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Abstract

Controlling the dynamics of a dipolar-coupled spin system is critical to the develop-
ment of solid-state spin-based quantum information processors. Such control remains
challenging, as every spin is coupled to a large number of surrounding spins. In this
thesis, we primarily focus on developing coherent control techniques for such large
spin systems.

We start by experimentally simulating spin squeezing using a liquid-state NMR
quantum information processor. We demonstrate that the precision of quantum con-
trol obtained using strongly modulating pulses was sufficient to reproduce the theo-
retically expected behavior of the spin observables and the associated entanglement
measures among the underlying qubits.

We then investigate coherent control in a more complex solid-state spin system
consisting of an ensemble of spin pairs. Using pulse amplitude modulation tech-
niques, we decouple the weaker interactions between different pairs and extend the
coherence lifetimes within the two-spin system. This is achieved without decoupling
the stronger interaction between the two spins within a pair. We thus demonstrated
that it is possible to restrict the evolution of a dipolar coupled spin network to a
much smaller subspace of the system Hilbert space which allows us to significantly
extend the phase coherence times for selected states.

Finally, we demonstrate the sensitivity of highly correlated multiple-quantum
states to the presence of rare spin defects in a solid-state spin system. We design
two multiple-pulse control sequences - one that suspends all spin interactions in the
system including that of the defect spins, while the other selectively allows the defect
spins to interact only with the abundant spins. By measuring the effective relaxation
time of the rare spins, we demonstrate the efficiency of the two control sequences.
Furthermore we observe that for small spin cluster sizes, the sensitivity of the highly
correlated spin states to the spin defects depends on the coherence order of these



correlated spin states. But beyond a certain cluster size, one observes a saturation
effect as the higher coherence orders are no longer increasingly sensitive to the defect
spin dynamics.

Thesis Committee Member: David G. Cory
Title: Professor
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CHAPTER 1

INTRODUCTION

Quantum information processors (QIPs) derive their power from the quantum paral-

lelism due to the superposition of quantum states. An n-qubit quantum information

processor forms a superposition of 2" states, with each state being equivalent to

a n-bit classical processor. Peter Shor, Lov Grover and other scientists have har-

nessed this massive power to devise quantum algorithms like the factorization and

the quantum database search algorithm. Compared to their classical counterpart, a

QIP provides a more efficient platform to solve certain problems. Physical realization

of a QIP requires precise quantum control of a physical system while protecting the

system from decoherence effects induced by noise in the environment. Coupled with

the fact that, as we push Moore's law to its limit with nano-scale devices - a regime

where nature follows the laws of quantum physics, development of quantum control

techniques assumes added importance.

Various schemes have been proposed for the experimental realization of QIPs includ-

ing ion traps [1], cavity QEDs [2] and SQUIDs [3]. But the experimental implementa-

tion of a QIP based on liquid-state Nuclear Magnetic Resonance (NMR) technology

has been the most successful till date [4, 5]. Existing coherent control NMR techniques

have been adopted to manipulate up to 10 qubits while new techniques have been de-

veloped to account for incoherent and decoherent noise. These advances have enabled

researchers to experimentally implement some of the quantum algorithms. However



this implementation scheme has its limitations - the non-scalability of the initial state

(known as the pseudo-pure state) preparation, large ratio of the gate time over the

decoherence time, among others. The method of addressing qubits using chemical

shifts becomes increasingly cumbersome as the complexity of the molecules increase

with the number of qubits. This severely limits the maximum number of qubits that

can be manipulated using this technology.

Solid-state spin-based NMR QIP has been proposed as the next generation proces-

sor. The ability to create higher thermal polarization using existing solid-state NMR

techniques, the stronger dipolar couplings and the longer spin-lattice relaxation times

partially address the issues of scalability, faster quantum gates and higher decoherence

times respectively. Using gradient fields to address spins in solid samples removes

some of the limitations one faces while addressing a large number of qubits in its

liquid-state counterpart. To simulate a QIP, various solid-state system designs have

been suggested - single crystals of deuterated molecules with dilute concentration of

suitably labeled ones [6], phosphorous atoms in a silicon grid at a low temperature

[7], endohedral fullerenes on a silicon surface [8], among others.

In any implementation of a solid-state spin-based NMR QIP, an underlying challenge

is the coherent control of spins in large Hilbert spaces. Unlike liquid samples where all

intramolecular interactions are averaged out due to molecular motions, in a rigid-solid

lattice all nuclear spins strongly interact with each other. Thus the solid-state spin

system spans a much larger Hilbert space. The control of spin dynamics in such large

Hilbert spaces is essential for the application of quantum gates - a key step in the

implementation of quantum algorithms. Experimental investigation of these multi-

spin dynamics have been carried out using multiple-quantum coherence [9, 10, 11, 12]

and spin diffusion [13, 14] techniques. In this thesis, we primarily focus on developing

new coherent control techniques for such large spin systems.

We start by experimentally simulating spin squeezing using a liquid-state NMR QIP

(chapter 2). This was done by identifying the energy levels within the symmetric

subspace of a system of n spin-1/2 nuclei with the energy levels of the simulated



spin-(n/2) system. The results obtained for our simulations of spin-1 and spin-

3/2 systems are consistent with earlier theoretical studies of spin squeezing. We

demonstrate that the precision of quantum control obtained using strongly modu-

lating pulses [31] was sufficient to reproduce the theoretically expected behavior of

the spin observables and the associated entanglement measures among the underly-

ing qubits. Then we investigate coherent control in a more complex solid-state spin

system consisting of an ensemble of spin pairs (chapter 3). Using pulse amplitude-

modulation techniques, we decouple the weaker interactions between different pairs

and extend the coherence lifetimes within the two-spin systems. This is achieved

without decoupling the stronger interaction between the two spins within a pair. Fi-

nally, we demonstrate the sensitivity of highly correlated spin states to the presence

of rare spin defects in a solid-state system (chapter 4). We show that the homonuclear

dipolar interactions of the rare spins can cause decoherence effects in such correlated

spin states even if these spins are decoupled from the correlated spin system. For

our sensitivity measurements, we design two multiple-pulse control techniques (based

on coherent averaging theory) - one that suspends all spin interactions in the system

while the other selectively allows only the heteronuclear dipolar interaction between

the rare spins and the correlated spin system. By measuring the effective relaxation

time of the rare spins, we demonstrate the efficiency of the two control sequences.

Furthermore, we observe that the sensitivity of the highly correlated spin states to

defects depends on the coherence order of the correlated spin states. But beyond a

certain cluster size, one observes a saturation effect in the sensitivity measurements as

the higher coherence orders are not increasingly sensitive to the defect spin dynamics.





CHAPTER 2

EXPERIMENTAL SIMULATION OF SPIN

SQUEEZING BY NMR

2.1 Introduction

The minimum uncertainty associated with complementary observables is given by

the uncertainty relations. For example, the position and momentum fluctuations in

a coherent state of the quantum harmonic oscillator are both equal to the quantum

limit h/2. States for which the fluctuations in one of these observables is less than

the standard quantum limit of h/2, while the fluctuations in the complementary

observable increase so as to satisfy the uncertainty relation, are called "squeezed

states" [17, 34]. Thus a squeezed state can be visualized as an ellipse of constant

uncertainty in phase space.

Squeezed spin states have been defined using analogous criteria [19, 25, 36, 42, 43,

44, 45], and several experimental demonstrations of spin squeezing have been pub-

lished. They include interaction of collection of atoms with squeezed radiation [15],

the displacement of two optical lattices with respect to each other [37], and col-

lisional interactions between the atoms in a Bose-Einstein condensate [19, 36, 38].

'Parts of this chapter were extracted from the paper "Experimental simulation of spin
squeezing by Nuclear Magnetic Resonance", by S. Sinha, J. Emerson, N. Boulant, T. F. Havel and
D. G. Cory, Quantum Information Processing, Vol. 2, No. 6, December 2003.



Spin squeezing by quantum non-demolition measurements has also been proposed

[26].

A spin 1/2 is always in a coherent state, but it is possible to squeeze the "effective"

higher spin with j = n/2 that lives within the symmetric manifold of states in a system

of n > 1 spins each with j = 1/2 [20, 33]. In this paper we describe experimental

realizations of squeezed states of these simulated higher order spins on a liquid-state

nuclear magnetic resonance (NMR) quantum information processor, using the method

suggested by Kitagawa [25]. First, we review the properties of coherent spin states and

Kitagawa's method for creating squeezed spin states, along with the representation of

a spin-j system for j = 1 and 3/2 within the totally symmetric subspace of the Hilbert

space of 2j spin-1/2 particles. We then describe the NMR implementation of the

method and the measures used to access its overall precision, after which experimental

results of squeezing are presented and the level of control attained is discussed. We

end by verifying the relation between the degree of squeezing of the simulated spin-j

system and the degree of pure state entanglement among the underlying spin-1/2

particles, as quantified by various well-established entanglement measures (cf. [18,

36, 37]).

2.2 Simulation of spin squeezing in a multi-spin-

1/2 system

Throughout the remainder of this paper we will work with units such that h =

1. Coherent spin states (CSS) may then be defined by the following properties:

(i) The uncertainty relation for the total angular momentum operator J becomes

saturated, i.e. A Jx AJy = 1(J) , where (x, y, z) label the coordinate axes. (ii) The

absolute expectation value of the spin in the direction of polarization, e.g. I(Jz)I,

is maximum and equal to j. (iii) The spin uncertainties are equally distributed in

any two orthogonal directions in the plane normal to the direction of polarization,
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Figure 2-1: (i) A coherent state spin-j vector with expectation values [(J"), (Jy), (Jz)] =
[1, 0, 0] may be visualized as a coherent superposition of angular momentum
vectors on a cone about the x-axis, all with a projection of j/2 along that
axis. (ii) After squeezing via the one-axis mechanism (see text), the cone
representing the state of a spin-1 particle is elliptical, with its squeezed (mi-
nor) axis making an angle of ±ir/4 with the y, z-axes. (iii) In the maximally
squeezed state of a spin-1 particle the cone has been folded into a nearly
degenerate ruled surface.

e.g. A J = AJy. Kitagawa and Ueda [25] proposed that a spin state is squeezed if

the minimum spin uncertainty in the (x, y)-plane is less than the standard quantum

limit of j/2. Since a squeezed spin state (SSS) is not related to a CSS by a simple

rotation, the polarization of an SSS is less than maximum, e.g. I(Jz)I < j.

To create a SSS, a "non-linear" operation must be applied, i.e. one that involves

products or powers of the spin operators Jx, Jy & Jz in its Hamiltonian H. Kitagawa

and Ueda proposed two methods for squeezing a CSS: (i) H = J2 (the one-axis

twisting mechanism), or (ii) H = JJy + JyJ (the two-axis twisting mechanism). The

second Hamiltonian can be applied directly to any CSS to squeeze it, whereas the first

requires that the CSS be rotated to the (x, y)-plane before the propagator exp(i kJz2) is
used to squeeze it, where k is real number which we will call the squeezing parameter.

Figure 2-1 illustrate the one-axis process for j = 1, in which case maximum squeezing

in the (y, z)-plane is obtained when k = 7r/2. This one-axis method was used in the
NMR experiments described below.
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Table 2.1: The representation of a spin-1 by two spin-1/2 particles

Uncoupled Representation (ml1m2)) Coupled Representation (ij, n))

00) = ITT) I1,1) = ITT)

01l) = ITI) 11, o) = -[lIT) + IT)]
10) = IT) 11, -1) = 11)

111) = -1) 0,0) = o [1?1.- lT)I

Table 2.2: Coupled representation (Ij, m)) of the basis states spanned by three spin-1/2
particles

Spin-3/2 subspace basis Spin-1/2 subspace basis

i, ) = ITTT) 11, 1) = -[2ITTI) -ITT) - [tT)I

IR, D) = [ITTI) + ITIT) + IITT)i 1, -½) = -[ITll) + IITi) - 211T)]

I )2 = i 1) I1, -½) = _0 _[IT ,I) - iTi)]

A system of two spin-1/2 particles has 4 basis states. In the coupled representation

(in Table 2.1), the three symmetric states span a subspace that transforms under

identical rotations of both spins like a single spin-1. Similarly, a system of three spin-

1/2 particles has 8 basis states, which span a symmetric subspace that transforms

like a single spin-3/2, as well as two spin-1/2 subspaces with lower symmetry. The

four states listed on the left-hand column of Table 2.2 are the coupled representation

of the spin-3/2 subspace.

From the uncoupled and coupled representations, we see that there is a linear mapping

from the spin-j subspaces into the combined 2j spin-1/2 systems. These mappings

induce the mappings between the spin-j operators and products of spin-1/2 operators

(denoted here by IP"x which for j = 1 is simply
deoeheeb axis /, WI~1IIJ- 0Ulll

(2.1)Jx = ix +I, 2 y = l 2 z = I + If.



For j = 3/2, on the other hand, we obtain

Jx = I II2I3 (2 + 2(I Ix + I Ix + I x Ix3) -  ( I I . I 2 + 1 3 + 2 3

Jy = ly I2I (2 + (Iy Iy + IyIy+ I II )- - (I. + I2 I3 + 3 2 I J3)) (2.2)

Jz = Irr2 I3 + (2 + ( + I I+ + Iz Iz ) _ 12 + 13 + •2 J3))

Given the apparent complexity of implementing these operations, it was decided

instead to implement the far simpler analoges of Eq. (2.2), namely:

x= i+ +,, = +i+i , =i = I+±I+2 .

(2.3)

It is easily shown that J,, Jy, and Jz are contained within the algebra generated by

Jx, Jy, and Jz, and that the latter satisfy the usual angular momentum commutation

relations. In fact, since they have two extra pairs of identical eigenvalues +1/2, they

are the sum of the angular momentum operators for a spin-3/2 mixed with those for a

pair of spin-1/2. As a result, it was not possible to squeeze the corresponding coherent

states to the amount that would have been possible if a pure spin-3/2 representation

had been used.

It is apparent that for j = 1, exp(-i kJz) is an evolution exp(-i k 4IIz2) under the

bilinear Hamiltonian associated with the scalar coupling interaction between spins in

NMR, up to an overall phase factor. Thus the traceless part of the pseudopure state

as a function of the squeezing parameter, and its spin-1 pure state equivalent, are

e-ik (411• 1 2 x= cos(k) ( I + 12.+ Ix +I) - sin(k)(I + IJI z

Se-ik C2(J ± J,2) eikj J = cos(k) Jx + J2 - i sin(k) [Jx, J2] , (2.4)

where [,] is the commutator.



For j = 3/2, on the other hand, we find that

J2 = is + (I . 2 + 1 13 + 12 . J3) + 2 (Ia Izf +Iz Iz + Iz Iz),
(2.5)

= f + ( I 1 I2 +J1 J 3 + J2 . J3 - 3Z• + .+ 8).

It follows that exp(-i kJz) is, to a fairly good approximation, the same as three

equal scalar coupling evolutions up to phase, and the (pure) state as a function of the

squeezing parameter becomes

e-ik 4( 1 +IG~ +I I) L (Is + 2I, ) (Is +2 2I )eik(4(I. I,2+ I If +Iz2 Iz)

S(Is1 + I, (18 - 4IVI.) + cos(2k)I ,(Is + 4IIzf,) - sin(2k) I (I2 + ±I .)) ...

-(I + I (I - 4IzI ) + cos(2k)I+2(Is + 4I'Iz) - sin(2k) IY (I1 + Iz )) ... (2.6)

(Is + I, (Is - 4I 11z) + cos(2k)I (Is + 4IIz2) - sin(2k) 11•(I .+ Iiz))
l (e-ik/41 _j2) -ik9/4(2 j ))
16 (e- 4 (18 - J) + e (2

-3~ - 2J + 12J,+ 8J,) (e ik/4 18- J) + ik 9/4(2 -J2))
48 16

where in the last line we have expanded both the exponential exp(-ik J) and the

initial coherent state along x in terms of angular momentum operators. Finally, the

CSS 10) is, for both values of j, the same as the Zeeman ground state ITT) or ITTT)

in the uncoupled representation.

2.3 The NMR implementation of squeezed spin

states

The implementation of spin squeezing was carried out on a liquid-state NMR quan-

tum information processor, using the two spin-1/2 hydrogen nuclei of 2, 3-dibromo-

thiophene (see Fig. 2-2) to represent the spin-1 system, while the spin-3/2 system

was represented using the three carbon atoms of a "3C-labeled sample of alanine



(see Fig. 2-3). Both the experiments were carried out on a Bruker AVANCE-400

spectrometer in a field of ca. 9.4 Tesla. In the case of the two-spin experiment,

frequency-selective pulses were used to rotate single spins, and hard r-pulses to re-

focus unwanted chemical shifts. To compensate for pulse imperfections, composite

pulses were employed instead of the standard 7r-pulse [35]. In the three-spin experi-

ment, strongly modulating pulses were used to more accurately perform the desired

unitary operations [21, 31]. Unlike low-power "soft" pulses, these pulses average out

unwanted evolution, are shorter in time and hence also reduce relaxation effects.

The I71 2 operator used to squeeze the spin-1 system was implemented using r-

pulses to refocus the Zeeman evolution of the spins while allowing the scalar coupling

between them to evolve, in the standard fashion [22]. Because the coupling between

spins 1 and 3 of the alanine system is so small (J13 = -1.29 Hz), the coupling between

them was generated out of the much stronger 1, 2 and 2, 3 couplings [41]. The sum of

the three scalar coupling terms of the form I•If was taken as an approximation to

J2 in the spin-3/2, as described in Eq. (2.5). As usual in NMR quantum information

processing [23, 27], pseudo-pure states were used to represent the dynamics of pure

states. These were obtained using spatial averaging techniques based on magnetic

field gradients [32, 39].

Even though the decoherence times in liquid-state NMR are long, the intrinsic de-

coherence rates of the spins still impose limits on the accuracy of the experimental

results. The T2 relaxation rates in 2, 3-dibromo-thiophene were 3.2 s- 1 for both of

the hydrogen spins, while in alanine these rates were 0.55, 0.42 and 0.80 s- 1 for the

C1 , C2 and C3 spins, respectively. The products of the shortest of these decoherence

times, multiplied by the weakest coupling constant used, were better than 15 for both

2, 3-dibromo-thiophene and alanine, which allows about 30 c-NOT gates before deco-

herence begins to seriously degrades the quality of the results. The amount of time

needed for the longest experiments reported here was only about one third of this.

The accuracy of the experiments is further affected by systematic errors like imperfect

calibration of the pulses, off-resonance effects and RF inhomogeneity [22]. The effects
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of these errors may be seen in the density matrices of the final states, which in

turn were determined by full state tomography [30]. Although plots of these density

matrices (see Figs. 2-4 and 2-5) provide a visual overview of the results, a more

quantitative summary of the overall accuracy may be obtained by calculating the

correlation between the theoretically expected and experimentally determined density

matrices Pthe and Pfi,, respectively. This is defined as

= tr(pfinPthe)

r(/tpfin.fin)tt(Pthepthe)

To also include an estimate of the precision of the experiment, the amount of signal

(or polarization) lost during the experiment must also be taken into account. This

leads to a metric called the attenuated correlation [21], namely

S= C r(pfinPi) tr(PfinPthe)Catt = C (2.8)
VFtr((Pii Pi) ni tr(PiWiPini)tr(PthePthe)

The theoretically expected density matrix Pthe was obtained by applying the intended

unitary transformation Uthe to the initial pseudo-pure state Pini, as determined by

state tomography.

2.4 Results of spin squeezing experiments

Using state tomography [30], the 2j spin-1/2 density matrices Pexp were reconstructed

following squeezed state preparation for various values of the squeezing parameter

k = 0,... , 7. The expectation values and uncertainties along the basis axes were

then calculated directly from these density matrices and the J, (or approximate J,

matrices given in Eqs. (2.1) and (2.3)), as follows:

(J,) = tr(Jpxp) ;
pexp) (2.9)

(AlJ,) = tr(j2Pexp) - (tr(Jpxp))2



where L = x, y, z.

The correlation for the spin-1 pseudo-pure density matrix (see Fig. 2-4(i)) was 0.99.

For the density matrix corresponding to the maximally squeezed (k = 7r/2) spin-1

state, the correlation and the attenuated correlation were 0.99 and 0.98 respectively.

The correlation for the spin-3/2 pseudo-pure state density matrix (see Fig. 2-5(i)) was

0.98, while the correlation and the attenuated correlation of the maximally squeezed

spin-3/2 state were 0.84 and 0.80, respectively.

Since the squeezing operator conserves the total angular momentum, the combined

2j spin-1/2 system should stay in the spin-j subspace during the course of the ex-

periment. However, due to decoherence and other errors in the implementation there

is some "leakage" out of the effective spin-j subspace. To quantify the accuracy

with which we have been able to simulate the spin-j system, we computed the best

pseudo-pure-state approximation to mixed-state density matrix Pexp, by taking the

eigenvector |bmax) associated with the largest eigenvalue of p,,p. The probability of

leakage was then obtained from the definition

Prleak = 1 - j, Imax) 2 , (2.10)
m=-j

where Ij, m) are the basis states of spin-j subspace. This probability of leakage,

averaged over all the experiments performed, was (0.02 + 0.02)% for the spin-1 sim-

ulations and (7.67 + 3.20)% for the spin-3/2. The substantially larger leakage in the

latter case was due to the fact that the protons were not decoupled from the carbons

during the carbon scalar coupling evolution delays, in order to avoid the possibility

of carbon-proton nuclear Overhauser effects.
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2.4.1 The spin-1 case

The initial pseudo-pure state corresponds to a coherent state of the embedded spin-

1 subspace. It remains in a coherent spin state after a 2 rotation to the x-axis

and accordingly, state tomography at this point reveals that (Jx) is nearly equal to

1 while the spin uncertainties in the y and z-directions are nearly equal to 1/V'2.

After applying the non-linear interaction for a period of 2f(k) = k/(-rJ), the spin-1

expectation values in all directions are all close to 0, consistent with a maximally

entangled state (see Table 2.3). The uncertainty is now maximum in the x-direction,

while the uncertainties in the y and z-directions are still nearly equal to 1/1V because

the principle axes of the squeezed ellipsoid are at 7r/4 to the y and z axes (see Fig. 2-

1(iii)). To make the squeezing more readily apparent, it was convenient to follow the

squeezing step by a 7/4 x-pulse so that the uncertainty along the z-axis becomes 1.

The experimental and theoretical data for this maximally squeezed and rotated state

are given in Table 2.3.

Table 2.3: Theoretical and experimental spin expectation values and uncertainties of the
maximally squeezed spin-1 states

(Jx) (Jy) (Jz) (AJx) (AJ~) (AJZ)

Theory 0.00 0.00 0.00 1.00 0.00 1.00

Experiment 0.00 -0.02 0.00 0.97 0.21 0.98

The variation of I (J,) I, AJy and AJz for different values of k is plotted in Fig. 2-6.

The corresponding values of I(Jy)j and I(Jz) are close to zero implying that the spin

system is polarized along x direction for all values of the squeezing parameter k.

2.4.2 The spin-3/2 case

After the initial 7r/2 rotation to the x-axis, state tomography showed that the spin-

3/2 angular momentum vector pointed in the x-direction with (Jx) e 1.5, and un-

certainties in the y and z-directions nearly equal to their theoretical values of v/2.
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Table 2.4: Theoretical and experimental spin expectation values and uncertainties of the
maximally squeezed spin- 3 /2 states

(Jx) (JP) (Jz) (AJx) (AJY) (AJZ)

Theory 1.00 0.00 0.00 0.87 0.50 1.32

Experiment 0.82 0.05 -0.13 0.92 0.53 1.36

Application of the non-linear interaction for a given k created some apparent entan-

glement in the system, as indicated by the fact that (Jx) was reduced to about 1

while (Jy) and (Jz) remained zero. The uncertainty in the x-direction also increased

from 0 to v//2. To orient the axes of the squeezed uncertainty ellipsoid along the y

and z-directions, the results of state tomography were rotated about the x-axis (on

a computer, since unlike the spin-1 case the rotation angle needed depends on the

value of k [25]). The experimental and theoretical data for the maximally squeezed

state are shown in Table 2.4, while the variation of I (Jx) , AJy and AJz for different

values of k is plotted in Fig. 2-7. As in the spin-i case, the corresponding values of

I(Jy) and I(Jz) I are close to zero, implying that the spin system is polarized along

x-direction for all values of the squeezing parameter k, as desired.

2.4.3 Behavior of entanglement measures

The probability of leakage measurements described above (see Eq. (2.10)) show that

the best pseudo-pure-state approximation to the final mixed-state density matrix

quite accurately describes the spin-j system. Thus this pseudo-pure state may be used

to study the entanglement of the constituent spin-1/2 particles by well-understood

pure-state entanglement criteria. The criteria used here are the entanglement of for-

mation [16] (or, for bipartite pure states, the von Neumann entropy of the partial

trace over either subsystem), and the concurrence [24, 46] of (the partial trace onto

any) pair of qubits. The purpose of this discussion is not to uncover any new features

of entanglement in these simple systems, but rather to use the compatibility of the

experimental results with the well-known behavior of these entanglement measures as
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a benchmark for the precision of control obtained. In addition, these entanglement

measures were computed without taking into account the very large identity compo-

nent that is always represent in liquid-state NMR, and hence should be regarded as

measures of the "pseudo-entanglement" associated with the pseudo-pure states used

for the experiments.

a
C

0C.

(ii)

Figure 2-8: Plots of the entanglement of formation (i) and concurrence (ii) with the
squeezing parameter k (in degrees) for spin-1. The solid lines are the theo-
retically expected curves, while the dashed lines interpolate linearly between
the values computed from the experimental density matrices (*) obtained via
tomography.

Figure 2-8 shows plots of the theoretically expected and experimentally observed

entanglement measures as a function of the squeezing parameter k for the spin-

1 experiments. It is immediately apparent that the theory and experiments agree

extremely well with respect to either entanglement measure, in accord with the fact

that the concurrence and entanglement of formation are monotonically related for

two qubits. The maximally squeezed state (k = 900) is observed to correspond to the

maximally entangled state, as theory predicts it should in a representation by Dicke

states [40].

Figure 2-9 shows the analogous pair of plots for the spin-3/2 experiments, where the

interpolation is now done using a fifth-order polynomial fit to the data (dashed lines).

In this case three different entanglements of formation are obtained, depending on



U
0

(n

U)

0

k
'0

(i) (ii)

Figure 2-9: Plots of the Meyer's metric or average entanglement after tracing down to
a single qubit (i) and concurrence after tracing down to any pair of qubits
(ii) with the squeezing parameter k (in degrees) for spin-3/2. The solid lines
are the theoretically expected curves, while the dashed lines are a fifth-order
polyomial fit to the values computed from the experimental density matrices
(*) obtained via tomography.

which pair of qubits is traced over in order to obtain the reduced density matrix,

and their average, also known as the Meyer's entanglement metric[29], is plotted for

simplicity. According to this metric, the maximum entanglement again occurs at

k = 900 and corresponds to a Greenberger-Horne-Zeilinger state, which is however

not a maximally squeezed state. The maximally squeezed state now occurs instead

at k = 34.70 and again at 180 - 34.7 = 155.3', and corresponds to the maximum

concurrence of the reduced density matrix obtained by tracing over any one qubit

(which is attained by a W-state). The correspondence between theory and experiment

in this case is noticeably lower than in the spin-i experiments, primarily because of

leakage from the carbons used as qubits into the alpha and methyl protons during

the experiment.

2.5 Conclusions

We have demonstrated the use of liquid-state NMR to simulate squeezed states of

the effective spin-i and 3/2 subsystem contained in a two and three-qubit system,

respectively. We have further shown that the precision of quantum control obtained

was sufficient to reproduce the theoretically expected behavior of the spin-1 and 3/2



observables as well as the associated entanglement measures among the underlying

qubits. The results are a further demonstration of the utility of pseudo-pure states

[23], and the power of strongly modulating pulses [31], for the development and

validation of quantum control methods. The dynamics of the coherences among the

fiducial states that were confirmed by complete tomography are fully in accord with

these proposals, even though the highly mixed states used in our experiments were, of

course, separable at all times. It is interesting to observe, however, that even when the

identity component of the density matrix is fully taken into account the uncertainties

in the x and y directions were unequal, i.e. the actual mixed states created could be

regarded as (very slightly) "squeezed".

It should also be pointed out that the interpretation of the higher spin states as

"squeezed" or not depends on how the higher spin states are mapped into the sym-

metric subspace of the multi-spin-1/2 system. We discussed earlier, for example, how

the mapping used here for the spin-3/2 experiments actually gave the sum of a spin-

3/2 with a spin-1/2 pair, limiting the degree of squeezing attainable. Even when the

mathematical representation is strictly correct, however, the physical properties of

the squeezed states can be rather different. For instance, if we were to replace the

Dicke states ITT) and II1) in Table 2.1 by the Bell states 1//2 (ITT)f + 11)), the max-

imally squeezed state of the simulated spin-1 would correspond to the unentangled

basis state 100) of the two-qubit system in which it is contained. Such a represen-

tation may be a bit unnatural, since rotations of the qubits no longer correspond to

rotations of the higher spin, but should still be kept in mind when discussing the rela-

tions between entanglement in multi-qubit systems and the squeezing of the effective

higher spins therein [18, 25].





CHAPTER 3

SELECTIVE COHERENCE TRANSFERS IN

HOMONUCLEAR DIPOLAR COUPLED

SPIN SYSTEMS

3.1 Introduction

Nuclear spins feature prominently in most proposals for solid state quantum infor-

mation processors. They have the advantage of a simple and well defined energy

level structure and they are normally well isolated from other degrees of freedom.

The challenge of using nuclear spins in solids is to obtain control over the multi-spin

dynamics. In a dielectric solid, the dominant interaction between the spins is the

magnetic dipolar coupling. Since the strength of the coupling between two spins is

inversely proportional to the cube of the distance between them, a single spin is cou-

pled to a large number of surrounding spins, and not just its immediate neighbors.

Therefore every desired gate is embedded in a complex, multi-body space and the

dynamics have so far proven to be intractable. Controlling the evolution of a dipolar

coupled spin system has long been an important goal in solid state NMR, particu-

larly for spectroscopic studies. For example, the dipolar coupling has been effectively

2 Parts of this chapter were extracted from the paper "Selective coherence transfers
in homonuclear dipolar coupled spin systems", by C. Ramanathan, S. Sinha, J. Baugh, T. F. Havel
and D. G. Cory, Physical Review A, Vol. 71, 020303(R), February 2005.



turned off using techniques such as spinning the sample rapidly at the magic angle

(Om = cos-1 (1/v)) and a variety of multiple pulse techniques, which average the

spatial and spin tensors of the coupling respectively, as well as a combination of these

[50, 51].

A very useful element of control would be to map the physical dipolar Hamiltonian

of the spin system onto an effective interaction that has the form of only nearest

neighbor couplings. This would significantly simplify the implementation of accu-

rate two-qubit operations in a many-qubit solid state spin-based quantum processor

[6, 47, 48, 8]. This restricted evolution is also necessary to avoid cross-talk between

adjacent solid state quantum information processors in ensemble quantum computa-

tion [4, 5]. Without such control the gate fidelities achievable within a given processor

element will be degraded due to leakage to other members of the ensemble. Near-

est neighbor mapping would also allow quantum simulations of many-body systems

such as the Ising, XY or Heisenberg Hamiltonians in 1, 2 or 3 dimensions. The map-

ping envisioned here would have significant applications beyond quantum information

processing. For example, a nearest neighbor interaction could allow a more accurate

determination of distances in NMR structural studies, and could be used to perform

sequential polarization transfers, such as along the backbone of a protein.

Here we report the first step towards the experimental realization of such a scheme

for the special case of an ensemble of spin pairs, where the dipolar coupling between

the spins within a pair is significantly larger than the coupling between spins on

neighboring pairs. We are able to extend the phase memory of the spin pairs by

decoupling the pairs from each other, without decoupling the interaction between

spins within a pair. The control sequence consists of a simple amplitude modulated

RF field, with the modulation frequency set to the desired dipolar coupling strength.



3.2 Theory of the modulation scheme

Our model system is an assembly of identical spin pairs with (strong) dipolar coupling

ws and weaker couplings between spins on different pairs. In a strong external mag-

netic field aligned along ^ the truncated secular dipolar Hamiltonian for this system

is given by

h h 2

Hd = 4• -•a s•!i (3.1)
i a,0=1 i~j

where h -=- 2(a7O* - aak - ioa , and wDiap is the coupling between spin-a on

pair i and spin-f on pair j.

The goal is to introduce a modulated RF field such that the effective Hamiltonian

is restricted to just the isolated spin pairs (the first term in Eq. 3.1). Our solution

may be understood by viewing the RF field in the interaction frame of this cou-

pling. In the fully symmetric case the state u4 + u, evolves as (aI + or) cos ( t) +2+

(oaU2 + al 2) sin t , so we chose a RF that has an amplitude modulation fre-

quency Wm = 3wS/2 and is given (in the lab frame) by

Hmod (t) = 2 COS s t) X

ei(w t/2)  z e-i(wot/2) ECi a (3.2)

where wo is the Larmor frequency of the spins. The cosine amplitude modulation

produces frequency sidebands at wo + 3wS/2. Amplitude modulated pulses have

previously been used in NMR for simultaneously irradiating multiple transitions in

quadrupolar spin systems [49] to create multiple quantum coherences in the regime

where the RF power is significantly smaller than the strength of the quadrupolar

coupling.

We illustrate a simple physical picture of the averaging process using a 3-spin case.

Consider the Hamiltonian (in the rotating frame) of a three-spin system, in which



spins 1 and 2 are strongly coupled and spin 3 is weakly coupled to spins 1 and 2

(wA, > w>), under the RF modulation

H = h12 D (h13 + h23) +4 4

-- cos ( t) (U + c r+c a ) . (3.3)
2

The time-dependent Hamiltonian in the interaction frame of the (1,2) pair interaction

is given by

H(t)= e-i(wt)h12/4 (H - h12  +i(wt)h12/4 (3.4)

The zeroth order average Hamiltonian [51] of this interaction frame Hamiltonian over

a period 7 = 4ir/3wD is

(o) + ) + ( + (3.5)
2 "

The system can then be transformed into a second interaction frame via

U' = exp iWjt (41 + )) . (3.6)

Now, in this second averaging frame of f(O) (Eq. 3.6),the first term, i.e. the residual

dipolar couplings to spin 3, averages to zero over a cycle r' = 4/rlwl. Hence the second

averaging of the couplings to spin 3 is efficient when w, > 4w', and the effective total

system dynamics are generated by the (1,2) dipolar coupling (the Hamiltonian of the

first frame transformation). This picture provides the motivation for our approach,

but the overall dynamics are more complicated than that suggested by the zeroth-

order average shown above. If ws is not significantly stronger than wl , the higher

order terms of the Magnus expansion become more important. In addition, if the

strength of the 1-3 and 2-3 couplings are different, additional two and three body

terms appear in the Hamiltonian.
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Figure 3-1: Two pairs of strongly coupled spin-! systems with each pair decomposed into
its singlet and triplet manifolds (in the rotating frame). The triplet manifolds
are weakly coupled to each other while the singlet manifolds do not interact.

Further insight may be obtained by considering the energy level structure of an iso-

lated dipole-coupled pair of spin-1/2 nuclei. This has four energy levels, with three

triplet levels corresponding to a composite I = 1 system and a non-magnetic singlet

with I = 0 [?]. A weakly coupled set of spin pairs will largely preserve this structure,

but transitions between the singlet and triplet will no longer be forbidden due to the

coupling between spins on different pairs. Let wm represent the average strength of

the weaker couplings. Figure 1 illustrates how the spin pairs are decoupled from each

other under the amplitude modulated (AM) RF irradiation. If wm = 3w /2, the AM

irradiation simultaneously drives transitions 100) +- 101) + 110) and 101) + 10) +-+ Ill)

of the triplet manifold. The rate at which these transitions are driven depend on

the strength of the modulation field, wl. If w, >» w, the two triplet manifolds are

decoupled from each other and the pairs are isolated from each other. However, if

the RF power is increased further such that wl > wS, the triplet sub-space structure

gets destroyed as the strong coupling between the spins within the pair is decoupled.

Thus, our scheme works in the regime where wm = 3ws/2 and wg > wl > wg. Not

surprisingly these are exactly the same conditions as obtained in the previous section.

Intuitively, the RF modulation allows us to move into an interaction frame that is

moving with the magnetization of the dipole coupled spin pair. The experiment bears

some similarities to the spin-1 decoupling experiments originally proposed by Pines

and coworkers [53, 54]. In fact they suggest that their method could be used to

decouple a heteronuclear spin from a pair of identical spins. However, the scheme

*-



presented here goes further, and permits a coherent evolution of the isolated spin

pair while decoupling the pairs from each other.

It is also useful to move into the interaction frame of the RF modulation. The zeroth-

order average Hamiltonian [81] of an isolated spin pair in the interaction frame of the

RF modulation is

(dO) = -_ h (2.Orl .--•12 1 2

M S -4w ,_ (3.7)

where the average has again been performed over one period of the amplitude mod-

ulation (t = 27r/wm = 4ir/3ws). Starting from the equilibrium state where the spins

are along the external magnetic field, a collective ir/2 rotation of the spins places a

spin pair in the initial state al + ax . This state commutes with the first term of the

interaction Hamiltonian shown above, and the effective evolution is only due to the

second term a1a 2 - o2a . The set of operators, (ar + o2, aoa2 + a.or2 a o - aa 2)

form a subalgebra under the commutator that is isomorphic to the Cartesian subal-

gebra (a,, ay, a,). Thus the strongly coupled spins oscillate between the single spin

state Ua + Uo and the two spin state UloU + 1 2. If the first term of the Hamiltonian

in Eq. 3.7 were absent, this scheme would map onto a nearest neighbor interaction,

and as long as the initial state of the spin pairs was within this subspace, leakage out

of the subspace would be substantially suppressed. However, in the current scheme,

the initial state should be both within the subspace and commute with the first term

of Eq. 3.7. For an ensemble of spin pairs, only the collective ax state satisfies these

conditions.

3.3 Experimental Results

Gypsum (CaSO 4 .2 H20) was taken as a prototypical system for a weakly interacting

ensemble of identical spin pairs. The protons in the waters of crystallization comprise



the strongly coupled spins. The coupling between protons on different water molecules

is significantly smaller than that between protons in the same molecule. A unit cell of

gypsum has four water molecules, with two pairs in two inequivalent sites. When the

external magnetic field is applied along the [010] orientation, the dipolar splitting at

the inequivalent water sites coincide and a Pake doublet is observed (see Fig. 3-2) in

a one-pulse experiment [56]. In this orientation the strong dipolar coupling between

protons in the water molecule is wD/2ir = 14.8 kHz, and the mean coupling between

protons on different water molecules is w'/27r = 5.5 kHz.

The experiments were carried out at room temperature at 7.1 T (1H 300 MHz) using

a Bruker Avance spectrometer on a 1 mm3 single crystal of gypsum in the [010]

orientation. The length of the ir/2 pulse used was 1.67 jps. The experiment was

repeated as the duration of the AM RF was varied from 100 ps to 2.9 ms with an

increment of 5.5 ps. The signal was Fourier transformed with respect to the length of

the modulation pulse to yield the spectrum shown in Fig. 3-2(b). Fig. 3-2(c) shows

the observed E- aq terms plotted against the length of the modulation pulse [57]. A

dramatic narrowing of the spectral line is observed in the experiment. The effective

T 2 of the spins under the modulation is 11.1 ms which corresponds to a linewidth of

29 Hz. This is a factor of 572 times smaller than the 16.6 kHz width of a single line

of the Pake doublet.

In order to demonstrate that the spin pair continues to undergo a coherent evolution,

we performed a second series of experiments to specifically filter out and separate the

a x + an and the a + aaU2 terms. The two experiments are shown in Figure 3-3.

Figure 3-5(a) shows the coherence transfer under the dipolar Hamiltonian while Fig. 3-

5(b) shows the coherence transfer under the action of the modulation sequence. Under

the dipolar coupling the interactions with distant spins rapidly generate higher order

spin correlations, and there is a strong damping of the oscillation between the single

spin and the two-spin terms. However, under the modulation sequence this oscillation

is seen to extend out significantly farther. Thus the observed line-narrowing is not a

form of spin-locking of the single spin terms, as occurs under strong RF irradiation,
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Figure 3-3: (a) pulse sequence used to read out the ax + 7. terms. Following the modu-
lation pulse, a 7r/2 pulse is applied to rotate the a, terms to az. During the
150 ps interval (much shorter than Ti) all terms other than the az decay. A
r/2 pulse is then used to monitor az. (b) pulse sequence used to read out the
a e72 + ora2 term. Following the modulation two back to back 7r/2 pulses act
as a double quantum filter to suppress the single spin ac terms. A four step
phase cycle is necessary to implement the filter.

but is due to the selective decoupling of the weaker interactions between spins on

different pairs.

3.4 Conclusions

In conclusion, we have demonstrated that it is possible to restrict the evolution of

a dipolar coupled spin network to a much smaller subspace of the system Hilbert

space. This restriction allows us to significantly extend the phase coherence times for

selected states. The scheme developed works for a system consisting of an ensemble

of spin pairs, where the coupling between spins in the same pair is stronger than the

coupling between spins on different pairs.

H
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CHAPTER 4

SENSITIVITY OF HIGHLY CORRELATED

MULTIPLE-SPIN STATES TO THE

PRESENCE OF RARE SPINS

4.1 Introduction

Solid-state spin-based NMR QIPs are a useful test-bed for the coherent control of

modest Hilbert spaces. Using existing solid-state NMR techniques, one can study

the dynamics and control of many-spin states. Here we explore our ability to control

many spins in the presence of small number of spin defects. In the following sub-

section, we give a brief overview of the solid-state NMR techniques used to create

and detect these many-spin states.

All the spins in a rigid spin lattice strongly interact with one another through their

dipolar fields. In high magnetic fields and following a r/2 pulse, the evolution of

the spin system is dominated by the secular dipolar Hamiltonian. This interaction

creates highly correlated multiple-spin states causing the measured signal (Free In-

duction Decay - FID) to decay. The observable magnetization in NMR (as measured

by the FID) comprises of the single-spin single quantum states. These single-spin sin-

gle quantum states are transformed into unobservable multiple-spin single quantum

states under the action of the dipolar Hamiltonian. By encoding the higher order



coherences of the multiple-spin states in a non-commuting basis of the secular dipolar

Hamiltonian, Cho et al. [9] have studied the growth of these coherent multiple spin

correlations during the FID. Solid-state NMR provides a ideal test-bed to investigate

not only the growth of these large, correlated quantum states but also the dynamics

and control of such states.

4.1.1 Creation and detection of highly correlated multiple-

quantum states

In a strong magnetic field, (Bo0'), a N-spin 1 system has 2N stationary states. These

states can be classified according to the magnetic quantum number M,.

m = Zmzj = (N+ - N_)/2 (4.1)

where mzj is the eigenvalue of the jth spin in the system. m,j can take the values of

either ±!. N+ and N 1 are the number of spins pointing up and down respectively.

The energy eigenvalue corresponding to m is E, = -yhBom. In the case of non-

degenerate states, there are on the order of 2 2N - 1 possible transitions between any

two energy levels. The difference in the M, values between the two levels is known

as the coherence number.

When the state of the spin system is expressed in its eigenbasis as a density matrix,

the presence of a non-zero matrix element (< z I p zj >) indicates the presence

of a n-quantum coherence where n = m(zj) - m(zi) (the difference between the

magnetic quantum numbers of the two basis states zi and zj). This in turn indicates

the presence of a superposition of the basis states zi and zj in the state of the spin

system.

In theory, one can create multiple-quantum states by exciting the thermal equilibrium

spin state (p(O)) using the double quantum (DQ) Hamiltonian given by:

H = D {Ikf+- i+ +I } (4.2)
j<k
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is (Neq). Thus the number of allowed single-quantum transitions increase
exponentially with N and are thus unresolvable in large spin-systems.

Figure 4-1:



Though this particular form of spin interaction is not provided by nature, it can be en-

gineered using standard multiple-pulse cycles based on coherent averaging techniques

[58]. These multiple-pulse cycles implement an effective DQ Hamiltonian (H!Q ) over

the period of the pulse cycles.

Preparation Evolution Mixing Detection

i 1 T2  . ti

p (0) p (T,) p (T1  t 2 ) preadout

Figure 4-2: The basic form of a multiple-quantum NMR experiment [63] - (i) Prepara-
tion: Creating the highly correlated multiple-quantum states. (ii) Evolution:
Evolving these states under any desired Hamiltonian. (iii) Mixing: Trans-
forming the higher order coherences to observable single-spin single quantum
coherences. (iv) Detection: Measuring the observable single-spin single quan-
tum magnetization

A basic multiple-quantum NMR experiment is shown in Fig. 4-2. The DQ Hamil-

tonian is effective during T1 and creates highly correlated multiple-spin states in the

preparation stage. These states give rise to a distribution of higher order coherences,

which are encoded as phase factors (4) using a collective rotation about the z-axis

(Zj IjZ)

p(Ti) = e-` EjzIe--HID p(O) ezHg'Q TekZ•jl z (4.3)

In the evolution stage during T2, we evolve the system under any desired Hamiltonian.

By time-reversing the DQ Hamiltonian evolution in the mixing stage, higher order

coherences are transformed to observable single-spin single quantum terms.

readout IHII  4 .HII4 )
predow = eHQ 71 P(T1 + 72)e-sHIDQ (4.4)

S(t) = Tr{(( If preadout} (4.5)

62



To extract the coherence order distribution in p(T1 + T2), the signal (S(t)) observed

in the detection stage is Fourier transformed with respect to 0.

Several pulse sequences have been developed to create and detect multiple-quantum

coherences [59, 60, 61]. However, time-reversal schemes during preparation and detec-

tion are most widely used since they enhance the intensity of the multiple-quantum

NMR experiments by refocusing the dipolar interaction [62, 63, 64].

While the advent of a n-quantum coherence in the coherence order distribution guar-

antees the creation of a n-spin state, it does not arise solely from such a spin state.

Thus the distribution of the sizes of the highly correlated spin clusters for various

excitation times under the DQ Hamiltonian is not known. However, as the excita-

tion time period - 71 increases, higher order spin coherences emerge, indicating an

increase in the effective size of these spin clusters. Even without precise knowledge

of the size of the spin cluster, one can gain some insight on the many-spin dynamics

by manipulating the existing multiple-quantum techniques. These techniques have

been used extensively to study many body spin dynamics in dipolar coupled solids

[65, 66, 67, 68]. It has also been used to probe spatial relationships between spins

in large macromolecules, determine the size of spin clusters and in spin counting

experiments [59, 60, 69, 70].

4.1.2 Decay of highly correlated multiple-spin states in CaF2

The cubic lattice of 100% abundant 19F spin-1/2 nuclei (denoted as I in the rest of

this section) in a single crystal of CaF2 have been used to study the decay of highly

correlated multiple-spin states. Cho et al. report the effective T2 under the dipolar

Hamiltonian and under a time-suspension (C-48) sequence. See Figs. 4-3 and 4-4.

The measurement was repeated for various periods of preparation under the grade-

raising operator (DQ Hamiltonian). For a given coherence number, larger preparation

3The experimental data on CaF 2 has been extracted with permission from the doctoral
thesis "Exploring large coherent spin systems with solid-state NMR", by H. Cho, submitted to the
Department of NSE, MIT, February 2005.



periods incorporate more spins leading to larger clusters of correlated spins. We see

in the figures that for both the dipolar evolution and the time-suspension sequence, as

the number of spins in the cluster increase, the variation in T2 with coherence number

vanishes. Also, we note that the T2 grows more slowly with spin number than simple

theory predicts.

10 15

Coherence Number

Effective decay times of various coherence orders due to the action of the
secular dipolar Hamiltonian. Highly correlated spin-g9 F states in CaF2 are
created by exciting the thermal spin-g9 F state using the DQ Hamiltonian.
The effective decay times of the coherences for the various excitation times
(71) are plotted.
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Effective decay times of various coherence orders of the the highly correlated
spin-lgF states in CaF 2. In this case, the secular dipolar Hamiltonian is
suppressed using a multiple-pulse C-48 sequence. The effective decay times of
the coherences for the various excitation times (r• ) under the DQ Hamiltonian
are plotted.

4.1.3 Effect of rare spins on the decay of the multiple-spin

states.

To understand this decay behavior, we take a closer look at the spin-system on which

these experiments were carried out. In a CaF2 single crystal, a spin-7/2 isotope of
43Ca is present in low (0.13%) concentrations. Thus in addition to the homonuclear

9F (HfI ) dipolar spin interactions, the internal Hamiltonian of the spin system in-

cludes the heteronuclear '9F-43Ca (H I s ) and the homonuclear 43Ca (HDs) dipolar

spin interactions. Denoting this rare spin species as S, the initial equilibrium thermal

Preparation time (rj)
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spin state and the on-resonance internal Hamiltonian are given by:

p(O) = lz + , Skz
j k

Hint = H + H S S + HI s  (4.6)

1-
= HJ + J DSjzk - -Mkk) ± Dk jzz

j<k jeI, kES

The multiple-pulse sequence that creates the effective DQ interaction averages out the

heteronuclear interaction (HfIS) to the 0 th order approximation. The efficiency with

which the HZs and HIs interactions are suppressed during this excitation period (T1)

affect the initial coherence order distribution of the created multiple-quantum spin-I

states. However, the inefficiencies of the multiple-quantum creation process should

not affect their subsequent decay which is the focus our discussion.

The C-48 sequence while averaging out the spin-I dipolar interaction, also averages

out the heteronuclear interaction. Since HIs - 0, we would expect that the presence

of S spins in the system will have no effect on the multiple-quantum spin-I states.

If we could instantaneously 'switch-off' the dipolar coupling between the I and the

S spins, our naive expectation would indeed hold true. However, this heteronuclear

interaction is not zero at any given time point during the C-48 sequence. It averages

to zero over the total cycle time of C-48 sequence. Thus we should not neglect the

presence of S spins in the system.

To get a more intuitive understanding, we consider a model spin system comprising

of a single S spin (labeled as S1) and an abundant number of I spins with a internal

Hamiltonian given by

Hint= HI + HI s ' - HD + D-s'j1 Ijz•S (4.7)

Applying the DQ Hamiltonian on the equilibrium thermal spin state, we create our

initial multiple-quantum spin-I states. The corresponding density matrix p(Ti) is
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Figure 4-5:
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The model system (on the right), consists of one S spin (labeled as Si)
interacting with an abundant number of I spins. The C-48 sequence averages
out the homonuclear interaction between the I spins during T2. During this
time interval (r2), S1 is correlated with the multiple-quantum spin-I states
present in p(r1 ). But if the S1 spin state remains constant during r2, the
heteronuclear interaction is also averaged out under the action of the C-48
sequence. Thus S1 is no longer correlated to the spin-I states at the end of r2 .
However if S1 flips at any point during this interval, it will remain correlated
with the spin-I states even at the end of T2.

allowed to evolve under the C-48 sequence over a time period T2.

p'(-r) = Trs1[e-sH q p(O) eH 6"Q Ti] (4.8)

p'(T +7T2 ) = Trs[U -Is T2)UIs, (-)p(t)Ut'IS( ()Ut-IS1( 2 p'(T)2 2 2 2
(4.9)

Since the C-48 sequence averages out the HIS' interaction, the density matrix (ob-

tained following a partial trace of the S1 spin) p' (T + 2) undergoes zero net evolution

over the period T2 (aS shown in Eq. 4.9). Now if the Sl spin flips in the middle of T2,

the density matrix (obtained after tracing out S1 ) is no longer preserved.

r 2 ) ( IS 1  I72S7
Trs, [U- I (-)U )U )p()Us ) (Z)U(t '' (L2)

2 w 2 2 W 2

p'(I1) (4.10)

This holds true independent of when the spin flips during the course of the time

p'(Tn + T2)

· _



interval. See Fig. 4-5. In a solid-state spin system, energy conserving spin-flips can

occur due to the flip-flop term of the homonuclear dipolar interaction.
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Figure 4-6: The model system (on the right), consists of one S spin (labeled as Si)
interacting with an abundant number of I spins and a few neighboring S
spins. We assume that these S spins interact only with the S, spin. The
homonuclear interaction between the I spins is averaged out during 72 using
the C-48 sequence. The Hamiltonians HIS1 and HSS' do not commute. Thus
the multiple-quantum spin I states present in p(r1 evolve under their action
during r2 .

To incorporate these spin-flip effects, we upgrade our model system to include a few

neighboring S spins that interact with the S, spin. To simplify our arguments, we

assume that these S spins do not interact with each other or with the I spins. These

assumptions do not affect the conclusion we derive from the following arguments.

The internal Hamiltonian of our model system is given by Eq. 4.11.

+ HL S + HIsl (4

± DssO {j zSl z - (S+ - I)} D~'S1 IjzSlz

.11)

Under the dipolar interaction H s s ', the total spin-S magnetization is conserved, not

the state of the individual spin- S1. Therefore, the Hamiltonians H ss ' and HIS1

do not commute and the net evolution during the first half of T2 can no longer be

I
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refocused during the second half. See Fig. 4-6.

p (71 + T2 ) = Trs [Uss1sl (-)U+s (2)p( T)UtSS1+ls (T2)UtSS(-IS1 (T2 p (71)2 2 2 2

When the coherence order distribution of spin-I states is extracted from pI(T1 + 72),

we will see a decay of the higher order coherences. Thus in this simple model, a single

spin-S (Si) interacting with neighboring S spins act as a spin defect for the highly

correlated spin I states.

Going back to the coherence decay experiments under the secular dipolar Hamilto-

nian, neglecting arbitrary errors in experimental implementation, H II and HIs aver-

age to zero. However, the finite time period over which the heteronuclear decoupling

takes place ensures that energy-conserving spin flips between neighboring S spins will

lead to multiple-quantum spin-I transitions which are not refocused during the time-

reversal of the DQ Hamiltonian - thus leading to a coherence order decay. Therefore,

we need to refocus the homonuclear interaction (H s s) since it facilitates these energy-

conserving spin flips via the flip-flop component of its Hamiltonian. Moreover, the

HJIs interaction needs to be averaged out on a time-scale which is fast with respect

to the spin-S homonuclear dipolar coupling strength.

The C-48 sequence applied on the 19F spins suppresses only the homonuclear '9F

interactions and the heteronuclear "9F- 43Ca interactions. Thus the 43Ca spins act as

centers of decoherence for the highly correlated multiple-spin states of the abundant

19F spins. We need to design new control sequences that address these rare spin

homonuclear interactions and thus refocus the full internal Hamiltonian of the spin

system. The decay rates of the highly correlated abundant spin states measured under

this complete refocusing scenario will provide a more accurate measure of control of

such states.



4.1.4 Sensitivity the of highly correlated multiple-spin states

to the presence of rare spins

Quantifying the effect of these rare spins on the spin system dynamics is quite chal-

lenging - techniques that involve direct observation of these rare spins are experi-

mentally unviable due to low S/N ratios. 'Spy detection' techniques [72] allows us to

circumvent this problem by letting us take advantage of the higher bulk sensitivity

(due to higher concentration) of the abundant spins in the system. This technique

utilizes a particular spin species as a probe to monitor the behavior of a neighboring

spin species. Spy techniques have been used to study spin diffusion in a single crystal

of ferrocene. Ernst et al. proposed an indirect measurement of diffusion among the

abundant spins (1H) using the rare spins (13C) as a probe.

For our sensitivity measurements, we excite the abundant spins in the system using

the DQ Hamiltonian. This creates highly correlated multiple-spin states while pre-

serving thermal ' magnetization of the rare spins. We then isolate the effect of the

rare spins on the dynamics of these abundant spin clusters. This involves designing

a control sequence that selectively turns on the dipolar interaction between the rare

spins and clusters of the abundant spins. Since all the spins (both abundant and rare)

interact at all times through their dipolar couplings and chemical shifts, we must si-

multaneously suspend all the homonuclear spin interactions. To quantify a change

in response, we also need a reference experiment against which we can measure this

change. We design another control sequence, which in addition to suspending all the

above interactions, turns off the interactions between the abundant spin clusters and

the rare spins. We measure the relative intensities of the multiple quantum coherence

of the abundant spins in both cases. Comparison of the intensities allow us to quantify

the sensitivity of the abundant spin clusters to the rare spin defects. In the rest of this

chapter, we refer to these two multiple-pulse control sequences as the heteronuclear

recoupling (HR-96) sequence and the time-suspension (TS-96) sequence respectively.

In the next section, we give a brief overview of average hamiltonian theory which was

used to design these control sequences.
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Figure 4-7: Sketch of the experiments designed to detect rare spins ( S ) using the highly
correlated multiple-spin states of the abundant spins ( I ) as a 'probe'. It
involves contrasting the effect of the two control sequences (in (a) and (b))
on the intensity of the multiple quantum coherence of these correlated spin I
states.

4.2 Overview of average Hamiltonian theory

The concept of average hamiltonian theory has been used to design a wide range of

pulse experiments. If a spin system is evolved under a periodic and cyclic sequence of

RF pulses and delays (i.e., free evolution under the internal Hamiltonian), at periodic

observation points it acts as if it was exposed to a time-independent average internal

Hamiltonian. The time period between successive observations must however be much

smaller then the spin lattice relaxation times. In between these observation times,
the spin system passes through a complex array of states depending on the applied

RF pulses. The average Hamiltonian defines the state of the system at successive

(a)

(b)

i 
- 1 ~sl L



observation times also known as the cycle time ( to ) of the sequence. One of the

important features of this theory is that it provides a simplified means of designing

pulse sequences in solid state spin systems where calculations using density matrices

are not possible.

If the sequence of RF pulses is cyclic ( Urf(tc) = +1 ), periodic ( Hrf(t) = H, (t +

Nt,) ), the average Hamiltonian H is given by the Magnus expansion (written as

Eq. 4.12). The Oth order average Hamiltonian is given by Eq. 4.13 and the 1st order

average is given by Eq. 4.14.

H = Ho + H7 + H2 + H3 + ... (4.12)

HO = - int(t)dt (4.13)

7T -i [H (t), Hint(t2)ldt dt 2  (4.14)

where Hint(t), also know as the toggling frame internal Hamiltonian, is given by

HR (t) = URfHintURF (4.15)

URF which is the unitary RF operator determined by the applied pulse sequence, is

given by the Dyson time-ordering functional as expressed in Eq. 4.16. Each term Ui

refers to the propagator corresponding to the i th RF pulse of the pulse sequence.

URF = Te- i foI~HRF(t)dt = ...U4U3U2 U1  (4.16)

Since the RF field is of finite strength, the evolution of the internal Hamiltonian during

the duration of the pulse should be taken into account. The convergence of the series

has been discussed by Maricq [73]. If the cycle time of the pulse sequence is short

compared to the T2 characterizing the homogenous broadening due to the interaction

being averaged, the RF fields applied during experiments are strong enough that



calculation of the first two terms of the Magnus expansion (as given by Eqs. 4.13

and 4.14) provide a good approximation of the average Hamiltonian H. Furthermore,

designing the RF cycle to be symmetric gives the added advantage that all the odd

order terms identically go to zero [74, 75]. This appealing property has been used

repeatedly to design line narrowing sequences.

4.3 The C-48 time-suspension sequence

Time-suspension sequences have been widely used in NMR for purposes of imaging in

solid-state samples [76, 77, 78]. Designing multiple-pulse cycles, that improve the line-

narrowing efficiency by compensating for pulse errors while averaging out the dipolar

spin interactions, has been the goal of NMR physicists since coherent averaging tech-

niques were proposed [58, 75]. Other uses of time suspension sequences include the

study of spin diffusion and molecular motion through relaxation experiments [79, 80].

Table 4.1: The average Hamiltonian for various time-suspension sequences

Average Hamiltonian terms Second-averaged MREV-8 16 pulse cycle 24 pulse cycle

H D  -O •0 0HD 0 0 0-1 D 0 0 0-2

If a homonuclear spin system is off-resonance, the internal Hamiltonian can be written

as Hint = Ho + HD, where Ho and HD are given by Eq. 4.17

Ho = hAw'ZIjz

1(417)
HD = L {z"kz -" (j< + _k)} (4.17)

j<k



The WAHUHA sequence, the second-averaged MREV-8 and other 16 and 24 pulse

supercycles based on the MREV-8 sequence, average out some or all of these homo nu-

clear spin interactions with varying degrees of efficiency [81, 82]. The average internal

Hamiltonians under these time-suspension sequences are listed in Table 4.1. By fo-

cussing on the state of the offset Hamiltonian in the toggling frame, Burum and Rhim

used a simple notation to describe multiple-pulse cycles. For e.g., the toggling frame

offset Hamiltonian during a solid-echo pulse pair cycle: 7- (7/2),-- T- (7r/2),-- 7

can be written as (Iz, -Iy, -Iv). Denoting the three orthogonal directions in the spin

space as a, b and c, this solid-echo pulse sequence can be rewritten as (abc). Using

this notation, the three time-suspension sequences can be written as follows:

* Second averaged MREV-8: (abc)(cba)p(abc)(cba),.

* The 16-pulse cycle: (abc)(cba)p(Kb•) (cba)p(abc) (bi)p(abc)(cba)p

* The 24-pulse cycle:(abc)(cab) (cb-)p(!-b) (bac) (cba)p(ab) (cab) (bca),(acb) (bac) (cba)p

where the sub-script p indicates that the RF pulse pair are phase toggled.

In [83], Cory et al. proposed a sequence that averaged the dipolar Hamiltonian and

the dipolar-offset cross term to zero up to the 1 t order. The C-48 sequence is made

up of three-pulse sequences -A, a, B, b, C, c, ...H, h. See Figs. 4-8 and 4-9. Various

permutations and combinations of two of these three-pulse sequences lead to the

formation of dipolar-decoupled 7r pulse cycles, e.g., (Aa),(Bb),(Cc),(Dd),(Ee)...Eight

of these dipolar-decoupled 7 pulse cycles are combined to form a 'super cycle' that

averages out to zero all the terms in Table 4.1. The complete C-48 sequence can be

written as: (Aa)(Bb)(Cc)(Dd)(Ee)(Ff)(Gg)(Hh).



Figure 4-8: The schematic diagram of the three-pulse sequences used to design the C-48
sequence, where the horizontal striping indicates an y-pulse, vertical striping
an x-pulse. All the pulses induce rotations by 7r/2. (or the negatives thereof
if the pulses are below the bold reference lines)
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sequence, where the horizontal striping indicates an y-pulse, vertical striping
an x-pulse. All the pulses induce rotations by r/2. (or the negatives thereof
if the pulses are below the bold reference lines)
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4.4 The design criteria for the new time-suspension

and heteronuclear recoupling sequences

In a heteronuclear spin system, the internal Hamiltonian is modified to include both

the homonuclear as well as the heteronuclear spin interactions.

Ho = hAwZljzh + Aws Z Skz
j k

Hi.t = HI I + H~s + H5I s

- E -D{zz 4 k k) + ± D ksSZkz 4(S- +SSk)
j<k j<k

+ DjkS{IjzSkz} (4.18)
jel, keS

Dfks is the heteronuclear dipolar coupling constant between the jth spin-I and the

kth spin-S. The homonuclear dipolar constants for the jth and kth spins of spin-I (or

spin-S) is defined by DU I (or D kS respectively). In general, the dipolar constant can

be defined as

a2 ( 1 - 3cos•2jk ) (4.19)
Tik

where -y and yb6 are the gyromagnetic ratios, -jk is the distance between jth spin-

a and kth spin-P3, and Ojk is the angle between the external magnetic field and the

internuclear vector -Tjk.

In designing the new time-suspension sequence, the objective was to average out all

the homonuclear and heteronuclear interactions as expressed in Eq. 4.18. Note that

if the C-48 sequence is applied to one of nuclear spin species, for e.g. spin-I, the S

spins will evolve under the spin-S offset and dipolar terms (the 2nd term of Ho and

HD respectively in Eq. 4.18). However, since the spin-I offset term goes to zero to

the Ot h order, the heteronuclear dipolar interaction between the I and S spins (i.e.,

the 3rd term of HD in Eq. 4.18) also goes to zero. Applying the C-48 sequence to



both I and S spins will average out all the homonuclear interactions. However, it will

lead to a resultant heteronuclear strong coupling (I.S) interaction.

The dipolar spin interactions have varying strengths. We assume that for our model

system, the average strength of the dipolar spin interactions (in descending order)

can be written as: D I > DIS > Dss. Note that for many typical solid-state

samples, these are the correct assumptions. Since the spin-I average homonuclear

dipolar interaction is the strongest, it needs to be averaged out faster than the other

interactions. Using the three-pulse sequences - A, a, B, ...h (shown in Figs. 4-8 and

4-9) as building blocks, we construct two 96-pulse sequences for the S spins. The

multiple-pulse cycles of the TS-96 and HR-96 sequences average out the spin-S dipolar

and offset interactions. At the same time, the multiple-pulse cycle of the HR-96

sequence selectively reintroduces the heteronuclear dipolar interaction. To average out

the spin-I dipolar and offset interactions, we apply two back-to-back C-48 sequences

to the I spins. Both pulse sequences consist of 16 six-pulse sub-cycles. Each six-pulse

sub-cycle averages the homonuclear dipolar Hamiltonian (for both I and S spins) to

zero. The details of the composition are written in Table 4.2. In the case of the TS-

96 sequence, the complete averaging out of all interactions require 16 sub-cycles (96

pulses). The RF sequence applied during sub-cycles 9:16 is the same as that applied

during sub-cycles 1:8 except that all 48 pulses in the first eight sub-cycles are phase

shifted by 7r. For e.g. in Table 4.2, id denotes a pulse-sequence in which the three

applied RF pulses of the pulse-sequence a are phase shifted by rx. In the case of the

HR-96 sequence, all undesired interactions are averaged out at the end of sub-cycle

number 8 i.e., after every 48 pulses. Thus in sub-cycles 9:16, the sequence applied in

sub-cycle 1:8 is repeated. This was done to ensure that both sequences had the same

cycle time.



Table 4.2: Composition of the sub-cycles of the TS-96 and HR-96 sequences

Sub-cycles numbers n TS-96 HR-96

I S I S

1 Aa aE Aa bE

2 Bb fB Bb fA

3 Cc dG Cc dG

4 Dd hD Dd hC

5 Ee bF Ee aF

6 Ff eA Ff eB

7 Gg cH Gg cH

8 Hh gC Hh gD

9 Aa aE Aa bE

10 Bb fB Bb fA

11 Cc dG Cc dG

12 Dd hD Dd hC

13 Ee bF Ee aF

14 Ff eA Ff eB

15 Gg cH Gg cH

16 Hh gC Hh gD
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4.5 The properties of the TS-96 and the HR-96

sequences

The average Hamiltonian properties of TS-96 and HR-96 are listed in Table 4.3.

The HR-96 sequence scales down the heteronuclear interaction by a factor of 2. For

detailed calculation of the average Hamiltonian terms, please refer to the Appendix.

As mentioned before, average Hamiltonian theory allows one to follow the complex

Table 4.3: The average Hamiltonian properties of the TS-96 and the HR-96 sequence
taking into account finite pulse width effects

path that the spin system takes when multiple pulse sequences are applied. In other

words, one can calculate the rate at which the various product operators that span

the interaction space average out over the whole duration of the sequence. This is

especially useful considering that some of the interactions are much stronger than

the others. Ideally, one would like to average out all the interactions as quickly as

possible. However, considering the complexity of the problem, our approach has been

to preferentially average out all the stronger interactions faster than the weaker ones.

In Table 4.4 we show the rate at which the various interactions average to zero with

out taking into account the finite strength of the applied RF pulses. In Table 4.5

we show the same taking into account these finite pulse width effects. Note that all

undesired interactions average out within 8 sub-cycles for both sequences in the 0th

order approximation. However for the TS-96 sequence, we require 16 sub-cycles to

average out some of the undesired interactions to the 1
"t order approximation.

Terms of Average Hamiltonian TS-96 HR-96

HD(between I spins) 0 0
--1

HD(between S spins) 0 0

HD(between I and S spins) 0

Ho(for I spins) 0 0

HO(for S spins) 0 0



Table 4.4: Sub-cycles at which the various interactions average to zero for the TS-96 and
the HR-96 sequences without taking into account finite pulse width effects

Terms of the Average Hamiltonian Number of sub-cycles

TS-96 HR-96

HD(between I spins) 1 1

-HD(between S spins) 1 1
-0
HD(between I and S spins) 8 -

Ho(for I spins) 8 8
HO(for S spins) 8 8

Table 4.5: Sub-cycles at which the various interactions average to zero for the TS-96 and
the HR-96 sequences taking into account finite pulse width effects

Terms of the Average Hamiltonian Sub-cycle num- Sub-cycle num-
ber of the TS-96 ber of the HR-96

D(between I spins) 1 1

H?(between S spins) 8 2

?D(between I and S spins) 8

HD(between I spins) 2 2

-H(between S spins) 16 4

HD(between I and S spins) 16R1
Ho(for I spins) 8 8

H (for S spins) 8 8
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Figure 4-12: The schematic of the experiment that measures the effective T2 of the 13C
in adamantane under (a) TS-96 sequence and (b) HR-96 sequence. Before
applying the two sequences, we use a 7r/2 pulse to flip the 13C spins on to
the transverse plane. The 13C magnetization is measured while decoupling
the 1H spins.

4.6 Experimental Results

Adamantane (CoHl6) was taken as a prototypical system with an ensemble of abun-

dant (1H spins) and rare spins (the natural abundance 13C spins). Adamantane

undergoes rapid molecular reorientation above 160K [84]. This rapid isotropic molec-

ular rotation averages all the intramolecular magnetic interactions to zero [84, 85].

The largest interaction in the spin system is the intermolecular homonuclear 1H dipo-

lar coupling which leads to a static proton line-width of 13,800 Hz (full-width at half

maximum). The average 13C dipolar coupling strength is approximately 50Hz [86]

while the 13C-1H hetero nuclear coupling was measured to be 500Hz [87]. The T,

relaxation times for 1H and 13C spins are approximately 0.5 s and 30s respectively.

The experiments were carried out at room temperature at 9.4 T (1H 400 MHz) using

a Bruker Avance spectrometer on a 5 mm3 powdered sample of adamantane.

4.6.1 Effective T2 relaxation times of 13C spins under the TS-

96 and the HR-96 sequences.

First we tested the efficiency of the the TS-96 and the HR-96 control sequences. We

used their line narrowing capabilities as measure of their efficiency. As shown in

section 1.4, the TS-96 sequence suspends all spin interactions. Thus the line narrow-

ing efficiency of this sequence should be much superior than other time suspension

sequences like the C-48 sequence. To compare the line-narrowing efficiencies of the

s --
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Figure 4-13: The 13C signal intensity plotted after every 96- pulse cycle of the the TS-96
(0) and the HR-96 (o) sequences. The cycle time period of 1728 ps.

different sequences, we measure the effective T2 of 13C spins for each sequence.

As shown by the schematic in Fig. 4-12, we run a set of 2-D experiments which

measures the 13C magnetization after every 6 pulse sub-cycle of the 96 pulse sequence.

To simulate a stroboscopic measurement, the amplitude of the 5th point of the free

induction decay (FID) for each experiment is plotted. See Fig. 4-14. The 7/2 pulse

length for 13C was 3.8 ps. The optimized 1H 7r/2 pulse length was 4.8 ps. The

spacing between two consecutive pulses was set at 6 ps for both sequences leading to

a 6 pulse sub-cycle time of 108 ps. The effective T2 in the case of the TS-96 sequence

and the HR-96 sequence were measured to be 4.02 ms and 974 ps respectively. Note

that in the case of the TS-96 sequence, the signal intensity does not go to zero at

longer evolution times due to a spin-locking effect. Thus the calculated linewidths in

the two cases are 75 Hz and 300 Hz respectively. We also carried out a 13C observe

experiment with 1H decoupling using the C-48 sequence (similar to the experiments

outlined in Fig. 4-12). The effective T2 was measured to be of the order of 1 ms.

These results prove that for heteronuclear spin systems, the TS-96 sequence has more

efficient line-narrowing capabilities as compared to the C-48 sequence.
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Figure 4-14: The 13C signal intensity plotted after every 6 pulse sub-cycle of the (a) TS-
96 and (b) HR-96 sequences. The sampling rate in both cases is 108 Ms.
The points marked by O in (a) and o in (b) indicate the signal intensity
after the full 96-pulse sequence. The system was evolved up to 4 cycles of
the 96-pulse sequences with a cycle time period of 1728 us.
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4.6.2 Sensitivity of 1H multiple quantum coherence to the

presence of 13C spins

We create the 1H multiple quantum coherence in adamantane by evolving the initial

zeeman state 'H spins under an average double quantum (DQ) Hamiltonian - HJDIQ.

A collective rotation by q about the z-axis is applied to this evolved state where q is

uniformly sampled out to a multiple of 2w7. The resulting data is Fourier transformed

with respect to q to obtain the coherence number distribution. The evolution under

HUI creates even order coherences in the z-basis. A 16-pulse DQ selective sequence -

comprising of two cycles of 8 pulse sequences that compensate for pulse imperfections

and resonance offsets, was used (See Fig. 4-15). To carry out the phase encoding, all

the pulses in the 16 pulse experiment were phase-shifted by q [10].

In Fig. 4-16, the maximum coherence encoded was ±64 with AO=2w/128. The phase

incrementation was carried out to 47r. The 13C r/2 pulse length was 3.8 Ms. The

optimized 1H 7/2 pulse length for the DQ selective sequence was 4.3 Ms. The smallest

delay between the pulses, A, was set to 2 ps, resulting in a cycle time of 151.2 ,Ms.

1H

Figure 4-15: The schematic of the experiment that creates 1H multiple quantum coher-
ences in adamantane. The 16 pulse sequence in the shaded box is used to
generate the effective DQ Hamiltonian. The smaller spacing between the
pulses is given by A while the larger spacing is given by the sum of 2A and
the r/2 pulse length. Thus the cycle time of the sequence is t, - 24(A+,r/2
pulse length). The vertical striping indicates an x-pulse. All the pulses in-
duce rotations by r/2. (or the negatives thereof if the pulses are below the
bold reference lines)
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Figure 4-16: The 1H multiple quantum coherence in adamantane. The system was
evolved under the DQ Hamiltonian for a period of 604.8 ps.

We then carry out the experiments outlined in Fig. 4-7. The cycle times of the TS-96

and the HR-96 sequences were set to 1.4 ms. At the end of one cycle of the TS-96

and HR-96 sequences, we can observe up to 32 coherences - though the magnitudes

of the coherences in the case of the HR-96 sequence are substantially lower. See Fig.

4-17(a). At the end of two cycles, this difference becomes more pronounced. While in

the case of TS-96 sequence we observe up to 24 coherences, we do not observe beyond

8 coherences for the HR-96 sequence. For sake of complete comparison, we applied

two back-to-back C-48 sequence with the same total cycle time. For both one and

two loops of this 96 pulse super-cycle of the C-48 sequence, the coherence intensities

are slightly higher than those obtained for the HR-96 sequence. We compare the

net change in intensity of the coherence orders after one loop of the TS-96 and the

HR-96 sequences. We observe that as the coherence order increases, the net change in

intensity also increases. Thus the sensitivity of the multiple-spin state to the presence

of 13C spins increase with the number of correlated 1H spins in the multiple-spin state.

We discuss our results in more details in the next section.
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Figure 4-17: Coherence order distribution after evolution under the TS-96 (solid line),
two back-to-back C-48 (dashed line) and the HR-96 (dotted line) sequences.
The cycle time was 1.4ms for all three sequences. Thus, the time period of
evolution (72) were 1.4 ms (for the top figure) and 2.8 ms (for the bottom
figure).
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Figure 4-18: The net difference in signal intensity for the various coherence orders after
one cycle of the TS-96 and HR-96 sequences.

4.7 Conclusions and future work

In this chapter, we made an attempt to understand the decay behavior of the highly

correlated multiple-quantum spin- F states observed in CaF 2. We used adamantane

as a test-bed to study the effect of the rare spins on the correlated multi-spin dynamics

for a variety of reasons. Unlike the spin-7/2 43Ca spins, all the spins in adamantane

are spin-1/2. Thus designing the multiple-pulse sequences were much simpler since

we could ignore the quadrapolar spin interactions associated with a spin-7/2 system.

Furthermore, the absence of intramolecular interactions, the weaker dipolar interac-

tions and the low T1 times are factors that contribute to the suitability of adamantane

for these multiple-quantum experiments.

For our sensitivity measurements, we developed two multiple-pulse cycles - while

the TS-96 sequence suppresses all the spin interactions in a heteronuclear system

(comprising of two-spin species), the HR-96 sequence selectively reintroduces only

the heteronuclear interaction between the spin species. Existing time-suspension se-



quences were designed to address interactions (chemical shift offsets and/or dipolar

interactions) of a single-spin species in a spin system. Thus compared to these ex-

isting sequences, the TS-96 sequence has superior line-narrowing capabilities in such

heteronuclear spin systems. Many solid-state spin systems that are studied in NMR

comprise of two-spin species. Therefore this sequence could prove useful for line-

narrowing experiments on similar systems.

The rate at which the various interactions average out should affect the line-narrowing

capabilities (effective T2 times) of the sequences. In adamantane, both the TS-96 and

the HR-96 sequences average out the homonuclear spin- 13C interactions in addition

to the homonuclear spin-1H interactions. Comparing the rates at which these inter-

actions are averaged out by the two sequences, we see that the homonuclear dipolar

spin-13 C interactions are averaged out 4 times faster by the former sequence. Inspite

of that, the measured effective T2 for the spin-1 3C was 4 times higher for the TS-96

sequence (as seen in Fig. 4-13). This suggests that the effective T2 is highly sensitive

to the heteronuclear dipolar interaction. However, this effective T2 is still considerably

less than the T 1. This could be due to the fact that this heteronuclear interaction is

not being averaged out fast enough.

However compared to the C-48 sequence, the heteronuclear averaging capability of

the TS-96 sequence is vastly superior. While the C-48 sequence averages out the

heteronuclear interaction to the Oth order without taking into account the finite pulse

width effects, the TS-96 sequence averages out this interaction to the 13' order while

taking into account the finite pulse width effects. These factors partially contribute

to the higher intensity of the coherence order distribution for the TS-96 sequence.

This noticeable improvement in signal intensity for the TS-96 sequence over that of

two back-to-back C-48 sequences can be seen in Fig. 4-17.

In CaF2, the measured coherence decay patterns were very similar under both cases

-(i) evolution under the internal Hamiltonian and (ii) suppression of the spin-"9F

homonuclear and heteronuclear interactions. The decay behavior in the first case is

primarily due to the fact that the multiple-quantum transitions under the action of the



19F (secular) homonuclear dipolar Hamiltonian are not refocused to observable mag-

netization. To explain the decay behavior in the second case, we hypothesized that

even though the 19F-43Ca interaction is decoupled, the presence of rare 43 Ca spins give

rise to decoherence effects. Due to the finite time period over which the heteronuclear

interactions are averaged out, the 19F spin clusters are correlated to neighboring 43 Ca

spins at any instant during this decoupling period. The 43Ca homonuclear interaction

further increases the number of correlated 43Ca spins in the cluster. These interac-

tions are not refocused to observable magnetization leading to a decay in coherence

orders. The decay data in both cases showed three broad features:

* As the size of spin correlations grew (with increasing coherence numbers and/or

excitation periods under the DQ Hamiltonian), the decay rates became faster.

* As the excitation period under the DQ Hamiltonian increased, the decay times

under different coherence orders became more uniform.

* The relative change (reduction) in the decay times decrease with increasing

excitation times under the DQ Hamiltonian.

To test our hypothesis, we demonstrated the sensitivity of the highly correlated

multiple-spin states of abundant spins (1H) to the presence of rare spins (13 C) on

our test-bed system. We used the multiple-pulse sequences to selectively create cor-

relations between the 13C spins and multiple-spin states of the 1H spins. We observe

that the sensitivity increases with increasing coherence order of the multiple-spin

states for a given excitation period under the DQ Hamiltonian. As the coherence

number increases, the number of the correlated 1H spins (i.e., the spin cluster size)

increase. Since the number of 13C spins present in the cluster also increases with

increasing cluster size, the highly-correlated states corresponding to the larger spin

clusters are more sensitive to the presence of the 13C spins (as seen in Fig. 4-18).

In light of the above experimental observations on adamantane, some 'plausible' ex-

planations for the distinct features of the coherence decay data in CaF 2 are as follows:



We can envision each defect spin as introducing a phase error to the correlated spin

states in its neighborhood. When the spin cluster size is small, there are very few de-

fect spins within a cluster. All the spins in a correlated spin state see the same phase

errors. Thus the rate of decoherence of the correlated states in the cluster depends on

the coherence order of the states - the higher order coherences dephase faster than

the lower order ones. However as the preparation time (71) becomes longer, the size of

the spin clusters increases and so does the number of defect spins in a cluster. Higher

number of defects leads to a higher decoherence rate for the correlated spin states in

the cluster. At the same time, the phase errors introduced by these numerous defect

spins (at the site of any abundant spin) become increasingly uncorrelated. Thus the

decay rate of the correlated states no longer strongly depends on the coherence num-

ber of these states. It depends on the spin number i.e., the number of spins in the

cluster [88]. At short preparation times, the "9 F spin cluster size is small and there are

few 43Ca spins in a cluster. The decay rates strongly depend on the coherence number

of the correlated spin states. An analogous behavior is experimentally observed for

1H spin correlations and the defect 13C spins in adamantane as seen in Fig. 4-18. For

the preparation time of 1.4ms, while the lower order coherences mostly comprise of

small spin clusters, the higher order spin coherences (> 14) comprise of only large

spin clusters and thus see more defect spins. Therefore one observes a flattening of the

curve for these higher coherence orders (in Fig. 4-18) suggesting that the increasingly

uncorrelated phase errors lead to a saturation of decay rates beyond a certain cluster

size. It would be interesting to see how the sensitivity of the correlated states varies

with coherence order for various preparation times.

In any multiple-pulse experiment, RF inhomogeneity, phase transients and finite RF

pulse widths can contribute to errors in the experimental data. To negate the finite

pulse width effects, we took them into consideration for our average Hamiltonian

calculations for the multiple-pulse cycles. Many of the the higher order terms of

the average Hamiltonian are scaled by (a power of) the RF pulse strength. Thus

the shorter the RF pulse, lower will be the effect of these interaction (error) terms



on the spin dynamics. All the above factors can lead to errors in the experimental

implementation. At the same time, we made certain assumptions which if disregarded

can lead to modifications in our initial analysis. We assumed that the inefficiencies

of the multiple-quantum state creation process do not affect their subsequent decay.

However, it can be shown that imperfect DQ Hamiltonian refocusing can contribute

to a coherence order decay.

To conclude, our work provide some insight on the complex dynamics of highly cor-

related spin states in the presence of spin defects. In the process, we have also

developed two multiple-pulse sequences which may have wider applications in NMR.

As future work, we can further our study on the control of many spins in the presence

of defect spins. One interesting control experiment is to evolve the highly correlated

spin-system selectively under a heteronuclear interaction and then time-reverse the

evolution. Thus by selectively correlating and then un-correlating the defect spins

from the abundant spin system using multiple-pulse techniques, we can further inves-

tigate our ability of coherently controlling the defect spin interactions. We can also

carry out the above sensitivity measurements on CaF2. It might be hard to predict

the performance the TS-96 and the HR-96 sequences since they were designed for

spin-1/2 systems. However working in the spin-±1/2 manifold of the spin-7/2 43Ca

spin system, it would be interesting to see the results.



APPENDIX A

ZEROTH ORDER AVERAGE

HAMILTONIAN CALCULATIONS FOR THE

TS-96 AND THE HR-96 SEQUENCES

The zeroth order average Hamiltonian terms are scaled by a factor which is equal to

the inverse of the cycle time (to = 288T) of the sequences.

Table A.1: The 0 th order heteronuclear average Hamiltonian values for the TS-96 (top)
and the HR-96 (bottom) sequences

Sub-cycles numbers TS-96 0
th order average Hamiltonian

I S

1 - 2 (Aa)(Bb) (aE)(f B) (-87 - - + 2
7 )IS

3- 4 (Cc)(Dd) (dG)(hD) (12T + 12 37 )I.S.

5 - 6 (Ee)(Ff) (bF)(eA) (-8T - - + 7r)IzS.Wrf WrIf

7- 8 (Gg)(Hh) (cH)(gC) (127 + -12 3 )IzSz

Sub-cycles numbers HR-96 0 th order average Hamiltonian

I S

1 - 2 (Aa) (Bb) (bE) (fA) (16T + 1•6 -_ )I,S,Wrf Wrf

3 - 4 (Cc)(Dd) (dG)(hC) (167 + 16 - )I SZ
Wrf Wrf

5 - 6 (Ee) (Ff) (aF) (eB) (16T + 16 4- )fzSZ

7 - 8 (Gg)(Hh) (cH)(gD) (16T + 16 - )I.SIIWrf L&Jf Z
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