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ABSTRACT

PAIR PRODUCTION OF S-WAV~T PI MESONS

by

ADAM MARIAN BINCER

Submitted to the Department of Physics in June 1956.in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy in Physics.

A theory for pair production of s-wave w-mesons is con-
structed along the lines of the Chew-Low-Wick formalism. A
bilinear s-wave interaction of the form x./, ~ 4 0? I.xy
as used by Drell, Friedman and Zachariasen is added to the
p-wave interaction (w 4J2 Y r-4 as used by Chew and Low.
It is shown that if the s-wave interaction is limited to the
%. term (scalar pair theory) the cross section for pair pro-
duction of s-waves vanishes.

Using both the Xo and 1 terms the meso-production
cross section near threshold (total energy of produced mesons
-350 Mev) per unit energy of one of the produced mesons is
determined to be of the order of millimicrobarns/Miev; for
photoproduction the corresponding number is l100-1000 times
smaller.

Cutkosky and Zachariasen have calculated the cross
section for photoproduction of an s-wave and a p-wave meson
an: obtained a number lO000 times larger than the correspon-
ding number here calculated. Their results are in agreement
with the fragmentary experimental data available.

It is concluded that if there is no meson - meson inter-
action s-wave pair production may be neglected except possibly
at the very threshold.

Thesis Supervisor: Sidney D. Drell
Title Assistant Professor of Physics
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I. INTRODUCTION

(1)
In 1935 Yukawa suggested that nuclear forces are due

to the exchange between nucleons of quanta of the nuclear

force field. These quanta have since been id:entified with n-

mesons. The discovery of w-mesons in 1947 by Lattes, Occhialini
(2)

and Powell admirably fulfilled the qualitative predictions

of Yukawa's theory. Thus, the n-meson has the correct mass

to give rise to the observed short range of nuclear forces.

Also, the n-meson interacts strongly with nucleons. Quanti-

tatively, however, the Yukawa theory and experiment seemed to

disagree in every aspect.

This failure of Yukawa's theory can be ascribed to the

methods of calculation. The most powerful tool in field

theoretical calculations is perturbation theory in one form

or another. If the coupling between the sources of the field

and its quanta is weak, perturbation theory may be expected

to give answers in reasonable agreement with experiment.

This is the case in quantum electro-dynamics: electrons, the

sources of the field and photons, the field quanta are

coupled weakly, the strength of the interaction being charac-

terized by the fine structure constant. The fine structure

constant is equal to 1/137 and is therefore small in compar-

ison with 1 . The situation is quite different in meson

theory since the coupling between nucleons and mesons is

strong.
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(3)
Recently Chew and Low proposed a method of calcu-

lation, which, unlike perturbation theory, can be applied to

strongly coupled systems. The Yukawa theory, as used by

Chew and Low, gave numerical answers in excellent agreement

with experiment. Chew and Low have concentrated on treating

p-wave mesons since it is a consequence of the pseudoscalar

nature of the n-meson that it will interact singly with the

nucleon only when it is in a p-state.

Thus the Chew and Low theory was incomplete since it

disregarded s-wave mesons, whose interaction with nucleons,

although weaker than that of p-wave mesons is nevertheless
(4)

present. Drell, Friedman and Zachariasen have recently

extended the work of Chew and Low to include interactions

with s-wave mesons.

By considering scattering of p-wave and s-wave mesons

respectively, Chew and Low and Drell, Friedman and Zacha-

riasen fix the values of the parameters in the theory, i.e.

the values of the coupling constants and the cut off energy.

The theory can then be applied to other processes. The pro-

cess of photoproduction of umesons is treated by Chew and Low,

their work being extended to include interactions of s-wave

mesons by Drell, Friedman, and Zachariasen . Another process

of interest is that of pair production of mesons - either by

a meson (inelastic scattering) or by a photon (photo pair



-3-

production). Photo pair production has been treated by
(5)

Cutkosky and Zachariasen , not including interactions of

s-wave mesons.

The purpose of this work is to consider pair production

of mesons (by either mesons or photons), including the inter-

actions between s-wave mesons and nucleons. The reasons for

considering such a process are mainly the two following : In

the first place it should serve as an additional test of the

Drell, Friedman and Zachariasen theory. In the second place,

if there exists a meson-meson interaction, as has been recently
(6)

conjectured , it should certainly play a role in a process

where two s-wave mesons are simultaneously present. Should

the experimental data disagree with our results a possible

explanation could be a meson-meson interaction since no

mechanism for such an interaction has been incorporated into

our theory.
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II. THE HAIILTONIAN

Our starting point is the Chew-Low theory as extended

by Drell, Friedman and Zachariasen to include interactions

between s-wave mesons and nucleons. The Hamiltonian for the

system of mesons and nucleons (not including electromagnetic

interactions) can be written as a sum of two parts

HH + H' (1)

where H is the sum of the Hamiltonians of the nucleon alone
0

and the meson field alone and H' is the interaction Hamiltonian.

In the static theory the energy of the physical nucleon is a

constant which remains unchanged in any interaction and we

propose to eliminate it from the Hamiltonian by redefining

the zero of the energy scale. Thus taking the energy of the

system of one physical nucleon and no free mesons to be zero,

we have for H :
0

H &f +{r-"() ).7A 0((I) +( .() (2)

We are using throughout the system of units in which-h = c = 1.

An arrow under a symbol indicates a vector in the isospin

space. The components r.. , , with - = 1,2,3, of the

vectors Tn, are the canonically conjugate momenta and ampli-

tudes of the charge symmetric meson field, and , is the

meson's rest mass.

In the Chew-Low theory H' is assumed to be
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H' = f f u (r)( M) dr (3)

where f* is the nonrenormalized (nonrationalized) meson-

nucleon coupling constant, a and Z are the usual Pauli spin

matrices operating respectively in space and isospin space,

and u(r) is a density function which is supposed to simulate

the space distribution of the nucleon density. It is taken

to be spherically symmetric : u(') = u(r) . As will be

shown later, this type of an interaction Hamiltonian permits

only p-wave mesons to interact with the nucleons.

Drell, Friedman and Zachariasen have taken instead of

eq. (3) the following expression

H' = /, (f u(r) (r) d)jf u(r') u((') d(r ')

-*/ ' (f u(r) n( ) d x u )( d') (4)

where the second term is to be understood as a triple vector

product in isospin space. Here ? X , )o are two new (nonre-

norralized) coupling constants. As will be shown later this

type of an interaction Hamiltonian permits only s-wave mesons

to interact with the nucleons.

Expressions (3) and (4) may be justified as follows by

an appeal to field theory: Since the meson field is a pseudo-

scalar field the simplest form that H' would assume in a
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relativistic field theoretical treatment is

H' = io f -(') • ~() +(r) d~ (5)

where c is some coupling constant,* and j =Y are the

quantized nucleon field amplitudes, 5 4 where

(7)
are the usual Dirac matrices. As shown by Drell and Henley

H' as given by eq.(5) may be brought by a canonical trans-

formation to a form which lends itself better to a nonrela-

tivistic interpretation.

As a result of this canonical transformation eq.(5)

may be written as a sum of a number of terms among which are

c1 f ( ) I()) ) d (7)

c"' f Tr'•(r) (¢%).!• - (e- -(•) dr (8)

If now the nucleon density -'(') -(9) is replaced by the

density function u(r) we see that (6) transforms into (3)

and (7) and (8) transform into (4) provided we make the

additional assumption of separability. We introduce the

separability requirement because if we should take expressions

(7) and (8) as they stand, with ( ) I ((r ) replaced by
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u(r), then these terms would in addition to giving us an

interaction for s-wave mesons also lead to an interaction for

p-wave mesons and all higher partial waves. We wish to

extract from expressions (7) and (8) only the s-wave part.

It should be pointed out that if u(r)-4(2) (which is the

space dependence of J(r) F(() for point particles) then

the s-wave parts of expressions (7) and (8) are the same

as the expressions obtained under the separability assumption.

Of course, field theory makes definite predictions

about the relations between the coupling constants c and c',

c", c"' . Therefore, presumably similar relations should

exist between f*, o and ? . However in our final expres-

sions only the renornalized quantities f, and cN appear

and since they are renormalized according to different pre-

scriptions no comparison is possible. Rather, in the work of

Chew and Low f, and in the work of Drell, Friedman and

Zachariasen ) and X, are treated as adjustable parameters.

We shall use the values of these constants as determined by

Chew and Low and Drell, Friedman and Zachariasen and so

there will be no further adjustable parameters in our theory.

In the first part of this work we are concerned with

computing the transition amplitude for inelastic meson scat-

tering (meso-production), i.e. we take as the initial state

of the system a nucleon and one meson, and as the final state
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a nucleon and two mesons. We wish to calculate eventually

the cross section for this process near threshold, where phase

space considerations will favor production of a pair of s-

wave mesons. Then t+'e total angular momentum and parity of

the final state are ! and it follows that the meson in the

initial state must be a p-wave meson. Thus in our work we

will need both equations (3) and (4) for H'. Also it is

clear that it will be convenient to expand the meson field

amplitude in spherical waves rather than in the more conven-

tional plane waves. Furthermore it is convenient to replace

0L = 1,2,3 by 9,q = -, 0, +1 where

the peculiar phases being chosen for reasons t-hat will become

apparent later. The details of the expansion in spherical

waves and of the replacement (9) are worked out in Appendix

A. The result is that we can now write the Hamiltonian in

terms of creation and annihilation operators for mesons of

definite energy, charge and angular momentum as follows:

H =H + H'

H( )mp (P)(- (P) + () r (pm) (p-m)
O P a =-l q -q

Q0 +t M o+ I Z (-) L (ptm)a 0(pt-m)
t-2 m--t q -q
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+1l

H' = f*/It N/I pv(p)/lv'- 2
p P q, m--l

qC-.)

+ •/ 1 ,N'/4i v(p)v(p' )/lwwT , i (-
Spp P P q

-O(p)o. (p')
-q

t
+ Oq (p) q(p') + aq P) P)

+X~~i8 iiN 2/4Trppt

t rt W- a (p)a.(p )JS r

v(p)v(p')// CU, t(W -p 2) qL ( ( P)pOs(P)P P P

4. ((pP+wIP')2q(%'(P ') -
q

(q,r,s = cyclic permutations

The commutation relations for the a's are

(ptm), c,
q 9'

(p't'm' m q+m -q -m
Qq, m,,m

all other commutators vanishing.

The meaning of the various symbols is as follows :

(ptm) = creation operator for a meson of charge = qe,

energy = : = w p-+z
P

momentum =t(t+l), al

i square of angular

nd z-component of angular

momentum = m .

annihilation operator for a meson of

-qe, energy = p = /p=+ P

momentum = t(t+l)

momentum = - m

charge =

; square of angular

, and z-component of angular

(Note the minus signs in these definitions.)

q+a

(II)

of -1,0,+1)

(12)
p,p

a
q

a (ptm)q

(-) zql"M[Oq(P-M +aq~p-

10ýq(P)CQA)

aL(Af W)
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a (p) is a shorthand notation for a (p00)

aq(pm) is a shorthand notation for a (pIm)

where ' and r are the standard Pauli
1 838 1 ) 8

matrices in spin and isospin space respectively.

N = normalization factor; it is related to the density of

states in such a manner that the transition from sum-

ming over a discrete set of magnitudes of the momentum

to integrating over a continuous set is accomplished by

Finally v(p) = f u(r) e d

Note that a q(ptm) and aq (ptm) are not each others her-

mitian conjugates but rather a (ptm) and (-)q+m a (pt-m)
q -q

are each others hermitian conjugates. The reason for this

peculiar notation is that now aq(ptm) (as well as

a (ptm) ) behaves as the m-component of an irreducibleq

tensor of rank t under rotations in space; and as the q-

component of an irreducible tensor of rank I under rotations

in isospace. We note that the relation between aq(ptm)

and its hermitian conjugate is simply an extension of the

relation : " () and (-) ,.•(Q) are hermitian con-

jugates" , to nonhermitian quantities. Here ' (0&) is a

L
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spherical harmonic - an example of an irreducible tensor.

It is now seen that in the expression for H', eq. (11),

the term proportional to fo contains creation and annihi-

lation operators for p-wave mesons only and the terms propor-

tional to )* and )O contain operators for s-wave mesons

only. Thus this form of H' leads to an interaction between

p-wave mesons (fo term) and nucleons and s-wave mesons

( * and )! terms) and nucleons as stated without proof

previously.

Having H' in a form convenient for calculations we turn

our attention to the expression for the transition amplitude

for meso-production of a pair of s-wave mesons. The starting

point is the scattering matrix - we wish to calculate the fol-

lowing element of the scattering matrix:

<BRS AL 2 (13)
The superscripts + and - are used to denote that the corres-

ponding states are scattering eigenstates defined by the

boundary condition at infinity of only outgoing or incoming

waves respectively. We use the symbols A, B for nucleons,

R, S, L for mesons. Each symbol is to be understood as a

shorthand notation for the following aggregate of quantum

numbers:



- 12 -

A = the isospin

o- = z-component of the isospin

A'= angular momentum (spin)

&'= z-component of angular momentum

R = the isospin

= z-component of the isospin

R'= angular momentum (orbital)

f'= z-component of angular momentum

r = magnitude of linear momentum

We require

mesons R and S

wave. The states

total Hamiltonian

expression (13) for the special case of

being s-waves and meson L being a p-

<BRS7 and JAL+ ) are eigenstates of the

and therefore

AL+a>(( ') A>

We determine IAL+> as follows: consider operating on

a ( B') A> with H:

t

DO, + ) (Q)149') A)
ýt + cw, ) l? ,

or

A: (14)

(15)
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(H . cot) (ý N( (Z! )= ýH', )I2a> (16)

which may be formally inverted to read

The i•e is supplied to define the manner in which the
-1

singular operator (H - k ) is to be treated. The limit

G O is understood. Equation (17) is equivalent to eq.

(16) if (H - , ) )= O or

H - = .j t (18)

because then when we operate on eq.(17) from the left with

(H - mog) we reproduce eq.(16). But from eq.(18) it is

clear that ~ is an eigenstate of H to the eigenvalue

W,, hence it is IAL±>.

Thus

AL) A> (19)
-1

where the manner in which the pole of (H - we ) is treated

is precisely the required one to lead to an eigenstate with

the + superscript(8).

In exactly the same fashion one can show that

QBRE7T a __(5_ -_ (20)
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An equivalent way of expressing IBRS-> which will be useful

later is

In deriving above results our starting point was an

expression of the form: creation operator acting on a state

vector. We derive here for future reference the result of

considering an annihilation operator acting on a state

vector. Let Xt+ describe a scattering eigenstate con-

sisting of a nucleon and any number of mesons. Then

Ha(K)t xt)= U1H,a(K)3 + o0(K)H) \X )

=(Ex - Wk)O(K) X + IH', ao(K)3 Xt

where i(K) is the annihilation operator for a meson whose

properties are specified by K and where Ex  is the energy

of the state +X ~  . Then

(H -Ex + ck) (K) i X = •H', 0-(K)3 X> (21)

which is inverted to read

C(K) \X')= ) + E[H',a(+)] x) (22)
H-Ex+ zk;i

Eq.(22) is equivalent to eq.(21) provided Y-i> satisfies the

homogeneous equation

(H - Ex + c k Y = o
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or

H\Y Y = (Ex 'D k) YI (23)

From eq.(23) and the boundary conditions on eq.(22) it

follows that Y > is a state obtained from \X•- by

removing from the latter the meson of type K . If the state

iX-> didn't contain a meson of type K then lY = 0

Thus in particular if iX' - is taken as the physical nucleon

state we have Ex = 0, Yt) 0 and

a(K) \A 1 H', C(K) A> (24)
H + Cok

We now have most of the relations necessary to derive

the equations for the transition amplitude but before doing

so we digress for a moment.
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III. SCALAR PAIR THEORY

It will have been noted that our expression for H'

contains two types of terms leading to interactions of s-

wave mesons, the ýo and )O terms. It has been shown in the

work of Drell, Friedman and Zachariasen that both of these

terms are necessary to account for the experimental s-wave

phase shifts and therefore we will use both terms. However,

we would like to show first that the assumption 0? = 0 leads

to zero transition amplitude for the process that we are

considering.

Substituting eq.(20) into eq.(13) gives

BRS AL-) \) o ( - a ( (s 1B AL>

(25)

-I -W -, -

where we have used the fact that H and H' are hermitian and
t t

that the hermitian conjugates of a (r), 0\(s) and ie are

respectively (-)5 a (r), (-a) a(s) and -iE . Using the

same approach that gave us eq.(22) we prove that

0- k (* ) 1 kH ý = L ak (4) 0A L ' (26)

Introducing eq.(26) into eq.(25) then gives
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Sl- gO R %ast AL •> (

ece

and a (_') Gk

Au4)
(27)

- K8~\ )L&)cH~aJ·i~ + L ~cxa.5 +ii S L )7 (r

C

t + I>4r

where we have inserted a complete set of eigenstates

(28)

or the

Hamiltonian with the + convention denoted by N+

In the special case when H' contains only the terms

proportional

H: a (s ]

to fO@ and LO we have from eqs.(ll)

/2v•8 -.2v(p)/
P p

and (12):

C+ Icp)

U {.(p)-_- U + a (p)

Ux= N
ex- ;P

va (x)

4mx

I (30)

Similarly

\H', ( ( )1 up aT(P) +s P
at(p

r (P

Now consider

where

(29)

(31)

ý -6ýý0)1 ý (') a (->)

0`, (.,1) -ý D, RIkL3-3 C ,;l~c

q

No/4Tr v(s)/

<M tH', L where Mý+>r(s )] N+> and

·(Bi~sc~,inli~l RL')

fL~ (~,j[t~oi~;j i.
Nf
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ýN\+ are any eigenstates of the system with the + con-

vention. Using eq.(29) we have

<IM4+ H',%(s)iN+> - Us (IU <M+\ a.(p) + & (p) N+) (32)

But from eq.(22) we have

where the symbol l(N-1.i) + is supposed to represent an

eigenstate obtained from the state IN+> by removing an s-

wave meson of momentum p and charge we - if the state

N+) didn't contain such a meson then I(N.-1)+ 0

On the other hand in analogy to eqs.(19) and (20)

we have

where + is supposed to represent an eigenstate
containing in addition to what was in N+) an s-wave meson

of momentum p and charge (-we) . In both eqs. (33) and

(34) EN stands for the energy of the state IN .

Introducing eqs. (33) and (34) into eq. (32) leads to

-H', (jN =-Us (N ) + M+ (N+1 )>

+ (H+ N 1 H (p + (H-wp-E -ic) 1L' ,a (p)J NI+1 p-EN-'rr-)ý (pPN -N)I
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U - Us UP {M' (N-1 )> + iM (N+1) +)

+ýM+ [Ht 2N N÷ H', (p) NE -E% - iG + Mp E EN - iC- p (35)
It follows fronm eq.(35) that - <M- H',a .(s)N> is in-

s
dependent of the momentum s and therefore

<M+ rH,(p=) N - Mj tO H( (p)N+) M H%(s)1NN> (36)
p p a

Hence eq.(35) becomes

M1 < [ H',, a (s N) = - 7 U ((+I(I -1 N x+(N+I ) +>)
s p

s pp

1l/(E - EN - is+c ) - 1/(EM - E- p) (37)

or

U UZ up,{< i (N-l)+>sN + (<M+(N+l)> (38,0 (s)]N -__ s p " AP (38)
1 - 2 U )(E - EN - i)- ppP P ;

Disregarding the pathological case when the value of

}? is such as to make the denominator in eq.(38) equal to

zero, it follows that (M+0[H',a (s)1 N +  =: 0 unless the

states M1+ and IN+) differ by one s-wave meson of charge

Te, but are otherwise identical. In particular the right

hand side of eq.(38) vanishes if states IM+ý and N

differ by one p-wave meson. We now return to eq.(28) and
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see that as a consequence of eq.(38) the summation over N+

vanishes. This is because, of the two factors <BILH',o(r)]N+>

and <N+ H',O,(s)7 AL+> one or the other must always vanish

in accordance with eq. (38) since IAL+> contains one p-

wave meson and IB> does not. Hence eq.(28) becomes

B HO (r) o,,(s AL> = <B I (r), H' .o-Ts[',() AL >

But from eq.(29) and eq.(12) we have for the double commu-

tator:

r), CL, (s= - (-) W Us U r

This is a c-number which can be pulled out and what remains

is <B\AL+> = 0 due to orthogonality of these two eigenstates.

This completes the proof that <BRS-AL+> = 0 if the s-wave

interaction is assumed to be due only to the scalar pair

term.

We observe that above result could be anticipated if

the process in question were pictured in terms of a series

of diagrams grouped together according to the number of

vertices involved. We have the following two-vertex diagrams

R S L R S L

b a a b

L
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the following three-vertex diagrams
R S L R S L R S L

K K

c ba c ab a c b

the following four-vertex diagrams

d c ba d c a b d a c b ad c b

etc. In above we have pictured a family of 2-vertex dia-

grams, another family can be obtained by interchanging

mesons R and S . Similarly we have pictured a family of

3-vertex diagrams, another family can be obtained by inter-

changing vertices b and c (i.e. mesons R and S) . In

the same fashion other families of 4-vertex diagrams can be

obtained by interchanging vertices b and c , b and d ,

and c and d .

The diagrams are to be read from right to left. The

horizontal line represents the nucleon, the other lines are

meson lines. At the vertex a the p-wave meson L is

absorbed. Hence the operator in question, as far as the

nucleon is concerned, is at. At all the other vertices s-

wave mesons (R, S, K, K') are scattered, or created or

annihilated in pairs. Hence the operator in question, as

far as the nucleon is concerned, is simply unity (scalar pair

i
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theory ') . Therefore all the vertices commute and it does

not matter whether we write ab or ba . Hence the only

difference between contributions from diagrams with the same

number of vertices is in the energy denominators.

Thus the contribution from the 2-vertex diagrams pic-

tured is

ab1l/(-M) + l/(W()j= 0

that from the 3-vertex diagrams pictured is

kabc 1/k-C~ ) + l/(wsw+k)C((Os+mk--) +1/(m,+k) cO) +

that from the 4-vertex diagrams pictured is

kk' abcd 1/(-m~ )(ms+k- (s+k- +kk'

1/(s k+m' k)(s k,- )(a +)k-mm ) + 1/(c 8+Wk, )(ws+k)(as+Mk )

+ 1/(C s+m k,)GD +k)( D)}= 0 etc.

The crucial point in this "proof" by diagrams is the

commutability of vertices, valid in the scalar pair theory.

We note that if not all diagrams with a given number of

vertices are considered the mutual cancellation will not take

place and a nonvanishing contribution will be obtained.

This is what happens in approximation methods such as the

Tamm - Dancoff ( 9 ) leading to erroneous results.
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TV. M~ESO-PRODUCTION

We again start with expression (13) for the relevant

matrix element of the scattering inatrix. In section III

we proceeded by replacing B.RS\- by eq.(20) -- this

approach was dictated by some special features of the scalar

pair theory. In the present case we proceed in the orthodox

way of replacing IAL+> by eq.(19) to obtain

<BRSIAL> B () (H<AB1S) 1 H(-l A)

3' I -- H , 3• E 1 A>
= (-) < (Q-~ j--X)BR- A A- <BRS(H-we-ie) )- t ,' ±( h1 A>

~<Hrs++i ~ ~)] BRSA> -- (BR I [H: (')JA>

- - <BRSH (H ( ( QA) (H-u rCOs+(eD + (H-w -iE CH. t (a)..A>

-- 2Ti (O s ) BRS Ok ) A)

. 2nTi (C - C - C5 ) BRSjFa(r, )IAJL) (39)

where the last line defines the function Fs(r,i) . We re-

cognize that the coefficient of -2ni(Mco -mcr-cas) is just the

required matrix element of the transition amplitude in view

of the relation between the scattering matrix and the tran-

sition matrix

Sab =ab - 2i ý(ma-m b ) Tab (40)

We are dealing with an off diagonal matrix element of S and
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therefore the &ab term does not appear.

Since the cross section for any process is directly

expressible in terms of the square of the absolute value of

Tab we concentrate on evaluating that quantity.

Using the form of BRS-- given by eq.(20') we have

KBRS\Fs Q(r, )\AL> • BRS- A', )~ j A
-1

=-(s [Hx', (-)'a •w _(r(-- -) ',,•-) )

+ aH', ( - (r)L A> (41)

where we make use of eq.(24) and the fact that LH',Q( a ')I

commutes with Q (r) since meson L is a p-wave and meson

R an s-wave.

Equation (41) is the basic equation of this problem:

however it is not very useful unless certain approximations

are made. Consider a complete set IX-> of eigenstates of the

total Hamiltonian with the "-" convention. If there are no

bound states then the states IX-- are of the following

kind: physical nucleon; physical nucleon and one incident

meson plus inco-ing scattered waves physical nucleon and two

incident mesons plus incoming scattered waves, etc.. Thus we
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may write eq.(41) by introducing such a complete set in a

form similar to eq. (28):

KBRSIF (r, ,)1AL =

+ KBs Hj ( X" X (- a( (r)] A/(Ex++r) (42)

where Ex  stands for the energy of the state X . We

propose to approximate eq.(42) by making the so-called "one

meson approximation" . In the work of Chew and Low and

Drell, Friedman and Zachariasen this meant omitting all

states JX-C containing more than one incident meson. In our

case, as will be seen presently, the procedure is slightly

different - nevertheless the spirit of the "one meson approx-

imation" is maintained. It is not clear whether this approx-

imation is valid. It might be argued that whereas the one

meson approximation may be valid in the work of Chew and Low and

Drell, Friedman and Zachariasen , it cannot be valid here

since we are interested in states such as \BRS , which is

a two meson state. This is not the case - contributions

from states such as BRS-> are included in our calculation

provided only one of the two mesons in \BRS> is rescattered.

Thus effectively what is neglected corresponds to terms quad-

ratic in the amplitudes involving two meson states. It is

just this modification that makes our "one meson approximation"

look different from that of Chew and Low and Drell, Friedman

L
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and Zachariasen. We also neglect entirely contributions from

three or more meson states, hoping as Chew and Low and Drell,

Friedman and Zachariasen do, that at low energies this does

not falsify our results appreciably.

Let us consider successively the various terms that are

obtained by assuming ýX-> to be the physical nucleon state,

physical nucleon and one meson state, and finally physical

nucleon and two mesons state.

1. iX = IC = physical nucleon state

The first term in eq.(42) - to be referred to as the

direct term from now on - then gives in the numerator

<BS-ýHA' , (-)o, (r)ý ) cH', 0C7( q(' )]A) (43)

By investigating the matrix element of the scattering

matrix corresponding to creation of a pair of s-wave

mesons we show that

<Brs ýH',(-) q(r)3C) -<BSRaNr(s)ýc) (44)

corresponds to the matrix element of the transition

amplitude for this process:

S- t
<BS(asC =({ (r) - (H-cr-+i) [ (r)Bs C)

(H- -r -is) C>

Lr
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- BS < I',( &)cK(r)i$?L, -1 1

- 2ri (c + "s) (BSRINr(s)) C>

On the other hand

ýC\ H',ý (H A )CX (] B(>) AL) (45)

is the matrix element of the transition amplitude for

absorption of a p-wave meson:

1 -1 1

= - W)]H (c) (H+Cw-ic) + (He -iesi) H A)

=ot- 1 c + i1

2ni <S(w) C\%(U)AL)

We now look at the second term in eq.(42) - to

be referred to as the crossing term from now on. It

gives in the numerator

<BS-\-H', -( A')1c> < C\H', (-) a _(r)]A> (46)

Both terms in the product (46) vanish on the basis of

arguments involving parity conservation. In simplest

terms the argument runs as follows: The state <BS-

contains a physical nucleon and one s-wave meson -

r
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hence its parity is odd relative to the state C) = a

physical nucleon3 on the other hand the operator

rH', ( ~' ) has even parity since meson L is a

p-wave. Hence (BS -\H',a ( Q' C) = 0 . Similarly

CI[H',(-) ~ (r)1A) = 0 since states C\i and JA>

have the same parity and the operator 1H',(-)34 (r)l

has odd parity (meson R being an s-wave.)

2. X = CK-) = physical nucleon and one meson. The

direct term in eq.(42) gives in the numerator

-$1--B)-JýH',(-) C% (r)] Cf- < Ci- ýH A> (47)

The meson K is either an s-wave or a p-wave or a

higher partial wave. If it is a partial wave higher

than a p-wave then the state ICK- is orthogonal to

the result of operating with EH',0•( ~ ') on iA)

as well as to the result of operating with

H',(-) (r) on iBS- since H' doesn't contain

operators for mesons in angular momentum states higher

than the p- state. On the other hand, if meson K

is an s-wave then both terms in expression (47) vanish

when parity conservation is taken into account (see

preceeding paragraph) . There remains the case when

meson K is a p-wave. In this case (CK-[H',o( 0 X') A)

corresponds to the matrix element of the transition

amplitude for scattering of a p-wave meson :
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C -iAL CKkHo(2 ) A 1 1

,H-w( -- i

/,C~H ý A> J-[ Al>L. -1,A+
-CA> L, K <CiE c( )u-mk-A{ +k -iE

cALK - 2niS(oLm-ck) <OK H%', ( X JA)

where OLK is one if mesons K and L

quantum numbers the same, zero otherwise.

<KCA~, corresponds thus to the a
LK ab

have all

The term

in eq.(40).

At this stage we propose to make one more approx.

imation: It is known experimentally (and the Chew and

Low work reproduces this result theoretically) that

the scattering of p-wave mesons is extremely weak in

all but the 3/2 3/2 state. This is the state in

which the p-wave meson and the nucleon are coupled

together in such a way as to produce an eigenstate of

the total angular momentum J to the eigenvalue 3/2

and total isotopic spin T to the eigenvalue 3/2 .

However in our work the final state is one of the total

angular momentum eigenvalue = 1/2 ( a single nucleon

and two s-wave mesons.) . From angular momentum con-

servation we see that the initial state must also be one

in which the eigenvalue of the total angular momentum

is 1/2 . Therefore the scattering of a p-wave repre-
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sented by (CK \H', ( ')A) can never occur in the

resonant 3/2 3/2 state. Consistent with the exper-

imental data we assume that the scattering of p-waves

in any but the 3/2 3/2 state vanishes. Hence expres-

sion (47) vanishes.

The crossing term gives in the numerator

<B--H', (tk')c: )< C CK-iH', (-) ~ (r)IA> (48)

Again above vanishes due to orthogonality of eigenstates

of the Hamiltonian if meson K is a partial wave higher

than p-wave; and it vanishes due to parity conservation

if meson K is a p-wave. If meson K is an s-wave

we have

A j i > a -A C? K* S

- s-- KBS k1: (k1 H+Wk a -iE H', (( 2)

=(BS\Es(kQ)\c C) + <BJb( )JcL) K2S (49)
where use was made of eq.(45) and the definition of

the function E is

k s+
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The expression <BSj H',9 a( ck') j ) can not

be easily related to the scattering matrix in view of

the fact that the states <BS\ and ICK-> are both

with the minus convention. If we had instead CK+)

then <BS-j 1H',6o( Ct' ) +1J) would be the matrix
element of the transition amplitude corresponding to the

element <BSjCKL+) of the scattering matrix.

<BS\-CKLL) represents the process of a p-wave being

absorbed (meson L ) while simultaneously an s-wave

is scattered (meson K goes into meson S ) . This

suggests the following interpretation of the two terms

in eq.(49) : The first term <B\V(Q)CL) KS
represents the absorption of the meson L in the pre-

sence of an s-wave meson K = S which undergoes no

interaction; the second term KBSkE (k,t) CKL)

corresponding to the absorption of meson L simulta-

neously with the s-wave meson being scattered from the

state K to S . Note that even if K = S both terms

contribute, the frist term representing no interaction

between the s-wave and the nucleon, the second term

containing the effects of the scattering of an s-wave

from one state into the same state.

The second term in the product (48) has already

been considered in connection with expression (43).

I
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3. X•) = -CKP-) = physical nucleon and two mesons.

The direct term in eq.(42) gives in the numerator:

<BS-j[H' , ( - ) a (r)CKP-) CKP-H' ,a1 (O ' ) A' (51)

From orthogonality of eigenstates and parity conser-

vation arguments we conclude that above may be dif-

ferent from zero if either both mesons K and P are

s-waves or both are p-waves. Consider the first term

BS--IH' , (-) (r) KP-) . Again there are diffi-

culties in relating above directly to the transition

amplitude for a process, due to the "-" convention in

both states. As in the preceeding paragraph we con-

sider <BS[H',(-)a (r)JCKP+ . This, by the now

familiar proof, is easily shown to be the matrix

element of the transition amplitude corresponding to

the element <BSRI\CKP+* of the scattering matrix.

<BSR K1 KP+> represents the scattering of two mesons

from the states K and P into the states S and R

It is at this point that we define our "one meson

approximation". Namely we keep from ~BSR- \CKP+)

only those contributions which correspond to the scat-

tering of one meson only, the scattering taking place

in the presence of the second meson which undergoes no

change. Since both mesons S and R are s-waves there

will be such a contribution only provided one of the

mesons K and P is also an s-wave, but then the



other must be too (see comnent after expression (51) ).

What was said above is expressed mathematically as

follows:

<BS1H', (() a (r)a CKP) (52)

-BS9L a (+<(B) _( + H(-) Q(r Q1 H (k)

1 \H (k)HHkl' (-)l(r r 7CP +HB(r H- S ( S K

and the approximation consists in taking from the above

only <B\IH', (-)3a4 (r) CP- SK and ignoring the

rest. That this coincides with what was said above is

proved as follows : The factor S indicates -
S,K

as required - that one of the mesons undergoes no change;

the remaining factor is the negative complex conjugate

of the element of the transition amplitude corresponding

to the scattering of an s-wave because

CP\ BR> =<CP k (r) - 1 L' ' (r)j B)

KC\)SR~P -(P : () H- 1-1

- H+cr-w p - i +H- r - i(

-• rQ pp-ipr-iJ

=c\B)S,•, - 2ri P(mr-,P) <CP-H',ag(r)1B)

Thus

- 33 -
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<CP\[H',X (r)SB) 'CP\Mr(P))BR>) (53)

is the required matrix element of the transition ampli-

tude and

< B • ',(-) ()CO-  = - < CP IM(p)IBR> (54)

The other term in expression (51) is nothing

else but the function F defined in eq.(39) - the

actual quantity that we wish to find:

C)PA =H')A <CKP F p(k AL > (55)

(this is a consequence of the fact that unless mesons

K and P are taken to be s-waves the other term in

eq.(51) contributes a zero) .

Finally we must consider the crossing term which

gives in the numerator in the present case

(sB\a', ( h'))CKP> CKPH',(-)a (r)A) (56)

The orthogonality and parity arguments allow expression

(56) to be different from zero if either meson K is

an s-wave and meson P a p-wave, or vice versa.

Assuming that it is P which is the s-wave, the one

meson approximation leads to the replacement of

KBS\IH', ac( Qx! CK' )P by ýBKH',O ( 7' ) KC>s .

<•H', ( 1' i•CK-) corresponds to the absorption of
a pair of p-wave mesons. As a consequence of the

L
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identity H',a ( ') = -I O',k ( H')A which follows

by examination of eq.(ll), the absorption of two p-

waves is directly expressible in terms of scattering of

p-waves. But as in expression (47) the scattering

occurs in an eigenstate of J to the eigenvalue 1/2 ,

because the state <CKP10 is a state of J = 1/2 .

That conclusion follows from investigating

CKP H' , (-) a (r) A> and noting that meson R is

an s-wave, therefore the total angular momentum of

<CKP- I  is the same as that of \A .

Thus we conclude that expression (56) vanishes.

Collecting our results we have as an approximate version

of eq.(42) :

(BSRI JA(s)\c) cB()AL>
BRS\ Fs (r, )AL =F

C ms + mr

_2 jBVB (Q)\CL> e CSR\Nr(s)\A>-rr
C m + m

2 (<CX Mr(k)\BR> CCKSIF (kq)IAL)
CK Wk r - i

Bs\Es(k,VZ)CKL> (CKRINr(k)JA>
- Z (57)

OK +k + Cr

k 

r
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Eq. (57) is an integral equation for the function F .

Of the quantities appearing in it, the function • can be

determined from the work of Chew and Low, the functions M

and N from the work of Drell, Friedman and Zachariasen. The

function E , however, is unknown. This is similar to the

situation in the work of Drell, Friedman and Zachariasen: they

set out to calculate the function M and find that they need

the function N. In the work of Chew and Low such a situation

does not arise. This is a conseauence of the fact that H' is

linear in meson operators in the work of Chew and Low, whereas

it contains bilinear terms in our work. From the definition

of the function E by eq. (50) it is seen, by comparison with

eq. (41) which defines the function F, that an integral

equation for E may be derived in precisely the sane manner as

the integral equation for F . Subject to the same approximations

we obtain

<BS M r(s CRý) ca) c( ALý
BS\E (r , Q )ARL>)=

C U - ~ + ic
8 r

i< CL) <CS CLM r(a) AR
C m -a + i

s r

KBS\Es(k,Q)\CKL) 1 <K Mr(k) AR)

CK ak -r + i•

CKR\N )(B) C IF (k AL')
- \F ,(58)

CK k + r



-36 -

Equations (57) and (58) form a system of two coupled

linear integral ecuations for the functions F and E which

must be solved.

In terms of diagralns the various functions 8,N,M,F and

E can be pictured as follows :

L

Nr(a):

r (8):

F (r, e):

II

U(ýe>: .am
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R L

where the blob indicates the complete physical interaction.

We can also write eqs.(57) and (58) in terms of

diagrams :

S R

S R L S RL

+C
0

RL

C A

Es(r,e ):

+ 7
A CK B

r>7
CK B
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and

S L

A C B

B C A CK

C A

B C A

Finally we note that, in terms of diagrams, our one

meson approximation as applied to two-meson states means :

keep diagrams like (a) below but disregard diagrams like

(b) below. In diagram (a) we have a two-meson state

between the vertices, but only one of the mesons (K) is

rescattered at the second vertex. In diagram (b) on the

other hand both mesons K and K', forming the two-meson

state between vertices, are rescattered at the second vertex.

C B

CK

+ :F

a >
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R S L R S L

B C A B C A

(a) (b)

So far we have said. nothing about the magnetic quantum

numbers. Thus for example <BRSIF s (r, ) )AL is the trans-

ition amplitude for a process in which the nucleon in the

initial state is specified by the magnetic quantum numbers

o(, ', the meson in the initial state is specified by the

magnetic quantum numbers ) ', X' the nucleon in the final

state is specified by (3, (' ; and the mesons in the final

state are specified by !, t' and T, r' . Our Hamiltonian

has been so constructed as to be a scalar under rotations in

both space and isospace - therefore the transition amplitudes

corresponding to various choices of magnetic quantum numbers

are not all unrelated. That is to say, if the initial state

of the system is constructed to be an eigenstate of the total

angular momentum J and the total isotopic spin T, then the

only difference between choosing such a state with one set of

magnetic quantum numbers as compared with another set will be

a numerical factor expressing the different geometry of the

two sets of magnetic quantum numbers. It thus is clear that
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it would be advantageous to eliminate from our equations this

dependence on the geometry and consider only what remains and

expresses the physics of the problem

The elimination of the magnetic quantum numbers is

carried out in Appendix B and we quote here the result:

C M, () F (k,0) N ('iý ( !) (
Fs(rL) . LC V )S~ 'C -K rr43A -i A~'+ )

+LI

E5r rfk-):5
KV Es(A W4,(k3

+ 6*

(59)

(60)

The meaning of the various symbols in above equations is as

explained in Appendix B .

As stated previously, the functions 0, M and N are

known. From the definitions (45), (B-6') and (B-15)

have

co\[H,0 A ,(c(( )KA AL)(ci LH'. ( (h a I

we

- 2(-) v(l-;o<•- ) V(-lj-,V'X'-') V0(()

On the other hand from eqs. (11, 12) we have

i ',,( 1 = N f/, (6we) vte) V t'

and, using Racah's(lO) definition of a reduced matrix element,

(61)

(62)
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_ V(_l %_) V(_ ,f • •t.'

Hence we conclude that

N -
(2awq) a v(2) e <e f~iv-11 '> (63)

2 a

where <-- ifocr -  > is the reduced matrix element of foZ*r '

taken between physical nucleon states. But this last quantity

is simply a multiple, say f/fo , of the same matrix element

taken between bare nucleon states.

<\IfOCU\ a >- <, ' C >bare 6 f (64)
2 a a bare

and so

() = v(e) 2 (65)

From the work of Chew and Low fa = .08

The functions M and N are not as easily determined.

They are obtained as solutions of a set of coupled nonlinear

integral equations. We now derive briefly these equations:

From the definition (53) we have

BSJM,(s)\AR) <B ALH', cý (r) A

Ck{ (s) - Hl 1, (s,(s)] B H', (r) A>T + ie L I t



<Bý'Hw<B s I

+ , H'H + wis [i

which reduces, in the one meson approximation, to

<BI

[H Qt?(r)]

(66)

) Ft4 s, iR, (r)

<CK\ Ms(k)\BS>* <CK Mr(k)\AR)

-k--- CU - iS

<KR\N •(k) B <CKSN (k) A

Ck + Cs

starting with the definition (44) we have in the

one meson approximation

(BSR Nr(B )I A ) = - <B -) ),H' '(-)a (r)1 A>

CK

C K

<C•K•sm(k) BS) <XKRRý •I(k)\A>
Ok " 0s - i r

CK\Mr,(k) BR)' <CKS\N s (k)\A)

kk + cs

(68)

Eliminating the magnetic quantum numbers in a manner

analogous to that described in Appendix B we get

CK

CK (67)

,(-) %k(s

(BSM r(s) AR)

Similarly,
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Na v(s) v(r)

i er CD1·1.i

Mk (k)
mk - mc - i 0

0

C + s

0 M9(k)

- a
M (k) M (k)

S Na(k)

1 0

K

1 + s

CD + C

NO v(s) v(r)
4 r

+

L1'

S(k)

0 Ns(k)

Na(k) N'(k)r s

/j1S

a

0 N (k)

Ms (k N (k)
k -Wk

IA me (k)
Sa r: O _

r

0 Na

(k)INa(k) N,

are the renormalized coupling constantsHere 'X and@

Ma(s)ma (S)

-
K

and

Na(s)

NJ,(s)

(69)

K

1

C +k +
k

(70)(k)
(k)
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defined in a manner analogous to eq.

<K 10 a '0, ýk >bare

2/

follows from definition (71)

bare

that •O
0

Equations (69) and (70) were solved approximately by

Drell, Friedman and Zachariasen . They find that

may be taken to be real and of the form

N*v(s)v(r)
Ma(s)

MS (s)

with c
0

2cC)4 AM War

N v(s)v(r)
S2c

4 a oil

.04 C = .14

M and N

rO} 1
aowlwr "a

r@<o1c

- c . -c-r r a -

2

c 4: .01

Introducing eqs. (73), (74)

gives

3N' v(s) v(r)

F(r,) a -sSra~

into eq.

r +- US

(59) and

+ ca

(64)

(It

(71)

(72)

S.)

(73)

(74)

(75)

(60)

·(4\1 hz~\l
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N8 v(r) v(k)

4r k 0

N~ v(r) v(k)
-2 2c

4 G1', V~

wr+wk or-wk S Fa(ke)
+ I + c 'u

(,

S Or- k 1ar+k Es(k,)
1' - c1 ÷ 1 '-

and

3N' v(s) v(r)
Es(r, ) =

N'v(r) v(k) 5D+k W-k _(k3,)

2c ++

O k L cuk-cor

Nav(r) v(k)c r-k k

where c +matrix :

where P is a 4x4 diagonal matrix :

-1

0

0

0

ar +kl (Fs( k , c)

0 0 0

0 0
0 -1 0

0 0 1
2

and we assume that the functions F and E may be approxi-

mated by real functions. Integrals over singular quantities

are to be interpreted as Cauchy's principal value integrals.

76)

(77)

(78)

0 (r) +
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V. PHOTOPRODUCTION

We first generalize our Hamiltonian to include the

effects of electro-magnetic fields. The Hamiltonian in the

absence of electro-magnetic fields was taken to be

H = H +H +H +H
o .1 2 3

H -• ( )qf -
o ; oi

II J~if JT'q0

H A'W fA iZ

H _r 2 )q

a i q

H

(r)Ilq(r) +Viq("Vrq() r ýq()•() d+ (79)

(8o)

(81)

(-)C, f u(r)T-C.V Me

O) (') da f u(r')i-q(9 ) d-11

f u(r) Y'(r) dr f u(r' d") a

- f u(r) V s() d" f u(r') ýp(") dý (82)

where q, p, s = cyclic permutations of -1, 0, +1.

In the presence of electro-magnetic fields above H

goes over into H(A). H(A) must have a structure which is

gauge invariant. This means that the following equation must

be satisfied:(ll)

iD -iD
e H(A)e = H(A + G) (83)
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where D = fld G(•)(' ) (84)

where S(r) is the charge density of the system given in

this case by

()= ,() + (1 + )/2 e ()

= ie •T.(-(f) .T (- ),()i. + (1 + t )/2 e -) (85)

where n is the charge density of the mesons and

(1 + T )/2 e s() is the charge density of the nucleon

assumed to be located at the origin of the coordinate system.

The function G(r) is a scalar gauge function - any

electro-magnetic field operator which commutes with A

If it were not for the source function u(r) the trans-

%Ij4-..j i i/ %0 W c4±~JlL .L. Ld U- V V.LJ.U J9

tion:

q ()-kV + q iei) 0() (86)

It can be easily verified that with the substitution

(86) the terms in H denoted by H and H fail to
2 3

satisfy eq. (83) . (Note that the substitution (86) leaves

H and H unchanged). WTe demonstrate this for H :
a3 2
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iD -iD
e He

a

iD
e

-iD
r() (') e

Let us define

dF/dx

F(x) m
ixD

e

ixD -
= ie L D,

(I"') r(' ) e
-ixD

: then

-ixD
e

ixD
- ee

-IxD

- - ieq
ixD

e f d--"-
-A,)

(-4 ) .

ixD
- eq e

-IxD
e

-ixD
eq -)

= - ieq G(r') - G(&)

Integrating dF/dx = - ieq G(r') - G(k)I F(x) between 0

and 1 we get In{F(1)/F(0)l = -ieq tG(C') - G(%)

iD
F(1) = e

-iD
e = F(O)

-ieq{G((') -e

S-(ieieqG('I )

(87)

F(x)

or

dr fd ' u(r) u(r' )

( ) r9)

-All,) S (A,,

rQ • • W V G Cr" )

(ý ') G G A' ) 4 G(-)ý %.7 r

q -q

- G(-r)
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and thus

iD -iD
e He

(88)

By similarly investigating H we conclude that under a

gauge transformation q', lTq and 'q change as follows

lq(r) -- e

ieg G("r)

ieq G( )
q

(-

ieq G(O)

(For the nucleon located not at the origin but at

ieq G(r )

-- 1

r
0

* Z-q .) This then suggests that the Hamiltonian

will be properly gauge invariant if it is obtained (in addition

to substitution (86) ) by modifying 0q, qq, q
way as to produce the factors appearing in (89),

A -- > A +VG .

Now consider the expression

in such a

when

(89)

Tq--- e

(90)

/ (-)dd' u(r) u(r i ee q G ( )  ()e - i e q G (' ) .,(r) u(r ie ý (-r-l ýq (rB Ciq

v v ._

-ieq/4 J
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Under a gauge transformation A - A + VG expression (90)

becomes

-e 5 ·'. B' xt -> L~C j VeM -

4I 4f 4W

+ (Gn( (91)

provided G vanishes at infinity.

Thus we propose to introduce the electro-magnetic field

into the theory by taking, instead of substitution (86), the

following :

() -* exp -ieq/47T f 4 '

Tr --- exp l ieq/4T j r g, (,

(92)

and one easily verifies that the H(A) so obtained satisfies

eq. (83) and hence is gauge invariant I . We observe that

I It is well known that the manner in which an extended source

theory is made gauge invariant is not unique. For a general

treatment see reference (12). We note that if the theory is

41-T- a47 \s-R\

exp iq/Trf
-- #T·C- 1C
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every term in H picks up two exponential factors with

opposite signs of q, hence the terms in the exponent are

always of the form

with r a meson coordinate and r also a meson coordinate

or the nucleon coordinate. Therefore the restriction that G

must vanish as r- -> required in eq. (91) may be relaxed

to VG vanishing as r -~ • thus allowing G to be a

constant. Since VG = A - A' , where A, A' are two vector

potentials differing by a gauge transfornation, we see that

our theory is gauge invariant provided we only allow gauge

transformations such that the different vector potentials

have the same behaviour at infinity. We feel that this is

sufficiently general.

The advantage of this formulation is that, now that the

theory is gauge invariant, we may choose a particular gauge

to work in and we take the gauge defined by V.A = 0

Then all the exponential factors reduce to unity and the

Hamiltonian H (A) is

1 cont.

made gauge invariant in a manner different from ours additional

currents appear j however at low energies their contribution

is negligible.
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H(o) + ~()Qq f ) ) ( %)

H (A) =H (A=O + oVi f/ j ()q iejq fu(r)Z.IV(A)4 (r ) d'r

H (A) + H (A) H (- = 0) + H (g = 0) (93)
2 8 8 8

Thus

H(1) =H + H"

where H = H(A = 0) is the same as that used in meso-produc-

tion, and

Hq =Ar (±V- (r) dr

+ /WT fO/P f u(r)'qc '(') 4q(-) d-") (94)

We are interested in the transition amplitude corres-

ponding to the absorption of a photon and creation of two s-

wave mesons. The matrix element for the absorption of a

photon of type k by a nucleon described by spin, isospin =

leading to two mesons described by spin, isospin R and S

and a nucleon described by spin, isospin B , is given by

<BRS\ H A (95)

where H" is the matrix element of H" taken between states
k

of the radiation field of one photon of type k and no

photons. (We are treating the electro-magnetic effects in
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perturbation theory.)

In expression (95) the state IA) and the state <BRS\

are both states of even parity and total angular momentum 1

because R, S are s-waves. Therefore expression (95) will

give non-vanishing contributions provided H" has even parityk
and angular dependence corresponding to a tensor of rank 0

or 1 . It is therefore advantageous to expand the vector

potential A(r) in H" in spherical waves since then H"
k

will be simply equal to the coefficient of the annihilation

operator for a photon characterized by an even parity and

angular momentum 0 or 1 , and linear momentum = k . In

the expansion of A(r~) angular momentum = 0 does not exist

and so the only term to contribute is the one generally associ-

ated with magnetic dipole transitions. (We may do this

because H" is a scalar and therefore the rotation and

reflection properties of H" are entirely determined by the

rotation and reflection properties of the photon annihilation

operator.)

The solutions of the vector equation

7 8 A + kA A =

representing spherical transverse vector waves regular at the

origin are (13)

Mem( ) =-V x LYm .r) J~(krA
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and

Ntm(ri) = l/k 1 Tx Mm(r) (96)

Hence in the usual manner we may expand A as follows

A( ) =H N//2k m () m  m ( r)c(km) + ct(k~m)j

. m() d(km) + d (k 1m)1] (97)

where N is a normalization constant related to the inverse

square root of the volume in which A is quantized, and the

sum over Q starts at 2 - 1, the sum over m goes for

each value, of C from -~ to +~ . Since the parity of Ye

is (-) it follows that the parity of M1m is (-) and

that of Nem is - (-) . Since the photon has intrinsic

spin one (we are dealing with a vector (polar) field ) it has

intrinsic odd parity and so it follows that the parity of

c(kim), c t (km) is - (-) whereas the parity of d(kem),

d (k'm) is (-) . Thus we need the coefficient of c(klm)

and H" is obtained from H" by replacing A(r) by
It

N/2 MImk(:) = N//2 Vx Ij Y lmk( 1(kr)l (98)

This is because the state of the radiation field corres-

ponding to one photon of even parity, angular momentum = 1,

angular momentum z-component = mk and linear momentum = k

is given by

ct(klm) >(9
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(where I is the vacuum state of the radiation field)

and because

-)mk c(kl-mk ) ot(klmk )  = (100)

The expression (98) can be written more explicitly as

N/lv¶ M
Lmk

(r) = N/,12 J (kr) /377 -

- icos% u + cosý u + isinw e
X y

u
z mk,1

+ [- sin sin- + sinin cos•i• -' / mk,x y 0Y
(101)

+ j- icosu uI - cosa u + isin& e ux y z mk, -1

Thus

H" -
k q

+ o f/ f u(r)-M lmk r)T .q($q ( ) d" (102)

We next show that if we expand ýq( )

appears in eq. (102)

(wherever it

) in spherical waves then the only

contribution to

KBRS \ H" A)
k

(-) iee N/lEvr2 b f ( ) Ixlmk rA q(r) der
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comes from the p-waves.

Consider the state A> : it represents a "physical"

nucleon and in view of the structure of our interaction

Hamiltonian if we should expand IA> in "bare" states it

would contain amplitudes for only the following type of "bare"

states :

one nucleon + any number of p-wave mesons
(103)

+ any even number of s-wave mesons

Since the state BRS differs from IA> by the presence

of a pair of s-waves, in an expansion of the type considered

above, amplitudes for the same type of bare states - and no

other - will appear.

Thus H" must contain only such meson operators, which ,

when operating on A) produce a state that contains again

only amplitudes for "bare" states of type (103) or else we

obtain a vanishing contribution.

Consider first the term in eq. (102) linear in :

in the sphericai wave expansion

q() = N (2a) (-) J(Pr) Ym(-O)[aq (ptm) + a' (ptm)
e ptm r p t t-m q

the term corresponding to t = O when acting on A ) will
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produce a state containing amplitudes for an odd number of s-

wave mesons, hence not of the type (103) . The terms corres-

ponding to t _ 2 will produce states containing amplitudes

for a meson of angular momentum t 2 , hence again not of

type (103) . Only for t = 1 do we obtain a nonvanishing

L

result.

Now consider the term in eq. (102) bilinear in aq:

After introducing the spherical wave expansion we will have

terms containing products of two operators - one for a meson of

angular momentum t and one for a meson of angular momentum

ti

a) t = t' = 0

In this case the angular dependence of the integral in

eq.(102) is entirely that due to Ml,mk(r) and , as

is clear from eq. (101) , the angular integration

gives 0 .

b) t = 0, t' 0 or vice versa

The result of operating with such a term on IA) is

a state with amplitudes for an odd number of s-wave

mesons, hence not of type (103)

c) t _ 2, t' ; t or vice versa

The result of operating with such a term on \A> is

a state with amplitudes for a -meson of angular momentum

t _ 2 , hence not of type (103)
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d) t=t' = 2

1) rn f- m'

The meson created by the operator corresponding to

t(t') cannot be annihilated by the operator corres-

ponding to t'(t) because m n - m' and the result

of operating with this term on ýA> is a state con-

taining amplitudes for two mesons of angular momen-

tum t = t' - 2, hence not of type (103).

2) m = - m'

Now it is possible (provided the energies are the

same) to have one of the meson operators create the

meson (t,m) and the other annihilate it and therefore

the result of operating with this term on \ A> would be
a state containing amplitudes of type (103). However,

in this case the i-dependence of the integral in

eq. (102) is entirely due to 1, mk ( r) and then it

is clear from eq. (101) that all ý-dependent terms

will vanish upon 9-integration. Then for b-inte-

gration we have (see eq. (101) )

f d(cos9) cosO Ytm Yt-m

t
We can write Ytm Yt-m ct" Y2t"O where ct,

t "0

is some coefficient. Hence the 9-integral becomes
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t
VW/T73 Z- ct., f'd(cosB) Y2t" Y

t 2t", = 0
t ct Q 2O

e) Finally we will have a term t = t' = 1 which gives a

non zero contribution.

Thus eq. (102) can be written as follows :

S() q iq N/ vV n/v( f0/1  N Rm (2p ) 8 (-)mL-
k 9 -pm

+ N' (4 "• -) (-)m+m'[q(pn) +- (~ C (p'm') + m)
pm q q

Lj (pr) Y (0. )M f ( )k l(plr) Y l((r)i d (104)1 1-r r m 1-rmn

The explicit structure of H" as given by eq. (104)

will not be made use of except for the following features :

1) H" contains operators for p-wave mesons only

2) H" as far as rotations in space are concerned behavesk
like the mk-component of an irreducible tensor of rank

1 (this is a simple consequence of the fact that H" is

a scalar and H" was obtained by extracting from H" a

quantity behaving like the -m k-component of a vector)
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3) H" as far as rotations in isospace are concerned be-
k

haves like the O-component of a tensor of rank 1

This is a consequence of the fact that H" would be an
k

isotopic scalar were it not for the factor q in "ieq" .

Since q 4q = t0- i where t is the zeroth component of

the meson isospin operator which is a vector, our con-

clusion follows.

Keeping above features in mind we now compare

<BRS- H"( A>

and

BRS- \H',ao (k, mk) A>

Recalling the notation of the sections on meso-production we

observe that a (k,m _) is the creation operator for a neutral

meson with linear momentum = k, angular momentum = 1, angular

momentum z-component = m
t

We see that H',a (k,m k) contains only operators for

p-wave mesons - just like H" . The behaviour under rotations

in space and isospace is also the same as that of H" . On the

other hand H" contains as a factor l/V2- where IH' ,a(k,im)
k k k

has 1/42-k  , due to this difference in normalization of a

photon and a meson. Lastly we observe that whereas the matrix

elements of [Hat(kt, ) are proportional to the p-wave

coupling constant the corresponding factor for H" should bekt
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- ge/2M where g is the anomalous nuclear gyromagnetic ratio.

Since H" is an isotopic vector, in our theory g is equal
k

and opposite for the proton and neutron and may be taken as the

average of the experimental values g = (g - gn)/2 . (Chew

and Low use the complete static moments i we feel that it is

more correct to use the anomalous parts of the moments only.

The theory is not accurate enough to decide this question in any

case.)

Thus we conclude that

<BRS-HlA) - ( A)/2 e/2M -R H', (km on)A) (105)k / l k-7 ' .

(here f is the renormalized but not rationalized quantity -

according to Chew and Low f 2 = 0.08 )

Therefore once the meso-production equations are solved

eq. (105) gives us immediately the transition amplitude for

photoproduction.
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VI. CROSS SECTIONS i CALCULATION AND DISCUSSION

Our next task is to solve the meso-production equations

and compute cross sections. Since the dependence of Fs(r,L)

on the momentum ý is of a trivial nature we eliminate it from

our equations. Also, it is more convenient for purposes of

calculations to rationalize the matrices A' and A . We

define two new functions H (r) and Gs(r) by

1 0 0 0

N" v(s) v(r) o /2 o o
F (r,e) = . () Ha(r) (106)

12F .a /Ey O O 1 0

o o o o

1 0 0 0

Na v(s) v(r) o O 0
E (r, )= (/) Gs(r) (107)

s 12s 8 Is 0 0 1 0

o o o /5

Then instead of eqs. (76) and (77) for Fs(r,C) and Es(r,e)

we must solve the following equations for Hs(r) and Gs(r) :

Hs(r)= (c r W s + c AJ
Cu r + Co

N v-2(k) C + ___ ( WC 7 Hs(k)a -k L- 2c + c r k c ar )
4)4 O~k114-tA k - aD
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S- k + G s (k)
+ \ 2c + W wr C ) P

( Wr ++ m )
sr W W a )

A A

N% V(k)k

4tk kt Wkt

i Wk + mr
r C

Ck r)) Gs(k)

4+A c +(c k r W. 2c)k k r1
I ak + c r

4 1

2 1 2A=,a
1 9 4

1 2

4

8

-2

-1

8

-2

5

-2

20 0

-5 3

4 0

and A = 1

We are interested in pair production near threshold and

therefore the quantity (wr - Ws)/(mor + Us ) is small compared

with unity. Thus the first term in the equation for H (r)
s

is small and the first term in the equation for G (r) is

large with the consequence that

and

(108)

where

(109)

(110o)
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a + W

G -(r) r s a A0n (111)r s
is an excellent approximation for the function G (r) but the

corresponding assumption for the function Hs(r) results in

large errors.

Using the identity

1 1
(1 ; r (112)

k r r

we rewrite eq. (108) as

H (r) =c r 8 + A + +(or + WSr

- r 8 fk dacm k/ H (k)
n) k ( - s)(k - W ) s

C + c _ .rk/t_ G (k) (113)
O()k + Cs)(COk + r~ )

where

H - fk d 2 ( ( c )k s ), ck: s  (114)
5 21T . k-hs

- 1 d {2c + ks Ck s G 8(k)

2Tr k 20 + s (115)
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and we have replaced summation over k by integration accor-

ding to the relation

Na 5 2/k fk2 dwk = 2/, fk ck dwk

(see Appendix A) and omitted v2(k) which is assumed to be

equal to 1 up to some cut-off energy c and equal to 0
max

for "k • •max .

We now assume that the function Hs(r) can be approximated

by taking

H (r) r (c r + c + H + AG (116)
C r s+ a s

Eq. (116) is equivalent to taking in eq. (108) cr = -c every-

where but in the first term i therefore the error is propor-

tional to (o r- c ) as is clear from eq. (113). Thus for

(r - M ) small this is a good approximation.
r s

Using eqs. (111) and (116) in eqs. (114) and (115) we

obtain (Hs + AG s ) from the following equation

S 1 k dWk ks k-s
f--- 0 s2-~ s *" a

-- fk d k "I A + " + (c A+ spr.)
2nIt J . ( wk+(s / @,,
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2 c cm o+ - Ec ( + )A+ (P k-AFA)J (117)

k h

All the integrals in eq. (117) are easily evaluated. We take

max = 45 , the same as Drell, Friedman and Zachariasen .

The error caused by assuming that Hs(r) and G (r) are given

by eqs. (116) and (111) instead of eqs. (108) and (109) is

estimated by taking H (r) and G (r) as given by eas. (116)

and (111) . introducinw these into eos. (108) and (109) and

comparing the new values of H (r) and G (r) so obtained
S' S

with the old ones.

We find that H (r) is a weak function of a and w
s r

and is well approximated in the small range of energies of

interest by a constant , namely the value of H s(r) as

obtained from eq. (116) with r = ws = (wr + os)/2. For

r + S = 2.5 the error (estimated in the manner outlined

above) is less than 25% ; the error is smaller for smaller

values of or + ms . On the other hand the auxiliary function

Gs(r) is given by eq. (111) with an error of less than 1%

We give below H (r) for two choices of a + mc it

is seen that within the narrow range of energies considered

H (r) varies very slowly.

I-
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S2.5 t 2.25
.241 -. 223\

.060 .062
s -. 123 .114

-.007 /.0o6

In order to calculate cross sections it is necessary to

form actual physical states from the eigenstates of the total

isospin so far considered. The following reactions are possible:

p + TT --+ p + T + 1e

-- n + iT + + T+

+ +

P + T~r-f P + T + T*

->p + n' + T

-1 n + 1T+ + Te

p + Tr, P + n- + f*
- ~+

-- n + w" + T

- n + Tr + To (119)

In above we have assumed that the nucleon in the initial state

is a proton - another 8 reactions are possible with the

nucleon in the initial state being a neutron. If we replace

the ro meson in the initial state by a photon we obtain the

6 possible photoproduction reactions. The transition ampli-

tudes for all these 22 reactions can be obtained from H (r)
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by forming the appropriate linear combinations of the four rows

of the matrix H (r) . We demonstrate the procedure by calcu-

lating the 3 cases involving a proton and nT meson in the

initial state (we choose this example since it will permit us

to calculate later cross sections for both meso- and photo-

production i how to calculate the other cases will be obvious

from this example. )

The initial state of the system is IpnO> which in terms

of isospin states can be written as

pfO> = I I +i'23 1 2 (120)

The three possible final states of the system are IpTnO T ,

p1 p-T> and n÷rn+T> which in terms of isospin states can

be written as

P a a/ as(11

+ a jai ! !j )> (121)

2p·a " > =a - ( I 2 ( 1 2

+ + (123)
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In eqs. (120 - 123) we omit the symbol for the z-component of

the isospin and the quantity in brackets refers to the isospin

of the subsystem. The subsystem is formed with the meson

whose symbol appears next to the nucleon on the left hand side

of the equations. Identifying the meson used to form the sub-

system with the meson R , identifying the other meson with

meson S and identifying the meson in the initial state with

meson L , we have from eqs. (120 - 123) the following expres-

sions for the transition amplitudes :

FOO- FPptr PI0T = (124)
11 13 31 33

3 s 5s a Sa8 ( 8 3 S

F Frr = (125)
11 13 31 33
w a -a . , a . A g MF(ro)+( ) F(r,) F"(9)e• s 3 fC S s 8fi_ s

=F (126)
11 31. 33
s (r ) - - Fa F(r,) •F (r,.) + F(r ',)

313 8 .0 3 3 S 3 8 a 5

The transition amplitudes as given by eqs. (124 - 126)

would be the appropriate ones if the experimental set up for

measuring cross sections were such as to detect states of

definite angular momentum. The normal experimental techniques
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are however such as to measure mesons of definite linear, and

not angular, momentum. Therefore we transform at this stage

from spherical to plane waves

Consider

< -' oa' M (127)

This represents the matrix element of some quantity M taken

between the following states (we supress here the isospin

dependence) :

Initial state : nucleon described by a spin =1 , z-component

of the spin = o0' and a meson described by a

plane wave characterized by the momentum Q.

Final state : nucleon described by a spin = 1 , z-component
a

of the spin = p' and two mesons described by

plane waves characterized by the momenta r

and s

Using the standard methods of transformation theory we now

write

R' 'S''J J 'J"j"L

'J ' " (" L L -4 ) (128)

Eq. (128) provides the means for expressing a matrix

element taken between states of definite angular momentum
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- KJ'j' MI J"j"> - in terms of the matrix element taken

between states of definite linear .omentum - Ml
the second and fourth terms on the right hand side of eq. (128)

are simply vector addition coefficients, the first and last

terms are inner products of plane and spherical waves.

For the processes that we have been considering

<J'j' M I J"J"> is different from zero provided J' = J" = -

and j' = j" . Then parity conservation together with angular

momentum conservation require R' = S' = 0, ' = O' = 0 ,

L' = 1 . Thus eq. (128) simplifies to

-. %' oooo A > ,1I

Here <2j' M ~ j'> is independent of j' and equal to F

as i -en eh 0)e (12 1 ' o a 1O
e •. qj .0 - 1. , -.L. <r t j \ M--\ = Y

etc. . The vector addition coefficients are given by

(-'oooo i j' ) =  , (130)

and

' '1') = j,,j _ - +L- (131)

The inner products of plane and spherical waves are given by

(see Appendix A):

I
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(A a s 0000) = 4/N*V (132)

and

-3

1tl~ ) =ao

Thus eq. (129) becomes

S,,4

V3

(4ST )

NaVy/s 1(04'-')

Combining eqs. (134), (124 - 126), (106) and (65)

Str8 Moo .• z
lo'

s •

<M+\ W M .ot' =

=X H0 o

X H"+

H" + = - -2 H- a ( r )

H+O = -_•

and where

33

HN (r)8

2 H•a(r)
8

81

+ 2 H22 (r)
8

+ Ha(r) + 2 H 22(r)
S

18

+ Haa(r) + 2 HB2 (r)
5

+ 2 H;;(r)
s

33- 4 H2 (r8
- H*(r)s

x = (.-i)(-) 2
/1+T W oT(I (4T);

13 12

y (~ ) ()1(<'- F )

(133)

P' 2(-i)(-) (134)

we have

where

X H+O

(135)

(136)

(137)

(135')

(136')

(137')

(-i)(-) Y1 ( AQ)1-1'

A-/v2/

v(s) v(r) v(e)/2a2me,,rm (138)
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Both values of oL' are equally likely and we average over

them' also we must sum over U' . Using a bar to denote the
/ ,

averaging we have

(-i) (4T)a f v(s) v(r) v(e)
X (2 ) Vs/ a 12 o a

and

(4Tr) 3 fl v9(s)v9(r)ve( )-
S * =- Z + 2sinA, cos, cos

,Va 122 2ws rD

(4 n ) 3  f e a 1 3 9
-- - - (139)

p V8  122 8&oB" e

where we have averaged over ( and omitted the form factors

v2 (s)v s (r)v ' (e) to obtain the last line.

The cross section is given by multiplying (139) by

21Tw IHa d2n/dE .pV/L (140)

where H is given by eqs. (135' - 137'), where /,V is the

flux of the incident mesons and d2n/dE is the density of

final states per unit energy interval. This last quantity is

obtained as follows the number of states available to a

meson of energy w lying within the interval dw, within
rr

the solid angle d1 r. when the mesons are quantized within a

cube of volume V is
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V/(2TT) r ) or dwr dLr (141)

For two mesons the number of states is a product of two factors

each of the form (141) . Now the total energy available to

the two mesons is

E = Wr + CDs

and therefore I
cE =const

r

dE = dE . Thus the required density

of final states per unit energy interval is

d4n
SV/(2Tr)dE r s wr CDu dwr dQ r d ls

4Va/(2n)4 rs or Ca d,

where we have integrated over dQlr and dQ s (nothing in
5

the cross section depends on these angles so the integration

simply gives (4n)2 ).

Thus finally we have for the cross section per unit

energy of the meson R :

/d = (f/6)2 Ha (ers)/(a y)

= (f/6)8 H 2/ e /W, ~V ~

From eq.(143) we immediately obtain the cross section

or

(142)

(143)

dxn

z

f^ ;i
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for the corresponding photoproduction process by multiplying

by

(6p - gn)/2 e/2M)

where Q/p arises from the different forms of the expressions

for the flux of mesons as compared with photons and the other

factor follows from eq. (105)

The value of E (= energy available to the two produced

mesons) will be taken equal to w , this corresponds to

neglecting any recoil of the nucleon .

As is seen from eq. (143) the r-dependence of dU/dur
is due entirely to the term under the square root sign (this

is a result of having approximated H (s) by a constant in

view of its weak dependence on w~, s ) This term goes to

zero at the two limits cwr = and E - r = ms = , and

reaches its peak value of (E/2)a a1 at wr = = E/2

Using eq. (118) to obtain numerical values for Ha and re-

placing the term under the square root sign by its peak value

we obtain as the maximum value of dT/d&r  in milimicrobarns

(103" 8 cm8 ) per Mev the following
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2.5/d 2.25

peYO so 47 20O

the numbers (l45) , (I1)• * iome experimental data exist for

higher energies, in particular for the reaction
(14) (5)

p + g--~ p + n + + . Cutkosky and Zachariasen obtain

a good fit to these data by using the Chew and Low theory (no

interactions for s-waves) and assuming that one of the mesons

is produced in an S-state and one in a P-state . Cutkosky and

Zachariasen obtain for p r-- Pp'v+ 250 millimicrobarns/Mev

7 .+

pT° --~ p1T+ 1.4 .54

piT -- nwT+T 4.5 1.7 (145)

The corresponding photoproduction cross sections are

obtained by multiplying eq. (145) by the factor (144) :

E 2 .5r 2 .25j

P T-- r p 0To 20x10lO 7.8x10 3-

p' -> pT+ 6.1xlO0 2.1x10lO

p •-- nr+•o 20x10-  6.6x10-  (146)

There are as yet no data available with which to compare
o -. ,, / , , " -.. , . +L -t t _ ,
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at E = 2.5k and for p· --> n•rnO 50 millimicrobarns/ 1Mev

at E = 2.5J . Our corresponding numbers are roughly 10,000

times smaller for p --3 prrw+ and 1,000 times smaller for

p -- n nTw* . One reason why our numbers are so much smaller

is that in order to produce two s-wave mesons the photon must

be absorbed by the nucleon, whereas an s- and a p-wave meson

can be produced by having one of the mesons absorb the photon.

Thus, even if the s-wave and p-wave interactions were equally

strong our process would lead to cross sections smaller by a

factor (M/?) _ 50 . The fact that the cross sections turn

out to be much smaller must be blamed on the weakness of s-

wave interactions as compared with p-wave interactions.

Although phase space does favor the production of 2 s-waves

over an s-wave and a p-wave, it does not compensate sufficiently

the difference in strength of the interactions, except possibly

at an energy of a few electron-volts above threshold.
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APPENDIX A

The free meson field amplitudes satisfy the Klein -

Gordon equation and therefore may be expanded in terms of a

complete set of solutions of the Klein - Gordon equation such

as plane waves or spherical waves. The standard expansion is

in terms of the orthonormal set

ik-x
1/V1 e (A-1)

where the plane waves are normalized in a cube of volume V .

Periodic boundary conditions at the faces of the cube lead to

discrete values for the momentum k . The number of eigen-

states in a volume element dk of momentum space is then

V/(2n)3 dk (A-2)

The expansion of the field amplitudes in terms of the

set (A-1) has the familiar form

-s zik.x
(cx) =z 1//2  q( k)e

q k kq

S -ik.-I

+ 0 q(k)e q = -1,O,+l. (A-3)

Similarly we have for the canonically conjugate momenta

rr() = (-i) Vk/V Oq(k)e
q k

ik.x x ik
. (k)e q = -,O,+.

(A-4)
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Here wk = " +  = energy of a meson of momentum k

iik- x
Whereas the space dependence of ,q(x) is in the e i

the operator properties of ,(x) are in aq(k), k) .

As a consequence of the definition (9) q() describes

mesons of definite charge : the operator CL (k) annihilates a
t q

meson of charge = -qe , the operator CL (k) creates a meson of
q

charge = + qe. Thus Oq acting on an eigenstate of the charge

operator leads to another eigenstate to an eigenvalue increased

by the amount qe .

Introducing the expansions (A-3,4) into eqs. (2,3,4) yields

H = z , ( - ( )q () a () (A-5)
kk q q -q

H' = fO/ /22 /Vt k v(k) ~i- (-) q 1_ q (k) -
k q

+ ; /2V• v(k)v(k')/kk
kk kk'

2(_k* -C -t + )-t 0-

(_ q ()a (k')+ (k))a ( k') + a(k) (• ) a (-k)o (k"
q q q q q q q -q

+ )?./2 jV i v(k)v(k')//kk , .

k q s a a k

S s r(A-6)

(q, r, s = cyclic permutations of -1, 0, +1)
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In eq. (A-6) v(k) is the Fourier transform of the source

function

-ik.x
v(k) = f u(x) e dx i (A-7)

, q =-1, 0, +1 , is related to - ,d= 1, 2, 3, in the

same way as is related to (eq. (9)) , the Z 's

being the standard Pauli spin matrices acting in isospin space.

Now consider the following orthonormal set

NJ I (px) Ym (x) (A-8)

where jL(px) is a spherical Bessel function and Ym (2 x )

is a spherical harmonic and N is a normalization constant.

These spherical waves also represent solutions of the Klein -

Gordon equation and we may therefore expand the field amplitudes

in terms of (A-8) . Quantization now must be performed in a

spherical volume of radius R = 2pa/Na . Discrete values of

p result from imposing the boundary condition that j g(px)

vanish for x = R . A spherical Bessel function jg(px)

approaches asymptotically for large values of its argument

1/px cos[x - ( C+ l) /2 (15), hence the boundary condition

is pR = nT/2 . The number of eigenstates in a volume element

dp of momentum space is then

R/T dp = 2/TrN2 p2 dp (A-9)

The expansion of the field amplitudes in terms of the set
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(A-8) has the form

(q) = Im N/V2p (-)m J[(px) Y -(a) a(P+m) + q(pqm) (A-10)

q pEm m 9
- --

Whereas the operators aq(k), (k) served to annihilate andWhereas the operators ), Oq

create mesons whose space dependence was that of a plane wave,

the operators in (A-10) annihilate and create mesons with a

space dependence corresponding to spherical waves. Thus

C q(pim) annihilates a meson of momentum magnitude = p, angular

momentum magnitude = -FT(+l) , and z-component of angular
t

momentum = - m o a (pam) creates a similar meson except with
q

z-component of angular momentum = + m . The choice of phases

of these operators is such that they behave as irreducible

tensors in the sense of Racah(10 ) under rotations in both space

and isospace. Under rotations in isospace q (x) behaves as

the q-component of a tensor of rank 1 since the T-mesons

are members of an isotopic triplet i in the expansion (A-10)

this property is preserved by having ~q(pom) , & (pm) ,

behave as the q-component of a tensor of rank 1 under such

rotations. Under rotations in space ýq(x) behaves as a

scalar since w-mesons are pseudoscalars ; in the expansion

(A-10) this property is preserved by having a (pem),

Dt (pLm) behave as the m-component of a tensor of rank e

under such rotations - hence the scalar product

(-)m Yfc,-m Gq(pem) + aq(pQm) (A-11)

behaves as a scalar under such rotations . The pseudoscalar
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nature of the w-meson manifests itself in the fact that

- (p.m) , a (ptm) behave as pseudotensors under inversions
in space Lastly, our choice of phases implies that the

in space . Lastly, our choice of phases implies that the

hermitian conjugate of 4g(pqm) is (-)m c (p-m) . We note
q q

that in this notation the only nonvanishing commutator is

i (pam), J,(p'b'm')3 -)-( _)m '• -K , g ,p'

Lq q q ,-q m, - , I pp
(A-12)

Comparing (A-10) and (A-3) we see tlhat the annihilation

and creation operators in the two expansions are related by

ik x

Z/ /2-Vc- k a (k) e
-k

k-J -ik-x

k

= 2 N// (_)m
pem P

= 4 N/i2m (-)m.
p: m

L(px) Y (cQ)

) (px) Y (q)
f-m

aq(p:m)
(A-13)

a-(p1m)

(A-14)

Now

fi(k-k)x
fe dx = V ,

kk

and

-ik'.x
fe

L'=O

Jt(px) Y (Gx) dx
(-m

m'=- '
(-i) f j (k'x) j (px) x dx-

Y(•)• f'Y( )Y(s) d-
tm\ e'm' e -m

= 4T (-L41Tn(-.i) N
Yl (kt) k',p

(A-15)

(A-16)



- 83 -

because

f Y ( ( ) Y (Q) d = S1'm' t -m 1 ,'e m ' , -m
and.

fI J(k'x) j(px) xa dx = N
k' ,p

Hence if we multiply both sides of eqs. (A-13,14) by e

and integrate over x using eqs. (A-15,16) we obtain

a (') = _ 4a/NfVV (-i) (-)m Y k) a (pRm) S
q pfm C-m q k,p

a (k) = 4 1i/NiV (i) (-)m Y ( aq (pm) ) ,p
S pm-m q

We now want to introduce (A-19,20) into (A-5,6) and perform

the required summations over k and k' . As a consequence of

(A-2) we see that the summation over a discrete spectrum can be

replaced by integration over a continuous spectrum according to

i -> V/(21T)3 f dk = V/(2n)" fk2 dk f di a (A-21)

On the other hand from (A-9) we have

7- 2/N 2a f k2 dk (A-22)

hence we conclude

(A-23)-- - VN/kkT )a .f .
k k

(A-17)

(A-18)

(A19 )

(A-20)



(A-19, 20, 23) in eq. (A-5)

H =VNk/(41)2

0k

f daS Wk I

4T/N/V (-)m(i )t t
y (Q) (pem) E(-m q k,p

Y (k) -q

)qa (pC-m)
-4

(-)mGLa (p
Sq

rj d k Y (Dk-m S gi 1 m m, -m

Eq. (A-24) is equivalent to

Next we use eqs.

eq. (10) in the text.

(A-19, 20, 23) in eq. (A-6)

term proportional to. fO we find :

d2k N/J/~k v(k) ' ik qZ
q

Y (-kL -M - -).(pem-A

N/Vl pv(p)//2vp'p 2
q,m

(-)q (-)m
t 1

+ a (pl-m
-q

is related to 14,where Y,M

(_)q

*1.
pi:

p'L'm'
(p'e'm' )

ptm
Co p (-)q

P q

k,pv

since

(A-24)

(A-25)

For the

( )m (. )
ptm

(A-26)

S D P/

Using eqs. we obtain

41T/NV (-)m(i )'

)
gl-m'

(-)q -Cqf/ 2: f

c= 1, 2, 3,m= -1, 0, +I ,

Skp -q(Pý m )

aO M (pl-m)m q m
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in the same way as is related to k

being the standard Pauli matrices . Thus this term is respon-

sible for the interaction with the nucleon of mesons in the

P-state only.

For the term proportional to

) */2 1 (-)q
q

.2Z N2/(4Tr)3
pem

'Xo we find
@

ff S adc kt

(_ m+m '
(-i) Y (Ok)

I -m e,-nk'

{O ((pim) a q (p' 'm') + (-) a- (pem
q

)C (p'g'm') +q

et
(-) a (pQm) aq(p'C'm') +

q -q

-M/• p No /4n v(p) v(p'

) +a (P)
t t

a (p') + Q (p) t (p')
-a q -q

t t (

q -a-J

where Cx (p) = c, (pOO)
q q

Finally for the term proportional to rX' we find in an

analogous manner

(eq. 9), the SI'sSc

) 9k,p

-) cq (pam)q a (p'I'm')-q

p)/ 7(.)q

.C q(P) aq(P'

(A-27)

v(k) v(k')//m km ,
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N2/4Tr v(p) v(p'

TUq (p
P q

-r( )

)//4 p CDP

)o (p' )-
t

c (p'
S

-1

4-r
a (p') - a (p' ), (P)

s ar

(q, r, a = cyclic permutations of

(A-28)

Thus (A-27, 28) is responsible for the interaction with the

nucleon of mesons in the S-state only.

The sum of is equivalent

to eq. (11) in the text.

pp'

" {C(p

p P q q

-i, O, +1)

(A-26), (A-27) and (A-28)



- 87 -

A-PPENDIX B

We wish to eliminate from eqs. (57) and (58) the de-

pendence on the magnetic quantum numbers since they describe

merely the geometry and not the physics of the problem. It was

just for the purpose of eliminating the magnetic quantum numbers

that the quantities F, E, M, N and 5 were introduced

because they are scalars.

We present the proof that M (s) is a scalar - the proof

is the same for F, E, N and & . Consider the defining

equation (53) :

<0CISaMr((sý) R@ =(C SrC H', A (r) ýB) (53)

where we write out in detail all the quantum numbers in isospin

space but ignore the quantum numbers referring to the angular

momentum - we shall carry out the proof for isospace only,

the method is the same for regular space. In this particular

case C = = = 1 and S = R = 1 but we carry out the proof in

general, independent of numerical values. The left hand side

of eq. (53) may be written as

T= 'z (CSyc\CSTr) (BRpýBRVT' ) <T T "1(s)V Tr)
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T+t+T+z '
2Z T/2T T - 2-T•+1• V(CST jfq--Z)

V(BRT' j 3-T') <T Mr(s)jT't' (B-1)

where (CS \CSTT) is the standard vector addition coefficient

as defined by Condon and Shortley and where V(CSTf--2t) is

again the vector addition coefficient but with phase and normal-

ization as defined by Racah (10 )

On the other hand the right hand side of eq. (53) may

be written as follows we observe that H' is a scalar and

therefore the tensor properties of the commutator [H', a(r)Y

are the same as those of o (r) . But the latter has been so

defined as to behave as the s-component of a tensor of rank

R (-_) under rotations in isospace. Therefore, as shown by

Racah

= (-) /2.T+1 V(CST---) <TZ\•ýH', 0(r)]\B(>

= (-)2R ~T v(csTj-)-- V(BR• •I -)I <TTH',(r• B'> (B-2)
TT

where <T ýH', t(r iIB is the reduced matrix element of

<T-t [H', aOi (r)] B~'> as defined by Racah - a quantity inde-

pendent of all magnetic quantum numbers . Comparing (B-l)

and (B-2) we conclude that
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TT' t,' (2T+1) (-) 2 R (T [H', (r B)

(B-3)

Thus M (s) connects only states with the same total isotopic
r

spins and the same z-components * also ITTlM (s) ITT> is

independent of all magnetic quantum numbers. Hence M (s) is

a scalar.

Having established that F, E, M, N and B are scalars we

proceed to the elimination of the magnetic quantum numbers and

deal first with the angular momentum magnetic quantum numbers.

Suppressing the isospin dependence and writing out explicitly

the angular momentum dependence we find that the various states

in eqs. (57), (58) become :

BA =AR">

\B \ =ýBR> = BSR =\ ')

JC =ICR', =:CS> =ýCK:

JAL) =CKIARL = 'll =
ICL) = JCKL'\ý VA'

\CSR) =CKS) =CCKR =( ')

J+jiý2
Jj a

J+J
I (-) J J /21 V(i1JJ -j

iJj>

ýJj> (B-4)

Using (B-4) we have for eq. (57)

2 ( lJ+j V(ilJi&'.'-)-J) <' F8(r,Z)jJj>23 a

= BS) = BRS)
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(-)J+J2JJ-I v(-lJ ic'! +- j
2

r + sr S

)J+j J V(l j( 1! 9- j)6 ( (Q) ý J Nr(s)

a +

'Jj

kýJ j

Taking into consideration that F, E, M, and 6

scalars, eq. (B-5) reduces to

- +(-)2 r V( 1• -')<,)
a all

+ s

-k
k

k

r s< 2 8(k, 2 - ) r

<1 E(k )' 1 N (k) o2:I/( + CO

All the matrix elements in eq. (B-6) are independent of

magnetic quantum numbers.

(k - cr - i

(k + Cr

(B-5)

are

(B-6)

r 1

LI

(-)J+J j2-J'+i1V(-1iJi •''J) S2 ýI> 2

< Nr(S)j a: p .' (P) '(/(wr
2 r 2 2 2

- m ')< > <'
a;~ Nr (s) I'/(r



Abbreviating

by Y

F (r,L) = Nr( s) () - 0-0( ) Nr(s)/(r + Cs )

E (k, ) N (k)

Wk + )r

Eq. (B-7) is of the required form, i.e. it is eq.

the angular momentum quantum numbers eliminated.

In the same fashion we obtain from eq.

E (r,e ) = /M (s)(M)-() M (/( r

SEs (k, ) Mr(k)
k I(k- r+iG

Nr(k)* F8(k,Q )

Ck+ r

Next we must dispose of the isospin magnetic quantum

numbers. Reintroducing the suppressed isospin dependence,

eq. (B-7) reads

< 1 lcr FS(r, )4l1.)
-1

=(rU +w s) Z

we have

(B.6')

i Mr(k ) F, (k, )
(B-7)

(57) with

(58)

+ 16i)

(B-8)
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<Ix'lY yx'i

Sa a 2o (~
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- jA(-Gkr-is )-1 l 1) 1l11 FI(k,e )r S1x>

-1
+ (Ck+Mr) -<l \ Es (k,)A l ll 1 Nr() (BN9)

and eq. (B-8) changes similarly.

To specify completely states consisting of a nucleon and

two mesons it is not enough to specify the total isospin and

its z-component. We must in addition specify the isospin and

its z-component of the subsystem consisting of the nucleon and

one of the two mesons. We introduce the convention of forming

this subsystem always with the meson whose symbol appears next

to the symbol for the nucleon in the expression for the state

vector of the system. Thus for the state <llc we

form the subsystem with meson R for the state <-lrll\ we

form the subsystem with meson S j etc. . Then the various

state vectors appearing in eq. (B-9) become

T'+t'
; (-)9= vT~T1 V(ilT'# T -r) 1T' Clm>

T'+TT
= Z (-) 'T V(&1T' ;(-1')

T+t
*~ C-) VT V(T'lT t'<r-c) Tt(T'f') (B-10)
TT

etc. . The symbol 1Tr(T'r')> denotes a state of the system

of nucleon and two mesons with isotopic spin T (z-component t)
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formed from a subsystem of nucleon and one meson with isotopic

spin T' (z-component T').

Making use of eqs. (B-10, 11) eq. (B-9)

\a(9 )~y>

' - t' -) V( ~1;i(A- )

ýN (B)II00-

-1
( k-C r- i ) r

•T· 'TY

T'+T'
(-)

<T"T" Mr(k)l TT")<KTZ(T'z'

(2T+1 ) (2T"+l )/2T '+3i

)IFa(kg )j

v(!lT"2 j '- )v(-lT' js-' ) v(T'1T •'-) V(-1T j4-P)

-1

r *"TýT
T"+i" +T '+z' +4+o(

(-) (2T+1 (2T '+1i)(4T"+2 )

T' (a'

TrTh'

becomes :

-z (aOy+(s)

T'+%'

.(-)

(2T+1) 72T-'7I V(•1T ' jJ-T') V(T'1T;'r-t)

*V(!1T jOlC) <Tr(T'T' )IF (r,Q )[Tt)a a

S(S6T't') ]Nr(s)\i~~Tý%

2/2ý+ V(1 ir-'') V(T

2/2T7+l V(!lT'-') V(T
8 z 2~9~

_7(_)T•'-
1+

T-) v) 1T•"-" )

k+:

<T I- Es(kQ TV T(T-t7')> <(t' N(k)ý a:,)
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V(-1:' it'C-t') V(T'lT j-' -T) V(-2lT" ;tX-'t") V(T"-11 it"p-d.) (B-12)

where we have made use of the fact that F, E, M, N and b are

scalars. All the matrix elements in eq. (B-12) are independent

of magnetic quantum numbers and we abbreviate them as follows:

TT'
T(T•~' )F (r, ) T)I -t F (r¢,) (B-13)B s

T'-•1 T'
< (' ) (-) !(2T'+1)/2 N (a) (B-14)

2 r' r

T"

ST"t" m,(k)T"r") ' Mr(k)

TE (k, ) T(T'')) E 8(kT)T
s s

(B-15)

(B-16)

(B-i7)

etc.. (The normalization in definition (B-14) is chosen

for later convenience). The meaning of the superscripts is

as follows:

Where two superscripts appear the first indicates the

total isospin, the second indicates the isospin of the sub-

system formed with the meson whose symbol appears first
TT'

inside the bracket. Thus F (r,,!) indicates the transition

amplitude between two states of total isospin T , with the

two-meson state formed by coupling meson R to the nucleon

to obtain an isospin T' and then coupling on meson S to

obtain the isospin T. ET k,P) indicates the transition

amplitude between two states of total isospin T, with the
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two-meson state formed by coupling meson K to the nucleon

to obtain an isospin T' and then coupling on meson L to

obtain the isospin T.

hPhere one superscript appears it indicates either the
T"

total isospin of the system as in M (k) (here meson R
r

and. initial nucleon, as well as meson K and final nucleon,

couple together to Tive isospin T"), or the isospin of the

subsystem as in N (s) (here meson S couples with the

nucleon to give isospin T' and then meson R is coupled

on to give always the isospin 1).

The only dependence on magnetic quantum numbers

remaining in eq. (B-12) is in the V-coefficients and is now

eliminated by making use of various symmetry and orthogonality

properties of the V-coefficients(10)

The V-coefficients have the following well known sym-

metry properties:

a+b-c a+b+c
V(abci;d ) = (-) V(bac ~') = (-) V(acb; &~)

a-b+c 2b
= (-) V(cbaq i ) = (- ) V(cabj go)

2c a+b+c
= (-) V(bca;no) =(-) V(abc;--(-g) (B-18)

They also satisfy the following orthogonality relation:
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C, C
/(2c+l) (B-19)

Products of three V-coefficients may be expressed in terms of

the Racah coefficient W by the following relation:

(Z -I V(abeiei-e) V(afc-c4- ) V(fbd3jc-S) =

b+c-a-d+e+

Finally,

W(aefd;bc) V(edcj-rzS) (B-20)

if eqs. (B-19, 20) are not immediately applicable

it is sometimes useful to recouple some angular momenta

using the relation:

2(-) V(abeda&-e) V(edcicS--)
/I ,

Using eqs. (B-19) and (B-21) we rewrite eq. (B-12) as

follows:

2z (-)T (2T+1 )/ifL
TT'
F (re)

8 )

T
a J (2T+l) Nr(s) N(O)-Z(w T

r T

(B-.21)(2f+1) V(afc ij-V) V(bdf E-- ) W(abcdjef)

V(11TýPf') V(Tl;Tiqt-t) V(TlT*-T)2 a

V(ll •#--T) v(T1• i•-`-) v(2ll
2's 2 2-'~
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T
/2(2T+1)(2T+1) b(Q) N (s) W(-I-liV'I)r 2 2

(wk-~r-i )
-1

Z (T-)
TICTr'

T'+T t'
(2T+1)/2T '1 M

T,' TT'
(k) F (kt)r S

-1

(ruk+c r )

T'+d-
z (.) (2T+l ) ;/2T'T

Next we multiply both sides of eq.

and sum over

the various identities (B-18) through (B-21) we obtain:

)e~ I
XVx'
C) v(x'lxjx'a-x)

C

* o ( C0 s)

X+X'
+(-)

,- T
X, T

2

f ,t

C-) :

-1T
(•o•Os) "Tr STT'

% X L +1 j

XX'
F (r, ) =a

(2T+1)//2 N (S)r

- (- ) V(X'1Xx t;x-x)

( ) w(••X' 11)22
T+T'-_( )

T'
• (0) N (s

r

i-1
(mk- 'r-ls)

I- X' X

(2X'+1) 2 Mr(k)

Tt T'

-kk

-k
k

TT'

Es(k,v)
T'

Nr(k)

(B-22)

(B-22)

,t, •g,

by

and p. Using

+ Z
k

XX'
Fs(k•Q)

V(11T (r?-t) V(1& Aq)5 a 2r-(2 2•Z- )

-V(2lT' •-') V(T'1T;T'O-T) V(1T jA-T )
2( 2 •;'-) (•T•

•V(11Tj r- ) V(T'1T VZ'-T) V(T'11 ;, '-·)

v(Ilx idCA-x) V(Ilxl i ý-x'>

c • L

) W(111 T'T) W(-IX- ilT) W(TX1X' ;11)2s 2 2 22 a
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2X
+ (-) (ok+wr)

k

-1

TT'

2T'
(2T+21)/2T +1

TT'
Es (k,

T'

e) Nr(k)

2W(x'XT)jll) W(TX•X ' 11)2

or, with an obvious relabelling of dummy indices:

TT'
F (r,) =

s

T+T'
- ()

a7NT a) 0(t)T "Nr··s) O(C)T" w-4m-,

S( ) T Ill,)

T"(-) !("(-t) 'S(2T'+'
)T / W(T"Till)

T" +T"+-•(-n) ... 2(2T"+1)(2T"t +l)/4T' +2
T"' Wr+•D

W(1111:T"'T" ) W(2•"ti' ) W(T"T1T2l)aw a ) 1. 1 a - "s 3" - 2

ET1"() N(k) (2T1)j•,(2Tl)(2T.1)
kT"T' 1_+(1

T' 1 TT'
M r(k) Fa (k,) /(-ck r,-iý4)-2

k

Eq. (B-24) is of the desired form, all magnetic quantum

numbers having been eliminated.

In much the same fashion the isospin magnetic quantum

numbers are eliminated from eq. (B-7).

TT'
Es(r,e) =

-1 T+ ` T

( r- + r+i ) (-) " J T'.T2 Mj (s)
ar r

-k
k

T'

M~r(k)

The result is

T'

() - e(e) M (sr

TT'
ES (k, 9)

(B-23)

(B324)

;Z:
,·n , ur
T"

W(.TT 'T,•z 11) W(T"TIT'ill)
2 2

] W(T'T'l l )
I as
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-1 T1" T "T"
-21 (mk+) N (k) Fs(k,9) (2T"+l)

kT"T '" r

/(2T'"+l)(2T'+7) W(-TT"%T" Il) W(T"T-T ' jll) (B-25)2 2

In eas. (B-24, 25) T and T' can take on the values

- and , for other values the W-coefficients vanish. Thus

eqs. (B-24, 25) represent four equations each, corresponding

to the four possible distinct combinations of T and T'.

Each set of four equations may be conveniently summarized by

using matrix notation:

N 2(s) - N'(s)
F (r,e) = A' r r (e)

k wk r e" & wk+wr

Mr(s) - Ma(s)

k&{Mr(k) E (ki,) Nr(k) F (k," (B-27)r + r k(B-27)
k a -mr+i+

Here Fs(r, ) and Es(r,e) are 4-row, 1-column matrices:
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FS2

F22

F2 2a

33

F2e

and N (k) are
r

E"

E22

E2 2/

4x4 diagonal matrices:

0 0 0

M4 0 0

0 M; 0

3
0 0 M2

Na

0
N =

0

0

O 0 0

N; 0 0

0 0 N 0

0 0 N;

and finally JA' and A' are numerical matrices:

2,4 8 4V
8 -2,2 -,/15

-,2 5 _2/"

2 2/5 4

We note that the crossing matrix A' has the property

Eqs. (B-26)

in the text.

and (B-27) are identical to eqs. (59)
and'. = 1.
and (60)

M (k)
r

(B-28)

Ma

0

0

(B-29)

2
R -

4

1

1

4 (B-30)-9
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