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Abstract

Coherence and entanglement in multi-spin systems are valuable resources for quantum in-
formation processing. In this thesis, I explore the manipulation of quantum information
in complex multi-spin systems, with particular reference to Nuclear Magnetic Resonance
implementations.

In systems with a few spins, such as molecules in the liquid phase, the use of multi-spin
coherent states provides a hedge against the noise, via the encoding of information in logical
degrees of freedom distributed over several spins. Manipulating multi-spin coherent states
also increases the complexity of quantum operations required in a quantum processor. Here
I present schemes to mitigate this problem, both in the state initialization, with particular
attention to bulk ensemble quantum information processing, and in the coherent control
and gate implementations.

In the many-body limit provided by nuclear spins in single crystals, the limitations in
the available control increase the complexity of manipulating the system; also, the equations
of motion are no longer exactly solvable even in the closed-system limit. Entanglement and
multi-spin coherences are essential for extending the control and the accessible information
on the system. I employ entanglement in a large ensemble of spins in order to obtain an
amplification of the small perturbation created by a single spin on the spin ensemble, in
a scheme for the measurement of a single nuclear spin state. I furthermore use multiple
quantum coherences in mixed multi-spin states as a tool to explore many-body behavior
of linear chain of spins, showing their ability to perform quantum information processing
tasks such as simulations and transport of information.

The theoretical and experimental results of this thesis suggest that although coherent
multi-spin states are particularly fragile and complex to control they could make possible
the execution of quantum information processing tasks that have no classical counterparts.

Thesis Supervisor: David G. Cory
Title: Professor
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Foreword

Quantum information science is an exciting, emerging field that holds the promise to dra-

matically improve the acquisition, transmission and processing of information. This field

has attracted much interest among scientists from different backgrounds and the general

public, not only for the possible practical implications that a quantum computer and quan-

tum communication devices could have, but also for the variety of fundamental physical

questions that it could help answer. New theoretical ideas and important technical ad-

vances are paving the road toward a scalable quantum computer. The greatest challenge in

building quantum information processing devices is to develop techniques for the coherent

control of complex quantum systems. This implies not only the improvement of experi-

mental techniques and the theory of coherent control, but also a deeper knowledge of the

candidate physical systems for quantum information processing applications.

There are many aspects to quantum information science, from computer-science ques-

tions, like devising algorithms, which exploit the advantages of quantum superposition and

interference, and error correction schemes, which enable a correct processing of information

in the presence of noise, to physical implementations and control issues. Nuclear Magnetic

Resonance (NMR) provides an ideal environment to explore many of these issues. Corre-

spondingly, my dissertation work has spanned different subjects, touching various aspects

of Quantum Information Processing (QIP) as well as exploring two different, although re-

lated, experimental techniques. Nuclear magnetic resonance of small molecules in a liquid

solution has been used in experiments described in the first part of the thesis, while the

second part investigates ideas of QIP related to a solid state experimental implementation,

using as a tool nuclear resonance of single crystals.

From the very beginnings of QIP, liquid state NMR was recognized as an important

test-bed to explore issues of relevance in any possible scalable implementation of a quantum



information processor. These issues have been codified in a very concise and clear way by

D. DiVincenzo in five simple criteria for a scalable quantum computer [43]:

1. A scalable physical system with well characterized qubits.

2. The ability to initialize the state of the qubits to a simple fiducial state.

3. A universal set of quantum gates.

4. Long relevant decoherence times, much longer than the gate operation time.

5. A qubit-specific measurement capability.

In the first part of the thesis I address some of these requirements, proposing new strategies

toward their fulfillment. In particular, after describing the embodiment of qubits in liquid

state NMR, I discuss qubit initialization and control. Since it has been recognized that one

promising road toward fault tolerant computation is to encode information in logical qubits,

immune to particular classes of noise, I will focus on logical qubits. In chapter 2 I present a

new initialization procedure, that reduces the signal loss associated with the purification of

mixed states. In the following chapter, I discuss the added complexity associated with the

control of logical qubits, introducing schemes aimed at reducing the deleterious effects of

noise when the logical qubits leave the protection of the encoding for short periods of time.

The fifth DiVincenzo criterion is discussed in the second part of the thesis, where I

present a novel approach to the long-standing problem of single nuclear spin measure-

ment. This scheme introduces and exploits the properties of many-body spin systems in

the solid state, in particular the entanglement among the spins in the system. The device

presented is an example of quantum-mechanical devices, such as clocks, communication

systems, information storages, etc., that take advantage of phenomena unique to the quan-

tum domain, such as superposition and entanglement, concepts that have known a renewed

interest thanks to quantum information science. Fully developed quantum computers will

likely be out of reach for many years, despite great technological and theoretical advances.

However, quantum sensors and actuators are less technologically demanding and may find

application more quickly. I conclude this thesis by studying a particular system that can be

used as a task-specific quantum information device, for example as a quantum simulator.



Part I

Liquid State NMR

Per correr miglior acque alza le vele

omai la navicella del mio ingegno,

che lascia dietro a s6 mar si crudele;

Dante Alighieri - Purgatorio I, 1-3





Chapter 1

Introduction

The fundamental unit of quantum information is the quantum bit, or qubit. A qubit is

a system in a 2-dimensional Hilbert space. Ideally it is represented by an isolated 2-level

physical system that can be used to store quantum information. Many implementations

of qubits have been proposed, based on a wide range of experimental techniques, from

photons to macroscopic solid systems. One of the first proposals for quantum information

processing was based on liquid state NMR [40, 60]. In liquid state NMR the qubits are

defined as magnetically distinct spins-½ of a given molecule, immersed in a solvent. Because

of easy identification of qubits, good knowledge of their Hamiltonians, high level of control

already developed by the NMR community and long decoherence times, liquid state NMR

is recognized as one of the most flexible test-beds for QIP. One of its limitations is the

exponential decrease in signal for each qubit added to the system, which is associated with

the use of mixed states in ensemble QIP. Although not a scalable approach to quantum

computation, liquid state NMR has made it possible over the years to test experimentally

quantum algorithms and to study issues of control and fault tolerant quantum computation.

In particular, in recent years the focus has been on studying the control of logical qubits, that

is, qubits protected against errors by a logical encoding. Controlling the future quantum

processors with high precision, so as to avoid errors, while keeping them isolated from the

environment is the biggest challenge in QIP.

The interaction of a quantum system with its environment leads to the loss of quantum

phase information and interference and, eventually, to the characteristics of the classical

world. Quantum decoherence [156, 63, 20], in particular, describes a wholly quantum-



mechanical process, in which the system becomes entangled with the many degrees of

freedom of the environment that are later disregarded: In this process, the system loses

its coherent behavior. The application of quantum physics to information processing has

transformed the nature of interest in decoherence. Quantum information manipulation is

possible only if quantum devices can maintain coherence for an extended time. There-

fore, the active study of decoherence attempts not only to understand the natural loss of

information of a quantum state, but also to counteract it, using different strategies.

The discovery in the '90s of the possibilities of quantum error correction (QEC) by

Shor[121] and Steane [128] has open the possibility to a practical implementation of quantum

computation, lowering the requirements on control to a challenging but achievable level. As

in classical computers, QEC aims at correcting errors naturally occurring during the normal

operation of a quantum processor. Unlike classical error correction, however, QEC cannot

rely on a simple repetition code in which many copies of the same object are created and a

majority vote determines the correct answer. This approach is forbidden by the quantum

no-cloning theorem [146]. It has been found, however, that by delocalizing the information,

the environment responsible of errors and decoherence cannot acquire enough information

about the system to destroy its coherence, and therefore the correct information can still

be retrieved after correction.

The theory of QEC [82] provides codes that allow one to preserve the information

encoded in orthogonal subspaces by detecting and correcting the errors introduced by deco-

herence. QEC allows one to perform a correct computation as long as the error rate is kept

below a given threshold (this is the so-called fault-tolerant quantum computation [122, 5]).

A different strategy toward meeting the threshold for fault tolerant quantum compu-

tation is passive protection. When the noise operator presents distinct symmetries, it is

possible to take advantage of the conserved quantities that are generally associated to sym-

metry properties. The information is thus encoded into subspaces or subsystems unaffected

by the noise operator, called Decoherence Free Subsystem (DFS) [153, 46, 81, 137, 97, 8].

Likewise, dynamical decoupling techniques [138] symmetrize noise operators with an exter-

nal modulation, to create the appropriate encoded subspace.

The common feature of these techniques is the encoding of the information on abstract

degrees of freedom of the system, thus identifying logical qubits; this in turn will require

special techniques for the initialization and control of these logical qubits, giving rise to new



challenges but also new opportunities.

A first challenge (see chapter 2) arises because these encodings, while promising to

achieve fault tolerant QIP, come at the expenses of resource overheads. Up to now, QIP

test-beds have not had sufficient resources to analyze encodings beyond the simplest ones.

The most relevant resources are the number of available qubits and the cost to initialize

them. It is therefore important to devise methods to reduce the initialization requirements.

In this thesis we demonstrate an encoding of logical information that permits the control

over multiple logical qubits without full initialization. The method of subsystem pseudo-

pure states will allow the study of decoherence control schemes on up to 6 logical qubits,

thus extending the contribution of ensemble QIP to the field of coherent quantum control

and quantum computation.

A second challenge originates from additional experimental constraints emerging in most

practical cases from the restriction to a subsystem, given realistic Hamiltonians. Although

in principle DFSs allow universal quantum computation, preserving universal control can

require leaving the protected subsystem. In this thesis we study the conditions under which

quantum information can be manipulated and yet protected by a DFS encoding into logical

qubits, even if the system leaves the DFS for short periods of time. We will address these

issues in chapter 3 and furthermore show the importance of analyzing the noise spectral

density, to devise efficient modulating schemes that can reduce decoherence below a desired

threshold.

Before presenting these results, in the rest of this chapter we will present the model of

NMR QIP that will be used in the rest of the first part of this thesis as a paradigm for de-

scribing issues and findings that are of general interest for quantum information processing.

In particular, we will define the notations and conventions followed in the next chapters

and the physical systems used in experiments.



1.1 The liquid state NMR system

Nuclear magnetic resonance (NMR), first observed by Bloch [12] and Purcell [113] in 1946,

studies the quantum-mechanical properties and behavior of nuclear spin angular momenta.

The most common nuclei observed in NMR spectroscopy have spin-! (higher spins are also

used, but the electric quadrupole moment adds complexity to the dynamics). These nuclei,

in the presence of a magnetic field B have energy -ft. B (the Zeeman energy), where the

magnetic moment = -y I is proportional to the spin operator I via the gyromagnetic

ratio -. The Zeeman energy scale is set by the gyromagnetic ratio and the field strength

(see table 1.1) and for the superconducting magnets normally used it is on the order of

MHz. For a strong magnetic field in the z direction, the Zeeman energy is much stronger

than any other interaction and provides an axis of quantization for the spin operator.

Natural wo at 9.4 T w0o at 7 T
Nucleus , (Hz/G)abundance (MHz) (MHz)

1H 99.99 4,870 402 300
13C 1.1 1,078 101 75.5
19F 100 4,035 379 282.4

Table 1.1: Table of spin-1 nuclei used in the experiments reported in this thesis

Since the nuclear spins (for spins- ) are quantized in two energy states, they are con-

venient physical qubits, providing a straightforward mapping of qubits onto individual,

distinguishable spins. Thus, the instrumentation and methods of NMR spectroscopy can

be applied to the processing of quantum information (or, more generally, to the study

coherent control of quantum systems).

In liquid state NMR, the spin-carrying nuclei are part of molecules dissolved in a sol-

vent. As the couplings among molecules are weak and averaged to zero to first order by

random motion, the molecules can be considered independent, so that the NMR sample is

an ensemble of a large number (Nm, 1018) independent molecules, or, in QIP terms, an

ensemble of Nm independent quantum processors.

Internal Hamiltonian The N spins in each molecule are magnetically distinct: Not only

different chemical species have different gyromagnetic ratios, but also the resonances of

homonuclear spins depend on the local chemical environment. These differences in frequen-



cies are called chemical shifts and are usually on the order of 10-100ppm of the resonance

frequency.

The spins interact with each other indirectly, the coupling being mediated by the elec-

trons forming the molecular orbital between nuclei. The interaction strength is given by

the scalar coupling constants Jk,h, which can range from a few Hz to hundreds of Hz.

The internal Hamiltonian of a molecule's nuclear spins in a large external magnetic field

along the z-axis is then:

N

hint = ZWka + 2Z JkhcU . (1.1)
k=1 k 4h

where o-, are Pauli matrices for the kth spin.

It is usual in NMR to work in the so-called rotating frame, an interaction frame defined

by the receiver frequency wo and the total spin in the z-direction, Z = Ek ao. Thus the

frequencies wk in Eq. (1.1) are to be interpreted as: Wk = Qk + Jwk - WO, where £lk is the

Larmor frequency of the nucleus, SWk its chemical shift.

The values of the chemical shifts and J-coupling of a molecule's nuclear spins can be

derived directly from their spectrum. We present here the constants of the internal Hamil-

tonian of the two molecules used in the experiments presented in this thesis, Crotonic acid

(C4H602) and Alanine (C3 H7N0 2)-

Figure 1-1: Crotonic Acid molecule.

Spin

Wi

(Hz)

C1 C 2 C3 C4 H 5

6878.89 1882.63 4410.10 -8604.96 776.13

H 6

402.24

H7

-778.60

Table 1.2: Chemical Shift of the 13C-labeled Crotonic acid molecule in chloroform,
in a 400MHz spectrometer. The spins are labeled 1-7 as in Fig. (1-1)

NOWI



Spin C1 C 2  C 3  C4  H5 H6

C 2  72.4
C 3  1.4 69.6
C 4  7.2 1.7 41.5
H 5  6.5 -1.8 156.0 3.8
H 6  3.3 162.9 -. 7 6.2 15.5
H7 1 -. 9 6.6 -7.1 127.5 6.9 -1.7

Table 1.3: J-coupling values (Hz) of the
The spins are labeled 1-7 as in Fig. (1-1)

13 C-labeled Crotonic Acid molecule in acetone.

Jt

Figure 1-2: Alanine molecule.

Control The system is controlled by RF pulses and magnetic gradients. The Hamiltonian

describing the interaction of the spins with the RF field is given by:

7Rext = e-iO(t) Zk a (Iwrf(t) Zh x) e"k(t) Ek z (1.2)

where 0(t) = wot + ýp(t) is a time-dependent phase and wrf(t) is a time-dependent ampli-

tude. The phase and amplitude are independently controllable, allowing a high level of

controllability. Several methods like shaped pulses [25], composite pulses [93], time-optimal

control [79] have been used in NMR. In this thesis, we have used strongly-modulating pulses

Table 1.4: Chemical Shift of the 1 3 C-labeled Alanine molecule in acetone, in a 300MHz
spectrometer. The spins are labeled as in Fig. (1-2)
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Spin C1 C 2  C3  HT

C 2  54.1
C 3  1.3 35.0
HT 4.6 145.2 4.5
H 3 4.3 4.4 129.3 7.3

Table 1.5: J-coupling values (Hz) of the 13 C-labeled Alanine molecule in acetone. The
spins are labeled as in Fig. (1-2)

(SMP) [56, 111] to drive the dynamics of the system. SMP are time-dependent RF fields

designed by a numerical search, which perform precise rotations of one or more spins while

refocusing the evolution of all other spins in a molecule [55, 16].

Magnetic field gradients Gz = B(t) produced by a special coil run by a controllable cur-

rent provide another control mechanism. The Hamiltonian associated with this interaction

is given by:

IG =ZGzZ'Ykk7 (1.3)
k

Because the spectrometer records the total magnetization in the sample, averaging over

the spatial coordinate, gradients can be used either as a non-unitary operation, which

preserves only the terms in the density matrix that commute with the total angular mo-

mentum along z, or for simulating decoherence [54], relying on molecular diffusion to pro-

duce a stochastic, time-dependent field [125]. This decoherence mechanism is also present

(although much weaker) in the absence of externally applied magnetic gradients, due to

inhomogeneities in the external magnetic field or paramagnetic impurities in the sample.

Other sources of errors are residual dipolar couplings among molecules [1], chemical shift

anisotropies or inhomogeneities in the RF field.

Equilibrium State. Liquid phase NMR experiments are usually conducted at room tem-

perature and in a large magnetic field, so that the spin system is in a highly mixed state.

At equilibrium, the system is described by the Boltzmann distribution:

e- 01H It - OH-I
Pth-- = (1.4)



where Z is the partition function Z = Tr [e- ], 3 = 1/kBT and 7- the system Hamiltonian.

In the high temperature limit, where 13I -tll < 1, the density matrix can be approximated

to first order by Pth . The partition function is given to first order by Tr [1] = 2N

and assuming that the Zeeman energy is the only relevant part of the Hamiltonian, we can

eventually write:
N

Pth Pe q (1.5)
i=1

where the last term (EPq) is a small, traceless deviation from the identity, which gives rise

to the observable signal. Since the constant E is on the order of 10-6 and the difference

between the Zeeman energy is small, the signal generated by one spin is not enough to be

detected and one needs a macroscopic sample to measure an observable signal.

Measurement The NMR signal is measured via the currents induced by the rotating

bulk magnetization in a transverse coil tuned to the resonance frequency. Only the terms

of the density matrix that have the same dipolar symmetry and orientation as the field

generated by the RF coil will couple to it and be directly observables. The measured signal

can be given as a trace: Tr [p(t) -k +4], where a+ = (az + icy)/21 .

NMR measurement are weak (as opposed to strong projective measurements), therefore

the detection coil introduces only small distortions [14] in the system. The signal can then

be acquired during an extended period of time, during which the system evolves under the

internal Hamiltonian. Extra terms in the density matrix are therefore observable (those

terms that evolve to a directly observable operator). This, and the ability to rotate the

system, permits state tomography and therefore a precise measure of the control level

reached in a QIP NMR experiment.

'The electronic apparatus allows us to simultaneously measure the real and imaginary part of the trans-

verse magnetization through a phase shift of the signal



Chapter 2

Encoded Qubit Initialization

Liquid state NMR is playing an important role as test-bed for the new ideas of quantum

information processing. Recently, much focus has been put on control of encoded infor-

mation, that will allow the quantum computers of the future to avoid decoherence. The

advantages brought by encoding the information come however at the expenses of physical

resources, as encoding requires additional qubits to use as ancillas. For liquid state NMR

to continue its role as QIP test-bed, the size of the systems used must therefore increase.

This is a critical issue, because of the signal loss accompanying each added qubit in bulk

quantum information processing schemes. We propose a new method to mitigate this sig-

nal decrease, that will allow the study of 3-6 logical qubits with the current experimental

techniques. This scheme is based on the important insight that, because of the information

encoding, only subsystems of the total Hilbert space are effectively used and need to be in a

pure state. While the common experimental procedure consists in performing an encoding

operation on the initial fiducial state of physical qubits, the direct preparation of logical

fiducial states brings experimental advantages.

In this chapter we will first review the sources of signal loss tied to the creation of

effectively pure state in NMR and introduce a new kind of logical pure states for which this

signal loss is much reduced. For sake of concreteness, we present an example drawn from a

particular encoding, before quantifying the gain in signal for a general encoding. We then

also show an experimental realization on a four-qubit NMR system of the encoding used

as example. Finally, we discuss the experimental results with particular attention to the

metrics of control that the new kind of logical pure states allows us to measure and their



aptitude to quantify the actual control reached in experimental tests.

2.1 Subsystem Pseudo-Pure States

The equilibrium state of a spin system of liquid phase NMR is the highly mixed state:

N

Pth -2N Peq = 2N 2N(2.1)
i=1

where the last term (EPeq) is a small, traceless deviation from the identity, which gives rise

to the observable signal (see Section (1.1)). The ability to use this system as a quantum

information test-bed relies on effectively purifying the mixed equilibrium state. QIP can

be performed on pseudo-pure states [37], states for which the dynamics of the observable

operators are equivalent to the observables of a pure state. Among the methods used to

create pseudo-pure states we can mention spatial averaging [37], temporal averaging [80]

and logical labeling [60]. Unfortunately, the creation of pseudo-pure states comes at the

expense of exponential consumption in experimental resources: time in the case of temporal

averaging, signal in the case of spatial averaging, or usable Hilbert space in the case logical

labeling.

Since the eigenvalues of a pseudo-pure state are in general different than those of the

mixed state, a non-unitary completely positive operation, T, must be used to create it:

pp = T(Pth) = - Ea(Ppp - ) (2.2)

where ppp is a density matrix describing a pure state and the scaling factor a determines

the signal loss. Since IIPeq IŽ IT(Peq)I|, a is bounded by the spectral norm ratio

a 5 IPeql/ (2.3)
-lppp - I1/2NII

with IIPeql| = N •. The SNR loss in the case of a full pseudo-pure state is thus . This

exponential loss of signal disqualifies1 liquid state NMR as a scalable approach to QIP.

Considering we have the ability to coherently control 10-12 qubits and possess spin systems

responsive to such control, this loss of signal is also a serious limitation for benchmarking

'Other issues like frequency selectivity are also important



these systems.

To avoid this SNR loss when studying encoded operations, it is important to realize

that only the subsystems encoding the information need to be pseudo-pure, while all other

subsystems can be left in a mixed state, thus reducing the state preparation complexity.

To present the general structure that encoding imposes to the Hilbert space, we adopt the

subsystem ap:proach [140], that provides a unified description for Quantum Error Correction

(QEC) and Decoherence Free Subsystems (DFS). A Hilbert space R of dimension d = 2N is

used to encodle k < N qubits of information, protected against some noise J = {Jij. With

a change of basis to a direct sum 2 R- - i 0i 0 Si, the noise acts only on the subsystems

Si (the syndrome) while the subsystems Li are noiseless (for simplicity, we will often refer

to a decomposition: R' = L 0 S D R, with R an unprotected subspace).

To perform computations on logical qubits, they need to be prepared in a (pseudo-)

pure state. The remaining subsystems Si can however remain in a mixed state. We require

only that the state evolves as a pure state in the logical subsystem, under the action of

logical operations and we call these states subsystem pseudo-pure states.

If we are evolving the system with logical operators, the fact that they act only on

the encoded subspace L ensures that information within this subspace will not leak out or

mix with the orthogonal spaces during logical unitary transformations, thus preserving the

purity of the encoded subspace under the noise model.

An important requirement for the subsystem pseudo-pure states is the ability to decode:

the use of a mixed state should not introduce a mixing of the information contained in the

logical qubits and in the unprotected subsystems, even when the information is transfered

back to physical qubits by decoding. In general, setting the unprotected subsystem to

the identity state will satisfy this requirement, even if other mixed states are possible

for particular encodings. For a DFS, not being able to decode is inconvenient, as logical

observables are in general difficult to measure experimentally. In the case of QEC the

decoding step is fundamental to correct the errors occurred.

Let assume that we want to encode k qubits of information in a subsystem of dimension

2 k, with a corresponding syndrome subsystem, S of dimension ds. Leaving this last subsys-

tem in a mixed state, we can create a state that is pure on the logical degrees of freedom

with a unitary operation that rearrange the eigenvalues, as long as there are at least as

2 Further action of an appropriate operator A is required in the case of QEC codes [139]



many zero eigenvalues in the thermal state as in the k qubits pure state: 2 k - 1 < (/n! 3

However, the eigenvalue spectrum of the equilibrium state of an N spin density matrix

( A(peq) = {N, N - 2, ..., -N}) will most generally not generate the necessary eigenvalue

spectrum required for decoding the k-qubits of information into k physical qubits without

error. So a combination of unitary and not unitary operations must be used.

Before presenting a general model that allows us to quantify the SNR gain obtained by

the subsystem pseudo-pure states, we will clarify the concept with an example.

2.1.1 Example - Subsystem Pseudo-Pure States in a Decoherence Free

Subspace

Decoherence free subspaces (a subclass of DFS) are the most intuitive type of encodings, in

which information is protected inside subspaces of the total Hilbert space that are invariant

under the action of the noise. Here we consider the collective 0z noise, which describes a

dephasing caused by completely correlated fluctuations of the local magnetic field B(t):

wHst = w(t) Z, (2.4)

with Z = - k ka, the total spin angular momentum along the quantization axis z and

w(t) = yB(t) the noise strength. For 2 spins, the eigenspace of the noise operator Z with

eigenvalue 0 is a 2-dimensional decoherence free subspace [54] and can be used to encode

one qubit of information. The DFS is spanned by the basis vectors 101) and 110). A natural

encoding of a logical qubit l/)L is given by:

aIO)L + 011)L - a•01) + 0110) (2.5)

3 The state preparation procedure that bears the most resemblance to the method we propose is logical

labeling [60], which uses a unitary transformation to change the equilibrium distribution of spin states into

one where a subsystem of the Hilbert space is pseudo-pure conditional on a physical spin having some

preferred orientation. The parts of Hilbert space that remain mixed are of no use to the computation

whatsoever. It can be shown that a m-qubit effective pure state can be stored among the Hilbert space
of N-qubits provided the inequality 2m - 1 < ~ is satisfied. A key insight is that in the study of

encoded qubits, one need not take this m-qubit effective pure state and perform an encoding of k-logical

qubits under the hierarchy k < m < N. Instead, a k-qubit encoded state can be prepared directly from the

equilibrium state of N qubits.



The encoded pure state for a DFS logical qubit is given by:

101)(011 _ 1L+z,,L -1+-- (2.6)
2 4

In the case of the DFS considered, the Hilbert space can be written as a direct sum of the

logical subspace £ (spanned by the basis 101) and 110)) and its complementary subspace R

(spanned by the basis 100) and |11)), 'H = £ E R. If we add the identity on the 7R subspace

to the logical pure state, we obtain a mixed state that is equivalent in terms of its behavior

on the logical degrees of freedom:

1 1R 1 1 al - a2
p= 10)(05L +- =- ( 1 + z ,L) = - ( 1 + ·z )  (2.7)2 4 4 4 2

The traceless part of this state is simply oc a -0: From the thermal equilibrium, a unitary

operation is enough to obtain this state, so no signal is lost. In general, the subsystem

pseudo-pure state that one obtains with this method would require less demanding averaging

procedure, re;sulting in a higher signal and less complex state preparation procedures.

As an example, consider the pure state of two logical qubits encoded into a 4 physical

qubit DFS:

o00) (ooL = l(n1 + ± ,L) 9 (ni + 2,L) (2.8)

If we add iR to the unprotected subspace of each logical qubit, we obtain a state which is

pseudo-pure within the subspace of the logical encoding:

1(•1 + J1 + 1,, (g112 + nL + 0,2)
Pep -- L R R L

(2.9)
= (112 34
16 2 2

We still need a non-unitary operation to obtain this state, but the SNR loss is only 1/3

instead of 4/15 as for creating the full pseudo-pure state (or the even lower 2/13 we obtained

in practice due to experimental constraint, see section 2.4). The preparation procedure is

also less complex, since it only requires to prepare up to 2-body terms (aiao) instead of

4-body terms (a,1,2a4).UVU U~111 \Z Z Z Z/



2.2 Bounds in Signal Gain

To illustrate the advantages the subsystem pseudo-pure states bring, we present now the

scheme in more general terms, looking for a quantitative bound on the increase in sensitivity

with respect to the full pseudo-pure state. When under a particular encoding the Hilbert

space is transformed to 7-' (i Li 0 Si, in the encoded representation, the state we want

to prepare will have the form:

Pep L (2.10)
i ds

The dimension of the i-th syndrome is d,,; ai are subspace weighting coefficients, such

that Ei ai = 1, ensuring a unit trace of Pep. We would like to analyze the conditions for

the optimal signal, given that some freedom in the construction of the subsystem pseudo-

pure states is available. In the previous example, the subsystem pseudo-pure and the mixed

states were given the same subspace weighting coefficient: al = a2 = 1. In general, different

weightings could provide higher signal.

In particular, since we are interested in the information that we can manipulate, a

good measure of sensitivity gain is the SNR of the qubits storing the information after

the decoding. Instead of the total magnetization, which is the observable in NMR, we are

therefore interested in:

SNR = (IMI) oc S(p) =
(2.11)

VTr [E 0iP]2 + T [E ,iP]2 • [ 2P]2

where the sum only extends over the k information carrying qubits. Other metrics are of

course conceivable, for example the total magnetization of the N spins or the spectral norm

of the density matrix deviation, but they are not directly related to the signal arising from

the information carrying qubits4

We consider to encode k logical qubits among N physical qubits, with a syndrome

subsystem S of dimensions 2' (the Hilbert space can be written as R7- = £C Se R)5 . The

4 Notice that even the chosen metric can be misleading, since in the case k > 1 some states give no signal

(e.g. a non-observable coherence). However, any of these states can be characterized by especially designed
read-out operations that transform it to an observable state, while preserving its information content. More
specifically, we will consider only the ground state 100...) signal, since any other state is isomorphic to it,

via a unitary operation.
5We consider only the case where we can map qubits on the subsystem S, even if in general the subsystem



encoding operation is in general defined by its action on the initial state 141)k00...)N-k,

giving the encoded state: I[)L0O)s. Hence, there is some arbitrariness in the choice of

encoding operation (since it is defined only for ancillas initially in the ground state) but we

can specify it with the assumption that the state in the encoded subsystem S is determined

by the first s ancillas state:

UenclcI)kl )s s OO...)N-k- s = I)LIO)S (2.12)

The subsystem pseudo-pure state is:

Pep = a (7)(21L ®0-I + N 2s+k - -R, (2.13)

which after decoding following (2.12) becomes:

__ ( ) 1-a
Pep =(al))( N - a- 2S + -Ca-Ik) '-100 .. .)(00.. IN-k-s + -N2s+ 1, (2.14)

so that the signal is given by: S(p) = acaS( I)( Ik) oc aak, where a < IP- 2N[ . TO

obtain the spectral norm of the subsystem pseudo-pure state traceless part, we calculate its

eigenvalues:
a { 2 2N -N 1-a
a - 2-' N -2 N 2 + - 2-N} (2.15)2s ' 2N - 28+k

The upper bound for the signal is obtained for a = 2 s+1-N and we have: SNR oc

N2S+l-N

When one, wants to use more than one logical qubit, each being protected against some

noise, or if one wants to concatenate different encodings, a tensor structure of encoded

qubits arises naturally. We analyze also this second type of construction, that can bring a

further enhancement of the signal. We assume here to encode 1 logical qubit in n physical

ones -each being a subsystem pseudo-pure state- and we build a logical k-qubit state with

the tensor product of these encoded qubits.

The Hilbert space can be written as tensor product of direct sums as: 7- = @=1(Ci 0

Si e Ri).
The corresponding partially mixed states differ with respect to the previous ones, in

that subspaces that are not actually used to store protected information are not maximally

need not be of dimension 2s. The results would be however the same, with slightly different notations.



mixed:

Pep = (all ')(blL1 0 2Ls(+1 (-26R))
28 22Sl (2.16)9(a2 1lL2 L 2S2 En~s+1 TR2) ...

Notice that we consider here that all the qubits have the same encoding and to make the

problem more tractable we also choose ai = a, Vi. Other choices of course exist, and may

lead to a better SNR, but they should be studied on a case by case basis, for every particular

encoding and noise model. Upon decoding, this state is transformed to:

Pep = UetncPepUene 0 c ,[(aI')(V1 - 11)
(2.17)SI100...)(000 .(00...I + 1an

To calculate the signal of this state, we should calculate terms like

So = Tr p ep2 k p Tr [pp]) (2.18)

where
pp = (a l)('/11 - 11) 0 I 100 ... )(00...I + I-ai n]j, (2.19)

2n-.28 2
n

-23'

which has trace one. We obtain therefore S, = (Ek Tr [o p ]1 )2 and it is easy to show that

the signal is again simply proportional to aak: Varying a we can find the optimal state.

The eigenvalues for the traceless part of the subsystem pseudo-pure state are:

k 1-a

I({ 0' 21 - 2a+1 }i) - 2-"
i=1 (2.20)

S{( )k-p 2n - a )P Io - 2 -_ 2-N}

The maximum SNR depends on the relative dimension of the logical subspace and the

syndrome and on the number of encoded qubits. To find the norm of the density matrix as

a function of a, we must again find the maximum eigenvalue. Of the (k) + 1 eigenvalues in

(2.20), we can just consider the following three,

{( -)k - 2-N, _2-N, 2 - 2-} (2.21)

since for 1- > 0 (< 0) the product ( )k is maximum for p = 02 2f-22S+ 0 (a2sk-P 2n 2l-s+a



(p = k), giving the first (third) eigenvalue in (2.21). To determine which one is the maximum

eigenvalue for any value of a, we consider the point at which the absolute values of the

eigenvalues el and e3 are equal, a = a13. If at this point jel > le21, then the maximum

eigenvalue is given by el for a < a13 and by e3 otherwise (see Fig. (2-1) right), and the

maximum of aa is obtained for a* = a13. If instead lell < |e21 at a13, there is a region in

a, where the maximum eigenvalue is just le21, and to maximize aa we choose a such that

lell = le21, a* = a12 (see Fig. (2-1)).
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Figure 2-1: Eigenvalues of the subsystem pseudo-pure density matrix (its deviation
from the identity), for s = 1, n = 3 and k = 2 (left) and k = 3 (right). The dotted line
marks the maximum eigenvalue, that is, the norm of the density matrix. Notice that in
the first case the maximum SNR is obtained for lell = le2|, while in the second case for
lell = le31

In particular:
WhenIc < -1

When k < log(1 the SNR oc N2 s+1/k- n (The norm reaches the minimum value

2 -N for a* = a 1 2 - 28+1/k-n).

1 -1 N2S(2n - 28)k
When k > log - , we obtain SNR oc 2 (2n - 28)k: The minimum value for the

a 1-a 2
norm (2 n - 21) -1 - 2N is obtained for 2n +1 i.e. for a* = a1 3  28

-2n - 281- 2n - 28

In both cases, the SNR obtained with a tensor product structure is higher than for the

first construction presented.

The improvement brought by the subsystem pseudo-pure states can be generalized to

many types of encoding. We now present three examples, applying our scheme to the case

of the 4-qubit DFS already presented, a 3-qubit NS and a 3-qubit QEC, to illustrate some

possible applications of the scheme proposed.
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Figure 2-2: Signal to Noise ratio (normalized to the SNR for thermal state) for subsystem
pseudo-pure states, as a function of the total physical qubit number. The encoding is a DFS
protecting the system against collective dephasing noise. The DFS encodes 1 logical qubit
on two physical qubits as in Section (2.1.1).

2.2.1 Application to various encodings

Decoherence Free Subspace The DFS encoding of two logical qubits has already been

presented in Section (2.1.1) for the particular case a = 1. Here we want to calculate the

maximum SNR obtainable and compare it to what was found previously. In particular, we

will see that the state giving the maximum SNR is more complex to prepare with the control

available in NMR, and thus the state presented above is to be preferred. This compromise

between SNR and initialization complexity is expected to be a general concern common to

other encodings. If we adopt the first scheme presented, the state that we want to prepare

is given by:
(1- a)

Pep = a10101)(0101 + a12 R, (2.22)

with

1R = I - 10101)(01011 - 11001)(10011 - 0110) (01101 - 11010) (10101 (2.23)

1 2 34 1 234and a = for the maximum SNR= 1/2. The state is PLPP Cx 0z r + --o u 0 az az

and thus, even if the theoretical achievable SNR is higher than what obtained in Section

(2.1.1), in practice this state will be more challenging to prepare. This state contains 4-body

terms, which are more difficult to create in NMR, since they comport an interaction among

non-neighboring spins which are only very weakly coupled (see for example the J-coupling



strength for crotonic acid in Section (1.1)).

With the tensor product scheme, we should prepare the state((1 - - a)1 ) (2
Pep = (a ol)(01 + 2 ) 01l)(01| + 2 R) (2.24)

where a = vS2/4 to maximize the signal up to a theoretical SNR= 1. Again, practical

considerations suggest that this state is more complex to prepare and in practice will lead

to a lower SNR than the theoretical one.

Noiseless Subsystems. It has been observed that the smallest code that protects a

system against an arbitrary collective noise can be realized with a 3 physical qubit DFS

[57] (also called Noiseless subsystem to distinguish them from decoherence free subspaces).

The collective noise conserves the total angular momentum J of the system. In the case

of 3 spin-! system, the Hilbert space can immediately be written as: R = R3/2 ~'1/2-

Noting furthermore, that the second subspace (Ml1/2) is doubly degenerate, we can identify

in it a protected subsystem, reflecting a logical degree of freedom: -1/2 = ' L S, where the

second subsystem is associated with the jz quantum number.

Since the information is all encoded in the subsystem £, we can safely leave the sub-

system S in a mixed state, since we are no longer interested in its evolution. The state we

want to create has thus the form: 10) (OIL 0 1s/ 2 . In terms of physical operators, using the

decoding operator in ref. [57], this corresponds to:

pep = ( 0 + z + + a10 )/8 (2.25)

Only 1/3 of the signal must be lost to create this state.

Notice that we can also set the subspace corresponding to j = 3/2 to the identity

state, with a = 1 for the optimal SNR. With the encoding given in [57], the identity on

the unprotected subspace R'(3/2 is (I - o 1/2)/8. The subsystem pseudo-pure state is then:

Pep = (2. 11 + 3 zo/2 + c2 + Ua0- )/16 and 1/2 of the SNR is retained in obtaining this state

instead of 3/7 ' for a full pseudo-pure state.

Quantum Error Correction Codes. When the noise does not present any useful sym-

metry, information can still be preserved by using QEC codes. These codes require a two



step operation for protecting against the noise: first one needs to encode the information

in an appropriate subspace and then, after some eventual error has occurred, the qubit

must be corrected based upon the state of the syndrome. It would seem therefore that the

scheme proposed cannot be applied here, since when ancillas are not in the ground state

but in a mixed one, they indicate that errors had already acted on the system, and QEC

codes can protect only for a finite number of errors. However, if we initially populate the

orthogonal syndrome subspaces with identity, recovery of the information is still possible

and we obtain a subsystem pseudo-pure state with a higher SNR and the same observable

dynamics as a full pseudo-pure state.

Consider for example the encoding for the 3 qubit QEC, protecting against a single

bit-flip error (ao). The code subspace is spanned by the basis set:

1O)L = 1000); I1)L = 1111) (2.26)

The Hilbert space has an irreducible representation as the direct sum of 4 orthogonal

subspaces: 7 = C R1 ( Rz2 E R 3, each 7Zi spanned by the basis: ai{10)L, 1)L}, i = 1,2,3.

An error causes a swapping of the code subspace with one of the orthogonal subspaces,

which is then corrected by the decoding operation. Starting from the pure state: I()100),
which we encode following (2.26), the final state after an error and decoding is ) I)lxy)

(x, y E {0, 1}) and the ancillas need to be reinitialized for the code to be effective against a

second error. Since logical operations act only on the first subspace, we can set the other

subspaces to the maximally mixed state. The state we want to prepare is thus given by:

aloj)(<L + (1 - a)(tR1 + R2 + 1R3)/6 (2.27)
= al|)(VbIL + (1 - a)(1 - 1L)/6

When we decode after an eventual error, we obtain the state: (alj)(l11 - (1 - a)11/6)

Ixy)(xyl + (1 - a)11/6. Since the identity Il1 is not observable in NMR, this state carries

the same information content as the full pseudo-pure state. With a = 1/4 we find that the

SNR is reduced only to 3 of the initial SNR for this mixed state, while it would be 3/7 for

the full pseudo-pure state.

Generalizing to other QEC codes, one can always find an encoding operation that trans-

form the Hilbert space to R7-t L @i Ri = L @ R and prepare a subsystem pseudo-pure



state following the constructions for the DFS, setting the subspace 7R to identity. However,

this encoding only allows one to correct for a finite number of errors, a recovery operation

is needed to reinitialize the ancillas. The recovering operation could in general be accom-

plished by a strong measurement, however this is not feasible in NMR; one must have fresh

ancillas available. To correct for two errors in the previous example, a partially mixed state

with 4 ancillas should be prepared, so that two new fresh ancillas can be used for correcting

the second error. In general, in addition to the 3 qubit system that encode the state, a sep-

arated reservoir (not affected by the noise) of 2n ancillas is needed for correcting n errors.

Even if ancillas must be all prepared simultaneously, the creation of subsystem pseudo-pure

states increases the SNR, so that the number of ancillas, and therefore of errors that can

be corrected, can be increased in actual experiments.

2.3 Experimental Validation of Subsystem Pseudo-Pure

States on a Decoherence-Free Subspace

To illustrate the advantages provided by the subsystem pseudo-pure states, we have created

an encoded Bell State on a liquid state NMR quantum information processor, repeating the

experiment with a full and a logical pseudo-pure state. The encoding, protecting information

against a collective a, noise, consisted in the 4 qubit DFS presented in Section (2.1.1). We

have chosen the four 13-C labeled carbon spins (I = ½) of crotonic acid (see tables 1.2,1.3)

as our qubit system.

The pseudo-pure state was prepared using spatial averaging techniques [37]. Compar-

ing Figures 2-3 and 2-4, the preparation of the logical state is much simpler, providing a

more accurate initial state, in a shorter time (0.0568s instead of 0.1194s). Furthermore,

we observed a further SNR drop to about 2/13 instead of the theoretical 4/15, due to ex-

perimental constraints in the preparation of the pseudo-pure state via spatial averaging.

The entangled state was prepared by implementing the logical gates via a combination

of strongly modulated pulses [56, 111] and delays of free evolution. From Fig. (2-5) we see

that the required operations are Uz,L, Ux,L and a',L', L . The first rotation oz,L = (a 1 
- z2

is obtained from the evolution under the chemical shift term in the internal Hamiltonians.

The two logical body interaction can be obtained by the operator: 0 l103 , which is much



Figure 2-3: Circuit for the preparation of the pseudo-pure state. We represent single
qubit rotations by square boxes, controlled rotations by closed circles on the controlling
qubit linked to the applied rotation on the controlled qubit; swaps gate by two crosses on
the swapped qubits, connected by a vertical line; non unitary operations (gradients) by
double vertical bars. Notice the number of controlled operations, each requiring a time of
the order of the coupling strength inverse, and Swap gates, each requiring three times more
time.

C2----

c,-

C4 2'
Figure 2-4: Circuit for the preparation of the subsystem pseudo-pure state. We
use the same convention as in Fig. (2-3), with the square root of a swap gate indicated by
two ir/2-rotations linked by a vertical line. Compare the number of operations required for
the subsystem pseudo-pure state with those required for the full pseudo-pure state: This
preparation appears to be much simpler.

easier to implement then the full logical operator, given that the internal Hamiltonian of the

4-spin system under investigation has all pairwise oIao interactions.To produce a rotation

about the logical x axis we can simply apply the operator e-ie&C 4 instead of using the full

logical az,L = (oa, + a;Y)/2.

Since the molecule falls into the weak-coupling regime6 the naturally occurring eoa3X of

the scalar coupling cannot be used. The technique of re-introducing the strong coupling

to a pair of spins via a Hartman-Hahn irradiation [70] as used in [54] also proves to be

ineffective, as individual pairs of couplings cannot be selectively chosen with high fidelity.

Instead, we have used a pulse sequence in the Carr-Purcell vein [28), which rotates the

internal Hamiltonian to the transverse plane and then selects the desired operators out of

the total Hamiltonian, by refocusing any unwanted evolution with a strong modulation,

typically spin selective ir-pulses.

6In the weak coupling regime, the large differences in chemical shift among spins, average to zero the
part of the J-coupling interaction that is not along the z-axis, leaving only the interaction aza

7r/2 -a
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Figure 2-5: Entangling circuit on logical qubits (a) and corresponding logical pulses (b).
Pulse sequence implementing the oafL logical rotation with physical qubits (c); similar pulse
sequences are used for the other logical operations.

This sequence (Fig. (2-5.c)) thus generates a first order effective Hamiltonian [68] com-

prised solely of the operator of interest: ylo2. Logical rotations of an arbitrary angle, 9,

can be executed by varying the delay times (A) between the ir-pulses.

We have used robust, strongly-modulating RF pulses [56, 111] for each single qubit

rotation in the sequence. The delay periods were further optimized using the simplex

algorithm to maximize the correlation between the wanted and simulated final states. To

avoid coherent errors due to the coupling between the Carbon and Proton spin systems,

we have applied a WALTZ-16 decoupling sequence [120] to the protons during the length

of the experiment. It is believed that Nuclear Overhauser Enhancement [107, 127] due to

decoupling has a minimal effect on the populations of the carbon spin-states.

Notice that apart from the initialization sequence, the control sequence applied to the

logical and full pseudo-pure states were the same. State tomography [124] of the final

encoded state shows the creation of the logical Bell state, while identity is maintained on

the non-logical degrees of freedom, with no noticeable mixing of the different subspaces.

Comparing the results obtained with the full and the subsystem pseudo-pure states, we

observe an improvement in the initial state preparation for the latter one, while the final

Bell State presents similar errors (in particular, a drop of the off diagonal components with

respect to the expected ones).

2.4 Metrics of Control for Subsystem Pseudo-Pure States

In order to quantitatively assess the extent of control of a quantum operation, we adopt a

widely used metric, the correlation of the experimental density matrix with the expected

one [56]. In particular, to take into account attenuation due to decoherent or incoherent
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(a) Pseudo-Pure State (b) Logical Bell State

Figure 2-6: Density matrices for the initial pseudo-pure state over the entire Hilbert
space(a) and the logical Bell State (b). The darker part indicates the states in the logical
subspace.

Quantum state CSim CExp CL

Full pseudo-pure 0.95 0.88 0.98
Full Bell state 0.75 0.53 0.59

Subsystem pseudo-pure 0.98 0.97 0.99
Encoded Bell state 0.92 0.73 0.61

Table 2.1: Experimental and Simulated data for the implementation of Encoded
Bell State Propagator. The last column reports the correlation of the state considering
the protected subspace only. Experimental errors of - 4% can be attributed to systematic
errors in the fitting algorithm used to reconstruct the density matrix from NMR spectral
data.

processes, we consider the attenuated correlation of two quantum states, defined as:

C Tr [PthPexp]
t ] Tr [p~in

(2.28)

Here Pth = UpinUt, Pexp = E(Pin), and pin define the theoretical, experimental and input

states respectively. Table (2.1) shows the attenuated correlations for both logical and full

pseudo-pure and both initial and final states.

The relative drop in correlation between the initial state and the final state is comparable

for both pseudo-pure state. It should be emphasized that apart from the advantages of

SNR of the subsystem pseudo-pure state, the preparation of this state requires shorter, less

complex pulse sequences, thus marginalizing coherent and incoherent errors. This is evident

'·

i·''
·'
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(a) Subsystem Pseudo-Pure State (b) Subsystem Logical Bell State

Figure 2-7: Density matrices for the initial pseudo-pure state over only the logical sub-
space (a) and the Bell-State (b) obtained from this initial subsystem pseudo-pure state.
The darker part indicates the states in the logical subspace. Notice how in the case of the
subsystem pseudo-pure states, areas of Hilbert space not in the logical subspace are in a
mixed state.

as the correlation of the subsystem pseudo-pure state is significantly larger than that of the

full pseudo-pure state.

When we compare theoretical and experimental encoded states, their overlap has con-

tributions that mirror the logical subsystem structure of the Hilbert space. Consider for

simplicity a Hilbert space that can be written in terms of a logical and non-logical subspaces,

7H - £L R7. Rewriting the experimental quantum process in terms of Kraus operators AA

[84], (E(p) = E AppA, ) we can separate them into three groups: {A,LL,LL A,RR, A,,LR},

which respectively describe the maps on the C subspace, 1R subspace, and the mixing of

these two subspaces. The correlation will reflect these three contributions to the dynamics,

C = aLLCLL + (aLRCLR + aRLCRL) + TYRRCRR, where:

CK [PKPth , Ap,KH( PHPinPH)A ,KH K Tr(P, (2.29)KKH CWH Tr2p (2.29)

Here we define PL (PR) as the projector onto the encoded (non-logical) subspace. Notice

that if the ideal state is inside the logical subspace, PRPth = 0 and the last term CR = 0.

Instead of performing state tomography over the full Hilbert space, we can focus our

attention on the logical subspace only. The ability to preserve and manipulate the informa-

tion inside the logical subspace can be better quantified by the correlation on this subspace,

i -



CL, comparing the experimental logical state with the theoretical state inside the subspace

only. If the input state of this process, Pin, is a full pseudo-pure state and inside the logical

subspace, the correlation CLL with the logical ideal state is the only contribution to the

total correlation C. The density operator of the logical subspace could be reconstructed by

measuring the logical observables of the subspace, or equivalently by decoding the k-logical

qubits to k-physical qubits and measuring the reduced state density operator (These two

methods result in the same correlation, as long as we assume a perfect decoding). Therefore,

a reduced number of readouts is enough to characterize the correlation.

If a pseudo-pure state over logical degrees of freedom is used instead, CLR # 0, since

the output state in the protected subspace may contain contributions arising from the

action of the map S on the identity in the non-logical subspace. Given an input state

Pin = a L)(4IL + (1 - a) •, from the experimental output state we can only measure the

quantity (by observing only the k-logical qubits or their physical equivalents):

CLL = aCLL + (1 - a)CLR = aCLL + (1 - a) (2.30)9/Tr [(PLPinPL)2]

Note that in this case C # CLL, since the contributions CRL is not taken into account. The

measured correlation is thus defined by two terms: the first takes into account the control

over the encoded subspace only and the eventual leakage from it, while the second takes

into account mixing from the R subspace to the £ subspace. State tomography of the input

state IIR after the algorithm allows one to calculate the correlation on the logical subspace

CL.

To characterize the control of quantum gate operations most generally, many metrics

have been suggested [56, 119, 105]. A good operational metric is for example the average

gate fidelity (or fidelity of entanglement), that can be measured as the average of correla-

tions of a complete orthonormal set of input states: F = Cj  = Ej Tr [UthpJUth(pJ)] .

Similarly, the encoded operational fidelity can be defined as the average correlation over an

orthonormal set of operators spanning £: FL = E' C3 LL Tr UthP LUth(PL) .

The fidelity on the logical subspace focuses on the achieved control in the implementation

of the desired transformation on the protected subspace; this new metric is immune to



unitary or decoherent errors within R alone:

PL =E/CLL =E1 Tr [U Uth(g A LPep PLA)] (2.31)

= E, IUthAt,L12/N2

The extent to which UL,exp is close to Uth,L can be determined from FL, while the

avoidance of subspace mixing will be specified by the gap between F to FL.

2.5 Conclusions

As demonstrated by the encoded Bell state experiment, subsystem pseudo-pure states offer

not only a greater SNR but also a less complex state preparation. By no means does this

logical encoding overcome the exponential loss of signal suffered by pseudo-pure states;

however, for the corresponding state in the full Hilbert space, the gain is significant. As

we explore larger Hilbert spaces and more complex encodings, these advantages become

tantamount.

1 logical qubit. Isotropic noise.
4 spins DFS

What differences with 3-qubit NS?

NS 2 logical qubits. Create Bell-State
5 spins

QEC 2 errors. 1-logical qubit QEC for o x errors.

QEC 2-logical qubits QEC for ax errors

DFS 3-logical qubits a, noise. Create GHZ state

6 spins GHZ Create 2 GHZ then encode them. a,-noise

QECQECDFS Concatenate 2-qubit DFS with 3-qubit QEC.

Shor's9 spins Code 9-qubit QEC to correct all single-qubit errors

Table 2.2: In the table are shown experiments on 4-9 qubits that will be achievable
with the initialization method proposed

In particular, this method coupled with the experimental control on an Hilbert space

of about 10 qubits, would allow for the study of a repeated QEC code, the Shor code for

protecting against single qubit errors, or a multi-layered encoding like QEC using three DFS

encoded qubits or vice-versa. In addition encoded versions of gates essential to algorithms,

like the Quantum Fourier T ransform, can be carried out with liquid phase NMR. The



effective noise superoperator on the logical subspace can also be reconstructed, to gain an

insight on how encoding schemes modify the noise structure.

By considering metrics of control for only the logical degrees of freedom of our system,

we also reduce the number of input states needed to characterize a particular gate sequence,

as far as only the behavior of the protected information is of interest.

The state initialization method proposed could also find application in a broader context

and in a variety of physical implementations, whenever exact purification of the system

is possible, but costly. Quite generally, a qubit need not to be identified with a physical

two-level system, but rather with a subsystem whose operator algebra generators satisfy the

usual commutation and anti-commutation relationships. State initialization and purification

could be performed on these subsystems only, thus allowing experimental advantages similar

to the ones shown in the particular case of logical qubits.



Chapter 3

Control of Encoded Qubits

Decoherence-Free Subsystems (DFS) are a powerful mean of protecting quantum informa-

tion against noise that exhibits symmetry properties. Universal computation within DFS

has been shown to be possible from a theoretical point of view [138, 140, 8]. In particular,

universal faullt-tolerant computation within a DFS is possible if the exchange interaction

between qubits can be switched off and on at will [75, 95, 96, 44]. The issue that we address

here arises in systems where this Hamiltonian does not occur naturally or other interactions

are present as well and need to be actively refocused.

The total Hamiltonian is conveniently divided into a time-independent part, Hint, and

a part that depends on a set of experimentally controllable, time-dependent parameters,

'Hext(oi(t)). There are many useful DFS encodings for which the generators of logical qubit

rotations are not contained in the set of available total Hamiltonians: ?,tot = lint + Next.

Although the total Hamiltonian allows universal control on the whole Hilbert space, imply-

ing that also any desired propagator on the logical subsystem can be composed from the

evolution under a series of time dependent external Hamiltonians, the instantaneous total

Hamiltonian need not preserve the protected subsystem, and the dynamics can temporarily

drive the system outside of the protected subspace. In such cases, the extent to which

universal fault-tolerant computation is possible depends on the details of the control fields,

as well as the spectral density of the noise [132]. This chapter will discuss these issues in

the context of a specific QIP implementation based on liquid-state NMR.

In Section (3.1) we show that the radio-frequency control fields used in NMR necessarily

This chapter has been adapted from reference [27]



cause the encoded information to "leak" from the protected subsystem into other parts of

the total system Hilbert space, where it is subject to decoherence. This is illustrated by

numerical simulation of a simple example - the encoding of one logical qubit in a two-

spin decoherence-free subspace for collective dephasing [54], which was already introduced

in chapter (2). It is further shown that in the case of two DFS qubits, each with the

same noise model, the leakage rate is generally nonzero even in the absence of the control

Hamiltonian.

In Section (3.2) we study modulation schemes that can reduce the noise effects, in order

to keep the leakage from compromising the DFS encoding. First, we briefly review the

application of stochastic Liouville theory [62, 30] to understand the effective decoherence in

the presence of an external Hamiltonian that modulates the spin dynamics, as is the case

for strongly-modulating pulses (SMP) [56, 111] or optimal control theory [79], dynamical

decoupling [138] or bang-bang control [141]. We then use these results to quantitatively

understand the Carr-Purcell [28] (CP) sequence. CP is perhaps the original dynamical

decoupling sequence and the archetype for observing the influence of the noise correlation

time on the effective decoherence rate.

We will show that the CP sequence can be effective at suppressing both leakage and

decoherence provided that one can modulate the system on a time scale shorter than the

correlation time of the noise. Under the assumption of instantaneous and perfectly selective

single spin ir-pulses, the exact dependence of the overall gate fidelity on the pulse rate and

the correlation time of the noise is derived for a single DFS qubit. Finally we apply these

ideas to a physical system with realizable models of control fields. This includes limita-

tions on the available RF power and the lack of frequency selectivity among the physical

spins. As expected, pulses of finite duration degrade the gate fidelities of these operations.

Analytical solutions are generally not feasible, and hence the amount of degradation that

can be expected for a range of experimentally realistic parameters is evaluated by means of

numerical simulations for simple quantum gates operating upon one or two encoded qubits.

3.1 Leakage from Decoherence-Free Subsystems

In many physical implementations, qubits are not embodied in well isolated two-level states.

Rather, they are embedded in larger Hilbert spaces, containing additional states that are in-



tended to not participate in the computation. In addition, when physical two-state systems

are combined into logical qubits for noise protection and correction, additional redundant

degrees of freedom are introduced. A finite leakage [131, 150] to external degrees of freedom

can destroy the coherent dynamics of the qubit. Here we are interested in particular in the

leakage of logical qubits to the unprotected subsystems, leakage that could be caused by

the internal Hamiltonian itself or by the control fields applied to implement specific logic

gates. Many modulation methods have been engineered to refocus the terms in the internal

Hamiltonian responsible for leakage [24]. Here we explore in particular the fidelity that

can be reasonably expected based on the details of the modulation scheme and the spectral

density of the noise.

In this section we use the simple DFS introduced in chapter (2) to motivate our discus-

sion. The two-spin DFS considered, with the encoding: 0I)L = 101), 11)L = 110), defines a

basis set for the operator space on one encoded qubit:

al' -01 V

z 2 2

j1 2  1.2 _12 _2 (3.1)
2 1L 2

This two spin-½ particle Hilbert space (H/ = C4  C2 ® 2) can be described as a

direct-sum of the total angular momentum subspaces, Zo a Z+1 e Z- 1
1, where I is the

total angular momentum projected along the quantization axis. The logical basis states

(0)L and (1)L reside exclusively in Zo, where Zo = C2. What we mean by leakage is that

the instantaneous state in C4 has elements in ZI 1. In this case, the information within

the state of the system cannot be described completely by the four operators above (Eq.

3.1). Since the total angular momentum with 1 = 0 is a constant of the motion under the

system-environment Hamiltonian, a state not completely represented as linear combinations

of (Eq. 3.1) is affected by decoherence. We will explore this DFS as implemented in liquid

state NMR for both one and two logical qubits.

The internal Hamiltonian (in the rotating frame, see Eq. (1.1)) for two spins in liquid-

state NMR already is exclusively in Zo and thus can be expressed by the operators in Eq.

3.1; it does not cause mixing of the subspaces Z1,

int = w2( - a2) + ) J12 1 . a2, (3.2)

xWith the notations of chapter (2) this is 7i = LC E R, where R = Z+1 I Z-1



where Awl 2 is the difference in chemical shift of the two spins and J 12 the scalar coupling

constant. The former coefficient scales the logical caL operator, while the latter scales the

oL operator. Thus evolution under the internal Hamiltonian alone generates a continuous

rotation about an axis in the logical xz-plane making an angle of arctan(rJ12/Aw1 2) with

the logical x-axis.

As illustrated below, more general gates can be obtained via the interplay of the internal

Hamiltonian and an external time-dependent RF (radiofrequency) field, described by the

Hamiltonian Hext in Eq. 1.2. Note that Hext cannot be expressed as a linear combination

of the logical Pauli operators. In the presence of RF fields the evolution of a state inside

the DFS under the total Hamiltonian necessarily causes the information to "leak" outside

of the DFS, where it is no longer immune to collective dephasing. This combination of 7tint

and "lext(t) can generate any unitary in the C4 Hilbert space, guaranteeing universality. In

the absence of decoherence and assuming ideal controls, we can reach a unit fidelity for any

desired gate [77, 15]. Our interest is assessing the fidelity of control for a finite decoherence,

for a finite bandwidth of our control parameters, and for Hamiltonians not respecting the

symmetry of the logical subspace.

A measure of the amount of information protected by the encoding is the magnitude

square of the system state projection onto the encoded subsystem. Conversely, the coupling

of the system to external degrees of freedom can be quantified by the normalized rate of

information leakage from the DFS, which is proportional to the projection of the state

change per unit time I|) onto the non-protected subspace:

R I 12 (3.3)

where In) are basis states of the unprotected subsystems. The leakage rate depends on the

initial state of the logical qubit. For example, in the case of the DFS encoding considered,

the leakage rate,

R- 1(001')1 2 + 1(111)12 (3.4)R _ (3.4)
i(414,)12

is zero for any value of the total Hamiltonian parameters if the initial state is the singlet

state (since collective operators cannot change the total angular momentum of the system,



the singlet state of total spin zero cannot evolve to any other state). We are therefore

interested in computing the maximum rate of loss of information, when varying the initial

state.

Assuming that the initial state is in the DFS, its most general form is:

IO(0)) = cos(9/2)101) + e"i sin(0/2) 10) (3.5)

the change of the state per unit time under the action of the total Hamiltonian, 1Rtot =

'-tint + 7Hext, is given by the Schrddinger equation:

| ) = -i 7totI,) = -i[Aw(cos(0/2)101) - e'isin(0 /2)110))

+J(- cos(9/2) + 2e iO sin(0/2))101) + J(2cos(0/2) - ei€ sin(0/2))|10) (3.6)

+w,(cos(0/2) + eiO sin(0/2))(100) + 111))]

We can simplify this expression by considering only two dimensionless frequencies, since

the rate will only depend on the ratios AC = V and Cv = ~f. Rearranging the terms, we

have:

1[) = -i[(AJ - 1) cos(0/2) + 2e it sin(0/2)]101)

-i[-(A& + 1)ei' sin(0/2) + 2 cos(0/2)1110) (3.7)

-i[Cvf(cos( 6/2) + ei• sin(0/2)(100) + 11))]

The rate of leakage from of the DFS is then given by inserting equation (3.7) into equation

(3.4):
2C021 cos(0/2) + ei' sin(0/2)12

R(0, r)= (3.8)R( ) 5 + A 2 + 2 2- - 2AD cos 0 + 2(D - 2) cos sin (3.8)

The maximum rate can be computed analytically by taking the derivatives of the rate

with respect to 9 and ¢:

2r2f sin ¢ sin 0 (9 + Ac 2 - 2AD cos 9)
8OR = (3.9)

[5 + A&2 + 2C2 - 2A•D cos 0 + 2(CV2 - 2) cos sin 9] 2

2R 2• [(9 + AC02) cos q cos 9 - 2A~(cos 0 + sin 0)][5R + A 2 + 2(310)
[5 + AC2 + 2j24 - 2AC cos 0 + 2(02 - 2) cos 0sin0]2



The maximum is thus obtained when

sin 4 sin 8 (9 + A&2 - 2ACD cos 6) = 0

(9 + AOC2) cos € cos 8 - 2AC(cos € + sin 0) = 0
(3.11)

which has two solutions corresponding to global extremes for ¢ = 0 (and with opposite sign,

for ¢ = 7r):

8= -±kr, kI EAf
4 (9 + 2)arccos k

0 =arccs [ 81 + 22AC2 + ACV4 ± kir
(3.12)

The first solution corresponds to a minimum in the leakage rate. The maximum rate is

obtained for the second solution and it is:

4&2 (9 + A&)2Rm =)4:V2 9 + ACV)2 + (3 + Aoj2)2'
(3.13)

and it is plotted in Fig. (3-1).

Figure 3-1: Leakage rate from a two-spin DFS, maximized with respect to the possible
initial states. The leakage rate R is plotted as a function of the dimensionless difference in
chemical shifts ACj = AD/IJ, for various values of the normalized RF power vrf = Wrf/J

Notice that the information is perfectly conserved only in the absence of an external

field. This is compatible with an use of the DFS as a quantum memory, but not for

computation. A way to decrease the rate at which information leaks from the protected

subspace is to increase the difference in frequency (ACj) between the two spins. As long

as Orf <K AC, the zero-quantum subspace eigenstates 101) and 110) are very close to the

A7w



Hamiltonian eigenstates, and therefore close to constants of the motion: The leakage out

of the zero-quantum subspace is thus quenched, but as it will be seen in the following, this

limit does not allow us to obtain finite rotations of the qubit (see Fig. (3-3)).

The rate of leakage does not give any insight about the fate of the information once it

had leaked out to the unprotected part of the Hilbert space. Subsequent evolution could

bring back the system to the protected subspace, and in that case the interesting quantity is

the extent of the 'damage' caused by decoherence during the permanence outside the DFS.

It is thus important to study the integrated effects of leakage over an extended amount of

time, motivated by the fact that no transformation of the system can be instantaneous.

P

Evolution time (in units of tp, the i-pulse time)

Figure 3-2: Projection onto the logical subspace of a state initially inside the DFS,
during application of an RF pulse for various ratios of ". Defining the projection operator
onto the logical subspace as PL , we plot p(t) = Tr [(PLp(t))2] /Tr [p(t)2 ], for t = 0 --+ 2tp,
where p(t) = e-iwrt(a +or)aLe iwrft(o •+e7+) and Wrftp = r. The logical state completely returns
to the subspace after application of a 7r-pulse to both spins only when the spins have identical
resonance frequencies (Aw = 0). If the ratio - is non-zero, as required for universality,
the return to the logical subspace is imperfect (in particular, it is in general possible to go
back to a state very close to the initial state in a time t > tp, but it is much more difficult
to implement a r rotation). A logical r-pulse using a single period of RF modulation is not
possible, a more complex RF modulation, like composite pulses [93], strongly-modulating
pulses [56, 111] or optimal control theory [79], is required. In the above model, A = 500;
the initial state of the system is oz

In the case of ideal control fields, an instantaneous ir-pulse (tp -- 0) corresponds to a

logical operation [54], since Px(r)) = e-i-e/2(a+a ) - i r/2(val), which is equivalent to

a 7r pulse around aL . Figure (3-2) motivates the extent to which universality within the

subsystem can be obtained in the finite tp regime. In this figure, we plot the purity of

the projection of p(t) = e-iwet(I +a2)Leiwrt( +a) on the logical subspace. In the limit



of very high RF power ( --+ 0), the system undergoes a ir-pulse in a time tp = - and

returns completely to the subspace after this time. It remains outside the subspace only

for the duration of the pulse. For wr which are physically relevant (wl < 2r100 kHz and

0 < Aw < 27r20 kHz), a single RF pulse does not result in a logical 7r-rotation due to

off-resonance effects. Experimentally we are limited to finite tp and even our simple two

logical qubit model system is sufficient to introduce several key challenges in implementing

coherent control over logical qubits: (i) decoherence due to leakage outside the subspace

during RF modulation periods, (ii) decoherence due to leakage outside the subspace after

RF modulation, and (iii) loss of fidelity due to cumulative leakage with respect to the

spectral density of the noise.

2W(cf TO) 2x7C/(m TO)

Figure 3-3: Loss of fidelity due to totally correlated decoherence during the applica-
tion of a ir-pulse about the x-axis to the two spins of the DFS (see text). The dashed curves
(red in the on-line version) are for the initial states po = I L or po = o'L, while the lower
curves (blue in the on-line version) are for P0o = L or Po = aL . The left-hand plot shows
the trace of p2 following the ir-pulse as a function of the inverse product of the RF power

Wrf and the relaxation time T2. The right-hand plot shows the correlation with the ideal
final state, i.e. the trace of pfp, following the r-pulse as a function of this same parameter.

Figure (3-3) shows an illustrative example of the integrated effects of a r-pulse applied

to the two spins in such a DFS on the purity (Tr [p2]) and correlation with the ideal final

state (Tr [Pwantp]) as a function of the ratio of the relaxation rate 1/T2 to the RF power Wrf.

The initial states were chosen from the four logical Pauli operators (3.1), and we made the

approximation that the internal Hamiltonian is zero during the application of these r-pulses.

As would be expected, the desired result (negating the state in the case of po = y,L ,L

or preserving it for po = 11 , ) is rapidly degraded by the the totally correlated decoherence



during the 7r-pulse, unless the Rabi frequency is considerably faster than the relaxation

rate. The increase in both the coherence and the correlation when the relaxation becomes

fast compared to the rotation rate is due to a sort of "quantum Zeno" effect [72], so that

the RF field itself is unable to rotate the state out of the DFS. In a complete analysis of

the 2-spin case the effects shown in Fig. (3-2) must be combined to those in Fig. (3-3).

Manipulating more than one logical qubit introduces further complexities to the control

versus leakage problem. For the DFS considered, the extension to 2 logical qubits encoded

into 4 physical qubits leads to the following basis states:

I00)L < 10101), 110)L t 11001), (3.14)

101)L <> 10110), 111)L < |1010)

As before, we define leakage as any evolution that will cause the state to be not fully

described by a linear combination of this four basis vectors. Since we focus on the challenges

unique to controlling multiple logical qubits, we assume the internal Hamiltonian to be given

by the Hamiltonians of each logical pair (as in eq. (3.2)) and a coupling between two spins

pertaining to two distinct logical qubits:

'Hint = HL1 HL2 + iTrJ 23 U'2 '-3 (3.15)

The interaction term H-1/3 = '2 - -3 couples the system initially in the subspace defined by

the state (3.14) to the subspace defined by the states

10011) and (1100), (3.16)

for example e-i"'/4 3 10101) = 11100). If the noise is collective only over each pair of

spins that encodes a logical qubits [136], the states (3.16) are not protected against it and

will decohere. The internal Hamiltonian will therefore be responsible for leakage and the

ultimate decay of the system.

Notice that we would in general expect the noise to be collective over all the physical

qubits, and not pairwise collective. In the case of NMR, this corresponds to a fluctuating

external magnetic field, which is fully correlated. However, the differences in energies be-

tween qubits could be strong enough to effectively add a non-collective component to the



noise. In particular, we can consider in NMR the case in which each pair is formed by spins

of a different chemical species. In this case, the difference in gyromagnetic ratio makes the

strength of the noise acting on each pair unequal, so that the noise is no longer collective.

On the other hand, when the Zeeman energy separation is considerable, the coupling be-

tween spins can be very well approximated by the diagonal part of 7i3, i.e. 2 which

does not cause leakage.

When the noise generator is fully collective (as for homonuclear systems in NMR), the

internal Hamiltonian still causes leakage, via the coupling to the states in Eq. (3.16). Since

these states belong to the zero eigenvalue subspace of the noise generator, they do not

decohere. Information could still be lost at the measurement stage, since the states in

Eq. (3.16) are not faithfully decoded to a physical state2 . A unitary operation is enough

to correct for this type of leakage, and since decoherence is not an issue here, there are

no concerns regarding the time scale over which the correction should be applied; however,

amending for this unwanted evolution would in general mean the introduction of an external

control, that, as seen, is a source of leakage leading to decoherence.

For logical encodings other than the DFS considered, the natural Hamiltonian may

drive the state out of the protected subspace even for single logical qubits; for example,

the noiseless subsystem considered in Ref. [57] (see also Section (2.2.1))will evolve out of

the protected subspace whenever the chemical shifts or scalar couplings among its three

constituent spins are not all equal.

If we wish to do something more complicated than merely freeze the evolution of the

system, e.g. to rotate the DFS qubits while simultaneously refocusing all the inter-qubit

couplings, the complexity of the modulation sequence increases and the various causes of

leakage will combine. In attempting to demonstrate a universal set of logic gates on a

pair of two-spin DFS qubits by liquid-state NMR, leakage turned out to be an unavoidable

problem for all practical intents and purposes. Fortunately, it turns out that in many

practical situations other means of inhibiting decoherence are also available, and can allow

one to leave the protected subspace if need be in order to simplify the implementation of

logic gates on encoded qubits. Dynamical decoupling is a particularly promising class of

techniques for these purposes, which are applicable whenever the correlation time of the

2Notice the similarity of this issue with the requirements on Logical Pseudo-Pure states discussed in
Section (2.1)



noise is long compared to the rate at which the system can be coherently modulated. The

next section will analyze the principles involved in this approach, and show how they may

be applied to some simple but realistic examples.

3.2 Noise refocusing by strongly modulating fields.

Unavoidable excursions from the protected subspace under a time-dependent Hamiltonian

do not preclude high fidelity quantum operations. Decoherence does not act instantaneously

and if we limit the duration of these excursions sufficiently, the leakage rate stays small

and logical operations largely unaffected by decoherence are still possible. Furthermore,

refocusing techniques much like those used for coherent control can reduce the effects of

the noise. The earliest example of a pulse sequence that could correct for random field

fluctuations with long correlation times was given by Carr and Purcell as early as 1954

[28, 101]. Today this would be regarded as dynamical decoupling or "bang-bang" control

[142] and it has been applied beyond magnetic resonance, for example to the control of

decoherence in spin-boson models [133]. We propose to use this same modulation scheme

to counteract the noise effects and study its efficiency. In this section we outline a formalism,

based on the well-known stochastic Liouville formalism [59, 71, 30] and cumulant expansion,

which allows us to analyze the effects of dynamical decoupling on decoherence. We show

that if the rate of the modulation is much greater than the rate of variation of the noise, as

given by the correlation time Tc, the effects of the noise can be reduced. In the following

section we apply this to the above two-spin DFS.

Stochastic Liouville theory is based on a semiclassical model of decoherence, in which

the Hamiltonian at any instant in time consists of a deterministic and a stochastic part. In

the simplest case of NMR T2 relaxation, this typically takes the form

Rtot(t) = Hiet(t) + (t) = 7iit + 1rf(t) + -Wk(t)Zk , (3.17)

where l'int is the static internal Hamiltonian, -rf(t) is the RF Hamiltonian, the wk(t) de-

scribe the phase shifts due to stochastic, time-dependent fluctuating fields and Zk are the

generators of each of these noise sources, i.e. operators which describe how these classical

fields are coupled to the quantum system. In the two-spin DFS example considered previ-

ously, there is only one noise generator Z = (oaZ + a2)/2 with w(t) = yB(t), which describes



collective fluctuations parallel to the applied static magnetic field.

The time evolution of the system density matrix p is then describe by the stochastic

Liouville equation. We introduce the superoperator £(t) defined on Liouville (operator)

space via

£(t) = 7 (t) ® 11 - 1 ® tot(t) = det(t) + ZkWk(t)Zk (3.18)

where Zk = Zk ® 1 - 11 ® Zk. This superoperator is the (super-)generator of motion for the

density operator , in Liouville space, meaning

(t) U (0) = T exp - it dt' £(t')] (0) (3.19)

where T is the usual time ordering operator. Since what is actually observed in an experi-

ment is the statistical average over the microscopic trajectories of the system (O(t)), we have

to take the ensemble average superpropagator to obtain (^3(t)) = (U)0(0). The problem

of calculating the average of the exponential of a stochastic operator has been solved by

Kubo [86] using the cumulant expansion. In terms of the cumulant averages (.-)c , the

superpropagator is given by (see Appendix A.2):

(U) = exp -i dtl (£(t))c - 7T dti dt2 (L(t1)L(t2))c +. (3.20)

Provided J|(C(t)k)clltk < 1, Vt, k we can safely neglect high order terms in the exponential

argument without having to restrict the analysis to short time evolutions.

Similar expressions are obtained in the formalism of average Hamiltonian theory (AHT)

[68] for the coherent (instead of stochastic) averaging of the system evolution under control

Hamiltonians that are cyclic and periodic in time (see Appendix A.1). We can obtain

simplifications analogous to those encountered in AHT if we analyze the evolution in the

interaction frame (called "toggling frame" in NMR) defined by the cyclic RF propagator

Ur(t) [69]. In this frame the noise operators acquire a further time-dependency (coherently

imposed by the cyclic excitation) in addition to the stochastic time dependency of their

coefficients wk(t). The total Hamiltonian in the toggling frame is

M-ot(t) = Hdet(t) + k k k(t) k(t), (3.21)



where the toggling frame equivalent 0 of any given operator is defined by

O(t) = U 0(t) 0 Urf(t), (3.22)

with :

Urf(t) -- Texp - if dt' rf(t') , (3.23)

and Ur(tc) = 1 for cyclic controls, so that the toggling frame and laboratory frame coincide

at the end of each cycle.

This time-dependent change of basis in Liouville space induces a change of basis in the

space of superoperators acting on Liouville space, as a result of which the noise super-

generators Zk also become time-dependent, i.e.

Zk(t) = Zk(t) 0 1 - 110 Zk(t) . (3.24)

Returning now to the problem of interest here, in which there is only one noise generator

which describes totally correlated decoherence as above and the corresponding random

variable w(t) is stationary and zero mean, following the results in Appendix A, we obtain

the first two cumulants in the toggling frame:

ft 1/ t
ICl (t) = - dt' (4kt(t') +w(t')Z(t')) - dt' (t')

(3.25)

C2 (t) = l•o dt dt2 ([det(tl),4det(t2)] + 2G(t2 -tl)(tl)(t 2))

In the last line we have introduced the autocorrelation function G(t, At) = (w(t + At)w(t))

for the stationary random noise variable w(t). Because we assume the environment to be at

thermal equilibrium, the noise distribution is stationary and the autocorrelation function

depends only on the difference between times, G(t, At) = G(At).

If we consider the terms in which only the non-stochastic part of the Liouvillian appears,

they are equivalent to the expansion of the propagator in the absence of noise:

U' = Te -i fot Eint(t')dt' = e- i n t t , with :

int = (t')dt' - f dt f dt2 1 (3.26)



where Lint is the average Liouville operator as given by the extension of AHT to Liouville

operators (that we call Average Liouville Theory or ALT).

Average Hamiltonian theory is a powerful tool to devise multiple pulse sequences that

either provide the desired evolution or, in the case of refocusing sequences, suspend any

evolution. The pulse sequences found in this way however only assure that the effective

propagator at the end of the evolution period is the desired one, while no other restrictions

are imposed to the dynamics. This is why AHT of the unitary evolution alone is not enough

to give the entire picture of the dynamics in the case of encoded operator and decoherence:

For encoded states, as seen in the previous section, it is important to study the entire

evolution in time, to look for leakage sources. Using average Liouville theory (ALT) to

design not only the unitary part of the evolution, but also modulation schemes for the

refocusing of the noise is the natural extension of AHT to the treatment of encoded qubit

dynamics.

Consider the problem of rotating a logical qubit encoded in the above DFS around the

logical x-axis. To obtain the a•f operator when the two spins are coupled by the weak

coupling Hamiltonian, J~go a , we can simply rotate this operator to the transverse plane,

and wait for a time tp = L to get a rotation by an an angle around the logical x-axis3 . During

this process, however, the system leaves the DFS for a non-negligible time, so coherence is

lost unless we apply ALT to find a modulation scheme to counteract decoherence. In the

following, we will use the tools presented in this section to show that a Carr-Purcell-style

sequence applied during the time tp can be effective when the correlation time of the noise

7r is long compared to the time constant of the modulation. Other sequences can be used to

refocus the effects of different type of couplings to external degrees of freedom (i.e. different

noise generators).

3.2.1 Refocusing noise with a Carr-Purcell sequence

The implementation of a aL rotation on a two-spin DFS qubit is given by a (ir/2)-rotation

of both spins in the DFS qubit about the y-axis, followed by a Carr-Purcell-style sequence

consisting of an even number 2n of 7r-pulses separated by equal time intervals r = t/2n,

3See also Section (2.3) for more details and an experimental implementation



and finally the inverse (r/2)-rotation, i.e.

This transforms the weak uzaz coupling between the two spins of the DFS qubit into

aaxa, which projects to the oL operator within the DFS (Eq. (3.1)). Setting 7 = 4/(2nirJ)

thus yields a rotation by an angle 0 around the logical x-axis. Even though the state of the

two spins is outside the DFS throughout the time 2nT, the sequence of Ir-pulses is able to

refocus the effects of the noise provided r < Tr,.

n
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Figure 3-4: Carr-Purcell sequence (Left) and Time-Suspension sequence (Right).
Notice that this sequence has the same number of pulses as 1 cycle of the non selective
CP-sequence.

Assuming instantaneous 7r-pulses, this follows from AHT since during any cycle (0, 27)

the internal Hamiltonian in the toggling frame ? i4t alternates between +Aw(aU - a2 ) +

(7r/2)Jooa2 (in the interval (0, 7)) and -Aw(a 2 - ) + (ir/2)Ja ac (for t E (-, 27)), so

that the zeroth-order average Hamiltonian is just 7R(O) = (ir/4)a~ai = (r/4)aL , which is

the desired unitary evolution. This is in fact also the average Hamiltonian to all orders,

since the toggling frame Hamiltonian commutes at all time, and the first cumulant is just

the corresponding superoperator KI = IC1 = (27)-1(2R* ® 11 - 1 ® R).

Again because the toggling frame Hamiltonians commute, the deterministic part of the

Liouvillian Idet(t) does not contribute to k 2 = /C2 at the end of each cycle, nor at the end

of the entire sequence. The second cumulant is therefore determined by the stochastic part

alone:

2  2  d dt2 G(t - t2)Z(t1)Z(t2) (3.28)
Notice that this is the o(2nr)2 for gaussia oise, sice the oise operator ad the

Notice that this is the only contribution for gaussian noise, since the noise operator and the



internal Hamiltonian commute at any time. The total propagator is thus given by:

(U) = e-'i e-½c
2t 2  (3.29)

where &X is the superoperator form of the logical ao operation.

Because each ir-pulse simply changes the sign of 2(t) from the preceding interval, it

follows that Z(t) = +Zx if t is in an even interval (2kr, (2k + 1)7), k = 0,1, ... n - 1, and

Z = -Zx if t is in an odd interval ((2k - 1)r, 2kr), k = 1,2... n, where Zx is the noise

super-generator rotated along the x-axis.

The double integral in Eq. 3.28 can thus be expressed as:

22 2  2n k-1

C2 = 2 (2nr)2 [2nA + Z Z- (- 1)k+hBk,h] (3.30)
k=1 h=1

where

A = dt 1  dt2G(t - t2) (3.31)

and /(k+l)r (h+l)r

Bk,h = dt 1  dt2G(tl - t2) (3.32)

for k = 1,...,2n and h < k.

In the case of gaussian noise with correlation function G(r) = Q2e-T/rc, we obtain

A = (••T) 2 (r/c, + e-7 / c _ 1) (3.33)

and

Bk,h = Be - (k - h)T/Tc, B (rc) 2e-r/Tc(eT7/7 - 1)2 (3.34)

On evaluating the double geometric series in C one obtains the closed form:

S= 2n (r/r + e- T/' - (3.35)
C ')2 )(3.35)

fl--e-•/•( n1e r

_ 1 _- 2n(1 + eT/rr) -'

which is easily shown to go to zero as 7/7-r -- 0. In the limit -/Tc -+ 00 the behavior of C

depends instead on the noise strength: If a constant noise strength is assumed, C -- 0 as



-+ 0. If instead we assume Qrc =cst, o -~ 00, since it is now C oc 2 , and the fidelity

will go to zero.

We can quantify the protection afforded by the modulation scheme by taking the entan-

glement fidelity [105, 56] of the superoperator with the ideal propagator for the sequence

as a measure of its efficacy, F _ Tr [Ui 1'S]. Since the unitary part of the evolution com-

mutes with the noise and gives the ideal propagator, the fidelity is just the trace of the

superoperator, which for a single two-spin DFS qubit is

F(C) = T r [e - Z[4 (2nr)2/2] /2 4 = (3 + 4e - 2 n2 r 2 + e-Cn2" )/8 (3.36)

The fidelity for cycles of CP-sequences of length 4 and 16 are plotted in Fig. (3-5).

As expected, it shows an improvement for an higher number of intervals and shorter time

spacings with respect to the correlation time.
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Figure 3-5: Gate fidelity as a function of the correlation time for 4 and 16 cycles
of the Carr-Purcell (CP) and Time-Suspension sequences (TS). The noise strength Q was
fixed at 1 Hz., while the duration of the entire sequence was fixed at ttt = 4 sec (where
ttt = 2nr for the CP sequence and ttot = 4nt for the TS sequence). The increase in fidelity
at very short correlation times is due to the phase fluctuations becoming so fast that they
produce essentially no effect at the given noise strength Q (this is a phenomenon known as
motional narrowing).

It is interesting to also consider a sequence that completely refocuses the internal Hamil-

tonian (this will be referred to in the following as the Time-Suspension (TS) sequence

[39, 38]). Selective pulses on just one spin are now required and the cycle (repeated n



times) is composed of 4 steps (see Fig. (3-4)).

If we sandwich the TS-sequence between a pair of (ir/2)-pulses as we did for the CP, and

again assume a stationary and Markovian Gaussian distribution of totally correlated noise,

we find it more effective at protecting the system from decoherence even when the number

of 7r-pulses on each spin and the cycle time is the same, since the effective modulation rate

is then faster (if Tcp = tc/2 as in the CP sequence, there is a pulse every rT = 7cp/2 in the

TS sequence).

To derive the fidelity attenuation of the TS sequence let consider first the basic cycle

of the sequence, composed of 4 time intervals. The average internal Hamiltonian is now

zero, while the noise operator in the toggling frame is Z1 = l(al + a2)/2 in the intervals

1 and 3 respectively and Z2 = L(azl - a2)/2 in the other two intervals (as defined in figure

(3-4)). Contributions to the second order cumulant average from single time intervals can

be derived as before using the quantities defined in Eq. (3.33) and (3.34).

i-

Figure 3-6: Domain of integration and toggling frame noise operators for the TS se-

quence, for the calculation of the second order cumulant.

By inspection of the domain of integration, the second order cumulant, K/ t ) , for the first

cycle (corresponding to the first lower-left triangle in Fig. (3-6)) is given by:

Kt = (Z 2 (2A - B3,1 ) + Z2(2A - B4 ,2 ) + Z1Z 2(B 2,1 - B 4 ,1 - B 3,2 + B4 ,3 )) /(4r) 2

S((Z2 + Z)(2A - Z) + ZZ 2 S(e6 - e-3 )) /(4r)2
1 ( Z2+ 2) ( 2A  -B e. ..

(3.37)

If the sequence is repeated n-times, each cycle define a region in the domain of integraI

tion. These are either 4 by 4 time step triangles (equivalent to the first cycle) or squares,

- · -· ~-~--

I

I



like the shaded area in Fig. (3-6), which is the first of the possible squares. Each triangle

will give the same contribution calculated above for the first cycle(if there are n cycles, we

will have n of them). The second cumulant from the first 4 by 4 square, corresponding to

the variable of integrations tl in the second cycle and t2 in the first cycle, is:

2Cs) = (Z2 (Bs,1 + B 7,3 - B 5,3 - B7,1 )+ Z2(B 6,2 + Bs,4 - B 6,4 - Bs,2 )+
(3.38)

Z1Z2(B6,1 - B8,1 + B 5,2 - B 7,2 - B 6,3 + B8,3 - B 5,4 + B 7,4 )) /(47) 2

which gives:

-') = (Z 2 + 22)B(2e-4 -e 2  -6 )/(4r)2 +
(3.39)Z e 3  -5 - 7 )/(4r)2 (339)ZlZ2f(e-e - e + e e - e r)

To calculate the contributions from tl in cycle k and t2 in cycle h, it is enough to multiply

this cumulant K2') by e-4g(k- h) (since the cycle time is 47). In general, for n cycles we

obtain:
n k-I

K2 = (nK + e• -4(kh) 2)) (3.40)
k=2 h=1

The relaxation superoperator for the TS-sequence is thus given by KI2 = C1(Z12 + Z 2) +

(2 ZIZ 2, where Zk = Zk k® 1 - 1 ® Zk (k = 1, 2) and:

W2 2 [( -er/le )2 (e_4nr/,rc (e4r/. n 1) -1)e3 r / rc
S 16r2  ne - n + e (3.41)

+2n + n (e- 2r/ rT - 1) (2 - e-r/re

( w2 -rW (1 - e1/rc)2 e-4r/r [e-4n-/mr (ne 47Tc _ n+ l) +ne 4r/- - (n + 1)] (3.42)
16n 2 T2  1 + e27/7,rc /

The fidelity is again obtained from the trace of the noise superoperator:

F(C1, 2) = Tr [exp (-C 1(Z 2 + Z2)(4n-r) 2/2 - (2Z1Z2(4nr)2/2)]
(3.43)

_= e-C(4nT)2 ( cosh(-C1(4nT)2 ) + cosh(-( 2(4nr)2 /2)) .

Fidelities for 4 and 16 cycles of the TS sequence are plotted in Fig. (3-5), where they are

compared to the CP-sequence results.



3.2.2 Simulation of a selective DFS qubit gate

The analytical expressions found above for the attenuation due to totally correlated noise

with a stationary Gaussian Markov distribution apply only to the special case of ideal pulses

(instantaneous in time), but similar behavior is expected under more realistic assumptions

on the control fields. In particular, to act selectively only on some of the spins we would have

to use the technique of SMP [56, 111], thereby inducing a much more complex dynamics on

the system for which closed form solutions are not available, but which can be studied via

numerical simulations.

c1,C I-C I IIc1,c2 1E 7r 7C it 7T-7C

2 I I 2
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Figure 3-7: Selective rotation about the logical x-axis of a two-spin DFS qubit,
while the evolution of a second DFS qubit under the internal Hamiltonian of the system is
refocused.

We have studied the accuracy with which a rotation about the logical x-axis can be

performed by numerical simulations. These simulations included the internal Hamiltonian,

the external control Hamiltonian and totally correlated noise w(t) with a stationary, Marko-

vian Gaussian distribution. The evolution was discretized into equal time steps, for each of

which we calculated the propagator U(tk) = exp(-i(7-tit + 7-if(tk) + w(tk)Z)St). The noise

strength w(tk) is extracted from a multivariate gaussian probability distribution4, with a

covariance matrix Cj,k = n2e-|j-kl6t/Tc, where j and k are integers indicating the time

intervals. We then take the average of the superoperators Si = Ui 0 Ui obtained over a

sequence of evolutions differing only by the random number seed.

We have performed one set of simulations using a fictitious two-spin molecule (chemical

shift difference: Aw = 600Hz, scalar coupling J = 50Hz), and another using the internal

Hamiltonian of 13C-labeled crotonic acid, a molecule containing four carbon spins [17].

Both sets of simulations were performed with instantaneous ideal pulses, and again with

the strongly-modulating pulses used in actual NMR experiments. SMP are time-depend RF

fields designed by a numerical search, and perform precise rotations of one or more spins
4 This distribution was given by w(tk) = e-st/c w(tk-1)+rkT 11 - e - 2 t/ rc , where rk are normal distributed

random numbers



while refocusing the evolution of all other spins in a molecule [56, 111].

In the case of the two-spin molecule, since selective pulses are not required, we compare

the results of SMP pulses with the dynamics under short, collective pulses (called "hard

pulses", 7r-pulse time tp = 2ps). SMP appear to perform better even if they require longer

times. In the crotonic acid simulations, the sequence was designed not only to implement a

selective ir/2-rotation about the logical x-axis on the two spins in one DFS qubit, but to also

refocus the evolution of the other two spins under the molecule's internal spin Hamiltonian

(see Fig. (3-7)).

The fidelities of these simulations are plotted as a function of the correlation time in

Fig. (3-8). Compared to simulations with ideal pulses, we observe a drop in the fidelity due

to the finite duration of each pulse. This drop is only in part accounted for by the increase

in time in the cycle length. Nevertheless, the effectiveness of the CP-sequence in preventing

decoherence during the unavoidable excursions from the DFS is evident.
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Figure 3-8: Fidelity for ideal and real pulses. a) 16-cycles CP sequence implementing a
7r/2 rotation about the logical a. in a 2-spin DFS. (A fictitious spin system with Aw = 600Hz
and J=50Hz was used in the simulation) b) 7r/2 rotation about the logical a' for Crotonic
acid, using Strongly Modulating Pulses and compared to the result for ideal (instantaneous)
pulses. The ideal pulses sequence has longer r intervals, giving the same total time as the
SMP one, to account for the finite duration of SMPs.

3.3 Conclusions

In this chapter we have considered the difficulties of operating on quantum information

stored in encoded qubits without losing the protection from decoherence offered by the

encoding.



The most significant result is a demonstration that in many realizations, including NMR,

the implementation of a universal set of quantum gates may be considerably simplified by

briefly leaving the DFS while using dynamical decoupling to inhibit decoherence during

these excursions.

We showed how experimental limitations in the control fields available in any real imple-

mentation and the natural Hamiltonian itself can cause leakage from the encoded subspace.

Although we have focused upon the Hamiltonians and control fields operative in NMR

for concreteness, similar difficulties will be encountered in other functional realizations of

quantum information processing today, including squids, ion traps and quantum optics.

We found that the effects of this leakage can be greatly reduced by modulating the

noise operator, using dynamical decoupling, while implementing the desired gate. This

approach depends on the ability to operate on the system on time scales short compared

to the correlation time of the noise. In evaluating various possible realizations of quantum

information processing, it is important to characterize not only the decoherence rate, but

also the spectral density of the underlying noise, to verify that the gate speed is sufficient

to allowing the noise to be refocused.

In particular, average Liouvillian theory is a useful tool to calculate the efficacy of control

sequences for refocusing the noise, and devise new ones for specific noise generators. These

ideas can find wide applications in many of the experimental implementations envisaged for

Quantum Information Processing.
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Chapter 4

Introduction

Solid state spin systems have been proposed as promising quantum information processing

devices [38, 74, 89, 130] based on NMR techniques. Achieving a full scalable quantum

information processor is however very challenging, and many technological advances will

be required. Nuclear spins are particularly suitable candidates as qubits for their long

coherence time, but this come at the expenses of a very weak interaction with the measuring

apparatus. Most spin-based QIP proposals require the measurement of single nuclear spins,

which is a daunting task on its own, and one that would have an even broader impact.

There are both direct and indirect approaches to single-spin measurement. A direct

single-spin detection approach is magnetic resonance force microscopy [83, 117], while some

indirect proposals aim at measuring the single spin state via its effect on charge transport

[74] or relying on optical detection. The idea behind these last indirect approaches is to

transfer the information about the spin state to some other system, which better couples

to a measuring device, providing an amplification of the signal. The drawback of most of

these proposals is the decoherence that this coupling induces on the system.

In this thesis we propose a new approach to the measurement of a single spin state, based

on NMR techniques and inspired by the coherent control over many-body systems envisaged

by Quantum Information Processing, to take full advantage of the quantum complexity of

the system coherent dynamics. In chapter 5 we present a measurement scheme, in which a

single target spin is coupled via the natural magnetic dipolar interaction to a large ensemble

of spins. We demonstrate how it is possible to steer the system evolution by applying

external radio frequency pulses, so that the spin ensemble reaches one of two orthogonal



states whose collective properties differ depending on the state of the target spin and are

easily measured. The key point of the measurement process is the creation of a highly

entangled state, which allows amplifying the perturbation created locally in the ensemble by

the target spin. The evolution can nonetheless be defined in terms of the Hamiltonian of the

spin system, and thus implemented under conditions of real control using well-established

NMR techniques. A practical implementation still awaits several experimental building

blocks, such as the availability of a very highly polarized state, close to a pure state; even

so, this scheme is rich in potential applications and extensions.

An application of quantum information that is particularly promising is simulation of

quantum systems [51]. A quantum simulator need not to be a fully-developed quantum

computer. Given favorable Hamiltonians and precise (even if not universal) control on the

system, it can be possible to simulate interesting physical problems. We have investigate one

system that could be used as a quantum simulator and taken the first steps into studying

the control, accessible states and physical signatures that would be useful for simulating

physical systems of interest in condensed matter theory. In chapter 6 we introduce this

system and show the results of an initialization procedure that creates an interesting initial

state for simulations and transport of quantum information.

In the rest of this chapter we introduce the nuclear spin systems studied by solid-state

NMR and a particular technique, multiple quantum coherence experiments, that allows for

a better characterization of the system dynamics.



4.1 Solid State NMR System

The dominant interaction in spin- 1 nuclear systems in a rigid crystalline is the magnetic

dipole-dipole interaction. The dipolar Hamiltonian for spins I = a/2 is:

hAy,%,y (Ii . Ij 3(Ii - rij)(Ij . rij)
dip 3= h (i I - i2(4.1)

i<j

with rij is the intra-spin vector.

In a large magnetic field along the z axis, we only consider the energy-conserving secular

part of the dipolar Hamiltonian, that is, the terms that commute with the stronger Zeeman

Hamiltonian (and therefore conserve the total magnetization along the z direction). The

dipolar Hamiltonian then takes the form:

dip= bij[az z - (ara + oa3)] (4.2)

where the dipolar coupling coefficients are given by:

1 hyij (3 cos (i)2 -1)
bi,=- ir 3  (4.3)2 Irijil

with hij the angle between intra-spin vector and the external magnetic field direction.

Since experiments are usually conducted at room temperature, the equilibrium state is

a highly mixed state, as in the case of liquid state NMR, and it is given by:

N

Pth = Z a i  (4.4)
i=l

where the sum extends to all the spins in the sample. Notice that the argument used

in Section (1.1) to find this approximated expression is still valid, even if the internal

Hamiltonian comprises now the dipolar Hamiltonian.

The system used in the experiments was a single crystal of fluorapatite (Ca5(P0 4)3F,

see Fig. (4-1)) grown by Prof. Ian Fisher. Apatites, either hydroxyapatites or fluorine

containing apatites [49, 42], have been studied in MQC NMR experiments because of their

particular geometry [31, 32] and has also been proposed as a system to implement QIP

[88]. The fluorapatite crystallizes in the Hexagonal-Dipyramidal crystal system, with cell



Figure 4-1: Structure of the crystal fluorapatite. The large spheres represent the
fluorine atoms. Also indicated are the crystal axis a and c and the in-chain distance d
between two nearest neighbor fluorine atoms and the cross-chain distance D.

dimensions a = 9.367A and c=6.884A, and two formula units per cell. The fluorine spins are

arranged on linear chains along the c direction, with distance between two atoms d = 3.442A,

and 6 adjacent parallel chains at the distance D = 9.367A. Since the dipolar couplings

decrease with the cube of the distance between spins, the spin system can be considered a

quasi-1D system. In particular, by orienting the c direction of the crystal along the z axis,

the ratio of the cross-chain and in-chain dipolar coupling is:

bx 1 d 3

b 2 D 0.0248 (4.5)bin 2 D

By changing the orientation of the crystal, it is also possible to explore regimes where the

crystal goes from a quasi-1D system to a 2D and 3D system. If for example the crystal is

oriented such that the c-axis is at the so-called magic angle, '6 M = arccos 1/v/, with the

external magnetic field, the in-chain coupling are zero, since the angular coefficient of the

dipolar interaction, (3cos 62 - 1), is zero. If we further orient the crystal, such that the

B-field is along the direction [0, 2/3, 3] in the frame defined by the crystal axis, all

the nearest neighbor couplings in the planes perpendicular to the chains are equal (or zero).

4.2 Multiple Quantum Coherences

Quantum coherence refers to a state of a physical system where the phase differences among

the various constituent of the system wave function can lead to interferences. In particular,

quantum coherences often refer to a many-body system, whose parties have interacted and

- -·- -- ~



therefore show a correlation, a well defined phase relationship. The study and search for

macroscopic quantum coherences is a highly exciting area, since it explores the boundary

between the classical and quantum world.

In NMR, coherences between two or more spins are usually called multiple quantum

coherences, to distinguish them from the single quantum coherence operators, which are

the usual (direct) observables.. When the system is quantized along the z axis, so that

the Zeeman magnetic moment along z is a good quantum number, a quantum coherence

of order n is defined as the transition between two states Imi) and Im2), such that the

difference of the magnetic moment along z of these states mi - m2 oc n. Since the usual

NMR experiment is not described in spectroscopic terms of transitions between energy

levels, but as a dynamics evolution of the system represented by a density matrix, multiple

quantum coherences of order n usually describe states like m21)(mil, or elements in the

density matrix that correspond to a transition between these two states [134, 104]. The

state Im2) (ml1 is also called a coherence of order n.

A particular simple evaluation of the order of a given state is possible when this is

expressed in terms of product operators [61] , or in general, of products of the single spin

Pauli matrices a,, a+ and a_:

Pn =O... + 0o z. (4.6)
r spins s spins N-r-s spins

Then the coherence order n is just n = r - s.

For N spin!, the 2N energy levels are partitioned into N +1 manifold of equal magnetic

moment (oc m), each containing: ( Nm) states. The number of coherences of a particular

order is given by the number of all possible state pairs whose magnetic moments ml, m2

differs by n:

ZNn (( (N +m+n) -N ), n 0 and
1 N 2 2 2N) N(4.7)

-n ( m) [(am) - 1 = [() - 2N] n = 0

Notice that in the case of the zero quantum coherences, we only counted transitions such that

mi - m2 = 0 but between two different states. Diagonal density matrix terms (representing

a 'transition' with the same state) are called populations and do not properly describe a

coherence.



Quantum coherences can also be classified based on their response to a rotation around

the z axis, as that given by resonance offset or by a phase shift of a pulse. A state of

coherence order n will acquire a phase proportional to n under a z-rotation:

e-io/2Epnei022 E az = e-in Pn (4.8)

We will see in the following that it is possible to use this property to selectively detect a

particular quantum coherent order.

The observation of multiple quantum coherence in NMR started in the mid 1970s, as a

method for unraveling complex spectra, by filtering transitions based on the coherence order

involved [104]. Since higher quantum coherences are sensitive to the number, geometry

and interconnectivity among nuclei, they can be used to access information about these

properties, that are otherwise masked in a simpler experiment. In particular, since an n

quantum coherence can only form in a cluster of n or more spins, it is also possible to

estimate the number of spins interacting at a given evolution time; this kind of experiments

are called spin-counting experiments [11, 103]. More recently, these states have been studied

with respect to their decay time [34, 85] and effects of decoherence on them. For a review

of applications see [104] and references 27-29 therein.

Coherences can be created by the interplay of rf pulses and free evolution periods, during

which interactions among spins occur. We will focus in particular on multiple quantum

coherences in solid state NMR, where the interaction is given by the dipolar Hamiltonian

Eq. (4.2). The dipolar Hamiltonian conserves the coherence order in the ,, basis, but

it creates correlations among different spins that can be converted to coherences under a

similarity transformation, given by rf pulses.

For example, under a -r/2 rotation about the y axis, Rzt, the dipolar Hamiltonian Hldip

(Eq. 4.2) is transformed to:

RIl,(_dip) = -ij bij 1((6O6 + at_ a -_ ) 7_dip, (4.9)

where the first term is responsible for creating even order coherences. With an appropriate

sequence of rf pulses and delays we can isolate the first term in Eq. 4.9.

The effects of a series of pulses and delays, organized in a cyclic sequence, can be best

evaluated using Average Hamiltonian Theory (AHT) [68, 69], which is an important tool



also in the construction of special purpose pulse sequences (see Appendix A.1). Consider

the evolution under the 8-pulse sequence in figure (4-2). Following the rules of AHT it is

easy to calculate the zeroth order term in the toggling frame. This is just given by:

IiDQ Z ~b,,,(u j- ou ' - ,j bj(ta+ i (4.10)
i,j i,j

which is usually called a double quantum Hamiltonian, since it can increase the coherences

number by steps of two (thus creating even order coherences starting from the population

state). In general, pulse sequences can be devised to generate Grade Raising Hamiltonians,

that is, operators that increase the coherence order of a state.

X X X X X X , n
[ /21 2 1 I 2t II 2 1 1 2tr /21

x= I/21x 1= - /21x

Figure 4-2: 8 pulse Double Quantum sequence. This sequence of rf pulses and delays
creates a Double Quantum Hamiltonian (that is, an Hamiltonian that can excite even order
quantum coherences)

By symmetrizing this sequence, that is, going to a sequence with 16 pulses, such that

H(tc - t) = R7(t), the sequence gives the double-quantum Hamiltonian to first order, with

no corrections due to finite width pulses, offset errors or pulse errors. The 16-pulse sequence

is the one usually used in the experiments reported in this thesis.

Another approach to describe the dynamics of the creation of MQC is to interpret it with

an hopping model [103], in which the system is allowed to evolve 'hopping' from one state

to another with different coherent number, at a certain rate, dependent on the coherence,

and under certain selection rules.

If for example the Hamiltonian under which the MQC are created is the double-quantum

Hamiltonian, Eq. (4.10), only even coherence orders can be created and the allowed pathway

in Liouville space is as shown in Fig. (4-3), where one has to notices that coherence orders

can only vary by step of two, while the effective number of spin increase by one at each

step.

MQC intensities cannot be measured directly, since the NMR spectrometer coil is only

sensitive to single body, single quantum coherences. MQC created in the system must
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Figure 4-3: Pathway for the allowed coherence orders for a given number of spins.
By expanding the evolution in a series of commutators, we see that each higher order term
in time can only introduce a new spin in the state and modify the coherence order by ±2.
Notice also that 4-quantum coherences can only be created when 5 or more spins are in the
cluster, or that it is 4th order process in time.

therefore be tagged before bringing them back to observable operators, in order to separate

the contributions of different MQC into the signal. The usual MQC experiment thus involves

4 steps (Fig. (4-4)).

During the preparation time, a pulse sequence creates high coherence orders. The

evolution period let the system evolve to better characterize the MQC as required by each

particular experiment. The refocusing step brings back the MQC to single spin, single

quantum coherence, which is then measured during the detection period. In particular,

consider the case where the the refocusing operator is the inverse of the preparation operator

up to a phase 4, followed by a 7r/2-pulse:

Y = e - i"r/ 4 E a• V .e-iir/4 E ale i0/2 C a• Ute-i¢/2 C a• (4.11)
V = e- i V'= e-i/ ei2 te 2 (4.11)

The observed signal is then given by:

S = Tr [V'e~-i/2  UpoUte•/ 2 0 Vpo]
= Tr [e- /2 Upo Ute U/2  poUt] (4.12)
=Tr[ei#/2 e zpMQCeji/ 2 Xe PMQC] = Tr [ei'p ]

where pp is the pth-quantum coherence component in the state PMQC

By varying the angle q between 0 and 27r in steps of 27r/M, (M being the maximum

coherence number created), it is possible to obtain the intensities of the MQC contributions,

by fourier-transforming the signal with respect to 0. Figure (4-5) shows the MQC spectrum



Evoujtion

Figure 4-4: MQC experiment scheme. The usual multiple quantum experiment is

composed of four steps, which are shown in the figure as four blocks, during which a different

evolution takes place.

obtained by the double-quantum 16-pulse sequence in CaF2.

40 20 0 20 40
Coherence order

Figure 4-5: Typical MQC spectrum in CaF2 showing even quantum coherence intensi-

ties [33] (Reproduced with the permission of the author).

The growth and evolution of MQC is a complex many-body dynamics and only approx-

imated models are available to describe it. Besides stochastic models, based on the proba-

bility of occupation of different coherent states, and semiclassical models like the hopping

model, there is an exact analytical solution of the MQC dynamics under the double-quantum

Hamiltonian in 1D systems, in the case of nearest neighbors only [50, 45]. Although this is

a very interesting solution for short time, that we will use in chapter (6), it does not explain

the creation of higher coherence orders.

Selective MQC

The creation of MQC and the selection rules associated depend on the initial state and

pulse sequence used. For example, if the initial state is in the transverse plane, the double-

quantum Hamiltonian can create all odd coherences, while a Single Quantum Hamiltonian of

the form 7-SQ = Eij bi, (oaoaj + afu"o) can create all coherence orders. It is also possible to

create a specific coherence order (and all its higher multiple) by selective multiple quantum

I



coherence experiments [144].

It easier to follow the evolution of the system by focusing on the operator created by

a given pulse sequence, which can be ascertained by AHT. The operator obtained should

be able to rotate the thermal state to the desired coherence state, so it must be possible

to write it as e- i Hpt where -p is an operator composed only by pth coherence order terms.

The first step is to create an effective Hamiltonian that also contains the coherence order

wanted, then a phase cycling scheme can be used to select it.

) =rp/ln

(B)

Figure 4-6: Selective MQC scheme, for the selection of the nth quantum coherence (with

n even). (A) Phase cycling scheme, selecting the wanted coherence, while refocusing the

zero quantum terms, too. (B) Basic sub-cycle sequence to create a high coherence order

operator. The pulse phases in the DQ pulse sequence are shifted to obtain an effective

z-rotation in the super-cycle scheme.

An operator that creates all (all even) coherence orders can be obtained by rotating

the free evolution of the system under the action of an Hamiltonian that can create co-

herences, as the single- (double-)quantum Hamiltonian -see Fig. (4-2). Notice that the

effective Hamiltonian of this sub-cycle of the sequence H0o = UDQ'dipUtQ can contain high

order coherences if the time T that we allow the double-quantum Hamiltonian to act for

is relatively long (UDQ = e-i-HDQT), but the time of interest of the sub-cycle is only the

time bt of free evolution, Uo = e- iH U6t, which can be kept small, thus ensuring convergence

of AHT. To select the desired quantum coherence, this basic sub-cycle is repeated with a

shift in the phase of each pulse, which correspond to an effective rotation about z of the

Hamiltonian Ho: Uo = e-i /2 Uoe i  ./ 2  •. If the coherence to select is the nth order,

the cycle is repeated n times with a phase increment of ¢o = 27r/n. To first order, the

effective Hamiltonian is given by the sum of Hamiltonians in each cycle:

o() m r e - i k lr / n E a 0 eik7/n C a• (4.13)

k

Rewriting the effective Hamiltonian 'Ho in terms of its multiple quantum coherences com-

.. _

(A) Uo J ['• --. v = n/n
°.°

m



ponents, H-o = -p -p, we have:

F(O) c e-ipkrl/n"Ip = i-a (4.14)

that is, only the nth coherences and its multiple are retained. In order to eliminate also

the contribution from zero quantum coherences, the sub-cycle should be repeated 2n times,

with phase increments of ir/n and inverting the time arrow every sub-cycle - see Fig. (4-6).

Coherence order

Figure 4-7: MQC spectrum for a selective MQC experiment in CaF 2, showing
the selection of the 16 th quantum coherence order intensities only. (Reproduced with the
permission of the author [33])





Chapter 5

Entanglement assisted metrology

The measurement of a single nuclear spin state is an experimentally challenging task, that

once solved could yield useful applications as well as valuable physical insights. Potential

applications include nuclear spintronics devices [23, 157], biomolecular microscopy [123, 155]

and spin based QIP [74). Spintronics (spin-electronics) studies spin degrees of freedom in

solids and aim at building spin-based devices, via the active control of spin dynamics in

semiconductor and metals. Although spintronics focuses on electron spins, the interaction

with nuclear spins is unavoidable, and leads often to decoherence or undesirable effects.

Control and measurement of nuclear spins at the single-spin level would benefit enormously

this field.

Directly visualizing molecular structure will have a revolutionary impact upon medical

research and structural biology'. While electron microscopy (and any other energetic probe,

like x-ray) cannot be used to reach this goal, because of the ionization energy lost by

electrons traversing a biological molecule, observation of nuclear spin properties of molecules

is a promising avenue.

Quantum computation proposals need to prove a scalable mechanism for read-out [43].

Nuclear spins-I have been proposed as viable qubits [74, 130, 89, 881, not only because they

provide the archetype of a two-level system, but especially because of their long decoherence

times. This is due to weak interactions with the environment, but it comes also at the

expenses of weak (low-sensitivity) interactions with the measurement apparatus.

t This chapter has been adapted from reference [261
1As Richard Feynman said: "It is very easy to answer many of these fundamental biological questions;

you just look at the thing!" [52]



Many methods have been proposed to increase the sensitivity of nuclear spin measure-

ment beyond the limits of NMR or ESR. The detection of spin resonances is pursued by

magnetic force detection [117, 83], by transfer of the spin state to the electron charge [74]

and by near field optics (147, 148, 149, 151]. These methods are close to or have reached

[47] the limit of single spin detection for electrons, but the measurement of the quantum

state of a single nuclear spin has not yet been achieved. Furthermore, these techniques in-

troduce sources of additional decoherence, through quantum measurement back-action (for

example, spin relaxation rates in the MRFM environment seem to be faster than in bulk

measurements) and sometimes they require special materials to be implemented.

The measurement method that we propose in this thesis uses instead NMR techniques

and the dipolar Hamiltonian which couple every nuclear spin system. Since it does not

introduce any further decoherence but rather relies on a fully coherent quantum dynamics

of the interface with the measuring apparatus, this method is a nondestructive observa-

tion process and can thus aim at not only detecting a nuclear spin, but at measuring its

state. We rely on entanglement in a nuclear spin ensemble to increase the sensitivity of the

measurement: On one side, entanglement has already proved to help reach the quantum

measurement limits in spectroscopy [92]; on the other side, nuclear spin ensembles are sen-

sitive probes of single quantum system, as proved by the decoherence they induce on single

electrons when not controlled [76], while with good control techniques this decoherence can

be reduced [129].

In this chapter, we first describe this measurement process using QIP gates, with ideal

algorithms that motivates the use of entanglement to overcome limitations in the control

available. We demonstrate this entanglement-based ideal algorithm with a proof of principle

experiment in ensemble liquid state NMR. In Section (5.2) we show how equivalent schemes

can be defined in terms of the Hamiltonian of the spin system and thus implemented under

conditions of real control, using well established NMR techniques. This method requires the

ability to control about 106 spins (the current low temperature detection limit for NMR) by

inducing a coherent dynamics, modulated by the interaction with the target spin. Because

of the challenges in creating a macroscopic entangled state, in the short term we expect

our method to be used to enhance sensitivity, with a system of about hundred entangled

spins (already available experimentally [85]). As no physical limitations prohibit to enlarge

the system to the size required for single spin state measurement, this remains however our



ultimate goal.

5.1 Ideal algorithms and the role of entanglement.

The task that we propose to accomplish is the measurement of a single nuclear spin. The

single spin, that we will call the target spin, is isolated spatially from other similar spins

that compose the quantum processor, or more generally the material under study. In order

to measure its state, we put it in contact with the measurement device, composed of an

ensemble of nuclear spins of a different chemical species. The measurement process amplifies

the signal from the single spin by transferring the information about its polarization to a

large ensemble of spins. The spin ensemble has therefore the role of a Spin Amplifier.

The spins of the ensemble are prepared in a fiducial state before the measurement, the

highly polarized ground state where all the spins are aligned with the external magnetic

field. This state is in principle achievable by lowering the temperature of the spin ensemble

and further using Dynamic Nuclear Polarization to increase the polarization of the nuclear

spins by coupling them to electron spins [3, 64, 2]. The polarizations reached in practice

are as high as 97% [41].

5.1.1 C-NOT scheme

To amplify the signal from the target spin, the simplest strategy would be to create many

copies of its state, by letting the target spin interact with the Amplifier spins. If we could

copy the information about the polarization of the target spin onto the Amplifier spins,

a weak measurement -as the one implemented in conventional NMR- could extract that

information. Unfortunately, the no-cloning [1461 theorem forbids such a process for an

unknown quantum state. We will therefore restrict the state of the target spin to the two

orthogonal eigenstates 10) or I1), as if it had already collapsed to one of these states by a

strong measurement. Notice that restricting the measurement to only two orthogonal states

is not a limitation in the context of QIP, since it is sufficient for the read-out stage [43],

and for imaging as well this restriction is not critical.

To illustrate how a collective measurement can provide knowledge of the single spin

state, consider a simple quantum circuit, consisting of a train of Controlled Not (C-NOT)

gates between the target spin and each of the Amplifier spins Fig. (5-1). The C-NOT gate



will flip the controlled spin if the target (controlling) spin is in the 11) state and do nothing

if it is in the 10) state. Since the C-NOTs act on the fiducial state 100... 0), this amounts to

effectively copying the target spin state onto the Amplifier spins. The no-cloning theorem

does not apply here, since the target spin is already in one of two orthogonal states.

At the end of the circuit, the measurement of the Amplifier magnetization along the

z-direction (MWz c (QIA -I Z i OiTA)) will indicate the state of the target spin. If the target

spin was in the 10) state, the Amplifier spins are still in their initial state, so that Mz =

Mz (0). If the Amplifier spins have been rotated because the target spin was in the I1) state,

the final state of the amplifier spins is I11... 1) and the magnetization has been inverted:

M = -Mz(O).

Although the measurement involves only collective properties of the Amplifier, this first

scheme demands that the ensemble spins are independently addressable and that they all

interact with the target spin in order to realize the C-NOT gates.

5.1.2 Entanglement Scheme

Instead of imposing these requirements, we can develop equivalent schemes that connect

better to the available control. Relying only on entanglement among the Amplifier spins and

on the evolution given by the internal Hamiltonian and collective rotations, these schemes

can be realizable in the near term.

Entanglement among particles in an ensemble has been shown to produce changes in

macroscopic observables [90] and to enhance the signal-to-noise ratio in spectroscopy [92] up

to the Heisenberg limit. In this last experiment, the state of the atoms is prepared in a large

cat-state, that is, the generalization of the GHZ state IVIGHZ) = (1000)+ 111))//V to n qubits

[67]. The cat-state is a maximally entangled state that acquires the phase information with

Figure 5-1: Scheme 1: Series of C-NOT gates between the target and Amplifier spins. A
collective measurement is sufficient to detect the state of the target spin.



optimal sensitivity, since it evolves n times faster under a collective evolution. In a similar

way, we want to create an entangled state that is the most sensitive to the action of the

target spin.

Cat-state

Figure 5-2: Scheme 2: Entanglement permits to use only one local action of the target
spin. The entangling operator Umap can be created with gates on single spins or with a
phase modulated sequence, using only the internal dipolar Hamiltonian and collective rf
pulses to create the Grade Raising operator as explained in the following Section. The four
letters refer to the points where spectra were measured, see Fig. (5-4).

In scheme 1, where the Amplifier spins remain in a factorable state, the interaction with

the target spin produces only local changes on individual spin states. On the other hand,

with the creation of a macroscopic entangled state [91], the Amplifier is globally affected by

a single interaction with the target spin: The propagator creating the cat-state performs an

effective change of basis to a reference frame where the local C-NOT gate is a global operator

on the Amplifier. We illustrate the role of the entanglement with a second scheme (Fig.

(5-2)).
Here the fully polarized state 100... 0) is first transformed into the cat-state

(100...0) - ill1... 1)) (5.1)

by a 7r/2 rotation about a, of the first spin in the amplifier and a series of C-NOTs between

this first spin and all the other spins in the amplifier. Then, we invert the state of the

first Amplifier spin, conditionally on the state of the target spin. The entanglement is

then undone by applying the inverse transformation (that is, a series of C-NOT and the ox

rotation) in order to bring back the system to a state that gives an observable signal in

NMR (see Section (1.1)).

When inverting the evolution to undo the entanglement, the C-NOT and o- gates bring

the Amplifier back to the initial state if the target spin is in the 10) state. Otherwise

- ·- . __



we obtain the state: I1)Tl111... 1). As in the previous scheme, measuring the Amplifier

magnetization provides information about the target spin state. Notice that we have invoked

only one interaction between the target spin and a privileged spin in the Amplifier, a more

practical requirement, given the locality of any spin-spin interaction.

L -.=541 Hz I

Figure 5-3: Spectrum of the first carbon at thermal equilibrium in Alanine, show-
ing the coupling with the proton and the other 2 carbons (The methyl group produces the
multiplet splitting). Notice in particular that the couplings with the proton (the target
spin) are completely resolved.

Experiment

We have implemented this scheme on a small QIP NMR liquid system, where the target

spin is represented experimentally by a macroscopic ensemble of spins. Although their

state is detectable, it is measured only indirectly, following the scheme proposed. The

single protons of a 13C labeled Alanine molecule ensemble are the target spins, while the 3

carbons compose the Amplifier (see Section (1.1) for the molecule's description).

As it can be seen from the spectrum of the first carbon (Fig. (5-3)), the couplings with

the proton are completely resolved, so that we can separate the signal arising from carbons

coupled to protons in the 11) state (left) or in the 10) state (right). Before applying the

circuit of Fig. (5-2), we put the proton spin into the identity state and prepare the carbons

in the pseudo-pure state 1000) [38]. The proton state is prepared in a mixture of the two

states 10)(01 and I1)(11, thus we can effectively perform two experiments in parallel, and

read out the outcomes from just one spectrum.

The gates in Fig. (5-2) are implemented using strongly modulating pulses [112, 56], that

allows rotations of individual spins (notice that in liquid state NMR, for a limited number
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Figure 5-4: Experimental Results: A. Initial State: Pseudo-pure state of the 3 carbons,
with the target spin in an incoherent superposition of the two possible initial states, I1) (left)
and 10) (right). B. Cat-state (or GHZ state) for the 3 amplifier spins. C After applying
a C-NOT on the first Carbon, its magnetization is inverted only on the left hand side of
the spectrum (target spin in I1) state), as is the sign of the Cat-state spectrum. D.Final
state: The polarization of the carbons has been inverted (left) indicating a coupling to the
target spin in state I1), while it is unchanged for spins coupled to target spin in the 10) state
(right).

of spins that permits frequency resolution, we have universal control on the system). In Fig.

(5-4) we show the spectra of Carbon-1 at four steps of the circuit, showing the evolution

of the system during the algorithm. The experimental results show that the polarization

of the three carbons is inverted conditionally on the state of the proton, giving an indirect

measurement of its state.

5.2 Experimentally accessible algorithms

Extending this scheme to larger systems is experimentally challenging, since we need to

address individual spins. Yet we can relax some of the requirements on control, thus per-



mitting different implementations, if we allow for more freedom in the final state of the

amplifier.

The signature of a successful scheme is that it produces observable contrast,

C= M  - M z1  (5.2)
Mz(O) '

M, and M 1 being respectively the magnetizations obtained when the target spin is in

the state 10) or [1) and the initial magnetization is Mz(O). The previous schemes provide

the maximum contrast C = 2. Even if their characteristics are quite different, they are

equivalent since they create the same effective propagator:

n

Uopt = E+  + E (5.3)
i=l

(where E+ = i1)(1I and ET  = 10)(01 are the projectors on the computational basis for the

target spin). This is the only operator (up to phase factors or constants of the motion) that

results in the maximum contrast.

If we accept a lower, but still observable, contrast (C F 1) the evolution we should

implement,

UmapUcnotUmap = E+A + ET, (5.4)

is such that the operator A instead of inverting the magnetization should just bring it to zero

(we are assuming for simplicity that if the target spin is in the 10) state the amplifier does not

undergo any evolution as it was the case in the previous schemes). In this case, A can have

a much more general form than the one seen before (A = 14 o,, in the previous schemes),

as for example a superposition of n/2-quantum operators A =- Z. ( 1 ~ fi + h.c). We

will present in the following two schemes that follow this insight to relax the conditions on

control for the implementation of the measurement algorithm.

5.2.1 MQC scheme

A realizable scheme, taking advantage of this flexibility, is a propagator that still creates

a cat-state, but using only collective control and evolution of the Amplifier, such as it is

available in a dipolar coupled spin system.

Techniques for generating entanglement have been developed in the context of spin



counting experiments [103, 114]. The aim of these experiments is to estimate the size of a

spin cluster by measuring its entanglement (or more precisely the coherence order of the

system). Since a cat-state corresponds to an n-spin, n-quantum coherence state, we may

use well established techniques [10, 1521 to create the n-quantum coherence operator, which

rotates the fully polarized state 100... 0) into the cat-state.

With the 8-pulse sequence presented in Section (4.2) we create the double quantum

operator to zeroth order in AHT:

H2Q = bij (o?'1. +a' o) (5.5)
ij

This double quantum operator l-2Q is an example of Grade Raising (GR) Hamiltonians,

operators that increase the coherence order of a state. Acting with this Hamiltonian on a

2-body operator such as the dipolar Hamiltonian we can create higher order GR operators.

Phase modulated combinations of 712Q and Hdip have been already shown [144] to permit

straightforward synthesis of the pure n-body GR Hamiltonian 7 'nQ = fk=1l +k k=1 k -
2 .

The n-quantum propagator UnQ = e- i 'WnQ rotates the ground state 100... 0) into the cat-

state, in the same way as a 7r/2 rotation about ax (U1Q = e- i (a + + o- ) rotates a single spin

to the superposition state (10) + 11))/ v2, since the system behaves as an effective n-spin

system [144].

Using the n-quantum propagator UnQ to create and refocus the cat-state instead of the

ax and C-NOT gates used in scheme 2, we obtain a lower contrast, C=1, but requiring only

to manipulate the natural Hamiltonian with the available control via rf pulse sequences.

The evolution is given by the propagator U = UnQUcnotUtnQ; by expanding this expression,

we obtain
U= ET +E a +(- - 1)(I 2 E + =2 Ei-) (5.6)(5.6)

- 2~(f=2JOci+ Hi=2 0_)UZ1),

and this propagator either conserves the magnetization if 10T) = 10) or brings it to zero if

[lT) = I1).
Creating the cat-state is experimentally hard, yet we can envisage even simpler schemes.

The form of entanglement that influences the contrast is entanglement of the Amplifier

spins with the first Amplifier spin (the one which interacts with the target spin), so that

2This technique, called Selective Multiple Quantum Coherence is explained in Section (4.2)



a modification in its state will drive a macroscopic change. Hence, it is not necessary to

restrict ourselves to the preparation of a cat-state, as a wider class of entangled states is

equally useful. To ensure that the first Amplifier spin is entangled with the rest of the spins,

we must operate on the system with a GR operator that always contains this first spin. The

GR Hamiltonian used previously as a basic tool to create entanglement is now replaced by:

10) = b.i(o1t + a;- ). (5.7)

It is easy to create this operator since the coupling between the target and the first

spin makes it distinguishable from the other Amplifier spins, so that we can address it

individually. To devise a pulse sequence that generates this propagator, we start from the

observation that if we repeat the pulse sequence for the W2Q with a ,/2 phase shift, the

overall evolution would be completely refocused. By inverting the closest spin phase in

between the two sequences, only the terms containing the first spin will survive, creating

the GR1 Hamiltonian:

e-i?2Qte-i eiW2Qt e-2i2t (5.8)

In order to realize a more robust scheme, we can furthermore introduce entanglement only

conditionally on the state of the target spin, by applying -(1) conditionally on the target

spin state. This is achieved by making the phase inversion of the first spin conditional on

the state of the target spin.

5.2.2 Perturbation Scheme

Even with these generalizations, the experimental task is still demanding: We need to apply

the inverse of a rather complex map, but this inversion could dramatically amplify small

errors done in its implementation. A metric of the divergence caused by a small perturbation

which accumulates over time is the fidelity decay [73, 48]. Let consider a system initially

in an arbitrary fiducial state evolving under a given quantum map, given by a sufficiently

random unitary operator. After r repetitions of the map, its state is: 4I(r)) = UriTo). If

the same system is evolved under a perturbed version of the map, the final state is instead

Ip(r)) -= (VpU)rT Io) and the overlap (or fidelity)

F(r) = J(*p(r)Ij?(r))I2 (5.9)



between the two states decays exponentially with the number of repetitions of the map.

We can nonetheless turn these considerations to our advantage by coupling the chaotic

dynamics to the single spin. If a perturbation is applied conditionally on the state of the

target spin (for example only in the case the target spin is in the 1) state), the resultant

states will have an exponentially decreasing fidelity and can be easily distinguished. Since

the expectation value of the magnetization is a much weaker measurement than the fidelity,

we expect the exponential rate to simply bound the contrast growth rate.

IV>)r
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Figure 5-5: Perturbation Scheme: By perturbing a pseudo-chaotic propagator with a
controlled perturbation, we can amplify the small changes introduced by the target spin up
to the point where they are detectable.

Because of the local nature of the spin-spin interactions, the perturbation will be limited

to the closest neighbors of the target spin. At a repetition r of the map, the perturbation will

have affected only a factor-space of the total Hilbert space of size Nr, giving a completely

randomized state and an almost zero polarization for the subsystem considered. If the

evolution map is sufficiently random (and thus does not have excessive symmetries), the size

N, can grow to a large fraction of the Hilbert space with the increasing number of repetitions,

allowing for a good contrast to be observed. A pseudo-random map possessing these features

can be implemented in a solid state NMR system using the dipolar Hamiltonian (Eq. 4.2)

propagator as the unperturbed map and as perturbation the H(1) operator (Eq. 5.7), applied

conditionally on the state of the target spin. This many body evolution provides a complex

enough dynamics, even in the presence of residual symmetries in the Hamiltonian.

We can explain the effects of this procedure also in terms of creation of entanglement

localized around the first neighbor that is then spread out by spin diffusion [13, 154]. These

two successive steps, repeated many times, ensure that the change affects all the Hilbert

space, creating a global entangled state.

To estimate the entanglement created by this dynamics, we evaluate a global measure

I



of entanglement for multipartite systems3 [102]. The average loss of purity upon tracing

over one spin:

Q = 2 - 2 Tr{p?}, (5.10)
n

where Pi is the partial trace over the ith spin is a good measure of global entanglement. For

a maximally entangled state Q = 1, the polarization is zero. We can always write the state

of the system, for any spin i:

I>) = a ol0) iOl,) + aQeit |1)i|), (5.11)

To obtain the maximum entanglement, we must have aC = 1a = 1/,1, Vi. This condition

in turn implies that:

( °Ojo e ) = ((0 Io j0)j(ip? ) + (1 iax l1)(Vi/i /ji)) /2 = 0 (5.12)

and the polarization is zero.

Simulations

Because of the complexity of the dynamics involved, we found no simple analytic result

to predict the contrast growth. We instead simulated the evolution of a limited number

of spins in a linear chain, following the polarization and the entanglement as a function

of the number of repetitions of the two basic steps (H3 and 'Dip). The simulations

were run using MATLAB ®, evolving the system under the ideal Hamiltonians (that is, we
(1) could be implemented perfectly via a pulse

assumed that the grade raising Hamiltonian could be implemented perfectly via a pulse

sequence). The initial state was the fully polarized ground state and the (perturbed) map

applied to the Amplifier when the target spin was in the I1) state was: U = e -.. 2-i7 ,

with: tb1 ,2 = 1/2 and Tbl,2 = 4r/V24 .

From the simulations we can observe the predicted dynamics: Regions of the physical

space farther away from the first spin are excited later in time. When the entanglement

reaches Q i 1 and the polarization goes to P 0, we have a saturation phenomenon, and

3Notice that there is no unique measure of entanglement, except for bipartite pure systems [22]
4This particular time was chosen since it allows for the perfect transfer of a spin state over 3 spins

(the maximum distance allowed for perfect transport), for equal couplings among the spins and an XY
Hamiltonian [36].
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Figure 5-6: Entanglement (10 spins) and contrast for different number of spins.
In the inset: number of repetitions to reach contrast ; 1 as a function of the Hilbert space
size, showing a logarithmic dependence.

except for fluctuations, that decrease in amplitude with the number of spins, the macroscopic

properties of the state no longer change. This effect, caused by the finite size of the Hilbert

space, is also observed in the fidelity decay, that for very strong perturbation saturates at

1/N, with N the size of the Hilbert space.

Cascade Scheme

Notice that we reach contrast a 1 for a number of repetitions on the order of the spin

number, as it was expected since at each cycle only one quantum of polarization can be

changed by the action of the GR-Hamiltonian in a 1D chain of spins. We expect a faster

rate in 2 and 3 dimensions, due to a higher number of first neighbors. The simulations

cannot unfortunately be carried over in these higher dimensions, since the computational

resources increase too fast with the number of spins to be considered.

In order to study the scalability of the measurement process in 3D-systems, we have

analyzed another scheme which can be reduced more easily to a classical model and therefore

simulated [110]. The main conclusions of this study is that not only there is a cubic speedup

(only O(in) repetitions of the algorithm basic step are required to reach a contrast C • 1,

instead of O(n) as for the linear scheme), but the larger Hilbert space allows for a larger

number of configurations that give the same high contrast, making the algorithm more

robust to errors in the initial polarization or in the control.

_· I



5.3 Conclusions

In conclusion, we have shown that it is possible to transfer polarization from a target spin

to an ensemble of spins, through the creation of a highly entangled state with rf pulses and

the coupling between the target spin and its closest neighbors. The characteristics of the

different methods discussed range from optimal contrast but with extreme control on the

system to a lower contrast and more accessible experimental conditions (as summarized in

the table). In particular, the last two methods can find an immediate application to the

signal enhancement of rare spins, embedded in a sample containing a more abundant spin

species: these schemes require only collective control on the ensemble spins and the number

of operations needed is moderate if the ratio of rare to abundant spins is large enough.

The methods and physical systems proposed open the possibility to a new class of

devices, where quantum effects, such as entanglement,

microscopic to macroscopic properties.

are used to make a transition from

Requisites Control
Q con Control Operator

C-N OT Addressability.
Non-local interaction E+ j oak + ET  0 2

Scheme with target spin.

Addressability.
with C-NOT Local interaction EP - a" + ET  1 2

with target spin.
Collective control.

(n) Local interaction. E••A + E- 1 m 1
with -GR Refocusing the map.

Pseudo- Collective control. E+ + ET  1 1
Random Maps Local interaction.

Table 5.1: Comparison of the different schemes
ment.

for the single nuclear spin measure-



Chapter 6

Simulations and Information

Transport in Spin Chains

When a quantum mechanics based computer was first discussed by Feynman [51], its purpose

was the simulation of physical problems that are not accessible even to the ever faster

classical computers. In particular, physical phenomena that are inherently quantum are in

general assumed to be amenable to an easier simulation on quantum computers [98]. Even

if quantum simulation protocols are in practice not easy to define [106] and may not be

possible for every application, the basic fact that the size of the computational resources in

a quantum computer grows at the same pace as the problem to be simulated leaves open

the hope for a practical quantum simulator, if one can efficiently use these resources.

Several models of simulations are possible, from a gate-based quantum computer [4, 7]

to an adiabatic sweep toward the desired Hamiltonian, for the ground state calculation.

A quantum-mechanical system that albeit not universal, could be used to simulate the

dynamics under particular Hamiltonians, by tailoring its natural Hamiltonian with external

control, would be very useful in condensed matter theory. It is this model that could be

successfully implemented in the medium-short time period in solid state NMR-based QIP

devices.

In this chapter we present a system, a single crystal of fluorapatite, that can be used

to this purpose. We show how we can use the coherent and incoherent control to initialize

the system to the desired state. This initial state, where the polarization is concentrated

in single spins, instead of being distributed among all the spins in the linear chains that



constitute the crystal, is attractive for studying the transport of polarization and more

generally of coherence and information along the chain. Transport of information [36, 781 is

not only an important tasks in QIP but also an interesting physical phenomena in its own.

In many solid-state proposals for quantum computers, the transport of information over

relatively short distances inside the quantum processor itself is an essential task, and one for

which relying on photons, and therefore on a frequent exchanging of information between

solid-state and light qubits could be too costly. Quantum wires based on spins could be a

viable alternative.

Transport in complex many-body spin system has been widely studied as it manifests

itself as spin diffusion [19, 66, 154]. This dynamics enhances the differences between clas-

sically solvable models (for nearest neighbors couplings in 1D) and the more complex dy-

namics obtained where all the couplings and higher dimensionality are taken into account

[145, 21, 94, 109]. In this chapter we show how we can use the fluorapatite spin system and

the signatures given by MQC experiments to explore these questions.

6.1 Selecting the spins at the extremities of the linear chain

An infinite linear chain of dipolarly coupled spin is an highly symmetric system; if the only

control available is an external radio-frequency field that acts collectively on all the spins,

this symmetry cannot be broken and therefore only a small subspace of the total Hilbert

space can be reached by the system during its evolution. In particular, no state that breaks

the symmetry of the initial state and of the Hamiltonian is reachable and thus a state with

only one spin polarized cannot be reached from the equilibrium state.

If the spin chain is instead of finite length, the symmetry is naturally broken by the

boundary conditions. The spins at the extremities of the chain only have one nearest

neighbor to which they are strongly coupled. This implies a slight different energy and also

a different dynamics under the internal dipolar hamiltonian with respect to the other spins.

This evolution and the control Hamiltonians are still not enough for universal control, as

it can be verified by calculating the rank of the Lie algebra generated by the internal and

control Hamiltonian (this can be done numerically for small systems of 4-5 spins) [118].

Only adding non-unitary control (or more precisely and incoherent control [116]) will allow

us to reach the desired state with a high enough fidelity.
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The spin system is initially at equilibrium, in the thermal state. As stated in Section

(4.1), this can be very well approximated by the state Po = -k a;. Considering all separated

chains as individual systems, we can rewrite:

M Nm

PO0= aZ, (6.1)
m=1 km=1

where the index m indicates a particular chain in the crystal. If we consider the short-

time evolution only, the spins of different chains do not interact, so that we can consider

M independent systems and in a first approximation, we will assume all of them to be

equivalent. This can appear to be a system very similar to bulk liquid state NMR. The

situation is however very different and the approximation made fails for two reasons. First,

the chains do not have all the same length, thus exhibiting different dynamics, depending

on the number of spins (moreover, the defects causing the interruption in the fluorine atom

chain could be of different types, giving a different magnetic environment). The second

important difference from liquid-state bulk NMR is that the couplings between two different

chains are not averaged out by relative random motions, they are still present, only they

are more than one order of magnitude smaller. Therefore, as soon as we let the system

evolve for a time long enough compared to the cross-chain interactions, the approximation

of independent systems fails. In order to simplify the analysis and the simulations, we

will assume from here on that there is just one chain with a fixed number N of spins,

which evolves unitarily under the dipolar hamiltonian and the external control rf field,

and decoheres because of its interaction with the environment. The environment therefore

includes also the effects of other chains and the distribution in chain composition.

We have studied a pulse sequence, that together with a non-unitary control, given by

phase-cycling [29], prepares the initial state ac + az starting from the thermal state. This

simple pulse sequence (see Fig. (6-1)) relies on the fact that the spins at the chain ends have

a different dynamics because of the broken symmetry in the couplings explained above.

The simplest way to observe this difference in the dynamics is to rotate the thermal

equilibrium state to the transverse plane p(t = 0+ ) = E a', so that it is no longer an eigen-

state of the internal hamiltonian. The following free evolution is the usual free induction

decay (FID) measured in a simple 7r/2-pulse experiment. The evolution of the system to

multi-spin coherences [35] is seen as an apparent decay of the magnetization. When we
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look at the polarization of individual spins by numerical simulations of 8-10 spin systems,

we notice oscillations in polarization of each one of them (see Fig. (6-2)). In particular the

first and last spins have a much slower dynamics (apparent decay) at short time, which is

due to the fewer number of couplings. It is thus possible to select a particular time at which

while the state of these two spins is still mainly ax, all the other spins have evolved to more

complex and even multi-body states. A second 7r/2 pulse will bring the magnetization of

spins 1 and N to the longitudinal (z-)axis, so that the density matrix describing the system

can be written as p = a(a 1 +aN)+p' and we would like to select only the first two terms. To

do this, we can recur to a phase cycling scheme, which will select only terms that commute

with the total magnetization along z: Ei az (like the desired state). Unfortunately, we have

not found a solution that also cancels out the zero-quantum terms (that is, components of

the density matrix with total magnetic quantum number=0).IX
2,tx 2 t

I I

Figure 6-1: Pulse Sequence (with phase cycling) to select the two spins at the end of the
spin chain

Fig. (6-2) shows the polarization along x of individual spins as a function of the evolution

time under the dipolar Hamiltonian. From the commutator expansions of the unitary

evolution, we can calculate the approximate coefficients of the polarization (oa) terms for

each spin as a function of time and therefore select the time at which a'rz  0, Vi # 1. We

found that the optimal time is given by tl = 30.3ps for the dipolar coupling strength of

fluorapatite spin chains. In selecting this time, we have taken into account that for the

time considered the polarization of spins i > 2 are almost equal and that if the commutator

expansion is carried out up to the 8th order, the approximation for the times of interest is

excellent.

The free evolution is interrupted at this moment, by a another 7r/2 pulse, now about

the -y axis. This will bring the remaining magnetization along the x axis back to the

longitudinal axis, while the other spin states will mostly stay in the transverse plane or in
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multi-spin states.
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Figure 6-2: Evolution under the dipolar Hamiltonian after a one pulse excitation
of the thermal equilibrium state to the transverse plane. Plotted are the amplitude of the
polarization along the transverse plane for individual spins (8 spins, nearest neighbor dipolar
coupling strength b=ir/2). Notice how the evolution (an apparent decay of magnetization)
of the first spin is much slower than for the other spins, due to the fact that it is strongly
coupled to only another spin.

To select only the wanted terms, we cycle the pulses through different phases, thus

averaging to zero all terms which are not either populations or zero quantum terms.

Except for very short chains (3-4 spins), the optimal time is almost independent of the

number of spins in the chain, therefore allowing us to choose the time tl even not knowing

the exact -average- number of spins in a chain. The important difference in the evolution

of the very short chains is that the time is long enough for all the spins to start interacting,

so that boundaries conditions in the evolution start to have an effect on the dynamics. If

the Hilbert space is larger than the subspace that develops correlations during the time tj

considered, the exact number of spins is instead unimportant.

6.2 Verifying the state preparation

Because of limitations in the detection of magnetic resonance that restrict the observables

to the collective transverse magnetization, it is not possible to reconstruct the state of the

system. While in liquid state NMR experiments involving a limited number of qubits it is

possible to carry out full state tomography [124] to determine the state of the system, when
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the Hilbert space is larger this is no longer practical. Notice also that even if we considered

a Hilbert space comprised only of the chain of interest, which has a much smaller size than

the entire Hilbert space, we do not know exactly its size and therefore it is not possible to

devise a tomography procedure. Moreover, since we do not have universal control on the

spin systems, we cannot apply the rotations required by tomography. In order to assess the

efficiency of the state preparation scheme, we have to observe a subsequent evolution of the

system that shows the signature of the particular initial state prepared.

Spectra

A first difference is then expected to be observed in the spectra recorded, since the dynamics

under the dipolar Hamiltonian, after a 7r/2-pulse, (which is recorded in the FID) is different

than for the equilibrium state. In particular, it is important to observe the state at short

time, when the effects of the desired initial state should be stronger; the solid echo technique

[58] was thus used, to avoid the dead time imposed by the electronics and the pulse ring-down

[58]. While this kind of measurement does not give a definite answer to the question whether

the polarization has been concentrated on the extremities only, the qualitative differences in

the spectra measured are encouraging. In particular, we observe that resolution of the three

peaks observed in the thermal state is much better (we obtain narrower lines) as expected

50
o (kHz)

Figure 6-3: Comparison of the spectra when the polarization is retained by all spins
in the chain (dashed line) and for the excitation of the extremities only (solid line). The
FWHM is a 19kHz and the distance between peaks c 8kHz. Experimental data for the
sequence in Fig. (6-2) and a Solid Echo read-out, tl = .5ps for full spin spectrum, 30.31s
for chain ends excitation.
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from a state in which fewer couplings are available.

A more accurate insight into the state created can be obtained by studying more complex

dynamics, depending on the initial state. In particular, a sensitive probe of the dynamics of

a correlated many-spin system is the creation and evolution of multiple quantum coherences.

6.2.1 MQC dynamics

As seen in the introduction, grade raising Hamiltonians like the double-quantum Hamilto-

nian create very complex states of the spin systems, comprising coherent many-spin terms.

This evolution is very difficult to analyze and predict, unless we restrict it to one-dimensional

systems. In this case, the growth of coherence is slowed down by the fewer number of cou-

plings among spins. If we further assume that only nearest-neighbor couplings are present,

this limits the interaction of each spin to only two other spins, and the evolution under

the double-quantum Hamiltonian turns out to be exactly solvable [50]. Experimentally, the

nearest-neighbor approximation is accurate for short times, while for longer times, weaker

couplings start to produce appreciable corrections.

The most important characteristic of 1-D MQC experiments are the oscillations between

zero- and double-quantum coherences at short times. It is this restriction of the accessible

Hilbert space (that is exact at any time in the nearest-neighbor approximation) that makes

the problem tractable analytically. These oscillations are also a signature of the particular

initial state chosen, so that we would like to study them to predict the differences in behavior

that the initial state we prepare produces.

In the usual MQC experiment (see Section (4.2)), the initial condition is the thermal

equilibrium state p(0) = 1- do. We will compare the evolution of this state under the

double-quantum Hamiltonian with the dynamics of the state in which only the two spins

at the extremity of the chain are initially polarized: p'(0) = aE + a N . We will first present

an analytical result for the zero- and double-quantum intensities and then compare it to

the experimental results. The analytical result is obtained by mapping the spin system to

spinless fermion operators (see Appendix B):

j-1

= -J()o (6.2)
k=1

The diagonalization of the double-quantum Hamiltonian [50, 45] is accomplished by using
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the Fourier transform operators ak, ak:

2 N
ak = + 12 sin (kj)cj (6.3)

j=1

and the Bogoliubov [99] transformation:

ak= Ukdk + Ukt-kd (6.4)(6.4)
a-k = -Ukdk + V*kd k

The Hamiltonian nDQ = b•I=1 j a + +ajj+ 1 is then diagonalized to:

7-DQ = 2b cos kl(dkdk - 1), k N (6.5)
k

Initial States

We now express the two initial states considered in terms of Bogoliubov operators dk. The

thermal state has a particularly compact expression. Using the spin to fermion mapping

and the Fourier transformed operators, we have

p(0)= of =Z - cci) (6.6a)
j=1 j=1

2_ [N 1 1 1 ak(6.6b)S 2N+ E sin (kj)sin (hj) akah ( N ak (6.6b)
j=1 k,h k

where we have used the orthogonality relationship (B.13) to simplify the sum.

Using the Bogoliubov transformations (B.22), we have

p(O) = [1- Z ( + - k + tk(kdt _c +k dkdk))]

'= Ek Yk(dkd-k - kdt )

Consider now the initial state p'(0) = 1(af + ak). Because we are not summing over

all spins, it is no longer possible to use the orthogonality relationships as in (6.6b). This
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results in more cumbersome double sums.

p'() = ( + ) = 1 - (ct + cc
= 1 - N+1 Ek,h akah(sin(k) sin(h) + sin (Nk) sin (Nh)) (6.8)

= 1 - 2Ti -k,h akah sin(k) sin(h)(1 + cos [Nk + k] cos [Nh + h]),

where in the last line we have used the fact that sin (Nk) = - sin k cos ((N + 1)k). Applying

the Bogoliubov transformation we finally obtain:

p'(O) = 1 - Ni 1+Ek,h sinksinh(1 + cos [Nk + k] cos [Nh + hi)

(kdk + d-k yhdh + dh)

Evolution

The systems evolves under the double quantum hamiltonian with a dynamics described

by the propagator U(t) = exp (2ib Ek I cos kldtdk) (the term proportional to identity is

dropped since it does not contribute to the evolution of the density matrix). Since the

Bogoliubov operators diagonalize the double quantum hamiltonian, their evolution is easily

found to be:

e-idtdkdkeid~ddk = e'idk (6.10)

We now define the eigenphases Wk = 2btI cos kI and note that Pk = W-k and to introduce a

more compact notations we call 7kk COS

The thermal state evolution is easily calculated to be:

p(t) = 1 E k (dkd-ke 2i k - ddt ke- 2i kp) (6.11)

k

In order to separate contributions from different coherence orders, we must transform back

to the fermion operators ak. With some algebraic manipulations, we have

p(t)= -- cos k (at ak - Z Yk sin k(aa t k + aka-k) (6.12)
k k

p() p(+2).p(-2 )

The intensities of the nth quantum coherence as measured in MQC experiment is given

by Tr [p(n)p(-n)]. We evaluate the trace of the fermion operators ak, at in their corre-
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sponding occupational number representation, so that only terms like at ak are diagonal and

contribute to the trace. In particular we have:

Tr atat] = 2 N-1

TFt t 2N-2 for k k'; (6.13)
[ [h a 'aakI' 2N-1 for k = k'.

The normalized MQC intensities for zero and double quantum are finally given by1 :

Jo = E cos 2 (4bt cos k) (6.14a)
k

J2 = sin 2 (4bt cos k) (6.14b)
kI

The evolution of the polarization on the extremity of the chain is calculated from equa-

tions (6.9) and (6.10):

p'(t) = 1 - 1 k,h sink sin h(1 + cos [Nk + k] cos [Nh + h])

x (7kd -i k+ d-ketik (yhdheh+ d e-Ph

Again, we go back to fermion operators to distinguish contributions from different co-

herence orders:

p'(t) = 1- k,h sink sin h(1 + cos [Nk + k] cos [Nh + hi)

X +yke-ik(ykatk a-k) + eik(--yka-k + ) (6.16a)

x [yheiph (7hah + ath) + e-" (-yhaL h + ah)]

= 1 - Ek,h ink sinh(l + cos [Nk + k] cos [Nh + hi)
x [(coS co ah + k sin ~Vk sin Wh ah ) (6.16b)
+iyk sin k COSh (h ak - a•)]

As it was to be expected, also starting from the non collective initial state, only zero and

double quantum coherences are developed, if one only takes into account nearest neighbor

couplings. The following identities for the trace of fermion operators are useful to calculate

'Notice the discrepancy with the result in [50] which is due to incorrect boundary conditions
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the zero- and double-quantum intensities for this initial state:

2N-2 for k = k',h = h';

Tr at - k ah  = 2N-2 for k = -h', h = -k'; (6.17)

0 otherwise

The zero quantum contribution to the signal is J =- Tr [p)], with

P(o) = 1 - i k,h sink sin h(1 + cos [Nk + k] cos [Nh + hi)

x (cos ýPk cos (ha ah + Y7kh sin k sin cPhaha) (6.18)

Using Eq. (6.17), we can evaluate the trace Tr [P2)]

oe = 2N Ns k,h sink sin h(1 + cos [Nk + k] cos [Nh + hi)

x (cos Pk cos phTr [at h] + Yk7h sin k sinhTr [ahat])

+ (N--iv 2 kh sink sin h sink'sin h'
k',hI'

x(1 + cos [Nk + k] cos [Nh + h])(1 + cos [Nk' + k'] cos [Nh' + h'])
(6.19)

x (Tr [ak ahaah'] cos pk COS A COS 'Pk' COS 'Ph'+

Tr [ah taa' i] 7k7hYk'h' sinpksin hsin k' Snh'

Tr ka)kaha] 7k-yh sin pk sin COS Wk' COS h' +

Tr [ kahahia, ] Yk'h' COS Wk COS h sin Wk' sin PW)

obtaining the following expression:

= 2N - 2 N-1 (N-4 • k,h sin k2 (1 + cos [Nk + k]2 )(cos pk2 + k2 sin pk 2 )+

2N-2 4 kh sin k2 sin h2(1 + cos [Nk + k] cos [Nh + hi)2  (6.20)

x [cos pk 2 COS ph2 + sin Pk2 sin 'h2 - 'Yk6h sin pk Cos Wk sin 'h COS Ph]

where ik = 2bt cos k, and we note that 7k sin k = sin Ck.

Finally, the normalized zero-quantum intensity is given by:

(N 1)2 ink 2  2(1+ os [Nk + k] cos [Nh + h) cos (k h)2  (6.21)
k,h

The double quantum intensity is given by Je = Tr [P(2)P(-2)], where the ±2-quantum
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MQC excitation time (ms)

Figure 6-4: Zero- and double-quantum intensities as a function of the evolution time
under the double-quantum Hamiltonian. Nearest-neighbor couplings only are assumed, with
equal strength as given by the fitting to experimental data (see Fig. (6-6)). In particular
notice the clear differences in the behavior for the two initial states. Also the even-odd spin
number dependence of the MQC intensities is interesting: while this tends to go to zero for
large number of spins in the collective initial state case, this difference is observed even for
very large number of spins for the other initial state.

coherences are:

p (t) = k,hs in k sin h (1. + cos [Nk + k] cos [Nh + h]) (6.22a)P(2) (6.22a)
X7k sin 'k cos 'Ph atha..k

2)(t) k,h sinksinh (1 + cos [Nk + k] cos [Nh + h])
=N+1 (6.22b)

X y sin pk cos Ph a-kah

Inserting the expression for the trace of fermion operators (6.17) in (6.23),

4
S N + 1)2 E sink sin h sin k' sin h'

k,h

k',h' (6.23)
x (1 + cos [Nk + k] cos [Nh + hl)(1 + cos [Nk' + k'] cos [Nh' + h'])

x sin k COS bCh sin zk' COS h h'Tr [ahat -kkIah]

we obtain the final expression for the double quantum intensity evolution:

S= T k,h sin k2 sin h2 (1 + cos [Nk + k] cos [Nh + h]) 2 sin ( k + h)2  (6.24)

This more complex expression leads to a very different behavior of the coherence inten-
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sities as shown in Fig. (6-4), so that it is possible to distinguish even experimentally what

was the initial condition of the system.

6.3 Experiment

We performed the experiment on a 300MHz Bruker Avance Spectrometer, with an home

built probe tuned to 282.4MHz for the observation of Fluorine. The sample was a single

crystal of fluorapatite (Section (4.2)) provided by Prof. Ian Fisher, with a measured T1 ;

200s (this is a sign of low impurity concentrations).
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Figure 6-5: MQC intensities spectra, for the initial state po = at + aN and varying
evolution time under the 8- and 16-pulse sequence for the creation of the double-quantum
Hamiltonian.

We applied the pulse sequence as in Fig. (6-1) followed by a MQC-experiment sequence.

In particular, we used the 16-pulse sequence (except for the 3 shorter time-values, where

the 8-pulse sequence was used) to excite the spins, and a phase cycling with increments of

-p = 2r/8 to select up to the 4th coherence order, by repeating the experiment 16 times.

The time delay between pulses in the MQC sequence was varied from 2ps to 6.5ps, to
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increase the excitation time, as well as the number of repetition of the sequence itself (1

or 2 loops). The evolution of the quantum coherences were studied between the times of

37.6ps to 354.4ps. We compare the results obtained with the evolution for the thermal

equilibrium as initial state. In order to take into account the effects of imperfections in the

pulse sequence, we applied the pulse sequence as in Fig. (6-1) also to obtain the thermal

state, with a very short tl time (tl = 0.5= s). The spectra of the MQC intensities are

shown in Fig. (6-5) while in figure (6-6) we show the dynamics of the zero and double

quantum intensities, normalized to have sum = 1 to take into account the signal decay

for longer excitation times. We notice that the four-quantum coherence intensity is as

low as the baseline, indicating that the time scale is short enough for the nearest-neighbor

approximation to be valid (remember that the nearest-neighbor approximation predicts that

only zero- and double-quantum coherences are created).
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Figure 6-6: Experimental results. Left: the initial state is the collective thermal state

Ek ao. The experimental points have been fitted (dashed line) to the theoretical curves for
nearest neighbor coupling only, with the dipolar coupling as fitting parameter. The number
of spins was varied to find the best fit, which results to be N = 11 spins. Right: MQC
intensities for the initial state P0 - VZ1 + aN . Also plotted are the theory predictions for
the same dipolar coupling and 11 spins (solid line) or 10 spins (dashed line). A mixture
of chain lengths, with odd and even number of spins can justify the experimental behavior
observed (a constant behavior also for longer time) This behavior is also compatible with
the presence of longer chains.

The experimental results for the MQC oscillations starting from the thermal state have

been fitted to the theoretical curve, with the dipolar strength and the number of spin as

fitting parameters. An average number of a 11-12 spins is predicted. The concordance

with the theoretical predictions is very good, even if the state created contains residual

zero-quantum terms. The behavior at longer times for the end of chain state indicates that

a distribution of chains of different lengths is present.
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6.4 Applications

Transport of Zeeman and dipolar energy in spin systems, caused by energy conserving spin

flips, has been the object of much interest, both in the past [13] and in more recent years

[154, 19). The free-evolution transport appears as a gaussian decay, signature of a diffusive

behavior, even if it is driven by a unitary evolution that can be experimentally refocused by

acting on the system with specific rf pulse sequences [143, 18], which enable the observation

of polarization echoes [94, 53]. Experiments using pulse-gradient NMR techniques have

been conducted on time scales shorter than the spin-lattice relaxation time, T1, to measure

the diffusion constants. Even if these experiments explore the coherent regime of the spin-

dynamics, they still show that the non-conservation of the spatial degrees of freedom of

individual spins leads to a phenomenological diffusive behavior. The contradiction between

the unitary evolution and the observed irreversible dynamics can be qualitatively explained

only by the complexity of the quantum evolution: The many-body dynamics cannot be

fully captured by the simple measurements performed on the spin system that trace over

much of the information contained in the many-body system.

Various models have been proposed to describe the so-called spin diffusion, from classical

simulations [126] and hydrodynamics approach [66] to exact solutions taking into account

only the part of the dipolar Hamiltonian responsible for the spin flips [65]. This last approach

provides an analytical solution in 1D, which however does not agree with the long time

behavior of spin diffusion. It is anyway interesting to compare diffusion constants given by

experiments of spin diffusion and the time-scale of the transport given by this analytical

solution. Transport given by spin-flips only is interesting in its own, since, contrary to spin

diffusion, where even for small number of spins the polarization is never transfered to the

last spin in an appreciable amount [145, 21], spin-flips allow the transport of information

along a 1D chain. Even if this transfer is perfect only for 3 spins [36], a considerable amount

of polarization is still transported over longer distances, and the simple free transport can

be taken as a zeroth order approximation to more complex schemes for better transport

[78], involving external manipulation of the spin system.

Unfortunately, given the dipolar Hamiltonian (4.2) it is impossible with collective con-

trol to break its symmetry and obtain only the spin-flip part of it (the so-called flip-flop

Hamiltonian). When one restricts the interaction to nearest-neighbor couplings only, this

113



dynamics can however be simulated by the double-quantum Hamiltonian, which behaves in

the same way up to a similarity transformation given by the Bogoliubov transformation.

Consider the flip-flop Hamiltonian :

ff= Zbij (a'a+ )( a + Zo-'+ (6.25)
ij ij

In the limit of nearest-neighbor couplings only this can be expressed in terms of fermion

operators and diagonalized easily:

RIff = b (c i + cj t+) = 2b cos (k)at ak (6.26)
j k

This expression is similar to the double-quantum Hamiltonian (6.5) seen previously, except

that there we had to perform a further transformation to Bogoliubov operators to diagonal-

ize the Hamiltonian. This similarity in turn is reflected in the polarization dynamics, even

if it is important to mention that the dynamics is quite different with respect to coherences,

since the flip-flop Hamiltonian conserves the coherence order (so that the state is always in

the zero-quantum coherence manifold) while the double-quantum Hamiltonian can create

the double-quantum coherence order (and for couplings among all the spins it creates all

the even coherences, while the flip-flop Hamiltonian is still restricted to the zero-quantum

subspace only). Assuming that the polarization resides initially on just one spin, spin a,

the initial state is:

Pa(0 = - 2 sin (ka) sin (ha) atah (6.27)
k,h

which evolves under (6.26) as:

pa(t) = 1 2 sin (ka) sin (ha) e- 2ib(cos k-cos h)ta (6.28)
2 N+I

k,h

At a time t, the polarization transfered to another spin b is given by Tr [pa(t)ab], that is:

Pab() = N 4 1)21 sin (ka) sin (kb)e-2 ibt k (6.29)
k

With calculations similar to the one performed in Section (6.2.1), we can also compute

pa (t), that is, the state evolution under the double-quantum Hamiltonian, starting with
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the polarization on just the spin a:

P() = - N+ -k,h [(COS k COOS l•h aksah + sin ksinh aha) (630)

+i sin k COS lh(aa k -- a-kah)] sin (ka) sin (ha)

and thus the polarization that is transfered to the b spin at the time t by 'HDQ:

Pb (t) = )2Re sin (ka) sin (kb)e - 2ibtcos k , (6.31)( )2

where Re[.] is the real part of a complex number. Notice that these two very similar expres-

sions for the polarization transfer driven by the flip-flop and double-quantum Hamiltonian

yield the same result if the number of spins in the chain is odd, while the double quantum

Hamiltonian can transfer negative polarization (since it does not conserve the total polar-

ization along the z direction) to spins b, see Fig. (6-7). If we take the absolute value of the

polarization, the two Hamiltonians produce the same transport of polarization and therefore

the double-quantum Hamiltonian can be used to simulate the flip-flop Hamiltonian that is

not available in the system.
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Figure 6-7: Left: Polarization transfer from spin one to spin N for a chain of 21 spins
with nearest-neighbor coupling only, dipolar coupling strength as in the FAP chain. Right:
here we compare MQC intensities and polarization transfer in a 21-spin chain. The initial
state was the one we can prepare experimentally, P0 = ozf + aN .

The transport of polarization cannot be detected directly (unless one introduces very

strong magnetic field gradients, able to produce an appreciable change of frequency over

distances of some tens of angstroms). It is however possible to monitor the MQC intensities
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to detect the occurred transfer of polarization.

The zero- and double-quantum (normalized) intensities for an initial state with only

spin a polarized are given by:

= (N 1)2 Z sin (ka)2 sin (ah)2 cos (k + O h) 2  (6.32a)
k,h

J (N 1)2 sin (ka)2 sin (ha)2 sin (4k + 2h)2  (6.32b)
k,h

as obtained with calculations similar to the ones shown in Section (6.2.1).

These intensities present a beating every time the polarization reaches spin ({N, a} e N).

These beatings are particularly clear for the transfer from spin 1 to spin N, although they

would exist for the magnetization starting at any spin in the chain. If one is therefore

interested in the transfer of polarization from one end of the chain to the other it is possible

to follow this transfer driven by the double-quantum Hamiltonian by measuring the MQC

intensities, which, contrary to the polarization of a single spin, are detectable.

In Fig. (6-7) we show how this transport and detection method would look like in

our experimental set-up, where the initial state is po = a1 + aN . The beatings of the

MQC intensities is now faster than the transfer of polarization, since the polarization starts

spreading out from the two opposite ends of the chain and creates an extremum in the

MQC intensity also when the two waves meet at the center of the chain. This interference

can happen with a positive or negative phase, depending on the number (odd or even

respectively) of spins in the chain. Every two beatings, however, the maximum of the zero-

quantum intensity correspond to the transport of polarization from one end to the other

one.

It will be interesting to investigate the differences between the predicted rate of transport

and the experimental one, to observe the effects of the real couplings on the spin dynamics.

Next-nearest neighbor couplings and cross-chain couplings offer additional pathways that

can result in an acceleration of information transport, which has no classical counterpart.

This transition from a behavior that can be simulated classically to the more complex

quantum behavior is of tantamount importance in the context of QIP, where the efficiency

of a quantum computation is brought by the coherence and interference effects proper of

quantum mechanics.
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6.4.1 Estimate of the chain length

When the evolution of the system is restricted to the zero- and double-quantum manifolds

because of the dimensionality of the system and the restriction to nearest-neighbor couplings

only, the double-quantum Hamiltonian, that in 3D systems soon creates high coherence

states, mainly acts to transfer polarization and coherence along the chain. The observed

MQC intensity evolution thus depends critically on the chain length, even if the initial state

is the thermal state. In this case, the oscillations of the MQC intensities tend toward a

common behavior as N --+ oo, described by Bessel functions [50]):

Jo(t) = !(1 + J (8bt))
(6.33)

J2(t) = (1 - Jo(8bt))

where Jo(x) is the Bessel function of the first kind of order 0.

On the other side, for shorter chains, when the perturbation created by the double-

quantum Hamiltonian involves all the Hilbert space, the well-behaved oscillation break

down, and a more erratic behavior is observed, given by interferences among different parts

of the Hilbert space.

If only one spin is initially polarized, as explained previously, beatings are observed

each time the polarization is transported from one extremity of the chain to the other.

These features would be more clearly observable than the behavior of the thermal state

(this remains true even if there are two spins initially polarized at the opposite ends of the

chain as in our experimental situation). The time at which the MQC intensities present an

extremum is directly proportional to the number of spins in the chain 2 (for chain lengths

N > 5 - 6), and it is found numerically to be given by: t* = 0.3956 + 0.266N.

The state created by the sequence in Section (6.1) is therefore a useful tool to estimate

the average chain length in the crystal of fluorapatite. Since the first extremum of the

zero-quantum intensity is positive (negative) for odd (even) number of spins, if there is a

distribution of chain lengths as expected in practice, the extremum would not be visible,

since it would be averaged out. We have thus to detect the second extremum which is

always a maximum. Experimentally, this poses a challenge since the evolution time under

the double-quantum Hamiltonian could be quite long and effects of non-nearest neighbor
2Notice that there is a small difference in the time of polarization transfer and MQC beating, but they

are both directly proportional to the number of spins in the chain.
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couplings and, even worse, cross-chain couplings become important. Further studies on how

to reduce these problems are thus necessary.
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Figure 6-8: MQC intensities for increasing number of spins in the chain, with
initial state in the thermal state (left) and with only the two spin at the extremity of the
chain polarized (right). Notice how in this last case the extrema of the MQC intensities are
pushed out in time with increasing number of spins. Also notice the different behavior for
even and odd number of spins.

6.5 Conclusions

In this chapter we have studied a physical system, linear chains of spins in a single crystal of

FAP, that can be used for quantum information processing tasks. Since the physical char-

acteristics of the system and the experimental apparatus do not provide universal control

on the quantum spin system, we propose to use this system not as a candidate quantum

computer, but as a specific task-oriented QIP device. In particular, we have proposed a

scheme, combining unitary and non-unitary control, for creating a particular state that

breaks the natural symmetry of the system. The preparation of this state is the first step

toward universal control on the system, since if we could add the control over one single

spin to the collective control over all the other spins, universality could be obtained.

We have furthermore investigated a tool for acquiring a deeper knowledge of the state

and dynamics of the system, given the limitations in the read-out procedures. Multiple

quantum coherences allow us to gather more information on the multi-body aspects of the

system than simple direct observation of the collective polarization. In particular, we used

analytical solutions in the limit of nearest-neighbor couplings to interpret the experimental

results which confirm the preparation of the desired state.
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Finally, we proposed two applications of the state initialization and the MQC tools we

developed. We showed the transport of polarization along the chain given by the flip-flop

Hamiltonian and we proposed to study this transport experimentally by simulating it via

the double-quantum Hamiltonian with the detection made possible thanks to the relation

between the transfer to the opposite end of the chain and beatings (given by interferences)

of the MQC intensities. These beatings could also in principle allow one to estimate the

chain length, since they occur at a rate which is proportional to the chain length.

In conclusion, we have shown how even a quantum system without universal control

can be used to study many physical problems of interest in condensed matter theory and

quantum information science.
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Appendix A

A.1 Average Hamiltonian Theory

The time evolution of the density matrix is expressed by the Liouville equation:

ihý = [p,'H] (A.1)

which can be easily derived from the evolution of vector states described by Schr6dinger

equation. If the Hamiltonian W- were time-independent, the solution of this equation would

simply be:

p(t) = Up(O)Ut (A.2)

where the propagator U is given by

U = e- i iHt (A.3)

(we set h = 1). When H is time dependent and Hi(t) does not commute at different time,

it is no longer possible to find an explicit expression in this way, since in general:

eAe B y eA+B if [A,B] # O

The propagator U, even for a time dependent Hamiltonian, satisfies the equation:

dUi dt= ndt

Formal solutions [611 can be obtained in terms of the Dyson time-ordering operator:

U = Tefot -iH(t')dt'
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or using the Magnus expansion:

U = exp(-it[f(0) + (1) + (2) + .. .]} (A.7)

where the lowest order terms are:

_(O) _ fo -(tl)dtl

(1) _. fo dt [(ti), f dt2 (t2)] (A.8)
(2)= ft fdtl fi' dt2 t2 dt3 x

{([H(tl), 1(t 2)], h(t 3 )] + [(I(t 3), 1(t 2)], Ji(t1)]}

Usually the Hamiltonian of the system is composed by different terms, some of which

do not contribute to the interesting dynamics of the system. To remove them, we can make

a transformation to an interaction frame. For example in NMR, it is usual to remove the

large contribution given by the Zeeman Hamiltonian (which is time independent), since

experiments are also normally observed in what is called the rotating frame, given by the

Larmor frequency of the spins. If the overall Hamiltonian of the system can be written

as 7 = WJo + 'int + -rf (where we separated the Zeeman Hamiltonian o0 = wL Zk Oak

from the remaining internal Hamiltonian (1.1)), the transformation to the rotating frame

is operated by the propagator U = e- i~ot.

The evolution of the density matrix in the rotating frame 5 = UtpU, is then:

i, = iUtpU + iUtU + iUtpr =

-HoUtpU + Ut [-, p]U + UtpU-o = - o0, ] + [Ut HU, (A.9)

where 97- = Ut(W7int + 7-Gr)U. In the same way, we can "jump" to another interaction frame

defined by the rf Hamiltonian, and follow only the evolution of the system under its own

internal Hamiltonian. This frame is called toggling frame. In this case, since h- is not

time-independent, the frame transformation is given by the operator Ur satisfying:

iUrf = -_ Urf (A.10)
dt

(where from now on we do not explicitly use any notation for the rotating frame).
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The Liouville equation for the density matrix in the toggling frame is given by an

equation similar to A.9:

Z = [Nint, ], (A.11)

with hint = U·tlintUf, and the time evolution is given by:

(t) = Uintp(O)U1t, (A.12)

where Uint is given by the Dyson expression: Ui,t = Te- i f0  t(n t')dt' or the Magnus expres-

sion: Uint = e-it[rif + +t +'. . ] .I

Average Hamiltonian Theory (AHT) is the theory that studies the simplifications pro-

duced on these last equation by using a cyclic and periodic rf-Hamiltonian. If these condi-

tions are met, the expansion giving the propagator converges fast and one needs to evaluate

only the lower terms [68],[115].

The requirements for the application of Average Hamiltonian Theory are that the se-

quence should be:

* periodic: -(t + Nt) = W-4f(t) (for a cycle time tc, the sequence is repeated N times)

* cyclic: Urf(tc) = +1 (i.e. after a cycle the system is brought back to its initial state)

When both the two conditions are met we have Urf(Ntc) = 1. In this case, the internal

Hamiltonian propagator in the toggling frame has the nice property:

Uint(ntc, O) = Uint(ntc, (n - 1)tc) • • • Uint(2t, tc)Uit(tc, 0) = UU nt (tc, 0) (A.13)

(where the notation U(t2, t1) means the propagator from time tl to time t2). This equiva-

lence holds because 7ýint has acquired the same periodicity as Ur.

We define = k i•k) the effective Hamiltonian given by the Magnus expansion in

the time interval 0 - t,. If now we only look at the density matrix in observation windows

given by t = Ntc, the evolution is given by:

(Ntc) = e-iNtclp(O)eiNtR (A.14)

which is equivalent to the evolution under an effective time-independent Hamiltonian. If

furthermore tlNinltJ r tcwint < 1, the Magnus expansion will converge fast, even if the
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actual experiment is "long" (i.e. is repeated many time) in order to obtain an overall

appreciable dynamics.

Multiple pulse sequences [100] are normally designed in order to obtain some effective

Hamiltonian that modulates the wanted dynamics. An example is the 8-pulse sequence Fig.

(4-2), designed to create the Double-Quantum Hamiltonian. Since the design of a sequence

is not simple, one normally tries to obtain the wanted operator as the zeroth order term in

the Average Hamiltonian expansion for ideal pulses. Then all the pulse imperfections and

higher orders are considered as errors, and one should try to eliminate them.

For example, to eliminate the effects of finite pulse widths, one can try to adjust the

times of the pulses with respect to the delays, in order that they compensate each other.

To refocus higher order term, instead, one recurs to symmetry properties of the sequence.

It can be shown that if the Hamiltonian in the toggling frame is symmetric: ?t(tc - t) =

W(t), then all the odd order terms are zero. Neglecting pulse errors, to eliminate all the

odd orders is just enough to repeat twice the given sequence, back to back.

In general, one could in principle obtain a sequence which produces the wanted propa-

gator to an arbitrary order in the Magnus expansion [144].

A.2 Cumulant expansion solution

Consider a Closed System (CS), composed by the system of interest (from now on called

'the System') and another part that will be called 'the Environment'. The Hamiltonian

describing the overall CS is given by:

cCS -• + +-WE + -IES (A.15)

where 7Ws is the Hamiltonian acting on the System only, l(E acts on the Environment only

and '-tES describes the coupling between the System and the Environment. If we transform

to the interaction frame defined by the Environment Hamiltonian, with the transformation

UE = e - i" Et, the coupling Hamiltonian will acquire a time dependence:

fics = UETICS(UE)t = =S + 1-(t)ES (A.16)
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The reduced (open-system) Hamiltonian that predicts the evolution of the System will be

given by:

H = HDet(t) + 7-(t)Stoch = 7(t) + w(t)J (A.17)

i.e. by the sum of the System Hamiltonian and a stochastic, time dependent part, that

is obtained from the coupling Hamiltonian by tracing over the Environment degrees of

freedom. In our specific case of an NMR application, the operators acting on the spins (the

System) are defined in the rotating frame; the Environment is normally called the lattice

and its interaction with the spins is considered as the effect of noise on the system. 7W(t) is

then the sum of the secular internal Hamiltonian and time-dependent RF Hamiltonian in

the rotating frame, while w(t) is the stochastic, time-dependent fluctuating field and J is

the spin part of the noise operator. The time evolution of the (reduced) density matrix p

is then:

p(t) = Te-i fot •(t')dt'p(O)Tei Sf ?i(t')dt' (A.18)

or in superoperator form:

p(t) = Te-i fg C(t')dt'p(0) (A.19)

where £(t) is

£(t) = 7 0 1 - 1 ( &H (A.20)

Since the total Hamiltonian 'H is a stochastic operator, we have to take the ensemble average

of the propagator to obtain (p(t)). The problem of calculating the average of the exponential

of a stochastic operator has been solved by Kubo [86, 871 in terms of the cumulant function.

First, expand the time-ordered exponential U = (Te-i f(t')dt'):

S=1-ifo(H(t'))dt' + 2 fo dt fodt2 (H(t)H(t2 )) + (A.21)
(A.21)

-+ L. T fol odt 1 .. dtn(H(tl)... H(tn)) +""

where the term (H(tl) ... H(tn)) is called the nth moment of the distribution. We want

now express this same propagator in terms of the cumulant operator K(t), which is defined

such that

U = eK(t) (A.22)

125



The cumulant function itself can most generally be expressed as a series of term of increasing

order in time: 00(-it) (it)2
K(t) = n! K n = -itK + 2! K 2 + ... (A.23)

n=1

Expanding now the exponential A.22 using the expression in equation A.23 we have:

1 
2

U = 1 + K(t) + (K(t))2 + (A.24)(A.24)
= 1-itKr + (K2+ +K 2 ) + ' '

where in the second line we have separated terms of the same order in time. Comparing

expression A.24 with equation A.21, we see that by equating terms of the same order we

can obtain a set of equations, which will give us the expression for the cumulants Kn in

terms of the moments of order < n. For example:

K, = 7 fo<(C(t'))dt'
(A.25)K2 = [fodti fo1dt2(2(t1)(t)- K1](A

The propagator can therefore be expressed in terms of the cumulant averages:

(t)) ((t')) 
(A.26)

(C(tl),(t2))c = T(L(tl)L(t 2)) - (,(tl))(L(t2))

Therefore the propagator is given by:

U = exp j-i (1 (t'))dt' - -I dt j dt 2(1(t1 ) (t2))c +... (A.27)
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Appendix B

Fermion Operators

Spin operators of the Pauli group can be mapped to fermion operators, obeying the well-

known anticommutation relationships. This mapping is useful in describing the dynamics

of various 1D models, since some Hamiltonians can then be diagonalized analytically.

In the following we describe a particular mapping that is suited for describing the cre-

ation of Multiple Quantum Coherences.

A mapping from spin to fermion operators goes back to Jordan and Wigner [108], who

first transformed quantum spin S = 1/2 operators, which commute at different lattice sites,

into operators obeying a Clifford algebra (fermions). This transformation was used to map

the one-dimensional Ising model into a spinless fermion model, which is exactly solvable.

The JordanWigner transformation (JWT) has been recently generalized to the cases of

arbitrary spin S [9, 6] and to 2D spin systems [135].

Given a set of spin-I operators S5, each defined at a lattice site j, they obey the

commutation relationship:

[Sja, SO] = 5, 1iS7, (B.1)

where {a, 1, 7} = {x, y, z} and cyclic permutations of these indexes.

We can also introduce the operator Sf:

Sf = (ST + iS.)/2 (B.2)

which obey the commutation relationships:

[Sj , S[-] = 6j,12Sf, [Sf, S,] = +6j,12S+ (B.3)
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The Jordan-Wigner transformations map these operators to fermion operators cj, cf,

obeying the canonical anticommutation relationships:

{cjct} = 3j, {c 3 ,cj} = {cc,cI} = 0, (B.4)

where we adopted the notation { , } for anticommutators. A basis for the Hilbert space

on which these operators act is given by the occupation number representation In ) =

In, n2, --...,N), where nj = {0, 1} is the occupation number at site j. The state In) can be

obtained from the vacuum state by:

in) = (c )nj Ivac). (B.5)

Then, the action of the fermion operators on such states is given by:

cn) 0, if nj = 0 (B.6)
-(-1)c {n'), otherwise

where In') is the vector resulting when the jth entry of In) is changed to 0 and s = nk.

Analogously:

c-n) = f 1, if nj = 1 (B.7)1 -(-1)'7 In'), otherwise

where In') is the vector resulting when the jth entry of In) is changed to 1.

The mapping from spin to fermion operators can be expressed in several ways, the

most intuitive being based on identifying every basis vector in) in the occupation number

representation basis to the corresponding In) basis vector in the computational basis for

the spin operator Hilbert space. Imposing this one by one correspondence on basis states

and taking into account the respective actions of spin and fermion operators on their basis

vectors, one obtains the mapping:

c. = -~ (S) S7 ,c = - (jS) S  (B.8)

S = - a 1 o- 2c Ck C, st = + - 1 - 2cckk Ct

Notice also that Sz = 1 - 2ct c.
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Consider now the double quantum Hamiltonian:

N

l1DQ o= b o + o I ,I, (B.9)
j=1

where the couplings are restricted to the nearest neighbor spins only. (As explained in

Section (4.2), this can be obtained to 2nd order by acting on the dipolar Hamiltonian with

a sequence of rf pulses and delays).

We can express it in terms of the fermion operators as:

iHQ = bI ) L (Ij 1(1 - 2ckck)c+1 j-'(1 - 2ck) + h.c.) (B.
(B.10)

= b= 1 ((1 - 2c c)c c + h.c. = -bZL = 1c c + CCj+1,j -- )3 "j.1 + cj=j+l,

Notice that even if the mapping to fermion operators is non local, this quadratic Hamilto-

nian is mapped to a local Hamiltonian, when one considers only nearest neighbor couplings.

The Hamiltonian can then be diagonalized, by using the Fourier transform operators ak, at:

ak = sin (kj) cj, k= (B.11)j=l N+1 (B.11)

Cj = +1 EN sin (kj) ak

followed by a Bogoliubov [99] transformation.

Substituting expression (B.11) in equation (B.10) we have1 :

DQ = -b Ek,h Nj=1 sin (kj) sin (h(j + 1))(akah + aa)

- Ekhh(akah + aa) =1 [sin (kj) sin (hj) cos(h) + sin(kj) cos (hj) sin(h)]
-bEk,h(akah + aa) COs(h)(k,h - 6k,-h) = -b Ek cos(k)(naka + t

(B.12)

In the previous derivation we have used the following orthogonality relationships to

simplify the sums:

N 1, if k = h

N+1 sin(kj)sin(hj) = -1, if k = -h (B.13)
j=1

0, otherwise

1 Sums labeled by k are meant to be for n = 1, .., N
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and2 :
N/2

E sin(kj)cos(hj)= O (B.14)
j=-N/2

The Bogoliubov transformation is a canonical unitary transformation (or change of basis)

to a diagonal basis satisfying the same (anti-)commutation relationships as the initial one.

[3]

In our case, we want to find a set of operators {dk, d-k} that diagonalize the double

quantum Hamiltonian (B.12). We thus first express the evolution of the ak operators (in

the Heisenberg representation) under tiDQ:

dak
= i[H'HDQ, ak] = -ibcos(k)atk (B.15a)

dat
k = ibcos(k)a_-k (B.15b)

dt

The Bogoliubov transformation is given by the linear transformation:

ak = Ukdk + d 
(8.16)
(B.16)

a-k = -ukdk + V*kdtk

which ensures the {dk} obey the canonical anticommutation rules. Since these operators

diagonalize the double quantum Hamiltonian, their evolution is simply given by:

d dk
dt (B.17)

dd - ik d-k

where Ek are the eigenenergies and we have assumed Ek = =E-k. Substituting equations

(B.16) and (B.17) into (B.15) we obtain

Ek(-Ukdk + vd k) = bcosk(udt-k -Vkdk) (B.18)
Ek(u dk - Vkd-k) = bcos k(-u•d-k + vtdk)

2Notice that it is always possible to relabel the spin sites such that spins 1 -- N/2 are mapped to spins
-N/2 -- -1 and spins N/2 + 1 -+ N are mapped to spins 1 -- N/2
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which, since the dk are diagonal, define a set of equations in the coefficients {uk, vk}:

SUkfk = bvcosk cos k (B.19)
VkEk = b uk cos k

For this system to have a non-trivial solution, the corresponding determinant must be

zero:

Ek -b cos k
= 0 (B.20)

b cos k -ek

with solution Ek = bI cos ki. This in turns defines the coefficients {uk, vk} (given the nor-

malization condition 1uk12 + Ivk 2 - 1):

1 cos k 1
u = cos k Vk = (B.21)

V2- I cos k|

For sake of compactness, we will write yk =- ]

The Bogoliubov transformation in matrix form is then:

ak 7Yk 0 0 1 dk

a-k 1 0 -Yk 1 0 d-k (B.22)(B.22)
ak 0 1 7k 0 dt

at k 1 0 0 -7 k d k

Notice that the matrix is real, orthogonal (i.e. A-1 = A).

Using these transformations, the double quantum Hamiltonian is diagonalized to:

'DQ = -b1 in=lcos C os( dk_ _f_ d•) (B.23)

= 2b Ek I cos k (dtdk - ½)

Here and in the following we use the fact that Ek,hd-kd-h = Zk,h dkdh as it follows

retracing back the transformation to spin operators.
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