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Abstract

This thesis focuses on the study of GaAs quantum dot devices, in which an electron gas
is electrostatically confined to a small conducting island. The device dimensions are suffi-
ciently small that striking effects due to the capacitive charging of the island by a single
electron can be observed in the transistor characteristics, leading to a periodic dependence,
of the current on gate voltage. In particular, we study a quantum dot structure in which a
novel gate geometry allows the island to be contacted by three electron reservoirs. When
the dot charge is well-confined, periodic conductance oscillations due to Coulomb charging
are observed in-phase with each other at two of the leads in response to a small excitation
voltage at the third. As the tunnel barriers are made softer by changing the gate volt-
age, a strikingly different phenomenon is observed: conductance peaks at the two output
leads evolve from perfect correlation to perfect anti-correlation with each other. Two simple
models of transport in the weakly blockaded regime are presented as possible explanations.
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Chapter 1

Introduction

1.1 Motivation and Background

Recent advances in nanolithography have made possible the fabrication of semiconductor
structures in which electrons can be confined to a small conducting island, generally called
a “quantum dot.” At low temperatures, striking phenomena can be observed due to the
capacitive charging of the island by just a single electron. This effect can be exploited to
realize a “single electron transistor,” so called because it can be cycled from an insulating to
a conducting back to an insulating state on changing the effective channel charge by just one
electron. Quantum dots also sometimes called “artificial atoms” since the effective channel
consists of just a few tens or hundreds of electrons which are bound to discrete energy levels
by a three-dimensional potential. This thesis focuses on the experimental study of quantum
dot structures in gallium arsenide.

Because the blockage of current can be controlled by a gate electrode, suéh devices have
potential applications as amplifiers, detectors, and switches. Thus, there is an immediate
motivation from the basic research viewpoint to investigate whether novel effects in such

devices might be exploited to set the stage for a possible revolution in electronics [1]. In
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contrast to conventional field-effect transistor action, charging effecte due to single electrons
improve, rather than degrade, with shrinking dimensions. Finally, the natural discreteness
of quantum-mechanical phenomena in parameters such as charge, energy, and spin could
be exploited to encode bits. Upbeat prospectuses are given by Bate [2] and Likharev [3]
whereas a more pessimistic outlook is given by Landauer [4].

The ability to fabricate structures in which electrons can be confined to reduce their
effective dimensionality has also created a fertile playground for solid state physicists. Ad-
vances in microtechnology fabrication over the last decade have fueled discoveries in the
field of “mesoscopic physics,” loosely signifying the regime where both quantum mechanics
and statistical mechanics apply. Much of the early work [5] concentrated on the study of
transport in the quantum diffusive regime, where the device dimensions are smaller than
the inelastic mean free path but longer than the elastic mean free path. As it became pos-
sible to fabricate smaller structures, interest turned to the quantum ballistic regime, where
the device dimensions are shorter than both the elastic and inelastic mean free paths. An
elegant demonstration of ballistic transport came in the discovery that the conductance
of a narrow constriction — in which electrons are confined to a width comparable to the
Fermi wavelength Ap — increases in steps of 2¢2/h as each new one-dimensional channel is
opened [6, 7].

These experiments, along with previous work in our group [8], probed the quantum-
mechanical wave nature of the electron, observable when the confinement is comparable to
the Fermi wavelength (about 50 nm in a typical two-dimensional inversion layer). The study
of Coulomb blockade effects, which exploit the granular nature of the electron, was launched
by a curious experiment on double-gate silicon MOSFETSs by Scott-Thomas et al. [9]. In
a dirty semiconductor with many impurities, it would be expected that the conductance
would exhibit highly irregular (but reproducible) oscillations as the density is varied, due
to impurity potential fluctuations. Thus it came as a complete surprise when the measured

conductance was a periodic function of gate voltage, as shown in Fig. 1-1. Because the
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Figure 1-1: (a) Schematic of the electron channel in the structure of Scott-Thomas et al. [9]. Two
dominant charged impurities were believed responsible for pinching off an isolated segment of the
channel, giving rise to periodic conductance oscillations in (b).

period of the oscillation varied randomly from device to device, it was hypothesized that
two dominant charged impurities, positioned randomly in the channel, were responsible
for the effect. The experimental failure of the peaks to undergo Zeeman splitting in a
high magnetic field ruled out a simple explanation of resonant tunneling of non-interacting
electrons.

Soon after the data of Scott-Thomas et al. [9] was published, van Houten and Beenakker [10]
proposed the Coulomb blockade of interacting electrons as a possible explanation. Basically,
they hypothesized that the two impurities delimited a segment of the channel, forming a
natural quantum dot. The Coulomb blockade is based on the condition that the dot can
contain only an integer number of electrons and hence its charge changes discretely in mul-
tiples of the electron charge. Each conductance peak represents the addition of a single
electron to the dot.

The two-impurity hypothesis was verified by Meirav et al. [11], who used the structure
shown in Fig. 1-2(a) to produce in a controlled fashion a narrow electron channel interrupted

by two potential barriers. The structure consists of two Schottky gates used to squeeze
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Figure 1-2: (a) Schematic of the device structure of Meirav et al. [11]. A negative voltage on the
two Schottky gates on the top depletes the electron gas at the lower GaAs/AlGaAs interface below,
forming a narrow electron channel interrupted by two potential barriers at the constrictions. The
n+ GaAs substrates serves as a back gate to modulate the channel electron density. (b) Periodic
oscillations in the conductance as a function of back gate voltage for four devices of the type shown
in (a). The oscillation period correlates inversely with the spacing between constrictions L.



CHAPTER 1. INTRODUCTION 13

the electron gas laterally, while the n* substrate serves as a back gate to independently
modulate the channel electron density. As shown in Fig. 1-2(b), the voltage separation
between successive conductance peaks was found to depend on the separation between the
two potential barriers.

In the next section, we discuss the structure studied in this thesis, but before doing
so let us recap why this particular effect shows promise for future applications. The word
“transistor” understates the functionality of this device: it can be swept through a periodic
series of conducting and insulating states, with each peak in the conductance elegantly

counting the addition of a single electron to the dot.

1.2 Coupled Quantum Dot Structure and Thesis Outline

This thesis was originally motivated by the prospect of studying two quantum dots
in sufficiently close proximity that they can interact with each other. Coupling between
neighboring quantum dots can take two forms. If the coupling between the dots is simply
capacitive, changes in the electrostatic potential of one dot affect the potential of the other
dot. If the potential barrier separating the dots is made sufficiently thin, however, the two
dots can also exchange particles with each other. For future a.pplica.ti.ons, a double-dot
system would be the first step toward a quantum-based architecture in which two elements
could interact with each other without interconnects. From the viewpoint of fundamental
physics, a coupled dot system is interesting because of the interplay between two different
charging energy scales in the problem.

Figure 1-3 shows conceptually two coupled quantum dots. The dots can be accessed by
four contacts at the corners, allowing operation either (a) in parallel or (b) in series. As
discussed in Sect. 2.1, the electrostatic potential of a dot varies periodically in a sawtooth
fashion as the gate voltage is swept. When the dots operate in parallel (Fig. 1-3(a)), the

periodic variation of the potential of one dot swept through a series of conductance peaks



CHAPTER 1. INTRODUCTION 14

RESERVOIR

(a) Parallel (b) Series

Figure 1-3: Conceptual picture of two coupled quantum dots: (a) shows current flow for study of
parallel transport through dots; (b) shows current flow for study of series transport through dots.

should be detectable by a change in the current through the other dot. Such a capacitive
effect has been studied by Field et al. [12], in which a narrow constriction was used as
a “detector” rather than another dot. It would be particularly interesting to study the
parallel configuration in the time domain, where it might be possible to detect the changing
of the number of particles in one dot as a current flows through it.

The advantage of the proposed configuration is that it also offers the possibility to study
two quantum dots operating in series, as shown in Fig. 1-3(b). Using this structure, the
current through one of the dots can be compared directly with the series current through two
dots. The theory of transport through two coupled dots in series is discussed in Sect. 2.1.

The introduction of an additional tunnel barrier to allow particle exchange between two
dots opened up the possibility to perform an experiment not forseen at the outset. In the
series configuration depicted in Fig. 1-3(b), an electron which has tunneled into the upper
dot can exit the dot by tunneling into an empty state either in the upper right reservoir orin
the lower dot. If the electrostatic confinement of the lower dot is removed, a single quantum

dot contacted by three electron reservoirs is realized, as depicted in Fig. 1-4. The study of
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RESERVOIR

' RESERVOIR

Three-Terminal Quantum Dot

Figure 1-4: Electron distribution and current flow in a three-terminal quantum dot. The current
into the dot divides itself between the left reservoir and the right reservoir.

a three-terminal quantum dot, not carried out previously, produced some fundamental new
results reported in this thesis.

Chapter 2 reviews basic Coulomb blockade theory and recent experiments. Chapter 3
traces the path from designing devices to measuring them. Chapter 4 presents experimental
results, focusing on the study of the three-terminal quantum dot. Chapter 5 investigates
possible models for the experimental results. Chapter 6 is the conclusion and discusses

directions for future work.



Chapter 2

Review of Theory and

Experiments

2.1 Coulomb Blockade: Basic Concepts

The outline of this section is as follows. First, we understand the classical Coulomb
blockade phenomenon by studying a metal grain, where energy quantization can be ne-
glected. Then we generalize the treatment to the case of a semiconductor quantum dot in
equilibrium. Finally, we summarize the approach taken by Beenakker [13] to calculate the
current, which utilizes a non-equilibrium rate equation method.

Consider a metal grain with charge @ and at potential ¢(Q) capacitively coupled to
several conductors, as depicted in Fig. 2-1(a). The other conductors may be gate electrodes

or the leads from which electrons can tunnel on to or off of the grain. The charge Q on the

16
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NO COST COST=e?/2C
W(N) W(N)

N N+1
(b)

Figure 2-1: (a) Metal grain with charge Q at potential ¢ capacitively coupled to a number of
other conductors, which may be leads or gates. (b) Electrostatic energy W(N) showing conditions
under which an electron can be added to the grain at no cost in energy and under which the energy
cost is maximum.

grain is related to the voltages on the other conductors {V;} by the capacitances {C;}:1:2
Q=3 Ci(¢-V). (2.1)
Thus the electrostatic potential of the grain is
$(Q) = % + éZCiVi, (2.2)
where C = Y°i C:. The electrostatic energy required to bring the charge Q onto the grain is
W@ = [ 9@ =T+ (z: z ) Q=99 _g (2.9

where Qo = =Y ;C;V;. The grain contains an integer number N of electrons so that its

!The analysis assumes that the charge on the grain is fully imaged on the conductors and thus there is
no charge at infinity.
?An alternate formulation uses capacities instead of capacitances. See Ref. [14].
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charge is
Q= —Ne (2.4)

and Eq. (2.3) becomes

ezNg
2C

2
W(N) = §°;C-(N ~ No)? - (2.5)

where Np = —Qp/e = Y, C;Vi/e. Figure 2-1(b) illustrates this parabolic dependence in
two special cases. To minimize its energy, the grain must have N electrons when N — % <
Ny <N+%andN+1 electronswhenN+%<No <N+%. However, if Ny is set to be
N +% exactly, then W(N) = W(N +1) so that the number of electrons can fluctuate freely
between N and N + 1. As a result, current can flow. If the voltage V; on one electrode is

swept while the other voltages are fixed, this degeneracy occurs when

n=é(1v+%-§gie‘ﬁ) (2.6)
yielding a periodicity e/Cy in V,. When V, is not at one of these special degeneracy
points, the flow of current through the grain is impeded by the Coulomb blockade; when
Vs = eN/Cy, the Coulomb charging energy takes on its maximum value of e2/2C.
Quantum-mechanical effects become important when the Fermi wavelength of the elec-
trons is comparable to the length scale of the confinement. This condition is much easier
to satisfy in a semiconductor with low carrier density than in a metal. As a first approx-
imation, the effect of energy quantization can be accounted for by adding the energies of

the occupied single-particle levels to the electrostatic energy. Using Eq. (2.5), we obtain for
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the ground-state energy U(N)

(Ne)?

N
2C — Nedezt + Z Eps (2'7)

N
UN)=W(©N)+ Y Ep=
p=1 p=1

where ¢ezr = ¥; C;V;/C.3 Here the {E,} are the single-particle energy levels, relative to
the bottom of the potential well, in the bare confining potegtia.l @ezt- Quite generally one
can calculate the energy cost of adding the (N + 1)* electron to a dot with N electrons as

u(N+1)=UN+1)-U(N). (2.8)
For the simplified U(N) in Eq. (2.7), we find
1,e2
pN+1) = (N+3)7 = ebezt + Ent1. (2.9

The quantity u(N + 1) is the electrochemical potential, which is composed of the chemical
potential En4; plus the electrostatic potential energy —e¢(Q) with effective charge Q =
—(N + 1/2)e. Inclusion of the discrete energy levels leads to a spacing in gate voltage

between successive current peaks of

_ €  CEnun—-Ev _ Cp(N+1)-pN)
=g te, T ¢ o e !

(2.10)

where the factor Cg/C is the “lever arm” by which the gate voltage moves the bottom of the
potential well. For a set of energy levels with twofold spin degeneracy, AV, will alternately
have and not have a contribution due to the energy level spacing. For the experiment of
Meirav et al. [11], ¢/C, ~ 800 uV whereas the energy level spacing is estimated to be
100 peV [15, 16}, so that the classical model is still a good lowest-order approximation.

In order for current to flow, theé dot must be coupled to a reservoir with which it can

3A term accounting for the potential due to charged donor ions can also be included in @ez:.
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exchange particles. Consider the series of diagrams in Fig. 2-2 as the gate voltage sweeps
the device from a conductance minimum to a maximum to a minimum. The quasi-Fermi
levels of the two reservoirs are displaced by a very small voltage Vyj,. At the conductance
minima (diagrams 1 and 3), the gate voltage sets ¢..: so that the quasi-Fermi level of the
reservoirs lies midway between successive electrochemical potentials. In this case, there is a
Coulomb gap of approximately e2/C between the highest filled state and the lowest empty
state: an energy of €2 /2C is required to bring an electron at the quasi-Fermi level to the
lowest empty state in the dot or to bring an electron at the highest filled state in the dot
to the quasi-Fermi level. At the conductance maximum, the electrochemical potential lies
between the quasi-Fermi levels of the reservoirs. When an electron from the left reservoir
tunnels onto the dot, all the levelé are shifted up by e2/C, which prevents another electron
from tunneling into the dot. The electron can then tunnel into an empty state in the right
reservoir, the levels shift back down, the process repeats itself, and current flows. A key
point is that, at a conductance maximum, the electrons flow through the dot one at a time.

The above description is sufficient to understand the periodicity of the oscillations but
not their amplitude or width. The calculation of the conductance of a quantum dot was
carried out independently by Beenakker [13] using a rate-equation approach and by Meir,
Wingreen, and Lee [17] using an Anderson model. Here we will summarize the main result
of Ref. [13], along with the underlying assumptions. A very clear, pedagogical introduction
is given in Ref. [16).

The reservoirs are assumed to be composed of a continuum of states whose occupancy

is given by the Fermi-Dirac distribution function

1
1+ exp|E/kgT]’

f(E) (2.11)

where for convenience we reference all energies relative to the Fermi energy. The dot

is assumed to be composed of a number of single-particle levels {E,}, each of which is
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—é @) i%/// —%Z () /%//

Figure 2-3: Limiting cases of (a) a single level and (b) a continuum of levels.

-

characterized by tunnel rates 1";, and I'; (with kT > h(l";, + I'y)) to the left and right
reservoirs, respectively. The state of the quantum dot is characterized by a set of occupation
numbers {n,}, where n, = 1 if level p is occupied and n, = 0 if it is unoccupied. The
probability that the quantum dot is in a particular state is found by solving a kinetic
equation.

The main result of Ref. [13] is that the linear conductance (i.e., eVy,/kpT — 0) is given
by

e2 X = I\er .
G = 5T 2 2 T Ty el = Pl BN ), (212)

where pup = Ep + W(N + 1) — W(N). Here Po(N) is the equilibrium probability that
the dot contains N electrons, evaluated in the grand canonical ensemble; Feq(Ep|N) is the
conditional probability that level p is occupied given that there are N electrons in the
dot. Physically, the product of the distribution functions represents the probability that an
electron in a filled state of the reservoir has the requisite energy to tunnel into an empty

state of the dot. If kT < €2/2C, Pey(N) will be heavily weighted about one particular
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value of N.
Two limiting cases, depicted in Fig. 2-3, are of interest. If kg7 €« AE < e?/C (AE
is the energy level spacing), only a single level p of the dot is accessible. Then Eq. (2.12)

reduces to
2 l"’l‘ [T
= —¢2 Lple g ¢ -2 (2 2.13
G=—m /W =1, T T4 g 0 (2kBT)’ (213)

where f'(E) is the derivative of the Fermi-Dirac function. The classical limit, originally
studied by Kulik and Shekhter [19), is obtained when AE <« kgT < €%/C. In this case,

the summation over p reduces to an integral, yielding

— p*/ksT -2 ( B )
& I
Gmar 2AE I\l Pr 9 (2'15)

where I, T'" are evaluated at u*.

The 1/kpT dependence obta;ined for a single level is cancelled by the number kgT/AE
of levels that participate in the conduction. However, it is interesting to note that the peak
conductance Gmq, is only one-half the classical series conductance obtained in the limit
kpT > €?/C when the particle granularity is unimportant. The physical reason for this
factor of 2 is that the electrons can pass through the dot only one at a time, even though
the Coulomb blockade is lifted.

As the temperature is increased from kgT € AE to kgT >» AE, the amplitudes evolve
from having a T~! dependence to being temperature independent. The lineshape maintains
the same approximate functional form, but the FWHM is roughly 1.25 larger in the classical

limit. The transition from the resonant tunneling to the classical regime is nicely illustrated
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Figure 2-4: (a) Schematic of a two-dot system. The two dots are capacitatively coupled to each
other, gate, and leads. (b) Energy ladders for a two-dot system in the limit C; = C; = C3 <
Cyg1,Cy2. The incommensurate energy scales cause the conductance to evolve from periodic reso-
nances at higher temperatures to quasi-random oscillations at lower temperatures. From Ref. [18].

in Ref. [16).

Some theoretical work on Coulomb blockade transport through two coupled dots con-
nected in series has been done recently [18]. Figure 2-4 depicts two dots in series, coupled
by capacitances Cg; and Cgs to the gate electrode. The main result is that, if Cg; # Co,
then the conductance will be marked by periodic oscillations at higher temperatures which
give way to quasi-random oscillations at lower temperatures. The reasoning behind this is
that, at higher temperatures, the conductance of only the dot with greater charging energy
will be modulated by Coulomb blockade; states of the other dot will appear as a continuum.
As the temperature is lowered further, transport through both dots will be modulated by
Coulomb blockade, but generally it will not be possible to simultaneously align states in
the two dots with each other. A conductance maximum occurs when a state in one dot is
aligned with the quasi-Fermi level, but electron hopping to or from the corresponding state

in the other dot will be thermally activated. This thermal activation at the conductance



CHAPTER 2. REVIEW OF THEORY AND EXPERIMENTS 25

~ SC
W 80
70
Y <180mV V=250my Vg=310mV =~
15~ & €0
I ‘ -
10+ W co
05+ ;‘: 20
wv
S 20
s o § =
b= .20
-051 +U ~
a . 3 -
10k ' }?’ z -0
o
il | | @
A5k e badaall T 30
-06-03 0 0506 -06-03 0 0306 -06-03 0 03 08 -
Microns e

M ocrors

(o) (b)

Figure 2-5: (a) Equipotential contours calculated for the structure of Meirav et al. [11]. (b)
Conduction band edge versus position along a longitudinal cut through the center of the dot.

maxima is in contrast to the single dot case, where the conductance peaks are classically

temperature-independent.

2.2 Numerical Simulations

The previous section has given a textbook description of Coulomb charging effects in ide-
alized systems. Numerical simulations are often a useful tool to better understand Coulomb
and quantum-mechanical effects in actual experimental structures. Through a numerical
simulation, one can obtain a.pproximéte potential profiles and electron densities for arbi-
trary lLayer structures, device geometries, and bias conditions. This section summarizes the
results of several papers written in collaboration with Frank Stern and Steve Laux of IBM
Yorktown; Refs. [20, 21, 22] are reprinted in Appendix D.

Following the initial observation of periodic conductance oscillations, we carried out

numerical simulations to help determine the applicability of the Coulomb blockade pic-
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ture [22, 23, 24] which was controversial at the time [25, 26]. Figure 2-5(a) shows calculated
equipotential contours in the plane of the 2DEG (at the GaAs/AlGaAs interface) for the
structure of Meirav et al. [11]. The rounding of the contour lines can be understood in
terms of the attenuation of high wavevector Fourier components of the potential, as dis-
cussed in Ref. [20]. The areas occupied by electrons, such that the Fermi level is above the
conduction band edge, are shaded. A well-defined dot between the tunnel barriers is formed
which evolves into a continuous channel with increasing back gate voltage. This is also seen
in Fig. 2-5(b), which shows the conduction band edge along a longitudinal cut through
the center of the dot for various back gate voltages. To make connection with experiment,
we calculated the number of electrons in the dot as a function of back gate voltage Vg, as
plotted in Fig. 2-6. For experimental structures having periodicities of 0.6, 1.0, and 1.8 mV
(see Fig. 1-2(b)), we found the bottom gate voltage required to add a single electron to the
island to be 0.65, 0.9, and 1.2 mV,.respectively.4 Even with uncertainties about doping
levels and other parameters, the one electron per oscillation picture is the only plausible
conclusion.

The simulations are done by numerically solving the three-dimensional Poisson equation
V- eV(z,y,z) = p(¢) (2.16)

iteratively, where ¢(z, y, z) is the electrostatic potential, € is the dielectric permittivity, and
the charge density p(¢) includes contributions from electrons, holes, and ionized dopants.
The above simulations were done in the Thomas-Fermi approximation, where the electron
charge is evaluated semiclassically. The Thomas-Fermi approximation is sufficient for cal-
culating quantities such as capacitance and potential profiles, but ignores the quantum

mechanics which governs the electron distribution in the dot.

4These numbers are extracted from the nearly linear regime indicated in Fig. 2-6. In this regime, the Fermi
level just crosses the tops of the tunnel barriers, giving reasonable values of the transmission coefficients
when the lateral confinement is taken into account.
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Figure 2-6: Calculated number of electrons in dot as a function of gate voltage.

Quantum mechanics is included by using the Schrédinger equation to evaluate the elec-
tron charge density. The self-consistent problem in Eq. (2.16) is rendered much more difficult
because changes in the potential at one location affect the quantum charge everywhere, re-
sulting in a nonlocal dependence of charge on potential.> In the Hartree approximation,
the Poisson equation (2.16) is solved self-consistently with the one-electron Schrédinger
equation, yielding the single-particle eigenstates. Self-consistent calculations in the Hartree
approximation were first carried out for a three-dimensional GaAs quantum dot [27] by
Kumar, Laux, and Stern [21]. In three dimensions the calculations are very time consuming
and thus limited to dots containing only a few (< 12) electrons. However, Stopa [28] has
recently introduced a technique in which the effective dimensionality can be reduced from
three to two, making possible a self-consistent solution for a dot containing 70 electrons.
Reference [28] also generalizes Eq. (2.12), the master equation for the conductance, to the

case of self-consistently calculated energy levels.

*Reference [14] discusses the implications of this nonlocal dependence on the definition of capacitance.
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The Hartree approximation is a single-particle picture which omits many-body effects [29].
The consequences of many-body interactions on the energy spectrum are discussed for model
potentials in Refs. [30, 31, 32, 33, 34]. One error made in the single-particle Hartree approx-
imation that an electron sees the effect of its own charge on the potential which determines
its wave function. Such an error worsens as the number of particles is reduced. In the
local density functional approximation this error can be partially compensated by reduc-
ing the effective potential energy in t-;he Schrodinger equation at places of higher electron
density [35]. However, little change was found in the electron addition spectrum of a re-
alistic device geometry when this correction was included in the local density functional

approximation [23].

2.3 Review of Experiments

Since the initial work of Scott-Thomas et al. [9] and Meirav et al. [11], there has been
a tremendous interest in the field of few-electron semiconductor nanostructures. Naturally
most experiments have focused on gated structures in which a quantum dot is defined in
a controlled fashion; however, periodic oscillations have also been observed in disordered
GaAs channels [36, 37), in a Si quantum point contact [38], in nearly insulating indium
wires [39], and in a GaAs gate finger possibly damaged during processing [40]. This section
is a.n. attempt to summarize some of the many recent developments. Some reviews of early
experiments are given in Refs. [41, 42].

The evolution of the single-particle eigenstates of a quantum dot with a magnetic field
has been a subject of great interest. Basically, the classical circular orbits interact with the
walls of the confining potential, producing the well-known “edge states,” as explained nicely
in an article by Lent [43]. It seems plausible that one could map out the single particle
energy spectrum of the dot as a funqtion of magnetic field simply by subtracting off the e/C,

term from the spacing between successive peaks in Eq. (2.10). Furthermore, variation of the
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amplitudes of the peaks with magnetic field gives information about the coupling between
the lead and the particular eigenstate of the dot through which conduction occurs. This was
the broad motivation for the original work.by McEuen et al. [44], using the quantum dot
structures of Meirav et al. [11]. However, this simple picture was later found to be wrong [45].
The main fault is that the simple decomposition of the energy (2.7) into electrostatic and
single-particle level terms is really not valid; instead the energy of the interacting electron
system must be calculated self-consistently with the quantum-mechanical density of the
electrons, as discussed in Sect. 2.2.

A device structure is typically composed of several gates, each of which has its own
capacitance “lever arm” to the dot. The period of the conductance oscillations depends
on the capacitance of the particular gate being swept. By contrast, the charging energy
€2/2C required to bring an electron onto the dot at a conductance minimum depends on
C = ¥, Ci, where the sum is over all conductors. Since the finite valley conductance is
thermally activated, this charging energy can be estimated by fitting the conductance to a
thermally broadened lineshape. A puzzle in early experiments was that the sum of the gate
capacitances obtained from the various periodicities was appreciably smaller than the value
of C extracted from lineshape analysis [25, 46].

In later work by Foxman et al. [15], it was hypothesized that the missing capacitances
are the capacitances between the dot and the source/drain leads. To estimate the lead
capacitances, they performed a nonlinear measurement. Application of a finite (but not too
large) drain-source bias Vg, allows one to probe excited states of the dot at fized number.
This leads to additional conductance resonances which can be mapped out in the V; — Vg,
plane. If one traces these resonances in the V, — Vy, plane, they will move with slope
dVy,[/dVy = Cg/(C — Clead), allowing a direct measurément of Cjeaq. This relation follows
directly from Eq. (2.9) by equating u with the shifted Fermi level —eVj, of the biased lead.
The physical reason for this formula is that changing the lead voltage has two effects —

namely, to shift the bottom of the potential well and to alter the resonance condition.
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Figure 2-7: Scanning electron micrograph of the gate geometry of the structure used by Kouwen-
hoven et al. [48]. Gates 1 and 2 are used to form independently-controlled QPC’s. Gates 3 and 4
are not used.

The quantum dot structure of Meirav et al. [11] was fabricated on an inverted GaAs
heterostructure [47], which is not widely available. Kouwenhoven et al. [48] were able to re-
produce the basic results of Meirav et al. [11] using the geometry shown in Fig. 2-7 deposited
on a conventional modulation-doped GaAs/AlGaAs heterostructure, whose principle is de-
scribed in Sect. 3.1. This geometry has become a prototype for the many further transport
experiments carried out in GaAs quantum dots.

Two particularly noteworthy results became possible because of the ability to control
the left and right quantum point contacts (QPCs) independently using gates 1 and 2. The
conduc'tance through each QPC alone is the number of propagating one-dimensional chan-
nels times the quantum of conductance og = 2e?/h. If the leak rate through either QPC is
too large, the number of electrons in the dot will not be well-defined and there will be no
Coulomb blockade. Roughly, this will occur when the conductance of the QPC is ~ o since
the leak rate will be ~ 0g/C leading to an energy uncertainty ~ e?/C. Kouwenhoven et
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al. [48] found that the Coulomb blockade oscillations disappear just when the conductance
through one of the QPCs exceeds og. However, it should be noted that this may not be an
absolute upper limit, as Pasquier et al. [49] have found that small oscillations persist even
when both QPCs have conductances exceeding oq.

By modulating the two QPCs with two phase-shifted rf signals, Kouwenhoven et al. [50]
have implemented a “turnstile” device, in which only an integer number of electrons can
tunnel through the dot during each rf cycle. The current is therefore an integer multiple of
the electron charge times the rf frequency, with the integer controlled by the drain-source
voltage. Such a device might have applications as an accurate current standard.

With finite dot-lead coupling, there are corrections to the single electron tunneling
picture leading eventually to the Ohmic regime where no oscillations are observable. The
first correction is a process called co-tunneling, in which current flows through the dot by
simultaneous tunneling of an electron from source to dot and from dot to drain [51, 52].
This problem has been studied in depth in experiments by Pasquier et al. [49], who found
that a co-tunneling model accounts well for the finite conductance obtained at the valleys.
Basically, co-tunneling with an algebraic dependence on temperature dominates over simple
thermal activation as the dot-lead coupling increases with gate voltage. This is to be
contrasted with the work of Ref. [15], where the washout of the Coulomb blockade is viewed
as a geometrical effect in which the divergence of a capacitance quenches the charging
energy.

In the structure of Field et al. [12], a quantum dot is coupled to a narrow constriction,
as shown in Fig. 2-8. As the dot is swept through the Coulomb blockade oscillations, the
potential of the dot changes in a sawtooth fashion. In the tunneling regime, the resistance
of the constriction is very sensitive to changes in the potential of the quantum dot, with
which it is capacitively coupled. If a calibration procedure is applied to the resistance of
the constriction, the electrostatic potential of the dot can be obtained.

In a high perpendicular magnetic field, transport through the dot occurs via the edge
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Figure 2-8: (a) Coulomb blockade oscillations and resistance through the constriction “detector”
for the structure of Field et al. [12], pictured in the inset. (b) Dot potential obtained from calibration
procedure applied to constriction resistance.

channel of the lowest Landau level and is essentially one-dimensional. Because of the ab-
sence of backscattering, the chance for coherent resonant tunneling, in which the electron
maintains its phase memory, is greatly improved. Johnson et al. [53] have studied this
regime, where the transmission probability through both barriers can approach unity even
though each barrier, taken by itself, is highly reflective. Alphenaar et al. [54] have studied
the interplay of Coulomb blockade with the Aharanov-Bohm effect, which also results in
periodic conductance oscillations. Finally, Weis et al. [55] have studied a quantum dot in a
parallel magnetic field, so that spin-splitting effects are enhanced relative to orbital-splitting
effects.

All of the experiments discussed so far have focused on probing the properties of quan-
tum dots by passing a small current through the dot, known as transport spectroscopy.
Semiconductor quantum dots have also been studied by capacitance spectroscopy and by

far infrared spectroscopy. In capacitance spectroscopy [27, 56], the dot is coupled to only
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one reservoir, and a peak is observed in the capacitance signal every time the Fermi level
of the reservoir aligns with the energy required to add a new electron to the dot. Single
electron effects have also been observed dramatically using far infrared spectroscopy. In the
experiments of Meurer et al. [57), it was found that the absorption increased in a stepwise
fashion as a single electron was added to each dot in a large array.

Finally, it should be mentioned that the study of single electron effects in metals has
also been a very active field. Indeed the basic Coulomb blockade explanation can be traced
back to Gorter [58] in 1954. Coulomb charging effects have been studied in a metallic
island isolated by tunnel junctions [59] and in a metal droplet coupled to an STM tip [60).

Reference [61] discusses some applications of practical interest in metrology.



Chapter 3

Device Design, Fabrication, and

Measurement

3.1 GaAs/AlGaAs Heterostructures

Formation of a two-dimensional electron gas (2DEG), whose physical properties are re-
viewed in Ref. [62], is the first step in achieving confinement to create a quantum dot. To
date the highest electron mobilities have been attained using modulation-doped GaAs/AlGaAs
heterostructures grown by molecular beam epitaxy, in which the 2DEG is physically sepa-
rated from the ionized dopants by a spacer layer. Cross sections of two modulation-doped
GaAs/AlGaAs heterostructures used in this work are shown in Fig. 3-1. The calculated
conduction band edge for wafer MBE18 is plotted as a function of position in Fig. 3-2. Note
that surface states pin the Fermi level at the surface near the middle of the bandgap. The
conduction band edge discontinuity at the GaAs/AlGaAs interface confines electrons in a
steep triangular potential of which only the lowest subband is populated. The density of
carriers in the 2DEG is proportional to the donor doping in the AlGaAs.

34
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Figure 3-1: Two modulation-doped GaAs/AlGaAs heterostructures used in this work. The struc-
tures are grown by molecular beam epitaxy over a semi-insulating GaAs substrate. The n* regions
are typically Si-doped 10'® cm™2. (a) Shallow structure with mobility 2.5 x 10° cm?V~1s~! and
electron density 3 x 10!! cm™2. (b) Deeper heterostructure with mobility 5.8 x 10° cm?V~-'s~! and
electron density 4.6 x 10!! cm~2,
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Figure 3-2: Conduction band edge as a function of position for heterostructure MBE18, found

by solution of Poisson’s equation. Surface states pin the Fermi level at the surface near the middle
of the bandgap. The conduction band edge discontinuity at the GaAs/AlGaAs interface confines

electrons in a steeE (t;ria.ngular potential of which only the lowest subband is populated, resulting in

formation of a 2D
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Heterostructure MBE18, grown by Prof. Michael Melloch of Purdue University, has a
low temperature mobility of 2.5 x 105 cm?V—1s~! and electron density 3 x 101! cm~2. The
relatively low mobility, corresponding to a mean free path of 1.6 ym, is a consequence of the
thin spacer layer. Heterostruture VAR1146, grown by Dr. Julien Nagle of CSF Thomson,
has a low temperature mobility of 5.8 x 10> cm?V~1s~! and electron density 4.6 x 10!! cm™2.
The tradeoff of the higher mobility is a larger separation between the gates and the 2DEG,
resulting in less sharply confining potentials {20, 63].

3.2 Electron Confinement and Device Design

The most versatile way to achieve one-dimensional confinement on a GaAs/AlGaAs
heterostructure is by the split-gate technique illustrated in Fig. 3-3. As a negative voltage is
applied, the electrons directly underneath the gates are the first to be depleted. The voltage
required to fully deplete the carriers directly underneath the gate is called the 2-d threshold,
V24. Electrons in the channel are then depleted by the fringing fields of the gates, but at
a slower rate than in the 2-d regime. The voltage at which the channel is fully pinched off
is called the 1-d threshold, V}4. Davies [64) has derived a useful expression for the ratio of
these two threshold voltages: !

Via _ 2 w1
Vzd—(l ﬂ_arcta.nzd , (3.1)

where w is the slit width between the gates and d is the depth of the 2DEG below the surface.
The w/d ratio should be chosen so that a reasonable 1-d regime is obtained without inducing
appreciable gate leakage. For typical doping levels, Vo4 ~ —0.5 V, so that a width-to-depth
ratio w/d ~ 3 yields a reasonable value of Vj4 ~ —1.3 V. A comprehensive study of the

conditions required for observation of the 1-d regime is given in Ref. [65].

!Equation (3.1) assumes a uniform dielectric constant, which is a good approximation for GaAs and
AlGaAs.
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Figure 3-3: Conceptual picture of a 1-d channel formed using the split-gate scheme. A negative
voltage applied to the gates first depletes the electrons directly underneath. Electrons in the channel
are then depleted by the fringing capacitance. Figure courtesy of Cris Eugster.
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Figure 3-4 shows scanning electron micrographs of the gate geometry for three possible
schemes to realize the coupled quantum dot structure described in Sect. 1.2. The gates are
patterned on a GaAs/AlGaAs heterostructure using electron beam lithography, as described
in the next section. For all three schemes, the lithographic width of the quantum point
contacts (QPCs), which couple the dot to the leads, was chosen to be about 3 times the
depth of the 2DEG, in accordance with Eq. (3.1) above. Geometry I, the simplest design,
consists of three depletion gates. The thin middle gate is used to create a tunnel barrier.
This technique has been used by Eugster et al. [63, 66] to study the coupling between two
electron waveguides. The linewidth of the middle gate is crucial, as the current through a
thick barrier will be dominated by thermionic emission rather than by tunneling.

Geometry II utilizes a split-gate technique to implement the tunnel barrier. In this
scheme, some degree of independent control is available between the left and right QPCs.
Geometry III allows the maximum degree of independent control at the expense of com-
plexity. The conductances of the left and right QPCs can be set independently and the dot
size can be changed using the finger gate located inbetween.

For simplicity, the first sample contained only Geometry I and Geometry II. These three-
gate and four-gate structures were compatible with an existing mask set and electron-beam
lithography process. The first sample also included two structures to reproduce the basic
Coulomb blockade effect in a single dot. One of these structures has Geometry I except that
the middle gate was intentionally made very wide; the other structure is similar to that of
Kouwenhoven et al. [48] pictured in Fig. 2-7. Results obtained on devices with Geometry I
and Geometry II motivated us to process a later sample with Geometry III using a revised
optical mask set; unfortunately the lithographic yield on that sample turned out to be too

poor to find a working device.
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Figure 3-4: Scanning electron micrographs of three geometries used to realize a coupled dot
structure. Geometry I and Geometry II are the simplest designs, whereas Geometry III offers the
maximum degree of independent control.
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3.3 Device Processing

Sample dies from two optical mask set designs are shown in Figs. 3-5 and 3-6. The mask
set shown in Fig. 3-5 is the same as in Ref. [63]. It was used for the first sample because
of its immediate compatibility with the electron beam lithography process at NNF-Cornell,
described in Ref. [67]. The revised mask set shown in Fig. 3-6 was designed to accommodate
the independent control devices discussed in the last section.?

Both mask designs were designed to facilitate the bonding of a number of devices to
a 44-pin chip carrier. In the original mask design, one ohmic contact is shared among all
devices to allow the accommodation of 7 devices with 7 connections per device. In this case,
the ohmic contacts of all devices must be left floating during the measurement, which was
found to increase significantly the noise level. The shared ohmic contact was eliminated in
the revised design containing 4 devices with 11 connections per device.

The structure in the upper left corner is a van der Pauw structure for measuring the
carrier density and mobility [68]. The structure in the lower left corner is a transmission line
model which allows the contact resistance and sheet resistance to be extracted by finding
the resistance of a fixed mesa width for various gaps between contacts. The structures in the
upper and lower right corners are auxiliary devices with connections for 4 ohmic contacts
and 4 gates.

Device fabrication consists of five main steps:

(1) mesa isolation of devices,

(2) ohmic contact formation,

(3) 1st level gate metallization,

(4) electron beam lithography of gates, and
(5) 2nd level gate metallization.

Steps (1),(2),(3), and (5) involve features of several microns and can be done using optical

lithography at 400 nm. The gates required for electron confinement are of a sub 100 nm

2The design of the revised mask set and processing of the second sample were done in collaboration with
David Carter. .
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Figure 3-5: One die from the original mask set design. From Ref. [63]. The mask set is designed
to facilitate the bonding of the 7 interior devices to a 44-pin chip carrier. Each of the 7 interior
devices has connections for 4 ohmic contacts and 3 gates.
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Figure 3-6: One die from the revised mask set design. The mask set is designed to facilitate
the bonding of the 4 interior devices to a 44-pin chip carrier. Each of the 4 interior devices has
connections for 4 ohmic contacts and 7 gates.
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nature and must be done using either electron beam or x-ray lithography. The processing
recipe was adapted from Ref. [63] with minor modification and is reprinted in Appendix A;
the highlights are summarized below.

In Step (1), the 2DEG between devices is removed by immersing the sample in either
an H2SO4 or HO02/NH4OH etchant. In Step (2), Ni/Au/Ge ohmic contacts are evaporated
and sintered in a rapid thermal annealer at 425-430°C; the chemistry of ohmic contacts, not
very well understood, is discussed in Ref. [69]. The contact resistance should be checked
at room temperature using the transmission line model structure. If the contacts show
any rectifying character or if the contact resistance exceeds 1 ohm-mm, the current-voltage
characteristic should be checked at 77 K; test structures between adjacent dies of the revised
mask set allow this to be done with little sacrifice to the sample.

In Step (3), Ti/Au or Cr/Au metal lines and bonding pads are evaporated to form the
1st level gates. The metal lines extend over the device mesas to make contact to the fine
gates to be patterned in Step (4). Continuity between the fine gates with 15 nm metal
and the optically patterned lines depends sensitively on the liftoff profile in Step (3). To
check for continuity, the pinchoff characteristics of the devices should be measured at room
temperature after Step (4); weak modulation is indicative of a continuity problem, in which
case the 2nd level gate metallization in Step (5) should be performed.

In Step (4) the fine gates are patterned using a JEOL JBX 5DII electron beam lithog-
raphy system at the National Nanofabrication Facility [67). A bilayer pmma scheme, in
which a less sensitive resist is spun on top of a more sensitive resist, is used to enhance the
undercut profile. The critical middle gate is exposed by a single pass electron beam line at
an optimally-calibrated dose. Exposure is followed by development in MIBK:IPA (1:3) and
thermal evaporation of 15 nm Au/Pd (to minimize the grain size). The scanning electron
micrograph in Fig. 3-7 shows that a linewidth of 30-40 nm is attainable.

Before each of the processing steps, a rigorous solvent clean consisting of a trichloroethane

boil followed by ultrasound immersion in acetone and methanol is performed. Particular
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f(;gure 3-7:  High resolution scanning electron micrograph of middle gate, showing linewidth of
nm.
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care must be taken to insure that the surfaces are clean before the evaporation of any of
the contact metals; the present process uses uv-ozone to remove organics and residual re-
sist followed by immersion in Semico™ to strip oxides. For all metallization steps after
annealing, thermal evaporation is preferable to electron beam evaporation to reduce the
possibility of mobility degradation [67]. To facilitate liftoff, Steps (2), (3), and (5) utilize a
chlorobenzene soak procedure to create an overhang profile.

Before ending this section, it should be noted that x-ray lithography is a possible alter-
native to electron beam lithography. The x-ray process offers the advantage that much more
metal can be evaporated using a thicker pmma layer because the x-rays do not scatter later-
ally during exposure. In principle, Steps (3) and (4) above could be combined and Step (5)
would be eliminated in the x-ray process. However, the x-ray process is complicated by the
initial requirement to fabricate and replicate an x-ray mask. Although some attempts were
made to use x-ray lithography to pattern the fine features, a minimum linewidth comparable

to that in the electron beam process was not achieved during these trials.

3.4 Cryogenic System

The Coulomb blockade oscillations wash out as kgT approaches e2/2C. To date, single-
electron effects in semiconductor nanostructures have been observed only in the milli-Kelvin
regime, as limited by the device dimensions which set the capacitance scale. To study
Coulomb charging effects, our group acquired an Oxford Instruments Heliox insert with
base temperature of 300 mK. A qualitative description of its operation is given below; the
operating procedure is given in Appendix A.

A schematic of the Heliox is shown in Fig. 3-8, with the inner vacuum can (IVC) enlarged
to show detail. The insert achieves its base temperature by reducing the vapor pressure of
the 3He using a sorb pump, which adsorbs gas when cooled below a certain temperature
(around 12 K). After evacuating the IVC and pre-cooling in liquid nitrogen, the insert is
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Figure 3-8: Schematic of Oxford Instruments Heliox 300 mK insert with the interior of the inner
vacuum can (IVC) enlarged to show detail. The insert is lowered into a storage vessel of liquid “He.
Schematic courtesy of Gee Rittenhouse.
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lowered into a storage vessel of liquid 4‘He. Operation begins by admitting some liquid from
the 4He bath into the 1 K pot through the 1 K pot pickup tube. The temperature at the
1 K pot is brought to 1.2 K by reducing the vapor pressure of the ‘He with an external
rotary pump. The sorb pump is then heated; the 3He (normal boiling point 3.19 K) which
is released passes through the 1 K pot and condenses in the 0.3 K pot. The 1 K pot is kept
cold during the heating of the sorb by flowing 4He through the sorb pickup tube. When all
the 3He is condensed, the sorb heater is turned off and the temperature of the 0.3 K pot
drops rapidly to 300 mK as the sorb pumps on the 3He. The. hold time, limited by the 3He
charge, is about 30 hours for our unit. No noticeable effect on device characteristics was
seen from thermally cycling to 5 K, or to 77 K when the He vessel is refilled.

The insert is wired with 48 manganin leads which are thermally sunk to the 0.3 K pot.
The sample is affixed with silver paint onto a 44-pin chip carrier and bonded with an Al
wedge bonder. The back of the chip carrier is thermally sunk to the copper sample holder
by thermally conducting grease.

Some later measurements were taken at Saclay in a Tres Basse Temperatures dilution
refrigerator with superconducting magnet. A dilution refrigerator is able to achieve tem-
peratures < 50 mK by creating a very dilute phase of 3He dissolved in “He [70]. Practical
problems limited the base temperature of the Saclay fridge to 70 mK during these measure-

ments.

3.5 Measurement Circuit

Figure 3-9 shows a schematic of the gate geometry and resulting electron distribution
when a device with Geometry I in Fig. 3-4 is biased to realize a three-terminal quantum
dot. The bottom gate is grounded, leaving a semi-infinite 2DEG. The voltage V) is fixed
so that the middle gate acts as a tunnel barrier, as evidenced by an exponential tail in

the pinchoff characteristics. A small ac excitation voltage Vg, is applied at contact 3. The
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Figure 3-9: Schematic of the gate geometry of three-terminal quantum dot. Application of
negative gate voltages Vr and V) depletes the 2DEG underneath, leaving behind a dot coupled to
three leags. Four ao%’unic contacts allow access to the 2DEG. In our measurements a voltage Vj, is
applied at contact 3 and currents I3; and I3, are measured simultaneously as Vr is swept.

currents at the output leads I3; = G3Vy, and I32 = G32Vy, are measured simultaneously
using two low-noise current amplifiers as the top gate voltage Vr is swept. Each current
amplifier outputs a voltage which is measured using a lock-in amplifier.

Figure 3-10 shows in detail the circuits used for the measurement.®> The OP97 used in
the current preamplifiers was chosen because of its low current noise which is important
for high impedance measurements. The low bandwidth also helps reduce current noise but
limits the maximum frequency at which lock-in measurements can be done. The use of
active filters with differential input (V2 — V;) to obtain Vi and Vj, isolates the grounds of
the original voltage sources from the single-point ground of the measurement circuit. The
OP27 was chosen for these circuits because of its low voltage noise. For the drive voltage

Vs, the oscillator output of one of the lock-ins is used as the differential input of the active

3The circuits in this section were suggested by Nathan Belk.
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filter, which attenuates its input by 10000. For the dc gate voltages, a much lower cutoff
frequency is used. The differential input is either a simple battery for a fixed gate or the
Hewlett-Packard 3325 function generator for the gate being swept.

The current preamplifiers are isolated from the device by two 10 uF blocking capacitors.
The blocking capacitors serve to shield the device from the input offset voltage of the
operational amplifiers (typically 10-30 uV for the OP97). The input offset voltage will
be dropped entirely across the capacitor as long as the resistance of the path to ground
through the 10 ohm resistor of the drive voltage source is negligible compared to the leakage
resistance of the capacitor. This condition is always satisfied for the high-quality capacitors
used so that the two source reservoirs are virtual grounds of the circuit.

Several checks were done to verify that the offset voltages were properly compensated:

o When Vr is swept negative, the currents I3; and I3 are generally unequal due to
intrinsic, unintentional asymmetries in the device. However, essentially the same

traces for I3; and I3z were obtained if the current preamplifiers are interchanged.

e Any ac currents arising from dc offset voltages should be highly nonlinear in the drive
voltage Vy,. However, the currents I3; and I3, which are measured by an ac lock-in

technique, were always found to be linear in Vy,.

All the circuits are assembled on a circuit board tied to a single ground point. The
operation amplifiers are powered with simple batteries to avoid a ground loop. The entire
assembly is placed in a metal box and connected to the cryostat wiring by two shielded
twisted-pair cables. The voltage outputs of the two current preamplifiers are read by two
PAR 5210 model lock-in amplifiers. Data is recorded by a computer linked to the lock-ins
and HP 3325 by IEEE-488 buses.*

‘The data acquisition system was set up by Martin Burkhardt based on software written by Gee
Rittenhouse.
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Figure 3-10: Circuits used to measure a three-terminal device.
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Chapter 4

Experimental Results

4.1 Early Experiments

This section summarizes early experiments whose objective was to reproduce the basic
Coulomb blockade oscillations in a single quantum dot. For this reason the first sample

processed on MBE18 contained two types of test structures:

e A simple split-gate structure with Geometry I in Fig. 3-4 except that the middle gate
was intentionally made impenetrably wide, creating effectively two independent single
dots.

e A structure allowing independent control of the tunnel barriers, modeled after the
structure of Kouwenhoven et al. [48] pictured in Fig. 2-7(a).

Measurement of the basic oscillations proved to be elusive until the filter circuitry described
in Sect. 3.5 was implemented.

Figure 4-1 shows the Coulomb blockade oscillations first observed in the simple split-gate
structure depicted in the inset. Periodic oscillations are observable as the top and bottom

gates are tied together and swept. These results are consistent with the Meirav’s finding
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Figure 4-1: Periodic conductance oscillations observed in simple split-gate.structure shown
schematically in inset.

that clear oscillations could be observed by sweeping the upper depletion gates at a fixed
back gate voltage [46). In this type of structure, there is always some intrinsic asymmetry
between the left and right tunnel barriers, due to impurities and lithographic imperfection.
Coulomb blockade effects may not be observable in such a structure if the tunnel barriers
have very dissimilar conductances. This is probably the reason why other devices with
similar geometry on the same chip did not show Coulomb blockade oscillations.

By contrast, the structure depicted in the inset of Fig. 4-2 has a much higher proba-
bility of showing Coulomb blockade effects because the two tunnel barriers can be tuned
independently. The finger gate (VF) can then be swept with relatively little influence on
the conductances through the QPCs.! The first step is to characterize each QPC indepen-
dently. As shown in Fig. 4-3, the pinchoff characteristics are marked by a clear 2-d to 1-d

transition. In the 1-d regime, both QPCs show well-resolved conductance steps quantized

1t is important to remember that the oscillations are observable as the voltage on any gate is varied.



CHAPTER 4. EXPERIMENTAL RESULTS 53

15 |

10

Conductance (uS)

-0.9 -0.8 -0.7 -0.6
Gate Voltage Vg (V)

Figure 4-2: Conductance as a function of finger gate voltage Vr for four different values of Gp,

the conductance through the right QPC. The voltage V is set so that the conductance through the
left QPC is G = 10 uS.

in multiples of

2
og = 2% = 77.48 pS = (12906 Q). (4.1)

Figure 4-2 shows the conductance obtained for various values of the right QPC conductance
G r when the left QPC is biased well into the lowest subband (G, = 10 uS). The Coulomb
blockade oscillations are seen to wash out roughly when Gg > 70 uS. This result is
consistent with the findings of Kouwenhoven et al. [48]; however, Pasquier et al. [49] found
that small Coulomb blockade oscillations persist up to G + Gr = 30q.
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Figure 4-3: Quantized conductance steps for left (lower curve) and right (upper curve) QPCs. The
curves are displaced by 2e%/h for clarity. The top gate is fixed at -0.9 V while V; or Vj is swept.

4.2 Three-Terminal Quantum Dot: MIT Experiments

This section and the next one deal with three devices having the simple split-gate geom-
etry shown schematically in Fig. 4-4. The devices were all fabricated together on MBE18.
Device A and Device C have L = 0.6 um while Device B has L = 1 ym. All measurements
in this section were taken at 300 mK in zero magnetic field, using the Oxford Instruments
Heliox insert described in Sect. 3.4.

The first step is to characterize the middle gate. As shown in Fig. 4-5 for Device A, the
pinchoff characteristic is marked by two threshold voltages, V;1 and V2. The first threshold
at Viy = V,1 occurs when the 2DEG underneath the wide portion of the middle gate is
turned off. Because of the short-channel effect, a more negative threshold at Vys = V}2 is
required to turn off the 2DEG underneath the narrow portion of the middle gate. Physically,
a more negative voltage is required because the electric field of a 1-d line of charge decays

more slowly than that of a 2-d plane of charge. Close to pinchoff, the characteristic exhibits
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Figure 4-4: (a) Split-gate geometry over heterostructure MBE18 used to realize the devices studied.
(b) Device A and Device C have L = 0.6 ym while Device B has L =1 ym.
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Figure 4-5: Pinchoff characteristic of middle gate, found by measuring the cross-current as shown
with top and bottom gates grounded. The first threshold at Vs = V}; occurs when the 2DEG
underneath the wide portion of the middle gate is turned off. Because of the short-channel effect,
a more negative threshold at Vjy = V), is required to turn off the 2DEG underneath the narrow
portion of the middle gate. Close to pinchoff, the characteristic exhibits an exponential tail.
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an exponential tail. The middle gate should be biased in this regime if a tunnel barrier is
to be formed.

The procedure for realizing a three-terminal quantum dot is as follows. First, the con-
ductance through the tunnel barrier formed by the middle gate — henceforth called the
injector barrier — is set to 20 uS. The conductance is measured by applying a small excita-
tion voltage on one side of the injector barrier and measuring simultaneously the currents
at the two ohmic contacts on the opposite side.? The gate (top or bottom) on the opposite
side is then swept negative, as shown in Fig. 3-9. Due to intrinsic asymmetries between the
left and right tunnel barriers, the currents become unequal.

Figure 4-6 shows the two conductances measured for Device A.3 As originally antici-
pated, both conductances showed oscillations periodic in the gate voltage Vg. However,

two striking features stood out:

o The peaks of one current do not occur at the same gate voltage as peaks of the other
current. In fact, the peaks of one current sometimes coincide with the valleys of the
other.

e One of the currents actually changes sign at some of the deep valleys.

Neither of these observations was consistent with conventional single-electron tunneling
(SET) theory, according to which the oscillations must align with each other in gate voltage.

At this point there was strong motivation to see whether these effects could be repeated
in other devices. We now discuss results of Device B, in which the effects seen in Device A
were reconfirmed. Figure 4-7(a) shows the conductances G3; and G32, measured concur-
rently, as the top gate voltage V7 is swept. 4 The middle gate voltage Viy = —0.7 V is kept
fixed in the tunnel regime, as determined by an exponential tail in its pinchoff characteristic.

Due to some intrinsic, unintentional asymmetry in our structure, the QPC 2 has a turn-on

2 As in the discussion of Sect. 3.5, the conductance G¢m refers to the current measured at lead m divided
by the voltage Vy, applied at lead £.

3Weak oscillations were also visible in the top dot for the analogous biasing configuration.

*For an analogous biasing configuration, the bottom dot also showed the effect, although weakly.
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Figure 4-6: Conductances G;3 and G4 for Device A as bottom gate voltage Vg is swept. The
middle gate is fixed at voltage Vs = —0.84 V giving conductance Gy = 20 uS.
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voltage about 40 mV higher than QPC 1.

Figure 4-7(b) shows in detail the conductance oscillations in G3; and G33 as QPC 2 just
opens up. Also shown is the total conductance G3; + G32 through the dot. The perfect
alignment of the oscillations in G3; and G32 for Vzr < —0.555 V can be understood simply
from standard SET theory.? At a conductance maximum, an electron which has tunneled
into the dot from the input lead has some probability of being transmitted through either
one of the two output leads. As discussed in Chapter 5, the peaks in this regime are well
fit by a thermally broadened lineshape, so that the finite off-resonance conductance is due
primarily to thermally-excited carriers.

As the gate voltage is increased in Fig. 4-7(c), the peak-to-valley ratio in the total
dot conductance G3; + G32 drops markedly. However, instead of broadening accordingly,
resonances in the individual conductances G3; and G32 evolve from being perfectly correlated
to being perfectly anti-correlated with each other. Another striking feature of the anti-
correlated regime is that the current at lead 2 actually changes sign at some of the deep
valleys. The total conductance through the dot G3; + G32 is, however, always positive.

The opening of QPC 2 is marked by a rapid rise in the peak amplitudes of G32. During
this regime, it is likely that the conductance of QPC 2 is the limiting conductance for G3».
As the top gate is swept more positive, the rapid rise in the envelope of G32 stops and it
is likely that the limiting conductance for both G3; and G33 is that of the injector barrier.
Here the peaks in G32 push ahead of those in G3; before giving way to a transition region

without very clear resonances. Also notable is the beating pattern observed in G3; and G3s.

4.3 Three-Terminal Quantum Dot: Saclay Experiments

The measurements in this section were taken in collaboration with Philippe Debray at

5The oscillations are well-aligned even near the anomaly (probably caused by telegraph noise) at Vr =
—0.556 V.
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Figure 4-7: (a) Conductances G3; and G32 as the top gate voltage Vr is swept. The middle
gate voltage Vy = —0.7 V is fixed in the tunnel regime. (b) Detailed plot of the first several
resonances in (a), indicating that they are in-phase with each other. (c) Detailed plot of
resonances at higher Vr, indicating that they have evolved from almost perfect correlation
to almost perfect anti-correlation in gate voltage.
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Centre d’Etudes de Saclay in France. The measurements were done in a dilution refrigerator
at 70 mK. A superconducting magnet was also available.

. Figure 4-8 shows the conductances G3; and G32 for Device C as the top gate voltage
Vr is swept. In this case, clear regions of anti-correlated oscillations are seen (marked by
an arrow) but they are separated by regions of varying phase between the oscillations. This
intermixing was not seen in previous samples.

For comparison, the conductance G2 (scaled down by a factor 10) is also shown on
the same graph. The conductance G2 was obtained in a different sweep by measuring the
current at lead 2 in response to a voltage excitation at lead 1 while lead 3 and lead 4 were
floating. Both conductances G2 and G3; pinch off at at the same value of Vr, conﬁrmil\lg
Vr = —0.86 V as the threshold voltage for QPC 1. The conductance Gi2 rises rapidly,
reflecting the opening of QPC 1. The conductance G3; also rises rapidly at first, but
becomes limited by the conductance of the injector barrier. After QPC 1 has opened up,
it is reasonable to assume that both G3; and G32 are limited by the conductance of the
injector barrier, since QPC 2 opens sooner than QPC 1. The background conductances of
G131 and G32 follow each other, reflecting small changes in the transmission of the injector
barrier as Vr is swept. Near the first regime of anti-correlated oscillations (Vr ~ —0.83 V),
G112 ~ 12 uS. Since this is the minimum conductance of QPC 1 and QPC 2, it follows that
both QPC 1 and QPC 2 must have conductances that are a substantial fraction of e2/h.
By contrast, the conductance of the injector barrier, which limits G3; and G32, is less than
1 uS. The high conductances of QPC 1 and QPC 2 render the dot into the weakly blockaded
regime, as evidenced also by the poor peak-to-valley ratio of Gi2.

Figures 4-9 and 4-10 show the evolution of the conductances G3; and G32 as a small
perpendicular magnetic field is applied. Taking the area of the dot to be very roughly
7(0.2 pm)(0.125 pm)=8x10"10 cm?, we estimate the magnetic field required to add a flux
quantum $g = h/e = 4.14 x 107! T cm? to be 0.05 T. Little change is observed in the

conductances until B = 0.07 T, where G3; is suppressed near the region of anti-correlated
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Figure 4-8: Conductances G3; and G33 for Device C. Regions of anti-correlated oscillations
are marked by an arrow. For comparison, the conductance G;2 (scaled down by a factor 10)
is also plotted.
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Figure 4-9: Conductances G3; and G32 for Device C in magnetic fields of B = 0, B =
0.017 T, and B = 0.035 T.
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Figure 4-10: Conductances G3; and G32 for Device C in magnetic fields of B = 0.07,
B=0.14T, and B=0.28 T.
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Figure 4-11: Magnified view of first few oscillations for B =0.07 T and B =0.14 T.

oscillations and a second valley is pulled negative. Increasing the field to B = 0.14 T brings
G3; positive again.

Another change occurs in the first few oscillations, which are magnified in Fig. 4-11 for
B =0.07T and B = 0.14 T. For B = 0.07 T, G3; dips negative in a region where the
oscillations were previously well-correlated and positive definite. Again, raising the field
to B = 0.14 T seems to restore the alignment of the oscillations as well as their positive
definiteness. Finally, doubling the field again to B = 0.28 T causes large changes to both
G3; and Gs3s.



Chapter 5

Theoretical Modeling

This chapter focuses on trying to understand the experimental results presented in
Chapter 4. Section 5.1 discusses the weakly blockaded regime. Then two possible models
are presented: Sect. 5.2 discusses the polarization model and Sect. 5.3 discusses the Ohmic

model.

5.1 The Weakly Blockaded Regime

The data of Sects. 4.2 and 4.3 suggest that the anti-correlation effect occurs only when
the dot has opened up significantly and is therefore in the weakly blockaded regime. Quan-
titative support for this hypothesis can be found by analyzing the lineshapes for the data
of Device B, which showed clear regions of correlated and anti-correlated oscillations. Fig-
ure 5-1 shdws a fit of the total conductance! G3; + G332 to a thermally broadened lineshape

G(Vy) = 3 Gricosh ™2 (59%;—;,’"—)) (5.1)

1The individual conductances G3; and G3; are not used for lineshape analysis because of the negative
dips in G33 in the anti-correlated regime. In the correlated regime, the thermally broadened lineshape fits
equally well to G5; and Gs; as it does to Gs; + Gsa.

65
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Figure 5-1: Fit of a thermally broadened lineshape to the data for Device B in the (a)
correlated and (b) anti-correlated regimes.

~

in accordance with Eq. (2.14).2 The sum is taken over all resonances, and a is a fitting
parameter which physically represents the energy-to-voltage conversion ratio. In the corre-
lated regime, the fit of the thermally broadened lineshape to the total dot conductance is
excellent. However, in the anti-correlated regime, the fit of G3; + G32 progressively worsens,
predicting valleys much deeper and linewidths much narrower than given by the data.
Although the large valley conductance is a clear sign of the quenching of the Coulomb
blockade, the precise manner in which the single electron tunneling (SET) picture breaks
down has been a source of controversy. Foxman et al. [15] have found that the lineshapes
can be fit more generally by a thermally-broadened Lorentzian parameterized by a FWHM
of I, interpreted as the lifetime broadening of a resonance for a non-interacting system. In
this case, both a and T' are treated as fitting parameters, with @ = Cy/C yielding directly
the charging energy (U = €2/C in their notation). The results of the experiment of Foxman
et al. [15] are shown in Fig. 5-2. As the gate voltage V is raised, the charging energy U
falls rapidly while the lifetime broadening I increases exponentially. The charging energy

It is more likely that we are in the classical regime because of the slowly varying envelope of the
peak amplitudes, indicating no resonant structure due to individual energy levels. This is also reasonable
considering the temperature of the experiment in relation to the expected energy level splitting.
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U deduced from the lineshape agrees with that found from the sum of the gate and lead
capacitances. The dramatic drop in the charging energy arises from the rapid increase
of the capacitance C, between the dot and one of the leads. Therefore the washout of
the Coulomb blockade is viewed as a geometrical effect in which the divergence of the
capacitance quenches the charging energy.

With finite dot-lead coupling, the first correction to the SET picture occurs by a cor-
related tunneling process called co-tunneling, in which current flows through the dot by
simultaneous tunneling of an electron from source to dot and from dot to drain [51, 52].
Co-tunneling is a virtual process which does not require energy conservation in the dot.
Pasquier et al. [49] have fit the finite off-resonance conductance to a theoretical inelastic

co-tunneling current of the form [51]

h 1 1)\ V.
Iopt = 6—65010,( +—) [(kBT)2+ (e 1‘:’

2
e ) ] Vi (52)

where o4, are the conductances of the tunnel barriers and E} 2 are the changes in circuit
energy for the two co-tunneling events. As the conductances oy, increase, the finite con-
ductance at the Coulomb blockade valleys is dominated by co-tunneling with an algebraic
dependence on temperature rather than by the simple thermal activation found in the SET
picture.

In our data the valleys rise so rapidly that a lineshape analysis in the anti-correlated
regime is difficult. We have attempted without success to explain the anti-correlation effect
using the co-tunneling picture. However, the conductances in our system (e.g., Gi2 in
Fig. 4-8) are large enough that co-tunneling and other corrections cannot be viewed in a
perturbation approach, which is valid only when all conductances are small compared to
0Q = 2€2/h. Indeed, the very weak oscillations in G} for Device C (Fig. 4-8) are reminiscent
of the weak oscillations studied in Ref. [49] for the case of tunnel conductances comparable

to 0g, when the dot is nearly in the Ohmic regime. A theoretical treatment in this regime
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Figure 5-2: Results of the experiment of Foxman et al. [15] (a) As the gate voltage is increased,
the fit of the resonances to the derivative of the Fermi-Dirac function breaks down in favor of a
thermally broadened Lorentzian parameterized by a FWHM of I. (b) The fit value of I', the FWHM
of the thermally broadened Lorentzian. (c) The charging energy, defined here to be U = €2/C,
deduced from the lineshape fit (triangles) and from summing the capacitances (filled circles). (d)
The capacitance C,. between the dot and the right lead increases rapidly as the peak-to-valley ratio
decreases.
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Figure 5-3: Energy bands for case of asymmetric barriers. As top gate voltage is increased
from (a) to (b), the tunnel barriers become softer and the effective asymmetry is amplified.
The shaded area represents filled states in the dot at a conductance maximum.

is lacking. In light of these difficulties, we choose in Sect. 5.2 to focus on a model based on

classical capacitances rather than on a co-tunneling approach.

5.2 Polarization Model

The model presented in this section was proposed by Jari Kinaret of Nordita. The crucial
ingredient of the model is that there is some intrinsic, unintentional asymmetry between the
right and left tunnel barriers which causes the local chemical potentials to be different on
the left and the right sides of the dot. We can associate an effective capacitance with each
barrier, the value of which depends on the barrier thickness and height. As the barriers are
made softer by increasing the top gate voltage V7, the barrier capacitances increase and
the relative barrier asymmetry becomes more important, as illustrated in Fig. 5-3. In this
regime it is no longer obvious that the transitions necessary to produce current peaks at

the left and right leads will resonate at the same gate voltage.
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Figure 5-4: Lumped-element circuit containing dot and two quasi-reservoirs to model effect
of unequal electrochemical potentials on left and right sides of the dot. The quasi-reservoirs
are strongly coupled to the actual reservoirs by large capacitances Cr and 8’3.

Figure 5-4 depicts a lumped-element circuit used as a first approximation to model the
effect of unequal electrochemical potentials. In addition to the dot with quantized charge
Qp = —Npe, the model contains two quasi-reservoirs which are coupled to the actual
reservoirs by large capacitances C;, and Cg. Physically, if a test charge is placed in a quasi-
reservoir, representing the part of the lead nearest the barrier, it will be partially imaged in
the dot and partially imaged in the actual reservoir. The small capacitance to the injector
reservoir is not included in the calculation for simplicity. The strategy is to calculate the
resonant gate voltages for the transitions leading to peaks in the left and right currents.

Following the procedure used in Sect. 2.1, the potentials of the dots and quasi-reservoirs

are expressed as functions of the charges and gate voltage:

¢p(QL,Qp,Qr;Vy) = é; (Qp +7LQL +YrRQR + CyVy) (5.3)
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¢L(QL,Qp,Qr;Vy) = 'CI‘TL(QL'FCJL#SD) (5.4)
6r(QL,Qp,Qr;V,) = C-,ln(oﬁcmo). (5.5)

Here vr(r) = Cuar(ar)/CL(r)> CL(ry = CL(r) + CaL(dr) and Ci=Cyg+(1—7L)Car +(1-
Yr)Cdar. The electrostatic energy of the circuit in Fig. 5-4 is

Qp QL
W(Qp,QL,QriV,) = /0 0(0,@’,0;V;) dQp + ]0 61(QL,Qp,0;V,) dQ),

+ 7" on(@1 @0, Qi) 4k (5.6)
= 1 2. 1 2, 1
= 2C-,d(QD +7LQL +YrRQR)® + 25’LQL + 2C~'RQR
+ %VQ(QD +7LQL + 7rQR). (5.7)

The model assumes that the time-averaged charges Q; and Qp are given by the classical
electrostatics relations 8W/0Q(g) = 0, yielding

CaL

QL@piVy) = - Co+Cu + Can (Qp +CgVy) (5.8)
—_ C —
Q@Y%) = -GGy 7 @0+ CaVa) (5.9)

where Q) is the time-averaged dot charge.

The next step is to choose a basis of states (Qg),Qg) ,Qg)) for the system consisting
of the dot and the two quasi-reservoirs. The set of states used in the model is shown
in Fig. 5-5(a) and includes the lowest-energy unit polarization fluctuations of the states
(QL,Qp,Qr) and (QL,Qp + q,QRr). The set of states is minimal because it includes only

the crucial states® and symmetric because ¢ = e and g = —e give the same result. Each state

SFor example, the four excited states (QL + qd, QD -4q, QR)! (an QD —q, QR + q),(QL -4q, QD + qu QR),
and (Qr,Qp + 29,Qr — q) are discarded even though they are unit polarization fluctuations.
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Figure 5-5: (a) Minimal, symmetric set of states used in polarization model. (b) Possible
transitions between states.

~

i has a certain probability P; of occupancy. In equilibrium (i.e., V4, = 0), the occupancy

probabilities are found in the grand canonical ensemble? so that

P= exp(~W;/kpT)

= ¥ exp(—W;/kgT)’ (5.10)

where W; is the energy of state ¢ calculated from Eq. (5.7).

The possible transitions between the states are shown in Fig. 5-5(b). The procedure for
finding the gate voltages at which each of the 5 transitions I,L,L/,R,R’ are at resonance is
as follows. The electrostatic energies of the two states ¢+ and j involved in each transition

are equated, relating the resonant gate voltage V; to the charges (QL,Qp = —Npe, QR):
w @, .0 vy) =w(@?,eF,ef; V). (5.11)

The charges Q@ and Qg can be related back to the gate voltage V; and dot charge
Qp = —Npe by equating the time-averaged charges Q; and Qp for the basis set with
the classical electrostatics values given in Eqgs. (5.8-5.9). Carrying out the time averages

4Recall that the zero of energy is taken to be the Fermi energy Er in the reservoirs.
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QL( R =2 P,-ng g) for the basis set in Fig. 5-5(a) yields

QL = Q.(@Qp;V,y)—éqr with &qr = (Ps— Ps)q (5.12)
Qr = Qr(@p;V,)—égr with dqr = (Ps— P3)q, (5.13)

where the time-averaged charge @Qp = ¥; P.-Qg) is similarly given by
Qp=Qp+9dgp with 6&gp = (P2+ P3+ Pe)q. (5.14)

If Eq. (5.14) is substituted into Eqgs. (5.8-5.9), Eqs. (5.12-5.13) and the resonant condition
Eq. (5.11) yield three coupled transcendental equations in the unknowns Vg, Qr, and Qr
for each of the 5 transitions shown in Fig. 5-5(b).

In general this system must be solved numerically, but let us illustrate some special
limiting cases. In the limit Cr,CRg 3 Cg4,CaL,Car, We must recover the conventional SET
theory result that all transitions are at resonance at the same gate voltage. In this limit,

Eq. (5.7) reduces to

2
W(Qb,QL,Qr; Vg) = EQC—I';' + QD‘/g, (5.15)

which is the same as Eq. (2.3). All 5 transitions are found to resonate at the same gate
voltage V, = e(Np — %)/Cg with g set to e.

As the tunnel barriers become softer with increasing V;, the capacitances Cyr,Cagr be-
come comparable to CL,Cg. As a simplifying example, let us consider the extreme asym-
metric limit Cy;, = C = Cr 3» Cy,Car = 0 so that v, = 1/2 and g = 0. Physically, this
corresponds to the case where the left tunnel barrier has essentially disappeared. Solving

Eq. (5.11) for the resonant gate voltages for each transition yields (for the case ¢ = e)

N] = Np+(ap+ar)-1 (5.16)
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N' = Np- % (5.17)
NY = Np- % (5.18)
NgR = Np+(ap+ar)—agr- g (5.19)
NgR' = Np+(ap+ar)—agr- %, (5.20)

where Ny = C;V, /e and ayp gy = dq1(p,r)/e. At the injector resonance, P, = P = P; =
Ps and P3 = Py so that ap = 1/2,a; = 0; thus we find that the transitions I,L,L’ are all at

resonance when

Nl'=NL=Nl=nNp- % (5.21)
The equations for the right resonances R,R’ must be solved numerically and are shown
in Fig. 5-6 as a function of U/kpT where U = €2/Cy. The right resonances are strongly
shifted; the temperature dependence can be understood by noting that for U/kgT < 1 all
states become equally populated, requiring af = ag = 0,ap = 1/2. For U/kpgT < 2, the
right resonances have moved midway between successive left/injector resonances, indicated
by dashed lines.?

Figure 5-6 also indicates the most energetically favorable states of the system, which
are degenerate at Ng = Np — % A curious consequence of the minus sign in front of the
ap term in Egs. (5.19-5.20) is that the states that participate in the R and R’ transitions
are ezcited states of the system over the gate voltage range for which the transitions are at
resonance. Thus the right resonances always require thermal activation.

To study how the transitions evolve as the left and right tunnel barriers open up, we can

fix T in the high temperature regime and vary the capacitances C4r,Cqr. Figure 5-7 shows

5The low temperature (U/ksT 3 1) behavior should be interpreted with caution, since the right reso-
nances begin to overlap with the neighboring left /injector resonances.
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Figure 5-6: Gate voltage at which transitions R,R’ are at resonance as a function of U/kpT

where U = e2/C'L, in the extreme asymmetric limit. The dashed lines indicate resonance
positions for transitions I,L,L’.
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Figure 5-7: Gate voltages at which each of the transitions L,L',R,R’ are at resonance
(relative to the position of the I resonance) as capacitances Cyz and Cyp are increased, for
the highly asymmetric case Cyqr = 10Cyp.
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the results of a calculation in which the resonant gate voltage positions for the transitions
L,L',R,R’ are plotted as a function of Cyz, for the highly asymmetric case Cy;, = 10Cyp.
With increasing Cy; = 10CyRg, the injector resonance is unchanged and the left resonances
are shifted only a little. However, the right resonances are strongly shifted; in the limiting
case Cyq,/Cr, =~ 1, when the left barrier has essentially disappeared, transitions R,R’ are at
resonance almost midway between successive injector resonances, as in Fig. 5-6.

As in Sect. 2.1, the approach so far is sufficient for calculating the resonant gate voltages
for each transition but not the currents at the left and right leads. A peak in the current

measured at the left lead could occur by one of two possible chains of events:

£ :(QL,Qp,Qr) > (Q1,Qp +4,Qr) L (QL+4¢,Qp,Qr) = (QL,Qp,Qr) (5.22)
L:(QL,Qp,Qr) = (QL - 9:Qp +¢,Qr) = (QL,Qp + ¢,Qr) * (QL,QD,Qr). (5.23)

The L' (L) chain of events describes the transfer of a charge ¢ (—g) from the injector to
the left reservoir.® Analogous chains of events R',R give rise to current peaks at the right
lead. In the extreme asymmetric limit, we have found that for R',R, all transitions do
not resonate at the same gate voltage .a.nd some transitions must be thermally activated.
The currents can be found by using a rate-equation approach to determine the probabilities
{P;} rather than the equilibrium distribution assumed in Eq. (5.10). Figure 5-8 shows the
currents I ,Ir, and I + Ir obtained through such a calculation, in which 20 states are used
instead of the 6 in the minimal, symmetric model.” When Cjyz,Cqp are still comparable to
Cy, the current peaks are aligned. As Cyr,Cyr are increased, the peaks evolve from being
slightly separated in gate voltage to being completely anti-aligned when Cqaf, 3> Cy4r > C,.
Over the same range, the total current I} + I evolves from being strongly modulated to

being very weakly modulated.

$The L chain of events can be written in a form similar to that of £’ by substituting @p = Qp+4,¢' = —q.
7 Actually, the minimal, symmetric model was conceived to physically understand these results.



CHAPTER 5. THEORETICAL MODELING 77

(a) CdL= 10 fF, CdR= 1fF

C A/‘S’\z(%

- sk

L s

F i _

- ]-t
R : a 1 (6)Cy = 100fF, Cyg=101F
s |
~ ;; || \,\ “‘ !
E £ ! ,'! y‘\,‘{ !
o SR ]
— { [i ; * i
o S :

XY
‘v
[N

N
//
e
"
o _
(\
[ ,L_._,.Al_gav/L_J.JA.‘. PR

(¢) Cgp =750 fF, Cgp =75 fF

AN TN
o — _ v Model parameters:
Gate Voltage Vg (a.u)) | c =15,
T20.2 mK, V=05 uV

Figure 5-8: Results of numerical calculation showing separation of peaks in I and Ip as
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5.3 Ohmic Model

The idea on which this model is based was suggested by David Carter of MIT. Suppose
that one replaces each of the tunnel barriers in the three-terminal quantum dot by a simple
resistor, as shown in the inset of Fig. 5-9. As the top gate voltage is increased, the resistances
R; and R will drop rapidly while R3 will remain approximately constant. If R3 > R, Ro,
then R3 will act as a current-limiting resistor so that the total current I;o, = I3; + I32 >~
Vas/R3. If the resistances R, R2 are changed in this current-biased regime, the currents I3;
and I37 adjust themselves to keep the total current constant. Thus, even when Ry decreases,
I3o also decreases if R; falls more than Rs.

This increase in one current at the expense of the other is reminiscent of our conductance
data in the regime where the oscillations are anti-correlated. To illustrate this, let us make
an ad hoc assumption about the gate-voltage dependences of the conductances G; = (R;)~!

and Go = (R2)—l:

G1 =0q exp[—a(Ny — N, )] (1 — Asin2rNy)
G2 = 0Q exp[—a(Ng — Ng2)] (1 — Bsin2nNy), (5.24)

where Ny = CyVy/e is the normalized gate voltage. The exponential term represents the
usual behavior of a QPC near turn-on while the sinusoid imposes some modulation with the
characteristic e/Cy periodicity. To introduce some asymmetry between the QPCs, Ny and
Ng2 are made unequal, as are A and B. Figure 5-9 shows the conductances G3; = I31/Va,,
G32 = I32/Vy,, and Gy = G31 + G32, as a function of V,, for the choice of parameters
R3; =1 MQ, a = 0.2645, Ny = 40, Ny = 44.4, A = 0.55, and B = 0.45. The oscillations
evolve from being aligned to being anti-aligned, corresponding to the tlransition from a
voltage-biased to a current-biased system.

The qualitative agreement with experiment is quite good. A fundamental question is
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Figure 5-9: Conductances G3;, G32, and Giot = G31 + G32 in Ohmic model. Inset shows
Ohmic model of conduction in three-terminal quantum dot.
whether the ad hoc form in Eq. (5.24) has any justification. According to SET theory, the

potential energy at the bottom of the dot undergoes a sawtooth variation with gate voltage

Ve

2 _ .
—ed(N) = N(;z + egg% + const (5.25)

as each new electron is added to the dot. This variation also affects the transmission of the
tunnel barriers and could account for the periodic modulation central to the model.

To estimate the effect of this sawtooth variation on the tunnel barriers, we carried out
a numerical simulation, using a three-dimensional Poisson solver similar to that used for
the calculations described in Sect. 2.2. Figure 5-10(a) shows equipotential contours in the
plane of maximum electron density, calculated for the device in Fig. 4-4 with L = 0.6 pm.

Symmetry allows us to model only one half of the device structure (z > 0), reducing
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Figure 5-10: (a) Equipotential contours in the plane of maximum electron density, cal-
culated for Vr = -1.15 V, Viy = —0.9 V. The area populated by electrons (where the
conduction band edge Ec < 0) is shaded. (b) Conduction band edge along the cut indi-
c?ted by dashed line in (a), showing the shift as the dot number changes from 172 to 173
electrons.
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computation time. The gap of the split-gate is taken to be 100 nm instead of the lithographic
value of 150 nm, as previous studies have found that the depletion gates have some effective
extension into the open surface of the GaAs [65]. The rest of the open surface is modeled
as an equipotential due to pinning of the Fermi level, as in Ref. [64]. The calculation is
done in the semiclassical Thomas-Fermi approximation at temperature 4.2 K. However, the
donor charge in the AlGaAs is assumed to be “locked” at the value attained at 100 K and
thus does not change as the gate voltage is swept negative [71].

The standard Thomas-Fermi model neglects the quantization of the dot charge. 8 We can
take the quantization into account by fixing the electron number in the dot, as in Ref. [21].°
For the gate voltages used (Vr = —1.15 V, Vjy = —0.9 V), the standard Thomas-Fermi
model finds the dot to have approximately 172.5 electrons. Such a half-integer occupancy
corresponds to a Coulomb blockade degeneracy where the bottom of the dot shifts upward
as the electron number changes discretely from 172 to 173 electrons. We can evaluate

the effect of this discrete jump on the tunnel barrier transmission by comparing the self-
| consistent potential for 172 electrons with that for 173 electrons, keeping the gate voltages
fixed. Figure 5-10(b) shows the conduction band edge for the two cases along the cut
indicated in Fig. 5-10(a). The addition of the 173rd electron raises the potential energy by
about 500 ueV at the center of the dot while the top of the potential barrier shifts upward
by about 100 ueV.

To evaluate the effect of this shift on the barrier transmission, we can model the con-
duction band edge in the vicinity of the QPC (at T = 0,Z = 0) as a saddle-point of the
form

1 * — 1 L3 —
E.(Z,Z) = Ecmaz + 2™ wlz? — 7™ w?z?, (5.26)

¢ Quantum-mechanically, the quantization can be included by evaluating the dot occupation probabilities
in the canonical ensemble, where the number is fixed.

®Electrons in the dot still obey semiclassical statistics, but with a quasi-Fermi level which gives the
specified electron charge for the self-consistent potential.
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where E 4. is the energy at the top of the barrier relative to the Fermi level in the reservoir
and m" is the electron effective mass. As discussed in Ref. [72], the conductance of a saddle-

point constriction is

1
ddle = 9Q 1 exp[(27 Eemaz + 7hirg) [ hiry)’

Gia (5.27)

As a simplifying approximation, we assume that effect of increasing the top gate voltage
Vr is to change Ecpnq, linearly; the shape of the potential, parameterized by hw, = 12 meV
and hw, = 4.9 meV, remains approximately constant. We thus assume that Egnqez(V7)
depends on Vr in a sawtooth fashion, as illustrated in Fig. 5-11(a). The background slope
and the period of the oscillation are extrapolated from the solution at another bias point
close to Vp = -1.15 V,Vj)y = -09 V.

We can now use Eq. (5.27) to find the conductance as a function of gate voltage Vr. To
introduce some asymmetry, we assume that the turn-on voltage of one QPC is shifted by
10 mV from that of the other QPC. Figure 5-11(b) shows the conductances G3; and G3a,
where R3 = 1 MQ as in Fig. 5-9. Note that the conductance does not become appreciable
until Eqpner < 0 — i.e., untdl the barrier region is no longer classically forbidden. This is
a consequence of energy quantization in the lateral confinement, which is neglected in the
semiclassical approximation. Unfortunately it is not possible to solve for the potential with
a fixed dot charge using the method above in the regime E.nqr < 0 because the reservoir
and the dot must be separated by a region depleted of carriers to enforce the condition of
charge quantization; this is why we chose a voltage bias point such that E.mez > 0 even
though the transmission probability is very small.

The same gqualitative trend leading to anti-aligned oscillations is observed in Fig. 5-
11 as in Fig. 5-9; quantitatively, however, the amplitude of the oscillations is very small.
Physically, the modulation is weak because the 100 ueV shift in the height of the tunnel

barrier is small compared to the millivolt scale of hw,.
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Thus, the weak modulation of the tunnel barriers seems inadequate to explain the strong
anti-aligned oscillations observed experimentally. Nevertheless, the uncanny resemblance of
the experimental data to the simulated results in Fig. 5-9 precludes us from discarding the
Ohmic model. It still seems plausible that the injector barrier limits the total current, even

if a fundamental reason for the modulation with periodicity e/Cy is not evident.



Chapter 6

Conclusion and Future Work

This thesis has described the first realization and study of a device structure in which
a quantum dot is contacted by three electron reservoirs. All previous transport studies had
focused on quantum dots coupled to two electron reservoirs. When the coupled-dot structure
was originally conceptualized, the three-terminal quantum dot was not at all envisioned.
Rather, the biasing configuration used to realize the three-terminal dot was intended simply
to evaluate the degree of asymmetry between the tunnel barriers.

As expected, conductance oscillations periodic in gate voltage were observed at both
output leads of the three-terminal device. Our original expectation was that oscillations
measured at the two leads would always align with each other in gate voltage, in accordance
with conventional single electron tunneling (SET) theory. We found this prediction to hold
well when the dot is in the strongly blockaded regime. However, as the tunnel barriers are
made softer, we found that the oscillations are sometimes anti-correlated in gate voltage,
with the current even changing sign at some of the deep valleys.

The anti-correlated oscillations were observed in devices with a continuous gate defining
the injector barrier as well as with a split gate. The effect seems to be more robust in the

former. Except in Ref. [73], the split-gate scheme has been almost universally used to form

85
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tunnel barriers in planar devices. Our work confirms that a continuous gate is indeed a
viable alternative to the split gate, although more challenging lithographically.

' We established that the anti-correlated oscillations occur in the weakly blockaded regime.
Although this regime is not well understood theoretically, we presented two models — a
polarization model and an Ohmic model. Both models predict anti-correlated oscillations
in the weakly blockaded regime. However, neither model is able to explain the sign change
of the current at some of the deep valleys.

In Chapter 1, it was stated that the Coulomb blockade effect could be exploited to
realize a “single electron transistor.” By the same token, one could say that in the anti-
correlated regime the three-terminal dot functions as a “single electron directional coupler,”
in which a gate is used to steer the current to one of two possible outputs. As such, the
switching is based on a charging effect in which the gate voltage is required to change the dot
occupancy rather than on a wave-interference effect in which the gate controls the transfer
length between two waveguides [74].

Of course it is difficult to envision a practical application for any quantum-effect device
unless the operating temperature can be raised. The observability temperature for charging
effects could be raised by re'ducing the effective capacitance which sets the charging energy.
Such a reduction in capacitance might be achieved by further reduction of device dimensions,
using etching rather than gating to achieve confinement, or exploring different material
systems. All of these are current areas of active research.

The present process has used electron beam lithography to pattern the fine features.
As discussed in Sect. 3.3, the total number of steps in the process could be reduced if
x-ray lithography were used in place of electron beam lithography. The risk of mobility
degradation during processing is also reduced if x-ray lithography is used [75].

This thesis work was originally motivated by the prospect of realizing a coupled dot
structure. A limitation of the original design consisting of three gates to define two dots
is the inability to control independently the tunnel barriers which couple the dot to the
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leads. In addition, it is desirable to have an additional gate to control the dot size. !
Without independent control, the yield was found to be sufficiently low that it was nearly
impossible to find a coupled dot device in which both dots showed robust Coulomb blockade
oscillations. For this reason, Geometry C in Fig. 3-4 is a much more versatile design and
will likely be a prototype for future work. Unfortunately, the samples where this design was
implemented all suffered from various fabrication problems.

At the outset it was envisioned that the coupled dot structure could be used to study
the interaction of two dots either in series or in parallel. The conductance through two
dissimilar dots in series was predicted to show quasi-random oscillations [18]. The non-
periodic peaks resulting from the interplay of a small dot with a larger one has quite
possibly been observed recently [76, 77]. However, it would still be interesting to pursue
this effect in our structure, where the series conductance through two dots can be compared
directly with the conductance through a single dot. It is possible that such a system may
hold a new surprise in the weakly blockaded regime.

Perhaps the most promising area for future work is the study of two interacting dots
in parallel. In this configuration, one dot acts as a highly sensitive detector, responding to
changes in the electrostatic potential of the other dot. It would be particularly interesting
to investigate whether such a detector can function in the time domain. If so, it might be
possible to detect the change in the potential arising from fluctuations in the number of

electrons as current flows through the dot.

!Reference [55] has recently demonstrated that the electron density can be modulated by using the chip
carrier as a back gate.



Appendix A

Sample Processing and Heliox

Operation

Sample Processing

I. MESA ISOLATION (CW mask)

A. Solvent clean the sample:
1. Rinse in TCE.
2. Boil in TCE for 10 min (hotplate 2.5-3 or 120°C).
3. Ultrasound in acetone for 10 min.
4. Ultrasound in methanol for 10 min.
5. Blow dry (flush gun initially).
B. Spin and bake resist:
1. Spin Shipley 1813 resist at 4.5 krpm.
2. Bake at 90°C for 30 min.
C. Photolithography and development:
1. Expose resist (about 3.8 sec) at 400 nm.
2. Develop exposed resist with Shipley CD-30 developer.
3. Rinse in running DI water for about 3 times the development time.
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4.
5.
6.

Inspect in microscope.
Spray mask with acetone/methanol.
Blow dry mask.

D. Etch GaAs/AlGaAs:

1.
2. Rinse in semico for 1 min. (optional)

3.

4. Ammonium hydroxide/hydrogen peroxide etch:

5.
6.
7.

Rinse in DI for 1 min. (optional)
Rinse in DI for 1-2 min.

Etch 22 sec (=60-75 nm) in etchant 500 DI water: 10 NH4OH: 3 H202.
Sulfuric acid etch:

Etch in 10:1 DI/etchant where etchant is HoSO4:H202:H20 (1:10:10) (rate
11.5 nm/sec) for 8 sec.

Rinse in running DI water for 2 min.

Blow dry.

Inspect in microscope.

E. Strip resist:

1.

LAl ol i

Spray with acetone.
Spray with methanol.
Blow dry.

Inspect in microscope.
Measure mesa height.

II. OHMIC CONTACTS (CD mask)

A. Solvent clean the sample.
B. Spin and bake photoresist.
C. Chlorobenzene photolithography and development:

1.
. Soak 3.5 min in chlorobenzene.

o g0 N

N o

Expose resist (about 3.8 sec) at 400 nm.

Blow dry.
Bake at 90 C for 5 min.

Develop exposed resist with Shipley CD-30 developer. Development time
should be about 3 times longer than without chlorobenzene soak.

Rinse in running DI water for about 3 times the development time.
Inspect in microscope.

. Spray mask with acetone/methanol.
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9. Blow dry mask.
D. Surface clean the sample.
1. UV ozone for 30 sec. (Run uv beforehand for preclean.)
2. Rinse in DI water for 1 min.
3. Rinse in Semico for 1-2 min in ultrasound.
4. Rinse in DI water for 1 min.

5. Blow dry.

E. E-beam evaporate ohmic contacts: 5§ nm Ni/5 nm Au/25 nm Ge/45 nm Au/10
nm Ni/50 nm Au.

F. Liftoff by soaking for 10 minutes in acetone followed by quick ultrasound.
G. Sinter ohmic contacts.

1. Solvent clean the sample in bldg 13.
2. Place sample face down on solvent-cleaned piece of SI GaAs. Sinter in RTA
in forming gas at 430°C for 15 sec. (program AK430a).

3. Check tlm resistances on HP-4145. Contact resistance should be < 1 ohm-
mm. Verify sheet resistance using 4-point vdp. Important: If in doubt about
contact quality, check contacts at 77 K.

III. 1ST LEVEL GATE METALLIZATION (CP mask)

A. Solvent clean the sample.

B. Spin and bake photoresist.

C. Chlorobenzene photolithography and development.
D. Surface clean the sample.

E

. Evaporate 15 nm Ti/140 nm Au(or 15 nm Ti/10 nm Pt /140 nm Au, in which
case it is possible to reanneal after gates if necessary).

F. Liftoff metal.
IV. ELECTRON BEA ITHOGRAPHY

A. Spin bilayer pmma, 2010/2041 (about 100 nm total).
B. Expose patterns.

C. Develop in 1:3 ipa:mibk at 21°C for 45 sec.

D. Evaporate 15-18 nm AuPd in thermal evaporator.

E. Liftoff in acetone/methlene chloride mixture (let soak 30 min) without ultrasound
If this does not work, gently ultrasound, holding sample suspended in solution.
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V. 2ND LEVEL GATE METALLIZATION (CM mask) - if no continuity between fine

gates and 1st level gate metalization.

. Solvent clean (no ultrasound, easy on boil).

Spin and bake photoresist.

. Chlorobenzene photolithography and development.

. Surface clean the sample (no ultrasound or uv ozone).
Evaporate Ti 20 nm Ti/230 nm Au.

Liftoff metal using spray bottles (no ultrasound).

mEU QWP
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Operation of the Heliox Insert

I. COOL TO 77K

A. Open IVC.

1. Vent probe and remove IVC using sliding hammer, being careful not to
scratch wires.

2. Clean both taper surfaces with lint-free wipes. Secure IVC to prevent it from
falling, getting dirty, etc.

B. Load sample.

1. Mount sample holder, socket, and sample using Apiezon grease.

2. Apply silicone grease liberally to probe surface, but sparingly on interior of
can.

3. If IVC has been vented several days, heat charcoal bean with heat gun ( 6”
from nozzle to prevent overheat) to speed up outgas. Actually, the system
should be kept under vacuum if not in use for more than 1 day.

4. Place a paper cylinder around wires to prevent thermal shorts to can).

5. Replace IVC. Do not push at top of tapered seal; the force of the vacuum

will do this automatically. Be careful when sliding can on to avoid wires
inside as well as to avoid removing vacuum grease.

C. Pump out Ii/C to 100 mTorr using rotary pump or leak detector. Tape down
pickup tubes securely to the IVC.

D. Bleed in 2-10 Torr of He gas to the IVC using bladder. This may be done by filling
the bladder with He gas, placing it on the nozzle of the IVC can while pinched
off at the end, and very slowly opening the Speedivalve. Then place a blank over
the IVC Speedivalve to prevent accidental venting of IVC.

E. To prevent freezeup, He gas must be flushed through pickup tubes before dipping
the probe in LN2. Bubbles should be visible in LN2. Check flow through each
pickup tube individually. Then close needle valves, 1K pot speedivalve valve and
finally He gas valve to stop flow.

F. Leave probe in LN2 until temperature reaches 77 K ; check temperature using
sensor 3 (1K pot high temp) on ITC. When done, disconnect sensor 3 to achieve
optimal base temperature. Check IVC pressure to be 77/300 of the pressure
introduced at 300 K.
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II. TRANSFER TO LIQUID HELIUM STORAGE VESSEL

A. Resume He gas flow through pickup tubes and transfer to the storage dewar. The
flange on the probe should be as low as possible.

B. Once in storage dewar, close sorb and 1K pot needle valves and 1K pot Speedivalve
and remove the helium gas lines. Slowly lower the probe into the dewar, pausing
when the dewar popoff valve vents.

C. Connect the rotary pump to the 1K pot line and warm up the rotary pump (> 10
minutes). Open the 1K pot Speedivalve to pump out the 1K pot line.

D. Monitor the pressure in the IVC and wait until it drops to zero before proceeding.
If the pressure does not fall to zero in a reasonable amount of time, either there
is a leak or the charcoal bean is not working.

III. 0 0.3K USING ITC TEMPERATU NTROLLE

There are three resistors. The sorb has a high temperature one. The 0.3K pot has
both a high temperature one and a low temperature one. If cables A and B are
connected to the repective ports on the probe, sensor 1 is the sorb resistor, sensor 2
is the low temperature 0.3K pot resistor, and sensor 3 is the high temperature 0.3K
pot (should be disconnected for optimal base temperature). The temperature of the
1K pot can be monitored by interchanging the cables (see manual).

Open the 1K pot needle valve until the pressure needle is all the way full for 10
seconds. Close the 1K pot needle valve so that the LHe is pumped on. Open the
needle valve again and condense more LHe if the pressure drops below 1 Torr.

Set the temperature on the sorb to be ~40 K and hit ’auto’, adjusting the sorb
needle valve as necessary to keep the 1K pot cold. Set the gain low (prop~180) to
avoid overshooting the sorb temperature too much. When the 0.3K pot temperature
reaches 1.1-1.3 K, all the 3He is condensed. Turn off the sorb heater (by hitting 'man’
and setting the voltage to zero) and watch the temperature drop rapidly to 0.30-
0.34 K, adjusting the sorb needle valve if necessary. The 1K pot pickup tube must
remain cracked open to allow a continuous fill pressure of ~1 Torr. The sorb pickup
tube needle valve may be shut after the sorb temperature stabilizes to <4.6 K.



Appendix B

Reprints: Scattering in Quasi-1D
Wires

This Appendix contains reprints of the following two papers written in collaboration with
Philip F. Bagwell:

Arvind Kumar and Philip F. Bagwell, “Resonant Tunneling in a Quasi-One-Dimensional
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Resonant tunneling in a quasi-one-dimensional wire: Influence of evanescent modes
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We caiculate the transmission coefficients through two point scatterers in a quasi-one-
dimensional wire as the Fermi energy and distance between scatterers are varied. At a subband
minimum the standard wave-interference patiern between propagating modes, characteristic of a
Fabry-Perot interferometer, is completely suppressed. Instead, we find that the shape of the lowest
evanescent waveguide mode determines the electron transmission so that a different pattern of con-
ductance oscillations emerges. If either of the scatterers is attractive, the transmission is suppressed
abruptly near the “quasidonor™ levels formed in the scatterer below each subband minimum.

1. INTRODUCTION

Discovery of the quantized constriction resistance,':
and its explanation in terms of the Landauer conductance
formula,’* has greatly stimulated interest in understand-
ing scattering in quasi-one-dimensional conductors.*™*!
After first understanding the simplest case of scattering
from a single barrier in a quasi-one-dimensional
geometry,*~" one would then like to understand the
scattering from two barriers.'*™'® and eventually the
transport through many barriers.'s ™!

In this paper we attempt to qualitatively understand
scattering from two barriers in a confined geometry. We
use a point-defect model for the scatterers. which may be
too idealized to describe present experiments on trans-
port in quantized GaAs constrictions. The impurity po-
tential in GaAs heterojunctions is believed to vary slowly
lon the scale of 0.1 pmi compared with the electron wave-
length. Nonetheless, the point-defect model is useful to
obtain qualitative insights into electron scattering in
low-dimensional geometries. The limit of slowly varying,
or adiabatic, potentials has already been described in de-
tail,**** and so we choose to examine a highly nonadia-
batic potential where interchannel scattering s
significant.

If a current is flowing in a confined geometry, such as
the quasi-one-dimensional wire illustrated in Fig. 1, the
incident electrons can scatter into evanescent modes
which accumulate locally around the scattering centers.
When more than one barrier is-present in a multimode
wire, an electron scattered into the evanescent channel at
one of the obstacles can again be scattered at another
obstacle. This effect most strongly influences the
transmission properties when the distance between the
two barriers is less than decay length of the evanescent
mode, so that the tail of the evanescent wave function ac-
cumulating around one of the scatterers will overlap with
the other scatterer. If the Fermi energy is away from a
subband minimum or quasibound state in a wire with two
scatterers, we find that this effect results in only small de-
viations from one-dimensional resonant tunneling
theory. >~

However, as the Fermi energy approaches a subband
minimum, where the decay length of the evanescent
mode and the evanescent density of states both become
infinite, the transmission properties are determined large-
ly by the shape of the lowest evanescent mode. At a sub-
band minimum the Fabry-Perot interferences between
propagating modes are completely suppressed, and a new
series of transmission resonances with completely
different properties emerges due to the strong coupling to
the evanescent mode. We use this result to obtain the
most general arrangement of point scatterers which give
perfect transmission at a subband minimum, extending
the calculations of Refs. 5 and 6.

Incident

Reflected
Quaosi-1D wire

K
Accumuiotion  of
Evanescent Mode

FIG. I. An electron. incident from the left in the lowest nor-
mal mode. scattering from two barriers in a quasi-one-
dimensional wire. Because of the confined geometry, evanescent
modes accumulate locally around each tunnel barrier. If the
barriers are separuted by a distance d ~«. ', the evanescent
modes accumulating around each barrier begin to overlap.
changing the conductance of the wire.

9012 © 1991 The American Physical Society
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The Hamiltonian and transmission coefficients through
the two-point scatterers are defined in Sec. II. In Sec. I11
we study the transmission coefficients when both scatter-
ers in the wire are repulsive. Making one or both of the
scatterers attractive introduces additional transmission
properties, as investigated in Sec. IV. The Appendix de-
scribes how the transmission coefficients are calculated.!”

I1. SCATTERING IN A MULTIMODE WIRE

A quasi-one-dimensional wire, in which noninteracting
electrons are free to move in the x direction but are
confined in the y direction as shown in Fig. 1, is described
by the Schrodinger equation

) )
L
d9x-  dy-

.

{ 2m

TV Ay)r+ ¥V (xy) Illl'(.t,_v)

=FEdix,y). (1)
The confinement potential ¥ (y) defines a basis set of nor-
mal modes |y, (y)} satisfving

N

A
l 2m dyz

V) lx,WI=E, ¢, y), (2)

where E, is the subband energy for mode n. In the
quasi-one-dimensional wire a transverse mode n is propa-
gating if £ > E, and is evanescent if £ < E,, as shown in
Fig. 2. The scattering potential V,ix,y) we take to be
two-point scatterers separated along the x direction by a
distance d as

Vixpr=y "8ix)8y =y '+ 8 —didly -y,
(3)

Propagating modes
— — — Evanescent modes

Dispersion Relation for g Wire

FIG. 2. Dispersion relation £ =E, +#k,; /2m for motion in
mode n of a quasi-one-dimensional wire. The solid lines show
the usual dispersion relation for the propagating modes
(E>E,). The confined geometry induces evanescent modes
(EZE,), where k, =ix,, having a dispersion relation given by
the dashed lines. In addition, attractive scatterers give rise to
bound or quasibound states associated with each subband
formed from the evanescent-mode wave functions.

Since the wave function of the clean wire is separable,
it can be expanded away from the scattering potential as
follows:'?

Yx,y)=3 a,(x)y,(y), (4)
where

A, —ik, x
A e +B,e , x <0,

ik, x — ik, x
a,(x)=Fe " +Ge ", 0<x<d, (5

e—rk”u—d\

n ,

x>d .

Here the wave vector &, is

o 172
LNE-E)

k= | =
P

n

(6)

and becomes imaginary if the mode n is evanescent so
that k, =ik, where «, >0. The resulting dispersion rela-
tion for the wire modes is shown in Fig. 2. The boundary
conditions require 4, =D, =0 for evanescent modes so
that there are no growing exponentials away from the
scatterers. We take the particles to be incident from the
left. so that D, =0in Eq. (3).

We define wave-function transmission and reflection
amplitudes normalized to the amplitude of the incident
mode 4,,.

S

nm nm

C, B, ,
Ly == P = {
A, Ap

The boundary conditions for obtaining each ¢,,, and r,,,
are given in the Appendix. Most of the following numer-
ical results we present for r,, and r,, can be verified
analytically (when the lowest two modes are present by
taking the appropriate limits of Egs. (A6} and (A7) in the
Appendix.

For propagating modes m and n the current transmis-
sion and reflection coefficients are given by

nm

k’l v/l
Tpn =1t Ry =1 P - (8)

*
nm k nminms nm k nwm Cnm
m mn

The normalized two-probe conductance g at zero temper-
ature i1s then obtained from the muitichannel Landauer
formula®™ ™%

G

& 2 Z T - 9
where the sum in Eq. (9) runs over only the propagating
modes of the wire. The remainder of the paper is con-
cerned with analyzing the transmission coefficients T,
through the scattering potential in Eq. (3. For
definiteness throughout the remainder of this paper, we
choose an infinite-square-well confining potential V.(y)
having width W =30 nm and an clectron mass
m =0.067m,_ appropriate for GaAs heterojunctions.
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11I. TWO REPULSIVE SCATTERERS

We show in [ig. 3 the transmission coefficients and
two-probe conductance as a function of energy E for
d =A,=34.64 nm, where the wavelength A, is evaluated
at E=E,. The scatterers are aligned at y;!'=y'*'=13.3
nm. We choose barriers having different strengths
y'"=10 feVem? and ¥'*'=5¢'" in Figs. 3 and 4. The
lowest three modes have been kept for all numerical cal-
culations in this section.

The two transmission resonances in Fig. 3 for
E| <E <E, arise from single-mode Fabry-Perot interfer-
ence, and are less than unity because the barriers have
unequal strengths. At the subband bottom (E=E.),
where the scattering is dominated by the evanescent
mode, we observe that T, is unity even though the Fer-
mi energy is not near an expected Fabry-Perot resonance.
When the Fermi energy rises into the second subband so
that £, <E <E,, there is no remnant of Fabry-Perot-
type resonances. The presence of two incident-electron
wavelengths, combined with the intermode scattering.
makes the Fabry-Perot resonance more difficult to
achieve.

To obtain a better understanding of the transmission
properties at a subband minimum in Fig. 3, we fix the
probing-electron wavelength near the second subband
minimum and vary the scatterer separation. In Figs.
4lal-4(c) we study the variation of the transmission
coefficient T, versus d /A, for three values of the energy:
tal E=0.9E,. /b1 E=E,, and (¢} E=1.1E,. Note that
the wavelength A, =2 /k | is different for each energy.

In Fig. 4(a) we observe the usual one-dimensional reso-
nant tunneling behavior, subject to only small
modifications. The transmission resonances are separat-
ed by A,/2 and the first maximum is offset from d =0 be-
cause of the phase shifts from each scatterer. Additional-
ly, we note that T,, is no longer strictly periodic as a
function of d, as can be seen from the first two minima.
The scatterer separation for these,two minima is in the

20F Y T T T T T

Transmission

Fermi Energy E_/E,

FIG. 3. Transmission coefficients T, (short dashes;, T
flong dashes), T, =T, imixed dashes). and normalized conduc-
tance g (solid) through two-point barriers in a narrow wire. The
two Fabry.Perot transmission resonances evident when E < E,
are less than unity because the barriers have different scattering
strengths, while the transmission i1s unity when E = E. despite
the presence of scattering barriers.
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FIG. 4. Transmission coefficient T, vs scatterer separation
d/k, for incident electron energies fa) E =0.9E,, (o) E=E.,
and (c) E=|.1E,. Spacing between transmission maxima
changes from A,/2 to A, as the Fermi energy aligns with the
second subband in (b), so that the Fabry-Perot resonances in :a:
are completely suppressed and a qualitatively different series of
transmission resonances related to the evanescent mades
emerges.

range d ~ 1/k, so that the evanescent tails of the second
mode accumulating around each scatterer overlap
significantly. The transmission coefficient is in general
not a periodic function of scatterer separation d when
evanescent modes are present.

The variation of the transmission coefficient in Figs.
4(b) and 4(c) is markedly different from the standard
one-dimensional resonant-tunneling result. In case (b)
when the Fermi energy is aligned with the second sub-
band, we see that successive transmission maxima are
now separated by A, and that the transmission maxima
are unity even though the barriers have different
strengths. The first maximum occurs at d =0 so that
there is no scattering phase shift. Also, the minima of
T\, tend asymptotically to unity as d is increased, so that
the transmission is perfect when the scatterers have a
large separation. The transmission coefficient T, versus
d /A, in Fig. 4tb) is therefore highly aperiodic. These
large qualitative differences between Figs. 4(a) and 4/bi
demonstrate that the Fabry-Perot wave interference be-
tween propagating modes is not the mechanism giving rise
to conductance oscillations when the Fermi energy is
aligned with a subband minimum. [n case (c) T, has a
beatlike pattern, due to the presence of two propagating
wavelengths, and is no longer perfect anywhere.

Examining the shape of the evanescent mode around
the scatterers will enable us to understand the change in
transmission properties as the new subband becomes oc-
cupied. Figure 5{a) shows the lowest-cvanescent-mode
wave functions a,ix} when the scatterers are separated
by a half wavelength d =4,/2, while Fig. S(b} shows the
lowest-evanescent-mode wave function at a full wave-
length separation d =A4,. The important insight to gain
from Fig. § is that, if the lowest evanescent mode is uni-
form along the length of the wire, perfect transmission re-
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FIG. 5. Wave-functuon amplitudes of the second mode
@ x '] when £ =0.9E, (dashed) and £ =E, isolid) for scatter-
er separations ‘al d =4, /2 and 'bi d =A,. When the scatterers
are separated by a hull wavelength in ta). an “antibonding™ state
is formed. As the Fermi energy aligns with the second subbund
at £ =E. the antibonding wave function has a discontinuous
change in 1ts derivative. leading to a reflected wave. Conversely,
Il the scatterers are separated by a full wavelength in (b1, the
corresponding “bonding™ wave function is uniform along the
length of the wire, forcing perfect transmission of the incident-
mode wave function at E =E,.

.

sults for the incident propagating wave function. The po-
sition of the scattering barriers and their coupling to the
incident mode determine how the incident electrons
scalter into the evanescent mode, the subsequent shape of
the lowest-evanescent-mode wave function. and the re-
sulting transmission properties. We have chosen the
scatterer strengths to be equal in Fig. 5, y'V'=y =10
feVem’, to illustrate the analogy between these evanes-
cent states and “bonding" or “antibonding™ orbitals in
moleculur physics.’' The evanescent-mode wave func-
tion a.(x) for the unequal barrier strengths studied in
Figs. 3 and 4 is slightly more complex.

We can now given an intuitive argument to explain the
electron trunsmission in  Fig. 4(b). Because the
evanescent-mode density of states diverges like x; ' as the
Fermi energy approaches the second subband minimum,
we expect the evanescent mode to dominate the scatter-
ing at that energy. Suppose we pluce a point-defect bar-
rier in the wire, which is known to give perfect transmis-
sion at a subband minimum,™® and try to add a second
barrier so that the transmission is still perfect at the
second subband minimum. In general, the addition of the
second scatterer will affect the evanescent-mode wave
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function at both scatterers and there will be some
reflection in the incident mode. Therefore, 10 obtain per-
fect transmission. we must place the second scatterer in
the wire in a way that does not change the evanescent-
mode wave function at either scatterer.

For a single-point scatterer located at coordinates
(x,,y,), the evanescent mode accumulates to a constant
independent of x given by*

alx0=C,=1,e"" 4, (10)
where ¢, is the transmission amplitude into the lowest
evanescent mode when x, =0,

ty=ry=—0/Ty=—sinlzy /W)/an27y /W) .
(rn

Therefore, from Eqs. (10) and (11), the same value of the
evanescent mode a,(x)=C, is obtained for different
choices of the single-scatterer coordinates {x.,y, ) only
when

kv
e ' sinfmy /W) /sin(2my /W)=const . (12)

Noie that Egs. (I1) and (12) are independent of the
scatterer strength y.

Consider now the case of two-point scatterers in the
wire when E=EFE, Fixing the position of the first
scatterer at coordinates (0,y.'') determines the value of
the constant in Eq. (12). Then from Eq. (12), a second
scatterer aligned with the first can be placed at coordi-
nates (d.y,>’=y.!") and not affect the evanescent-mode
wave function at either scatterer only when d =j4,,
where j =0,1,2,.... If the second scatterer is not an in-
teger number of wavelengths from the first scatterer, the
evanescent mode a,(x) must change its value from one
scatterer to the next. As explained in the Appendix, the
resulting derivative jump in the evanescent mode must be
met by a derivative jump in the first mode, giving rise to a
reflected wave.

Therefore, perfect transmission is obtained only when
the second barrier is placed an integer number of wave-
lengths from the first barrier, explaining the change in
spacing between successive maxima of the transmission
coefficient T, from a half wavelength in Fig. 4(a) to a full
wavelength in Fig. 4(b). Since Eq. (12} is independent of
the scatterer strength, the barriers can have different
strengths and perfect transmission still results at £ =E,.
The approach of the transmission coefficient T, to unity
in Fig. 4(tb) is also easily explained by noting that, if the
positions of the scatterers force the evanescent-mode
wave function to assume different values at each scatter-
er, the resulting discontinuity in the derivative of a,(x)
will become progressively smaller as the scatterer separa-
tion is increased.

If the two scatterers are disaligned, then in general it
follows from Egq. (12) that the same value of the evanes-
cent mode cannot be supported at both scatterers, and
perfect transmission can no longer result at £ =E,."
We confirm this in Fig. 6 where T, is shown as a func-
tion of d/#, for three different y positions of the second
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FIG. 6. Transmission coefficient T, at an energy £ =E,
when the barriers are disaligned. In (c) we show the general
transmission behavior for most lateral positions of the scatter-
ers: the transmission resonances are hardly distinguishable
from unity. Only when one of the barriers is placed (a} near or
(b) on the node of the lateral wave function y.(y), are the reso-
nances severely degraded. Note in (b) that, even though both
barriers are still coupled to the incident propagating mode,
there are no Fabry-Perot-type resonances.

scatterer: (a) y/2'=14.8 nm, (b) y,*'=15.0 nm, and (c)
y;7'=23.7 nm. We fix the energy at £ =E, and the posi-
tion of the first scatterer at y;''=13.3 nm as before. The
barriers have the same strengths as in Figs. 3 and 4.

In Fig. 6fc) the transmission resonances are not exactly
perfect, but the deviation from unity is not noticeable on
the graph. We find this behavior of T, generally holds
for most lateral positions y.*'. Only if the second scatter-
er is brought close to the node of x.(y), as in Figs. 6(a)
and 6(b), does a different transmission behavior begin to
emerge. When we place one of the scatterers directly on
the node in x.(y), so that it does not couple to the
lowest-evanescent-mode wave function, the transmission
coefficient in Fig. 6(b) becomes essentially independent of
separation d, even though the barrier is still coupled to the
incident mode. The absence of transmission oscillations
in Fig. 6(b) is easily understood, since the barrier in the
node of y.(y) does not alter the shape of the evanescent
modes needed to give perfect transmission®® through the
other barrier. Therefore, the transmission coefficient is
independent of the separation d and limited only by the
barrier in the node of x,(v). If one of the scatterers is
placed very near but not exactly on the node in ¥,(y), as
in Fig. 6(a), the resulting transmission resonances of
period A, are noticeably less than unity. However, the
transmission still asvmptotically approaches unity after
many wavelengths, as in our previous analysis.

There is a special case of disaligning the two scatterers
where perfect transmission still results at E=E,. If
y,¥'=W —»""" 50 that the scatterer positions along y are
mirrored about the axis of the wire, the mode-coupling
constants between the incident mode and the lowest
evanescent mode at the two scatterers are negatives of

be placed at any combination of these positions in the wire, and
perfect transmission T, =1 still results when the Fermi energy
is aligned with the second subband minimum at E =E,. Any of
the scatterers can be taken to have zero strength so that the
scatterers do not necessarily form a periodic array.

each other (I'}\'=—T%"). Then, if we displace the
second scatterer by a half wavelength from the first along
the x direction, the incident-mode wave function
e Vsin( wy /W) changes sign at the second scatterer.
Therefore, by Eq. (10}, the same constant value of
a,(x)=C, again satisfies the boundary conditions at both
scatterers. By the arguments in the preceding para-
graphs, perfect transmission is again obtained at £ =F.
if yi¥'=w—y"" and d=(j +1/2)A, for any sign or
strength of the second scatterer.

To conclude this section, we use the argument from the
preceding paragraph to consider adding more than two-
point scatterers to the wire. By induction, we can contin-
ue to place additional scatterers having arbitrary signs
and strengths on any subset of the grid points shown in
Fig. 7 and still obtain perfect transmission when E =E,.
The perfect transmission through a single 6-function
scatterer at a subband minimum®® is a special case where
only one site in the grid is occupied. Figure 7 represents
the most general arrangement of & function scatterers
yielding perfect transmission T, =1 when £ =E,.

1IV. ATTRACTIVE SCATTERERS

If attractive scatterers are present in a multimode wire,
quasibound or bound states made up of evanescent waves
form below each subband minimum, as shown in Fig. 2.
The quasibound state is localized around the attractive
scatterer like a donor level below the conduction-band
minimum of a semiconductor. Such a state is truly
bound only if its energy lies below the bottom of the
lowest subband; otherwise its energy is degenerate with
that of a propagating mode and a particle in such a state
has a finite lifetime. If one or both of the point scatterers
in our two-barrier problem are made attractive, we ex-
pect zeros in the transmission coefficient in the vicinity of
the quasibound states, similar to those in previous calcu-
lations.”™"!1°"2! We find that the qualitative behavior of
the transmission coefficients is similar to that found for
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repulsive scatterers, except when the Fermi energy is
near a quasibound state.

In Fig. 8 we plot the zeros of the transmission
coefficient T, in the d-E plane, with the scatterer separa-
tion d normalized to the wavelength A, at each energy E.
The lowest two modes are retained in Figs. 8 and 9. Fig-
ure 8(a) shows one attractive scatterer and one repulsive
scatterer, while Fig. 8(b) shows two attractive scatterers.
The calculation in Fig. 8(b) can be viewed as transmission
through a diatomic molecule attached to the wire. The
figure insets show the position of the bound-state energies
calculated by setting the coupling of the incident propa-
gating mode to the evanescent mode to zero, mimicking a
simple one-dimensional calculation of molecular binding
energies. The scatterers are aligned at y,''=y;*=13.3
nm and have equal strength [y'"'|=iy'*"|=25 feVem’.
The energy near the top of the figure where the zeros ter-
minate abruptly is E,, the bottom of the second subband.

Figure 8(a) displays a single bound state in the attrac-
tive scatterer for any value of the separation d=0. Asin
elementary molecular physics, Fig. 8(b) displays two
bound states when d is large. and only one bound state
when d becomes small. When d becomes small in Fig.
8(b), the antibonding state is forced into the continuum
above the second subband.

The zeros of T, in Figs. 8(a) and 8(b) qualitatively fol-
low the bound-state energies of the single-mode problem
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FIG. 8. Zeros in the transmission coefficient T,, =0 in the d-
E plane for (a) one attractive and one repulsive scatterer and (b)
two attractive scatterers. Zeros in T, qualitatively follow the
bound-state energies calculated in the insets. Transmission os-
cillations of period A, indicate an interplay between the refative
phase of the incident mode at each scatterer and the quasibound
states.

APPENDIX B. REPRINTS: SCATTERING IN QUASI-1D WIRES

9017

shown in the inset. These zeros in T, exhibit some oscil-
latory structure of periodicity A, and coincide with the
bound-state energies shown in the inset when d =jA,.
The oscillatory structure in T, arises from the coupling
of the propagating mode to the quasibound states, so that
the zeros in T, are sensitive to the relative phase of the
incident mode at the two scatterers. We do not under-
stand the precise relationship between the quasibound
states of a multichannel system® and zeros in the
transmission coefficient, though the two are clearly relat-
ed. When both scatterers are made attractive we also ob-
serve, in Fig. 8(b), gaps of d for which there are no
transmission zeros.

We plot the condutance versus Fermi energy in Fig. 9
when (a) both scatterers are repulsive, (b) the first scatter-
er is repulsive and the second is attractive, and (c) both
scatterers are attractive. The strength and lateral posi-
tions of the scatterers are the same as in Fig. 8, and we
choose the separation d=90 nm (or d=2.6A, at
E =E,). There is one transmission zero immediately be-
fore the second subband opening in Fig. 9(b), two zeros in
Fig. 9(c), and no transmission zeros in Fig. 9(a), as ex-
pected from Figs. 8{a) and 8(b).>*
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F1G. 9. Normalized conductance g vs Fermi energy for ()
two repulsive scatterers, (b) one attractive and one repulsive
scatterer, and (¢} two attractive scatterers. The insets show
more detailed behavior near the second subband minimum.
Conductance dips below the second subband minimum in b
and (e are associated with “molecular™ bound states.
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V. CONCLUSION

We have calculated the transmission coefficients for an
electron scattering from two-point barriers in a quasi-
one-dimensional wire. Our main conclusion is that, if the
Fermi energy is near a subband minimum in a quasi-one-
dimensional wire, the scattering properties of the wire are
determined primarily by the shape of the lowest evanes-
cent mode around the scattering centers. Wave interfer-
ence between propagating modes in the wire, which nor-
mally produces an interference pattern of oscillations in
the conductance, is no longer the dominant mechanism
giving rise to structure in the conductance when the Fer-
mi energy is near a subband minimum.

All of the unusual scattering properties we find can
occur only for electrical conduction in a low-dimensional
structure, where electrons accumulate in evanescent or
cutoff waveguide modes around each scattering center.
For example, in a one-dimensional scattering problem,
perfect transmission through a single barrier implies per-
fect transmission through two such barriers. Contrary to
our original expectations, when the Fermi energy coin-
cides with a subband minimum, the multimode transmis-
sion through two-point barriers is perfect only for certain
resonant values of the scatterer separation. Even though
each single barrier in the multimode wire, taken by itself,
appears completely transparent, an incident electron can
be reflected from two such perfectly transmitting barriers
in series.

Although our model-scattering potential is highly
idealized, and probably not directly applicable to present
experiments on GaAs constrictions. we expect the same
general transmission properties to hold for transport in
real low-dimensional systems. In particular. the re-
currence of transmission resonances every wavelength of
the incident electron should be insensitive to the exact
choice of the scattering potential. If electron charging
effects®® or inelastic scattering between the barriers be-
comes dominant, the transmission properties studied in
this paper may be suppressed. Similar transmission prop-
erties would result from two dielectric posts placed in a
microwave waveguide.
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APPENDIX: SCATTERING BOUNDARY
CONDITIONS

In this appendix we give the method used to obtain the
transmission and reflection amplitudes following Ref. 17.
Numerical calculations in the body of the paper were per-
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formed by cascading scattering matrices (because they
proved to be numerically stable near a subband
minimum), while in this appendix we give an analytical
result for 7,, obtained by multiplying transfer matrices.

The wave function in Eq. (4) must be continuous.
After multiplying Eq. (4) by y,,(p) and integrating over
all y, the orthogonality property of the {y,{y)} demands
that each individual mode be continuous so that
a,07)=a,(07) and a,(d ")=a,ld”). Therefore, at
x =0,

A,+B,=F,+G, ‘Al

holds for all n.

The boundary condition on the derivatives of the
fa,{x)} follows similarly by inserting Eq. (4) into Eq. (11
The orthogonality property of the {y,(y!] can then be
used to show that
dl

— k2
"

e a,ix)= 3 [[h8x)+ T, 8x—da,(x) .

n

A2

Here the mode-coupling constants for barrier (i) are
given by

g 2my? s "™ . R
I‘,,,,,=——ﬁi,——x,,(y," Wmlps'), i=12. (A3
At x =0 the discontinuity in the first derivative of each
mode, by integrating Eq. (A2), must satisfy

da,!x) da,lx)
dx - dx  ip-
=3I ha,0)

bl (N8
=y, ilﬁ}}—zxmty;")am(m . (A4
m |

Since T, from Eq. (A3) factors into a product form, the
right-hand side of Eq. (A4 is simply y,(y, ') times a con-
stant independent of n. If the right-hand side of Eq. (A4
is not zero so that mode n has a derivative jump, Eq. (A4
implies that every other mode with a nonzero wave-
function amplitude y,(y.'") at the scatterer must also
have a proportional derivative jump.

When the Fermi energy coincides with a subband
minimum for the case of a single 8-function scatterer.
wave-function continuity from Eq. {A ) requires that the
lowest-evanescent-mode wave function af.x) must be con-
stant everywhere in space. The term in large parentheses
in Eq. (A4 must then be zero if the lowest evanescent
mode is populated. Therefore, the incident mode must
have a continuous first derivative at the scatterer because
the evanescent mode has a continuous first derivative.
Since for a point barrier there can be no reflected wave
without a derivative jump in the incident mode, it follows
that the transmission must be perfect at each subband
minimum when only a single-point barrier is present.

Inserting Eq. (5) in Eq. (A4) yields
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at a finite number of modes. Likewise, equations analo-
gous to Egs. (A1) and (A5) enforcing the boundary condi-
tions at x =d can also be written down.

For the case of two modes, multiplying the individual
transfer matrices by hand yields t' and r’' of Ref. 17
Equation (AS) couples mode n to all other modes in the  directly. We then interchange "' and ¥ to obtain 1,
problem. For simplicity, we cut off the sum in Eq. (AS)  as
J

ik \F,—G,)—ik,{4,—B)=3 T\ (A4,+B,).

(AS)

s 2y
nl

HIY' T

1 ’ [ 2 oL ~tk . d
= — 2 sinik,d)+ |1+ <, A6)

I D, IZkE nz=| k. sin(k,d 1 T ]e ] (

. —ikyd 4 Vet . —thyd s r-|-r.::

ie S il ie mldy
0,= — 1 Gink,d )+ — M Ginlk,d)
D, " nz='1 K, sinik, ", ’zl Py sinlk,

i+ AT TETR+DATE | s ekge, TETS -, THTHE -k
+ {1+ + - g TR B AL Ty U T
2%, 2%, 4k ks 4k, k, 4k k,

(A7)

Most of the results of this paper can be obtained by taking appropriate limits of Egs. (A6) and (A7). To obtain the
curves in Fig. 8 we have set ¢,, =0 from Eq. (Aé). The resulting expression is
raTy IaTy Iy =T
~———sinlk,d)+~—sinhik,d ) 1+ ==
le: K3 h 21\':

i 2
% + =0, (A3)

where we have written .= — ik, since the second mode is evanescent in the energy range over which quasibound states
occur. The graphs in the inset of Fig. 8 are obtained by serting the intermode coupling to zero, namely I'}Y=T3'=0in
Eq. (A8).

One can also obtain 1,, and r,; by the same procedure used to obtain ¢, of Eq. (A6). Taking appropriate limits of
these expressions for 14, anq r,, recovers the results shown in Fig. 5, thus verifying Fig. 5 analytically when two modes
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We study the two-terminal Landauer conductance averaged over a parallel array of disordered narrow
wires as the Fermi energy and length of the disordered region are varied. As disorder in the wires is in-
creased, so that quaatum diffusion becomes the dominant electron-transport mechanism, we find numeri-
cally that the quantized conductance steps characteristic of ballistic transport evolve into conductance

drops after each new subband is populated. C

with this result, the electron localization length

decreases above each new subband. Adding attractive scatterers to the wires strongly modifies these re-
sults due to “‘quasidonor levels™ forming in the impurities.

L. INTRODUCTION

Discovery of the ?uantizcd ballistic conductance
through a point contact™? has greatly stimulated theoret-
ical studies on the effect of impurity scattering in nearly
ballistic quantum wires.>”!” When only a few impurities
are present in a wire, these studies have predicted that
the average conductance should rise after the opening of
each new subband channel, although structure in the con-
ductance of a single wire may be obscured by wave-
interference fluctuations.'””'® If some of the scatterers
are attractive, pronounced conductance drops before the
opening of each new subband were also found to
occur,’® due to the formation of “quasidonor levels” in
the impurities.*™” Thus repulsive and attractive scatter-
ers result in a very different subband structure for the
conductance versus Fermi energy in a narrow wire.

If disorder in the wire is increased, so that the trans-
port becomes diffusive rather than nearly ballistic, it
might be expected that a fundamentally different subband
structure should be observed experimentally'®~* in nar-
row quantum wires. Indeed, based on a modified Drude
model and assuming that elecirons scatter in the Born ap-
proximation, Refs. 23-31 conclude that electron scatter-
ing increases whenever a new subband becomes occupied,
leading to a drop in conductance versus Fermi energy
after each new subband opening. In contrast, Refs. 3-9
have argued that pronounced drops in conductance
should occur before each new subband opening. Some
structure in the conductance versus electron density has
possibly been observed in arrays of narrow wires,'*”?
but it is unclear what physics this structure might
represent or where it occurs in relation to subband mini-
ma in the wires.

In this paper we calculate the two-terminal Landauer
conductance’ ™ of a parallel array of disordered quan-
tum wires to obtain the ‘*‘ensemble-averaged™ conduc-
tance. A “point-scatterer” model'® is used to describe the
disorder in each wire. We show that there is a clear tran-
sition in this model between a quantum ballistic regime,
marked by increasing conductance after each new sub-
band channel opens, and a quantum diffusive regime,

“

marked by a sharp drop in conductance when a new sub-
band is populated. We associate this conductance drop
with a decrease in the electron localization length im-
mediately above a subband, so tha: the drop in conduc-
tance after each subband opening in the diffusive regime
depends on quantum diffusion, rather than the classical
diffusion of the Drude model. Additionally, we show
that the standard “golden-rule” or “Born-
approximation™ scattering theory is invalid near a sub-
band minimum, so that the scattering at each individual
impurity must be properly calculated to obtain the
correct dependence of the conductance versus Fermi en-
ergy. When this is done, we do not find conductance
drops after the opening of a new subband channel if the
electron diffusion is classical. Finally, both for quantum
and classical electron diffusion, we find conductance
drops before the opening of a new subband channel only
when attractive scatterers are present in the wires.

II. MODEL FOR A DISORDERED QUANTUM WIRE

We choose a mode! Hamiltonian describing electrons
free to move along the x direction and confined along the
y direction:

2 [ a2 2
ol a_+_a_’_
2m |3x?  @y?

+V (y)+V,(x,p) [¥lx,y)

=Ed(x,y). ()

The confinement potential ¥ (y) gives rise to confinement
subbands E, such that

ﬁ2 dZ
~Ad v

= . 2
T XalD=E, ) )

We choose the impurity potential to be a sequence of
point scatterers

Vyix,y)=3y;8(x —x)8(y —y,) , (3)

where the ith scatterer is located at position (x,,y,) and
has strength ;. The conductance is obtained from the

1747 ©1991 The American Physical Society
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two-probe “Landauer formula™¥~% are random.

I ) However, fair conductance quantization is still pro-

G="t=t_ T,.. (4) duced for electron transmission through a point-

v =k scattering potential in a narrow channel.’~* The point-

where T,, denotes the transmission coefficient from
mode n to mode m. Many individuals have contributed
to our understanding of Eq. (4), as discussed in Refs.
32-39 and citations therein.

The transmission coefficients T, in Eq. (4} are found
numerically by cascading together the individual scatter-
ing matrices for each point defect and each intermediate
region of free propagation between defects.'® We include
the lowest five modes in our calculations, enough to un-
derstand the qualitative features of the conductance, al-
though we expect the inclusion of higher modes to have
quantitative influence on our results. This numerical
model and our particular implementation of it are both
very reliable, since they agree with analytical results ob-
tained for electron transmission through both one** and
two’ point defects in a narrow wire. Current conserva-
tion is also numerically well satisfied in these simulations,
giving additional confidence in the reliability of our re-
sults.

For a single wire with a disordered region of length L
along the x direction, we randomly position the scatterers
with a uniform probability density over the ranges [0, W]
across the channel and [0,L] along the wire. We choose
a fraction f of the scatterers to be attractive (y, <0). All
the scatterers have equal strengths |v,! =10 feVcm? We
choose the mean spacing between impurities along the x
direction of the wire to be 10 nm, so that there are five
impurities in the wire when L =50 nm and 50 impurities
when L=500 nm. We model the confinement using an
infinite square-well potential of width W=30 nm, and
take the electron mass to be 0.067 times the free mass.
This choice of parameters is consistent with experiments
on GaAs/Al, Ga,_, As heterostructures. In a more real-
istic model, where the wire consists of a potential well
having finite depth, it will probably be necessary to in-
corporate evanescent modes from the continuum in order
to obtain proper convergence of the calculation.

Impurity potential fluctuations in good-quality GaAs
heterostructures are believed to be mainly weak and
smooth.®® Electron transport through such a smooth po-
tential can be nearly “‘adiabatic,” producing a nearly ex-
act quantization of the ballistic conductance.*'~* It has
also been argued that such a smooth scattering potential
should give rise to enhanced electron mobility in a nar-
row wire when electron transport is restricted to the
lowest subband,™ since any carrier deflections are pri-
marily due to small-angle forward scattering, which does
not substantially degrade the electron mobility. Rough-
ness along the channel edges in GaAs heterostructures, a
type of disorder neglected in this work, is also believed to
vary smoothly compared to the electron wavelength ¥
Conversely, the potential in Eq. (3) is quite rough and ir-
regular, and in fact produces s-wave scattering’ when em-
bedded in a two-dimensional plane. In most calculations
using a tight-binding Anderson model the potential is
also rough and irregular,®° since the “on-site energies”

scatterer model of disorder may therefore be a reasonable
one to understand the effects of wave interference be-
tween scattering events in a low-dimensional conductor,’
even though it is a highly nonadiabatic scattering poten-
tial. The point-scatterer model also gives rise to “univer-
sal conductance fluctuations”!” in agreement with experi-
ment. In addition, electron transmission through a
finite-size rectangular barrier in a wire is qualitatively
similar to transmission through a point scatterer,® indi-
cating that shrinking the scatterer to zero size may not be
a serious limitation. Edge roughness has not been includ-
ed explicitly, but some roughness is simulated because
some of the scatterers lie near the channel edges. For the
case of a single scatterer, the qualitative dependence of
the electron transmission on Fermi energy for an edge de-
fect is no different from that of a defect located in the
middle of the channel.* Comparing our present results
using the scattering potential in Eq. (3) with transmission
through a smooth disorder potential is left to a future
study. We caution that the scattering effects near a sub-
band crossing studied in this paper may possibly be exag-
gerated or even qualitatively different when compared
with transmission through a smoother impurity potential.

III. CALCULATED CONDUCTANCE
OF A NARROW-WIRE ARRAY

In Fig. 1(a) we show the conductance as a function of
Fermi energy for a single wire in the ensemble having
L=50 nm for both f=0.0 and 0.5. The conductance is
seen to rise after the opening of each new subband wheth-
er all the scatterers are repulsive (f =0.0) or half the
scatterers are attractive (f =0.5). However, the intro-
duction of attractive scatterers gives rise to pronounced
dips in conductance below each subband minimum, near
the energies of quasidonor levels splitting off from the
confinement subbands. The spacing AE from these quasi-
donor levels to the next subband is of order
AE=(m/#)y /W), close to the binding energy of a
state trapped in the point defect.*~7 If the length of the
disordered region is increased to L =500 nm, as shown in
Fig. Ub) for f=0.0, the resulting electron wave-
interference paitern obscures any regular structure in the
conductance. When f=0.5 and L=500 nm as in Fig.
1{c), the conductance exhibits similar fluctuations that
obscure any underlying subband structure. Some unusual
properties of these fluctuations have been noted in Ref.
17. Interestingly, the lowest subband is still approximate-
ly discernible in Fig. 1(c) due to the depressed transmis-
sion associated with the quasibound states.

To manifest the underlying subband structure of the
conductance versus Fermi energy, we plot in Fig. 2 the
conductance from Fig. 1 averaged over an array of 100
independent wires in parallel. Each wire has a different
random arrangement of the scatterers, but the length of
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FIG. 1. Landauer conductance vs Fermi energy for a single
quasi-one-dimensional wire having (a) L =50 nm and (b) and (c)
L=3500 nm. When only a few scatterers are present {a), the con-
ductance varies smoothly with Fermi energy and, if some attrac-
tive scatterers are present (f =0.5), dips abruptly near the
“‘quasidonor levels” below each subband. As more scatterers
are added, wave-interference conductance fluctuations in (b) and
(c) obscure the underlying regular structure due to confinement
subbands.
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the disordered region is kept fixed. In Fig. 2(a) each wire
has L =50 nm. Some broad resonances present in the sin-
gle wire are eliminated after averaging when all the
scatterers are repulsive (f =0.0). When half the scatter-
ers_are made attractive (f =0.5), the quasibound-state
energies vary from wire to wire,’ resulting in a broadened
dip in the average conductance before the opening of
each new channel.

If we increase the length of the disordered region to
L=500 nm, as in Fig. 2(b), a fundamentally different sub-
band structure of the conductance versus Fermi energy
emerges. The conductance now drops abruptly after the
opening of each new subband channel when all the
scatterers are repulsive (f=0.0, top curve). When half
the scatterers are made attractive (f=0.5, bottom curve),
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FIG. 2. Landauer conductance averaged over an array of 100
parallel wires, each having length (a} L =350 nm and (b) L =500
nm. The ballistic conductance steps are rounded for the short
quantumn wires in (a). A new “diffusive” subband structure
emerges for the long quantum wires [(b), top curve] having
f=0.0: The conductance falls after each new subband opens.
Quasidonor states are still observed for either short [(a) bottom
curve] or long [(b) bottom curve] quantum wires when f=0.5.
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the quasidonor states still give rise to a broadened con-
ductance dip before the new channel opens. The net
effect of this broadened conductance dip for f=0.5 is
that the average conductance is so suppressed before the
opening of each new channel that conductance drops
after the new channel opens are not observed. The inset
of Fig. 2(b), an expanded view of the lightly boxed region,
shows clearly the drop in conductance for f=0.5 before
the second subband channel opens.

To better understand this transition from the nearly
ballistic conductance in Fig. 2(a) to the diffusive subband
structure in Fig. 2(b), we examined the variation of the
conductance with the length of the disordered region.
The average conductance of 100 parallel wires containing
only repulsive scatterers (f=0.0) is plotted versus L in
Fig. 3ta). The Fermi level is placed at energies just below
(dashed), directly on (solid), and just above (dot-dashed)
the second and third subband minima. The average con-
ductance decreases roughly exponentially with length at
each value of the Fermi energy, as in one-dimensional
electron localization theory.**’ For short disordered
segments L, the average conductance is seen always to in-
crease with Fermi energy. However, as the disordered re-
gion is made longer, a crossover length L. is found such
that when L > L the average conductance falls after the
Fermi energy passes through a new subband minimum.
Consistent with this result, the electron localization
length 7, found from (G ) =expi —L /7), is appreciably
shorter just after the Fermi energy moves into a new
quasi-one-dimensional subband. This decrease in locali-
zation length is systematic and repeats around each new
subband minimum ir Fig. 3(a;. If the scatterers are made
stronger by increasing y,, the point at which the curves
“cross over’ occurs for a shorter length L, of the disor-
dered region.

In Fig. 3(b) we plot the ensemble-averaged conduc-
tance versus length when f=0.5 for the same energies as
in Fig. 3(a). Quantum diffusion is still evident, since the
conductance still decreases roughly exponentially with L.
But in contrast to Fig. 3(a), there is no crossing over of
the conductance versus length curves so that 7 is roughly
the same (or increases) for increasing values of the Fermi
energy. The conductance drops versus Fermi energy
when f=0.5 in Figs. 2(a) and 2(b), therefore, do not de-
pend on electron “localization™ phenomena, and can be
seen in the conductance of each individual ensemble
member when only a few scatterers are present. Indeed,
conductance drops of this sort occur if only one attractive
scatterer is present in a single wire,””® and therefore
clearly do not depend on multiple reflections between
different scatterers. In contrast, when all of the scatterers
are repulsive in Fig. 2(b), the conductance drops after a
subband opens occur only if the electron motion is phase
coherent over a long enough segmeat of the conductor.®®

A drop in conductance due to enhanced scattering
after the opening of a subband channel has been argued
previously,” ™' based on a Drude model in which the
collision time is modified to account for scattering be-
tween quantum channels. Calculating the electron
transmission along the conductor semiclassically, by ex-
actly treating the quantum-mechanical scattering at each
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impurity but neglecting the wave interference between
scattering events, is a valid approximation in many cir-

" cumstances. However, Refs. 23-31 also assume that the

electron scattering at each individual impurity can be cal-
culated in the Born approximation. Although the Born
approximation adequately describes single subband trans-
port,*® we feel that the Born approximation (or “golden-
rule” scattering rate) probably cannot be used to describe
multiple subband transport along a quantum wire.
Because wave interference between different scattering
events is neglected in the Drude approximation, a drop in
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FIG. 3. Average conductance vs length L for an array of 100
parallel wires having (a) f=0.0 and (b) £=0.5. Six values of the
Fermi energy are shown: 0.9E; and 0.9E, (dashed lined), E.
and E; (solid line}, and 1.1E, and 1.1E, (dot-dashed line}. The
“crossing over” of the conductance curves in (a) indicates a
much shorter localization length when the Fermi energy moves
into a new subband. Quasidonor states present in (b) depress
the conductance below each subband, so there is no crossing
over of the conductance curves.
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. the Drude conductance after a subband crossing should
occur only if the transmission at each individual scatterer
decreases as a new channel is opened. However, as
shown, for example, in Refs. 3—6, the electron transmis-
sion through a single impurity increases when a new sub-
band channel is opened. Furthermore, the golden-rule
(or first-Born-approximation) approach to calculating
scatteirng rates is an approximation depending only on
the square magnitude of the scattering potential, so that
attractive and repulsive scatterers erroneously give the
same subband structure of the conductance versus Fermi
energy in the Born approximation. Finally, the Born ap-
proximation explicitly breaks down at a subband
minimum, as each term in the Born series becomes
infinite.’ Treating the first term in this series in a “self-
consistent Born approximation” does not remedy the
problem, since the change in transmission at a subband
crossing is still in the wrong direction.

The transition from quantum diffusion to classical
diffusion must be made by introducing additional phase-
breaking scattering in the conductor.*’ If this is done us-
ing the method of Biittiker,” and if the electron suffers a
phase-breaking event with probability 1 between each
elastic-scattering event, the resulting classical diffusive
transport is equivalent to adding many constriction con-
ductances in series (where each constriction also contains
an elastic scatterer). The conductance versus Fermi ener-
gy of such a classical diffusive wire will then resemble
Fig. 2(a), i.e., it makes little qualitative difference in the
shape of the conductance versus Fermi energy whether
the ensemble-averaged conductance is obtained by adding
the conductors classically in series or in parallel. Other
assumptions about how the electron phase is broken in-
side the conductor may lead to different subband struc-
tures for the conductance versus Fermi energy when the
transport is classical and diffusive. If the electron phase
could be disrupted without obtaining any extra resis-
tance, such that one would add the multichannel “R /T
Landauer resistances®® in series to approach classical
diffusive behavior,***! the ensemble-averaged conduc-
tance would then resemble the “four-probe” result shown
in Fig. 8 of Ref. 4. There should be little qualitative
difference in the dependence of conductance versus Fermi
energy between quantum diffusion and classical diffusion
if some fraction of the scatterers in the wire are attrac-
tive, since the transmission through each individual at-
tractive scatterer qualitatively resembles the coherent
ensemble-averaged transmission through the wire array
in this case.

Many of the issues raised in this paper have also been
considered in connection with the quantized Hall effect.
Differences between the electrical transmission through
repulsive versus attractive scatterers have been of some
interest in the quantized Hall effect.”’ Similarly, states
analogous to the “‘quasidonor levels” of this paper can
occur due to the formation of “quasibound states™ at a
local widening of the conductor in mesoscopic Hall
crosses.” Electron “localization™ in a narrow wire sub-
ject to a magnetic field has also been studied.*

IV. CONCLUSION

We find that the electrical conductance versus Fermi
energy in an array of disordered quasi-one-dimensional
wires can indeed evolve from the ballistic conductance
steps into conductance drops after a new subband opens,
but for reasons totally different from those given in Refs.
23-31. In the Drude model, the conductance decreases
linearly with the length of the wire so that the electrons
are delocalized. In our calculation, we find that the elec-
trical conductance in a disordered quasi-one-dimensional
wire decreases roughly exponentially with the length of
the disordered region. The localization length associated
with this decay is reduced when the Fermi energy crosses
a confinement subband, leading to a new quantum
diffusive subband structure in arrays of long quantum
wires. Therefore, we find that the occurrence of conduc-
tance drops afier a subband channel opening depends on
quantum diffusion, and does not occur if the diffusion is
classical (as in the Drude model). Similar results should
follow from tight-binding transmission calculations®? if
care is taken to exclude the formation of quasidonor lev-
els in a locally attractive impurity.*~’

These quasibound states in the attractive impurities are
manifest as pronounced conductance dips below each
subband minimum,’~° as reconfirmed for the ensemble-
averaged conductance®® in Fig. 2 of this work. These
same conductance drops below a new subband’~* aiso
arise if only one or a few attractive impurities are present
in the wire. Therefore, they are essentially due to
changes in transmission occurring at a single attractive
impurity site and do not depend on either quantum or
classical diffusion to occur, although their exact position
in Fermi energy can be somewhat modified due to elec-
tron wave interference.” If the potential energy is locally
attractive, so that quasidonor levels can form in an im-
purity, the new subband structure arising from localiza-
tion phenomena studied in this paper is modified by the
depressed transmission near the quasibound states. In
conclusion, our study shows that there is no unique
“ensemble-averaged conductance” of a disordered quasi-
one-dimensional wire. Instead, the ensemble-averaged
conductance of such a wire depends strongly and qualita-
tively on the type of disorder present.

Note added in proof. Since submission of this paper, we
have become aware of several studies treating the con-
ductance of disordered narrow wires, ¥~
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Reprint: Anti-Correlated
Oscillations in a Three-Lead

Quantum Dot

This Appendix contains a reprint of the following paper:

A. Kumar, J. Kinaret, C. Eugster, T. Orlando, D. Antoniadis, M. Rooks, and M. Melloch,
“Anti-Correlated Oscillations in a Three-Lead Quantum Dot,” presented at Rencontres
de Moriond: Coulomb Blockade and Interference Effects in Small Electronic Structures,
Villars-sur-Ollon, Switzerland, 22-29 January 1994 (to be published in the Proceedings).
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Manuscript for RENCONTRES DE MORIOND: COULOMB AND INTERFERENCE EFFECTS IN
SMALL ELECTRONIC STRUCTURES, Villars-sur-Ollon, Switzerland, 22-29 January 1994

ANTI-CORRELATED OSCILLATIONS IN A THREE-LEAD QUANTUM DOT

A. Kumar, J. Kinaret; C. Eugster, T. Orlando, D. Antoniadis, M. Rooks} M. Melloch?
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, U.S.A.

We present results of transport measurements on a quantum dot in which a novel
gate geometry allows the dot to be contacted by three, rather than two, leads. When
the dot charge is well-confined, periodic conductance oscillations due to Coulomb
charging are observed in-phase with each other at two of the leads in response to
a small excitation voltage at the third. As the tunnel barriers are made softer
by changing the gate voltage, a strikingly different phenomenon is observed: con-
ductance peaks at the two output leads evolve from perfect correlation to perfect
anti-correlation with each other. A simple model incorporating polarization states
of the dot-lead system is presented asa possxble explanation.

Transport measurements have found that the conductance of a quantum dot structure is
a periodic function of an external gate voltage.}) This striking modulation of the conductance
results from the condition that the dot charge is an integer multiple of the electron charge. If
the gate voltage is such that the electrochemical potential of the dot lies between the quasi-
Fermi levels of the leads, the number of electrons in the dot can fluctuate classically by one
and hence the current is at maximum. For all other gate voltages, there is a Coulomb charging
energy associated with the tunneling of an additional electron from the input lead, and current
flow is suppressed. _

The above Single Electron Tﬁnneling (SET) picture of electron transport has been highly
successful in explaining the majority of conductance experiments to date!) in which a quan-

tum dot is coupled to two electron reservoirs. In this paper, we present results of transport

*Nordita, Blegdamsvej 17, DK-2100, Copenhagen @, Denmark.
tNational Nanofabrication Facility, Knight Laboratory, Cornell University, Ithaca, New York 14853-5403.
#School of Electrical Engincering, Purdue University, West Lafayette, Indiana 47907.
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Figure 1: Schematic of the gate
geometry of our three-lead quantum dot.
Application of negative gate voltages
Vr and V), depletes the 2DEG
underneath, leaving behind an

electron “island” coupled to three leads.
Four ohmic contacts allow access to

the 2DEG. In our measurements a
voltage V;, is applied at

contact 3 and currents I3; and I3y are
measured simultaneously.

Vin

measurements on a structure in which a novel gate geometry allows us to study a quantum
dot coupled via tunnel barriers to three leads. A small voltage excitation at one lead results
in currents at the other two leads, which can be measured simultaneously. We find that the
first several Coulomb blockade oscillations in the two currents line up with each other as the
gate voltage is swept, as expected from the simple SET picture. However, the main finding of
this work is that, as the gate voltage is increased further, the oscillations undergo a striking
transition from being lined up with each other to being perfectly out-of-phase with each other.

Figure 1 shows a schematic of our gate geometry, fabricated over a standard GaAs/AlGaAs
heterostructure with mobility 25 m? V-! s=! and carrier density 3x10'® m~2 at 4.2 K. Appli-
cation of a negative bias voltage to the top gate, V7, and thin (~ 40 nm linewidth) middle
gate, Vyy, depletes the high-mobility 2DEG formed in 2 GaAs/AlGaAs modulation-doped het-
erostructure, resulting in an “island” of electrons coupled to narrow channels on the left and
right, and to a semi-infinite 2DEG on the bottom. The currents at the output leads (lead 1 and
lead 2) are measured in response to a small ac voltage V;, applied at the input lead (lead 3). Two
low noise current amplifiers are used to measure simultaneously the currents I3; = Gj;V;n and
Iy = G332V, at the output leads. Each current amplifier outputs a voltage which is measured
using an ac lock-in technique at frequency 7.7 Hz. Blocking capacitors are used ‘at the inputs
of the current amplifiers to shield the device from offset voltages; each output lead is therefore
a virtual ground. As a check that the offset voltages are properly compensated, essentially no
change is observed in J3; and I3, if the two amplifiers are interchanged. All measurements are

carried out at a base cryostat temperature of 300 mK.
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Figure 2: (a) Conductances G3; (offset by 0.5uS) and Gj; as the top gate voltage Vr is swept.
The middle gate voltage Vjy = —0.7V is fixed in the tunnel regime. (b) Detailed plot of the first
several resonances in (a), indicating that they are in-phase with each other. (c) Detailed plot
of resonances at higher Vr, indicating that they have evolved from almost perfect correlation
to almost perfect anti-correlation in gate voltage. .

Figure 2(a) shows the conductances G3; and Gyy, measured concurrently, as the top gate
voltage Vr is swept. The middle gate voltage V)y = —0.7V is kept fixed in the tunnel regime,
as determined by an exponential tail in its pinchoff characteristic.?? Due to some intrinsic,
unintentional asymmetry in our structure, the quantum point contact near lead 2 has a turn-on
voltage about 40 mV higher than the one near lead 1.

The first several conductance oscillations in G3; and G3,, along with the total conductance
Gy + Gs; through the dot, are shown in detail in Fig. 2(b). The perfect alignment of the
oscillations in G3; and G39 for V¢ <~ —0.555V can be understood simply from standard SET
theory. At a conductance maximum, an electron which has tunneled into the dot from the input
lead has some probability of being transmitted through either one of the two output leads. As
the gate voltage is increased in Fig. 2(c), the peak-to-valley ratio in the total dot conductance
G31 + G32 drops markedly. However, instead of broadening accordingly, resonances in the
individual conductances G3; and Gss evolve from being perfectly correlated to being perfectly

anti-correlated with each other. Another striking feature of the anti-correlated regime is that
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Figure 3: (2) Lumped element circuit containing dot and two quasi-reservoirs to model effect
of unequal electrochemical potentials on left and right sides of the dot. (b) Set of states used
in calculation and possible transitions between them. The set of states includes the lowest-
energy unit polarization fluctuations of the states (Qr,Qp,Qr) and (Qr,Qp + ¢,Qr). The
unlabeled transitions show no resonant structure because of the strong coupling between the
quasi-reservoirs and the reservoirs.

G32 actually changes sign at some of the deep valleys. The total conductance through the dot
G31 + Gy is, however, always positive.

‘We have fitted the lineshapes of G3; +G32. In the correlated regime we find an excellent fit of
the lineshapes to the derivative of the Fermi-Dirac function. As the gate voltage is increased so
that the oscillations become anti-correlated, we find that the Fermi fit to G3; + G3, progressively
worsens, predicting valleys much deeper and linewidths much narrower than given by the data.
Foxman et al.®) have found that such a transition from thermally to intrinsically broadened
resonances is accompanied by a rapid increase in the capacitance between the dot and one of
the leads. _

‘We now turn to a preliminary model to account for the separation of the peaks in the left
and right currents with gate voltage. The crucial ingredient of the model is that there is some
intrinsic, unintentional asymmetry between the right and left tunnel barriers which causes the
local chemical potentials to be different on the left and the right sides of the dot. We can
associate an effective capacitance with each barrier, the value of which depends on the barrier
thickness and height. As the barriers are made softer by increasing the top gate voltage V7, the
barrier capacitances increase, and the relative barrier asymmetry becomes more important. In
this regime it is no longer obvious that the transitions necessary to produce current peaks at
the left and right leads will resonate at the same gate voltage.

Figure 3(a) depicts a lumped-element circuit used as a first approximation to model the
effect of unequal electrochemical potentials. In addition to the dot with quantized charge

Qp = —Npe, the model contains two quasi-reservoirs which are coupled to the actual reservoirs
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by large capacitances Cy and Cr. Physically, we expect that a test charge placed in a quasi-
reservoir, representing the part of the lead nearest the barrier, will be partially imaged in the
dot and partially imaged in the actual reservoir.

The electrostatic energy of the circuit in Fig. 3(a) is
1 1 1
W ) 1 7V = == + + 2 4+ — 2 -+ — 2
(@p,Q1.Qr, V5) 2 (Qo +1.Q1 + 12QR) 2CLQI‘ 2CRQR
C
+ 'C'Tgvg(QD +7.QL +7rQR), (1)
d

where Crp) = Crr) + Carar), Tur) = Caram)/Crimy, and Ca = Cy + (1 — 1)Car + (1 —
7r)Car. Figure 3(b) shows the set of states used in the model and the possible transitions
between them. The set of states includes the lowest-energy unit polarization fluctuations of
the states (Qr,Qp,Qr) and (Q.,Qp + q,Qr). The procedure for finding the resonant gate
voltages for each of the 5 transitions I,L,L',R,R’ is as follows. The electrostatic energies of
the two states involved in each transition are equated, relating the resonant gate voltage V)
to the charges (Qr,Qp,Qr). To find the charges, it is assumed that the time-average charges
EL(R) =3, HQ}_’% R) are given by the classical electrostatics relations OW/8QLr) = 0, where
the occupancy probability P; for state i is taken in the grand canonical ensemble.

This procedure yields a set of coupled transcendental equations. In the limit Cr,Cr >>
Cy,Cat, Cdr, we recover the conventional SET theory result that all transitions are at resonance
at the same gate voltage V, = e(Np + 1/2)/C,. As the tunnel barriers become softer with
increasing gate voltage, the capacitances Cyz, C4r become comparable to Cy, Cr, in which case
the equations must be solved numerically. Figure 4 shows the results of such a calculation, in
which the resonant gate voltage positions for the transitions L,L',R,R’ are plotted as a function
of Cy4p for the highly asymmetric case Cy, = 10C4z. With increasing Cyqr = 10Cqg, the
injector transition I is unchanged and the transitions L,L’ are shifted only a little. However,
the transitions R,R’ are strongly shifted; in the limiting case Cy,/CL ~ 1, when the left barrier
has nearly disappeared, transitions R,R’ are at resonance almost midway between successive
resonances of the injector transition I.

This polarization model suggests a mechanism by which a phase shift in the resonances can
occur. For a peak to occur in the current measured at the right lead, there must be a chain of
events involving transition I and either transition R or R’, which no longer occur at the same
gate voltage. The currents Iy;, I3; versus gate voltage can be found numerically by replacing the
equilibrium probabilities P; with a non-equilibrium distribution function determined by a rate

~ equation.!) Such a calculation has been carried out* and indeed yields anti-aligned oscillations
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dard SET result that all transitions occur _>°’ 0
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disappeared, transitions R,R’ occur L
almost midway between neighboring 0.8 . . . 0
I transitions.
CdL (fF)

in the limit that C;; and Cyp are large but asymmetric. However, the currents do not change
sign.

In summary, we have fabricated and studied a three-lead quantum dot. When the dot
confinement is strong, the two output leads behave as two independent, parallel channels for
current flow, resulting in Coulomb blockade oscillations which are aligned with each other in
gate voltage. As the leak rates to the output leads increase, peaks-in the total incident current
broaden accordingly, but peaks in the two output currents evolve from being correlated with
each other to being anti-correlated with each other. In this regime the simple single electron
tunneling picture is inadequate to explain our results, and we suggested a simple circuit model
which reproduces many of the observed features.
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Channel sensitivity to gate roughness in a split-gate GaAs-AlGaAs
heterostructure

Arvind Kumar,® Steven E. Laux, and Frank Stern
IBM Research Division, T. J. Watson Research Center. Yorktown Heights. New York 10598

(Received 14 November; accepted for publication 13 January 1989)

The response of the width of the electron channel at a GaAs-AlGaAs heterointerface to
variations in the gate opening of a split-gate structure is calculated using a three-dimensional
solution of the Poisson equation in the continuum approximation and is analyzed in terms of
the Fourier components of the perturbation. It is found that the effective potential well for the

channel electron gas attenuates high wave vector components of the gate roughness.

The split-gate GaAs/AlGaAs heterostructure has been
widely used as a device configuration to achieve electron
confinement in two dimensions. " Laux et /.’ have calculat-
ed the potential and electron distributions for such a device,
with a split gate over a conventional GaAs-based hetero-
structure, using a self-consistent numerical solution of the
Poisson and Schridinger equations. Davies* has given an
analytic treatment valid for cases in which there is little or no
charge in the conducting electron channel in the GaAs.
These treatments assumed that the gate edges are smooth,
something not easy to achieve in real structures.® In this
letter, we investigate the response of the electron channel toa
perturbation in the width of the gate slit using a semi-classi-
cal approximation.

The structure we consider has the same cross section as
thedevice in Fig. 1 of Ref. 3. However, our gate has a period-
ic square-wave modulation, illustrated in Fig. 1, such that
the slit width averages to 400 nm, the value used in Ref. 3.
From our calculation, the abrupt discontinuity in slit width
shown in Fig. 1 results in a rounded contour of the conduc-
tion band edge at the Fermi energy in the plane of the
GaAs/AlGaAs interface, as illustrated in Fig. 2.

To obtain the potential distribution, we use a three-di-
mensional extension of the Poisson equation solver de-
scribed in Ref. 6, with provisions for carrier freezeout and
discontinuous band gaps. The Poisson equation is discre-
tized using a standard seven-point finite-difference scheme
and is solved with a conjugate gradient method employing
polynomial preconditioning.” For a given device geometry
and set of bias conditions, the computation time of the ma-
trix solver grows with the number of nodes N as & °. We find
@ to range between |.2 and 1.3, based on runs with values of
N from ~3X 10" to ~ 3 10°. About 80% of the total com-
putation time is spent in vector mode on an IBM 3090 com-
puter.

We restrict our solution to a classical calculation be-
cause of the computational difficulty of dealing with contin-
uum eigenstates in a quantum mechanical calculation. Zero-
gradient boundary conditions at the edges of the mesh allow
us to model only the half-period x! < L /4 and to obtain the

*" Present address: Department of Electrical Engineering and Computer
Science. Massachusetts Institute of Technology. Cambridge, MA 02139.

1270 App!. Ohys. Lett. 54 (13), 27 March 1989
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solution in the rest of the period by symmetry. All calcula-
tions were done at a temperature of 4.2 K.

We simulated structures having perturbations 24 = 80
nm in slit width and periods ranging from 0.2 10 20.0 um. To
analyze our results, we decompose the conduction band edge
contour’ y = f{x) at the Fermi energy in the plane z = Ointo
its discrete Fourier components:

21rmx

Ax) =by + Z a, st«[r.nx Zb cos

mam i

(n

where L is the penod of the perturbation in gate slit widih.
For a pure square wave with the origin chosen as indicated in
Fig. 1, we havea,,

= 0 forevenmand b,, = 0for m#0. For

p-GaAs

i—o

FIG. 1. Device geometry used in this work. A split gate having a square-
wave variation of the slit width is placed on a GaAs-AlGaAs heterojunc-
tion. The layer thicknesses are 24 nm for the undoped GaAs top layer. 36
nm for the doped AlGaAs layer with 6 X 10'” donors per cm’, 10 nm for the
undoped ALGaAs spuer layer, md 0.93 pm for the GaAs substme with
10** acceptors per cm’. The donor bindi rgy and h j con-
duction band offset are taken to be 0.05 and 0 3 eV rspecnvely Ourcalcu-
lation assumes a uniform surface charge density in the gate opening, ignor-
ing a region of positive surface charge near the edge of the gate. The gate slit
has an average width of 400 nm.

€ 1988 American institute of Physics 1270
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FIG. 2. Contour lines in the plane 2 = 0 of Fig. 1, showing where the con-
duction band edge of an electron channel crosses the Fermi level. Electrons
occupy the area between the full curves. The parameters of the slic width
modulation are L = 1.0 um and 2d = 80 nm. The gate voltage is 0.3 V
above the threshold for app of an el h | at the GaAs/
AlGaAs interface. The dashed line is the projection of the gate in this plane.

the conduction band edge contour, we find a,, to be essen-
tially zero for even m. However, we find b, for even m to be
nonzero, although small compared toa,, for adjacent odd m.

We divide the amplitudes of the sine terms in the expan-

sion of the conduction band edge contour by the correspond-
ing amplitudes of the Fourier components of the square

wave modulation in the gate slit width to obtain the “transfer
ratio” at wave vector ¢ = 27m/L:

s(q) = m=135,.. 2)

2d /am '

Figure 3(a) shows the transfer ratio s(g) for four values
of the gate slit modulation period L at a gate voltage
V= - 1.2V, about 0.3 V above the threshold for appear-
ance of charge in the channel. All simulations reveal a qual-
itatively similar behavior characterized by the filtering of
high ¢ components of the perturbation. We note that the
region between ¢ = 5% 10*cm~"'and g = 3.5X10°cm ™' is
given approximately by

5(g) = Cexp( ~ Bg), 3
where C=1.88and 8= 1.14x 10" cm.

For the coefficients of the cosine terms in Eq. (1) we
define a *“forbidden™ transfer ratio at wave vector ¢
=2rm/L:

b m=24,,6,... (4)

t = —
(@) 2d /mm

Values of 1(q) are shown in Fig. 3(b).

Our calculations show that for a small range of gate
voltages near threshold the square-wave slit width modula-
tion used here leads to pockets of electrons under the wide
slit areas, with carriers excluded under the narrow slit areas.
As the gate voltage becomes more positive, these pockets of
electrons expand to form continuous contours, as shown in
Fig. 2.

A real gate can be expected to have random roughness,
whose Fourier expansion—like that of the square wave as-
sumed here—will include a wide range of wave vectors. Our

1271 Appl. Phys. Lett, Vol. 54, No. 13, 27 March 1989
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FIG. 3. (a) Transfer ratio s(g) at a gate voltage 0.3 V above threshold, for
gate slit width perturbation with amplitude 24 = 80 nm and with four per-
iods L: 0.4 um, crosses; 1.0 um, circles; 2.0 um, dashed curve; and 20 um,
full curve. The full curve was calculated with more mesh points than the
other three cases, and is idered to be more . (b) “Forbidden™
transfer ratio #(g) for the same parameters as in (a).

results indicate that the large wave vector components, in-
cluding those whose magnitude is comparable to the Fermi
wave vector of the electrons (expected to be of order 10°
cm ™! for a quasi-one-dimensional electron gas**), will be
substantially attenuated for structures similar to the one
considered here, reducing their effectiveness in scattering.

Among problems left for future work are the behavior of
the transfer ratio as the distance between the gate and the
channel is reduced and the implementation of a fully quan-
tum-mechanical self-consistent treatment. The latter prob-
lem is complicated by the need to deal with continuum eigen-
states and by the long computation times involved in
three-dimensional calculations.

We would like to thank S. Furkay, F. Pileggi, M. Ami-
don, and L. Borucki for graphics and data base support. One
of us (A. K.) is grateful for the opportunity to work at IBM
Research during the summer.

'T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies,
Phys. Rev. Lett. 56, 1198 (1986).

*H. Z. Zheng, H. P. Wei, D. C. Tsui, and G. Weimann, Phys. Rev. B 34,
5635 (1986).

'S. E. Laux, D. J. Frank, and F. Stern, Surf. Sci. 196, 101 (1988).

*J. H. Davies, Semicond. Sci. Technol. 3, 995 (1988). We are indebted to
Dr. Davies for a preprint.

*See. for example, U. Merkt, Ch. Sikorski. and J. P. Kotthaus. Superlatt.
Microstruct. 3, 679 (1987), Fig. 1(b), and the papers on nanostructure
technology in Vol. 32, No. 4 of the IBM Journal of Research and Develop-
ment.

°S. E. Laux and F. Stern, Appl. Phys. Lett. 49, 91 (1986).

0. G. Johnsan, C. A. Micchelli, and G. Paul, SIAM J. Numer. Anal. 20.
362 (1984).

*There are two contours, symmetric about the line y = 0. We use the one
with y>0.

~n
~1

Kumar, Laux, and Stern

120



APPENDIX D. REPRINTS: NUMERICAL MODELING OF

QUANTUM DOT STRUCTURES 121

PHYSICAL REVIEW B YOLUME 42, NUMBER 8 15 SEPTEMBER 1990-1

Electron states in a GaAs quantum dot in a magnetic field

Arvind Kumar
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
and Department of Electrical Engineering and Computer Science, Massachuseuts Institute of Technology.
Cambridge. Massachusetts 02139*

Steven E. Laux and Frank Stern
IBM Research Division, Thomas J. Watson Research Center. P.O. Box 218, Yorktown Heights, New York 10598
{Received 12 March 1990: revised manuscript received 6 June 1990)

Self-consistent numerical solutions of the Poisson and Schrodinger equations have been obtained
for electron states in a GaAs/Al,Ga,_,As heterostructure with confinement in all three spatial di-
mensions. The equations are solved in the Hartree approximation, omitting exchange and correla-
tion effects. Potential profiles, energy levels, and the charge in the quantum dot are obtained as
functions of the applied gate voltage and magnetic. field. First, the zero-magnetic-field case is con-
sidered, and the quantum-dot charge is allowed to vary continuously as the gate voltage is swept.
Then, in connection with the phenomenon of Coulomb blockade, the number of electrons in the
quantum dot is constrained to integer values. Finally, the calcul to e the
evolution of levels in a magnetic field applied perpendicular to the heterojunction. Our results indi-
cate that the confining potential has nearly circular symmetry despite the square geometry of the
gate, that the energy levels are quite insensitive to the charge in the quantum dot at a fixed gate volt-
age, and that the evolution of levels with increasing magnetic field is similar to that found for a par-

10n 1S ex: ded

abolic potential.

1. INTRODUCTION

Modern fabrication techniques have made possible
confinement of a two-dimensional layer of electrons into
wires, grids, or dots where quantum-mechanical effects
are strongly manifested. Of particular current interest
are quasi-zero-dimensional systems, which have been
made by selective etching of a GaAs cap on a GaAs-
Al Ga, _, As heterostructure,' by depositing a cross-grid
gate structure on a GaAs heterostructure® or on Si,* by
using crossed holographically defined gratings,® and by
using an array of small Latex particles as an etch mask, *
to cite some recent examples. Such quantum-dot struc-
tures offer a dispersionless system with an electron-
energy spectrum that can be modulated either by varying
gate bias voltage or by applying an external magnetic
field. Smith er al.! have reported oscillatory structure in
capacitance versus gate voltage in zero magnetic field and
have attributed it to the discrete energy states of a quan-
tum dot. Recently, Hansen er al.® have reported observ-
ing Zeeman splitting of quantum-dot capacitance
features, as expected when a magnetic field is applied per-
pendicular to the heterojunction. There are many papers
that treat the energy-level structure of related systems,
including the paper by Darwin that treats a two-
dimensional harmonic-oscillator potential in the presence
of a normal magnetic field,” Robnik's paper on a disk in a
magnetic field,® and the recent calculations by Brum and
co-authors on a model quantum dot.%® Sivan and Imry'®
have described the evolution of states in a quantum dot
versus magnetic field in relation to magnetization and

2

persistent currents, which are not considered here. In
this paper we present numerical self-consistent results in
the Hartree approximation for potential profiles, energy
levels, envelope wave functions, and charge distributions
for quantum dots like those studied by Hansen er al.®

Seif-consistent numerical treatments of electron states
in quasi-one-dimensional systems in the absence of a
magnetic field have been carried out for a narrow channel
in silicon by Laux and Stern'' and for a split-gate
GaAs/Al,Ga;__ As heterostructure by Laux er al.'
Numerical methods for such systems, which have quanti-
ties that vary in two spatial dimensions, have also been
used by Kojima et al.'’ and by Kerkhoven et al.'* How-
ever, the analogous calculation for a totaily confined sys-
tem requires a coupled solution of Poisson’s equation and
Schrodinger’s equation in three spatial dimensions, in-
creasing the computation requirements significantly. Ap-
plication of a magnetic field, which leads to complex
wave functions and a Hermitian rather than a real sym-
metric eigenvalue problem, also adds to the computation-
al burden. In Sec. II we discuss our formulation of this
problem. In Sec. IIl we discuss results of such a calcula-
tion on a GaAs/Al Ga,_,As quantum-dot structure in
zero applied magnetic field. In particular, we discuss the
effect of varying the charge in the quantum dot on the
energy-level structure and the quasi-Fermi-level, and its
relation to the Coulomb blockade. '*

In Sec. IV we extend our self-consistent calculation to
include the effect of an applied magnetic field perpendicu-
lar to the heterojunction on the potential, charge density,
and electron states of the quantum dot. We find good

5166 ©1990 The American Physical Socicty
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qualitative agreement with the results of earlier calcula-
tions for model potentials.

1I. FORMULATION OF THE PROBLEM

The structure we consider is a model of a single quan-
tum dot from the array of dots used in the experiments of
Hansen et al.,® described above. It is based on a hetero-
structure with an n-type GaAs substrate layer with a net
ionized donor concentration of 10'® cm™3, an 80-nm lay-
er of undoped GaAs (a background acceptor concentra-
tion of 10" cm™? is assumed throughout and diffusion of
donors from the substrate is ignored), a 20-nm layer of
undoped Alg 4Gag ¢As, a 20-nm layer of the same materi-
al with a donor concentration of 1.5X 10" cm™3, and a
30-nm GaAs cap layer. The cap is etched away, except in
the central 300 nm X300 nm portion of a 500 nm X 500
nm area, and the structure repeats on a square lattice.
Finally, a metal gate is deposited over the entire top sur-
face. A negative voltage on the gate depletes the charges
in the GaAs channel, except under the remaining GaAs
cap, and this three-dimensionally confined “puddle” of
electrons is the quantum dot being studied. The n-type
GaAs substrate allows a low-impedance capacitative con-
tact to the dot. Figure 1 shows the conduction-band edge
in the structure versus vertical distance along a line
through the center of the dot, and in the inset is sketched
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FIG. 1. Conduction-band edge along a vertical line through
the center of the GaAs-Al, Ga,_, As structure considered here,
for a gate voltage of —1.03 V. The layers of the structure, from
left to right, are 30 nm of n*-GaAs, 80 nm of undoped GaAs,
20 nm of undoped Al, ,Gag (As, 20 nm of Aly .Gag 4As with
Np=1.5%10" cm™’, and a 30 nm GaAs cap. The repeating
unit is 500 nm square, and the GaAs cap layer is etched away,
except under a central 300-nm square mesa. A metallic gate is
then deposited over the structure. The Schottky barrier associ-
ated with the gate suppresses induced charge in the GaAs, ex-
cept under the central portion of the mesa. All caiculated re-
sults are for 4.2 K and the zero of energy is taken at the Fermi
level in the substrate.
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the semiconductor region included in the model.

For the GaAs, we use an electron effective mass of
0.07m, and a dielectric constant of 13; for the
Al,Ga,_,As, we use 0.11m, and 11.8, respectively, cor-
responding to an AlAs mole fraction x =0.4. The
conduction-band offset is taken to be 0.3 ¢V. The binding
energy of the deep donor in the Aly ,Gag ¢As is taken to
be 0.15 eV, and the effective Schottky-barrier heights of
the gate electrode to the GaAs and the Al, (Ga, 4As are
taken to be 0.7 and 0.95 eV, respectively.

Although the present calculations deal with the struc-
ture of Hansen et al.,® the methods to be described in
this paper can be used for a wide class of structures in
which three-dimensional confinement of electrons is
achieved by a combination of band offsets and electrostat-
ic means.

We solve the Schrodinger and Poisson equations self-
consistently. Image effects'® in the Schrddinger equation
are ignored and we use the Hartree approximation, ignor-
ing exchange and correlation effects. Bryant!’ showed
that many-electron interactions can have significant
quantitative and qualitative influence on the energy spec-
trum of a quantum dot with a small number of electrons.
Similar effects are expected for the structures studied
here, but have not been included in our calculation.

The electrostatic potential ¢ is governed by the Poisson
equation

V-(elx,y,2)V¢(x,y,2)]= ~p(x,y,2) , [§3)

where € is the permittivity (in the present case it depends
only on the z coordinate), with boundary conditions
determined by voltages applied at the contacts. At boun-
daries where there are no contacts, the normal derivative
of the potential is taken to be zero. The total charge den-
sity p in Eq. (1) includes the charge in quantum states,
calculated as described below, as well as the contribution
from ionized impurities in the Al,Ga,_,As, and of any
electrons outside the Schrdinger domain. In particular,
any electrons in the cap layer are treated classically.

In a magnetic field (B,,B,,B,) the three-dimensional
Schrodinger equation for the electron envelope function
(in the effective-mass approximation) becomes

314 3 1 |# 2
2 teq | |22,
,El i Ox; €4 2m; | i 3x; ed; (6

+[U(x,y,2)-E,)¢,=0, (2

where m, is the electron effective mass in the jth direc-
tion and the electron charge is —e. We choose the sym-
metric gauge

A4,=(B,z—B.y)/2, (3)
and cyclic permutations. In the present case
m,=m,=m, and B, =B,=0.

The electron charge density in the quantum dot is
Pind Xy, 2= —=2e 3 £h(x,3,2)6,(x,p,2)
XfUEF—E, ) /kgD), 4)
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where the sum is over all states n, the factor 2 is for spin
degeneracy (spin splitting is ignored in this calculation),
Er is the quasi-Fermi-energy, and f is the Fermi-Dirac
occupation function at temperature 7.

If the Fermi energy in the quantum dot is equal to the
Fermi energy in the n-type substrate, then the calculated
charge in the dot will be a continuous function of the gate
voltage. The charge per quantum dot will, in general, be
a nonintegral multiple of the electron charge, and will
represent the average for a large ensemble of dots. Physi-
cally, however, the charge in an isolated dot should be an
integral multiple of the electron charge. If we constrain
the charge in the dot to be an integral multiple of the
electron charge, then we apply Fermi-Dirac statistics to
determine the quasi-Fermi-level that gives the prescribed
charge from the calculated energy levels.

Among many simplifying assumptions in our calcuia-
tion is the neglect of the interface image potential and of
many-electron contributions to the potential. Then the
potential energy is U =—ed+AE,, where the second
term is the position-dependent conduction-band offset
relative to the bottom of the conduction band in the
GaAs. Level broadening has not been included explicitly,
but some broadening, small compared to typical level
spacings, is simulated because we carry out the calcula-
tions at T =4.2 K.

Both the Poisson and Schrddinger equations are cast
into discrete form on a nonuniformly graded, tensor-
product (finite-difference) mesh, with no interior mesh-
line terminations,'s and the resultant matrix equations
are solved numerically. The Schrodinger mesh includes
only the region of significant dot charge; elsewhere elec-
trons are treated semiclassically. Electrostatic potential,
envelope functions, and charge-density values are defined
at mesh nodes, whereas material properties such as
dielectric constant, effective mass, and effective band-
edge shift AE, are piecewise constant in the individual
rectangular parallelepiped elements defined by the mesh.
Equations for the potential and envelope function at each
node are obtained by integrating Egs. (1) and (2) over the
box defined by the six planes bisecting the lines connect-
ing the node to its nearest neighbors (for nodes on the
boundary, only the volume inside the boundary is includ-
ed). For the Poisson equation, this results in a real sym-
metric matrix problem L¢=—Qp, where L is the opera-
tor V€V integrated over the boxes, ¢ and p are vectors
of the nodal potentials and charge densities, and Q is a
diagonal matrix of the nodal box volumes. For the
Schrodinger equation, one similarly obtains H¢,
=E,Qf,, where H is the Hamiltonian integrated over
the boxes and §, is the complex vector of the envelope
function for state n at each node. This equation is
readily transformed into a standard matrix eigenvalue
problem by premultiplying both sndes by Q°'7
and substituting I=q"12q! to give
Q™' HQ Q') =E,(Q'%¢,), or simply Hy,

=E,y,, where H=Q "’ HQ"'? is still an Hermitian
matrix and y, =Q'7¢,. In zero magnetic field, the Her-
mitian matrix reverts to a real symmetric matrix.

The Poisson equation in discrete form is nonlinear,
since the charge density depends on the potential. The
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solution to this nonlinear problem constitutes the search
for self-consistency between the charge and the potential.
The solution to the Schrédinger equation enters as part of
the evaluation of the total charge density in the device,
for a given potential. We linearize the Poisson equation
via Newton's method. The vector ¢ which is the zero of
the function F(@)=L ¢+ Qp(¢) is sought by iterating

F'(¢"1¢'=—Fl¢),
I-—l_¢l+‘¢

(5a)
(5b)

until convergence is obtained. Here, [ is the iteration in-
dex and the scalar damping factor ¢ is selected according
to a modified Bank-Rose damping scheme as discussed in
Ref. 19. The evaluation of the Jacobian matrix F' is a
possible stumbling block because the dependence on ¢ of
the charge density in the channel given in Eq. (4) is non-
local, which would destroy the seven-diagonal structure
of the Jacobian, rendering the matrix solution
significantly more difficult. Instead, as discussed in Ref.
19, a rather crude approximation to the dependence of
the channel charge on local potential is made for pur-
poses of calculating F’ only, in order to circumvent this
difficulty. While this precludes a second-order conver-
gence rate of the Newton iteration, converged solutions
can still be obtained in an acceptable number of itera-
tions. The linear matrix equations in (5a) above are
solved via a conjugate-gradient method. Such methods
require a preconditioner to accelerate convergence; we
have selected a polynomial preconditioner,” as it has
proven robust and highly vectorizable.

The discrete Schrodinger equation is solved by one of
two methods. Far away from self-consistency between
charge and potential, a Lanczos method is employed.*!
This method forms an approximate tridiagonalization T
of the matrix H. No reorthogonalization is used in this
process. Then, the eigenvalues of T are found in a
specified energy interval (from the minimum of the quan-
tum dot potential to 5-10 meV above the Fermi energy)
by a bisection search together with Sturm sequencing. !
Care must be taken in discarding potentially “spurious”
eigenvalues of T, that is, eigenvalues of T which are not
good approximations to true eigenvalues of H.>' Finally,
inverse iteration is used to find the associated eigenvec-
tors. Gaussian elimination is used to solve the tridiago-
nal matrix equations involved in inverse iteration.

Near self-consistency between the charge and the po-
tential, a simple Rayleigh quotient-iteration algorithm®
is used to solve the eigensystem. This algorithm requires
an initial guess for the eigenfunctions, and can be summa-
rized as follows. Let o(y)=(y"*Hy)/(y"y) be the usual
Rayleigh quouent (superscript H denotes Hermitian con-
jugate) and let y° be an initial guess for the nth eigenfunc-
tion. Then solve

[H—o(yh ]z "=y (6a)
yl‘ = I-rl/"xl‘lll (6b)
y' Hl=yltt— 2 (yHy'*)y; (this step only if n >0) ;
i=0
(6¢c)
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if |[Hy!*'~aty'*)y'*'ll <€, then done . (6d)

The solution becomes y, =y’ *'and E, =a(y’ ™).

Note that the step (6c) above is not a part of the stan-
dard Rayleigh quotient iteration. This step serves to re-
move components related to previously determined eigen-
functions y;, i =0,1,2,...,n—1, from the vector y' ™'
which is evolving into the eigenfunction y,. In practice,
this orthogonalization step has an important benefit: In
solving the equations for a series of gate voltages or mag-
netic fields, the time-consuming Lanczos method can be
omitted from the iteration for self-consistency between
charge and potential, provided the new solution is not too
distant from the previous solution. The orthogonaliza-
tion ensures that energy levels which are *‘close” at some
initial solution do not converge to the same level at a
later step. This procedure gives correct eigenstates using
significantly less computation time, but may eventually
miss some intermediate eigenvalues if extended over too
wide a range of gate voltage or magnetic field without an
intervening Lanczos solution.

The Hermitian matrix system in (6a) above is solved
with the polynomial-preconditioned conjugate-gradient
method.*® Although the matrix H—o in (6a) is not pos-
itive definite, this method of solution has always been
robust for the class of problems we have encountered.

The boundary condition used in our numerical method
is that the normal derivative of ¢, vanish on the
Schrodinger mesh boundary. In the lateral (x and y)
directions this condition occurs sufficiently far from the
region of induced charge that it has no appreciable effect
on the results. In the direction normal to the inversion
layer, we truncate the Schrodinger mesh 36 nm below the
GaAs/Al Ga,_ As interface to avoid the quasicontinu-
um of eigenstates arising from the heavily n-type doped
substrate. This may lead to significant errors in the
values of energy levels and thresholds. In particular,
some of the qualitative results for the present structure
may not apply to a dot with stronger vertical
confinement, as could be obtained if a p-type substrate
were used.

The convergence criterion for self-consistency is that
the nodal potential energies of successive iterations differ
by no more than 0.01 meV anywhere on the Poisson
mesh. The necessarily limited mesh size (51 X 51X 35 for
the Poisson mesh and 43X43X 18 for the Schridinger
mesh, in the x, y, and z directions, respectively) and other
approximations made in the calculation will lead to er-
rors that are larger than this convergence criterion. An
IBM 3090 computer with vector processor was used for
these calculations. A single Newton's loop, in which the
Poisson and Schrddinger equations are each solved once,
required approximately 15 min of computation time for
B =0 and 45 min for B=0 if the Lanczos recursion was
used. If the Rayleigh quotient algorithm was used in
place of the Lanczos method, the solution of the
Schrodinger equation (nearly all the computation time)
ranged from 5 to 50 times faster, depending on the quali-
ty of the initial guess. A typical bias point required 4-20
Newton’s loops to converge.

IIl. ZERO MAGNETIC FIELD

Potential contours in a plane 8 nm below the GaAs-
Al Ga,_, As interface, near the maximum of the electron
charge distribution, are shown in Fig. 2. Note that the
potential contours are nearly circular, especially at the
lower energies, although the defining gate geometry is a
square. That follows from the attenuation of higher
Fourier components of the potential in regions some dis-
tance from the gate, as found previously for fluctuations
in the width of a gate opening. > Also, the effective size
of the quantum dot, given by the contour at the Fermi
level, is considerably smaller than the size of the defining
structure in the gate. In Fig. 2 and throughout this paper
we make cuts in representative planes or along represen-
tative lines to display functions of three spatial coordi-
nates. The figures are intended to indicate the main
features of the calculated results, but should not be con-
sidered to be complete. The raggedness of some of the
later curves is a consequence of the necessarily coarse
mesh used in the discretization.

Figure 3 shows the number of electrons in the quantum
dot, the lowest-energy levels, and the quasi-Fermi-level as
functions of the voltage on the gate at 4.2 K for zero
magnetic field. The notion of “quasi-Fermi-level™ does
not arise in calculations for quasi-one-dimensional wires,
for which the charge can be considered to vary continu-
ously, provided a suitable means of equilibrating with an
adjacent gate or contact exists. For the very small struc-
tures considered here, where a dot may contain only a
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FIG. 2. Lateral potential contours in the plane 8 nm below

the GaAs/Al,Ga, ,As interface, near the peak of the vertical
charge density, for a gate voltage of —1.03 V. The innermost
contour is 15 meV below the Fermi level, which is indicated by
the heavy line, and the remaining contours are at 10-meV inter-
vals from — 10 to +350 meV. Note the nearly circular symmetry
despite the square geometry of the cap. The effective quantum
dot size, with a diameter of about 100 nm, is considerably small-
er than the 300-nm square mesa in the GaAs cap layer.
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three levels lie very close to each other. In addition, each level
has a twofold spin degeneracy. These energies reflect the com-
bined effect of vertical and lateral confinement. The energy of
the lowest state with a node in the = direction is indicated by the
plus signs. Only integer electron occupations, indicated by the
vertical dotted lines, correspond to physically realizable states
of an isolated quantum dot.

few electrons, discontinuities can arise because transfer of
just one electron can have a significant effect on the ener-
gies in the problem. This gives rise to the Coulomb
blockade, as found in many experiments.'® Because of
this effect. the curves in Fig. 3 have no physical
signficance for an isolated quantum dot at points where
the number of electrons in the dot is different from an in-
teger.

Some of the energy levels we calculate are degenerate
‘apart from the spin degeneracy, which applies to all lev-
els in our calculation) and others are nearly so. For ex-
ample, the second and third levels are exactly degenerate
at zero maguetic field because of the square symmetry of
the structure we consider. The fourth and fifth levels
would be degenerate at B =0 if our system had circular
symmetry. The small splitting results from the weak
remnant of the square symmetry of the cap. Finally, the
sixth level, which is close to the fourth and fifth, would
be exactly degenerate with them if the system had circu-
lar symmetry and had the perfectly parabolic potential
treated by Darwin.” Similar considerations apply for
higher-lying levels. except that they are increasingly
influenced by the deviations from a circularly symmetric
potential.

Figure 4 shows the quasi-Fermi-energy and the bottom
of the potential relative to the Fermi energy in the GaAs
substrate when the number of electrons in the quantum
dot is six, seven, or eight. At a given gate voltage, several
different charge states of the dot are possible, although
the state with the quasi-Fermi-level closest to the Fermi

F1G. 4. Quasi-Fermi-level and energy of the bottom of the
well. vs gate voltage for six, seven, and eight electrons in the
quantum dot. The energy difference between the quasi-Fermi-
level and the Fermi level gives a driving force for electrons o
move between the dot and the substrate. The circles correspond
to gate voltages for which the dot is in equilibrium with the sub-
strate for an integer electron occupation.

level in the substrate contact is the one most likely to be
observed. The buildup of potential difference before a
charge transfer occurs is a signal of the Coulomb
blockade. '*

One measure of capacitance of our structure is ob-
tained by using the lower curve in Fig. 3 to calculate a
gate-to-dot capacitance C, =dQqp/dV,. That capaci-
tance varies from about 1X 10~ F at small values of dot
charge to about 3X 10™'7 F when there are about 12 elec-
trons per dot. More directly relevant to the experiment
of Hansen er al.® is an effective substrate-to-dot capaci-
tance C,, which we obtain by dividing the electron charge
by the vertical separation between successive quasi-
Fermi-level curves in Fig. 4, to obtain a value of about
6X107"7 F for a dot occupation between seven and eight
electrons. Both of these effective capacitances will in-
crease with increasing dot charge.

The dynamical behavior of this system depends on
charge-transfer rates between the quantum dot and adja-
cent electrodes, a problem which is outside the scope of
the present static calculation.'® Note that the barrier be-
tween the dot and the substrate is very small, as indicated
in Fig. 1 for a line through the center of the dot. This
barrier would have been larger had we used a larger value
than 10" cm ™ for the net acceptor doping in the nomi-
nally undoped GaAs.

Figure 5 shows a few of the lowest-energy levels versus
gate voltage when the number of electrons in the quan-
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FIG. 5. The six lowest-energy levels (note that the second
and third levels are degenerate), and the quasi-Fermi-energies,
for six, seven, and eight electrons per quantum dot, vs gate volt-
age. Each level has a twofold spin degeneracy. For the upper
three levels only the values for seven electrons per dot are
shown; the results for six and eight electrons per dot aimost
coincide. These results are for 4.2 K and 8 =0.
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FIG. 6. Total charge density in the vertical direction along a
line through the quantum dot center for (a} six, seven, and eight
electrons per dot, with 8 =0, and (b) 8=0,1,2,3,4,and 5 T,
with seven electrons per dot. The z coordinate and the gate
voltage are the same as in Fig. 1.
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tum dot is fixed at six, seven, or eight with 2ero magnetic
field. The energy levels depend remarkably little on the
charge state, but are quite sensitive to gate voltage.

Some details of potential and charge density are given
in Figs. 6-8, both as functions of charge in the quantum
dot at B =0 and as functions of magnetic field (as dis-
cussed in the next section) for fixed charge in the dot.
Figure 6 shows the charge density along a vertical line
through the center of the dot. The charge density peaks
about 8 nm below the GaAs/Al,Ga, . As interface, but
is truncated—as described above—before the rise of
charge density in the substrate begins. A lateral cut
through the charge density near the peak in Fig. 6 is
shown in Fig. 7. Finally, Fig. 8 shows the variation of
the conduction-band edge in the x direction, in the same
plane as in Fig. 7. The effective size of the dot is about
100 nm, considerably smaller than the 300-nm square
mesa in the GaAs cap layer. The potential somewhat
resembles the truncated parabola found previously for n-
i-p-i doping superlattices®* and for wires in Si (Ref. 11)
and GaAs, '? but with more structure, which can be attri-
buted to the small number of discrete states that contrib-
ute to the charge in the cases shown.

IV. NONZERO MAGNETIC FIELDS

When a magnetic field is applied normal to the surface,
the Schrodinger equation, Eq. (2), becomes complex, and
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FIG. 7. Lateral cut of total charge density in a plane 8 nm
below the GaAs/Al Ga,_ As interface. The cut is taken
through the center of the quantum dot. Other quantities as in
Fig. 6.
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TABLE 1. Calculated quantities for states of the quantum dot at 4.2 K for B =5 T and a gate voltage
of —1.03 V, with seven electrons in the dot. The energy is relative to the bottom of the potential well
in the dot, {/.) is the expectation value of the z component of the “canonical” angular momentum
rXp, {R) is the expectation value of the two-dimensional radial distance from a vertical axis through
the center of the dot, 8R is its standard deviation, and (L) is the expectation value of the z component
of the total angular momentum r X mv. The 0’ state is the lowest state with a node in the z direction.
Energy (R) S8R
State (meV) (L)Y/R {nm) {(nm) (L) /R
Q 354 0.07 4.3 7.5 1.06
I 35.5 -1.05 21.2 15 0.87
2 35.7 —1.98 259 73 0.76
3 36.2 =291 294 7.1 0.57
4 370 —3.83 323 6.9 0.32
5 38.1 —4.75 34.8 6.3 0.03
6 3935 —5.62 371 6.6 -0.24
7 411 —6.46 39.1 6.6 —0.49
8 429 -7.32 41.0 6.5 -~0.78
9 43.6 0.98 21.0 74 2.87
0 43.7 0.00 159 9.4 1.30
10 . ; . its discretized form leads to an Hermitian matrix. In our
300 nm DOT case, this matrix has about 30 000 rows and columns, and
) 4 a corresponding number of eigenstates, but we typically
- 42x B0 4 look for only the ~ 20 eigenstates with the lowest energy.
- Nevertheless the calculation, as described above, is very
> . . . -
] time consuming. We show in Fig. 9 the energy levels for
- b the case of seven electrons per quantum dot, with a gate
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FIG. 8. Potentials along the same line as in Fig. 7. The Fer- B (T)

mi energy is at zero. The quasi-Fermi-energies for six and eight
electrons per quantum dot are indicated in (a). The quasi-
Fermi-energy is within 1 meV of the Fermi energy for seven
electrons per dot for the range of magnetic fields shown, and has
been omitted. Also omitted in (b} are the curves for B =1 and 2
T, which lie very close to the curve for B =0.

FI1G. 9. Energy levels vs magnetic field for a quantum dot
with seven electrons and a gate voitage of —1.03 V. The labels
give approximate values of the z component of the canonical an-
gular momentum r X p in units of 4.
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voltage of —1.03 V. As shown in Fig. 2, the potential
has nearly circular symmetry, and therefore angular
momentum is approximately a good quantum number.
The curves are labeled with an integer to represent the
approximate z component of angular momentum (in units
of #), but the calculated expectation values for the points
shown differ from an integer by up to 10%, and by less
than 0.1 for the zero-angular-momentum states. These
labels should therefore be considered to have only quali-
tative significance. At B =0, where the envelope eigen-
functions are real, the angular momentum is zero for all
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FIG. 10. Probability densities (absolute squares of the nor-
malized envelope wave functions) for the four lowest eigen-
states, in a plane 8 nm below the GaAs/Al, Ga, ., As interface.
The gate voltage is —1.03 V and there are seven electrons in a
quantum dot. Results are shown for (a) B=0.05 T and (b
B =5 T. The labels give the approximatc value of the z com-
ponent of the canonical angular momentum in units of #. The
states labeled 1,—1 for B =0.05 T have probability densities
which are almost the same (they correspond to opposite
angular-momentum combinations of the x- and y-like degen-
erate solutions for B =0). The probability densities for the
states shown in both (a) and (b) are approximately circularly
symmetric, except for the state labeled —2 in (a), for which cuts
along the x direction (dashed line) and along the diagonal x =y
(dotted line) are shown.
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the states. The calculated curves are in good qualitative
agreement with the results found by Darwin’ for states in
a two-dimensional harmonic-oscillator potential in a
magnetic field. The curves are shown to cross, as would
apply for states with different angular momentum in a
circularly symmetric potential, although we expect that
small anticrossing gaps would appear if the calculation
were carried out with greater resolution. The difference
between the crossing behavior in a circularly symmetric
case and the anticrossing for positive-parity states in a
rectangular box is nicely illustrated in Figs. 1 and 2 of the
paper by Robnik.®

The angular momentum referred to in the preceding
paragraph is what Van Vleck® has called the canonical
angular momentum. It is the expectation value of

=rXp, where p is the operator —i#V. The “true” an-
gular momentum, L=rXmyv, has an additional term**-*®
(e /2)r X{BXr), analogous to the additional term in the
Hamiitonian in the presence of a magnetic field. The
angular-momentum quantum number associated with the
z component of the canonical angular momentum is the
integer [ that appears in the angular factor exp(i/é) in the
wave function in a circularly svymmetric potential.

Table I gives some additional information for the
lowest states for B =5 T. We show the expectation value
of the energy relative to the bottom of the well, of the -
component of the canonical angular momentum, of
R =(x*+y*)"?, with lateral position measured relative
to a vertical axis through the center of the quantum dot.
of 8R =({R*)— (R »)'/*, and of the z component of the
“true” angular momentum, (L. )=(l)+(eB/2H{R").
The last state in the table is the lowest state with a node
in the z direction.

The expectation value of the true angular momentum
for a one-electron problem is related to the magnetic mo-
ment p by™ p.=~dE/dB=—(e/2m){L,), where we
assume the magnetic field to be in the z direction, as in
the example treated in this paper. Our numerical resuits
deviate somewhat from this relation, a difference which
we attribute to the inclusion of the Hartree terms for the
electron-electron interaction in the potential energy.

The energy levels in Fig. 9 are all associated with states
that have no nodes in the z direction. States with such
nodes, which would correspond to the first excited sub-
band in a two-dimensional electron gas in an unpatterned
GaAs heterojunction, appear at energies above 42 meV.

As already shown in Figs. 6-8, the character of the
solution changes with increasing magnetic field. The ra-
dial wings of the charge density contract, with a corre-
sponding increuse in charge density near the center of the
quantum dot and a change in the shape of the bottom of
the potential well. The shape of the charge density of the
four lowest states in a dot with seven electrons is shown
in Fig. 10 for magnetic fields of 0.05 and 5 T. Even at §
T, for which the magnetic length, (i/eB)'>=11 nm, is
considerably smaller than the effective dot radius, about
50 nm, a distinction between bulklike and edgelike states
is not obvious from the charge densities or angular mo-
menta of the occupied states. Note that spin splittings,
which we have ignored, will become significant at the
upper end of the magnetic field range that we use.
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V. DISCUSSION

As noted earlier, many approximations have been
made in these calculations. In particular, the substrate
structure of the sample we have modeled required trunca-
tion of the Schrédinger mesh on a plane where the wave
functions had not yet decayed to zero. There must be
another, for the present not well understood, approxima-
tion in our description of the sample, because the calcu-
lated voltage threshold is about —1 V, while the mea-
sured threshold is about —0.2 V.® The measurements
are made in the dark, and the calculations use a deep-
donor binding energy consistent with that condition. The
large discrepancy between calculated and measured
threshold voltages may be due to changes in the proper-
ties of the top layers and of the interfaces caused by the
processing steps used in defining the lateral sample
geometry. The neglect of many-body interactions is also
significant. We expect, however, that many of the quali-
tative results for the internal structure of the quantum
dot remain valid.

We found that the energy-level structure can be con-
sidered to be a perturbation of the states of a parabolic
potential in a magnetic field, with angular momentum a
rough guide to the properties of the states. We also
found, in contrast to our original expectations, that the
energy levels measured from the bottom of the potential
well are quite insensitive to the number of electrons in the
quantum dot, for a fixed gate voltage. A weak depen-
dence of level separations on electron population was ob-
tained theoretically by Chaplik.?” A number of authors
have found theoretically that optical transitions for a par-
abolic potential in superlattices,?® quantum wells,*
wires,™ and dots'! refiect the underlying structure of the
bare harmonic-oscillator potential and are unaffected by
electron-electron interactions. Experiments on quantum
wires® and quantum dots®* are consistent with this re-
sult.

We have shown how the quasi-Fermi-level in the quan-
tum dot depends on gate voltage for different charge
states of the dot. As the gate voltage changes from a
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value corresponding to an integer electron occupation,
the difference between the quasi-Fermi-level in the dot
and in the adjacent substrate electrode increases, related
1o the Coulomb blockade. The gate voltage at which the
charge changes discretely is not considered here. Finally,
we gave some pictures of energy levels and wave func-
tions, with approximate values of angular momentum, for
a range of values of gate voltage, charge in the dot, and
magnetic field.

At least one of the authors began this work expecting
to find a clear qualitative distinction between bulklike
and edgelike states. Our computed envelope wave func-
tions do not show any abrupt qualitative differences,
which can be considered to be a consequence of the rath-
er soft potential at the walls of the quantum dot.

Note added in proof. Since completion of this work we
have become aware of two related publications. The
eigenfunctions and eigenvalues of the two-dimensional
harmonic oscillator in a magnetic field were obtained by
Fock®® three years before the paper by Darwin.” Mak-
sym and Chakraborty® have treated the energy levels of
quantum dots with three and four electrons moving in a
two-dimensional harmonic oscillator potential with an
applied magnetic field, including effects of electron-
electron interaction.
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We review modeling of structures with confined geometries and describe our numerical solutions of the coupled Poisson and
Schrodinger equations in three spatial dimensions. We discuss the computational issues involved and present results of modeling
on three structures: confining potential of a quanturmn dot. charge density in a quasi-periodic structure, and gate capacitance of a_

*“Coulomb island™ of electrons.

1. Introduction

The physics of quantum-effect device struc-
tures can be better understood by modeling the
electrostatic potential, charge density. and quan-
tum energy levels resulting from confinement. To
find the single-electron states due to confine-
ment, the electrostatic potential governed by the
Poisson equation must be solved self-consistently
with the quantum charge obtained from the
Schrédinger equation for the electron envelope
function. This paper first reviews approaches to
modeling quantum-effect device structures and
then describes our numerical solutions of the
coupled Poisson and Schrodinger equations in
three spatial dimensions.

Purely analytic approaches to modeling quan-
tum structures have been followed by Davies [1],
who calculated the electron states of a narrow
wire near threshold; by Sherwin and Drummond
[2], who self-consistently treated GaAs/AlGaAs
wires with cylindrical symmetry; and by Chaplik
[3]. who modeled multi-electron quantum dots in
the Thomas-Fermi approximation. Another com-
mon approach involves solving the Schrédinger
equation numerically in a fixed model potential
so that self-consistency is not required. Bryant [4]

has studied the effects of electron-electron inter-
actions in a hard-walled quantum box, Maksym
and Chakraborty [5] have studied interacting
electrons in a parabolic quantum dot in a mag-
netic field, and Lent [6] has considered edge state
currents in a circular dot in a magnetic field, to
cite a few examples.

The advantage of a self-consistent numerical
approach is the flexibility to specify arbitrary layer
structures, device geometries, and bias condi-
tions. Self-consistent numerical solutions of the
Poisson and Schrodinger equations were first car-
ried out by Laux et al., who calculated electron
states in narrow Si [7] and GaAs [8] wires. A
two-dimensional solver employing a number of
numerically efficient algorithms has been imple-
mented by Kerkhoven et al. [9]. Two-dimensional
solvers have also been implemented by Smoliner
et al. [10] to study etched quantum wires and by
Stopa [11] to study planar triangular quantum
dots. Because of much more demanding compu-
tational requirements, however, self-consistent
calculations on three-dimensional structures have
been reported only recently [12].

After summarizing in section 2 the numerical
methods used to solve the self-consistent prob-
lem, we present in section 3 three examples of
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structures modeled using our numerical solver.
We first consider the quantum dot used in the
experiments of Smith et al. [13] and Hansen et al.
[14]). In an earlier paper [12] we found that the
energy levels depend very weakly on the number
of electrons in the dot; here we examine the
effect of electron number on the size of the
confining potential. As a second example, we
calculate the electron density in the structure of
Haug et al. [15], where a gate is used to impose a
quasi-periodic potential. Finally, we model (semi-
classically) a structure fabricated by Meirav et al.
[16], in which transport through a constricted
“island” of electrons is regulated by Coulomb
charging.

2. Numerical solution of self-consistent problem

Details of the numerical methods used are
presented in refs. [12.17]; we present only a sum-
mary here. Both the Poisson and Schrodinger
equations are discretized using a seven-point fi-
nite-difference approximation with a box-integra-
tion scheme. For the Poisson equation. we use
Newton's method to solve F(¢)= —V (Vo) —
p(¢) = 0 iteratively. where &(x, y, z) is the elec-
trostatic potential, ¢ is the dielectric permittivity
(taken to be piecewise constant), and the charge
density p(¢) includes contributions from elec-
trons, holes, and ionized dopants. After lineariza-
tion we obtain

F(6")36" ) = ~F(4"). 1)

where 861 = ¢ "1 — ¢ is the correction to
the nth guess for the potential [18]. Eq. (1) be-
comes a linear matrix equation which we solve
using an inverse iteration conjugate gradient
method employing polynomial preconditioning
{191, which is well suited for sparse matrices.
Evaluation of the Jacobian matrix F'(¢) in eq.
(1) is a possible stumbling block because the
quantum charge contributing to p(¢) depends
nonlocally on the potential ¢. To avoid the non-
locality in differentiating p(¢) as well as the
resulting destruction of our sparse seven-diagonal
matrix structure, we make the crude approxima-
tion of treating the charge semiclassically to eval-

uate the Jacobian matrix only, as discussed in ref.
[17]. One of two schemes [20,21) is used in con-
junction with the Newton’s iteration to accelerate
convergence, but the approximation made in the
Jacobian precludes the quadratic convergence
rate normally achieved with Newton’s method.
An alternate method of dealing with this diffi-
culty is described in ref. [9].

After each correction to the potential is found,
the quantum charge contributing to p(¢) must be
evaluated. The electron charge is evaluated quan-
tum-mechanically only inside the Schrodin-
ger mesh, which is chosen to extend over the
region of significant inversion charge. In the
Schrédinger domain the electron density is given
by n(x, y, 2)=2%,1¢(x, v, 2)I*f(E)), where
f(E,) is the temperature-dependent occupancy of
the twofold spin degenerate level at energy E,.
The envelope wavefunctions are found by solving
the effective-mass Schrodinger equation

h d 1 (A 3
(SRR

i8x; 2mj iaxj

e

j=1
+{U(x, ¥, 2) = E]JL(x, vy, 2) =0, (2)

where m; is the electron effective mass in the jth
direction. We use the Hartree approximation so
that the electron potential energy is given simply
by Ulx,y, z)= —e¢ + AE,, where the second
term is the position-dependent conduction band
offset.

After discretization, eq. (2} can be transformed
into a real symmetric matrix eigenvalue problem
which we solve by a Lanczos algorithm [22] far
away from self-consistency between charge and
potential and by a Rayleigh quotient algorithm
{23] close to convergence. The Lanczos recursion
method has the advantage of solving for only the
few lowest eigenvalues of a very large matrix,
while the Rayleigh quotient method is usually
much faster but can only be used when a good
initial guess to the eigensolution is available.
Nearly all the computation time is spent in the
eigensystem solvers.

Dirichlet boundary conditions are enforced at
contacts. At mesh boundaries zero-gradient Neu-
mann boundary conditions are used except in
structures that repeat periodically along one di-
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rection. In this case we apply the boundary condi-
tions

d(x+a,y, z2)=¢(x,y, 2), (3)
!:/(X+ar y,Z)={l(X, Y, Z) exP(ikxa)‘ (4)

for a structure periodic in the x direction with
period a. We choose values for the wavevector k
discretely, and a plot of energy eigenvalues ob-
tained at each k, yields the dispersion relation
for motion along the periodic direction. These
boundary conditions also introduce an additional
off-diagonal element in the equations for nodes
on the boundaries of the periodic direction, mak-
ing the quantum eigenvalue problem Hermitian
rather than real symmetric.

Many simplifying approximations have been
made to keep the calculation at a tractable level.
As discussed by Bryant {4), many-electron inter-
actions strongly affect the energy spectrum of a
quantum dot so that the extent to which the
Hartree approximation can be used to treat inter-
actions is unclear. Level broadening is not in-
cluded explicitly, but some broadening is simu-
lated because we usually carry out the calcula-
tions at a temperature of 4.2 K. Finally, the
threshold voltages we calculate usually do not
agree with those measured experimentally. We
believe that this discrepancy may be due to non-
equilibrium charge on deep donors when gate
volitage is applied with the sample at low temper-
ature, as well as to possible effects of processing
damage.

3. Representative results
3.1. Confining potential of a quantum dot

We consider a structure modeled after the
quantum dots used in the recent experiments of
Smith et al. [13] and Hansen et al. [14]. As shown
in the inset of fig. 1, a Schottky gate is used to
create a small “puddle” of electrons underneath
a 300 nm X 300 nm square of the GaAs cap layer
which is left unetched. From our simulation we
find the confining potential to be rounded, de-
spite the square geometry of the gate. Moreover,
the diameter of the potential well at the Fermi
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Fig. 1. Log-log plot of one measure of effective dot size.
(R*)"“?, with number of electrons N in the dot. for three
values of the gate voltage V. The structure used in the
calculation is modeled after the quantum dots in the experi-
ments of Smith et al. [13] and Hansen et al. [14]. A cross-sec-
tion through the dot is shown in the inset.

level is about 100 nm, considerably smaller than
the 300 nm cap dimension.

In our model we constrain the number of
electrons in the dot to be an integer and sweep
the gate voltage, solving self-consistently for the
energy levels and quasi-Fermi level correspond-
ing to the dot occupancy. For a given gate volt-
age, more than one charge state of the dot is
possible. In an earlier work [12] we found that the
energy levels relative to the bottom of the poten-
tial well are insensitive to the number of elec-
trons for dot occupancies from six to eight elec-
trons as gate voltage is swept. This weak depen-
dence may be roughly explained by noting that
the effective dot size increases slightly with the
addition of each new electron. To measure the
dot size we calculate the expectation value

Jrim{x,y, 2)R* dx dy dz .
<R2>= y (5)
fnim,(x, y,z)dxdyd:z

where R=(x?+y2)!/? is the radial distance
measured from the center (z) axis of the dot. In
fig. 1 we plot {R?)/? as a function of the number
of electrons N in the dot for three values of the
gate voltage V,. We find that the dot radius
increases as Ns"“t"“ with the number of elec-
trons in the dot. Our results are in good agree-
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ment with the theoretical calculation by Chaplik
[3], who also found the energy levels to be nearly
independent of dot occupancy and obtained an
N'/3 dependence of radius on electron number
for parameters like those we consider.

3.2. Charge density in a quasi-periodic structure

We can also model quasi-periodic structures
such as the device fabricated by Haug et al. [15].
In this structure the two Schottky gates depicted
at the top of fig. 2 impose a periodic potential
over some finite range in x. We specify only a
single 0.1 pm period of the structure and apply
the boundary conditions of egs. (3) and (4). To
reduce computation time, we first find a con-
verged solution using a small number of discrete
values for k, and then use this as an initial guess
for a more accurate solution.

We show in fig. 2 contours of the electron
density integrated perpendicular to the interface
for voltages on the two confining gates of (a)
V,=—0.25V and (b) V,= —0.40 V. Because of
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uncertainties in Schottky barrier height and other
assumptions of the calculation, the gate voltages
cannot be compared directly to the experimental
values, and have only relative significance. For a
gate voltage of V,= —~0.25 V, there is an appre-
ciable penetration of electrons into the gate
opening. As the voltage on the confining gates is
made more negative to ¥, = —0.40 V. the elec-
tron channel becomes nearly uniform, as in a
quantum wire. Only for a very small range of gate
voltages near threshold is it possible to achieve
isolated pockets of electron charge. This inability
of the electron channel to follow the rapid spatial
variation of the patterned gate can be understood
in terms of the attenuation of high wavevector
Fourier components of the potential, as discussed
in an earlier paper [24].

3.3. Gate capacitance of a *“Coulomb island’ of
electrons

Recently Meirav et al. (16] have reported that
the conductance of a structure with two Schottky

oy
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Fig. 2. Logarithmic contours of constant electron density (in cm ™) integrated over the z-direction for gate voltages (1) b,=-025

V and (b) ¥, = —0.40 V in the quasi-periodic structure of Haug et al. [15]). The full gate structure is indicated at the top. with the

single 0.1 um period used in the simulation outlined. For clarity the length scales along the x- and y-directions are different. The

dashed lines indicate the projection of the two confining Schottky gates. As the gate voltage becomes more negative in (b). the
electron channel becomes uniform. as in a quantum wire.
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gates as outlined in fig. 3 exhibits striking oscilla-
tions that are almost perfectly periodic in the
voltage of a bottom gate used to control the
electron density in the channel. We modeled this
structure in the Thomas—Fermi approximation by
using only the Poisson part of the solver. We
expect that the semiclassical capacitance we cal-
culate will differ little from that in a full quan-
tum-mechanical treatment, as shown in ref. [25]
for the case of a narrow wire. Including quantum
mechanics would be very time-consuming and
probably give little additional information when a
large number of electron states are populated.

From our simulation a negative voltage on the
two Schottky gates results in a “Coulomb island”
of electrons between the constrictions, as shown
in fig. 3. It is believed that a conductance maxi-
mum occurs when the electrostatic energy of the
island remains the same if one more electron is
added, whereas a conductance minimum occurs
when the energy cost of adding another electron
to the island is highest [26). Our objective in
modeling this structure is to compare the mea-
sured period of the oscillations to the calculated
bottom gate voltage required to add a single
electron to the island.

We calculated the integrated electron charge
between the constrictions as a function of bottom

gate voltage for three devices with different val-
ues of the barrier separation L. The variation of
integrated charge with bottom gate voltage is
approximately linear after more than about 50
electrons populate the island, as would be consis-
tent with oscillations periodic in electron density.
For samples with L =1, 0.8, and 0.6 um having
successive conductance peaks separated experi-
mentally by 0.6, 1.0, and 1.8 mV, respectively, we
calculated the bottom gate voltage required to
add a single electron to the island to be 0.63, 0.9,
and 1.2 mV in the linear regime. The agreement
is very good, especially for the first two samples.
and would tend to support the theory that each
conductance peak corresponds to the addition of
a single electron to the island.

There are many interesting problems remain-
ing in modeling quantum structures. Faster nu-
merical algorithms would make the use of three-
dimensional simulations more practical. The ap-
proximations made in these calculations can also
be improved. Many-electron interactions are sig-
nificant [4] and their influence on self-consistent
calculations remains to be investigated. Another
problem for future work is the inclusion of cur-
rent flow, particularly with the discovery of the
quantized constriction resistance and recent in-
terest in quasi-ballistic transport. Finally, our

11
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Fig. 3. Electron density integrated over the z-direction in the structure of Meirav et al. [16] (note the logarithmic scale). The two

Schottky gates outlined in bold on the top surface are used to isolate the puddle of electrons in the middle. through which

transport is regulated by Coulomb charging. For the case shown the bottom gate voltage is 50 mV higher than the voltage at which
electrons first appear in the puddle. Typical oscillations of the conductance G in bottom gate voltage Vh, are shown at the right.
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work has been limited to modeling structures in
rectilinear coordinates; the use of a finite ele-
ment method, for example, would allow more
arbitrary geometries to be modeled.
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The deep donors (DX centers) which supply carriers in many GaAs-Al,Ga,_, As heterostructures are
know to be metastable at low temperatures, maintaining a nonequilibrium state because of a microscop-
ic barrier to recombination if ionized. Earlier modeling by three of us [Kumar, Laux, and Stern, Phys.
Rev. B 42, 5166 (1990)] incorrectly assumed the donors in the Al, Ga,_, As to be in equilibrium with the
electrons in the GaAs channel. We present data on the threshold voltage of heterostructures cooled un-
der bias and results of calculations which assume that the deep donor charge is locked at the value at-
tained at 100 K when the sample is cooled with a bias voltage applied. The revised calculations account
for part of the discrepancy between the calculated threshold voltage for the quantum dot structure used
in experiments by Hansen er al. [Phys. Rev. Lett. 62, 2168 (1989)] and the observed value. Part of the
remaining discrepancy may be due to processing damage.

I. INTRODUCTION

Electrons are commonly introduced in GaAs-
Al Ga _ As heterostructures by adding donors to the
barrier material, usually with an undoped spacer layer
separating the doped region from the GaAs region in
which the carriers are found. Such donors, often called
DX centers, are known to be metastable. If they are ion-
ized, they do not return to the ground state at low tem-
peratures because of a microscopic barrier that inhibits
recombination. This field has a vast literature, and we
refer only to a few articles that summarize relevant
work.'™? If the donor doping density exceeds the density
required to supply carriers to the channel and to compen-
sate the charge associated with surface states, the remain-
ing donors will be neutral.*

The density of electrons in the conducting channel is
modulated by the gate voltage applied in an actual device
structure, and therefore the charge on the deep donors
might be expected to change with gate voltage if the
donors were in equilibrium with the channel, as assumed
in an earlier calculation by some of us.’> Because of the
nonequilibrium behavior of the deep donors, a more real-
1stic mode!l would fix the charge on the deep donors at the
value attained at the temperature where they go out of
equilibrium, of order 100-150 K for the situation con-
Sidered here. Gate voltage changes applied when the
Sample is held at lower temperatures have little or no
effect on the deep donor charge. The result can be a
dramatic dependence of the low-temperature threshold
8ate voltage on the gate voltage applied as the sample is
cooled 57

In this paper we present experimental results on a par-
Uicular heterostructure sample to show the effect of cool-
g under different gate voltages on the threshold voltage
Of the appearance of charge in the channel. The mea-
SUrements were taken both on the patterned quantum dot
‘amples previously studied by Hansen er al.? (see also

0163-1829,93,/48(7),/4899(4)/506.00 48

Smith er al.®) and on unpatterned control samples made
from the same heterostructure material. We also present
modeling results to show the effect of the nonequilibrium
nature of the deep donors on electron confinement in the
quantum dot.

1I. THRESHOLD VOLTAGE FOR SAMPLES
COOLED UNDER BIAS

The GaAs-Al, ;Gay ¢As heterostructure material em-
ployed in these measurements is the same as used in ear-
lier experiments®? and simulations.® It is based on an n-
type GaAs substrate layer with a net ionized donor con-
centration of 10" cm™?, an 80-nm layer of undoped
GaAs (a background acceptor concentration of 10™
em™® is assumed), a 20-nm layer of undoped
Aly 4Gag 4As, a 20-nm layer of the same material with a
donor concentration of 1.5X10'® cm™>, and a 30-nm
GaAs cap layer. On unpatterned samples a circular met-
al gate of 250-um diameter was deposited directly on the
cap layer. On patterned quantum dot samples the cap
layer was etched away except in the central 300X 300
nm’ portion of a 500X 500 nm’ area, with the structure
repeated on a square lattice over a 600X 600 um? field,
which was subsequently covered with a metal gate. The
samples were cooled from room temperature to T=4.2
K with a constant dc gate bias V. applied to the gate,
—0.32¥,, 0.3 V (higher values of |V, | were avoided
due to large leakage currents at room temperature). The
gate voltage derivative dC/d¥, of the capacitance be-
tween the top metal gate and the substrate was then mea-
sured by superimposing a small signal ¥,,=10 mV at a
frequency f=10 kHz to the slowly swept gate bias and
measuring the signal at 2f by lock-in detection. A typi-
cal dC/dV, curve of an unpatterned sample cooled with
the gate grounded (¥, =0) is shown in the inset of Fig. 1,
while the quantum dot sample traces were published pre-
viously.®?

4899 © 1993 The American Physical Society
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As the samples were cooled with a constant, nonzero
gate bias V., the overall dC/d¥, line shape did not
change. However, as shown in Fig. 1, the capacitance
threshold (defined as the gate voltage at which dC/dV,
peaks) shifted with ¥,.. When the gate bias during cool-
ing was positive, ¥, 20, the threshold shifted approxi-
mately linearly with V.. in both patterned and unpat-
terned samples, showing a weak tendenc; to saturate for
V4 20.3 V. For V. negative during cooling, the thresh-
old shift of the patterned sampie saturated for
Vee$—0.1 V (see Fig. 1), while the unpatterned
sample’s threshold continued to shift weakly with ¥, . In
the gate voltage range where the patterned and unpat-
terned sample thresholds track each other, there is an
overall shift of =0.15 V between the two. Finally, the
absolute magnitude of the peak in dC/dV, (see inset of
Fig. 1) normalized to unit area was larger in unpartterned
samples than in patterned samples by a factor of ~ {50.

III. MODELING RESULTS

Our original calculations,’ done in the Hartree approx-
imation, assumed the donors to be in equilibrium with

0.C
s v
N b Q d
> e .
~ c
- 02k GUANTUM DQT STRUCTURE | o
E s ° R
g -o3fF ° ° W UNPATTERNES
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S -04r L’ 4
2 M-
=} . e 2 4
] T 3
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= -0sfF -7 0 4
. -T8 -3¢ 0 Y,
-0.7 -
-0.4 -0.2 0.0 c.2 0.4

GATE VOLTAGE DURING CCCUNG V. (v}

FIG. 1. Measured threshold voltage at 4.2 K for onset of
channel charge in a heterostructure cooled with a gate voltage
applied. The sample had an Al,Ga,_.As layer with AlAs frac-
tion x=0.4 and nominal Si donor density of 1.5X10'! cm™?
separated from the GaAs channel by an undoped spacer layer
20 nm thick. The full circles are for unpatterned devices, and
the open circles are for the quantum dot structures of Hansen
et al. (Ref. 8). The dashed and dotted curves show the corre-
sponding modeling results assuming the donors (with density
taken to be 1 X 10" cm™? and effective thickness 23 nm) for the
unpatterned and patterned structures, respectively, to be locked
at the values attained at 100 K during cool down. The thresh-
old densities for the unpatterned and patterned structures are
10" electrons per cm? and § electrons per dot, respectively.
The corresponding calculated threshold voltages with the
donars assumed to be in equilibrium with the channel electrons
are —0.67 and —0.50 V, respectively. The inset shows a
representative trace of the derivative of the capacitance with
respect to gate voltage vs gate voltage. The measured gate volt-
age at the peak gives the ordinate for the plotted points.
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the channel. As noted above, a more realistic model as-
sumes that the donor charge is “locked” when the sample
is cooled through the temperature range 100-150 K. We
have modified our modeling program to record the donor
charge distribution at equilibrium at 100 K (calculated
classically) with the gate voltage equal to the gate voltage
Ve applied during cool down, and have used this locked
donor charge distribution in our quantum-mechanical
self-consistent calculations at 4.2 K.

Shown in Fig. 1 are calculated threshold values for the
patterned and unpatterned cases. The deep-donor densi-
ty used in these calculations is 1X 10" cm™3, smaller
than the nominal density of 1.5X 10'® cm™>. The thresh-
old voltage in the unpatterned cases is set at a channel
electron density of 1X10' ¢cm™2, and the threshold in
the patterned case is set at { electron per dot, consistent
with the 500-nm repeat distance of the structure and with
the observed difference in peak height.

The trend of the calculated curves follows that of the
measured points, although the saturation effects are not
as pronounced. The difference in calculated thresholds
between the patterned and unpatterned samples is smaller
than the observed difference, but that may result from the
somewhat arbitrary choice of threshold for the calculated
curves. The calculated curves assume a Schottky barrier
height of 0.7 eV for the gate on GaAs and 1 eV on
Al, ,Gag 4As, and the measured and calculated voltage
scales may be offset somewhat.

Figure 2 shows potential contours at the Fermi level in
a plane near the peak of the induced electron charge in
the GaAs channel, calculated using the original model
and the revised model with locked charge. In each case
the dot charge is fixed at seven electrons, but the gate

Q.10 T T T
Er.LOCKED
005+ -
E
2 0.00+ -
-0.05 =
-0.10 L 4 L
-010 -005 000 005 010
x (pm)

FIG. 2 Calculated contours showing the Fermi level in the
plane 9.5 nm below the GaAs-Al,Ga,_, As interface, near the
peak of the vertical electron density, for the quantum dot struc-
ture of Hansen et al. (Ref. 8). The dashed contour is for a gate
voltage of —0.45 V when the deep donors are assumed to be
locked in the charge state corresponding to zero gate voltage
during cool down. The solid contour is for a gate voltage ‘?f
—0.26 V when the deep donors are assumed to be in equilibn-
um with the channel electrons. The electron channel and the
n™ GaAs substrate are taken to be at ground throughout. Both
cases correspond to a charge of seven electrons in the quantum
dot.
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FIG. 3. Integrated sheet density of ionized donors, for the
same conditions as in Fig. 2. The dotted curve, with all donors
ionized. corresponds to donors in equilibrium with the channel
electrons. The full and dashed curves correspond to donors
locked at the charge they have at 100 K during cool down with
zero gate voltage applied, and reflect horizontal and diagonal
slices. respectively.

voltage is 0.19 V larger for the locked charge case be-
cause of the higher threshold voltage. Locking the
charge leads to a larger dot and correspondingly larger
gate-dot capacitance. Note that here, as in the earlier
calculation, a small neck of charge connects the quantum
dot to the n ™ substrate, leading to some arbitrariness in
the magnitude of the charge on the dot. Figure 3 shows
the lateral vanation of integrated sheet charge on the
deep donors for the two cases of Fig. 2. Locking the
charge reduces the effect of the donors in screening the
gate potential, and therefore results in a potential that
more closely refiects the square shape of the overlying
structure.

IV, DISCUSSION

The discrepancy between calculated and measured
threshold voltage in our earlier calculation for quantum
wires'” and quantum dots® was attributed to the effect of
processing damage. There is voluminous literature show-

ing that certain kinds of patterning, including the reac-
tive jon etching used to fabricate the samples used in the
experiments of Refs. 8 and 9, introduce significant
changes in transport and other properties.'!~'* The
effects of processing damage are not amenable to simple
modeling but presumably affect the samples considered
here and need further investigation.

Although calibrations give information about impurity
concentrations in relation to growth conditions, some
effects such as compensation and impurity motion during
and after sample growth can complicate the doping struc-
ture in a given sample. Thus, there is not always
definitive information about the donor concentration and
its spatial distribution, which is an additional unknown in
modeling. Our resuits suggest that the net donor concen-
tration in the samples considered here is somewhat less
than the nominal value.

Despite these uncertainties, the results presented here
show that the nonequilibrium behavior of deep donors is
one source for the difference between calculated and mea-
sured threshold voltages in the samples considered here
and presumably in other samples. Careful comparison
between experiments and realistic models for patterned
and unpatterned structures, perhaps also including the
effect of persistent light-induced changes in carrier con-
centration, should make it possible to narrow the uncer-
tainties in sample parameters and attain satisfactory
agresment between models and experiments.

We have considered a particular doping structure here.
The extent to which nonequilibrium effects enter in other
samples depends strongly on the excess donor concentra-
tion.
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