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ABSTRACT

PAIR PRODUCTION OF S-WAVT PI MZ3ONS

by
ADAM MARIAN BINCER

Submitted to the Department of Physics in June 1956.in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy in Physics.

A theory for pair production of s-wave m-mesons is con-
structed along the lines of the Chew-Low-Wick formalism. 4
billnear s-wave interaction of the form N/p 44 + X[ TxT
as used by Drell, Friedman and_Zachariasen is added to the
p-wave interaction Gx t[n ¥V T4 as used by Chew and Low.
It is shown that i1f the s-wave interaction is limited to the
A, term (scalar pair theory) the cross section for pair pro-
duction of s-waves vanishes.

Using both the 2 and ™ terms the meso-production
cross section near threshold (total energy of produced mesons
<350 Mev) per unit energy of one of the produced mesons is
determined to be of the order of millimicrobarns/Mev; for
photoproduction the corresponding number is ~100-1000 times
smaller.

Cutkosky and Zachariasen have calculated the cross
section for photoproduction of an s-wave and a p-wave meson
and obtained a number ~10C0 times larger than the correspon-
ding number here calculated. Their results are in agreement
with the fragmentary experimental data availlable.

It is concluded that if there is no meson - meson inter-
actlion s-wave palr production may be neglected except possibly
at the very threshold.

Thesls Supervisor: Sidney D. Drell
Title : Asslstant Professor of Physics
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I. INTRODUCTION
(1)

In 1955 Yukawa suggested that nuclear forces are due
to the exchange between nucleons of quanta of the nuclear
force field. These quanta have since been identified with 7.
mesons. The discovery of m-mesons in 1947 by Lattes, Occhialini
and Powell(g) admirably fulfilled the qualitative predictions
of Yukawa's theory. Thus, the m-meson has the correct mass
to give rise to the observed short range of nuclear forces.
Also, the m-meson interacts strongly with nucleons. Quanti-
tatlvely, however, the Yukawa theory and experiment seemed to

disagree in every aspect.

This failure of Yukawa's theory can be ascribed to the
methods of calculation. The most powerful tool in field
theoretical calculations is perturbation theory in one form
or another. If the coupling between the sources of the field
and 1ts quanta 1is weak, perturbation theory may be expected
to give answers in reasonable agreement with experiment.

This is the case in quantum electro-dynamics: electrons, the
sources of the field and photons, the field quanta are
coupled weakly, the strength of the interaction belng charac-
terized by the fine structure constant. The fine structure
constant is equal to 1/137 and is therefore small in compar-
ison with 1 . The situation is qulite different in meson

theory since the coupling between nucleons and mesons is

strong.
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Recently Chew and Low proposed a method of calcu-
lation, which, unllike perturbation theory, can be applied to
strongly coupled systems. The Yukawa theory, as used by
Chew and Low, gave numerical answers in excellent agreement
with experiment. Chew and Low have concentrated on treating
p-wave mesons sSlnce 1t 1s a consequence of the pseudoscalar
nature of the m-meson that it will interact singly with the

nucleon only when 1t 1s 1n a p-state.

Thus the Chew and Low theory was incomplete since it
disregarded s-wave mesons, whose Interaction with nucleons,
although weaker than that of p-wave mesons, 1s nevertheless
present. Drell, Friedman and Zacharilasen have recently
extended the work of Chew and Low to include interactions

with s-wave mesons.

By considering scattering of p-wave and s-wave mesons
respectively, Chew and Low and Drell, Friedman and Zacha-
riasen fix the values of the parameters in the theory, 1i.e.
the values of the coupling constanté and the cut off energy.
The theory can then be applied to other processes. The pro-
cess of photoproduction of mnesons is treated by Chew and Low,
thelr work being extended to include interactlions of s-wave
mesons by Drell, Friedman, and Zachariasen . Another process
of interest is that of pair production of mesons - elther by

a meson (inelastic scattering) or by a photon (photo pair
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production). Photo pair(pgoduction has been treated by
5

Cutkosky and Zachariasen ., not including interactions of

S-wave mesons.

The purpose of this work is to consider pair production
of mesons (by either mesons or photons), including the inter-
actions between s-wave mesons and nucleons. The reasons for
considering such a process are mainly the two following : In
tnhe first place it should serve as an additional test of the
Drell, Friedman and Zachariasen theory. In the second place,
if there exists a meson-meson interaction, as has been recently
conjectured(s), it should certainly play a role in a process
where two s-wave mesons are simultaneously present. Should
the experimental data disagree with our results a possible
explanation could be a meson-meson interaction since no

mechanism for such an interaction has been incorporated into

our theory.



II. THE HAMILTONIAN

Our starting point is the Chew-Low theory as extended

by Drell, Friedman and Zachariasen to include interactions
between s-wave mesons and nucleons. The Hamiltonian for the
system of mesons and nucleons (not including electromagnetic
interactions) can be written as a sum of two parts

H = H. + H' (1)
where I-I° is the sum of the Hamiltonians of ths nucleon alone
and the meson field alone and H' is the interaction Hamiltonian.
In the static theory the energy of the physical nucleon 1s a
constant which remains unchanged in any interaction and we
propose to eliminate it from the Hamiltonian by redefining
the zero of the energy scale. Thus taking the energy of the
system of one physical nucleon and no free mesons to be zero,
we have for H‘:
H o= [{m(2). n(¥) + V4(F) () + 24(2)-$(F) ] & (2)
We are using throughout the system of units in which-f = ¢ = 1.
An arrow under a symbol indicates a vector in the isospin
space. The components 1w, , ¢“ , With x = 1,2,3, of the
vectors :E’éx are the canonically conjugate momenta and ampli-
tudes of the charge symmetric meson field, and IS is the

meson's rest mass.

In the Chew-Low theory H' is assumed to be
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B = /R 1o, w(r)EVE () a@ (3)

where f£° is the nonrenormalized (nonrationalized) meson-
nucleon coupling constant, T and T are the usual Paull spin
matrices operating respectively in space and isospin space,
and u(r) 1is a density function which is supposed to simulate
the space distribution of the nucleon density. It is taken

to be spherically symmetric : u(?) = u(r) . As will be

shown later, this type of an interabtion Hamiltonian permits

only p-wzve mesons to interact with the nucleons.

Drell, Priedman and Zacharlasen have taken instead of

eq. (3) the following expression

H' =22/, ([ ule) $(2) a?)-(f ule") § (&) ar')

=/ 2T ( [ ule) mE) &@)x ([ oule') §(F) a#)  (4)

where the second term 1s to be understood as a triple vector
product in isospin space. Here ): , \° are two new (nonre-
normalized) coupling constants. As will be shown later this
type of an interaction Hamiltonian permits only s-wave mesons

to interact with the nucleons.

Expressions (3) and (4) may be justified as follows by
an appeal to fileld theory: Since the meson field is a pseudo-

gcalar field the simplest form that H' would assume in a



relativistic fleld theoretical treatment is
H' = 1c [ ¢(F) {S‘E-f(?-) ¢ (?) ar (5)

where ¢ is some coupling constant,yand ¥:=4f&¥ are the

quantized nucleon field amplitudes, K =X~{ x &+ where x;
5 "1°2°9%
(7)

are the usual Dirac matrices. As shown by Drell and Henley
H' as given by eq.(5) may be brought by a canonical trans-
formation to a form which lends itself better to a nonrela-

tivistie interpretation.

As a result of this canonical transformation ec.(5)

may be written as a sum of a number of terms among which are

o' f ¢ @RV §(2) v(@) B | (6)
' [ YR $(@)-4(F) p(B) &F (7)
c'' [ H(F) n(F)Tx ¢ (F) ¢(P) ar (8)

If now the nucleon density ' (F) ¥(P) 1is replaced by the
density function u(r) we see that (6) transforams into (3)
and (7) and (8) transform into (4) provided we make the
additional assumption of separabllity. We introduce the
separability requirement because if we should take expressions

(7) and (8) as they stand, with $ﬁ?) Y(¥) replaced by



-7 -

u(r), then these terms would in addition to giving us an
interaction for s-wave mesons also lead to an interaction for
p-wave mesons and all higher partial waves. We wish to
extract from expressions (7) and (8) only the s-wave part.
It should be pointed out that if u(r)~o(®) (which is the
space dependence of \ﬁ(?) {(r) for point particles) then
the s-wave parts of expressioné (7) and (8) are the same

as the expressions obtained under the separability assumption.

Of course, fleld theory makes definite predictions
about the relations between the coupling constants c and c',
¢'', e''"'" . Thereforse, presumably sinilar relations should
ekist between £°9, ): and ° . However in our final expres-
sions only the renormalized quantities f, ); and N\ appear
and since they are renormalized according to different pre-
scriptions no comparison is possible. Rather, in the work of
Chew and Low f, and in the work of Drell, Friedman and
Zachariasen Xb and L, are treated as adjustable parameters.
We shall use the values of these constants as determined by

Chew and Low and Drell, Friedman and Zachariasen and so

there will be no further adjustable parameters in our theory.

In the first part of this work we are concerned with
computing the transition amplitude for inelastic meson scat-
tering (meso-production), i.e. we take as the initial state

of the system a nucleon and one meson, and as the final state



- 8 -

a nucleon and two mesons. We wish to calculate eventually
the cross section for this process near threshold, where phase
space considerations will favor production of a pair of s-
wave mesons. Then the total angular momentum and parity of
the final state are g* and it follows that the meson in the
initial state must be a p-wave meson. Thus in our work we
will need both equations (3) and (4#) for H'. Also 1t is
clear that it will be convenient to expand the meson field
amplitudes in spherical waves rather than in the more conven-
tional plane waves. Furthermore 1t ls convenlent to replace

¢¢) o=1,2,3 by ¢%,q = -1, 0, +1 where

f+C4, .y
51’“:——(:;—' , ¢o=<§3) ‘f-.‘(é 4 (9)

the peculiar phases being chosen for reasons that will become
apparent later. The detalls of the expansion in spherical
waves and of the replacement (9) are worked out in Appendix
A. The result 1s that we can now write the Hamiltonlan in
terms of creation and annihilation operators for mesons of

definite energy, charge and angular momentum as follows:
H=H +H'
]

- aj 4 J m 1
B, = 2oy 2() {ogt@layge) + 2 (=) a (pm)a (p-n)

o o (10)
+ D (=) a (ptm)a (pt-m)g
<2 m=- q -q

m==t
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H' = i‘“/rZN/fB' pv(p)//'_o 2 (<) ()T o [_q(p—m) +a (p—m)]

P gq,m=-1
+ }\"/f‘ Z Na/lm v(p)v(p' )//ZEP o % ()¢ (11)

[aq(p)qq(p') + aq(p)ogq(p‘) + aq(p)gq(p‘) + ag(p)q‘;(p‘)]
+A/u” Z (N? /b v(p)V(p)/ﬂE {(w o) S Ty (ap(plag (@)
q
- as<p‘)ar<p>) + (wpwpo%i‘q(agpms(p') - a()a,(p))}
(a,r,s = eyclic permutations of -1,0,+1)

The commutation relations for the a's are

[a. (ptm), o_ (p't'm’ )J-( )Q+mg Y S .S (12)
q,-9 m,-m' t,t "p,p

all other commutators vanishing.

The meaning of the various symbols is as follows :

a (ptm) = creation operator for a meson of charge = ge,

q
energy = o = /plﬂ" { square of angular .
ke :
momentum = t(t+1), and z-component of angular
monentum =m .
aq(ptm) = annihilation operator for a meson of charge =

-ge, energy = ®_ = ¥ p*+ M ; square of angular

P
momentum = t(t+l) , and z-component of angular

momentum = - m

(Note the minus signs in these definitions.)
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aq(p) is a shorthand notation for aa(poo)

aq(pm) is a shorthand notation for aq(pﬁm)

. o~ e~
_\G""i't.ﬁ”’_ - G~ - Lnttl"—
G-:( = 4 \E ) G_‘o = QB -) (—ll I E— ) (to =T3
where o and T are the standard Pauli
1’8,3 1)3‘3

matrices in spln and isospin space respectively.

N = normalization factor; 1t is related to the density of
states in such a manner that the transition from sum-
ming over a dlscrete set of magnitudes of the momentum
to integrating over a continuous set 1s accomplished by

Nizx, = 2 fetde

-

#13-T

Finally v(p) = fu(r) e ar

Note that aq(ptm) and é; (ptm) are not each others her-
_‘-

mitian conjugates btut rather aq(ptm) and (-)d+m a_q(pt-m)

are each others hermitlan conjugates. The reason for this
peculiar notation is that now aq(ptm) (as well as

-‘»
a_ (ptm) ) behaves as the m-component of an irreducible

q

tensor of rank t wunder rotatlions in space; and as the g-
component of an irreducible tensor of rank 1 under rotations
in isospace. VWe note that the relation between aq(ptm)
and its hermitian conjugate 1s simply an extension of the
relation : " f&m(ﬂj and (-fu ‘er(a) are hermitian con-

jugates”" , to nonhermitian cuantities. Here ﬁk_(IU is a



spherical harmonic - an example of an irreducible tensor.

It is now seen that in the expression for H', eq. (11),
the term proportional to f° contains creation and anniﬁi-
lation operators for p-wave mesons only and the terms propor-
tional to }: and )® contain operators for s-wave mesons
only. Thus this form of H' leads to an interaction between
p-wave mesons (f° term) and nucleons and s-wave mesons
( \o and ) terms) and nucleons as stated without proof

previously.

Having H' in a form convenient for calculations we turn
our attention to the expression for the transition amplitude
for meso-production of a pair of s-wave mesons. The starting
point 1is the scattering matrix - we wish to calculate the fol-
lowing element of the scattering matrix:

(Brs | an (13)
The superscripts + and - are used to denote that the corres-
ponding states are scattering eigenstates defined by the
boundary conditlon at infinity of only outgoing or incoming
waves respectlively. We use the symbols A, B for nucleons,
R, 5, L for mesons. TEach symbol is to be understood as a
shorthand notation for the following aggregate of quantum

numbers:
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A = the isospin
oL = z-component of the isospin

A (14)
A'= angular momentum (spin)

« = z-component of angular momentum

R = the isospin
= z-component of the 1sospin
R'= angular monentum (orbital)

P= z-component of angular momentum

r = magnitude of linear momentum

We require expression (13) for the special case of
mesons R and S beilng s-waves and meson L being a p-
wave. The states (BRS | and )AL+;> are eigenstates of the

total Hamiltonlian and therefore
|aL+) # & ( )| )
/\ B
We determine IAL*>> as follows: conslder operating on
JT U
a, (U )1 A with H:

Mol A = (4, a;m')}{ k>

1 (v, q:(m')] R a@) | A

]

{ o oh 0« Oty | A

or



- 13 -

T r l
(# - oo ()| 2> =, 000 )| a) (16)
which may bte formally inverted to read

G | A <[>+ e [ o > (17)

The *ie 1s supplied to define the manner in which the
singular operator (H - wt)”l is to be treated. The limit
€>0 1is understood. Ecuation (17) 1is eauivalent to eq.

(16) if (H - o, ) l’X >_.O or

H\’Xt>= mJ'X,*) (18)

because then when we operate on eq.(l7) from the left with
(H - ©,) we reproduce eq.(16). But from eq.(18) it is
clear that \Xﬁ>.is an eilgenstate of H to the eigenvalue
., hence 1t is |AL*D.

Thus

|t = o (W] 0 - TJSTE LW u:(m‘)]lD (19)

-1
where the manner in which the pole of (H - w() is treated
18 precisely the required one to lead to an elgenstate with

the + superscript(s).

In exactly the same fashion one can show that

|27 = {o0 00 - [y dgaply |8y (@)

N

\-\\A &341.&
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An equivalent way of expressing lBRS_:> which will be useful
later 1is

-— T { .ot ~
\BRS > = {am - LK, qu]HBS D (20')

S H ~Op = +le

In deriving above results our starting point was an
expression of the form: creation operator acting on a state
vector. We derive here for future reference the result of
considering an annihilation operator acting on a state
vector. Let \Xt>'descr1be a scattering eigenstate con-

sisting of a nucleon and any number of mesons. Then
Hq(K){Xf%_- {[H,a(x)} + Q(K)HB \x1>
(% ()| x*y+ [, a(x)l |x*
= < Ct)k)(). K) >+ l_ ) ) >
where o(K) 1is the annihilation operator for a meson whose

properties are specified by K and where Ex is the energy

of the state \Xt> . Then
(H -E, + o )(K) [x*}: la', a(x)) \x*> (21)

which 1s inverted to read

1

k) |xt) = [¥t) 4 [atam)] [x> (@)

Eg.(22) 4is equivalent to eq.(21) provided lYi>> gatisfies the

homogeneous equation

(H-Ex+mk)\Yi>=O
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or

Hlr = (5 - op)|vtD (23)

From eq.(23) and the boundary conditions on eg.(22) it
follows that |Y® > 1s a state obtained from |X') by
removing from the latter the meson of type K . If the state
\Xi;> didn't contain a meson of type K then IYt;7 =0 .
Thus in pafticular if \Xt;> 1s taken as the physical nucleon

state we have E_ =0, [Yt > = 0 and

1 .
(k) |A) = LW,&(K)MA) (24)
H + Cﬁk :
We now have most of the relations necessary to derive
the equations for the transition amplitude but before doling

so we digress for & moment.



- 16 -
ITI. SCALAR PAIR THEORY

It will have been noted that our expression for H'
contains two types of terms leading to interactions of s-
wave mesons, the }: and N terms. It has been shown in the
work of Drell, Friedman and Zachariasen that both of these
terms are necessary to account for the experimental s-wave
phase shifts and therefore we will use both terms. However,
we would like to show first that the assumption \° = 0 1leads
to zero transitlion amplitude for the process that we are

considering.

Substituting eq.(20) into eg.(13) gives

<maﬂmﬁ>=<{ﬁm£@--g3%§;[ a@a@H \Mﬁ>

(25)
=w<g\{@ oma@»+) L“Qﬂﬁ@jHo Q_w}A >

where we have used the fact that H and H' are hermitian and
+ T
that the hermitian conjugates of &9(r), a.(s) and 1e are
q
respectively (-)gc%jr), (-) o (s) and -ic . Using the

same approach that gave us eq.(22) we prove that

| l ‘
afk)a &) \ AL = TPE—— U{) 0" aJ(s‘TH AL_*> (26)

Introducing eq.(26) into eq.(25) then gives

<BRS’\AL+> =) SW< \ \ U\ a ('f)0~ (sx] [H Qma (s\] *——‘—"‘-‘\ AL

\'\-‘-Q‘* \o) \b \'\~\>"“\5“e
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<B\[_\\ a mabﬁ AL+>(M " “L‘—TZE)

\.)QQ-( W
+ € QQQ‘QS

o

1]

"

M S (eeaen) O LB 0 g} ALY
(27)

and <‘5\H Lv)a (s\l ALY = <E>\[q Q U\ 0445)]} (Ha (o () +[H')a_(§s>]cgs,a)\ AL

= <%\{0%@>)[H‘,q_ g)]] Wa gcn] m [H,aml + (o) oo Ha mll A
= B|[agn,Was] AL « 2. Bl agdn T A D(E o+ wmdg e )
+2 (BB ap] NOOTITH a @] b (B +3c-, -ie)™ (28)

N'(-

where we have inserted a complete set of elgenstates of the

Hamiltonian with the + convention denoted by N* .

In the special case when H' contains only the terms

proportional to f£° and ).: we have from egs.(ll) and (12):

[H,'a_‘_(s)] = - ‘)\:/r't N® /4 v(s)//é&?é%Ev(p)//ﬁ; {qq(p) + a;(p)}

=- 0, Zu {a(p) +a ()] (29)
P
where
\
Ao e TG
U= {',I' N® bro, | (30)
Similarly

e, o] =0, Z o fae) + alp) (31)

Now consider <M"‘\£H',&_“_(s)l \ N+> where \M‘"> and
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\N"‘> are any eigenstates of the system with the + con-

vention. Using eq.(29) we have
Gl [0 s> = - v, 2w, et (o) o ol )|t (32)

But from eq.(22) we have

N \ ~
+ +
ol = | ()S] - e e > 69
%N
where the symbol \(N—l‘,)"'> v is supposed to represent an
elgenstate obtained from the state \N"’> by removing an s-
wave meson of momentum P and charge c¢e - 1f the state

N
\N"’> didn't contain such a meson then \(N-lw)'*) g“_? =0 .

On the other hand in analogy to eas.(19) and (20)

we have

T | + r
Q__“_(?)\W\} = \(ng > + T ‘ = LH; qi(ﬂ}\N"? (34)
?~ N ~-ie

where !(N + 1 ¢)+> is supposed to represent an eigenstate
containing in addition to what was in \N"‘> an s-wave meson
of momentun p and charge (-ze) . In both eqs. (33) and

(34) EN stands for the energy of the state \N+> .

Introducing egs. (33) and (34) into eqg. (32) leads to
N +
L\t e ()]0 = - UsZpUp {<M+\(N-lw)+>gg_? » QN )

-1 -1
+ | (Hew ~Ey-1c) B au(p] + (Hoop-E-1c) LH',QZ(p)“N"’>§
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=-U_ Z U {(M | (-1 )*>SN + M| (a1 )

<M"‘([H' ao(pIl > | Lrtla' O_c(p)]lN+>}

Fyy - EN-ie+cup By - By - 1€ - @ (35)

It follows from eq.(35) that %—s <M"'\[H',Ot_w(s)]ﬂ+> is in-

dependent of tbe momentum 8 and therefore
%;M*\Eﬁ 0 (p)| W) = -%p< wlEra (p)]N = —;-S<M*1[H:a_¢(s Ity (36)
Hence e¢g.(35) becomes |
%_S<M+[ EL ,&_c(s)j\N+> = - % U, (Cur*| (N—l¢)+>§¢1\; + <M+\(N+1_c)+>)
S ACHILRLECHE P

{1/(5M - By - le 4 mp) - 1/(By - Ey - 1€ - mp)§ (37)

or

+ + N +
<Mﬂ&{:°~¢(5ﬂN+> _ . Uy % UPE<M k(N-lc) >S><,—P + <M+1(N+J:2 )} (38
) 1- 2:% U; wp/{(EM - By - 1e)® - m;g

Disregarding the pathological case when the value of
}\: is such as to make the denominator in eq.(38) equal to
zero, it follows that M+ [H',a.(s)]|N*D> = 0 unless the
states fM"‘> and ‘N‘*’> differ by one s-wave meson of charge
oe, but are otherwise identical. In particular the right
hend side of eq.(38) vanishes if states \M"‘> and |N*)

differ by one p-wave meson. We now return to eqg.(28) and
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see that as a consequence of eq.(38) the summation over N+t
vanishes. This is because, of the two factors <B{EH',Q%(rinN+>>
and <N+\[H',q&(sfllAL*>' one or the other must always vanish

in accordance with eq. (38) since |AL+>> contains one p-

wave meson and [B>> does not. Hence eq.(28) becomes

<B\[_H',Oﬁg(r)aw(s)” ALty = <B'[a_?(r), (a0 (o] | az*>

But from - eq.(29) and eq.(12) we have for the double commu-

tator:
- §
{%?(r),\ﬂ',qa(s)ﬂ =- (=) Sg)_« u, U,

This is & c-number which can be pulled out and what remains

1s <B\AL+>»= O due to orthogonallty of these two eigenstates.
This completes the proof that <BRS—]AL+>>= O if the s-wave
interaction is assumed to be due only to the scalar pair

term.

We observe that above result could be anticipated if
the process in question were pictured in terms of a series
of dlagrams grouped together according to the number of

vertices involved. We have the following two-vertex diagrams
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the following three-vertex dlagrams
R 8 L R S L R S L
c ba c ab a ¢ b
the following four-vertex dlagrams
R L R

d c b a d c ab d ac b ad c b
etc. In above we have pictured a family of 2-vertex dia-

grams, another family can be obtained by interchanging
mesons R and £ . BSimilarly we have plectured a family of
3-vertex diagrams, another family can be obtained by inter-
chenging vertices b and ¢ (i.e. mesons R and S) . In
the same fashion other families of 4-vertex dlagrams can be
obtalined by interchanging vertices b and ¢, b and 4 ,

and ¢ and 4 .

The dlagramns are to be read from right to left. The
horizontal line represents the nucleon, the other lines are
meson lines. At the vertex a the p-wave meson L 1s
absorbed. Hence the operator in questlon, as far as the
nucleon is concerned, is o¥. At all the other vertlces s-
wave mesons (R, 8, K, K') are scattered, or created or
annihilated in pairs. Hence the operator 1n cuestion, as

far as the nucleon is concerned, is simply unity (scalar pair
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theory .) . Therefore all the vertices commute and it does
not matter whether we write ab or ba . Hence the only
difference between contributions from diagrams with the same

nunber of vertlces 1s in the energy denominators.

Thus the contribution from the 2-vertex diagrams pic-

tured is

ab{1/(-0,) + 1/(0 )= 0 ;
that from the J-vertex diagrams pictured 1is
Qiabcil/(QQQ)(ws+mk-w€)’+ l/(ws+mk)(ws+wkfma) + l/(wsamk)(ma)}zo;
that from the 4-vertex diagrams plctured is
2. abcd{l/(-m()(ms+mk.-mc)(ms+mk-me) +

kk'

1/ (ogtopt )0 4, =0, o op-0,) + 1/ (0gHny 1 ) (@ w0 ) (0 40, -0 ,)

kl

+ 1/(ws+mk,)(m8;mk)(me)} =0 j etc.

The crucial point in this "proof" by diagrams 1s the
commutability of vertices, valid‘in thé scalar pair theory.
We note that if not all dlagrams wit: 2z given number of
vertices are considered the mutual cancellation will not take
place and a nonvanishing contribution willl be obtained.

This 1s what happens in approximation methods such as the

Tamm - Dancoff(9), leading to erroneous results.
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IV. MESO-PRODUCTION

We again start with expression (13) for the relevant
matrix element of the scattering natrix. In section III
we proceeded by replacing <BRS—\ by eq.(20) -- this
approach was dictated by some special features of the scalar
palir theory. In the present case we proceed in the orthodox

way of replacing 3AL+>> by eq.(19) to obtain

_ -1
(3RS™|AL*D = <BRs"\ cf;(m') - (H-o,-1¢) [H',QJ;(Q%‘)]\A>
N

-1
= (=) <0_1(Q-X)BRS"A> - <BRS—‘ (Hew ~1¢) [H',OK(Q?\')]A>
AN

. -1 -1
= - <BRS—\LH,' O:;( )] (H-w,~@g+w, -1e ) + (H-w -1e) {H,' C\;(Q?i)]‘A>

= - 2m 5w, - ®, - ) <BRS—“§',QZ(Q’)\')}A>

n

- omt So, - o - o) <ERS|F (r,()|AL > (39)

where the last line defines the function Fg(r,{) . We re-
cognize that the coefficient of -2mid(w, -0 -0g) 1s just the
required matrlix element of the transition amplitude in view
of the relation between the scattering mkatrix and the tran-

sition matrix

S,p = Sap - 2ﬂ1g(<na-mb ) Tap (40)

We are dealing with an off diagonal matrix element of S and
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therefore the Sab term does not appear.

Since the cross sectlon for any process is directly
expresslble 1n terms of the square of the absolute value of

Tap Wwe concentrate on evaluating that quantity.

Using the form of |BRS™ > glven by eq.(20') we have
<ees\F, (r, )| ALY = rs|", ar(24)]ad
:(Bs'\{(- )ga_g(r’) L) q_g(r)l (H-wr-ws—ie);lj(ﬂ,’ o (¢N)]aS
~¢sm|\ (B, (- a_g(r)] (H-cnr-ms-ie)-l[ﬁ' o ()]
+ IH',a;(u')_}(Hmr)-l[H',(-)9 Q-S’(")]\A> (41)

oot
where we make use of eq.(24) and the fact that tﬁ',a%(QA'ﬂ
commutes with q&(r) since meson L 1s & p-wave and meson

R an s-wave.

Equation (41) 1is the basic equation of this vproblem:
however 1t 1s not very useful unless certain approximations
are made. Consider a complete set \XT”> of eigenstates of the
total Hamiltonian with the "-" convention. If there are no
bound states then the states |X » are of thae following
kind: physical nucleon; physical nucleon and one incident
meson plus inconing scattered waves; physical nucleon and two

Incldent mesons plus incoming scattered waves, etc.. Thus we
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may write eg.(41) by introducing such a complete set in a
form similar to eq. (28):

<ers|F_(r, 0)|aL ) =
Zx {(Bs‘\&z vy e x> mr o e)) A/ (E -0 g-1€)
+ <ol o Kl (< o (e ] 40/ (Bamy) | (42)

where E, stands for the energy of the state \X_> . We
propose to approximate eq.(42) by making the so-called "one
meson approximation" . In the work of Chew and Low and

Drell, Friedman and”Zachariasen this meant omltting all
states lX->> containing more than one incident meson. In our
casse, as will be seen presently, the procedure is slightly
different - nevertheless the spirit of the "one meson approx-
imation" is maintained. It is not clear whéther this approx-
imation is valid. It might be argued that whereas the one
meson approximation may be valid in the work of Chew and Low and
Drell, Friedman and Zachariasen , 1t cannot be valid here

since we are lnterested in states such as \BRS-> , Which 1is

a two meson state. This 1is not the cése - contributions

from states such as \BRS">> are included in our caleculation
provided only one of the two mesons in \BR§->> is rescattered.
Thus effectlively what is neglected corresponds to terms quad-
ratic In the amplitudes involving two meson states. It is

just this modification that makes our "one meson approximation

look different from that of Chew and Low and Drell,Friedman



and Zachariasen. We also neglect entirely contributions from
three or more meson states, hoping as Chew and Low and Drell,
Friedman and Zachariasen do, that at low energies this does

not falsify our results appreciably.

Let us consider successively the various terms that are
obtained by assuming \K—>> to be the physical nucleon state,
physical nucleon and one meson state, and finally physical

nucleon and two mesons state.

1. ]X—> = |¢) = physical nucleon state
The first term in eq.(42) - to be referred to as the

direct term from now on - then gives in tne numerator

e\ (B, ()30 ()] oD e\ a, o ]a) (43)

By investigating the matrix element of the scattering
matrix corresponding to creation of a pair of s-wave

mesons we show that

<BS.\[H',(-)30_3(1~)]G> = - {BSR|NL(s)|C) (44)

corresponds to the matrix element of the transition

amplitude for this process:
5| ¥ -1 ¢ -
{BSE | ¢) ={{og(r) - (H-opogeie) (8] a(r)]{Bs |ed

-1
= <BS—1 (er-ie) =) (- )90_?(1'-)] +{ H) (- )YO_Q(r)]'l
(Heopmwg-1e) |G
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= <Bs"‘ﬁi',(-)?qg(rﬂ0>(5;ﬁ;:ﬁ - g:(%;:'ﬁ\

— - 2mi S(mr + o) <BSR\NI,(S)IG>

On the other hand
.% .
Lo\la', o (0 la> = Lc|d(0)ad (45)

is the matrix element of the transition amplitude for

absorptlion of a p-wave meson:
-1
Lolant) =<c\{c\:( ) - (H-og-1c) [H',Q;(Q?\‘)lg A>
-1 -1
= - olfE! & (03] (Haw, -1¢) + (How,-te)  [H}a (0 )1\}1)

- - <C\&‘I',O;(Q?\‘))A>(mz 3'1Q = a)tiiQ)

- 2m 8(w,) <old(0)|aLd

il

We now look at the second term in eg.(42) - to
be referred to as the crossing term from now on. It

gives in the numerator

esm|(m, a;( t)]e> c\lar, (-)?a_g(r)]A> (46)

Both terms in the product (46) vanish on the basis of
arguments involving parity conservation. In simplest
terms the argument runs as follows: The state <<BS—\

contains a physical nucleon and one s-wave meson =-
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hence its parity is odd relative to the state \ C):: a
physical nucleons on the other hand the operator
EH',O;(Ql'fl has even parity since meson L 1is a
p-wave. Hence <BS_\[H’,&;(QA'§]C> =0 . Similarly
<C\[H',(-)qu(r)]Af) = 0 since states <c| and |A)
have the same parity and the operator [H',(—)?qg(r)]

has odd parity (meson R being an s-wave.)

\X—> = \CK—:) = physical nucleon and one meson. The

direct term in eq.(42) gives in the numerator
G5\l (Vo (rilox™ » ox|lm,oq )]a> )

The meson K 1is either an s-wave oOr a p-wave Or &
higher partial wave. If it is a partial wave higher
than a p-wave then the state lCKft) is orthogonal to
the result of operating with [H',O:(Qﬂff} on \A>
as well as to the result of operating with
[ﬁ',(_)?q?(rjj# on lBS_t> since H' doesn't contain
operators for mesons in angular momentum states higher
than the p- state. On the other hand, 1f meson K

18 an s-wave then both terms in expression (47) vanish
when parity conservation is taken into account (see
Preceeding paragraph) . There remains the case when
meson K 1is a p-wave. In this case <?K-\[H',0;(Q%'H‘&>
corresponds to the matrix element of the transition

amplitude for scattering of a p-wave meson
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Gl = Lo o) - kg (e (1))
= <C\A>SL K "

<ﬂK \(H (Q'\ T }uk-ﬁ.—e + H-w}-‘fe [H,' 0?;( 5\ )]lA>
=<C\A> g - <CK \(H QA( QM]A>[U -0,-1e ’J)k-ig"ig

= <C\A>%L,K - 2m 8, o) <SET[", o (6418

where gL,K is one if mesons K and L have all
quantum numbers the same, 2zero otherwlse. The term
<§\A>>3L’K corresponds thus to the g;b in eq.(40).

At this stage we propose to make one more approx-
imation: It is known experimentally (and the Chew and
Low work reproduces this result theoretically) that
the scattering of p-wave mesons ls extremely weak in
all but the 3/2 3/2 state. This is the state in
which the p-wave meson and the nucleon are coupled
together in such a way as to produce an elgenstate of
the total angular momentum J to the elgenvalue 3/2
and total isotopic spin T to the eigenvalue 3/2 .
However in our work the final state is one of the total
angular momentum eigenvalue = 1/2 ( a single nucleon
and two s-wave mesons.) . From angular momentum con-
servation we see that the initial state must also be one
in which the eligenvalue of the total angular momentum

is 1/2 . Therefore the scattering of a p-wave repre-
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sented by <CK°'\[H',O\1( o )_XA> can never occur in the
resonant 3/2 3/2 state. Consistent with the exper-
imental data we assume that the scattering of p-waves
in any but the 3/2 3/2 state vanishes. Hence expres-

sion (47) vanishes.

The crossing term gives in the numerator
Los| L, o (e o™ S < o\ [a, (- Yo el]ad  (e)

Again above vanishes due to orthogonality of eigenstates
of the Hamiltonlian 1f meson K 1s a partial wave higher
than p-wavej and it vanishes due to parity conservation
if meson K 1is a p-wave. If meson K 1is an s-wave

we have
<BS-\[H',0J;( oO)leE™ D =<B§[H"“J;( LY gK,S
- <Bs[a! Qi(k)] mﬁm &, C\;( )]
+[H1la (o )]ﬁ':ni“""m[Hl’Q-;(k)]‘O>
= {88|E,(x,0 )| cEL) + <B|B(1)|cL) SK,S (49)

where use was made of eq.(45) and the definition of
the function E 1is

{85\ (k,0 ) |cRL) = - <Bs{[a} o) (1] g-_—_—;i:j—é- (110l ()]

+[H;c\1(k)]W EEMEIOIED (50)
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The expression <BS—H:H', QJ;( )] CK-> can not
be easily related to the scattering matrix in view of
the fact that the states <BS | and [CE™) are bota
with the minus convention. If we had lnstead \CK*)
then <BS |[H',00( ')]ck*D would be the matrix
element of the trahsition amplitude corresponding to the
element ~<BS"\CKL+:> of the scattering matrix.
<<BS—\CKL+:> represents the process of a p-wave belng
absorbed (meson L ) while simultaneously an s-wave
is scattered (meson K goes into meson S ) . This
suggests the following interpretation of the two terms
in eq.(49) : The first term <BI9(¢)|cL) SK’S
represents the absorption of the meson L 1in the pre-
sence of an s-wave meson K = 8 which undergoes no
interaction; the second term <<§S\Es(k,l)\CKL>
corresponding to the atsorption of meson L simulta-
neously with the s-wave meson belng scattered from the
state K to S . Note that even 1f K = S Dboth terms
contribute, the frist term representing no interaction
between the s-wave and the nucleon, the second term
containing the effects of the scattering of an s-wave

from one state into the same state.

The second term in the product (48) has already

been considered in connectlon with expression (43).
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3. \X_t) = ‘CKP—ﬁ> = physical nucleon and two mesons.

The direct term in eq.(42) gives in the numerator:
- - - %
< B8 \LH',(-)?a_g(rﬂcKP > Lorr|la', o (0 )]a)  (51)

From orthogonality of eigenstates and parity conser-
vation arguments we conclude that above may be 4if-
ferent from zero if either both mesons K and P are
s-waves or both are p-waves. Conslder the first temrm
<<BS—\[H',(-)%q%(r53CKP-:> . Again there are diffi-
culties 1in relating above directly to the transition
amplitude for a process, due to the "-" convention in
both states. As in the preceeding paragraph we con-
sider <BS_\\-_H',(-)?Q_§(I')-SCK?+> . This, by the now
familiar proof, is easily éhown to be the matrix
element of the transition amplitude corresponding to
the element ‘<@Sﬁ-\CKP*> of the scattering matrix.
<<BSH-\CKP+>> represents the scattering of two mesons
from the states X and P into the states S and R .
It is at this point that we define our '"one meson
approximation". Namely we keep from <BSK |CKP*)
only those cohtributions which correspond to the scat-
tering of one meson only, the scattering taking place
in the presence of the second meson which undergoes no
change. Since both mesons S and R are s-waves thers
will be such a contribution only provided one of the

mesons K and P is also an s-wcve, but then the
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other must be too (see comment after expression (51) ).

What was sald above 18 expressed mathematically as

follows:

<BS-H-'H',(-)90~3(1')]CKP—> (52)
— T T —

_-:<BS \[H,‘(-)ga_g(rﬂ{ak(k) - m‘: \H,'Qte(k)}} cP >

- <Bs'\[a‘;(k),[H,' (-} o\_g(r)]] +[H,' (- )?Q_g(riwe[ﬂi “Te(‘k)]
ETEWES) p— TR (e lor™ ool (- o] a8,

and the approximation consists in taklng from the above
only <B\Y_H', (-)?a_g(r)]CP-> SS g @and ignoring the

9
rest. That this coincides with what was said above is

Harye 'Us

proved as follows : The factor gs K indicates -

as required - that one of the meson,s undergoes no change;
the remaining fé.ctor* is the negative complex conjugate
of the element of the transition amplitude corresponding

to the scattering of an s-wave because

LePT|BR* =P Ha(r) - 3 [_H' ?(r')]g B)
= 1S, p -<or i g e Mgty v U st )
_<u\B>gR P -{oF" \[H', ?(r B>(m»-mp = +@t—£€>

={o|B)S, 5 - 2m Owp-0,) LoF{H", dg(r))B)

Thus
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— ¥ '

{cP \[H',%(r)}B) = <c1=\Mr(p)]BR> (53)
is the required matrix element of the transition ampli-
tude and

<s\\w', (-)gQ_?(r)\JCP—> = - <0P\Mr(p)]BR>* (54)

The other term in expression (51) is nothing
else but the function F defined in eq.(39) - the

actual gquantity that we wish to find:
Loxr~\[m', ol ta))ad = <0KP\Fp(k,£)\AL> (55)

(this is a consequence of the fact that unless mesons
K and P are taken to be s-waves the other term in

eq.(51) contributes a zero) .

Finally we must consider the crossing term which

gives in the numerator in the present case
s\(w, o ( ) jorr ) £ oxF\[m', (-)?e_g(r)] A)  (56)

The orthogonallty and parity arguments allow expression
(56) to be different from zero if either meson K 1is
an s-wave and meson P a p-wave, or vice versa.
Assuming that it 1s P which 1s the s-wave, the one
meson approximation leads to the replacement of
esT\[E", o0 v ek~ vy <BITE', al( o )]cE™) Sy,s .
<:dﬁ3',0;(Q}'fSCK-:> corresponds to the absorption of

a pair of p-wave mesons. As a consequence of the
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identity (_H' , Q:( ey )]: -[H' , o, ( 0 )] which follows

by examination of eq.(1ll), the absorption of two p-
waves is directly expressible in terms of scattering of
p-waves. But as in expression (47) the scattering
occurs in an eigenstate of J to the eigenvalue 1/2 ,
because the state A<bKP—\ is a state of J =1/2 .
That conclusion follows from investigating
‘<CKP—xIH',(-)gqg(rilA>> and noting that meson R 1is
an s-wave, therefore the total angular momentum of
<ﬁK?—l is the same as that of |A) .

Thus we conclude that expression (56) vanishes.

Collecting our results we have as an approximate version
of eq.(42)
<Bsr|N,(=)|c > Lol B () fard

(Ds +CDr

{BRS|Fg(r, L)AL =Zc

Z<B\%(Q)\GL> < RN (s)] 4>

C ws + ©p

-5 <CK\Mr(k)\BR)*(GKS]FS(k,Q )| ALY

CK wk - 0, - ie
BS|E_(x,{)|CKL CKR|N (k)|A
L5 LeslE s Uler) < ool
CK W O+ O
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Eq. (57) 1is an integral equation for the function F .
Of the guantities appearing in it, the function v can be
determined from the work of Chew and Low, the functions M
and N from the work of Drell, Friedman and Zachariasen. The
function E , however, 1s unknown. This is similar to the
gituation 1n the work of Drell, Friednan and Zachariasen: they
set out to calculate the function ¥ and find that they need
the function N. In the work of Chew and Low such a situation
does not arise. This is a conseaquence of the fact that H' is
linear in meson operators in the work of Chew and Low, whereas
it contains bilinear terms in our work. From the definition
of the function E Dby eq. (50) it is seen, by coaparison with
eq. (41) which defines the function F, that an integral
equation for E may be derived in precisely the same manner as
the integral equation for F . Subject to the same approximations

we obtain

(as|E, (r, O) ALY =3 <as|i, ()| cRD (ol ¥ (0) aL>

c - ¢ ¢
ws @, + i

-Z<Bl%(Q)SCL><cser(s)\AR>

c @ - » + 1c¢
S r

Z<Bs |Eg (1, Q)\oRL) (oM (k)] 4R

CK W, - O, + le

k r

*
CER\N,.(k){ B) (CEKS|\F_(k,( )| AL
> gl 2) Lomslr, Dy

®
k+0.)r
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Equations (57) and (58) form a system of two coupled
linear integral ecuations for the functions F and E which

must be solved.

In terms of diagraas the various functions O ,N,M,F and

E can ke pilctured as follows :

T(L):

Nr(s):

L
N\
S R
. (s): \./

Fs(r,l):
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Es(r,e)=

where the blob indicates the complete physical interaction.

We can also write eqgs.(57) and (58) 4in terms of

diagrams :
S R L
B AT
S R L S RL
ZM+ 2>
c B C A c B C : A
R S L S RL
W
3 s
CK B - C ' A CK B C A
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S R
and
B A
S L S L R
> + >
C B C A C B C A
S R S R L
X
+ > + 2
CK B C A CK B C A

Finally we note that, in terms of diagrams, our one
meson approximation as applied to two-meson states means
keep dlagrams like (a) below but disregard diagrams like
(b) DPelow. 1In diagram (a) we have a two-meson state
between the vertices, but only one of the mesons (K) is
rescattered at the second vertex. In diagram (b) on the
other hand both mesons K and K', forming the two-meson

state between vertices, are rescattered at the second vertex.



(a) (b)

So far we have said nothing about the magnetic quantum
numbers. Thus for example <BRSiFs(r,e))AL:> is the trans-
ition amplitude for a process in which the nucleon in the
initial state 1s specified by the magnetic quantum numbers
«, «': the meson in the initial state is specified by the
magnetic quantum numbers X, X' j the nucleon in the final
state 1s specified by ¥, @' ; and the mesons in the final
state are specified by ¢, ¢' and @, ¢' . Our Hamiltonian
has been so constructed as to be a scalar under rotations in
both space and isospace - therefore the transition amplitudes
corresponding to varlous cholces of magnetic quantum numbers
are not all unrelated. That is to say, if the initial state
of the system is constructed to be an eigenstate of the total
angular momentum J and the total isotopic spin T, then the
only difference between choosing such a state with one set of
magnetic cuantum numbers as compared with another set will be
a numerlcal factor expressing the different geometry of the

two sets of magnetic quantum numbers. It thus is clear that
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it would be advantageous to eliminate from our ecuations this
dependence on the geometry and conslider only what remains and

expresses the physics of the problem .

The elimination of the magnetic quantum numbers is

carried out in Appendix B and we quote here the result:

L 3 )
. N6 -Ns WE (u) CNME (k) |
F(r,¢) = A e 6@ —Z\ o A e | (69)
\lM&IM@' M B H) \N0 % (1,2)
Es(r’ e) = AA ..b),fﬂ.e Z{ ~w, +le h) W, (60)

The meaning of the various symbols in above equations 1s as

explained in Appendix B .

As stated previously, the functions &, ¥ and N are
known. From the definitions (45), (B-6') and (B-15) we

have
1
Lol [, o)Ay = <elocofan)
+¥‘|
= - 20-)" V(R TELE V) 6(0)  (61)
On the other hand from egs. (11, 12) we have

[, 001 =¥ 22 (60)F (@) ¢ T, oy (62)

and, using Racah's(lc) definition of a reduced matrix element,
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IR A
b

- ()7 V(ELRaN-g) V(ELE N - ') (| foee] 2

Hence we conclude that

N -3
8(0) = —— (20,) ® v(2) ¢ (3| £ore] 2 (63)
2)‘5 ¢ aU z>
where <<§“ reca|| §>> is the reduced matrix element of f°Tr
taken between physical nucleon states. But this last quantity
is simply a multiple, say <£/f° , of the same matrix element

taken between bare nucleon states.

i

Glemeel = <Ejesel gy =6s (64)

bare

and so

NJ/3 ¢
0(l) = —— w(0) ¢ (65
) #/2_5?‘7) )

From the work of Chew and Low f2® = .08 .

The functions M &and N are not as easily determined.
They are obtalned as solutions of a set of coupled nonlinear
integral equations. We now derive briefly these equations:

From the definition (53) we have
<BS!MI,(S)\AR> = <BS"“__H', O«Tg (r)] A

= Jolts) - ﬁ—_-ig [, a (sl g (e ] &>
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_ <B\[(_ o _(s),lu!0, (r)]]zb + <aE! (- )Wo_w(sﬂ————-H_&z_ie [ 0§(r)]

+ @ﬂdyrﬂ Hi &FJ-f@ésﬂ%> (66)

which redﬁces, in the one meson approximation, to
Bs| M (s)|aRD = <B[[(-)Ta_t(s),[a',qg(r)ﬂa>
S <ex|u (1)) sy Lox|m, (x)|aRD

CK W= Dy = ic

141
Dg

s LoRR|N (k)| B <CKS\NS(k)\ I

CK mk + wg

(67)

Similarly, starting with the definition (44) we have in the

one meson approximation
(BSR|N(s)|A> = - <B\\i(-ﬂ_¢(s),[ﬁ', (-)90_?(:')]] A

s <cr|u (k)| BS)" < cRRIN.(k)|a)>

CK ) - ©g - b3

.S <CK\Mr(k)l BR)* <c:Ks\1\r,5 ()| >

CK Oy +

(68)

8

Eliminating the magnetic quantum numbers in a manner

analogous to that described in Appendix B we get



1

Mf.(s) 1 -1
N? v(s) v(r) ( ) ( @y + oy
= lo + pN
M%(s) 4y r./mswr L s M
z v, &
3 ]
. M (k) 0 M7 (k)
) %. W, - o, - i¢ 3 3
k=78 o M2 (x)/ \ud(x)
2 pY
. -3 2\ /NA(k) o \*/NR(k)
-2 , (69)
K wk + e 3 2 " 2
22 0 N(k) \N3(k)
and
1
N2(s) 1 -1
N® v(s) v(r) ®g - op
3 = /o o A * A
2 4y P Yo © ° =
N3.(s) s ro\ i
2 2
M2 (k) o \¥ N2 (k)
7 : )
) K o - @, - le 8 .
0  ME(k) \Ni(x)
2 2
. - % (k) o \F/N¥(k)
-2 \ \ (70)
K wk -+ CDS a N ; ;
2 1 0 Mi(kx)| \N3(k)

Here ); and ).are the renormalized coupling constants
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defined in & manner analogous to eq. (64) :

Gl = <lni,., (71)
<Gl 3= ol (72

(It follows from definition (71) that '): = A )

Equations (69) and (70) were solved approximately by
Drell, Friedman and Zachariasen . They find that M and N

may be taken to be real and of the form

1

Mi(s) 1 -1
Nev(s)v(r) T oo © =g
= 2¢ + lc +C (73)
2 4)1« /o o ° S /4_ 2
M3.(s) 8 1 2
2
& .
N2 (s) -1
N®v(s)v(r) ® -0 ®p+0g
. - X co - [_cl -+ (33a ] (74)
N2 (s) I Y r I
2
with ¢ = Oh c_ = A4 c, < .01 (75)
Introducing eas. (73), (74) into eq. (59) and (60)
gives |
3N® v(s) v(r) © ®
F (r,2) = F(e) [¢ £ "8
s ——— '
8ﬂ? Qg - @, + Oy oA
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N® v(r) _ v(k) iEco . [cx D rhDy, wr-wk][{}Fs(k,C)

W 2 t e T
[4'4 ®p, k /@ }"“ ) O}=Op (76)
) n® v(r)Z v(k) {20 A [01 Op=0y . wrwk]A'PlEs(k,ﬂ)
h»rlg; k /5; ° M S Wy +0,
and
3N® v(s) v(r) O pHD g
E (r,d) = 0 Al
s ) 8/“‘{a /(F;.S; o (01 Dp=Sg ’ CQ)A A
- izv,(:_)_ z vfﬁ_) {2c + {cl mr;xk s mr;nk] F‘}Es(k’u
®, k ° Wy =,
Frte ® )

i Nev(r) Z'v(k) 2 A - {c ® .~y .. ® mklﬁ\'PFS(k’e)
. )" ® Ik Dpe+D ),

where |' 1s a 4x4 diagonal matrix :

-1 0 0 ¢
0 £ 0 0
= s (78)
0 0-1 0O
0 0 o0 &

[

and we assume that the functions F and E may be approxi-
mated by real functions. Integrals over singular quantities

are to be interpreted as Cauchy's principal value integrals.



V. PHOTOPRODUCTION

We first generalize ocur Hamiltonlan to include the
effects of electro-magnetic fields. The Hamiltonian in the

absence of electro-magnetic fields was taken to be

H = H° + H; + H8 + H3

H, = 33 {mg (P (7) $To(BIVG(F) 4 puoh (BM, (PN aF (79)
B = /AW 2%/ ;V (-)2 f u(r)‘?.’__q'c?—-—\?\qfq(?) a7 (80)
H =A%/ %mq [ulr) ¢ (F) aF [ulr')g, (@) o (81)
H = 1}3//“"" %‘tq{ [ ulr) np(?) dar [ u(r') §4(F') aF'

- [ulr) w () aF [ ulr')g,(3') af']  (82)

where ¢, P, s = cyclic permutations of -1, O, +l.

In the presence of electro-magnetic fields above H
goes over into H(K). H(K) must have a structure which is
gauge invariant. This means that the following equation must

be satisfied:(ll)

e H(A)e = H(E +V G) (83)
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where D = [dr G(F)e(T) (84)

where g(?) is the charge density of tne system given in

this case by
§(F) = ¢ (F) + (L+T )/2 o d(F)
= 1o {m (F)$_(F) - . (F)¢,_(F)} + (1 + 7 )/2 o dF) (85)

where ¢ 1s the charge density of the mesons and
i
(1 + To)/2 e 37) is the charge density of the nucleon

assumed to be located at the origin of the coordinate systen.

The function G(T) is a scalar gauge function - any

i3

: —
electro-magnetic field operator which commutes with A4 .

If it were not for the source function u(r) the trans-
ition H—»H(K) could be accomplished by the standard prescrip-

tion:

V4o () (V + ared) 4 (®) (96)

It can be easily verified that with the substitution
(86¢) the terms in H denoted by Hz and H3 fail to
satisfy eq. (83) . (Note that the substitution (86) leaves

Hz and H_ unchanged). We demonstrate this for H, :
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iD -iD
e

®
s

i

iD
)\:/V,%( [ar [dar' u(r) u(r') e ¢q(r)¢‘q(r') e (87)

ixD N R -1xD
Let us define F(x) = e c}q(r)qﬂ C1(1:*') e ¢ then

ixD - . .
dF/ax = 1e | D, ¢q(r)¢_q(r')le

ix
- e e fdr"(n (—\u)(,# (-*u) -n (-*n)gbu(i:

-1xD
Bo (B9 () €@ o

—\"{4’ (r)(# (-An)%(f,n _—f,t)

1l
]
Jde
)
Q

-1xD
NC PRGNS S T I

ixD N < -, A -1xD
=-t1eqe ¢ (F)¢ () {aF) - @)
= - 1ea {&(F') - 6(#)} Flx)
Integrating dF/dx = - 1leq {G(F') - G(f-)} F(x) between O

and 1 we get 1n{F(1)/F(0)} = -1eq {&(¥') - G(F)} or

iD . -1D -1eqiG(?') - (P
F(1) = e <ﬁq(r)¢_q(?') e = F(0) e eq{ =) (r)}

_ 4 () (21 Sieale®) - o(7)
q ~q



and thus
iD  -iD
e He =
2 (88)
L, ' 1eqG(7) g -lead(?') N
x;/)\‘;ym JaB[aB" ulr) ul(r'){e P @ NMe dq (3]

By similarly investigating Ha we conclude that under a

gauge transformation ¢q, , and Tﬁ change as follows

q

leq G(T)
J ) >0 @)

ﬂq(F) — e m_(7) (89)

(For the nucleon located not at the origin but at ?0:

ieq G(T )
(-]

Tﬁ .) This then suggests that the Hamiltonian

will be properly gauge invariant if it is obtained (in addition

Tﬁ — e

to substitution (86) ) by modifying ¢q’ My ‘Fq in such a
way a8 to produce the factors appearing in (89), when

2 -—>A4+VG .
Now consider the expression

V- I

\ |

-leg/4w [ (90)
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- - -
Under a gauge transformation A — A + VG expression (90)
becomes

~iey | PAL G TN _m\(gv AR g oy gv & 9.

4T V= AT (Rara W'\

_ ey (VB , A (91)
::—1?8\‘* 0 2 + Q%G‘("'

provided G vanishes at infinity.

Thus we propose to introduce the electro-magnetic field
into the theory by taking, instead of substitution (86), the

following :

5& (r) — exp[ ieq/4w [ V M‘ &"1 ¢(‘})

rr (r) — exp{ ieq/bm f 3"' ,‘ (%)

f?"-*&(z‘) N
‘I’q — exp[—ieq/lm / Y «91] Ta{

V}zé () » exp[ ieq/ll-rrf \ A &-] (VJ, \anA d} 4> &) (92)

—_
and one easlly verifies that the H{(A) so obtained satisfies

(83) and hence is gauge invariant * . We observe that

1 It is well known thet the manner in which an extended source
theory is made gauge invariant is not unlcue. For a general

treatment see reference (12). We note that if the theory is



every term In H plcks up two exponential factors with
opposite signs of q, hence the terms in the exponent are

always of the form
[VER@® [ 11 -3 -3 - e

with T' a meson coordinate and T" also a meson coordinate
or the nucleon coordinate. Therefore the restriction that G
must vanish as T — - required in eq. (91) may be relaxed
to VG vanishing as T —» - thus allowing G to be a
constant. Since VG = 4 - A' , Where 'ﬁ, A' are two vector
votentials differing by a gauge transformation, we see that
our theory 1s gauge invarilant provided we only allow gauge
transformations such that the different vector potentials

have the same behaviour at infinity. We feel that this is

sufficiently general.

The advantage of this formulation is that, now that the
theory 1s gauge invariant, we may choose a particular gauge
to work in and we take the gauge defined by v-i =0 .

Then all the exponential factors reduce to unity and the

Hamiltonian H (2) is

1 cont.
made gauge invariant in a manner different from ours additional
currents appear j however at low energies thelr contribution

is negligible.
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H () = H_(3=0) + 5§<->q19q [RGBV (2) Vg (), ()]
H (&) =8 (R=0) + /&% £/, p3 (-)%eq fa(r) T FA(F)  (F) oF

Ha(zi)+Hs(2)=na<z=0)+ns(z=o> (93)

Thus
H(R) = H + B"

where H = H(A = O) is the same as that used in meso-produc-

tion, and

HY = %mqieq{fqiq(f) i@)-V4 (F) oF

+ /B 24 [ ulr)T TA(F) ¢4 (F) a?i (94)

q
We are interested in the transition amplitude corres-
ponding to the absorption of a photon and creation of two s-
wave mesonse. The matrix element for the absorption of a
photon of type k by a nucleon described by spln, isospin = A
leading to two mesons described by spin, iscspin R and 8

and a nucleon described by spin, isospin B, 1s given by

{rsT\ | A (95)

where H; is the matrix element of H" +taken between states
of the radiation fleld of one photon of type k and no

photons. (We are treating the electro-magnetic effects in



perturbation theory.)

In expressiog (95) the state \A>> and the state <SRS—\
are both states of even parity and total angular momentum %
because R, 'S are s-waves. Therefore expression (95) will
glve non-vanishing contributions provided H§ has even parity
and angular dependence‘corresponding to a tensor of rank O
or 1 . It is therefore advantageous to expand the vector
potential A(F) in H" 1in spherical waves since then H;'
will be simply equal to the coefficilent of the annihilation
operator for a photon characterized by an even parity and
angular momentum O or 1, and linear momentum = k . In
the expansion of 'K(?) angular momentum = O does not exist
and so the only term to contribute is the one generally associ-
ated with magnetic dipole transitions. (We may do this
because H" 1s a scalar and therefore the rotation and
reflection properties of Hg are entirely determined by the
rotation and reflection properties of the photon annihilation
operator.)

-

The solutions of the vector equation
a..} R_A
VA-I-k A=0
representing spherical transverse vector waves regular at the

origin are(l3)

W (F) =V x[FY, . (Q,) 3, (kr)]
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and
Nen(?) = 1/& Vx M, (F) (96)
Hence in the usual manner we may expand 'X as follows
AP = I G GONE,_ B letda) + ot(xtn]]
¥ B ak) 4 M a]] (om)

where N 1s a normalization constant related to the inverse
square root of the volume in which -2 is quantized, and the
sum over { starts at ( = 1, the sum over m goes for

each value. of ¢ from -¢ to +{¢ . Since the parity of Y

{m

Q = ¢
is (-) it follows that the parity of M is (-) and

{m
~ ¢
that of N o 15 - (-) . BSince the photon has intrinsic

4
spin one (we are dealing with a vector (polar) field ) 1t has
intrinsic odd parity and so it follows that the parity of
c(xlm), cT(ka) is - (;)e whereas the parity of d(kfm),
dj(ka) is (_)2 . Thus we need the coefficient of c(kim)

and H; is obtained from H" Dby replacing 'K(F) by

N//2E N1, (F) = W//EE Vx [F v, () 3 er)] (98)

This 1s because the state of the radiation field corres-
ponding to one photon of even parity, angular momentum = 1,
angular mecmentum z-component = mk and linear momentum = k

1s given by

&o*(klmk) \Po > (99)
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(where Pﬁr °> 1s the vacuum state of the radiation field)

and because

\(-)mk o (kl-m, ) cT(klmk)Ize\) =15 (100)

The expression (98) can be written more explicitly as
. N
N//ZR M () = N//3E 3, (kr) /378W -
k

i - RS 1‘Q
{L— 1cos? u, + cosb uy + 1sinY e '\iz] gmk,l

- % U Q
+ [ sind sing¢u_ + sin® cos¢ uyl /2 Smk,O

(101)
[- 1cosh @ sY 4 isinh -i?ﬁ 13
+ & leos® U - cosY u_ 4 e 23 my, -1

Thus

_— a : > o 2 _—\ 2 Y
Hk = Zq (-)* 1eq N//ﬁf{fd)q(r) Mlmk(r) Vféq(r) dr

+ /B [ ) EH )T §q(F) ar | (102)

We next show that if we expand qéq(?) (wherever it
appears in eg. (102) ) 4in spherical waves then the only

contribution to

(ers™ | B | A7
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comes from the p-waves.

Consider the state lA:> : it represents a "physical”
nucleon and in view of the structure of our interaction
Hamiltonian if we should expand LA> in "bare" states it
would contain amplitudes for only the following type of "bare"
states :

one nucleon + any number of p-wave mesons

(103)
+ any even number of s-wave mesons
Since the state \BRS-> differs from ‘A:> by the presence
of a pair of s-waves, 1In an expansion of the type considered
above, amplitudes for the same type of bare states - and no

other - wlll appear.

Thus H§ must contain only such meson operators, which ,
when operating on lAt) produce a state that contains again
only amplitudes for "bare" states of type (103) or else we

obtain a vanishing contribution.

Consider first the term in eq. (102) 1linear in gﬁq :

In the spherical wave expansion

=%
$o(F) =8 Z (20) *()"3 (o) ¥, (G e (ptm) + 2] (pta)]

the term corresponding to t = C when acting on \Aj) will
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produce a state containing amplitudes for an 044 number of s-
wave mesons, hence not of the type (103) . The terms corres-
ponding to t 2 2 will produce states containing amplitudes
for a meson of angular momentum t > 2 , hence again not of
type (103) . Only for t =1 do we obtain a nonvanishing

result.

Now consider the term in eq. (102) bilinear in ¢q:
After introducing the spherical wave expansion we will have
terms contalining products of two operators - one for a meson of
angular momentum t and one for a meson of angular momentum
t' .

a)t=t'"=0
In this case the angular dependence of the integral in

<\
eq.(102) 1is entirely that due to My (¥) and , as
?
k

is clear from eq. (101) , the angular integration
gives O .
b) t =0, t' #0 or vice versa
The result of operating with such & term on \A> is
a state with amplitudes for an odd number of s-wave
mesons, hence not of type (103) .
c) t 22, t' £#t or vice versa
The result of operating with such a term bn \§> is
a state with amplitudes for a meson of angular momentum

t =2, hence not of type (103) .
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4) t =t' 22

1)

2)

m#-m'

The meson created by the operator corresponding to
t(t') cannot be anninilated by the operator corres-
ponding to t'(t) because m # - m' and the result
of operating with this term on \A> is a state con-
taining amplitudes for two mesons of angular momen-
tum t = t' = 2, hence not of type (103).

m=-mn'

Now it 1s possible (provided the energies are the
same) to have one of the meson operators create the
meson (t,m) and the other annihilate it and therefore
the result of operating with this term on | A) would be
a state containing amplitudes of type (103). However,
in this case the <?-dependence of the integral in

—
ea. (102) 1s entirely due to M; _ (F) and then it
2By

is clear from eg. (101) that all @ -dependent terms
will vanish upon ¢@-integration. Then for ®%-inte-

gration we have (see eq. (101) )
J d(cos®) cos® ¥, ¥,

t
We can write th Y«t-m = TC:-‘- Ct" YEt"O where Ct"
t'=0

is some coefficient. Hence the ©O-integral becomes
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Y =

t
/A3 = Cyn {:d(cos%) Y, ng 10

t'= 0

ST 3 e S
14 3 t%o ct" 2t",l =0
e) Finally we will have a term t = t' = 1 which gives a

non zero contribution.

Thus eq. (102) can be written as follows

1
" q o - o m
HY = % (-)7 1eq N//2k {/E?r £°/u N pZm (Emp) 3 () ‘c-_q.

r T -~
L&q(m) + qu(m)l Ju(r) 3;(pr) Yl_m(ﬂr)limk(?) dr

8 , -5 msm '’ t Tt Al Y
+ N gm (4o o 1) *(-) [Qq(pm} +o.q(pm)][ﬂ_cép m') +q-q(pm}]

Pm'

ENEOR SRENENONRCDE SINCR) R QLS

The explicit structure of H; as given by eq. (104)
will not be made use of except for the following features
1) H& contains operators for p-wave mesons only
2) H; as far as rotations in space are concerned behaves
like the mk-component of an irreducible tensor of rank
1 (this is a simple consequence of the fact that H" 1is

a scalar and H§ was obtained by extracting from H" a

quantity behaving like the -mk-component of a vector)
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3) H; as far as rotations in isospace are concerned be=
haves like the O-component of a tensor of rank 1 .
This 1s a consequence of the fact that H; would be an
isotopic scalar were it not for the factor o in "ieq" .
Since ¢ % =t % where t 1s the zeroth component of
q o I'Q o
the meson 1sospin operator which is a vector, our con-

clusion follows.

Keeping above features in mind we now compare

<srs™| Hy | 4>
and

<{zrs~| (u' ,a:ro(k,mk)] A

Recalling the notation of the sections on meso-production we
observe that a:(k,mk) 1s the creation operator for a neutral
meson with linear momentum = kX, angular momentum = 1, angular
momentum z-component = mk . |

We see that [H',Q:(k,mk)] contains only operators for
p-wave mesons - Jjust like H£ . The tehaviour under rotations
in space and isospace is also the séme as that of H; . On the

other hand H; contains as a factor 1//2k where [H',ét(k,mkil

has 1//2mk y, due to this difference 1in normalization of a
photon and a meson. Lastly we observe that whereas the matrix
elements of [H',dt(k,mk)] are proportional to the p-wave

coupling constant the corresponding factor for Hﬁ should be
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- ge/2M where g 1is the anomalous nuclear gyromagnetic ratio.
Since H; is an isotopic vector, 1in our theory g 1is equal
and opposite for the proton and neutron and may be taken as the
average of the experimental values g = (gp - gn)/2 . (Chew
and Low use the complete static moments ; we feel that 1t 1is
more correct to use the anomalous parts of the moments only.

The theory 1s not accurate encugh to decide this question in any

case. )

Thus we conclude that

&, - gn)/2 e/2M
A fh Jk/o

- ( _ +
{BRS lH;\A>= - srs” |(8, o, (m J}4) (105)
(here f 1s the renormalized but not rationalized quantity -

according to Chew and Low f£® = 0.08 )

Therefore once the meso-production equations are solved
eq. (105) gives us immediately the transition amplitude for

photoproduction.
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VI. CROSS SECTIONS ; CALCULATION AND DISCUSSICN

Our next task is to solve the meso-production eguations
and compute cross sections. Since the dependence of Fs(r', ()
on the momentum ¢ is of a trivial nature we eliminate it from
our equations. Also, 1t is more convenlient for purposes of
calculations to rationalize the matrices A and A' . We

define two new functlions Hs(r) and Gs(r) by

1 0 0 ©
N® v(s) v(r) o /2 0 ©

F (r,0) = —— ¢) H (r)  (106)
1 = '/CDI,CDS 0 0] 1 e}
O 0 0 /5
1 0 0 ©
N® v(s) v(r) o Y2 0 ©

E (r,1) = b () @g(r)  (107)
8 12 ff /m'r" w"s' ©o 0 1 o0
o 0 0 /%

Then instead of eas. (76) and (77) for Fg(r,l) and Es(r,e)

we must solve the following equatioms for H_(r) and G4(r)

2 )
__b_!_-z v2 (k) {209 . <01 @, + ©p ‘e, ®, - cok)PI Hs(k)
P O = Op
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and
@, + O
Gs(r) = (c r 5 4 cz) A A
©p = @
N® v? (k) @) + Op 0, - op| | Gglk)
) 4 % o {%C’ * (cl " % @y, - ®
n s " I k - Or
~ W, - ©, + o B_(k)
+Al2e + (c k™" -c K I){{} 8 (109)
’ 2 ) P % * %
where
4 1 4 8 20 C
2 12 8 -2 -5 3
A= - s A= — s A A= - (110)
1 s\ 4 -2 5 ~-10 3
1 2 -1 =2 4 0

and Z&[X::l

We are interested in pair production near threshold and
therefore the quantity (wr - ms)/(wr + ms) is small compared
with unity. Thus the first term in the equation for Hs(r)
is small and the first term in the equation for Gg(r) 1is

large with the consequence that
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[4)] 4+ D .
G (r) T X8 o AN (111)
8 @y = ® 2
r s

is an excellent approximation for the function Gs(r) but the
corresponding assumption for the function Hs(r) results in

large errors.
Using the identity

(112)

[
I+ -
(]
i
e
I+ =
]
(1]
—TT
|
+)
€] &
L
I+ 1
€1 &
w
—~———

we rewrite eq. (108) as

w - @ —
_ r 8 —_—
r 8

2r "% gy o ° + o, o/ H_(k)
ﬂr. (wk - ms)(wk - o)

r

’
DA Set Ol Gs(k)] (113)

(0. + ms)(wk + wr)

k
where
— 1 W, +D W, = H (k)
Hs = - — [k dﬂ)k{200 + (cl—k——ﬂ -c, k. S)P S (114)
2“F M s @, =0y

mﬁl‘
i

]

| -
L,
W
)

’_A/\

N

Q
-]

+
T
(¢

e
1
1]
]
Q
e
g
\_ce/
—F
o
1]
23
-
'—l
(V]
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and we have revlaced summation over k by integratlon accor-

ding to the relation

N® 2 —2/m [K® Ao, = 2/7 [k o, dw
. x “x

k

(see Appendix A) and omitted v?®(k) which is assumed to be
equal to 1 up to some cut-off energy o and equal to O
m

ax
for wy > Opax *

We now assume that the function Hs(r) can be approximated
by taking
o P . A +H + Ne (116)
Hs(r) = (e, —— + cg +H_ + Gy

Cp + @4

Eq. (116) 1is equivalent to taking in eq. (108) ® =wg every-
where but in the first term j therefore the error is propor-
tional to (mr - ms) as is clear from eq. (113). Thus for

(wr - ws) small this is a good approximation.

Using egs. (111) and (116) in eas. (114) and (115) we

obtain (Es + Z&Es) from the following equation

1 k & — -
{l . / Dy [200 . (01 o - c. wk-ws)pl (Hgy +AG,) =
2T =g » P

1 2.c? - 2
-— 1k dmk{il_c“ A + fi.(_?L_f_?_>A{\AA+ i (c N+ czws(‘l\.)
2m P I Optog "
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2
+

\:c (¢ +c YN+ iic—saig (N\.-N‘AJ\)}} (117)
o -0y - ¢ F 2 M

All the integrals in eq. (117) are easily evaluated. We take

® oy = 4.5)k, the same as Drell, Friedman and Zachariasen .
The error caused by assuming that Hs(r) and Gs(r) are given
by eas. (11€) and (111) instead of egs. (108) and (109) 1is
estimated by taking Hs(r) and Gs(r) as given by eqs. (116)
and (111) , introducing these into egs. (108) and (109) and

comparing the new values of Hs(r) and Gs(r) so obtained

with the o0ld ones.

We find that Hs(r) is a weak function of @, and ws
and is well approximated in the small range of energies of
interest by a constant , namely the value of Hs(r) as
obtalned from eq. (116) with w, = ey = (wr + @g)/2. For
.+, = 2;5’4 the error (estimated in the manner outlined
above) is less than 25% ; the error 1s smnaller for smaller

values of ®, o+ o On the other hand the auxillary function

s -

Gs(r) is given by eq. (111) with an error of less than 1% .

We give below Hs(r) for two choices of ® + 03 it
1s seen that within the narrow range of energies considered

Hs(r) varies very slowly.
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(Dr‘l-(l)s = 2.5 M 2.25}4_
-.241 -.223
.060 062
H (r) = (118)
S -0123 ‘tll# .
-.007 - .006

In order to calculate cross sections it is necessary to
form actual physical states from the elgenstates of the total

isospin so far considered. The following reactions are possible:

+
P+T — D+ 17 4 0°

— N+ T + 7

P+1 5 pa+n® 4 n®

P+T 5D+ T + 1
- +
— n 4+ T + M

—~n 4+ 7 4+ 7° (119)

In above we have asgsumed that the nucleon in the initial state
is a proton - another 8 reactions are possible with the
nucleon in the initial state being a neutron. If we replace
the w° meson in the initial state by a photon we obtain the
6 possible photoproduction reactions. The transition ampli-

tudes for all these 22 reactions can be obtained from H (r)
8



by forming the approvriate linear combinations of the four rows
of the matrix Hs(r) . We demonstrate the procedure by calcu-
lating the 3 cases involving a proton and n° meson in the
initial state (we choose this example since it will permit us
to calculate later cross sections for both meso- and photo-
production ; how to calculate the other cases will be obvious

from this example. )

The i1nitial state of the system is ‘pn°>> which in terms

of isospin states can be written as

ONE

The three possible final states of the system are !pﬂ°n°>> ,

]pﬂ°> = {%

§> (120)

lpﬂ’ﬂ+>> and )nﬂ*ﬂ€>' which in terms of isospin states can

be written as

e A N H AR A2
3 (38 +fF [0 21,

lpﬂ'ﬂ'> =-§

2(2)}.*_1_ \S. 2) (122)

o> = S |2y <)) - 222y
Yok |22 s e (125)
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In eags. (120 - 123) we omit the symbol for the z-component of
the 1sospin and the gquantity in brackets refers to the isospin
of the subsystem. The subsystem is formed with the meson
whose symbol appears next to the nucleon on the left hand side
of the equatlons. Identifying the meson used to form the sub-
system with the meson R , identifying the other meson with
meson S and identifying the meson in the initial state with
meson L , we have from egs. (120 - 123) the following expres-

slons for the transition amplitudes

Fe° = Fpﬂ°-—~,pﬂ°ﬂ° = (124)
i3 i3 3z 38
5 PR 0 - HE A1) 4 A P 0) 4+ & PR (L)
s
Pt = Fpﬂ’—apﬂ o (125)
31 a3 31 33
- 3_’%% FA23(pr,0) + :;J:F;; F’;a(r,?.) + a—’{-rs F;z(r,ﬂ) - sﬁi—% F:z(r,Q)
+.0
pte o pPUo>0m T _ (126)
i i3 31 33
3TN0 - B0 - T R, 0 4 2 E )

The transition amplitudes as given by eqs. (124 - 126)
would be the appropriate ones if the experimental set up for
measuring cross sectlions were such as to detect states of

definite angular momentum. The normal experimental techniques
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are however such as to measure mesons of definite linear, and
not angular, momentum. Therefore we transform at this stage

fromn spherical to plane waves .

Consider

SIS 021)

2

This represents the matrix element of some cquantity M taken
between the following states (we supress here the lsospin
dependence) :
Initial state : nucleon described by a spin = g , Z=-component
of the spin = &' and a meson described by a

—
Plane wave characterized by the momentum ¢.

Final state : nucleon described by a spin = g , Z-component
of the spin = @' and two mesons described by
plane waves characterized by the momenta T
N
and 8 .

Using the standard methods of transformation theory we now

write

e YL

ZR'?'S'G’"J'J'JHJnLS'}\t (-3 (&'?s \g’G'R.?'S'QJ) (ge.a'?'S'W' \ J'J')

<J i J"j"> (Jm g iuthx) (gadLh)\l\ iod'z) (128)

(128) provides the means for expressing a matrix

element taken between states of definlte angular momentum -
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- <3's" | 4| 3"3"> - in terms of the matrix element taken

between states of definite 1linear .omentum - <.1. g,'?g (Ml PN (I_>3
2 3

the second and fourth terms on the right hand side of eq. (128)

are simply vector addition coefficients, the first and last

terms are inner products of plane and spherical waves.

For the processes that we have been considering
‘<J'j'\ M lJ"j" 1s different from zero provided J' = J" = i
and J' = j" . Then parity conservation together with angular
momentum conservation require R' = 5' = 0, 9' =¢ =0,
L' =1 . Thus eq. (128) simplifies to
1.t :Ll_}__ P - I Y 1t 14

2w \u) 2l = J'Z}J(;e,rs\;@oooo) (2¢'0000 | £3*)

v oMl 24N (24t] 2 tqqe _1._::‘1.3—‘

Lt u| 23y (2| B1n) Gutan | 2o (129)

1zt st ]

Here <<EJ l M\ 2 :> is independent of j' and equal to F

as given by egs. (124 - 126) , 1.e. <i§J'\’M°°\ §J'>> = F°°

etc. . The vector addition coefficients are given by

(i@'OOOO\iJ'):S' ' | (130)
2.
and
! .
(23'| 2a'12) =8 ()" T2 g
JyolaN 2,

The inner products of plane and spherical waves are given by

(see Appendix A):
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(2g'%3 [3@'0000) = 4n/N?V

and

(21| 22'0) = B/NA (-1)(-)

Thus eq. (129)

becomes
<§Q;'?‘§ \M\ g-'o{ﬂz> =
L Ar (M exl (4m)®
(-1)(-)" 8 LR Tr/ X
/3 N3va/® g («t-

Combining egs. (134), (124 - 126), (106)

Q) F

(132)

k!

Y

-

(Q) (133)
,)\1

(134)
3')

and (65) we have

LEps [uee| 2TS = x HOO (135)
1088 (o | 20Ty = x w7t (136)
{2p'Es \u*e ?;oc'"a Y = X H*® (137)
where
iz a3 sz 83
ree = & [HS3(r) - 2 H23(r) 4 2 B23(r) 4 2 HE2(r) | (135')
2 F 33 82 33
Bt = [-2 B23(r) + 2% (r) 4 2 HE*(r) - 4 HER(r)] (136')
1z 3 32 33
H"”‘ = -%[H:“(r) + H’;a(r) + 2 Hza(r) - H:"‘(r)—_l (137')
and where
pt-r L= (am)® f
X = (-1)(=) -
3 ,ﬂ‘v"/’3 12
v(s) vir) v(2)//2ogmmw, £ Y (L) (138)

l(d'—@' )
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Both values of o' are equally likely and we average over
them} also we must sum over p' . Using a bar to denote the

averaging we have

— (1) (am)® £ v(s) v(r) v(0) .
thz 3v3/2 1o ' (}_EY(Q‘) -EY(Q‘;&
6 2 WVv¥E 12 /20 0 m e o

[4

ayd
— (4m)® £ v3(s)vP(r)vE(¢
‘Z‘ Xl“ =1 : - — o) {rov(®) (? [l + 2sind, cosd, cosnﬁ]
P M ve 12 2msmrmt
(4.“)3 fa . ts
— (139)

6173 2
r \'4 12 BmSwr@Q

where we have averaged over q& and omitted the form factors

v¥(s)v®(r)v®(Ll) to obtain the last line.

The cross section is given by multiplying (139) by
on |H[? a®n/dE pV/L (140)

where H 1is given by eqs. (135' - 137'), where 04wv is the
flux of the incident mesons and d°n/dE 1s the density of
final states per unit energy interval. This last quantity is
obtained as follows : the number of states avallable to a
meson of energy @, lying within the interval dmr , within
the solid angle dﬁlr when the mesons are quantized within a

cube of volume V 1is
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v/(en)® ro, do, a0, (141)

For two mesons the number of states 1s a product of two factors
gach of the form (141) . ©Now the total energy available to
the two mesons is

E.—.:cnr-a-ms

Yo

and therefore L——§

) dE = dE . Thus the required density
JE Jw =const
r

of final states per unit energy interval is

d*n s 6
= = V®/(2nr) r s ®, o  don er d Qg
or
d®*n
= = W2/(em)* r s o, og do, (142)

where we have integrated over dflr and dfls (nothing in
the cross section depends on these angles so the integration

simply gives (4mw)® ).

Thus flnally we have for the cross sectlon per unit

energy of the meson R :

do/dw, = (£/6)° H* (lrs)/(w, y°)

= (£/6)® ¥*/\® U /w, \L(fr{_n)[(‘i;’? -\X (143)

From eq.(1l43) we immedlately obtain the cross section
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for the corresponding photoproduction process by multiplylng

by

(144)

((ep— gy)/2 e/EM)a ¢
/A f/)* y/l;a),' M

where Q/N' arises from the different forms of the expressions
for the flux of mesons as compared with photons and the other

factor follows from eg. (105) .

The value of E (= energy available to the two produced
mesons) will be taken equal to w, , this corresponds to

neglecting any recoil of the nucleon .

As ié seen from eq. (143) the ® -dependence of dﬁydwr
is due entirely to the term under the square root sign (this
is a result of having approximated Hr(s) by a constant in
view of 1ts weak dependence on mr y Wg ) . This term goes to
zero at the two limits @, = p and E - o, = 0g =M and
reaches its peak value of [(E/2)A)2 - i}a at o =o, =E/2 .
Using eq. (118) to obtain numerical values for H® and re-
placing the term under the square root sign by its peak valus

we obtain as the maximum value of dcydmr in miMmicrobarns

(10722 cm®) per Mev the following



dc/dmr

pn® > prou® 4.7 2.0
pm® — pw onT 1.4 .54
pm® — nntn® 4.5 1.7 | (145)

-The corresponding photoproduction cross sectlons are

obtained by multiplying eq. (145) by the factor (144) :

\ 2.5’\ 2.25}4
de/dw,,

p{—> pron’ 20x107° 7.8x1072
pg > prn’ 6.1x107® 2.1x10"°
p{—> nrtn® 20x107° 6.6x107° (146)

There are as yet no data avallable with which to compare
the numbers (145) , (146) . Some experimental data exist for
higher energies, 1n particular for the reaction
P+ 5> P+ o+t (1%) Cutkosky and Zachariasen(S) obtain
a good fit to these data by using the Chew and Low theory (no
Interactions for s-waves) and assuming that one of the mesons

1s produced in an S-state and one in a P-state . Cutkosky and

Zacharlasen obtain for p‘gf%)pﬂ‘ﬂ+ 250 millimicrobarns/Mev
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at E =2.5n4 and for p{— ar*n® 50 millimicrobarns/ Mev
at E = 2.5r « Our corresponding numbers are roughly 10,000
times smaller for p{ - pr~wt and 1,000 times smaller for
;>§—§ nm*n® . One reason why our numbers are so much smaller
is that in order to produce two s-wave mesons the photon must
be absorbed by the nucleon, whereas an s- and a p-wave meson
can be produced by having one of the mesons absorb the photon.
Thus, even if the s-wave and p-wave interactions were equally
strong our process would lead to cross sections smaller by a
factor (M/)«)8 ~ 50 . The fact that the cross sections turn
out to be much smaller must be blamed on the weakness of s-
wave interactlions as compared with p-wave interactiocns.
Although phase space does favor the production of 2 s-waves
over an s-wave and a p-wave, it does not compensate sufficlently
the difference 1n strength of the interactions, except possibly

at an energy of a few electron-volts above threshold.
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APPENDIX A

The free meson field amplitudes satisfy the Klein -
Gordon ecuation and therefore may be expanded in terms of a
complete set of solutions of the Klein - Gordon eguation such
as plane waves or spherical waves. The standard expansion 1s
in terms of the orthonormal set

1k-X
1/ e (A-1)
where the plane waves are normallzed in a cube of volume V .
Periodic boundery conditions at the faces of the cube lead to
discrete values for the momentum kX . The number of elgen-

states in a volume element dﬁ of momentum space 1s then

v/(2m)® dk (4-2)

The expansion of the field amplitudes in terms of the

gset (A-1l) has the familiar form

~ 2 A

N N k% + . =ik.x
qu(x) =Z 1/7/2Va, &q(k)e +0a (ke j @ =-1,0,41. (4-3)
k

Simllarly we have for the canonically conjugate momenta

L 1kX 4+ . -1k%
m (%) = (-1) 2 /0, /2V |a_(k)e - o (ke ﬂi q = -1,0,+1.
q e a
(A-4)
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Here Wy = /B« VF = energy of a meson of momentum k .

N 1k
Whereas the space dependence of %q(x) is in the e

s
the operator properties of ¢q(f} are in aq(ﬁ), dg(?) .

As aﬁconsequsnce of the definiéion (9) dq(i) describes
mesons of definite charge : the operator ab(k) annihilates a
meson of charge = -qe , the operator AZ(k)‘ creates a meson of
charge = + ge. Thus ¢q acting on an éigenstate of the charge

operator leads to another eigenstate to an eigenvalue increased

by the amount qe .

Introducing the expansions (A-3,4) into eqs. (2,3,4) yields

.‘.
_ _\a * % -
H = Z}Z . Zq (=) Qq(k) oiq(k) (A-5)

B :f‘/F% /Z T v(k) T 1k q?.(-)‘l’rq [a_q(i‘> -cifq@)]
+j1:/2”v_§§§' v(k)v(k')//mkgk, .

i t t N T o o
2% |o o (') va (B (') + o), () va_ (B (8]

* 1"”}“”%;' v(k)v(k' )/ Yooy -

\ — NEN 2, T 2, T .
L, o) 2 o (o, (1) - o () ()

v (o + 0,0 F Tolo B @) - a @) (4-6)

(g, r, 8 = cyclic permutations of -1, O, +1)
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In eq. (A-6) v(k) 1is the Fourier transform of the source
funqtion :
P . |
ik -x
v(k) = [ ul(x) e dx ; (A-T)

%E.’ q=-1, 0, 41 , is related to {_,«=1, 2, 3, in the
same way as %é is related to d; (eq. (9) ), the 7T 's

being the standard Pauli spin matrices acting in isospin space.

Now consider the following orthonormal set

N g, (x) ¥, (Q) (4-8)

where ja(px) is a spherical Bessel function and YQm (sz)
is a spherical harmonic and N 1is a normalization constant.
THese spherical waves also represent solutions of the Klein -
Gordon equation and we may therefore expand the fileld amplitudes
in terms of (A-8) . Quantization now must be performed in a
spherical volume of radius R = 2p®/N® . Discrete values of
p result from imposing the boundary condition that 3olpx)
vanish for x = R . A spherical Bessel function je(px)
aprroaches asymptotically for large values of its argument
1/px éos[px - (C+1) ﬂ/Q] (15), hence the boundary condition
ies pR =nl/2 . The number of eigenstates in a volume element

dp of momentum space is then

R/m dp = 2/mN® p?® dp (A-9)

The expansion of the field amplitudes in terms of the set



- 81 -

(A-8) has the form
PN m 1 /
qﬁq(x) = p%m N/V20y, (=) § (px) Ydmﬂx) [&q(pflm) + oq(meX (4-10)

Whereas the operators aq(i)’, dZ‘ﬁ) served to annihilate and
create mesons whose space dependence was that of a plane wave,
the operators in (A=10) annihilate and create mesons with a
space dependencé corresponding to spherical waves. Thus
aq(me) anmihilates a meson of momentum magnitude = p, angular

momentum magnitude sy , and z-component of angular

T
o
q
z-component of angular momentum = + m . The choice of phases

monentum = - m ; (plm) creates a similar meson except with

of these operators is such that they behave as irreducible
tensors in the sense of Racah(lQ) under rotations in both space
and isospace. Under rotations in 1sospace %q(?) behaves as
the g-component of a tensor of rank 1 since the m-mesons

are members of an isotopic triplet 3 in the expansion (A-10)
this property is preserved by having aq(pqm) , dg‘p@m) ,
behave as the q-component cf a tensor of rank 1 under such
rotations. Under rotations in space ¢q(?) behaves as a
scalar since m-mesons are pseudoscalars § 1n the expansion
(A-10) this property is preserved by taving aq(p(m),

d;(me) behave as the m-component of a tensor of rank ¢

under such rotations - hence the scalar product
m t
)Py g S -
%; (=) ¢, -n Elq(p(m) 4-aq(p m) (A-11)

behaves as a scalar under such rotaticns . The pseudoscalar
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nature of the m-meson manifests itself in the fact that
a—q(pﬁm) , a,tl(plm) behave ag pseudotensors under inversions
in space . Lastly, our choice of phases implies that the
hermitian conjugate of aq(p@m) ig (-)0 ojq(p@m) . We note

that in this notation the only nonvanishing commutator is

C S gt O 1 O

Q,=-G' °m,-m’ "4, '

(A-12)

t 1t 31 q o
[aq(p@m), aq.(p ') = (=)7(=) b,p
Comparing (A-10) and (A-3) we see that the annihilation

and creation operators in the two expansions are related by

=

L ikx
2 1//Vo, aq(k) e = 2 N//_— ()" J (px) X (%) aq(plm)
£ ‘ pem “m(a13)
L -1kX
> 1y A (®) 6 = 5 N//Bey (<)) (px) ¥ (Q) & (on)
k pdm -m (A-14)
Now
1(k-k')-%
[ e qx =V STE,IE' (A-15)
and
-1kR .
[ e 3, (px) ¥ (&) &x
( -m

il

oo £ ¢
by Z (-i) [ 3 (k'x) 3 (px) x® dax .
('=0 m'=- . L L

Y (4) [ L)X () an

¢'m

L =2
= 4 - -
7 (<) N r (8) Sk.,p (4-16)
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because

[Y ()Y (0 ae=5 §
L'q!

(A-17)
t-m ¢, m',-m
and.
-2
[ 3(x'x) 3,(px) x* ax =N § (4-18)
k',p
-1k
Hence if we multiply both sides of egs. (A-13,14) by e
and integrate over B3 using eqs. (A-15,16) we obtain
N ¢
a (k) = 2 4m/NA (-1) (- ¥ Q) a_(pfm) S (A=19)
o} pim ‘ ¢ -m q k,p
T ¢, T
a (k) = & 4m/NAV (1) (=) ¥ (Qk) a (plm) Sk (A-20)
q plm ¢{-m Q s P

We now want to introduce (4-19,20) into (A-5,6) and perform

-3 -
the required summations over k and k' . As a consequence of

(A-2) we see that the summation over a discrete spectrum can be

replaced by integration over a contlnuous spectrum according to

% = V/(en)® [ dk =V/(2n)® [¥® ak [ 4Q, (a-21)

On the other hand from (A-9) we have

2 —2/mN® [ k® dx (A-22)
k

hence we conclude

2 > /)t T [ e | (4-23)
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Using egs. (4-19, 20, 23) in eq. (A-5) we obtain

H = VN®/(4%)3 4 (-)%
e s M Y (@) o (plm) S,
pl:}'l ’ (-1 q k’p

Vol

. {
2/ (P T @dage'ea) s,
p T h

Ll
— S (-2 (o) + - )
= p%m wp%( )7 (=) aq(me)a_q(pQ m) (A-24)
since
m 2
[ % ¥ () Ytufﬁ}{) = (=) S“, S, -m (8-25)

Eq. (A-24) 1is equivalent to eg. (10) in the text.

Next we use eqs. (4-19, 20, 23) 1in eq. (A-6) . For the

term proportional to £f° we find :
o/ = N/ /o, v(k) @ 1k 2 ()T (4-26)
r 2! k a q

¢ Lt
FANOLNEY 295, [ (ota) - (Vg (et)]

(-] q m(\« T
= ) TS )y 20T ) Falty o) +d (s1om)]

where Gh, m=-«1, O, 41 , 1is related to S ., %= 1, 2, 3,



- 85 -

in the same way as ¢ is related to ¢L (eq. 9), the a's
a
being the standard Paull matrices . Thus this term is respon-

3ible for the interaction with the nucleon of mesons in the

P.state only.
For the term proportional to 1: we find :
o a t
X2 % (-) %. [ aa agr v(k) v(k')//o o r

t ('
Zowe/m)® P oY oy @) v ) S S
plm l-mk Q'..m.'k k,p 'k ’p'
pem’

L
{Oq(pﬁm)a_q(p'q’m') + (=) aq(pfm)afq(p'e'm') +
()t (ot (@' C'a) + (<)% o (pln) o (0'¢'a' )]
-Q_qpm _qp m ) + (- aqpmqqp m
=N 2 W/ w(p) v(p' )Mo w2 (-)° (a-27)
° rp’ s q |
- u +
o g®lag ') wa (e)a (') +a,(p)a (p) +a (@) (p")]

where &b(P) Etxq(poo) .

Finally for the term proportional tc X° we find in an

analogous manner
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N/ Z, Wk ) i)/ o
{lo, - o0 T ey a2 d o)
+lo )+ @) Zq‘Cq [ar(p) oj;(p') - as(p')ofr(p)ﬁ (4-28)

(¢, r, 8 = cyclic permutations of -1, O, +1)

Thus (A-27, 28) 1s responsible for the interaction with the

nucleon of mesons in the S-state only.

The sum of (A-26), (A-27) and (A-28) is equivalent
to egq. (11) 1in the text.
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APPENDIX B

We wish to eliminate from eaqs. (57) and (58) the de-
pendence on the magnetic quantum numbers since they describe
merely the geometry and not the physics of the problem. It was
Just for the purpose of eliminating the magnetic cuantum numbers
that the quantities F, E, M, N and U were introduced

because they are scalars.

We present the proof that Mr(s) is a scalar - the proof
is the same for F, E, N and & . Consider the defining

equation (53) :
Logssli,(e)|BpRrg> = <Logse |m', ojg(r)—ﬁ\Bp (53)

where we write out in detail all the quantum numbers in isospin
space but ignore the quantum numbers referring to the angular
momentum - we shall carry out the proof for isospace only,

the methed 18 the same for regular space. In this particular
case C=3== and S =R =1 but we carry out the proof in
general, independent of numerical values. The left hand side

of ea. (53) may be written as
{ogselu, (s)|BpRSD

= TET—‘T‘ (CSgc\CST*c) »(BRP@\BRT'T') <TT!I«Ir(s)th-g|>
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_ T+T+T4+7"
= 2 (=) /2T41 /2T'+1 V(CST ;{v-T)

v(BR' ;po-t') <T‘U\Mr(s)\'l"‘t'> (B-1)

where (GSgw{CSTt) is the standard vector addition coefficient

(16)

as defined by Condon and Shortley and where V(CST;ﬁrJ?) is

again the vector addition coefficient but with phase and normal-

1zation as defined by Racah(lo) .

On the other hand the right hand side of ea. (53) may
be written as follows : we observe that H' 1s a scalar and
therefore the tensor properties of the commutator [H', a;(r)]
are the same ag those of Q‘\;(r) . But the latter has been 80
deflned as to behave as the g—component of a tensor of rank
R (=1) under rotations in isospace. Therefore, as shown by

Racah

<CES<3[H', a"g (r)]\B(D
T+T

=2 () /AT vestipen) <o\l ap (el Bp)
T<

= 5 (-)°R

: Y2T+1 V(GST}'{«".“C) V(BRT; (}f-ﬂ @\\[q',o&rﬂ“ B> (B-2)
T

1—
where <T\\[H‘, o (‘-"B “B> is the reduced matrix element of
+
<T‘C‘[H', O‘? (r)]l BC>> as defined by Racah - 2 quantity inde-
pendent of all magnetic quantum numbers . Comparing (B-1)

and (B-2) we conclude that
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avprolred =8 Sqq. )’ (- &l d = e>
(8-3)

Thus Mr(s) connects only states with the seme total isotopic
spins and the same 2z-components 3 also <§Ter(s)l'rT> is
independent of all magnetic quantum numbers. Hence Mr(s) is

a scalar.

Having established that F, E, M, N and % are scalars we
proceed to the elimination of the’magnetic quantum numbers and
deal flrst with the angular monentum magnetic quantum numbers.
Suppressing the isospin dependence and writing out expllcitly
the angular momentum dependence we find that the various states

in eas. (57), (58) become :

A7 =|arS =|2d)

8% =|BrY =|Bs) =|BRS) =|BsR> =|24'>

oy =lorY =losy =|oxy =|esw) =|oxs) =|oxR) =[2 >

Ay =larLy =[x LX) = 5 ()" ar V(T30 A -3) (3D

I+
oLy =|cELY :.-l.:. VIV D = % ) " V(217" N -2) \JJ) (B-4)

Using (B-4) we have for eq. (57)

J+]
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(7RI w1 N-) B [N G2y <Ry )

\]
KJJ OJr"'(D

8
e R A T AT PR LN VRS TUL MEDIE PO
K‘JJ Wy + ws

s (=)7*HI/BFT v juat-g) L2yt (M) 2 )0 L2yt 7, (e, )] 35D
kg7 O = Op - 1€

s AR e ea-n) Gl e e 01D Gyl 3
kg ) P + @

r
(B-5)

Taking into consideration that F, E, M, N and CT are

scalars, eq. (B-5) reduces to
5*%' T t 1 t e G | ) 1,8
()7 2 Vs ('[RG O[3
= P v )
L apin @l Grielapye, + o,
UL HPECT ERCHEEDZCREER
Lty N L 1t

RACUERC HPIE I EACAN HPZCEE

- Z Gyl Ul 3D | | 2/ oy @) (B-6)
All the matrix elements in eqg. (B-6) are independent of

magnetiec gquantum numbers.
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Abbreviating
<§x'\¥{§x’> by ¥ (B-6")
we have

P (r,0) = [N (8) U(1) - B(0) N_()]/(a, + o)

+ (B-7)

mk - @, -ic mk + ®

5 M (k) Fg(k,Q) E_(k,0) N_(k)
k r

Eq. (B-7) 1is of the required form, i.e. 1t is eq. (57) with

the angular momentum quantum numbers eliminated.

In the same fashion we obtain from eqg. (58)
B(r,0) = [M,(s) 8(Q) - 6(0) M ()] /(0 - @ + 1e)

-ZiES(k’Q) M (k) Nr(k)* Fs(k,Q)}
X

+ (B-8)

@ =t
Kk mr+ie wk+mr

Next we must dispose of the 1sospin magnetic quantum
numbers. Reintroducing the suppressed isospin dependence,

eq. (B=-7) reads

{2811| F_(r, )| 212y
-1

= (0p + o) Zg%{5@1«13\1\1]?(8)&&){5&\%(Q)Eotl¥>

- EIB (O] 200 genglw () gog}
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-1, . 1
- kz‘;({(mk-mr-ie ) <;Xlk¥( Mr(k)l ;(&19> <;Xlnl«~[ Fs(k,Q )\ ;&1)\>

-1
+ (o4 ) <§91¢\Es(k,€l)\ﬂlxnxgxlxlg\nr(k)\g«)} (B-9)
and eq. (B-8) changes similarly.

To specify completely states consisting of a nucleon and
two mesons it is not enough to specify the total isospin and
its z-component. We must in addition specify the isospin and
its z-component of the subsystem consisting of the nucleon and
one of the two mesons. We introduce the convention of forming
this subsystem always with the meson whose symbol appears next
to the symbol for the nucleon in the expression for the state
vector of the system. Thus for the state <<§91§1¢\ we
form the subsystem with meson R j for the state <§@1W13\ we
form the subsystem with meson 8 j etc. . Then the varlous

state vectors appearing in eq. (B-9) Dbecome

1 +0C' 1 ' ' 1!
| 2524100 = Z (=) /AT V(R he-vt) |7'<' 10>
Tl+,cl
== (-) /21741 V(21T';pp-T')
T+t
TZ (-) /AT V(e'1T ' e-T) lT‘l’(T't' )y  (B-10)
T
T+T

2.A0N) = 2 (=) /2741 V(21T ;0\-) TT ) (B-11)
= T a= !

etc. . The symbol th(T'r'f> denotes a state of the system

of nucleon and two mesons with isotopic spin T (z-component <)



- 93 -

formed from a subsystem of nucleon and one meson with isotoplc

spin T' (z-component T').

Making use of egs. (B-10, 11) eg. (B-9) becomes :

L] L}

T
2 (=) (2T+1) /2T741 V(21T*{pg-T') V(T'1T;T'w-T)
Tt 3

V(LT 0T ) <Te(T' )| F_(r,0)[Te)

-1
(apro,) {Z g e ) () 24O 30>

f
=M

Tl etl
-(-) * 2/2T 41 V(ng»' ;Qr—“c') V(T'li:;"c'g-\{) V(glg ;otk-[)

- %;->lw+@<g¢\e(a)\g(sxgm'«t' Hea(e) |2 )

T'+T'
-(-) ’ 2/2T7+1 V(311" 5c-T") V(T'12{T'p=x) v(gl.:.;gk-p)}

-1 't
-Zk(mk—wr-ie) “Z‘ (=) * (27+1)(2T" 41 )/2T T+1
‘ER

Ty TT
-<T"rc"\Mr(k)lT"-c“5< TT(T' ¢’ )\Fs(k,l NEEPRLESLAFTVELSY

* V(ELT" 5p¢-T") V(21T' - ) V(T'1T§%e-T) V(217 jad-T)

S T+ T s ' 4 ot

-1
-gk(mkwr> ‘I"x"T:t‘TT(-) 2 (T4l 2T 15T "+2)

<reles (e, Ol Te(r'e D ()| r (6)[ 2 ) V(LT pe)
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V1T’ jfe-T’) V(T'1T5T'A-T) V(E1T" spn-t) V(T'1E5Tp-d)  (B-12)
where we have made use of the fact that F, E, M, N and ¥ are

gcalars. All the matrix elements in ea. (B-12) are independent

of magnetlic quantum numbers and we abbreviate them as follows:

<rr('et )lFs(r,Q )| me) = FzTEr,é) (B-13)

(ay('e! )\Nr(s)\ i = (->T'-§/Té'T"TT77'é Niés) (B-14)
4.;.-@%(«)\&); () (B-15)
e\ (k) | T = Mr?k) (B-16)

<Toc\Es(k,ﬂ YT (T'e)) = E’:%l'z,l) (B-17)

etc.. (The normalization in definition (B-14) 1s chosen
for later convenience). The meaning of the superscripts is
as follows:

Where two superscripts appear the first indicates the
total isospin, the second indicates the isospin of the sub-
system formed with the meson g?ose symbol appears first
inside the bracket. Thus F:(r,Q) Indicates the transition
amplitude between two states of total isospin T , with the
two-meson state formed by coupling meson R to the nucleon
to obtain an isospin T' and then coupling on meson S to

T t
obtain the isospin T. ESTK,() indicates the transition

amplitude between two states of total isospin T, with the
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two-meson state formed by coupling meson K +to the nucleon
to obtain an isospin T' and then coupling on meson L to
obtain the isospin T.
‘here one superscript appears %3 indicates either the
total isospin of the system as in Mr(k) (here meson R
and initial nucleon, as well as meson K and final nucleon,
couple together to give isosgpin T"), or the isospin of the
subsystem as in Ni(s) (here meson S couples with the
nucleon to give isospin T' and then meson R 1is coupled
on to give always the isospin §)r
The only dependence on magnetic quantum numbers
remaining in eq. (B-12) is in the V-coefficients and is now
eliminated by making use of various symmetry and orthogonality

properties of the V—coefficients(lo).

The V-coefficients have the following well known sym-
metry propertles:
a+b-c a+b+c

V(abejdpy) = () V(vac;pag) = (=) V(acbsagp)

a-b+c 2b
(-) V(cbaifpﬂ = (=) V(cabjy«p)

Il

- 2¢ a+b+c
(=) V(boa;exa) = (=) V(abej-2-p-f) (B-18)

They also satisfy the following orthogonality relation:
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e’ 24

Products of three V-coefficients may be expressed in terms of

;v(abc sd(%{) V(abe' 3&(5~6-') Y S . /(2c+l) (B-19)
g

the Racah coefficient W by the following relation:
f+?
2 (=) 7 V(abejup-c) V(afecj-aqy) V(£pa;j9p-5) =
oLQ‘e
b4c-a~-d+e+€E ’ ,
(-) W(aefd be) V(edc;-e%%? (B-20)
Finally, 1f eqs. (B-19, 20) are not immediately applicable
it 1s sometimes useful to recouple some angular momenta by
using the relation:

Z(-)MG V(abe;d?-e) V(ed05eg-f) =

f+o .
Z (=) 7 (2f+1) V(afcidg-g) V(baf;pd-q) W(abedjef) (B-21)
fe |

Using egs. (B-19) and (B-21) we rewrite eq. (B-12) as
follows:

T‘-FC‘ TT' 1 1 \ !
Z (=) (2T41)/2T%L F_(r¢) V(31T;per) V(T1T;TeT) V(21T ;AT)
TT,T"C‘ 8 ] 2 3

T+T-2

-1 2 T
=2 (o _+0_) {Z (-) 2 /5 (27+1) N_(s) 8(Q)
\6 r s Te r

V(31T jpe-T) V(T1ZTp-y) V(212 5dA-Y)
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T+T+T+- oL+

7'
- 2 () /2(2141)(27%1) B(L) N (s) W(212151'T)

TrT'
.v(§T§ 5{T-«) V(11T 3Tp=-T) V(-:-l-;: gﬂ-(s) }

T'4T' T' % TT'
S (oo 1) Z(0) T (2nel)/ETRL U (E) B (kL)

k , T'c*'c

V(217" 5pg-T") V(T'1T3 T o=T) V(Z1T3«A-T)
-1 T 4ol TT' T
-2 (‘”k‘*"’r) Z (=) (2T+1)/2T +1 E (%, ¢) N.(x)
k Tz T?'
V(21T jpo-T) V(T'IT4T'A-T) V(T'1257 p-ot) (B-22)

Next we multiply both sides of eq. (B-22) by
V(ilx;dl-x) V(?lX’;@p-x') and sum over o,} B, and p. Using
the various identities (B-18) through (B-21) we obtain:

Xax' - oxx XY
(-)  V(x'Xjpx'e-x) (2X'+1) ® Fs(r,Q) = - (=) V(X'LXjx'ex)

-1 T2 T
.{(m s ) & Z (=) *(2741)//2 N _(s) &(0) w(T3iX';11)
r X, T r 28

L

X+X' -1 T+T'-2
+ (=) (@ 40g) % (-) 3 /2(2T+1)(2T"+1)

§(0) N _(s) W(ELEL5T'T) W(EXEL{IT) W(TXAX' j31)

-1 - x xx'
+% (0p-c.-1€)  (2X'41) 2 Mr(k*) Fs(lc,Q)
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] Tt

2X -1
+ (=) %_ (cnk-pwr) TZT'(-) (2T+l)/2‘1"+ Eg (k,¢) N (k)

W(ZXT'T;11) W(TX3X' {11) (B-23)

or, with an obvicus relabelling of dummy indices:

! 7™
F_(r,t) = X EM (- ) *(2T+1)/12T'+157 W(T““‘T :11)

T e pH0g
T Tl l Tm 1
NS R W’ v (s) (. ) 7R (2041 ) (211 )/ETTRE

T“T” ® 0y

»w(‘l*l T”‘T") W("T 1 w"‘) W(T“TlT' 11)

w
> ES(E Q) Nr(k) (2T+1)ﬂ‘_'zm+"1$(—_2w'-'&'1‘7 wclTT"' 511) W(T"T"T 11)
kT"Tm mkm

T' & »
-%Mr(k) Fs(k,ﬂ) /(@p=op-1¢) (B-24)

Eq. (B=24) 1is of the desired form, all magnetic quantum

numbers having been eliminated.

In muecnh the same fashion the 1sospin magnetic quantum
numbers are eliminated from eq. (B-7). The result is

7T
Es(r,(’/) =

1

‘ -1 T*; [T e / T' 1mim?
(ag0+16) (=) /RTTRZ|M (s) B(O) - (e) M (s)]W(aTaT' j11)

Z T! i
- . M, (k) E (x,2) /(mk-znr+ie)
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Z - Tl" “ TnTme .
kTuTm(a)kmr) Np(k) Fs(k: ) (2T"+1)

/2T 1)(2TT+1) W(TT"T"3511) W(T"T21' 511) (B-25)

In eas. (B-24, 25) T and T' can take on the values
% and g, for other values the W-coefficients vanish. Thus
eqs. (B-24, 25) represent four equations each, corresponding
to the four possible distinct combinations of T and T'.

Each set of four equations may be conveniently summarized by

using matrix notation:

i 8
N:‘(s) - N;(s)

Fs(r,Q) =N 9(¢)
Optdg
' (k) F_(x,¢) N (k) E_(k,!)
-Z r 8 +A! r 8 (B-26)
k cok-(nr-ie wk-'-(nr,
i 3
M2 - M3
E(r,():A'_}{-r(S) r(S)e(@)
8 ws-mr+1é
M (k) E (k7 N (k) F (x,4)
"’Z r ) s )+Al r ) s (B—27)
k mk-a)rq-ie D+,

Here Fs(r,(Z) and Es(r,Q) are 4-row, l-column matrices:
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21 11
FBQ EEQ
12 13
FBE’- Eaa
- 3l - — 31 .
a3 as
FBB E32

M (k) and Nr(k) are 4x4 diagonal matrices:
r

2 i
M 0o 0 © N o o0 o©
g 3
O M® 0 © C N° O O
M = N 5 N = 1 i (B=29)
O o0 M®P o© ©C 0 "N*® o
3 3
O o0 o M® 0O O O N®

and finally A' and A’ are numerical matrices:

A 1 2/2 8 4/%

N - 2 2/2 Cop o1 2/2 8 -2/ ./10 (5-30)
911" 9\l s /B 5 2/
/5 2/5 (£ -2/5 &

We note that the crossing matrix [' has the proverty AA' = 1.

Egs. (B-26) and (B-27) are identical to egs. (59) and (60)

in the text.
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