each time period. For each channel, the weighted temperature fits for the tl data us-
ing both a simple exponential and a Stix distribution fit from 100-320 keV. These are
the first two temperatures on each legend. The RF power for the Stix distribution fit
is also listed. The third temperature in the legend is a non-weighted Stix distribution
fit for the t2 (i.e. passive CX for Chl-3) data. The data in the last bin, 340 keV, is
not used because that energy bin tends to have abnormally high counts because of
the voltage rail on the amplifiers.
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1051206002 Fit and Data at tl=1-1.15s & t2=0.8-1.3 for Fit=2, B=0%, He-0.1%
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Figure 4-16: Passive and active CX inferred minority spectra and temperature fits
for shot 1051206002 assuming a 0.1% boron density. Compared with Figure 4-15,
the active CX data and temperature fits are not very much affected by using a lower
boron density. However, the passive CX inferred distributions are drastically different
and unrealistic. The Teff is limited to 400 keV because a confined orbit limit of 1 MeV
is imposed.
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completely wrong, revealing the passive analysis' sensitivity to the exact HL boron

densities. On closer examination, the minority distributions from the active CX data

in the range >200 keV are affected by this decrease in boron. Specifically, there is

a rise in the inferred distribution since the assumed active CX factor at these higher

energies is now lower than before (remember that the raw data is divided by this

factor to get the minority distribution). However, again, the weighted temperature

fits are not affected by this because the number of counts and therefore statistical

weighting are always dominated by the lower beam-CX only energy bins. Hence,

assuming that the model distributions used to fit the data is correct, a boron density

can be estimated from the CNPA data by using a boron input in the model that both

reconcile the passive CX deduced temperatures to the active derived ones and forces

the high energy portion of the active CX distribution closer to the temperature fits.

Typically the effort is concentrated on reconciling the data sets from Ch2 and Ch3,

since these channels are either on or closest to the plasma and resonance axis, where

the model is overall more valid. Also, as can be seen for the data in Chl, significant

regions of 'negative' temperatures can arise at high energies even for the active CX

data with reasonable boron densities in the model. These anomalies off-axis are

probably due to orbit effects. Again, if only temperature data is needed from Chl-3,
the boron does not matter until so much is in the plasma that even the normally

beam dominated CX regions of the spectra are affected by it. For temperature data

from the passive CX only Ch4, the boron density used in the model is important,
and the error bars on this measurement should reflect this. To conclude, a 1.75%

boron impurity is used for this shot given all these considerations. Error bars for

the active CX fitted temperatures are estimated by varying the input parameters

within a reasonable range and examining the resultant fits. For this discharge, the
approximate error for Chl based on this method is +10/-5 keV, ±5 keV for Ch2 and
Ch3, and the Ch4 Teff is estimated to have errors of ±10 keV. It should be noted

that these are only estimates and that the real error could be larger, as this is not
a fully formal approach. For example, the goodness of the fits for each variation in
input parameter is not compared directly and only the differences in temperature are
reviewed.

Now, returning to the second input parameter, Z,, Figures 4-17 and 4-18 shows
what happens if the signal is assumed to come from Z=0, or r/a=0O instead of
Zp=7 cm. The D neutral background is now lowered to - 6 x 1012/m 3 according

to Figure 4-6, while the effective beam neutral densities increases according to Fig-
ure 4-10. The active CX temperatures again are not much affected because the active



CX is still dominated by the third component of the beam and the beam halos. On

the other hand, the passive CX temperatures are affected because with the lowered D

neutral density, boron CX becomes important even earlier in the passive CX factor.

The key point though is that now the count rates between the active and passive CX

data do not match at all. If the signal is really dominantly at near r/a=0O, the count

rates during active CX should be much higher at the beam dominated CX energies for

the on-axis Ch2 and Ch3. Generally, the active-to-passive CX ratio increases rapidly

with decreasing Z, since the beam based neutral densities increases with decreasing

Z while the background thermal neutral density decreases with decreasing Z.

Experimentally, if the CNPA sightlines are missing the center of the DNB in the

toroidal direction, the active CX signal can be less than expected. Also, if the beam

neutralizer is less efficient than assumed, the signal would also be lower. However,
the tilt in the CNPA sightlines are estimated to be less than 1.5 cm at the mid-

plane based on tilt measurements of the diagnostic, and there is no evidence that the

beam neutralizer does not reach steady-state. Additionally, estimates show that the

neutral current would have to be halved before a Zp=0 input in the analysis would

work. Hence the inferred off-axis location of .-7 cm for the fast ions is good. Given the

above points, the error in this measurement is probably - ±2 cm. More supporting

evidence for this off-axis location consists of r/a=O fast ion temperature estimates

from sawteeth reheat analysis and the ASORA/CQL3D FW/FP solver simulations

discussed in the next several sections.

Before moving on to the next topic, a sample shot with a helium puff is discussed.

The goal of the helium puff is to illustrate the effect of a known impurity on the

CX factors when used on a known or repeated shot. Figures 4-19 and 4-20 show

the analysis for shot 1051206005. This shot is similar to shot 1051206002 except

helium is puffed in at t=0.3 s; the HeII diode measures -41% He during the plasma

flattop. The line-integrated density is slightly lower, going from 4.8 x 1019/m 2 to

4.4 x 1019/m 2 . The H/D ratio is also slightly lower, from -8% to -7%. A Zp -8 cm

is found from the count rates comparison. It should be noted that the plasmas with

He puffs tend to have slightly larger Z,, and this could be due to a higher passive CX

rate than calculated, since neutral helium penetration and CX is not accounted for

in the model. The passive and active CX temperatures match better compared with

the 1051206002 case; the passive CX temperatures are higher though. However, it is

found that an assumed 0.75% He brings the Channel 3 temperatures closer, since the

effect of helium on the active CX spectra is to lower the temperature fits. Given the

inexactness of the HeII diode measurement, 0.75% He is also a reasonable assumption.



1051206002 t=1-1.15s & 0.8-1.3s He:0.1%, B:1.75%, Z:0, D:6.23e+12
25.07.06 17:39 run#877
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Figure 4-17: Summary of charge-exchange parameters for 1051206002 analysis as-
suming Z,=0, or r/a=O. Clearly, the active-to-passive count rate mis-match shows
the poor choice of Z,.
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1051206002 Fit and Data at tl=1-1.15s & t2=0.8-1.3 for Fit=2, B=1.75%, He=0.1%
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Figure 4-18: Passive and Active CX inferred minority distribution, fp(v), and tem-

perature fits for 1051206002 analysis assuming Z,=0, or r/a=0O. The active CX

temperatures are not affected by the change in Z, but the passive CX temperatures

are because of the decrease in assumed D neutral density.
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Hence, the error bars for the active CX temperatures are larger for plasmas with He,
either puffed in or from the wall.

Lastly, with the inferred temperatures above, the flux surface averaged tempera-

ture for the Z, flux surface can be estimated. This is done by fitting the temperatures

to the Hammett 2-D model distribution. As discussed in Chapter 2, this model gives

a fast minority ion distribution as a function of vl/v at the mid-plane and E for an

input mid-plane averaged RF absorbed power density and bulk plasma parameters.

By finding the effective temperature for each mid-plane pitch angle and re-mapping

the results back to the major radius using vll,mid/ = /(1 - Rtip/Rmid), where Rtip is

the R of the detector and Rmid - Zp, the fitted CNPA temperatures can be compared

with the model for different input power densities. The flux surface averaged Teff,
denoted Tfa, can then be found by using the resultant mid-plane distribution with

equation 51 from Catto[28]. These flux surface averaged temperatures are found to

be very close or equivalent to the mid-plane pitch-angle averaged values. Figure 4-21

illustrates this process and the results for shot 1051206002. A Tfa of 65±10 keV is
estimated for the Z, ,7 cm flux surface, or r/a '0.3. Note that this method should
only be used a guide, since as Hammett states, this distribution is only a model and
has not been specifically derived from the Quasi-linear RF Fokker-Planck equation.

However, these estimates can be helpful for comparisons with codes that only output
flux surface averaged temperature and power densities, such as TRANSP.

Summarizing, the modified simple model can provide useful fast proton temper-
ature, RF power density, and some fast proton spatial information for low density
Alcator C-Mod discharges when good DNB data is available. The model works well
when the relevant impurities can be estimated or inferred through the CNPA data
itself, and best when they are at a low absolute level. The model should start to
break down when the fast ions are too energetic and when the fast ion profile is spa-
tially wide. These characteristics invalidate the assumption that most of the signal is
coming from a specific flux surface and that peak temperatures are measured. Again,
when the distribution is too energetic, the energy space where the temperature fits are
performed are no long near or greater than the real temperature; the distribution in
this energy space is hence no longer dominated by the peak fast proton temperature.
However, if the fast proton temperature profile is more like a step function spatially,
then this is less of a concern. In any case only a detailed synthetic diagnostic can
account for theses types of differences.

With the CNPA analysis method defined, the next section reviews how the r/a=0O
fast proton temperature is estimated using a dW/dt sawteeth analysis. This permits



1051206005 t=1-1.15s & 0.8-1.3s He:l%, B:1.75%, Z:8, D:1.94e+13
15.07.06 12:31 run#458
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Figure 4-19: Summary of charge-exchange parameters for 1051206005 analysis as-
suming Zp=8 cm, 1.75% boron, and 1% helium.
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1051206005 Fit and Data at tl=1-1.15s & t2=0.8-1.3 for Fit=2, B=1.75%, He=l%
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Figure 4-20: Passive and active CX inferred minority distributions,f,(v), and temper-
ature fits for 1051206005 analysis assuming Z,=8 cm, 1.75% boron, and 1% helium.
The spectra are well-behaved with good temperature fits.
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Detector response, 2-D Stix/Hammett distribution

100

90

5 80

70

60

50

An

- <P>:8-T:57.4
S' - - <P>:8.5-T:61.9
..... .<P>:9-T:66.5
-- <P>:9.5-T:71

<P>:10-T:75.5

N

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78
Det. Major Radius(m), Shot=1051206002, Run=412

25-Jul-2006 12:35:44

Figure 4-21: 2-D Hammett model distribution pitch angle Teff as a function of major
radius for different input mid-plane averaged power densities at Zp,=7 cm. Overlaid
on top are the experimentally deduced Teff from Chl-4. The legend indicates the
input power used for each line and the resultant mid-plane pitch-angle averaged Te,ff,
or Tia. The flux surface averaged value can then be determined using the resultant
mid-plane distribution function.

an independent comparison of the on-axis fast proton temperatures with the CNPA

inferred temperatures at Z,. After this, the remaining sections documents how the

minority temperature scales with the Stix parameter and also provide additional proof

that these fast protons are indeed off-axis using the sawteeth analysis.

4.5 Sawteeth Reheat Analysis

The dW/dt sawteeth analysis is based on the procedure used by O'Shea[9] and M.

Greenwald. The procedure is modified to include subtraction of the estimated r/a=O

ohmic heating power which O'Shea ignored. Specifically, the fast proton temperature

can be inferred if the electron heating power from the fast minority ions is known:

Tfa 2 P,pTs, (4.10)
3 2nm

where Pe,p is the electron heating power and Ts,e is the fast ion slowing down

time on the electrons. The factor of 2 in the denominator converts the slowing down

time to an energy exchange time. A full discussion of this can be found in O'Shea's
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thesis. Note that the factor on the right is almost the same as (Te, with the key

difference being the power taken in the Stix parameter is the minority absorbed RF

power, not Pe,p. For high temperature tails (>- 20 keV), the fast protons slows down

dominantly on the electrons and these two powers eventually become the same. In

any event, neglecting finite orbit widths, the use of P,,p makes equation 4.10 valid for

all fast proton energy range on a flux surface.

By analyzing the transient temperature response of the electrons immediately

after a sawteeth crash, the total electron heating power, Pe,tot can be determined.

Pe,p for a minority heating case can be found from Pe,tot via:

3 dTe dW
n-dt - dt = Pe,tot±Pe,p + Pe,ohmic (4.11)

where Pe,ohmic is the ohmic heating due to the plasma current, estimated by re-

sults from TRANSP. Power terms based on spatial gradients are ignored since the

reheat analysis is done right after a sawteeth crash, when the temperature profiles

are expected to be flat.

Using an IDL program from Greenwald, Figure 4-22 shows the Pe,tot estimated

from each of the sawteeth crashes illustrated for shot 1051206002. The inferred heat-

ing power of -,3.2 W/cm3 and an ohmic heating power at r=0O from TRANSP of

-1.6 W/cm3 give a Ty, of ,15keV for the r/a=O minority proton distribution. This

temperature is lower than the Z,=7 cm Tfa from the CNPA measurements and sup-

ports the idea of a hollow minority temperature profile. It must be noted that the

error bars of the inferred fast ion temperatures are quite large with this method, since

the reheat power, ohmic power, and the minority ion density all have large errors.

Also, the r/a = 0 channel of the ECE diagnostic used for this analysis has a spatial

resolution of -2 cm.

4.6 Analysis Results from Simple Model

For this thesis, the major conclusions from employing the simple model on Alcator

C-Mod discharges are that the C-Mod minority proton temperatures within the ex-

amined shots follow the expected Stix scaling and that these fast ions are peaked
spatially away from r/a=0O, even for an on-axis resonance. This off-axis heating con-
clusion is independently verified from minority temperatures deduced from dW/dt
analysis and explained by the FW/FP AORSA/CQL3D simulations. This section
documents these results.
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Figure 4-22: Demonstration of the sawteeth reheat analysis based on Greenwald's
IDL program. The top plot gives the Pe,tot found from each of the sawteeth marked
on the bottom plot and are labeled by 'Pe/Vol'. The total ohmic and ICRF powers
are also plotted. On the bottom plot, the segment of the electron temperature used
for each of the calculations are also highlighted.
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As discussed in Chapter 2, Stix calculated that the effective minority proton tem-

perature should scale approximately with the Stix parameter, namely Teff f o =

(Te for Teff greater than the critical electron slowing down energy. This critical energy

marks the transition between the fast protons dominantly slowing down on bulk ions

instead of electrons and is typically -20 keV for Alcator C-Mod discharges in this the-

sis. The physical interpretation of the scaling is that the minority tail temperature is

determined by the amount of power absorbed during one fast minority ion-to-electron

energy exchange time. The RF portion of this scaling has been verified extensively on

JET[10] and TFTR[41, 11]. Hammett's power scaling analysis for PLT concentrated

mainly on second harmonic deuterium heating.

Off-axis heating profiles are found in Hammett's analysis of the passive CX data

from PLT. In order to match the passive CX data, Hammett assumed IE+I profiles

with peaks as far as r/a,,' 0.5 in his FPPRF code. However, these PLT shots do not

have active beam or dW/dt data to independently verify these heating profiles. His

thesis notes that attempts to derive this off-axis effect from a wave/FP code were not
successful.

In this thesis, 13 discharges from 1051206 that span a factor of -6 in the scaling

parameter and -3 in temperature are reviewed with the simple model. These shots

have plasma parameters BT=5.4 T,Ip = 600 kA, nH/lD ' 3% - 9%, nel e 3 - 7 x

101 9 /m 3 , , 0.3 - 0.6 MW of RF power from t=0.5-1.5 s, and heating resonance at

R -69 cm. The magnetic axes are at -68-70 cm. The DNB fired from t=1.0-1.15 s.

Shots 1-8 and 14-17 are LSN, while 9-13 are IWL. The CNPA sightlines are slightly

modified for these discharges, and cover R , 64.5 - 69.5 ± 1 cm, instead of the usual

65-70 cm. Each of the viewing cones for the vertical channels have widths of -2.3 cm,
resulting in coverage of R=64.5-66.8 cm for Chl, R=65.8-68 cm for Ch2, and R=67.2-

69.5 cm for Ch3. The horizontal channel is unchanged and remains approximately at
the mid-plane with a ,3 cm wide viewing cone at R=69 cm.

The analysis procedure for each shot is as discussed in the previous sections; the
input parameters of the model, mainly Z,, helium fraction, and boron fractions are
varied with constraints determined from other diagnostics (for example, the HeIIl
diode for He density) until a reasonable match is found for the active/passive CX
count rates and temperatures. Because of the manual nature of this procedure, it
is not guaranteed that the best match is found, and the error bars given for the
inferred temperatures reflect this. Over 400 analysis runs were performed for these
13 discharges in this thesis. Each takes approximately 5 minutes on a Pentium 4
3.2 GHz PC.
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For three of these shots (5, 7, 13), helium is puffed in with the original goal of

explicitly seeing its effect on the inferred distributions. As it turns out, this proved

difficult since a large amount is required and this makes the shot no longer a repeat

of a non-puff shot. Also, contrarily to what is typically assumed, significant helium is

found for the shots following those plasmas with puffs. The absolutely calibrated HeII

diode is able to provide estimates of the He fraction for the LSN discharges. Coinci-

dentally, the CHROMEX diagnostic also saw the same trends. The input parameters

resulting in reasonable fits of the passive and active CX data do require helium frac-

tions similar to what the HeII diode reports. The measured helium fractions ranged

from 0-5% for the LSN shots. The inner wall shot with long puff, 13, has a CNPA

inferred -10% nHe/ne.

Concerning the IWL shots, the objective is to increase the boron impurity in the

plasma. In the analysis, it is indeed found that a higher boron fraction is needed to

reconcile the passive and active data for these IWL shots. Spectroscopically, the Zeff

also increased. The good analyses typically require boron fractions of 1-2% for the

LSN shots and -2.5% for the IWL plasmas.

nH/ne ratios for these shots are estimated from -, 0.85 x nlH/nD with error bars

of ±1%. A difficulty with some of these shots, especially the IWL ones, is non-

existent nH/nD spectroscopic data. This does not affect the CNPA temperature fits,
but does affect the inferred power density and the dW/dt deduced temperatures. For

the shots with no spectroscopic data, nH/ne is assumed to be 6% ± 2%. Almost all

of the shots with nHlnoD data lie in this range.

Within the experimental error bars, the CNPA deduced Teff indeed scale approxi-

mately with the Stix scaling. This trend is evident in the Ch2, Ch3, and flux surface

averaged results. The scatter in the data is larger for Chl and Ch4. It is possible to

infer a flattening of the Tef at higher scaling numbers (-60 in the following plots),
especially for Ch4, but the data in that regime is sparse for all channels; a flattening

implies broadening of the fast ion spatial profile which would be consistent at high

Teff due to orbit effects. Orbit effects decrease the effective slowing down time since

the fast protons travel through cooler parts of the plasma when the orbits are large.

This then reduces the Teff. Additionally, the Tef for that point is at the limit of ap-

plicability for the simple model because the fitted portion of the spectra is no longer

significantly higher in energy than the minority temperature. Next, the anisotropy,

or fast ion localization, of the minority proton distribution is again seen from the

consistently lower temperatures of the horizontal channel when compared with the

Ch2-Ch3 results. These temperature trends do not change significantly with fits from
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different distribution models, nor do they change between the active and passive data.
Lastly, the fast proton temperatures are found to peak away from r/a = 0 for all of

these shots, even though the resonance is on the magnetic axis. All of these results

are summarized via the accompanying plots:

* Figure 4-23 summaries the Teff data for Ch3, Ch4, the flux surface average at Z,,
and the Z=0, or r/a=O flux surface average based on dW/dt sawteeth analysis

for each shot. The Chl-Ch3 data is typically more energetic than the Ch4 data,
as expected. For all the shots, the CNPA based temperatures are higher than

the r/a=O fast ion temperatures, supporting the CNPA off-axis fast proton peak

conclusion.

* Figure 4-24 summaries the Zp determined from the passive and active CX CNPA

data for each shot. All of the shots with on-axis resonance have off-axis peaks.

* Figure 4-25 gives the measured Teff from the Stix distribution fits vs. the Stix

scaling for Chl-4. The Chl-3 data are from the active CX data. Core aver-

aged (r/a=0-0.5) plasma parameters are used to calculate the Stix parameter.

* Figure 4-26 gives the measured Teff from a simple exponential fit of CNPA data

vs. the Stix scaling. The Chl-3 data are again from active CX. The scaling
trend is not affected with a different distribution model.

* Figure 4-27 gives the measured Teff from the Stix distribution for the passive

CX analysis. The Ch4 data is the same as Figure 4-25 and re-plotted here
for comparison. The linear scaling trend is not affected; in fact the Chl data

seem to now have less scatter. This could be because the passive fits are not
weighted and tend to handle distributions with multiple effective temperatures

better, since the un-weighted fits simply takes an average of those effective
temperatures.

* Figure 4-28 plots the sawteeth reheat r/a=O temperatures with the flux surface
averaged temperatures against the Stix scaling. The linear trend is evident, and
the lower temperatures from the r/a=0O analysis again supports the off-axis fast
ion conclusion. There is a possible flattening of the fast proton temperature at
high Stix scaling parameter, but this is only supported by one shot (1051206001)
with large errors.
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Figure 4-23: Summary of some of the CNPA data from 1051206. For clarity, only
the Teff from Ch3 and Ch4 are plotted. The error bars are estimated from varying
the input parameters of the simple model. The flux surface averaged temperatures
are from the 2-D Hammett/Stix model distribution based on the CNPA data. The
dW/dt analysis are measurements of the r/a=O fast proton temperatures. The error
bars on these calculations are estimated by analyzing the uncertainty in nH/nD and
the r/a=O ohmic heating power.
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Figure 4-24: Summary of the deduced peak minority ion location from 1051206. Even
for these plasmas with on-axis heating resonance, the simple model indicates that the
fast ions do not peak at r/a=O.
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Figure 4-25: Summary of active CX Teff using a Stix distribution fit. Core aver-
aged (r/a=0-0.5) plasma parameters are used to calculate the Stix scaling parameter.
The Ch4 data are based on passive CX only.
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Figure 4-26: Summary of active CX Teff using a Maxwellian distribution fit. Core
averaged (r/a=0-0.5) plasma parameters are used to calculate the Stix scaling pa-
rameter. The Ch4 data are based on passive CX only.
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Figure 4-27: Summary of passive CX Teff using a Stix distribution fit. Core aver-
aged (r/a=0-0.5) plasma parameters are used to calculate the Stix scaling parameter.
The Ch4 data are re-plotted from Figure 4-25.
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Figure 4-28: Plot of the 1051206 r/a=O reheat based fast proton temperature and
the flux surface averaged CNPA based temperatures as a function of the Stix scal-
ing parameter. The value of the Stix scaling parameter is slightly different for the
r/a=O analysis because r/a=O plasma parameters are used instead of core averaged
parameters.

Before leaving this section, it is noted that for the lower Teff, a more appropriate

scaling might take into account the fast proton-bulk ion slowing down time. Incor-

porating this would then make the scaling a function of Teff. This would decrease the

net slowing down time and move some of the lower Teff (,50 keV) points to the left

in the scaling plots.

With the CNPA results established, the next section provides comparisons be-

tween these data and coupled FW/FP solvers.

4.7 Comparisons with Full Wave/Fokker Planck

Simulations

In this section, comparisons between the experimental data discussed above are made

with the FW/FP solvers TRANSP TORIC5/FPPRF and AORSA/CQL3D. These

AORSA/CQL3D runs are performed by E.F. Jaeger[51] at ORNL. Discrepancies in

the peak fast proton temperature and its spatial location are found with the TRANSP

simulations while good matches are found with the AORSA/CQL3D simulations. A

feasible explanation is given for these differences. This AORSA/CQL3D package

is quite new and these are the first Alcator C-Mod results and comparisons with
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Figure 4-29: TRANSP TORIC5/FPPRF calculated minority absorbed RF power for
shot 1051206002. The code calculated -92% absorption.

TORIC/FPPRF.

To start with, Figures 4-30 and 4-29 compares the TRANSP TORIC5/FPPRF

simulations for shot 1051206002 from t=1.0-1.15 s with the available flux surface av-

eraged fast proton temperatures and power deposition from experiment. No = ±10

and 31 poloidal modes are used for these simulations. Both runs with and without the

sawteeth model are shown; the run with sawteeth has a broader profile as expected.

Qualitatively, TORIC5/FPPRF in its current setup predicts significant power deposi-

tion at r/a-0 which results in high minority temperatures on-axis. This is counter to

the experimental results. Specifically, the inferred r/a=0O temperature is only -15 keV

from the dW/dt reheat analysis. As for the CNPA data, TRANSP under-predicts the

power deposition and hence fast ion temperature at r/a.i0.3, although the difference

is much smaller than the r/a=0O comparison and might be due to the fact that the

flux surface temperature is based on the use of Hammett's model distribution. In any

case, the r/a=0O result is consistent with O'Shea's earlier finding that FPPRF over-

predicts the r/a=0O temperatures. Presumably, the power deposition and fast proton

temperature would increase at r/a-0.3 if the simulation reallocated the absorbed
power from r/a-0-0.15 outward.

As for the AORSA/CQL3D results, the comparison is better. No sawteeth model
is currently available for this package but their effect is expected to be small to
moderate, depending on the r/a location. A flavor of this is already given by the
TRANSP TORIC5/FPPRF results. Figures 4-32 and 4-31 show the AORSA/CQL3D
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Figure 4-30: TRANSP TORIC5/FPPRF calculated Tef for shot 1051206002 and
available experimental data. The value at r/a=O is from a sawteeth reheat analysis
and the point at r/a,0.3 is from the CNPA flux surface averaged Teff using Hammett's
2-D model distribution.

Shot 1051206002, AORSA/CQL3D

r/a, normalized radius
P-norm+:1, P-norm-:1, P-nfrac-:1.14

Figure 4-31: AORSA/CQL3D 1051206002 flux surface averaged RF power deposition
profiles for N4 = 10 and N4 = -10 phasings. The 8% -+ 7% nH/ne factor has been
applied to the profiles. The symmetric N4 results are approximated by an average of
the two cases. The code calculated a -91% total RF absorption.
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Shot 1051206002, AORSA/CQL3D
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Figure 4-32: AORSA/CQL3D 1051206002 flux surface averaged Teff profiles for NO =
10 and N4 = -10 phasings. The 8% -- 7% nH/ne factor has been applied to the
profiles. The symmetric No results are approximated by an average of the two cases.

results with N4 = 10 and N4 = -10. The current AORSA/CQL3D setup permits

only one N4 per simulation; work is ongoing to combine the results from individual No

runs correctly to approximate the real antenna spectrum. For a rough approximation,
the profiles from these two N4 are averaged to estimate the symmetric case. The total

power deposited from the two N4 cases are 82% and -100% respectively; it is not

certain why the N4 = -10 case resulted in higher minority absorption. However, a

simple average of the two cases results in 91% absorption which is consistent with

the TRANSP case. Additionally, the tail temperatures from both N4 cases are scaled

to 7% nH/ne from the 8% used for the simulations. This tweak raises the minority

temperatures by 8/7.

Even given the preliminary nature of these sophisticated simulations, the AORSA

results match the experimental data rather well. The fast proton temperature at

r/a=O is ,10 keV, as measured. The Teff peaks at r/a-0.3-0.4 is around 50 keV

which is also consistent with experiment. Comparisons between the distributions

at the resonance pitch angle and peak r/a with Ch3 data are also good. Detailed

synthetic diagnostic results with these simulations are discussed in the next chapter.

There are several possible reasons why the AORSA/CQL3D combination works
better than the TORIC5/FPPRF package. Because the CQL3D and FPPRF codes
are nominally based on the same physics, i.e. 2-D bounced averaged orbits coupled
to a RF quasi-linear diffusion operator, the differences should be in the wave solver
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and/or the coupling code that handles the interaction between the Fokker-Planck

and wave solver. Concerning the first option, the fundamental difference between

AORSA and TORIC is that FLR effects are completely included in AORSA, since

no approximations to the dielectric tensor is made. But for minority heating at mod-

erate tail energies, FLR effects in the wave propagation and power absorption should

be small. The second possibility bears more fruit. As it turns out, the iteration to

steady-state in the TRANSP TORIC5/FPPRF package is carried out using equiv-

alent Maxwellians[52]. Specifically, the 2-D distribution in FPPRF is not directly

used in the TORIC calculation of the power absorption; only average TL and T11

are used. This averaging of the 2-D distribution alters the dynamics of the power

absorption because the details of the resonantly localized fast ions are significantly

changed. As discussed in Chapter 2, these trapped ions spend the longest time around

the resonance and hence absorb significantly more power than average. Also, as the

heating continues, the density of these resonantly localized fast ions on each flux sur-

face increases. Because particles can not become easily trapped near r/a~O, there

is a tendency for the power absorption to move off-axis along the resonance in the

+Z and -Z direction. TORIC5/FPPRF essentially removes this trapped ion density

build-up near the resonance. Hence, since the AORSA/CQL3D package retains the

complete 2-D bounced average distribution during each iteration, it is able to simu-

late this off-axis heating effect properly and produce fast ions that are peaked further

out then TORIC5/FPPRF. Further support for this explanation comes from exam-

ining the AORSA/CQL3D profiles before steady-state. In fact, at the Oth iteration,

AORSA indeed predicts significant power density at r/a=0O for the minority ions with

a Maxwellian distribution. This is shown in Figure 4-33. Nonetheless, further study

with more extensive simulations are needed to confirm this conjecture and confirm

the AORSA results.

4.8 Conclusion

In the previous sections, the main physics results of this thesis are discussed. A simple

NPA model from JET is extended and adapted for the CNPA data. Extensive mod-

eling is used to account for the effects of impurity CX and beam halos. Using these

methods, effective peak fast minority proton temperatures for each channel are de-

duced, along with their spatial location. Flux surface averaged temperatures are also

available from the CNPA data via a 2-D model distribution proposed by Hammett.

These CNPA temperatures scaled as expected with a Stix scaling parameter. How-
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Figure 4-33: AORSA/CQL3D power absorption before iteration for Alcator C-Mod
shot 1051206002. The power density at r/a=O is significant, similar to the TRANSP
TORIC5/FPPRF result. H and D represent the power to hydrogen and deuterium,
respectively. At the final iteration, there is very little absorption due to second
harmonic heating of deuterium. This figure is adapted from Jaeger[51].

ever, these fast protons are all found to be peaked off-axis, even though the resonances

for the examined plasmas are all on-axis. This observation is independently confirmed

via estimates of the fast ion temperature at r/a=0O using a sawteeth reheat technique.

These r/a=0O temperatures are consistently lower than the ones from the CNPA. First

comparisons between TRANSP TORIC5/FPPRF simulations and the experimental

are relatively poor, in contrast to good agreement with AORSA/CQL3D simulation

results. An explanation resolving this discrepancy is proposed which involve the use

of equivalent Maxwellian distributions in the TRANSP TORIC5/FPPRF package.

115



116



Chapter 5

Synthetic Diagnostic Results

5.1 Introduction

As discussed in the previous chapters, for comprehensive comparisons between the

CNPA experimental data and simulations, a synthetic diagnostic that accounts for the

plasma profile details for each of the CNPA channels is needed. In other words, the

use of a full simulated diagnostic permits the fast proton profiles to be determined.

Mathematically, a synthetic diagnostic involves solving equation 4.1 with specified

minority distributions. In general, a synthetic diagnostic is a reduction of the data

set instead of solving the inverse problem and is therefore easier but not uniquely

determined.

For this thesis, two complete synthetic diagnostics are implemented. The first is

a passive CX only Fortran package that is natively implemented into CQL3D. The

addition of this package to the CQL3D code permits the fusion NPA community to

compare their experimental NPA results with CQL3D for energies up to -,100 keV

using arbitrary sightlines. It is mentioned here for completeness as part of the work
done for this thesis.

The results discussed in the following sections are from the second synthetic di-

agnostic. This diagnostic is a Matlab based post-processor for CQL3D that includes
both passive and active CX. CX with hydrogen-like impurities are also accounted for.
The plasma and sightlines are modeled in detail on a R-Z poloidal cross section of
the plasma. In the next several sections, the use of this synthetic diagnostic is shown
through a sample analysis of the AORSA/CQL3D data for shot 1051206002. Both
the No = 10 and No = -10 cases are studied. As discussed in the last chapter, the
real antenna spectrum is made up of both phasings. However, because of the inabil-
ity to run both phasings simultaneously in the AORSA simulation, the No = ±10
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results are again approximated by averaging the distributions from the No = 10 and

No = -10 cases. Although it is not clear that this averaging approach is adequate,
it is the simplest one available until the AORSA/CQL3D coupling code is rewritten

to handle both phasings simultaneously. However, even at this preliminary stage,
the comparison between these simulations and the CNPA data is reasonable and val-

idates the use of the sample model for estimating the fast proton temperature and

its spatial location. For contrast, a poorer comparison from a GENRAY[30]/CQL3D

simulation of 1051206002 is also discussed. Unfortunately, TORIC/FPPRF minority

distributions are not available from TRANSP to continue the comparison from the

last chapter.

5.2 Analysis Procedures

The processes required for the full simulated diagnostic is similar to the calculations

needed for the simple model. A step-by-step description is given in this section for the

analysis of the Ch3 viewing cone for shot 1051206002. The bulk plasmas parameters

used are taken from t - 1 s, during the active DNB period.

First, the plasma bulk parameters are established on a R-Z grid with a poloidal

cross section of the plasma. This is done using EFIT results and the bulk plasma

parameter as a function of major radius or r/a. The bulk plasma parameters are

taken from Zhurovich's IDL fitting program, discussed in Chapter 1; a minimum Zeff

of 1.5 is imposed for shot 1051206002. Figure 5-1 shows the plasma density from

this 2-D mapping process along with a sample viewing chord. Other flux surface

parameters, such as the electron temperature and the background FRANTIC based

D neutral density are also re-mapped this way. The size of the grid shown is 200 x 199

and spans Z=-0.69 to 0.69 m and R=0.43 to 0.92 m.

After the grid is established, the sightlines can be determined. The CNPA viewing

cones are essentially vertical or horizontal, therefore the grid points for sightlines ap-

proximating those cones are easily ascertained. For each channel, results from three

synthetic chords spanning the width of the real viewing cone at Z=0 for the verti-

cal channels or R=0.69m for the horizontal channel are averaged to approximate the

real diagnostic views. For example, the three sightlines that approximate Ch3 are

R=0.672, 0.683, and 0.694 m. One of these simulated sightlines for Ch3 and its asso-

ciated grid points in the plasma is shown in Figure 5-1. With the chords established,

the penetration out of the plasma for each of these grid points is calculated using the

Janev cross-sections[45]; this is similar to the P(E) calculation in the last chapter but
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1051206002 t=ls, Electron Density Profile(l/m 3)
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Figure 5-1: Electron density profile for shot 1051206002 at t=1 s. A sample sightline
for the synthetic diagnostic is also plotted; the crosses indicate grid points that are
within the LCFS and are determined automatically by the code.
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1051206002 t=1.06s, Inverse Penetration
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Figure 5-2: Inverse penetration curves for some of the marked gird points in Figure 5-
1 based on Janev's neutral stopping cross-sections. The distances in the legends are
in meters. Attenuation from neutral gas in the port duct are not included in the
above curves.

now plasma parameters for each grid point are used. This results in plasma induced

attenuations shown in Figure 5-2. Attenuation in the port duct due to residue neutral

gas is accounted for separately.

Next, the electron donor densities are setup on the R-Z grid. For passive CX this

is relatively simple since all the required quantities are flux surface functions. For

the boron and helium impurities, equation 4.7 is used for each grid point assuming

a constant nb/ne or nhe/ne. Figure 5-3 gives a plot of this for the assumed 1.5%

boron impurity in shot 1051206002. Things are slightly more difficult for active CX,
since the beam and related densities are not flux surface functions. For the beam

components themselves, the penetration as a function of major radius is determined

by the procedure discussed in section 4.3.1. The halo density is now solved for as

a function of major radius using plasma parameters averaged along Z ± 10 cm for

each R grid point, the mentioned beam densities, and the model from Section 4.3.2.

These calculations result in beam and halo profiles shown in Figure 5-4. Lastly, the

beam-induced impurity densities are implemented onto the 2-D grid. These are the

trickiest to ascertain since these HL impurities still follow field lines but are not flux

surface functions. A simple approximation which seems to work well is used here; the

active CX nimp,HL densities from section 4.3.3 are used again and simply scaled by
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Passive CX HL Boron Density Profile
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Figure 5-3: HL boron density profile used for passive CX calculations. The Z=0 vs. R
profile shown here is mapped onto the R - Z grid in Figure 5-1 for the synthetic
diagnostic calculations.

nimp,HL/ne for each grid point. This should be adequate for the core (r/a - 0 - 0.5)

of the R-Z grid where the fast ions are dominantly located. Also, it is expected that

the beam created HL impurities at larger r/a should not affect the vertical channels

significantly because of the long field line distance (- 2rRoq, with q now greater than

-1.5) they have to travel to intercept those chords. This approximation results in

beam induced profiles shown in Figure 5-5.

With the electron donor densities established, the active and passive CX fac-

tors (i.e. the denominator of equation 4.2) for each of the grid points of the sightline

are determined. All that is left is to step through each of these grid points, deter-
mined the local distribution from the CQL3D output, and multiply that by the CX

and P(E) factors to determine a local AF(E). The CQL3D distributions are based

on mid-plane coordinates; these are re-mapped to a specific grid point by again us-

ing vll,mid/V = V/(1 - Rtip/Rmid), where Rti, is the R of the sightline and Rmid the
equivalent midplane major radius for the flux surface. Summing the AF(E) from the
grid points of the sightline then completes the expected F(E) of that chord. In other
words, equation 4.1 is solved. To illustrate, Figure 5-6 shows the relative contribu-
tion to the active CX No = ±10 F(E) along one of the Ch3 sightlines. Clearly, the
signal is primarily coming from Z ,7 cm, as deduced from the simple model in the
last chapter. The contribution from the lower portion of the discharge is smaller due
to additional plasma attenuation; the CQL3D distributions themselves are up-down
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Figure 5-4: DNB and halo densities profiles used for active CX calculations. The

half component density is multiplied by 5 for clarity. The dashed contours represents

plasma flux surfaces.
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Figure 5-5: HL boron density profile used for active CX calculations. The Z=0 vs. R
profile shown here is mapped onto the R - Z grid in Figure 5-1 for the synthetic
diagnostic calculations.

symmetric. With these calculations, the F(E) from the three chords that approxi-

mate each channel are then averaged to simulate the real detector response for the

given CQL3D minority distribution, as discussed above.

5.3 1051206002 Synthetic Diagnostic Analysis

In this section, the results from employing the calculations discussed above are shown

for shot 1051206002. The simulated detector response from the AORSA/CQL3D

No = 10, No = -10, and No = ±10 are given. The CNPA data match the

AORSA/CQL3D well, although a higher than measured active/passive count rate

is seen. In addition, for contrast, results from the same calculation using 1051206002

minority distributions from GENRAY/CQL3D are also discussed. GENRAY is not a

full-wave solver and employs a ray-tracing technique that tends to focus the emitted

RF power at r/a=0O which results in synthetic diagnostic spectra that do not fit the

CNPA data. As discussed earlier, the ray-tracing approximation is not justified for
these low density Alcator C-Mod plasmas because the wavelengths at 80 MHz are
comparable to the size of the plasma.

Overall, the preliminary results are encouraging and show that the use of sophis-

ticated FW/FP coupled codes such as AORSA/CQL3D is required to simulate the

energetic proton populations in Alcator C-Mod with some degree of accuracy. It

123



Contour plot of Act AF(E,Z) N phi10 for R=0.683m
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Figure 5-6: Relative fast neutral hydrogen emission rate with attenuation for the
sightline in Figure 5-1. These data are for the No = ±10 case with active CX. The
unfilled portions indicate an emission rate smaller than n 10- 9 . Integrating along Z
gives F(E) for the sightline. The contours are logarithmic.
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Figure 5-7: Chl AORSA/CQL3D synthetic diagnostic results assuming a 1.5% boron
impurity. Both the active and passive CX are shown along with the simulated spectra.
The spectra are normalized to the first CNPA data point for clarity. In the legend,
'act' and 'pass' stand for active and passive CX respectively. 'Avg.' indicates NO =
±10 or an average of the NO=10 and No=-10 results. The error bars are based on
counting statistics only.

should be noted, however, that fast ion radial transport has not been accounted for

in these runs and could affect these results if included.

Starting off, Figures 5-7 to 5-10 compare the active and passive CX based synthetic

diagnostic F(E) against the experimental F(E). For these plots, all the spectra

are normalized to the first CNPA data point to facilitate comparisons. To note, a

better normalization constant might be determined by doing a least squares fit of the

synthetic spectra with the data. The N, = ±10 average F(E) is typically dominated

by the No = -10 case since the fast protons in that case are closer to r/a = 0 which

results in both higher temperatures and count rates. The general features of the

experimental spectra, such as the rapid rise past -150 keV during passive CX, are

reproduced by the synthetic diagnostic. This rise is again due to HL boron CX. The

slopes, or effective temperature as a function of energy, of the distributions also show
reasonable agreement.

However, certain phenomena, such as the 'negative' temperature regions in the
"200-250 keV portion of the Chl data, are not in the synthetic diagnostic spectra;
orbit effects not included in the synthetic diagnostic could be to blame. Additionally,

125



Ch2 1051206002
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Figure 5-8: Ch2 AORSA/CQL3D synthetic diagnostic results assuming a 1.5% boron
impurity. Both the active and passive CX are shown along with the simulated spectra.
The spectra are normalized to the first CNPA data point for clarity. In the legend,
'act' and 'pass' stand for active and passive CX respectively. 'Avg.' indicates No =
±10 or an average of the N4 =10 and N4 =-10 results. The error bars are based on
counting statistics only.
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Figure 5-9: Ch3 AORSA/CQL3D synthetic diagnostic results assuming a 1.5% boron
impurity. Both the active and passive CX are shown along with the simulated spectra.
The spectra are normalized to the first CNPA data point for clarity. In the legend,'act' and 'pass' stand for active and passive CX respectively. 'Avg.' indicates NO =
±10 or an average of the N4=10 and NO=-10 results. The error bars are based on
counting statistics only.
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Figure 5-10: Ch4 AORSA/CQL3D synthetic diagnostic results assuming a 1.5% boron
impurity. The passive CX are shown along with the simulated spectra. The spectra
are normalized to the first CNPA data point for clarity. In the legend, 'pass' stand
for passive CX. 'Avg.' indicates N4 = ±10 or an average of the N4 =10 and N4 =-10
results. The error bars are based on counting statistics only.
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Figure 5-11: AORSA/CQL3D and experimental
ulated results are from the NO = ±10 average
counting statistics only.

active/passive count rate. The sim-
case. The error bars are based on
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the shape of the simulated spectra at the higher energies will change if a different
boron impurity density is used, as discussed in the previous chapter. On the other
hand, qualitatively, the real spectra seem to be well matched by the synthetic results

at these higher energies with the estimated 1.5% boron impurity density.

In terms of count rates, Figure 5-11 gives the active/passive count rate ratio for

both the N4 = ±10 synthetic spectra and the data. The known toroidal tilt of

N1 cm and finite toroidal aperture size (,,.2 cm) discussed in the last chapter are not

accounted for in this synthetic diagnostic. Accounting for these details might lower

the synthetic active/passive count rate ratio by ,,10-15%. Without these effects, the

real active/passive count rate ratio is ,,60% of the predicted as indicated in the figure.

Various possibilities exist to resolve this count rate discrepancy. First, because

the background neutral density rises rapidly with r/a and the beam related neu-

tral donors decreases with r/a, a shift of a couple of centimeters outward in Z for

the spatial location of the simulated minority distribution would lower the synthetic

active/passive count rate ratio noticeably. This would probably occur if spatial dif-

fusion is accounted for. Also, the 1-D FRANTIC neutral density model might not

be adequate for this sort of detailed comparison; for example, the neutral density is

typically not a flux surface function. Orbit effects might be important again due to

the very small but finite vll that the sightlines can accept; in other words the fast ions

might be experiencing a region of higher background neutral density during passive

CX then calculated since the fast ions do not have to be strictly at their turning point

for the detectors to see them. Another possible explanation might be the DNB neu-
tralizer not reaching steady-state, which would result in lower neutral beam current
than expected. However, this is at best a ,,10% effect since other checks are in place
to ensure that the neutralizer is operating above a -80% efficiency[53]. Lastly, the
simple halo model employed could have simply overestimated the halo densities. In
general, a complete model for these neutrals and electron donors is very complicated
as the full 3-D geometry of the tokamak must be taken into account, since neither
the beam or the background neutrals are flux surface quantities. This type of code is
not available currently.

In whole, the effective temperatures of the spectra are relatively unaffected by this
modest count rate discrepancy. This is because the shape of F(E) does not explicitly
depend on the ratio of beam to background neutral density. In both passive and
active CX, the absolute hydrogen neutral density simply determines when HL boron
impurity CX becomes important. The shape of the passive CX spectra, as discussed,
is more affected by this boron impurity CX since most of the active CX spectra is
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Figure 5-12: Chl GENRAY/CQL3D synthetic diagnostic results assuming a 1.5%
boron impurity. Both the active and passive CX are shown along with the simulated
spectra. The spectra are normalized to the first CNPA data point for clarity. In the
legend, 'act' and 'pass' stand for active and passive CX respectively. The error bars
are based on counting statistics only.

dominated by halo and third beam component neutrals.

It must be stated in general that this preliminary comparison is reasonably good.

It suggests that poor wave focusing and preferential heating of trapped minority ions

are the primary physics responsible for the off-axis peaking behavior, and not spatial

diffusion. This analysis also validates the off-axis heating and temperature results

from the last chapter. For contrast, Figures 5-12 to 5-16 show the same synthetic

diagnostic calculations for minority distributions from GENRAY/CQL3D. This code
predicts a power absorption of -91%, similar to the results from TORIC/FPPRF

and AORSA/CQL3D. As stated, the use of the GENRAY ray tracing code results in
significant power deposited at r/a = 0, shown in Figures 5-17 and 5-18. Although
the spectra comparison for the Chl and Ch2 data is reasonable, the large on-axis fast
ion temperature makes the Ch3 and Ch4 synthetic spectra too energetic. To note, the
decent temperature comparisons for Chl and Ch2 are not unexpected, as Figure 5-17
shows that the effective flux surface averaged temperatures at r/a > 0.15 for the
GENRAY/CQL3D case are comparable with the results from AORSA/CQL3D. The
main difference is again the large on-axis temperatures which dominantly affects the
channels with viewing cones intercepting that region. For the count rate comparison,
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Figure 5-13: Ch2 GENRAY/CQL3D synthetic diagnostic results assuming a 1.5%
boron impurity. Both the active and passive CX are shown along with the simulated
spectra. The spectra are normalized to the first CNPA data point for clarity. In the
legend, 'act' and 'pass' stand for active and passive CX respectively. The error bars
are based on counting statistics only.
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Figure 5-14: Ch3 GENRAY/CQL3D synthetic diagnostic results assuming a 1.5%
boron impurity. Both the active and passive CX are shown along with the simulated
spectra. The spectra are normalized to the first CNPA data point for clarity. In the
legend, 'act' and 'pass' stand for active and passive CX respectively. The error bars
are based on counting statistics only.
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Ch4 1051206002
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Figure 5-15: Ch4 GENRAY/CQL3D synthetic diagnostic results assuming a 1.5%
boron impurity. The passive CX are shown along with the simulated spectra. The
spectra are normalized to the first CNPA data point for clarity. In the legend, 'pass'
stand for passive CX. The error bars are based on counting statistics only.
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Figure 5-16: GENRAY/CQL3D and experimental active/passive count rate. The
error bars are based on counting statistics only.
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Shot 1051206002, GENRAY/CQL3D
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Figure 5-17: GENRAY/CQL3D flux surface averaged temperature profile for shot
1051206002.

Shot 1051206002, GENRAY/CQL3D

U

0r

ci
0

0 0.2 0.4 0.6 0.8
r/a, normalized radius

Figure 5-18: GENRAY/CQL3D RF flux surface averaged power deposition profile for
shot 1051206002.
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the general shift of the minority distributions closer to r/a = 0 results in a predicted

active/passive ratio -3 times higher than the measured one.

5.4 Conclusion

A synthetic diagnostic for both active and passive CX analysis is implemented for

CQL3D. Using this simulated diagnostic, preliminary results from the new FW/FP

AORSA/CQL3D code are compared with CNPA data for shot 1051206002. Reason-

able agreement is found for the shape of the spectra, but moderate discrepancies are

encountered for the active/passive CX count rate. Including spatial diffusion effects

should improve this count rate comparison. Several other possibilities are also pro-
posed to resolved these differences. In contrast, significantly larger differences are

found from a comparison of the CNPA data with synthetic diagnostic calculations

based on GENRAY/CQL3D. Overall, these preliminary results are encouraging and

show that the use of complex FW/FP coupled codes such as AORSA/CQL3D is re-

quired to simulate these energetic populations in Alcator C-Mod with some degree

of accuracy. Lastly, these calculations support the off-axis heating conclusions and

temperature measurements of the previous chapter.
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Chapter 6

Conclusions and Future Work

6.1 Summary

The primary focus of this thesis work is the measurement and analysis of energetic

minority protons created from ICRF heating in the Alcator C-Mod tokamak. The

core minority proton temperature and phase-space anisotropy are directly measured

for the first time in Alcator C-Mod through a new neutral particle analyzer diag-
nostic. The minority temperatures are found to scale approximately with the Stix
parameter in a series of low density discharges. Although the heating resonance of all
the studied plasmas is on-axis, the minority protons for all of these shots are peaked

away from r/a=O, in contrast to what is typically assumed for discharges on Alcator

C-Mod. This is independently confirmed with estimates of the r/a=O minority proton

temperature using a sawteeth re-heat analysis. Detailed comparisons of these exper-
imental results with several leading simulation packages found that only a correctly
coupled full-wave/Fokker-Planck solver such as AORSA/CQL3D can reproduce the
experimental features with accuracy. This off-axis heating result has been seen on
other machines, noticeably PLT, but this is the first time that both concrete exper-
imental and simulation results are available for comparison. In whole, the thesis is
comprised of both extensive new experimental and numerical work, summarized in
detail below.

Experimentally, a new multi-channel Compact Neutral Particle Analyzer is de-
signed, constructed, and implemented on Alcator C-Mod. This diagnostic successfully
measured directly, for the first time, the core energetic minority proton population.
A notable innovation of the CNPA includes the use of fast digitization techniques to
replace traditional real-time pulse-height analysis systems typically employed. These
techniques permit much greater flexibility in the operation of the diagnostic and elim-
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inate errors in the pulse height data that can affect traditional systems. An example

of these errors are shifts in the baseline of shaping amplifiers that are easily corrected

when the fast digitization techniques are used.

In terms of diagnostic physics, a simple model with impurity CX applied by the

JET, JT-60U, and TFTR teams for analyzing their NPA data is extensively modified

for use with the CNPA data set. This modified model includes detailed beam profiles

and halo CX. These modifications permit the peak minority proton temperature to

be estimated and its spatial location to be inferred via a comparison of the active and

passive CX count rates. Lastly, hydrogen-like boron is identified as a key electron

donor in the high energy range of the CNPA.

Application of this modified simple model to the CNPA data set shows that the

minority proton temperatures scale approximately with the Stix parameter, and that

these fast protons are peaked off-axis even for an on-axis heating resonance. This off-

axis peaking is a result of the fact that ICRF waves heat ions in v 1 dominantly, which

tends to create trapped minority ions with banana tips close to the heating resonance,

and poor wave focusing. Moreover, trapped ions are also preferentially heated. These

effects combine to drive the power deposition away from r/a - 0 because it is very dif-

ficult to trap ions near r/a - 0. The experimental measurements are compared with

numerical simulation results from TORIC5/FPPRF, AORSA/CQL3D, and GEN-

RAY/CQL3D. Comparisons of the experimental flux surface averaged temperatures

and spatial location with TRANSP's TORIC5/FPPRF are poor possibly because of

the use of equivalent Maxwellian distributions in the TORIC5 full-wave solver. The

AORSA/CQL3D comparisons, on the other hand, are good because the full 2-D fast

proton distribution is kept intact between the full-wave and Fokker-Planck solver

during each iteration of the code. Keeping track of the 2-D minority distribution rig-

orously allows resonance localization of the minority ions to occur; this permits the

hollow power deposition and minority temperature profiles to be simulated properly.

Going further, comprehensive comparisons of the CNPA experimental spectra with

simulation results from AORSA/CQL3D and GENRAY/CQL3D are done using a new

synthetic diagnostic written for this thesis. The AORSA/CQL3D synthetic spectra

show reasonable agreement with the CNPA data. Results from the GENRAY/CQL3D

comparison show noticeable disagreement. This disagreement is attributed to the use

of ray-tracing techniques in GENRAY which tends to focus ICRF power at r/a - 0.

In closing, the AORSA/CQL3D code is most able to reproduce the minority proton

features seen by the CNPA, and validates the use of the modified simple model for

interpreting the CNPA data.
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Overall, these experimental and theoretical studies form a solid foundation for the
examination of even more complex wave-energetic particle interactions on Alcator C-
Mod, such as due to toroidal Alfvyn eigenmodes.

6.2 Future Work

With the feasibility of measuring energetic ICRF heated minority protons established

on Alcator C-Mod, several possible avenues of new research can be taken. In this
section, upgrades to the CNPA diagnostic and modeling are discussed, along with
some potential future experiments.

In terms of hardware and diagnostic engineering, various upgrades to the diag-
nostic should be implemented. The addition of vertical channels spanning the entire

plasma major radius should be considered. This would permit extensive analysis of

discharges with off-axis resonance heating layers. However, this upgrade would re-
quire extensive re-engineering of the F-Port Top diagnostic flange and modifications

to the F-Port Top CXRS periscope which is currently occupying the outboard portion
of the port. Another difficult but potentially rewarding upgrade could be a detector

array with a tangential view of the DNB. A simpler improvement involves extending
the energy range of the diagnostic by using shaping amplifiers that have a higher
voltage rail than the current HXR shaping amplifiers. The lower energy range can

be extended by using thinner foils if desired; experimental study is needed to verify
an optimum thickness. Additionally, the PHA procedure could be rewritten to in-
corporate detailed gaussian fitting of each pulse to improve energy resolution and to
recover piled-up pulses. Similarly, the digitizers can be operated at faster frequen-
cies for smoother voltage outputs to facilitate detailed fitting. Outside of the CNPA
diagnostic, more accurate impurity density measurements are needed in general. At
a minimum, the CXRS diagnostic should be absolutely calibrated so that absolute
boron densities can be determined.

From an analysis point of view, the AORSA/CQL3D simulations should be re-run
when the AORSA/CQL3D coupling code is modified to handle multiple No simul-
taneously. After this, more shots can be analyzed with the synthetic diagnostic. If
possible, a TORIC/CQL3D coupling should be attempted to confirm that proper
handling of the distributions between the full-wave and Fokker-Planck solver results
in off-axis peaking of the minority protons, and to study the effect of retaining all the
FLR terms in the dielectic tensor. Lastly, orbit effects and spatial diffusion could be
included in the analysis by using the Monte-Carlo TORIC/ORBIT-RF code[54]. In
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the general sense, an accurate FW/FP code is important for experiments that depend

on details of the fast minority species because the measurement is quite difficult.

Experimentally, more dedicated plasma time is required with the new long pulse

DNB to extend the basic scaling study discussed in this thesis. The operating space for

Alcator C-Mod is unique and hence this scaling study should be continued; it is easy

on Alcator C-Mod to create both very energetic or very weak minority distributions in

reactor-relevant plasma regimes. The heating efficiency as a function of current could

be studied to confirm that fast proton orbit losses are minimal. Another experiment

related to the plasma current is the effect of sawteeth crashes on the fast protons; some

very preliminary CNPA data suggest that the effect is noticeable for large sawteeth.

However, no correlation between sawteeth and the CNPA count rates are found for

the 600 kA discharges in this thesis. Second harmonic proton heating could be studied

by lowering the toroidal field; some passive second harmonic CNPA data are already

available for shot date 1050726, or July 26th, 2005. Lastly, experiments involving

toroidal Alfvyn eigenmodes should be pursued with the CNPA diagnostic to study

the interaction of these eigenmodes with energetic minority protons.
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Appendix A

Calibration of the Alcator C-Mod

CNPA via Rutherford scattering of

deuterons

A.1 Introduction

Calibration of the Alcator C-Mod CNPA 3-channel F-Top array was accomplished via

detection of Rutherford scattered deuterons from a 500 A thick gold foil in the 40-

142 keV energy range. Rutherford scattering was used in order to limit the particle

flux to the CNPA. The calibration was performed at the MIT PSFC accelerator

facility operated by the HEDP group. The resultant calibration is within -3% of

the previous 15-60 keV CNPA calibration which used the Alcator C-Mod diagnostic

neutral beam and an Am241 X-ray source.

A.2 Experimental Timeline and Setup

The calibration experiment was performed over a period of three days, from April

24-26, 2006. The setup of the experiment is illustrated in Figures A-1, A-2, and A-3.

The first two run days consisted of characterizing the backscatter from the beam

using a standard Ortec ion-implanted silicon detector apertured to simulate a -1 mm2

CNPA detector. Both the HEDP group's Erbium target and a gold foil were tested as

the beam target in order to determine an optimum backscatter for calibration. The

gold foil produced a relatively sharp peak consistent with scattering theory. Hence,

the CNPA was installed on the third day and a gold foil was used as the backscatter
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Detector setup(Not to scale)

Figure A-1: Left: Experiment schematic setup. The backscatter from a thick Erbium
target was also tested. Right: CNPA detector setup for the calibration. The detector
sightlines were configured to sweep the foil and washer vertically, starting from the
center and traversing downwards. The three adjoining -1 mm2 square detectors and
in-situ aperture are exaggerated for clarity. The top and bottom detector sightlines
are shown.

Figure A-2: External view of the accelerator facility. The CNPA is mounted on the
port located at the left of the beamline. The micrometer before the bellows section
on the CNPA controls the in-situ aperture.
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Figure A-3: View of the internal beam chamber through the diagnostic port on the
left of the beam. The gold foil is suspended on a nickel mesh and covers a standard
washer. The washer is secured by a stainless steel alligator clip mounted on a linear
motion feedthrough which permits the foil to traverse vertically. The retractable
Erbium target is also shown.

target. The 1550A Al protective foil normally in front of the CNPA detector F-Top

array was removed. Deuterium beam energies from 60-142 keV were used.

The 4th channel of the CNPA, which is not part of the F-top array, is calibrated
using a standard alpha source. That calibration is not discussed in this appendix.

The rest of this document summarizes the physics involved, the backscattered
data, and the CNPA calibration results.

A.3 Rutherford Scattering in a Finite Thickness

Target and Experimental Model

In this section, the theory behind Rutherford scattering is given, and its application
to the CNPA calibration is discussed.

From Krane[55], the Rutherford differential cross section for a light beam ion
elastically scattering from a heavy stationary target is:

dar ( zZe2 1
167rEoEb sin (A)

where z is the charge of the incident ion and Z the target, Eb is the beam energy,
and 0 the scattering angle.

From conservation of momentum and energy, the energy of the scattered beam
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ion after the collision is[56]:

r 2

EE cos(8) + AT - sin2 0 (A.2)
= (Ab + 1)2 (A)

where AT is the atomic number of the target and Ab the atomic number of the

beam.

For a foil that is non-negligibly thick in terms of beam and backscatter ion en-

ergy attenuation, a relation involving equation A.1 and A.2 that also accounts for

the change in ion energy is needed to predict the absolute flux to a given detector.

Assuming the variation of 0 over the detector viewing solid angle is small, the beam

and backscatter ions remain collimated and mono-energetic as they slow down, and

no significant total beam ion losses through nuclear or backscattering reactions, the

number of backscatter particles to a detector for a dx thick foil slice at a specified 0

is:

da
F(x)dx = 47rnbvbnTd (Eb(x))A)dx (A.3)

dQ2

where nb and vb are the density of beam ions and their velocity before impact, nT

the density of the target, Eb(x) the energy of the beam as a function of foil depth,

and AQ the etendu6 of the detector. Here, x = 0 corresponds to the front of the foil.

A separate calculation using the SRIM[34] code is used to determine Eb(x).

Stated in another way, the model assumes that each of the dx slices in the foil

emit a certain number of particles to the detector at a sharp specific energy.

The energy of the particles hitting the detector from the slice in equation A.3 can

be determined via additional SRIM calculations, or approximated as:

Ed(x) = Es(Eb(x))- (Eb(0)- Eb(x)) (A.4)
Cos 09

9' is the nearest angle between the beam and the sightline, or 7r - 0. This form

of Ed(x) assumes that the backscattered particle experiences the same energy lost

coming back out of the foil (scaled by an apparent thickness) as it did when it was first

shot in. When compared with detailed SRIM calculations, the above approximation

has less than a - 10% error for a foil that causes a - 20% energy loss from the initial

beam. The approximation is good at the lowest energy of the calibration experiment,

60keV, and excellent at the higher energies, where the beam energy lost from slowing

down in the 500A Au foil becomes less than - 10%. Moreover, for these calibration

experiments, the detailed SRIM based calculations give Ed's that are typically only

144



1-3 keV less than the Ed's estimated from equation A.4.

The constant 0 approximation should also be excellent for the collimated sightlines

in these experiments, since 0 varies by less than ,,1 deg over the viewing solid angles.
Additionally, if only the relative intensity as a function of energy is required, only the
0 dependence in E, matters. The 0 dependence of E8 is weaker than the differential

scattering cross section 0 dependence. Hence, for these experiments, a constant 0 of

-.135 deg is assumed. Note that 0 is defined relative to the beam, not the target.

Lastly, the sharp range assumption is adequate since ions experience continuous

slowing down in the target via ion-electron Coulomb collisions which result in an

average energy loss as a function of target depth with small phase-space and real-
space spread. For example, the SRIM code shows that a 60 keV D beam traversing
a 500 A Au foil slows to 52.7keV with a standard deviation of 2.5 keV.

Putting all this together, qualitatively, the following scenarios emerges. For a light

ion beam hitting a heavy target made up of only one element, the detected energy

spectrum, D(E), is a sharp peak very close to the beam energy for a negligibly thick
target. The peak broadens with increasing target thickness and eventually disappears.
This is due to increasing lower energy backscatter which dominates the total spectra

because of the 1/E2 dependence in equation A.1. This conclusion is independent of
the target Z because the backscattering cross section is never large enough to cause

significant loss of the beam before it is slowed by the target to less than half its initial

energy. Hence, a very thin foil in terms of beam energy is required for producing a
sharp peak for calibration. However, these thin foils are destroyed easily by beam
current since they are not supported and can not be cooled.

An alternative is to examine backscatter from a thick heterogenous target com-
posed of a heavy-Z thin front layer and a very thick lower-Z support backing. Specif-
ically, for the CNPA calibration experiments, firing the beam at the 500A thick gold
layer on the rim of the washer produces a useable backscatter peak even though sig-
nificant lower energy backscatter occurs as the beam stops in the washer. This is
due to the fact that the scattering cross section has a Z2 dependence which results
in a larger backscatter flux from the thin gold layer and permits the gold induced
backscatter to be easily picked out from the rest of the spectrum.

Note that backscatter of the half and third components of the D beam also occurs,
but because their energies and densities are lower to begin with, their Au induced
backscatter is typically lost in the lower energy continuum.

Figure A-4 graphically illustrates the qualitative spectra shapes for the different
targets discussed.
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Figure A-4: Qualitative backscatter spectra for different target setups. (A) A neg-
ligibly thick homogenous foil. (B) A thick homogenous target. (C) A heterogenous
target with a thin heavy-Z layer on top of a thick low-Z layer.

In order to interpret the spectra from the experiment for calibration purposes,
what is needed is an accurate estimate of the backscatter peak energy. The absolute

intensity is not required. For a finite thickness foil where the scattering cross section

is nearly constant, F(x) does not vary much and a flat peak similar to Figure A-4(c)

is expected based on the above model, with the edges defined by Ed(O) and Ed(a),
where a is the thickness of the foil. The midpoint of the peak is simply the average

Ed(x) in the foil. In reality, de-collimation and finite spread of the beam occurs, and

the peak can be more Gaussian-shaped. However, the average Ed(x) is still typically

an excellent approximation for the peak in these cases.

The following tables summaries Eb(x), F(x) oc 1/Eb(x), Ed(x), and the resultant

midpoint energy of the Au backscatter peak used for the CNPA calibration exper-

iments. The SRIM code in Monte-carlo mode is used for Eb(x), and equation A.4

is used for Ed(x). A 2 keV reduction is imposed on the midpoint energies in accor-

dance with the differences between equation A.4 and detailed SRIM calculations as

discussed above.

Table A.1: Rutherford scattering energies for different D

beam energies and Au foil depths. Eb is the energy of

the beam at the specified depth and Ed is the energy of

the backscattered particles emitted from that depth. A

2 keV reduction is imposed on the midpoint energies in

accordance with the difference between equation A.4 and

detailed SRIM calculations.

x(A) Eb(x) 1/E Ed(x)

60keV D Beam
Continued on next page...

146



x(A) Eb(x) 1l/E Ed(x)
0 60.0 2.78E-04 58.0

125 58.2 2.95E-04 53.7

250 56.4 3.14E-04 49.4

375 54.5 3.37E-04 44.9

500 52.7 3.60E-04 40.7

Midpoint (keV): 47.3
80keV D Beam

0 80.0 1.56E-04 77.3

125 78.0 1.64E-04 72.5

250 75.9 1.74E-04 67.6

375 73.8 1.83E-04 62.7

500 72.0 1.93E-04 58.2

Midpoint(keV): 65.7
100keV D Beam

0 100.0 1.00E-04 96.6

125 97.8 1.05E-04 91.4

250 95.6 1.09E-04 86.2

375 93.4 1.15E-04 81.0

500 91.3 1.20E-04 76.0

Midpoint (keV): 84.3

120keV D Beam

0 120.0 6.94E-05 116
125 117.7 7.22E-05 110
250 115.4 7.51E-05 105

375 112.9 7.85E-05 99

500 110.7 8.16E-05 94

Midpoint (keV): 103
140keV D Beam

0 140.0 5.10E-05 135
125 137.6 5.28E-05 130
250 135.2 5.47E-05 124
375 132.8 5.67E-05 118
500 130.2 5.90E-05 112

Continued on next page...
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x(A) Eb(x) 1/EY2 E ()
Midpoint(keV): 122

Based on these results, the spectra from the backscatter experiments can be used
to calibrate the CNPA.

A.4 Experimental Data and CNPA Calibration Spec-

tra

The following pages present the backscatter spectra recorded by the CNPA on the
third day of the experiment and the CNPA calibration results based on those spectra.
The backscatter spectra from 60, 80, 100, 120, and 142 keV D beams are first shown.
A summary of the calibration is then presented.

All the spectra, with the exception of the 142keV point, provide calibration points

for all three channels of the CNPA. These are plotted in Figures A-5 to A-9. The

beamline is about 1/8" lower than the mid-plane of the target chamber and typically

shifted to the right for these shots. The extractor voltage was used to keep the beam
at the same location on the washer for each shot, and to quickly lower the current

when the 1.5 s long CNPA digitizer shot was completed. This minimizes damage to

the foil and fluence to the CNPA. Because of the downshift, Ch3 is nominally viewing

nearest to the center of the beam in these shots and have the highest count rates. The

60, 100, and 120 keV data were taken with the in-situ aperture opened to ~1.2 mm2.

This aperture setting corresponds to an AQ of - 2x 10-11m 2str and a viewing area of

-5 mmx5 mm on the target. The 80 keV data are a sum of the many shots taken to

optimize count rates and aperture opening; the location of the backscatter peaks for

these shots do not move with these changes and the sum was done simply to improve

statistics. Lastly, the 142 keV data provides a rough calibration point for Ch3 only

because the backscatter count rates are low at these high energies. Attempts to take

multiple shots at this voltage to increase the available data resulted in trips to the

beam.

Note that count rate comparisons between different energies and estimates of the

beam density should use Ch3 data, since that sightline is closest to the beam center.

A software discriminator setting of 0.25V and PHA V.4 are used for these spectra;

lowering the discriminator does not result in significant changes to the backscatter

peaks since the total count rate is less than 100k/s and pile-up effects are still small.
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Figure A-5: 60keV D-Au backscatter peaks detected by the CNPA

80keV D Beam-+500A Au foil on SS, sum of various shots
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Figure A-6: 80keV D--+Au backscatter peaks detected by the CNPA.

To determine the calibration voltage for each backscatter peak for the mid-point
energies in table A.1, a linear background subtraction is first performed on the peak
and followed by a Gaussian fitting routine. Figure A-10 gives an example of this
procedure. Coincidentally, these Gaussian fit derived calibration voltage points are
almost always within a few percent of the same points determined from a simple
examination of the spectra. This analysis is summarized in table A.2.
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Figure A-7: 100keV D- Au backscatter peaks detected by the CNPA.

120keV D Beam-n500A Au foil on SS, At=1.5s
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Figure A-8: 120keV D--+Au backscatter peaks detected by the CNPA.
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142keV D Beam-+500A Au foil on SS, At=1.5s

0.2 0.4 0.6 0.8 1 1.2 1.4
Volts

Figure A-9: 142keV D-+Au backscatter peaks detected by the CNPA.

Gaussian fit for 80keV D Beam backscatter, Ch3

0
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C
0C-o

Volts

Figure A-10: An example of the background subtraction and Gaussian fitting routine
used to determine the mid-point of the backscatter peak.
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Table A.2: Summary of available CNPA calibration en-

ergy vs. voltage data. The bold points are from the

backscatter experiments. The 59.5 keV data are from an

Am241 X-ray source. Beam-into-gas Alcator C-Mod DNB

shots make up the rest of the set. On average, the errors

in the energies and voltages are less than 8%.

Energy(keV) Chl Ch2 Ch3

13.4 0.125 0.120 0.112

19.0 n/a 0.172 0.171

24.0 0.220 0.215 0.215

47.3 0.511 0.510 0.484

59.5 0.650 0.640 0.620

65.7 0.700 0.704 0.693

84.3 0.940 0.917 0.903

103 1.17 1.13 1.09

122 n/a n/a 1.32

The final CNPA calibrations using the data above are plotted in Figures A-11

to A-13. The voltage to keV fits for channel 1 to 3 without the CNPA 1550 A Al

protective foil are:

= 0.0117E - 0.0485

= 0.0114E - 0.0412

= 0.0111E - 0.0429

(A.5)

(A.6)

(A.7)

The estimated error is less than 8%.

Additionally, the slopes of the lower energy continuous spectra from these CNPA

shots matches well with the slopes from similar shots using the standard Ortec de-

tector.
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CNPA Chi Calibration 4-30-06, PHA4

20 40 60 80 100
Energy(keV)

Figure A-11: CNPA energy to voltage response and associated calibration for channel
1.

CNPA Ch2 Calibration 4-30-06, PHA4

0

Energy(keV)

Figure A-12: CNPA energy to voltage response and associated calibration for channel
2.
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0

CNPA Ch3 Calibration 4-30-06, PHA4

Energy(keV)

Figure A-13: CNPA energy to voltage response and associated calibration for channel
3.
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Appendix B

Derivation of P(E) and its effect on

Teff

B.1 The Penetration Factor

Because both the plasma and residue gas neutrals can scatter the CNPA neutral

signal, a model is needed to account for this attenuation in order to correctly infer

the minority tail distribution.

In the plasma, these neutral stopping reactions include ion impact ionization, elec-

tron impact ionization, and charge exchange. These processes can be accounted for by

using an effective neutral stopping cross section calculated by Janev[45]. These cross

sections include all three reactions, consider excited neutral states, and are functions

only of the electron density, electron temperature, Zef, and relative collisional energy.

The dependence on Zeff assumes a carbon impurity. The dependence on the exact

impurity species is weak and thus the assumption of a carbon-only impurity is not
an issue. Also, the dominant light impurity in Alcator C-Mod is boron and should

be closely approximated by carbon. These Janev neutral stopping cross sections are
estimated to have errors less than - 15% for the CNPA energy range of 75 to 350

keV.

Once the energetic neutral leaves the plasma, they can also be scattered or ion-
ized. The dominant process in this case is neutral impact ionization, which is well
characterized by the ion impact ionization cross section and is a function of the rel-
ative neutral collisional energy. It is assumed that these ions are deflected out of
the CNPA sightline during this ionization process via both angular scattering and
Larmor motion. Theoretical calculations and experimental results show that other
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elastic and inelastic scattering processes are less than - 10% of the impact ionization

cross section. Overall, for edge pressures lower than - 0.15 mtorr, - 90% of the core

CNPA signal attenuation and scattering is caused by the plasma.

Mathematically, the fraction of energetic neutral particles originating from r' in

the plasma and reaching the detector can be determined by the line integral:

P(E) = e- $ X (B.1)

where r' is the location of the detector, and A is the mean free path of the neutral

signal along the sightline. P(E) is refer to as the penetration factor; dividing the

CNPA measured distribution, F(E), by this factor accounts for the effects of signal

attenuation.

The attenuation due to residue neutral gas after the energetic neutrals leave the

plasma can be explicitly stated for equation B.1 via:

P(E) = P,(E)e , (B.2)

where P,(E) now accounts for the attenuation caused by the plasma, and AXd,, is
the length of the vacuum vessel duct that the neutral signal has to traveled through;

this is - 3.4 m for the vertical CNPA channels and - 2 m for the horizontal channel.

An is the neutral impact ionization mean free path based on a residue gas density

determined from the background neutral pressure and a temperature of - 300 K.

For the simple CNPA model, where it is assumed all the energetic neutral signal

originates from the center of the plasma, Pp(E) in equation B.2 can be solved either

by strict integration which includes plasma profile effects, or estimated quickly using

average plasma quantities:
-AX

Pp(E) = e-\p (B.3)

where AX is the distance the signal travels in the plasma, and Ap= (neas)- 1, based

on averaged plasma quantities. AX is simply taken to be the distance from the center

to the last closed flux surface. The average density and temperature can be rapidly

inferred from either TCI or Thomson measurements. As show later, the dependence

on Te is weak and hence an estimate is adequate. This simple approach permits the

penetration correction factor to be determined in-between shots.

Figure B-1 give a comparison of the two methods and show that for the plasmas

of interest, the quick approach induced errors of less than 10%. The simple method

consistently over-estimates the correction factor for energies greater than - 150 keV,
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Medium Density Case

LL
C

O

100 200 300 100 200 300 100 200 300
Energy(keV) Energy(keV) Energy(keV)

Figure B-1: P,(E)- 1 calculated for various L-mode Alcator C-Mod plasmas using
both the simple(equation B.3) and detailed numeric approach that accounts for
plasma profile details. The parameters taken for equation B.3 are shown for each
case; the average density used is derived from TCI measurements. The detail nu-
meric method includes the effects of plasma density, temperature, and Zeff profiles.
The 'High-Medium-Low' density labels are relative for the CNPA comparison, since
all three plasmas are at the low to medium density range of the Alcator C-Mod
operating regime.
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while the 75 keV point is consistently under-estimated. An analysis of this - 10%

error, given in the next section, show that the fast approach increases the inferred

minority temperature by only - 3% - 6%, depending on the exact value of Tp. Hence

its use for accurate rapid analysis is justified.

For the detailed synthetic diagnostic implemented in CQL3D, the neutral atten-

uation is determined rigorously for each energetic neutral emitting grid point.

B.2 Sensitivity of Tp to Errors in F(E)

To determine the sensitivity of the extracted minority tail temperature to errors, the

effect of altering the CNPA distribution on Tp has to be first estimated. Specifically,
the change to the inferred temperature due to a change in the slope of a Maxwellian

model is examined via Taylor expansion.

The simple Maxwellian model is defined by:

S In(a)

where = E2 - El, and Ei indicates the energies used for the Maxwellian fit. a = ,

where f, and f2 axe the distribution values for E1 and E2 respectively.

This work is mainly interested in the sensitivity of Tp relative to changes in a

due to, for example, errors in the assumed penetration factor. To examine this, a

Taylor expansion is performed with respect to a. Also, define da = /3a. 3 is thus

the fractional error in a. Assuming p is small:

ATp(ao) z
In(ao)2

Rearranging further and substituting for ao:

AT -T,
TP

where for a typical CNPA case of e = 275 keV and Tp = 70 keV, an approximate

temperature change of only 2.5% for a 10% change in a is found. The minority

temperature is hence insensitive to minor errors in the distribution.
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B.3 Sensitivity of P(E) to errors in bulk plasma

parameters

Having determine the approximate temperature sensitivity based on errors in the

distribution, errors in plasma parameters that could affect a are now examined. In

particular, the change in a due to uncertainties in the densities, temperature, and

Zeff taken in the P(E) calculation are reviewed.

In figure B-2, the inverse penetration factor and its variances are examined for
a low density Alcator C-Mod plasma. The plot in the upper left shows the inverse
penetration factor as a function of energy, and the plasma parameters taken. This
is the baseline factor used for comparison. Also plotted is the inverse factor calcu-

lated from the detailed penetration model that includes the effect of plasma density,
temperature, and Zeff profiles. Clearly again, the quick estimate is excellent and only
deviates from the detailed calculation by less than , 10%. Therefore, the simple
model, based on equation B.3, is used for this sensitivity study.

Because this work is mainly interested in the relative distribution as a function
of energy when calculating T,, the inverse penetration factor can be normalized to
the first data point at 75 keV; call this Cb(E) for the baseline case. Now, as different
plasma parameters for each case i are varied, different Ci(E) are calculated. Taking
the ratio yi(E) = Ci(E)/Cb(E) then specifically gives the change in a for each varia-
tion i. Furthermore, by letting El = 75 keV (i.e. first data point, and always = 1 for
normalized cases), and E2 = 350 keV, 3i, the fractional error in a for each case i, is
then simply equal to 1 - yi(E2). The contour plots in figure B-2 are these 3i for dif-
ferent Zff's, densities, and temperatures. The figure shows that inverse penetration
factor is not very sensitive to bulk plasma Te and Zeff errors, at worst up to - 5% for
Zeff's spanning 1.5 to 3.0 and Te from 1.4 keV to 2 keV. The largest changes are due
to errors in density; about - 5% for a - 10% change in density. The effect of Zeff and
temperature changes are minimal as expected, since the dominant neutral stopping
processes are charge-exchange and ion impact ionization.

Hence, - 10% errors in the density used to calculate P(E) should only result in
1% - 2% additional error for T,.

In summary, the CNPA inferred Tp is not significantly affected by errors in P(E)
due to even large uncertainties in the plasma parameters used for the penetration
calculation. This is due to both the insensitivity of Tp to 10% - 20% errors in the
experimental distributions, and the insensitivity of P(E) itself.
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Correction factor due to plasma attenuation
using 1-pt Model and Janev CS

22-Feb-2006

100 150 200 250 300 350
H neutral Energy(keV)

Fractional variation of factor
x 1019 for Zeff=1.5, e=350-75keV

1.6 1.8
Avg. Te(keV)

Fractional variation of factor
x 1019 for Zeff=2.5, e=350-75keV

1.6 1.8
Avg. T(keV)

+- ne=8.83x10 19 " te=1.7 * Zeff=2.4 * A X=0.25
E- Model w/ detailed plasma profiles

7
2 1.

11

2 1.4

Fractional variation of factor
x 1019 for Zeff=2, e=350-75keV

4 1.6 1.8
Avg. T1(keV)

Fractional variation of factor
x 1019 for Zeff=3, e=350-75keV

1.6 1.8
Avg. Te(keV)

Figure B-2: Inverse penetration, or correction, factor comparison, shot 1051206002,
t=1 to 1.5 s. The detailed model is for t=1.09 s only, while the simple model is
averaged over t=1 to 1.5 s. The panels show that the dominance dependence is
density.
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Appendix C

Beam Halo Model

C.1 Introduction

In order to derive accurate minority distributions from CNPA measurements, knowl-
edge of the fast proton neutralizing electron donor is required. In particular, the

CX cross section depends on the type of donor and the relative collisional energy.

For Alcator C-Mod, confined fast protons are typically in the 0-350 keV range. The
CNPA operates in the 75-350 keV bracket. In this energy range, the main CX donors
are expected to be hydrogen or deuterium neutrals and hydrogen-like impurities.

Specifically, hydrogen-like boron is estimated to be the most significant donor in the
-200-350 keV range, with beam and halo neutrals dominating below 200 keV for ac-

tive CX experiments. For shots with large He injections or He plasmas, singly ionized

He could be the dominant donor in the entire range.

Thus, for active CX neutral particle analysis with the DNB, a beam halo density
model is required. This is clearly a beam induced effect that can not be resolved via
background subtraction.

For the purposes of this appendix, two halo neutral issues are involved and inves-
tigated. First, halo neutrals could directly increase fast proton CX in the relevant
energy range of 75 to 200 keV. Second, the fast proton CX in the 200-350 keV range
could also indirectly increase because the halo neutrals can create hydrogen-like im-
purities. On first glance, the first effect should be more important because the B5+

electron capture cross section with bulk temperature thermal neutrals is relatively
low.

The rest of this appendix consists of sections that resolve these issues in detail;
the first gives a simple 1-D diffusion halo neutral model, while the other two examines
the results of the model and their implication for the CNPA for a typical low density
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L-mode Alcator discharge.

C.2 Diffusion Model for Beam Halos Neutrals

A rate balance for these halo D neutrals, or simply no, in the DNB volume is:

(9n0  3

S= k - no0 + DnO0V2n (C.1)
k=1

where ak = ninb,k (Ua)a,k, with ni corresponding to the local D ion density, nb,k

the density of the kth component of the DNB, and (ov)-,k the CX rate. 3 = ne (av)ei
is the electron impact ionization rate per D neutral. The rightmost term corresponds

to D neutral losses from transport, modeled through a diffusion coefficient based on

CX of these D neutrals with bulk plasma ions. Specifically, CX with bulk ions do

not permit net neutral losses but it does result in neutral random walk, assuming the

bulk ions are isotropic and at the same temperature. The diffusion coefficient is then

Dno = kbTi/mdVze vc here is estimated by nioacr(VD,mp)VD,mp, where VD,mp is the most

probable speed of the bulk D ions based on their temperature. This number typically

is slightly lower than the true averaged rate in the -1-2 keV range. Recombination

and D ion impact ionization are negligible compared with the birth and loss rates

considered above. D neutral losses through impurity ionization collisions or impurity

CX are not included in this simple halo analysis but these should be at best a ~10%

effect. Lastly, at densities around 1020 /m3 , less than 1~% of the DNB is in the

n,=2 state and hence excited DNB neutrals should not significantly affected the rate

balance[38]. At most the total beam-bulk plasma CX reactivity would increase by

-5%. These two small neglected effects might also somewhat counterbalance each

other.

Because the time scale of interest (%lms) is much longer than the characteristic

time scales in equation C.1 (- 10 ps), a steady state solution by setting = = 0 is

sought. A cylindrical coordinate system with the Z-axis aligned with the radically

injected Alcator DNB is first imposed. The r-axis at 0 equal to 0 or 7r in this cylindrical

system thus corresponds to the toroidal direction in the tokamak. Therefore, the

Z-axis along the beam is the major radius axis of the plasma. See, for example,
Figure 4-5. Ignoring transport in the Z-direction and plasma variations in r and 8,
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Radius relative to DNB(cm)

Figure C-1: DNB and halo neutral density profiles for shot 1051206002 at R=69 cm.
The Z-axis is aligned along the DNB. For the calculation, each component of the beam
is approximated by three regions of constant source density. Correspondingly, these
regions from equation C.3 are labeled. The bars overlaying the beam profiles show
the constant ak's taken for the approximation and the thickness of each region. The
neutral hydrogen current in particles/sec for each component is given by ljtinlrac,

with the dissociation factor and penetration already accounted for. The bulk ion
temperature is estimated as half the electron temperature.
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equation C.1 for a specified Z point becomes:

Dno a(r (r-•) = noo - 3 k (C.2)
k=1

Without the rightmost term, the above equation is simply modified Bessel's equation.

The summation terms, if they are arbitrary functions of r, result in an inhomogeneous

equation that is not easily solved. In theory an integral can be carried out to resolve

equation C.2 for many different types of ak(r). However, if the ak's are constants

within a specified region, as approximated in Figure C-1 for shot 1051206002, an

analytical solution is available for each region. If desired, the regions can be numerous

and thin enough to approximate any DNB source profile. However, for the estimates

needed here, the three step approximation in the figure is more than adequate for

modeling the DNB gaussian-shaped source profile. These gaussian source profiles

in the figure are determined by spectroscopic measurements of the DNB component

mix at the DNB neutralizer and calculations of the plasma penetrability of those

components. Finally, the general neutral halo density solutions for the four regions

are:

no(r), = Cllo(Ar) + y 1/ (C.3)

no(r)11  = C2Io(Ar) + E2(Ar) +YII
no(r);zz = C3Io(Ar) + E3(Ar) +yIII
no(r)Iv = E4Ko(Ar)

where 10 and Ko are modified bessel functions, and A is equal to (3/Dno) 1/2. Y, is

-k= ak for each region. Ci and E2 are constants that are determined by the boundary
conditions between each region. These boundary conditions are no(a)i = no(a),+l and

no(a)i = no(a)i+1. In general the bulk plasma based parameters such as 0 and Dn0

are functions of r and 0, but for estimates near the core it is adequate to use averaged

values. Keeping these parameters constant also permit the simple analytical solution

given by equation C.3.

As shown in Figure C-1, for the examined low density Alcator C-Mod plasma,

the thermal halo neutral density is significantly higher than the DNB component

densities. Figures C-2 to C-5 illustrate halo density changes due to different bulk

plasma densities (ni -0.8 to 1.5 x1020/m 3) and temperatures (Te ,2 to 3 keV).

The beam deposition profile and fractions are not changed from the default case in

164



E

U,
C

zo
z

101'4 Halo neutrals, 1 D diffusion model in cylind. coordinates

)
Radius relative to DNB(cm)

Figure C-2: DNB and halo neutral density profiles for shot 1051206002 at R=69cm.
The plasma density has been increased to 1.5 x 1020/m 3 compared with the default
case in Figure C-1.
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Figure C-3: DNB and halo neutral density profiles for shot 1051206002 at R=69 cm.
The plasma density has been decreased to 8 x 1019/m3 compared with the default
case in Figure C-1.
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x 1014 Halo neutrals, 1D diffusion model in cylind. coordinates
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Figure C-4: DNB and halo neutral density profiles for shot 1051206002 at R=69 cm.
Te and Ti have both been increased by 20% compared with the default case in Fig-
ure C-1.
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Shot 1051206002, R=69cm

D(m2/s)=7386

x 1014 Halo neutrals, 1D diffusion model in cylind. coordinates
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Figure C-5: DNB and halo neutral density profiles for shot 1051206002 at R=69 cm.
Te and Ti have both been decreased by 20% compared with the default case in Fig-
ure C-1.
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Figure C-1 in order to illustrate the profile dependence on bulk plasma parameters.

As expected, the halo profile narrows and peaks with smaller Dn and via versa.

Broadly speaking, lower density plasmas have higher neutral diffusion coefficients,
but these greater diffusive losses can be compensated by better penetration of lower

energy beam components which increases ak, and lower electron impact ionization

rates. Higher density plasmas evoke the opposite arguments. In terms of temperature

changes, similar balancing forces are involved. The electron impact ionization rate

increases with decreasing Te, but D, has the opposite dependence. Note that the ion

temperature used here is half of the electron temperature; this tends to underestimate

the ion temperature noticeably; however, for the illustrative purposes it is an ade-

quate approximation. The real diffusion coefficients based on neutron rate inferred

Ti are higher. The beam neutral CX rates and attenuation are weak functions of Te

because they are really determined by the beam neutral velocity. Thus, the DNB

component profiles are not affected noticeably by Te changes. Overall, the qualita-

tive conclusion that the thermal halo neutral population is substantial and possibly

dominating for the examined low density Alcator C-Mod plasma is robust and not

altered by noticeable plasma parameter changes.

On a broader note, the low density plasma examined above is also characteristic

of the type of plasmas on Alcator C-Mod where beam diagnostics can be readily

employed because of decent penetration and weaker noise backgrounds. Therefore the

effect of a substantial halo neutral population that is also wider than the FWHM of

the DNB should be considered for any Alcator C-Mod neutral beam based diagnostic.

C.3 Direct Fast Proton Neutralization from Halo

Neutrals

For the CNPA, the effect of halo D neutrals on the CX rate is dominating. This
is primarily due to the sightline geometry of the diagnostic. The vertical channels
intersect the DNB perpendicularly and have effective fast proton-beam neutral CX
rates of nbccx(Ep + Eb)v(Ep + Eb), where Ep and Eb are the energies of the fast
minority proton and beam neutral respectively. The thermal halo D neutrals on the
other hand effectively have Eb = 0. In the CNPA energy range of -75-200 keV before
hydrogen-like impurity CX dominates, the proton CX cross section increases rapidly
with decreasing collision energy. Hence, thermal D halo neutral CX is significantly
greater than direct beam neutral CX per fast proton. Specifically, the magnitude of
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fast proton-halo CX is determined via the following equation, which gives the fraction

of the fast proton-halo neutral CX rate over the total fast proton CX rate with D

and H neutrals as a function of energy for a specified beam radius:

fhOlo = noaE(Ep)v(Ep) (C.4)
noax(Ep)v(Ep) + E,=Z nb,iUca(Ep + Eb,i)v(Ep + Eb,i)

where the sum in the denominator is taken over all three components of the DNB.

In order to solve equation C.4, a beam radius r must be chosen. The ratio of

halo density to full component beam density is typically 2 to 3 at r=O and increases

rapidly pass r=FWHM/2 of the DNB. Figure C-6 give this ratio as a function of r for

the profiles in Figure C-1. fAVo is thus minimum at r=0, and examining it at that

point will reveal if halo induced CX is dominant for the whole beam. Furthermore, if

only the relative rate of CX is important, assuming only fast proton-halo neutral CX

for the cross section will probably not be a bad approximation since the next major

contributor to the total CX reaction rate after halo neutrals is from the third energy

component of the DNB, which only skew the energy dependence by at most 17 keV.

In either case, the CNPA CX calculations are simplified since their dependence on

DNB beam details is weak. These issues are illustrated quantitatively in two figures.

The first, Figure C-7, plots the terms in the denominator of equation C.4 at r=0 for

shot 1051206002 and shows that most of the fast proton neutralization does indeed

come from halo neutrals and the third component of the DNB. The second, Figure C-

8, graphs equation C.4 and reveals that over the energy range of interest, the halo

neutrals contribute more than -70% to the total fast proton neutralization rate.

Practically, assuming fast proton neutralization only from halo neutrals results in

less than --10% systematic error in the derived distribution over the 75-200 keV fast

proton energy range. Additionally, this error decreases with increasing beam radius

because of the increased halo fraction. Note that again these results will change

slightly when higher neutron rate inferred Ti's are used.
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Radius relative to DNB(cm)

Figure C-6: Calculated halo neutral density divided
for shot 1051206002 vs. beam radius.

C
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6.,.0o
0

Figure C-7: Plots of the four denominator terms in equation C.4 using the r=0
densities from Figure C-1 vs minority proton energy. Clearly the dominant electron
donors are the halo neutrals and third DNB component.
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Figure C-8: f ~ao from equation C.4 using the r=O densities from Figure C-1 vs
minority proton energy. In the energy range of -75 to 200 keV, a relative error of
less than -10% would be incurred in the minority temperature if only halo charge
exchange is assumed.
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Appendix D

Absolute Calibration of the

Alcator C-Mod He-II diode

D.1 Introduction

Estimates of the helium concentration in Alcator C-Mod plasmas are required for

effective operation of D(He3 ) discharges, and for various analysis such as accurate

interpretation of CNPA data.

Different spectroscopic methods of determining the He fraction are available. For

example, changes in Zeff can be used to infer a He concentration for strong He puffs.

However, this method only works for very strong puffs and could be affected by other

impurities. A more accurate method involve measuring helium line emission from the

plasma. To that end, a diode detector installed and operated by J. Terry is available
which measures the sightline integrated plasma emission in the HeII(4-+3, 4686A)

region when the proper filter is installed. The detector is absolutely calibrated in

Watts/m 2 str and has the same sightline as the Mcpherson XUV spectrometer. The

signal consists of both the HeII line emission and the bremmsstrahlung radiation

within a -3nm region of the line. It is dominated by emission from electron-impact
excited He' + ions at the edge of the plasma.

In theory, because the detector is absolutely calibrated, the signal can be simulated
and an average helium fraction inferred. However, this approach is difficult since it
requires getting absolute intensities to match. Without this simulation, the detector
can only be used to infer relative He density changes for similar discharges.

However, another type of diode calibration which allows the absolute He fraction
to be estimated for different discharges is possible. The He3 concentration in the core
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of the plasma can be calculated via break-in-slope methods during D(He3 ) heating.

With data covering different types of discharges, these RF-inferred He fractions can

be used to calibrate the diode for absolute core He concentration estimates given the

right scaling. This assumes that the bremsstrahlung background is first accounted

for. The differences between He3 and He4 are assumed to be small and hence ignored.

The rest of this appendix summaries this calibration process and the RF inferred

nHe /fne data used from the 2005 Alcator C-Mod campaign. This helium data is

first reviewed and followed by the calibration analysis. It is shown that a nHne "/,

7/n2T~1 5Zef scaling, where - represents the diode signal in Watts/m2 str, give an

approximately correct fit of the data. The scaling assumes the edge He+1 density is

mainly sustained by a balance between CX of He+2 with D neutrals or other non fully

stripped ions and electron impact ionization. When core plasma values are used in

the scaling, only the LSN and USN data match. However, the use of edge plasma

values for the scaling reconciles the diverted data with the inner wall limited data

but results in larger scatter. A radiative recombination based scaling is also tested

but found to be inadequate. Overall, this CX scaling permits rough helium densities

to be inferred using the HeII diode signal.

D.2 RF Inferred nHe Data

A total of 51 break-in-slope deduced helium concentration data points, provided by

A. Parisot, are available during discharges with the HeII filter on the diode. These

involve plasmas from 1050725, 1050728, 1050729, and 1050802. The data set span

average densities of -1 to ,2.5x10 20/m 3 and Te from ,1.5 to -3 keV. Table D.1

and Figure D-2 summaries the available data and associated plasma parameters. A

complication with this data set is that these break-in-slope based helium concentration

estimates are typically greater than the final helium concentrations extracted from

detailed TORIC simulations by -1 to 3%. This can be taken into account by adjusting

the final diode inferred helium fraction with a proportional reduction; for example,

a 1% reduction for a 1-0% helium plasma scaling to a 3% reduction for a -30% He

discharge. This seems reasonable since it is unlikely for a break-in-slope estimate of

4% to be reduced by TORIC to less than 3.5%.

Figure D-1 illustrates the sightline of the diode for these runs.
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Figure D-1: The HeII diode sightline for shots outlined in table D.1
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Figure D-2: Some of the plasma parameters for the discharges in table D.1. The
values are taken are averaged over 150 ms.
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Table D.1: Break-in-slope He3 concentration estimates

for various D(He3 ) plasmas during the 2005 cam-

paign(Parisot).

Index Shot Puff Time Est. He3 conc Shape/Equil.

1 1050725008 70 ms @ .3 sec 1 6% LSN

2 1050725011 100 ms @ .3 sec 1 7% LSN

3 1050725012 120 ms @ .3 sec 0.9 8% LSN

4 1050725012 120 ms @ .3 sec 1 8-9 % LSN

5 1050725013 130 ms @ .3 sec 1 7-8 % LSN

6 1050725015 140 ms @ .3 sec 0.78 8-9 % LSN

7 1050725015 140 ms @ .3 sec 1 10% LSN

8 1050725016 200 ms @ .3 sec 0.88 13-14 % LSN

9 1050725018 100 ms @ .3 sec 1 6-7 % LSN

10 1050725020 100 ms 0 .3 sec 1 8% LSN

11 1050725022 100 ms @ .3 sec 1 7% LSN

12 1050725023 100 ms @ .3 sec 1.5 7-8 % LSN

13 1050728005 200 ms @ .3 sec 1.3 13% LSN

14 1050728006 200 ms @ .3 sec 0.9 135% LSN

15 1050728013 150 ms @ .55 sec 0.9 9-10 % LSN

16 1050728013 150 ms @ .55 sec 1.3 10-11 % LSN

17 1050728014 150 ms @ .5 sec 1.3 11% LSN

18 1050728020 200 ms ( .5 sec 1.3 13% LSN

19 1050728034 200 ms @ .5 sec 1.25 12% LSN

20 1050729002 250 ms @ .3 sec 0.8 18% USN

21 1050729002 250 ms @ .3 sec 1.3 18% USN

22 1050729003 250 ms 0 .3 sec 0.8 18% USN

23 1050729003 250 ms 0 .3 sec 1.1 16% USN

24 1050729004 250 ms @ .3 sec 0.9 18% USN

25 1050729004 250 ms 0 .3 sec 0.9 18% USN

26 1050729004 250 ms @ .3 sec 1 16% USN

27 1050729004 250 ms @ .3 sec 1.1 16% USN
28 1050729004 250 ms @ .3 sec 1.2 16% USN

29 1050729004 250 ms @ .3 sec 1.3 15% USN

Continued on next page...
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Index Shot Puff Time Est. He3 conc Shape/Equil.

30 1050729006 250 ms @ .3 sec 1.1 16% USN

31 1050729008 250 ms @ .25 sec 1.1 16% USN

32 1050729015 150 ms @ .2 sec 0.9 18% IWL

33 1050729016 150 ms @ .2 sec 0.9 17% IWL

34 1050729019 100 ms @ .2 sec 1.1 19% IWL

35 1050729020 100 ms @ .2 sec 0.74 187% IWL

36 1050729020 100 ms @ .2 sec 0.9 19-20 O% IWL

37 1050802004 100 ms @ .2 sec 0.916 15% IWL

38 1050802005 150 ms @ .2 sec 1.05 23% IWL

39 1050802005 150 ms @ .2 sec 1.29 20% IWL

40 1050802006 120 ms @ .2 sec 1.05 18% IWL

41 1050802006 120 ms @ .2 sec 1.3 18% IWL

42 1050802008 100 ms @ .2 sec 0.8 15% IWL

43 1050802018 150 ms @ .2 sec 1.06 18% IWL

44 1050802019 200 ms @ .2 sec 1.06 23% IWL

45 1050802023 200 ms @ .2 sec 0.8 25% IWL

46 1050802023 200 ms @ .2 sec 1.05 25% IWL

47 1050802023 250 ms @ .2 sec 0.78 27% IWL

48 1050802026 150 ms @ .2 sec 0.8 30% USN

49 1050802027 150 ms @ .2 sec 0.8 30% USN

50 1050802028 150 ms @ .2 sec 0.8 25% USN

D.3 Calibration

D.3.1 Background Subtraction

Before the Hell diode signal can be used for the scaling study, the visible bremsstrahlung

contribution must be subtracted out. This is done by using diode data from a no

He shot, such as 1051206002 or 1051104006, and scaling this baseline signal by

n2Zeff/TE 5 for each of the shots in table D.1 using core plasma parameter values.

The results are plotted in Figure D-3 for scaled bremsstrahlung backgrounds based

on shot 1051206002. Coincidentally, the plot shows that there is no Hell signal for

index 32-36; these are not used for the scatter plot and fitting process discussed later.
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Figure D-3: Hell signals for shots in table D.1 with bremsstrahlung background
subtraction based on shot 1051206002. There is no Hell signal for index 32-36; these
are not used for the scatter plot.

D.3.2 Scaling Models

As discussed, the Hell diode signal is typically dominated by emission from the edge

of the plasma, specifically at the LCFS and in the SOL layer. This 4--3 Hell line

stems from de-excitation of electron-impact excited He+' ions. Mathematically, the

number of 4686 A photons per second per m2str hitting the detector is:

7 = nenHe1+ (arv)e_, Bdl (D.1)

where n, and nHel+ are the electron and hydrogen-like helium density, (av)e-e
the electron-impact excitation rate of ground state He'+ to the n=4 level, B is the
n=4--+3 branching ratio, and the integral is taken over the sightline. Again, the diode
signal is 7 and given in Watt/m 2 str.

Because the SOL and LCFS typically have temperatures greater or near the ion-
ization energy of He +1 and neutral He (.54 eV), the helium population in these
regions are overwhelmingly He+ 2 ions. The ionization mechanism is predominantly
electron-impact ionization. Hence, if CX dominates, the He+l population can be
estimated via:

nHel+ = (D.2)
ne (aV)ei

where the sum is taken over all electron donors, and the denominator consists
of the electron impact destruction term. The electron donor is dominantly neutral
deuterium, but non-fully stripped impurities can also contribute. On the other hand,
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if radiative recombination determines the He+ 1 population, then:

nH He2+ av) R (D.3)
(iTV)ei

These equations result in two different scalings for the HeII emission. For CX,
substituting equation D.2 into equation D.1 and solving for nHe2+ result in:

nHe2+  7c, (D.4)-- 2T,.15 efZne ne •"--Ze

where (av)cx is assumed to scale as Te".5 since at temperatures below 1 keV the

neutral D-He2+ CX cross section increases linearly with collisional energy, and the

Zeff term is meant to account for electrons from non-fully stripped ions. is is the

constant determined by the available helium concentration data.

For radiative recombination, using Hutchinson's recombination rate formula(equation

6.3.27)[38] and neglecting the terms in the bracket, the scaling becomes:

nHe2+ 7T 50. (D.5)
ne ne

where Kre is again the constant determined by the available helium concentration

data.

Based on quick estimates, the He1+ density should be dominated by CX from

neutral D, and equation D.4 should be the right scaling.

In order to verify the CX scaling, the RF inferred Helium data is plotted for both

scalings using core and edge plasma parameters. For the core, the TCI averaged

density, Thomson scattering peak temperature, and average Zeff are used. For the

edge, the Thomson density and temperature values at r=89 cm are used. This result

in 4 scatter plots given by Figure D-4. Clearly, the radiative recombination scaling

using either edge or core plasma parameters does not reconcile the LSN, USN, and

IWL data. The CX scaling using core plasma parameter reveal a linear scaling for

the LSN and USN data with relatively large scatter. A linear fit to determine r.

using only the diverted discharge data provide a ~E=9.26 m2-str-(m3)2-keV 1.5/Watts

calibration for the Hell diode when core ne in 1020/m 3 and Te in keV are used for

equation D.4. Finally, the LSN, USN, and IWL data can be reconciled with significant

scatter if edge parameters are used with the CX scaling. This results in a linear fit

of rK, = 5.4 x 10- 3 m2-str-(m 3)2-keVI. 5/Watts for edge ne in 1020/m 3 and Te in keV

Both of these core and edge linear fits have forced zero intercepts, representing
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Scatter plot of He3 fraction vs. He II diode for 4 different scaling models
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Figure D-4: Scatter plots for 4 different scaling models

zero helium fractions for zero signal after background bremsstrahlung subtraction.

However, the two scalings do not give the same estimate of nHe/n,; the edge based

one which reconciles the IWL data usually results in a significantly lower estimate.
The core base scaling gives realistic numbers for the LSN and USN shots.

Because of the large scatter, the error in using the CX scaling to infer helium
concentration is high. For both scalings, an error of at least -30% is expected.

Further work, perhaps in conjunction with a simulated diode diagnostic, is neces-
sary to narrow this error. Also, more data over wider plasma parameters would be
useful.
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