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Abstract

Experiments and calculations were conducted to estimate the stratospheric ozone
depletion potential of a-alumina (aluminum oxide) in solid rocket motor exhaust, such as from
the boosters used by the space shuttle, compared to the HC1 exhausted by the same rockets. The
reaction probability, y, for the chlorine activation reaction CIONO2 + HCl -+ C12 + HNO 3 was
measured on aluminum oxide, glass, 60% sulfuric acid, and Teflon surfaces. The amount and
type of adsorption of HCl, CIONO 2, and H20 was also measured on a-alumina and glass.

The results indicate that alumina and glass have a y of approximately 0.02. These
surfaces were totally deactivated by coating with 60% sulfuric acid. Teflon also had an
undetectable low y. The alumina released from a space shuttle launch would take about 6 months
to activate the amount of HCl released by the same launch. Hence, it is likely for heterogeneous
chemistry on alumina to significantly affect the ozone depletion potential of each shuttle launch
or other solid fuel rocket launches and so it should be included in stratospheric ozone models.

HC1 chemically and physically adsorbs to the alumina surfaces with hysteresis. HC1
adsorption on glass is reversible. H20 adsorption on both surfaces is reversible. CIONO 2 shows
adsorption with slight hysteresis on both materials that may be from hydrolysis with adsorbed
layers of H20 on the surface. It may be that any refractory, hydrophilic material with surface
hydroxyl groups would have similar values of y.

Thesis Supervisor: Mario J. Molina
Title: Martin Professor of Environmental Chemistry
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Chapter I: Introduction

1.1 Review of Ozone Homogeneous and Heterogeneous Chemistry

At an altitude between approximately 15 kilometers to 60 kilometers above the
earth's surface lies the stratosphere. In contrast to where we live in the troposphere, it is
very inhospitable. It can be very dry (-5 ppmv water), very cold (as low as -78 0C), and is
exposed to larger amounts of ultra-violet radiation. Yet, it is very beneficial to our lives
because it is where the ozone layer is found.

The ozone layer shields the earth from ultra-violet radiation (wavelength 240-320
nm). In a continuous cycle, ozone is continually formed, destroyed, and reformed. The
balance between the rates of formation and destruction determine the amount of ozone in

the stratosphere. The first mechanism proposed for this process was by Chapman (1930):

0 2 + hV1-- O + O

O + 0 2 + M-- 03 + M

0 3+ hv 2-" 02 + 0

O + 03 - 202

Thus two ultra-violet photons of different wavelengths are absorbed and are
converted into heat in this process. This heating, in fact, results in a temperature
inversion that creates the boundary between the troposphere and the stratosphere.

The amount of ozone and energy involved in these reactions are very large.
However, there are other important cycles with trace amounts of chemicals in which man
can have an impact. In 1995, the Swedish Academy of Science awarded the Nobel Prize
in Chemistry to Crutzen, Rowland, and Molina. Crutzen [Crutzen, 1971] studied the
impact of nitrous oxides on the destruction of ozone through the following catalytic
cycle:



NO +0 3 -4 NO 2 +0 2

NO2 +O-- NO+0 2

Net: 03 + 0 -) 02 + 02

In 1974, Rowland and Molina [Molina and Rowland, 1974] connected

chlorofluorocarbons (CFC's) to ozone depletion. High energy ultra-violet photons could

cleave the chlorine bonds to form chlorine radicals in the stratosphere. These radicals

could then catalytically destroy ozone through the following cycle:

Cl + O03 - CO1 + 0 2

C10 + 0 ---> Cl + 0 2

Net: 03 + O - 02+ 02

The expectation from homogeneous gas phase chemistry was a gradual decrease

in global ozone as depicted in Figure I. 1. However, during the 1980's, substantial ozone

loss was observed over the Antarctic during the polar springtime as depicted in Figure

1.2. Figure 1.3 depicts how the phenomenon covered larger areas each year. This amount

of ozone depletion could not be accounted for with only homogeneous gas phase

chemistry. The study of the Antarctic ozone hole (Molina et al., 1987; Solomon, 1990;

Abbatt et al., 1993; Shen et al., 1995) lead to the discovery of new chemical mechanisms

that could also destroy ozone.



Global Ozone Trend (60°S-60°N)

1980 1982 1984 1986 1988 1990 1992 1994
Year

Figure I.1. Gradual global decline in total ozone column
measurements [World Meteorological Association, 1994].
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Figure 1.2. Dramatic ozone depletion during polar springtime
[World Meteorological Association, 1994].

Schematic of Antarctic Ozone Hole
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Figure 1.3. Schematic of rapid appearance and growth of the
Antarctic Ozone Hole [World Meteorological Association, 1994].
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Not all chlorine in the stratosphere is in the form of radicals. Nitrogen
compounds can tie up chlorine radicals as chlorine nitrate through the following reaction:

CIO + N02 + M -> CIONO 2 +M

Chlorine radicals can react to form HCI upon reaction with stratospheric methane:

Cl + CH4 -- HC1 + CH 3

These compounds, C1ONO 2 and HC1, are not active in the catalytic destruction of ozone.
Thus, Cl and C10 are called "active" compounds while HCI and C1ONO 2 are called
"reservoir" compounds. The more chlorine is partitioned in active forms rather than the
reservoir forms, the more ozone loss there will be.

During the Antarctic winter, a polar vortex forms. The wind circulates around the
continent and prevents mixing with the rest of the stratosphere. Temperatures drop to
minus 780C. At these temperatures, polar stratospheric clouds (PSC's) form from ice and
nitric acid trihydrate (NAT). Upon the surfaces of these clouds, a heterogeneous reaction
with the gas phase chlorine reservoir compounds occurs that turns them to active form:

HCI + CIONO2 -* HNO 3 + C12

The resulting chlorine gas molecules readily photolyze upon exposure to the first
light rays of spring to form the chlorine radicals. Due to the lack of oxygen atoms in the
weak sunlight, ozone loss is accomplished by another mechanism.

C12 + hv -+ 2C1

2(C1 + 0 3 -- C10 + 02)

CIO + CO1 - (CO1) 2

(C10) 2 + M - C12 + 0 2+ M

Net Reaction: 203 -4 302



Measurements of Ozone and Reactive Chlorine
from a Flight into the Antarctic Ozone Hole
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Figure 1.4. Strong anti-correlation of CIO and 03 levels give
strong evidence that chlorine chemistry is responsible for ozone
hole [World Meteorological Association, 1994].

In addition to PSC's, there is a background stratospheric sulfate aerosol (SSA)
layer. Inclusion of both sources of aerosols have lead to better agreement with observed
ozone depletion and partitioning of NOx (Chipperfield and Pyle, 1988; Solomon, 1988;

Hofmann and Solomon, 1989; Isaksen et al., 1990; Rodriguez et al., 1991; Brasseur and

Granier, 1992; Considine et al., 1994; Solomon et al., 1996). The main effect of the SSA
layer is on the hydrolysis of N20 5 to HINO 3 (Hanson et al, 1994) in the following

important process:

NO2 + 0 3 - N03 + 0 2

NO3 + NO2 4N 20 5

N20 5+ H20 -> 2HN03

After the N20 5 hydrolyzes in the final step, the nitric acid can photolyze to form NO2

again to deplete more ozone.

The anthropogenic injection of chlorine into the stratosphere from solid rocket

motors became a source of serious environmental concern in the 1970's. The possible

threat from chlorine in solid rocket motors, including the shuttle was recognized as part

of the Climate Impact Assessment Program (Hoshizaki, 1975). Solid rocket motors,

including the booster rockets used on the space shuttle, use aluminum powder as the main



fuel and oxidize it with ammonium perchlorate (NH4C104). The third major component

in the fuel is poly-isobutylene, a synthetic rubber, which is the matrix that holds the

powders together in the solid mold. The aluminum forms alumina (A120 3) and the

chlorine is mostly exhausted as HC1. Potter (1978) calculated possible ozone losses in

the northern hemisphere from the shuttle's HCl to be 0.25% and the southern hemisphere

would experience 0.025% to 0.05% for a schedule of 60 launches per year. Prather

(Prather et al., 1990) did an extensive study using only homogeneous chemistry. Each

shuttle launch exhauts 68 tons of chlorine into the stratosphere. The comparable value

for the Titan IV rocket is 32 tons of chlorine, for the Ariane-5, 57 tons (based on Pyale

and Jones, 1991).

Recent work on the shuttle's or other solid rocket motor's influence has

concentrated on local effects from homogeneous chemistry with exhausted HCl in the

rocket plume. Aftergood [1991], hypothesized that there could be significant loss of

column ozone after a space shuttle launch. Model simulations by Karol et al. [1992],

Danilin [1993] and Kruger [1994] predict an ozone loss of less than 10% over any one

point because of the shuttle's curved flight path. McPeters et al. [1991] could not find

any evidence of ozone depletion from a study of the TOMS satellite data taken after eight

shuttle launches. This evidence confirms that ozone losses from the plume chemistry

should be small.

Danalin [1993] concluded that the homogeneous chemistry in the hot, highly

concentrated plume was far more significant than any heterogeneous effect from alumina.

However, this does not mean that alumina is not significant. Most of the globe does not

meet the conditions necessary to form PSC's whereas alumina can exist at any latitude

and temperature. If these particles showed an ability to help activate chlorine for months

after their injection to the stratosphere, their contribution to ozone depletion could be

significant even if their efficiency was much smaller than polar stratospheric clouds. The

most recent available model (Jackman et al., 1996, in press) of the space shuttle's effect

on ozone chemistry makes mention of this, but does not include it in their calculations.

In heterogeneous chemistry, 7 defines the probability that a reaction between two
molecules, A and B, will occur if molecule A collides with a surface which is covered to
some extent by molecule B. To determine the activity of alumina, y must be measured.
Knowledge of the interaction of HCl and C1ONO 2 and H 20 with the surface of alumina is
important to give clues to a mechanism.



Cofer and Pellett [1978] investigated the interaction of H20 and HCI on alumina
surfaces and showed that physical and chemical adsorption takes place. However, the
partial pressures of HCI and H20 used were orders of magnitude above stratospheric
conditions and their experiments were not conducted at low temperatures. This is
because they were trying to mimic conditions within the rockect plume. There is a need
for further study on adsorption properties as well as the value of y.
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Chapter II: Reactivity of CIONO2 + HCI on oa-Alumina Surfaces

1.1 Introduction

This chapter describes the experiments which attempt to quantify the rate of the

heterogeneous catalytic chlorine activation reaction C1ONO 2 + HCl -- C12 + HNO 3 on

the a-alumina surface. This reaction's rate or efficiency, y, is the probability that a

collision of a CIONO 2 molecule from the gas phase onto the a-alumina surface with

adsorbed HCl will result in a chemical reaction to form the products. The value of yfor

this reaction has not been investigated previously by other research groups.

Experiments were conducted under typical stratospheric conditions of temperature

and reactant partial pressures. The experiments were performed in a low pressure - fast

flow reactor, operated at steady state, fitted with a movable injector, and coupled to a

quadrupole mass spectrometer. This technique is similar to that used previously by our

group to measure the reactions probabilities such as C1ONO 2 + HCl and HOC1 + HCl on

ice, NAT, and SAT (Abbatt and Molina, 1992; Abbatt and Molina, 1992b; Zhang et al.,

1994). Control measurements were also performed on the unprotected glass flowtube, the

flowtube with a Teflon sleeve, glass beads, and glass beads coated with 60% by weight

sulfuric acid. The experimental procedure consisted of measuring the C1ONO 2 reactant

decay and product C12 appearance at steady state in the presence of excess HCl vapor as a

function of injector position, and from these we determined the respective pseudo first

order rate coefficients, and then the y's.

11.2 Experimental Details

II.2.1 Forms of Alumina Used

The a-alumina employed in our experiments were obtained in two physical forms-

particles and a cylindrical tube. The particles were obtained from Aldrich Chemical Company

and consisted of < 3 mm diameter sintered pieces (with irregular shapes). The alumina tube had

an ID of 1.2 cm and was smooth and polished.

11.2.2 The Flowtube

All kinetic experiments were conducted in a flowtube as described below:



Coolant Outlet To Baratron

Teflon n Plermn

Tn Piimn

Figure II.1. Fast flow reactor. The main center tube is jacked by a
second one through which coolant is recirculated. Buffer gas and
first reactant enters near the rear while the second reactant enters
through the injector. Solid sample is contained in hollowed out
Teflon boat on the bottom. Mass spectrometer samples output
flow.

Figure II. 1 shows alumina pieces placed within the reactor flowtube inside of a
Teflon boat. This Teflon boat also held the plain glass beads or glass beads coated with
60% by weight sulfuric acid. To use the alumina cylindrical tube, rather than the Teflon
boat, the outside of the cylindrical tube was wrapped with thin Teflon sheet to form a
snug fit with the flowtube's inner diameter. This ensured that all gas flow was down the
center of the alumina tube.

H.2.3 The Extended Experimental Setup

Figure II.2 describes all the equipment attached to the flowtube. Trace gases
(HC1, H20, CIONO 2) could be introduced from several sources. HCI was diluted with
Helium inside of a glass bulb. The total pressure in the bulb was higher than that in the
flowtube itself, so a needle valve was all that was needed to control the flow rate. A mass
flow meter measured the flow rate and reported it to the computer's data acquisition
board as a voltage signal. The HCI mixture was mixed with the main buffer flow before
entering the flow tube. The CIONO 2 was similarly mixed, stored, flow controlled and
measured like the HC1. All gas flow rates were measured by mass flow meters. Water
vapor could be introduced by bubbling helium through water in an ice bath (to obtain a
known vapor pressure) and the total pressure above the liquid was controlled by a needle
valve and measured by a MKS Baratron. A quadrupole mass spectrometer sampled the
flow from the reactor tube and the bulk flow was removed by a large rotary pump.

P%-.I-- 1-1-4
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Figure. 11.2. Schematic of complete setup. Computer monitors gas
inputs through mass flowmeters and controls the quadupole mass
spectrometer. Partial pressures of all species are recorded and data
are presented and stored in useful form.

H.2.4 Mass Spectrometer Construction

The differentially pumped mass spectrometer system is illustrated in Figure 1.3.
The flowtube enters the gap before the first chamber. A 1200 liter/min vacuum pump

line perpendicular to the flowtube removes the majority of the flow. The gas enters the

first vacuum chamber by a pin hole of 0.1 mm in diameter. The first chamber is
evacuated by a Varian diffusion pump capable of pumping enough to maintain pressures

of 1.0 x 103 torr or less when the flowtube pressure is one torr. The expanding gas
stream hits a skimmer cone at the entrance to the second chamber. The second chamber

is pumped by a turbo molecular pump which keeps pressures below 1.0 x 10-6 torr. Thus,
the narrow beam of gas that passes into the second chamber forms a molecular beam. In

this chamber, the gas is ionized by electron impact and is filtered by the quadrupole mass

spectrometer. To reduce any background signal, a chopper chops the molecular beam
and the mass spectrometer signal is demodulated with a lock-in amplifier. This reduces

the background signal by at least a factor of ten.
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Figure 11.3. Schematic of the electron impact mass quadrupole
spectrometer setup. It contains two differentially pumped
chambers. Gas from the flowtube is sampled by a 0.1 mm orifice
to the first chamber which is pumped by a large diffusion pump.
The sample gas forms a molecular beam as is enters into the
second chamber through the skimmer cone. A chopper in line with
the beam, coupled with a lock-in amplifier on the spectrometer's
output signal helps to eliminate background signal.

H1.2.5 Computer Control, Data Acquisition and Processing

The experiment was closely controlled and monitored by an Intel 286 based
personal computer complete with a data acquisition card and software written

specefically for these experiments. The data acquisition card was a National Instruments
LabPC. The card was capable of monitoring and digitizing eight analog inputs and could
control the mass spectrometer by means of one of two digital to analog outputs. Each
mass flow meter was connected to the computer as well as all the baratron pressure
gauges and the mass spectrometer signal. The mass flow meters gave a voltage signal 0-5
V DC linearly proportional to their maximum rated flow speed. The baratrons and the

QUADRUPLE
MASS
SPECTROMETER

SKIMMER

QUADRUPLE
-MASS
SPECTROMETER



mass spectrometer gave signals 0-10 V DC linearly proportional to their maximum

readings.

The software used was built using subroutines from National Instrument's

LabWindows for DOS 2.3. This gave the software a graphical interface much like

Windows or the Macintosh. The code is included in Appendix I at the end of this thesis.

The software was designed with several duties in mind. It provided an easy way to input

data related to the experimental setup without altering the source code. An example

would be changing the CIONO2 source from a pressurized source of known mixing ratio

to a gas flowing through a bubbler of known vapor pressure and a measured total

pressure. Futhermore, it automatically calculated and displayed vital parameters such a

flow velocity and species partial pressures in the flow tube based on previously entered

data.

The software allowed the computer to function as several different instruments

simultaneously while always displaying the important information mentioned above. The

computer could function as a chart recorder to monitor several masses over time. It could

take a mass spectrum and allow the user to zoom in on a portion or pick out the masses

and intensities of any peak. It also had a mode that measures the signal from a single

mass versus an outside variable such as injector position. The software could easily

switch between these modes. For instance, if the operator were measuring signal versus

injector position and suspected that the signal wasn't stable, he could evaluate its stability

by switching to chart recorder mode. He could search for contamination peaks by using

the mass spectrometer mode. When satisfied, the operator could switch back to recording

signal versus injector position mode.
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Figure 11.4. User interface of data acquisition software using
LabWindows 2.3. In this case, the top portion reports gas flows,
pressures, concentrations, and other experimental data in real time.
The bottom panel contains controls to operate the chart recorder.

Finally the software stores the data in tab delineated columns that can easily read
into other programs such as spreadsheets. These can, in turn, be used for further analysis
or graphing.

H.2.6 Experimental Procedure and Conditions

Experiments were conducted in dry helium gas or helium humidified with 3-5 x
10-4 torr of water at total pressure near 1 torr. The partial pressures of CIONO2 and HCI
were in the range of 10-7 to 10-6 torr, which corresponded to typical lower stratospheric
values. The measured first order rate coefficients, determined by non-linear least squares
fitting routine, were corrected for the effects of radial diffusion (Brown, 1978).

The experiment was conducted by changing the injector position and measuring
the reactant CIONO2 signal decay and C12 product signal rise. The mass spectrometer
measured CIONO2 by observing the NO2

+ peak and the C12 by observing the C12+ peak.
The temperatures used ranged from -20 to -750C.



11.3 Results and Discussion

Typical measured reactant decays and product buildups are shown in Figures II.5-
8; the injector position has been converted to time, taking into account the gas flow
velocity. On average, the partial pressures used for each figure are [CIONO2] =
7.6 x 10- 7 Torr, [HC1] = 8 x 10-6 Torr, [H20] = 4.7 x 10- 4 Torr. The temperature for each
experiment was -60"C. Figure 11.5 is from the reaction on the glass flowtube. Figure II.6
is with a Teflon sheeth covering the flowtube and with glass beads in a Teflon boat.
Figure 1.7 is is with a Teflon sheeth covering the flowtube and alumina pieces in the
Teflon boat. Figure 1.8 is from the polished alumina tube fitting tightly in the flowtube.
The value kobs is the result from the non-linear fit to:

NO+ Signal = Ae kobst +C

Cl+ Signal = A(1 - e-kobst + C

From these derived values of kobs, we can calculate the value of y [Brown, 1978]. Note

that glass has a similar activity as alumina. A Teflon sleeve on the flowtube resulted in

no detectable reaction.
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Figure 11.5. Observed derived first order rate constants for N0 2+
and C12

+ signal for C1ONO 2 + HCI on the glass flowtube at -60C.
[CIONO2] = 7.54x10 -7 Torr, [HCl]= 7.46 x 10-6 Torr, [H20] = 4.81
x 10-4 Torr.
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Figure II.6. Observed derived first order rate constants for NO2+
and C12

+ signal for CIONO2 + HCl on Glass beads in a Teflon
boat at -60"C. [CIONO 2]=7.81x10 -7 Torr, [HCI]=7.71x10- 6 Torr,
[H20]=4.57x10 - Torr.
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Figure 11.7. Observed derived first order rate constants for NO 2+
and C12+ signal for CIONO 2 + HCI on x-alumina pieces at -60°C.
[CIONO 2] = 7.56x10 -7 Torr, [HC1] = 8.33x10- 6 Torr,
[H 20] = 4.41x10 -4 Torr.
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Figure II.8. Kinetic results from alumina tube. The pseudo-first
order rate constant from the Cl2 + peak is 46.7 s-1 while the one
from the NO2+ peak is only 35.6 s-1. This is because both reactant
C1ONO 2 and product HNO 3 yield NO2+ under electron impact and
make this curve less reliable.

Due to the challenges of modeling the flow dynamics with alumina pieces sitting

in the bottom of the tube, the reaction rate was measured relative to the value for the

cylindrical glass flow tube for which the flow dynamics are well understood. The Teflon

sleeve was again inserted into the flow tube and glass beads of comparable size to the

alumina were placed in the Teflon boat inside the flow tube. After the reaction

probability was measured, the experiment was repeated with alumina particles. We

calculated the reaction probability of the alumina to be the ratio between the alumina and

the glass beads multiplied by the value for the glass cylinder. Table 1 yields the results.

These reaction probabilities varied very little over the range of -20 to -75 o C.
The addition of water vapor at stratospheric partial pressures of 5 x 10-4 torr also made no

appreciable change. Control experiments on ice films yielded the expected reaction

probability of > 0.1 (Abbatt and Molina, 1992). Control experiments on a 60% solution

by weight sulfuric acid coating the glass beads also showed complete deactivation.

* C2I+

* NO2+



Table 1. Average results from 10 experiments.

<kobs>

<Ymeasured >

Glass Tube

177 ± 18 sec -1

.022 ± .005

Glass Beads

153 ± 10 sec- 1

.017 + .002

a-Alumina

138 ± 11 sec-1

.014 ±.002

Ya-alumina =- Yglass * Ya-alumina, measured =.019.005
Yglass beads, measured

The same experiments were repeated on a smooth a-alumina tube when one
became available. Experiments were conducted in dry conditions below that of the

stratosphere. Each consecutive run of the experiment resulted in a lower value of y. This

could be from depletion of water on the surface of the alumina or from poisoning the

surface with nitric acid. Another set of experiments were conducted using stratospheric

levels of water and nitric acid (5ppmv H20, 5ppbv HNO 3). Table 2 summarizes results

from data taken by Roger Meads. The y values did not decrease as under dry conditions.

Therefore, availability of water on the surface is important and poisoning of the surface

by nitric acid appears to not be significant.

Table 2. Results from kinetic experiments on smooth a-alumina tube.

Consecutive Run # _Dry H20 (5ppmv) + HNO3(5ppbv)

1 0.025 0.023

2 0.015 0.019

3 0.010 0.022

4 0.007 0.017

5 0.007 0.016

Average Results 0.013 + 0.008 0.019 0.003

The glass flowtube, the glass beads, and the alumina pieces did not show great
sensitivity to water, but the alumina tube did. This may be because the alumina tube had
less than half the total surface area of all the other materials, but had the same flow rates
of chemicals over the surface. Thus, the surface could be depleted of its adsorbed water
much faster than the other surfaces. The dependence of y on water is important evidence

1



for our mechanism theory that hydrophilic surfaces with adsorbed water will catalyze this
reaction.

Althought the values for y for the alumina pieces and the alumina tube under
stratospheric conditions agree well within experimental error, there are differences
between the surfaces that should be discussed. There are reasons that could make the
value of y to be different between the alumina pieces and alumina tube. The alumina
pieces were irregularly shaped from the mechanical crushing that produced them. The
crushed alumina pieces could have highly activated lattice sites that are not present on the
smooth alumina tube. This is noteworthy because the alumina from solid rocket motors
could have many of these activtated sites.

The experiment to determine y on alumina pieces was vulnerable to unknown

flow dynamics and diffusion. The glass beads were smooth spheres. Thus, the
irregularly shaped alumina could have a higher surface area than the same amount of

glass beads in the Teflon boat. Therefore, when calculating the ratio between the value

for glass and the value for alumina, a higher surface area than expected would result in a

higher calculated value for y on alumina. Also, it could take longer for the gas to flow

through the irregularly shaped alumina pieces than the glass beads. The longer residence

time would result in more reaction and thus a higher value for y. However, these effects

could be mitigated by failure of the gas to diffuse below the top layer of the alumina.

Because the values for y for stratospheric conditions on alumina agree well

between Tables 1 and 2, the effects discussed above are either small or cancel each other

out. Chapter V dicusses future work using powdered alumina that would not be as

vulernable to flow dynamic and surface area affects and would be a better test for the

presence of highly activated sites.

It should be noted that these reaction probabilities were determined from the rate

of product rise using a non-linear least squares fit. Both CIONO 2 and one of the

products, HNO3, yield NO2+ under electron impact ionization in the mass spectrometer

with slightly different ionization efficiencies. Thus, even with complete reaction, the

reactant signal levels off above zero. This made the reactant decay curve unreliable, so

the product rise curve was used instead.

Figures 11.9 and II.10 illustrate this phenomenon. In both graphs, the injector is

pulled back the same length. In figure 11.9, we see that the chlorine product appears

instantaneously. However, in figure II.10, we see that the N0 2+ peaks first dips strongly



and then rises a bit. This is consistent with C1ONO 2 being rapidly depleted by reacting

on the surface to form HN0 3 followed by saturation of the surface with HNO 3 and then

HNO 3 degasses.
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Reaction between CIONO 2 and HCI on alumina seen
Chlorine production rises instantaneously to a new
level as the injector is pulled back to increase reaction
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Figure II.10. Reaction between CIONO2 and HCI on alumina
seen over time. The more complex NO 2

+ signal indicates depletion
of CIONO2 and buildup of HNO 3.
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Chapter III: Adsorption Experiments

III.1 Introduction

In order to better understand the mechanism of the heterogeneous reactions under

study, the uptake and release on alumina of HC1, CIONO 2, and H 20 was studied.

Chemical adsorption rather than physical adsorption would support the idea that this

substrate does indeed influence the chemical pathway of reaction.

111.2 Experimental Details

IH1.2.1 Synthesis of CIONO2: Reaction of FCI with Pb(NO3)2

The synthesis used was patterned after SchmeiBer et al. (1980). A stainless steel

vacuum line was assembled in a fume hood as pictured in Figure III. 1. A known amount

of lead nitrate was added to a stainless steel cylinder with a valve on the end. The valve

end was attached to the vacuum line via a stainless steel bellows and the whole line was

pumped down. Next, the lead nitrate line was closed off and the FCl source was opened

and the line pumped down. After closing off the vacuum pump, the regulator to the FCl

tank was briefly opened to passivate the line including the stainless steel beaker

reservoirs. After closing the regulator, the line vacuum source was reopened and the line

was pumped down again. This process was repeated. Then, with the vacuum source

closed off, the stainless steel beaker reservoirs were filled with approximately one

atmosphere of FCl and the FCl source was then closed. The valve to the lead nitrate

cylinder was opened and the cylinder was placed in a dewar of liquid nitrogen to draw in

all of the FC1. After the pressure in the line dropped to only a few torr, the valve was

closed and the vacuum line pumped down. The lead nitrate cylinder was then place in a

dewar in a dry ice/acetone bath for several hours. After reaction, the cylinder was briefly

pumped down to remove any FCl or C12 present. The CIONO 2 was then transferred over

to a glass receptacle by vacuum distillation with the glass finger being kept at -70'C and

the steel cylinder being kept at -30°C. The drawback of this process is that side products

in the form of chlorine oxides are clearly visible. The oxides are only slightly more

volatile than chlorine nitrate and must be removed by careful vacuum distillation. Some

of the CIONO 2 used was synthesized by reaction of C120 and N20 5 as reported before

(Molina et al, 1977).



Pressure Gauge

Figure III.1. Stainless steel vacuum line for synthesis of CIONO2.
FC1 is condensed onto Pb(NO 3)2 in the first cylinder and then
warmed. Upon completion, product is vacuum distilled over into
the cold finger.

III.2.2 Surface Area Determinations

The surface area of the a-alumina was measured by BET (Brunauer, Emmett, and Teller,

1938) using Krypton gas. Krypton gas filled a reservoir and vacuum line of known volume with

a range of pressures measured by a high accuracy, low pressure MKS Baratron. The alumina

sample was held in a glass container which was immersed in liquid nitrogen. The valve from the

Krypton gas to the alumina was opened and the pressure drop upon equilibration was measured.
The volume of gas adsorbed at each pressure was determined by comparing the drop in pressure
to the drop in pressure expected with no adsorption and correcting for the volume of the alumina.
The volume of the alumina itself was determined by weighing the sample and dividing by the
density provided by the supplier of the alumina, Aldrich Co.

IH.2.3 Flowtube Construction

The flowtube used was the same one as described in chapter II (Abbatt et al,
1992a, Abbatt et al., 1992b, Zhang, 1994). However, in this case, alumina or glass beads
were placed along the entire length of the flowtube rather than just in a Teflon boat.

III.2.4 Mass Spectrometer Setup

A new experimental setup was built to do the adsorption experiments. Rather
than a pin-hole, the gas was sampled by a 1/4" OD glass tube that was connected to a

ar



1/16" ID SilcoSteelTM tube that is glass coated on the inside. The capillary tube was

positioned to aim at the electron impact grid. A diffusion pump equipped with a

cryrotrap eliminated most of the oil peak background.

FI FrTPN

FLOWTUBE
OUTLET

QUADRUPLE

CAPILLARY
TUBE

SIGNAL
OUTPUT

PUMPROTARY
PUMP

Figure 111.2. Mass spectrometer system was a single chamber
design. A small tube of 1/16" ID sampled the flowtube and
delivered the gas into the chamber where the mass spectrometer
was located.

111.2.5 Experimental Procedure

For adsorption studies, the buffer stream consists of pure He and the trace gas

flows down the injector. As the injector is rapidly drawn back, the signal drops sharply

as the gas adsorbs onto the surface of the solid. After some time, the signal returns to the

its previous position as the surface equilibrates. If the injector is then pushed to its

original downstream position, the mass spectrometer signal increases as the gas desorbs

from the surface and then gradually decreases to the equilibrium position. By measuring

the integrated difference between the mass spectrometer signal and its equilibrium

position, we can determine the amount of gas adsorbed or desorbed.



HCI

The HCI source was a pressurized cylinder of HCI in grade 5 He purchased from
Matheson Gas Co. Analysis of the mixture by Matheson Co. determined that the HC1
mixing ratio was 0.075%. The regulator on the tank was constructed of monel alloy. The
equivalent flow rate from the tank at STP was between 1 and 10 cc/min. Before entering
the injector tube, this flow was diluted by at least a factor of ten. The total flow in the
flowtube was the equivalent of 500 cc/min at standard temperature and pressure (STP).
The pressure in the flowtube was maintained at approximately 1 torr. Thus, the absolute
pressure of HCI in the flowtube for adsorption experiments was between 1.0 x 10- and
1.0 x 10-5 torr. A survey of the various possible peaks determined that mass 36 from the
HC135 parent ion was the strongest signal.

The first experiment was to measure the uptake of HCI on the glass flowtube
itself. This was done for two reasons. First, it would determine the background
adsorption level of interference that we would have to compensate for when doing our
experiments with materials in the tube. Second, it would give us a value for the
adsorption of HCI on glass which would be useful for later comparison with alumina.

At each temperature and pressure, the injector was pulled back and measurements
conducted at a variety of injector distances. Because the inside of the flowtube is a
smooth cylinder, the adsorption of HCI should be linear with the distance the injector is
pulled back. Thus, a linear regression of the adsorption versus injector distance was used
to calculate the extent of adsorption per unit area, i.e., the surface coverage.

This result was compared with that obtained by placing glass beads in the bottom
of the flowtube. The glass beads were smooth and 3 mm in diameter, the geometric area
of all the beads was several times greater than that of the flowtube. Because it was
difficult to spread the beads out evenly, the injector was pulled back to the same position
every time to expose the majority of the beads. The amount adsorbed was divided by the
area of the beads plus the area of the flowtube to give the adsorption per unit area.

The surface coverage of HCI on alumina was determined in the same fashion as it
was done for the glass beads. The alumina pieces were similarly placed on the bottom of
the flowtube. Again, the injector was pulled back the same distance every time to expose
most of the alumina.



H20

H 20 was introduced into the system by using a bubbler. A grade 5 helium flow

enters the bubbler inlet tube at a flow rate equivalent to 1 to 10 cc/min at STP and passes

through a small glass fritted filter to form small bubbles in the water. These bubbles

rapidly acquire the equilibrium vapor pressure of water. This temperature was held at 00

C by placing the bubbler in a dewar filled with ice water. A needle valve is located at

the exit of the bubbler at a T joint. A baratron pressure gauge measures the total gas

pressure over the water, which was controlled by adjusting the needle valve. The mixing

ratio of the water is calculated by dividing the vapor pressure of the water by the total

pressure of the gas. From this point, the humidified helium was diluted and handled as

the HCI gas in the previous example. The flows were adjusted until the water partial

pressure in the flowtube was 5 x 10-4 torr, which is same as the stratosphere at about 16

km altitude. Then, the adsorption experiments on the glass beads and alumina pieces

were conducted in the same fashion as the HCI experiments.

CIONO2

CIONO 2 was introduced to the system in the same bubbler device as H20. The

CIONO 2 was placed in a thoroughly dried bubbler. Because the vapor pressure of

CIONO2 is much higher than water, the bubbler was kept in a dewar filled with a dry

ice-acetone slush bath. The partial pressure of CIONO 2 in the flowtube ranged from 1.0

x 10-6 to 1.0 x 10-5 torr.

HCl + H 20, CION0 2+ H 20

To observe the possible impact of H20 on the adsorption of HC1 or CIONO2, all

the HC1 and CIONO2 experiments were repeated with a background water vapor pressure

of 5.0 x 104 torr, corresponding to typical lower stratospheric values.

111.2.6 Procedure for Determining Surface Coverage

To measure the uptake of HC1, CIONO2 , or H 20 on alumina or glass, the

instrument was placed into mass spectrometer mode and the peak of interest was

monitored. It is important to verify the identity of the signal peak for two reasons. First,

the parent ion peak may not be the largest or it may interfere with another signal such as a



pump oil peak. Second, instrumental drift and calibration difference may result, for
example, in H20 appearing as mass 17.5 rather than 18.

Next, the instrument was placed into chart recorder mode. If more than one peak
was to be monitored, care had to be taken to have enough of a delay between samples to
prevent an averaging of the two signals.

To start, the injector flowing the trace gas was placed downstream of the
flowtube. Then, the injector would be pulled upstream to expose the substrate material to
the trace gas. The resulting adsorption would lead to a temporary dip in the signal from
the mass spectrometer until the surface came into equilibrium with the gas phase and the
signal would return to its previous level. Next, the injector would be pushed downstream
again to its previous position. This results in a temporary increase in the mass
spectrometer signal as gas desorbed from the surface. The volume of gas adsorbed or
desorbed was calculated by integrating the difference between the signal and its
equilibrium position.

HI.3 Results and Discussion

Typical adsorption data of HC1, CIONO 2, and H20 are shown in Figures 111.3-6.
Coffer and Pellet [1978] studied adsorption on high surface area powders, reporting their
measurements in mg/m 2. For comparison, we also report our results in mg/m2. The
strong hysteresis noted confirms their observation of chemical adsorption, followed by
physical adsorption. However, our surface coverages are approximately 1000 times
lower. This is expected as a consequence of the difference in partial pressure of HC1
used. Their experiments used more than 1000 times the partial pressure as ours.
Furthermore, the samples might not have had enough time to adsorb. However, Figures
111.3-6 show quick return to baseline signal. Any further adsorption would have to be
very slow and beyond the sensitivity and stability of our instrument. Third, their manner
of preparation to form high surface area powders may also be responsible. It should be
noted that a study of actual shuttle alumina (Coffer et al., 1984) yielded adsorptions of
1/3 of what these authors measured in their 1978 laboratory experiments.
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Figure 11.3. HCl adsorption on a-alumina. Consecutive runs
show strong hysteresis.

The laboratory experiments of Coffer [1978] were meant to simulate the

conditions present in the rocket plume. The rocket plume has many times the water

vapor and HCl partial pressures than the background levels. Perhaps our data is more

applicable to alumina that forms in those background levels, such as alumina from

meteorites or falling satellite debris.

Yet, it should be noteworthy that similar adsorption patterns are observable even

at low partial pressures. In addition, our water adsorption are also completely reversible,

even at lower partial pressures. Glass did not show hysteresis upon adsorption of HC1.
This agrees with Coffer's [1978] conjecture that aluminum oxy-chloride salts are the

mechanism for chemical adsorption. These types of salts are unlikely to occur with silica.

Slight hysteresis occurred with CIONO 2 on glass, but this may due to the hydrolysis of

C1ONO 2 with water on the surface of glass. Our mass spectrometer is not sensitive

enough to detect HOCi at these levels. If glass and alumina do have a sufficient coating

of water on their surfaces, this would also help explain the reversible adsorption of water

that we observed.



- 7.2
5-CI)7.1

6.6

0 100 200 300 700 800 900 1000
Time (seconds)

Figure 111.4. Uptake of CIONO2 on a -alumina for three
consecutive tests. First run adsorbed twice as much as the
following ones. Desorption was always less than adsorption.

The observation of chemical, rather than onlyphysical, adsorption of HCl occurs
on alumina at stratospheric conditions is consistent with alumina having surface sites
with a wide range of activities. Uptake measurements as a function of the partial pressure
of the gas yield adsorption isotherms which provide fundamental information on the
nature of the adsorption process (Adamson, 1990). If HCl formed only very strong
hydrogen bonding with the surface (i.e. 9 kcal/mole), it would result in a coverage of less
than 10-3 of a monolayer (Molina, 1994). The surface coverage observed on alumina is
greater than 10-3 but less than a full monolayer. Thus, the forming of a strong chemical
bonding (18 kcal/mole), such as a Al-Cl bond, is not likely except at highly activated
lattice sights. The nature of the bond between HCI and the alumina must be in the range
of weak chemical bonding corresponding to a range of site activites. This is important
because if the Cl were bonded too strongly with Al, it would not be available for further
reaction.
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Figure III.5 Adsorption of H20 on a-alumina. Unlike HCI or
CIONO2, there is no hysteresis.

Alumina Glass
Initial Adsorption Ave. Desorption Initial Adsorption Ave. Desorption

H20 mg/m 2  0.011 0.011 0.22 0.22
HCI mg/m2  0.0073 0.0024 0.0036 0.0036
CIONO2 mg/m2 0.015 0.0049 0.067 0.032

Table 1. Surface coverage of various species on a-alumina and
Pyrex TM glass.

.



TABLE 2.- REVERSIBLE AND IRREVERSIBLE SORPTION COVERAGES

ON ALUMINA PREPARATIONS

(a) 75 percent H20 saturation in N2

Near-equilibrium Chemisorption coverage
Preparation sorption coverage

mg/g mg/m 2  mg/g mg/m 2

3 32 0.34 12 0.13
4 33 .36 11 .12
6 84 .59 30 .21
7 --- ---- ---

8 510 1.7 96 .32

9 173 .76 22 .097

(b) 75 percent HC1/H20 saturation in N2

aResults from 300, 79, and 34 ppm HC1 expo-
sure data averaged.

(Taken from Cofer et al. (1978))
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Chapter IV: Possible Impact of Alumina at Mid Latitudes

IV.1 Introduction

Chapters II and III of this thesis have established that ax-alumina adsorbs HCl and

catalyzes the reaction:

C1ONO 2 + HCI -- C12 + HNO 3 (1)

with a reaction probability, y, of approximately 0.02.

reaction is given by:

The rate of this heterogeneous

y--S [C1ONO 2 ]4V
(2)

S
where U) is the average molecular speed of CIONO 2 and - is the amount of surface area

V
of the aerosol per unit volume of air. This compares to the homogeneous gas phase

reaction rate which would be given by k[HCl][CIONO2 ] where k is the bimolecular rate

constant. Values for measured upper limits to k in the literature are listed in Table 1.

This means that the acutal value may be lower because no one has yet been able to

measure it. Each experiment reports the lower limit that they could detect.

Table 1.

Upper Limits for the Bimolecular Rate Constant for Reaction 1

(units of cm3 *molec- l.s -1)

k

< 5 x 10-18

< 8.41 x 10-21

< 1 x 10-19

< 8.4 x 10-21

Source

Friedl et al., 1986

Hatakeymama et al., 1986

Molina et al., 1985

Leu et al., 1989

Atkinson et al, 1989<2x 10-20



For the heterogeneous reaction to be faster than the gas phase reaction, it is neccesary
that:

S-- > k[HC1] (3)
4V

An effective first order rate constant for the homogeneous verses heterogeneous
mechanisms with units of inverse seconds could be expressed as:

U S
keffheterogeneous = 4 (4)

keffhomogeneous = k[HC1] (5)

When comparing, for example, aerosol A vs. aerosol B, to determine which one
accelerates Reaction 1 more, aerosol A is more significant than B if:

SA S,
YA "-" > YB (6)

V V

The most recent stratospheric ozone models [Solomon et al., 1996] do not
calculate the possible contribution from heterogeneous chemistry on alumina. Instead,
they focus on other aerosols. These aerosols include the Polar Stratospheric Clouds
(PSC's) and the sulfate aerosols which are present at mid latitudes and low altitudes
(SSA). This is in an effort to account for the underprediction of ozone loss below 25 km
in previous models [McCormick et al., 1992, WMO/UNEP, 1994, and references
therein]. This chapter will examine the relative significance of these alumina particles to
the sulfate aerosols at mid latitudes and low altitudes. An examination will also be made
of another source of stratospheric aerosols, meteorite dust.

IV.2 Heterogeneous Chemistry on Sulfate Aerosols

The best known aerosols for heterogeneous chemistry in the stratosphere are the
PSC's. As sulfuric acid particles move toward the poles, temperatures cool and the
aerosols adsorb water and nitric acid. Eventually, during the polar winter, they form type

I or II PSC's upon which Reaction 1 occurs relatively rapidly. However, these PSC's
only last during the polar winter and only at -200 K or below. Therefore, there other
factors in the ozone depletion in the mid latitudes and lower altitudes that the models are

trying to account for.



Table 2 Values used in Hofmann and Solomon (1989)

Estimated Surface

Altitude, Temperature, H'S0 4, % values" Area, M
2 cm

km OC Measured Theory" CIONO 2  HCI Volcanic Background

15.9 -65 61.0 ± 2.0 62.2 0.0060 0.0045 10 0.25
16.4 -65 62.7 ± 1.7 62.6 0.0040 0.0027 16 0.28
18.0 -65 60.5 ± 4.5 64.2 0.0065 0.0050 38 0.40
19.2 -65 60.5 ± 2.5 65.4 0.0065 0.0050 45 0.58
21.5 -58 73.5 ± 1.0 72.2 0.0004 0.00012 24 0.63
25.1 -53 79.5 ± 1.0 76.7 0.00011 0.000020 5.5 0.39
30.5 -47 78.8 ± 1.2 81.0 0.00013 0.000024 1.2 0.10

"For 5 ppmv HO, [Steele and Hamill. 1981].
bBased on measured H2SO 4 weight %, [Hofmann and Rosen, 1984b].

The rate of chlorine activation via Reaction 1 on SSA's was overestimated in

earlier work. Hofmann and Solomon (1989) published a paper which studied the effect

of the El Chich6n on heterogeneous chemistry. Table 2 contains the values they used for

y for warmer temperatures and higher sulfuric acid concentrations. Figures IV. 1 (Hanson

and Ravishankara, 1994) and IV.2 (Hanson et al., 1994) show more recent experimentally

derived values of y for Reaction 1. It is clear that y drops far below 10- 5 at temperatures

above 205 K. Extrapolating the curves for sulfuric acid to 230 K result in a y of less than

10-11.

H2SO4 (wt%)
45 50 55

Temperature (K)

Figure IV.1. Temperature dependence of the reaction probability
y verses temperature for CIONO2 + HCl -+ C12 + HNO 3. Surfaces
are sulfuric acid tetrahydrate (H2S0 4-4H20 = SAT), nitric acid
trihydrate (NAT), and Type I PSC's, a mixture of water and SAT.
As temperature drops, droplets condense more water and the value
of y increases (adapted from Hanson and Ravishankara, 1994).
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Figure IV.2. The uptake coefficients (y) for CIONO 2 onto small
liquid sulfuric acid droplets due to reactions with HCl (solid curve)
and H 20 (dashed curve) are shown here from Hanson et al., 1994.
The calculation was made with a typical water stratospheric value
of 5 ppmv. The axis across the top shows the approximate
equilibrium sulfuric acid concentration for the combination of
water and temperature. Note that droplets are more dilute at lower
temperatures and have higher y values.

It becomes clear that SSA's are not important for Reaction 1 as previously

supposed if one compares the rate of chlorine activation on SSA's to the upper limits to

the homogeneous rate. To compare sulfate aerosol heterogeneous chemistry to

background homogeneous chemistry at mid latitudes and low altitudes and 230 K, the

following values will be used for Equation 4 and 5: [HCl] = 109 molec/cm 3 (JPL, 1994), y

= 1.0 x 10-11 (from extrapolations of Figures IV.1-2) , k = 8.4 x 10-21 cm3amolec- 1 .s- 1 (the

smallest upper rate limit in Table 1) and S/V of 10- cm 2/cm 3 (the background level in

Figure IV.3):

keff homogeneous = 8.4 x 10 -21 cm 3 molec-1 s-1. 109 molec/cm 3= 8.4x 10-12 S- 1

keff heterogeneous= (1.0 x 10 -11 .19800 cm/s .10 -cm2/cm 3)/4 = 1.2 x 10-16s -1

SSA's are four orders of magnitude less in significance than the homogeneous rate which

itself is too small to be measured. Clearly, SSA's are not a major direct mechanism for

chlorine activation.
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Figure IV.3. Observed aerosol surface areas near 40"N from
satellite and balloon observations in winter 1992, 1994, and 1994.
The SAGE II observations represent zonal and seasonal averages
over the latitude band from 40" to 50*N, while the balloon sondes
are in situ measurements from Laramie, Wyoming (41.3"N). The
error bars indicate the 1-Y standard deviation of the available
balloon observations in each year. Taken from Solomon et al.,
(1996.)

Solomon et al. (1996) examined the effects of the increased surface area of
sulfates due to the eruption of Mt. Pinatubo and concluded that these sulfate aerosols
were significant. The surface increase is depicted in Figure IV.3 and its effect is
represented in Figure IV.4. The SSA impact on ozone depletion is not from direct
chlorine activation, but from affecting the levels of NO 2 by helping to convert it to nitric
acid by the following process:

N02 + 0 3 -+ N03 + 0 2

NO3 + NO2 - N20 5

N20 5+ H20 Hydrolysis on SSA's ) 2HNO3

The reduction in NO2 results in an enhanced role of HOx and ClOx ozone depletion
processes.
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Figure IV.4. Calculated odd oxygen loss rates verses surface area
at 43.5°N near 20km (56 mbar) for 1990 levels of total chlorine
and bromine, for NOx, HOx, and halogen chemistry. Taken from
Solomon et al, (1996).

IV.3 Meteorite Dust

Approximately 1.6 x 104 metric tons of meteorite dust hits the earth's atmosphere

each year (Hughes, 1978). They are made of silicates, Fe, Ni, Al, Mg, and Ti metals and

oxides. Chapter II noted that glass has a y similar to that of alumina. To estimate to

maximum possible impact of meteorite dust to heterogeneous chemistry in the lower

stratosphere, we shall assume that all the material has the same y as alumina.

Figure IV.5 by Turco et al. [1981] presents the complicated physical processes

meteorites undergo in the earth's atmosphere. The dust particles start out small, often

only sub micron size. These ablate in the mesosphere and the vapors condense as smoke

of very small diameters.
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Figure IV.5. Schematic outline of the physical processes treated
in this and earlier aerosol modeling studies. Taken from Turco et
al [1981].
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Figure IV.6. Steady state particle concentrations predicted using a
detailed dust microphysics model. Concentration profiles are
shown for several assumed initial smoke sizes, with the total dust
mass input (versus height) held fixed. Taken from Hunten et al,
(1980).
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Figure IV.7. Total particle surface areas corresponding to the dust
calculations in Fig. 6. The harmonic mean of the surface area for
smooth, solid spheres, and the surface area for loosely packed
agglomerations of spheres of the original smoke size are given.
The crossbars delimit the surface area extremes. Taken from
Hunten et al [1980].
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Figures IV.6 and IV.7 report the results of models by Hunten et al. [1980]. Their

models predict particles on the nanometer size range. This small size would give them a

very long residence time in the stratosphere. Figure IV.7 reports a surface area per unit

volume of approximately 10-9 cm 2/cm 3. This is within one tenth of the background value

for sulfate aerosols in Figures IV. 1 and IV.2!
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Figure IV.8. The contribution (per unit radius) of each particle
size to the average meteor volume fraction of all the particles at
that height. Thus the curves can be used to estimate the fraction of
the total mass which is contained in any given particle size
interval. Taken from Turco et al. [1981].

Figure IV.8 reveals that as the particles descend to lower elevations, they
aggregate. This, coupled with their long residence time, makes them subject to becoming
condensation nuclei for sulfuric acid! Figures IV.9 and IV.10 indicate that the fate of



meteorite dust in the lower stratosphere is to be coated by sulfuric acid. Thus, they are

already accounted for in the SSA measurements in Figures IV.1 and IV.2.
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Figure IV.9. Fractional volume of meteoric
condensation nuclei, and in aerosol droplet cores, as
particle (nuclei or droplet) size at several altitudes.
be interpreted as giving the average composition
particles. From Turco et al., (1981).
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Figure IV.10. Fractional volume of meteoric material in
condensation nuclei plus aerosol droplets and in condensation
nuclei plus cores, as a function of particle size at several altitudes.
From Turco et al. (1981).
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IV.4 Shuttle Alumina

Several papers have been published on the environmental effects of the shuttle

solid rocket motor exhaust and on the alumina's properties (Beiting et al., 1995; Cofer et

al., 1985, 1987, 1992; Denison, 1994; Kruger, 1994; Park, 1976; Strand, 1981; and

others) . Shuttle alumina aerosols are spherical, have a density around 2 g/cm 3

(indicating porosity or a hollow center), and most of the mass is contained in particles

greater than 1 gim in diameter. Figure IV. 11 shows the alumina and chlorine emissions to

the stratosphere from several launch vehicles.

Titan IV

Titan IV with SRMU

Delta II

Atlas IIAS

MM III

Pegasus/Taurus

Shuttle

Ariane 5

H2

23 40 60 80 100

0 20 40 60 80
Chlorine and Alumina particles (tons)

Figure IV.11. Chlorine and alumina particles deposited in the
stratosphere by launch vehicles, per launch. Taken from Brady et
al., 1994.
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Table 2. Number densities of Ambient Stratospheric Particles
(m-3). Table from Beiting [1995]. Data from Zolensky et al.
[1989].

Chon-
Year dritic Silicate Al Al' Fe-S Fe+S CAS Low-Z Other Total
1976 0.010 0.030 0.004 0.018 0.007 0.004 0.002 0.002 0.013 0.089
1981 0.018 0.037 0.037 0.013 0.013 0.005 0.002 0.018 0.021 0.16
1984 0.017 0.22 0.71 0.15 0.051 0.051 0.002 0.27 0.22 1.7

Notes: Chondritic = extraterrestrial origin; Al = Aluminum and alumina components only; Al' = Primarily
aluminum with lesser amount of other elements; CAS = calcium aluminum silicates. Activity and ablation of
spacecraft material produces particles in the classes of Al, Al', silicate, Fe-S, Fe+S, low-Z, and other. Densi-
ties are in units of m73
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Figure IV.12. The number density of large (> 1-gm diameter)
solid particles in the stratosphere, at 17-19 km altitude, at three
sampling time during 1976-1984. Taken from Zokensy et al, 1989.
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Figure IV.13. Number density of large (>1-gm diameter) Al rich
particles in the stratosphere, at 17-19 km altitude, at three sampling
times during the period 1976-1984. Taken from Zolensky et al.,
(1989).

Table 2 and Figures IV.12 and IV.13 show the results from Zolensky et al.,
[1989]. The amount of alumina and aluminum metal increased dramatically in number
and in relation to other aerosols, such as those of extraterrestrial origin. This is due to
man's activities. For example, the shuttle program began launching vehicles regularly in
1981 and each launch deposits 110 metric tons of alumina as shown in Figure IV. 11. The
average number of particles in only 1 per cubic meter. However, given that the number

increased dramatically between 1981 and 1984 and that shuttle launches are still

occurring, that number may be well below the current value. There appears to be no
measurements post 1984.

Figure IV. 14 contains a fit to the size distribution of the alumina exhaust from the
space shuttle. The average diameter, weighted by surface area, is 3.2 gm for the STS
flights. Figure IV. 15: show the number and size distribution of samples taken in the
troposphere after the shuttle was launched. Their peaks around 3 jim agree with the fit in
Figure IV. 14.
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Figure IV.14. Taken from Beiting [1995]. Fits to ambient
stratospheric particle data of Zolensky et al. [1989] and
tropospheric STS plume particle data of Cofer et al. [1991].
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It is of interest to estimate the relative effect of the alumina from the shuttle vs.

the chlorine it emits. Given the previous information, the total surface area of the

alumina per launch is:

110 tons A10 106 g cm 3  1 particle 4n(1.6 x 10- 4 cm) 2

110 tons Al203 '10 ton 2.0g 4
3Yi(1.6x10-4cm) 3  particle

1.0 x 1012 cm 2

The rate of chlorine production with this surface area according to Equation 2 (using

[CIONO2]= 8 x 108 molec/cm3 at 25 km altitude) would be:

19800cm s 8x 10 molec
0.02 9800 81.0 x10 12 cm 2 = 8.0 x 1022 mole

4 cm 3

The time to convert 80 metric tons of HCI to C12 would be:

106 g 1 mole 6.022 x 1023 molec 1 s80 tons HCI -
ton 36.453 g mole 8.0 x 1022 molec

1.6 x 107 s = 6 months

The chlorine gas produced from this reaction would rapidly photolyze to form chlorine
radicals that would catalytically destroy ozone. However, the lifetime of chlorine radicals
is very short because they quickly react with methane to form HC1 which has a much
greater lifetime. Thus, mostly of the chlorine gas produced by the alumina catalysis
would quickly from HCI again. Therefore, the increase in the turn around time between
HCI and Cl 2 can be compared to slowly adding an additional 80 tons of HCI over a year's
time. The net result is a doubling of the ozone depletion potential of the solid rocket
boosters. The alumina particulates appear to be as important as the original injection of
HC1. This result merits the inclusion of heterogeneous chemistry on alumina in models
that calculate ozone depletion from HCI released from solid rocket motors in order to
better calculate the impact.
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Chapter V: Current Direction and Future Work

This work has found that a-alumina does activate chlorine in the reaction

HCl + CIONO2 -* C12 + HNO 3  (1)

with a y value of 0.02. The resulting level of chlorine activation makes the environmental
impact of the alumina significant compared to the HC1 emitted by solid rocket motors-
including the boosters used by the space shuttle. The alumina exhauted from one launch
would take only about 6 months to activate all the HCl released from the same launch.
Therefore, any calculation that attempts to calculate the environmental impact of shuttle
launches or other solid rocket motor launches must pay equal attention to the long term
impact of the heterogeneous chemistry on the alumina particulates. Adsorption of
sulfuric acid or settling out from the stratosphere would be the main sinks for this active
aerosol. Modelers are strongly encouraged to incorporate these results along with the rest
of the heterogenous chemistry they now use.

This work has also found that a-alumina near stratospheric conditions chemically
adsorbs HC1 with hysteresis and reversibly adsorbs H20. It may also chemically adsorb
CIONO2. Glass also adsorbed HC1 but in a much more reversible fashion like H20.
Slight hysteresis of adsorption of CIONO 2 similar to alumina may be due to to hydrolosis
reactions with adsorbed layers of H20 on the surface. Glass also had a value of y close to
that of alumina. However, other materials such as Teflon or 60% sulfuric acid displayed

no chlorine activation. These facts point to the possibility that any hydrophlic substance
with water available on the surface could catalyze reaction 1 with a y on the order of 0.01.

To provide more accurate data for computer models to caculate the impact of

alumina in the stratosphere, more work needs to be done. This work crosses the

boundary of work in the laboratory, in the field, and theoretical modeling.

First, what is the current level of alumina in the stratosphere? The latest data is

over a decade old (Zolensky, 1989). Is there a good prediction of alumina levels in the

future forcasted launch rates? At the same time it would be useful to measure the ratio of

a to y alumina. Previous work (Cofer et al., 198.4) states that shuttle alumina is 72% a
phase while a more recent report (Dill et al., 1990) concludes it is 64% y phase.



Next, we need to repeat the same experiments on the y phase of alumina to see if

it behaves significantly different. Also, since Cofer (1989) measured more highly
chlorinated alumina in shuttle dust than we used, would this affect the value of the

sticking coefficient y? Would more heavily chlorinated samples be more or less active?
Does alumina promote the hydrolysis of CIONO2 to HOCI? How quickly do large

alumina aerosols get coated and deactivated by sulfuric acid?

Our lab is currently pursuing a course of action that can answer some of these

questions. We could do more experiments on more heavily chlorinated alumina.

However, the mass spectrometer described in chapter II is currently being modified to
work in negative ion mode. The sampled gas will be selectively ionized by SF6 that
passes through a corona discharge. This process is more selective because it doesn't
ionize the helium buffer gas and it also avoids ionizing pump oil in the chamber. Thus,
our machine will be more sensitive to more peaks of interest. For instance, we could
more easily see HOC1, the result from hydrolysis of CIONO 2 on alumina. Also, it will be
able to distinguish between HNO 3 and CIONO 2. This will allow repeats of our kinetic
experiments without interference from the HNO3 signal. It will also help us see if HNO 3
can poison the surface.

Because negative ion mode can work at higher pressures, the experimental setup
could be modified to move the buffer gas through a short length of tubing filled with
alumina powder. This would give us greater surface areas and would make adsorption
experiments easier. Experiments could also be done with background levels of sulfuric
acid vapor to try and determine how quickly it coats the alumina particles.

There currently exists work on sulfuric acid condensing on aerosols (Hofmann et
al., 1975; Pollack et al. 1976; Turco et al. 1980) but we would encourage modelers to
better refine their models to the rate of condensation on shuttle aerosols as well a other
aerosols that well up from the troposphere, by eruptions or convection. This would help
us know how much more of the hydrophilic aerosols present could help activate chlorine.

Finally, modelers are encouraged to incorporate of value of y of 0.02 in their
global 2-D models. If alumina does not appear to be significant now, it would still be
useful to know how many launches it would take per year for it to become significant.
That way, we would not be caught unprepared by a long-term growth in satellite launch
rates or other space activity such as building and maintaining a space station.
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Appendix I: Data Acquisition Code

This appendix contains the computer code that runs several of the mass

spectrometer systems in our laboratory. It is included for several reasons. First, it was as
major project as building an instrument. Second, it provides a permanent record for
future graduate students to evaluate if they suspect the computer is making an error in
control, measurement, or calculation. Finally, it provides a road map for future students
who may be ambitious enough to change the program to better suit their needs.

National Instruments LabWindows 2.3 for DOS provides a graphical user
interface for scientific work. Using a visual resource editor, you create a "UIR" file (user
interface resource) which contains the definitions of all menu items, controls, graphs,
colors, etc. Then you write the code that performs your calculations or calls the
appropriate library routines to handle input or output.

This program is called MODULAR.EXE and consists of the following files:

MODULAR.UIR

MODULAR.H

STRUCT.H

MODULAR.C

EDIT2.C

MASSSPEC.C

CHART.C

KINETICS.C

READFLOW.C

DRIVERS.C

DT2801.C, DT2819.C

User Interface Resource Definition.

Contains heads giving labels to all user interface items.

Contains function and data definitions needed for this program.

Contains the main() function.

Code to modify experimental parameters and labels.

Code for mass spectrometer mode.

Code for chart recorder mode.

Code for kinetics experiments mode.

Code to read all flowmeters and pressure inputs.

Code to call any one of supported data acquisition cards.

Drivers for various data translation boards.



/* MODULAR.H*/
/* ======================================== */

/* LabWindows User Interface Resource (UIR) Include File */
/* Copyright (c) National Instruments 1993. All Rights Reserved. */
/* */
/* WARNING: Do not add to, delete from, or otherwise modify the contents */
/* of this include file. */
/* ======================================== */

#define CHARTMENU 0
#define CHARTMENU_FILE 0

#define CHARTMENUFILESAVEDATA 1
#define CHARTMENUFILESAVESETUP 2
#define CHARTMENUFILEPRINT 3
#define CHARTMENUFILEPRINTSETUP 4
#define CHARTMENU_FILE_QUIT 5
#define CHARTMENU_SETUP 256
#define CHARTMENUSETUPCHAN 257
#define CHARTMENUSETUPFLOWTUBPAR 258
#define CHARTMENUSETUP_YLOGON 259
#define CHARTMENU SETUPYLOGOFF 260
#define CHARTMENU_SETUP_CHANGEXY 261
#define CHARTMENU_SWITCH 512
#define CHARTMENUSWITCH_KINETICS 513
#define CHARTMENU_SWITCH_MASS_SPEC 514

#define MASSMENU 1
#define MASSMENU_FILE 0
#define MASSMENU_FILE_SAVEDATA 1
#define MASSMENU_FILE_SAVESETUP 2
#define MASSMENU_FILE_GETOLDSPEC 3
#define MASSMENU_FILE_PRINT 4
#define MASSMENU_FILE_PRINTSETUP 5
#define MASSMENU_FILE_QUIT 6
#define MASSMENU_SETUP 256
#define MASSMENUSETUP_CHAN 257
#define MASSMENU_SETUP_FLOWTUBPAR 258
#define MASSMENU_SETUP_YLOGON 259
#define MASSMENU_SETUP_YLOGOFF 260
#define MASSMENU_SETUP_CHANGEXY 261
#define MASSMENU_SWITCH 512
#define MASSMENU_SWITCH_KINETICS 513
#define MASSMENU_SWITCHCHART 514

#define KINMENU 2
#define KINMENU_FILE 0
#define KINMENU_FILESAVEDATA 1
#define KINMENU_FILE_SAVESETUP 2
#define KINMENU_FILE_PRINT 3
#define KINMENU_FILE_PRINTSETUP 4
#define KINMENU_FILE_QUIT 5
#define KINMENU_ACQUIRE 256
#define KINMENU_ACQUIRE_GETPOINT 257
#define KINMENU_ACQUIRE_DELPOINT 258
#define KINMENU_ACQUIRE_INCREASEX 259
#define KINMENUACQUIRE_DECREASEX 260
#define KINMENUACQUIRE_RESETX 261
#define KINMENU_ACQUIRE_LINFIT 262



#define KINMENU_ACQUIRE_DELGRAPH 263
#define KINMENU_ACQUIRE_CHANGEMASS 264
#define KINMENU_SETUP 512
#define KINMENUSETUPCHAN 513
#define KINMENUSETUPFLOWTUBPAR 514
#define KINMENUSETUPYAUTON 515
#define KINMENU SETUP YAUTOFF 516
#define KINMENUSETUPXAUTON 517
#define KINMENUSETUPXAUTOFF 518
#define KINMENU SETUPCHANGEXY 519
#define KINMENU_SWITCH 768
#define KINMENUSWITCHMASSSPEC 769
#define KINMENUSWITCHCHART 770

#define DYCORMENU 3
#define DYCORMENU_FILE 0
#define DYCORMENUFILESAVEDYCOR 1
#define DYCORMENUFILESAVEBET 2
#define DYCORMENUFILESAVESETUP 3
#define DYCORMENUFILEPRINTDYCOR 4
#define DYCORMENUFILE_PRINTBET 5
#define DYCORMENU_FILE_QUIT 6
#define DYCORMENU_ACQUIRE 256
#define DYCORMENU_ACQUIRE_GETDATA 257
#define DYCORMENU_ACQUIRE_VOLABS 258
#define DYCORMENU_ACQUIRE_PLOTPOINT 259
#define DYCORMENU ACQUIRE_DELPOINT 260
#define DYCORMENUACQUIRE_LINFIT 261
#define DYCORMENUACQUIRE_DELGRAPH 262
#define DYCORMENUSETUP 512
#define DYCORMENUSETUP_CHAN 513
#define DYCORMENU_SETUP_FLOWTUBPAR 514

#define STARTMENU 4
#define STARTMENU_BOARD_SET 0
#define STARTMENUSWITCH 256
#define STARTMENU_SWITCH_KINETICS 257
#define STARTMENUSWITCHMASSSPEC 258
#define STARTMENUSWITCHCHART 259
#define STARTMENU_QUIT 512

#define FLOWSPANEL 0
#define FLOWSPANELCHAN1 0
#define FLOWSPANEL_CHAN2 1
#define FLOWSPANELCHAN3 2
#define FLOWSPANEL_CHAN4 3
#define FLOWSPANELCHAN5 4
#define FLOWSPANEL_CHAN6 5
#define FLOWSPANEL_CHAN7 6
#define FLOWSPANEL_RN 7
#define FLOWSPANEL_VEL 8
#define FLOWSPANEL_SPECIES1 9
#define FLOWSPANEL_SPECIES2 10
#define FLOWSPANEL_SPECIES3 11
#define FLOWSPANEL_TIME 12
#define FLOWSPANEL_TEMP 13

#define SETCHANNEL 1



#define SETCHANNEL_CHANUM 0
#define SETCHANNEL_TYPE 1
#define SETCHANNEL_BARORANGE 2
#define SETCHANNEL_FLOWRANGE 3
#define SETCHANNEL_BULBMIX 4
#define SETCHANNEL_MIXRATIO1 5
#define SETCHANNEL_MIXRATIO2 6
#define SETCHANNEL_MIXRATIO3 7
#define SETCHANNEL_BUBVP 8
#define SETCHANNEL_BUBVP1 9
#define SETCHANNEL_BUBVP2 10
#define SETCHANNEL_BUBVP3 11
#define SETCHANNEL_ASSOCBARO 12
#define SETCHANNEL_FINISHED 13
#define SETCHANNEL_EDITNAMES 14
#define SETCHANNEL_METERTYPE 15

#define SPECNAME 2
#define SPECNAME_SPEC1 0
#define SPECNAME_SPEC2 1
#define SPECNAME SPEC3 2
#define SPECNAME_CHAN1 3
#define SPECNAME_CHAN2 4
#define SPECNAME_CHAN3 5
#define SPECNAME_CHAN4 6
#define SPECNAME_CHAN5 7
#define SPECNAME_CHAN6 8
#define SPECNAME_CHAN7 9
#define SPECNAME_SPECIESBAR 10
#define SPECNAME_CHANBAR 11
#define SPECNAME_FINISHED 12

#define FLOWTPARAM 3
#define FLOWTPARAM_FLOWTEMP 0
#define FLOWTPARAM_RADIUS 1
#define FLOWTPARAM_FINISHED 2
#define FLOWTPARAM_CARRIERGAS 3

#define SELECTMASS 4
#define SELECTMASS_MASSVALUE 0
#define SELECTMASS_INCRBY1 1
#define SELECTMASS_DECRBY1 2
#define SELECTMASS_INCRBYP1 3
#define SELECTMASS_DECRBYP1 4
#define SELECTMASS_FINISHED 5
#define SELECTMASS_MASSIGNAL 6

#define XYRANGE 5
#define XYRANGE_XMAX 0
#define XYRANGE_XMIN 1
#define XYRANGE_YMAX 2
#define XYRANGEYMIN 3
#define XYRANGE_FINISHED 4

#define KINETICS 6
#define KINETICS_GRAPH 0
#define KINETICS_SLOPE 1
#define KINETICS_INTERCEPT 2



#define KINETICS_SLOPEERR 3
#define KINETICS_INTERCEPTERR 4
#define KINETICS_SIGNAL 5
#define KINETICS_INJECTOR_POSITION 6
#define KINETICS_TIME 7

#define MASSSPEC 7
#define MASSSPEC_SCAN 0
#define MASSSPEC_DELETE 1
#define MASSSPEC_SPECTRUM 2
#define MASSSPEC_CURSORBOX 3
#define MASSSPEC X POS 4
#define MASSSPEC Y POS 5
#define MASSSPEC_Cl_LABEL 6
#define MASSSPEC_C2_LABEL 7
#define MASSSPEC_DELTA_LABEL 8
#define MASSSPEC_C1 X 9
#define MASSSPEC_C2_X 10
#define MASSSPECDELTAX 11
#define MASSSPEC_C1 Y 12
#define MASSSPEC C2 Y 13
#define MASSSPECDELTAY 14
#define MASSSPEC_ZOOMIN 15
#define MASSSPEC_ZOOMOUT 16
#define MASSSPEC_RESTORE 17
#define MASSSPEC_RANGEBOX 18
#define MASSSPEC_SWEEPRATE 19
#define MASSSPEC_STARTMASS 20
#define MASSSPEC_ENDMASS 21
#define MASSSPEC_DATAPOINT 22
#define MASSSPEC_SCANBOX 23

#define STRIPCHART 8
#define STRIPCHARTCHART 0
#define STRIPCHART_DWELL 1
#define STRIPCHARTCHANDELAY 2
#define STRIPCHART_MASS1 3
#define STRIPCHART_MASS2 4
#define STRIPCHART_MASS3 5
#define STRIPCHART_MASS4 6
#define STRIPCHART_MASS5 7
#define STRIPCHART_START 8
#define STRIPCHART_STOP 9
#define STRIPCHART_CLEAR 10

#define DYCOR 9
#define DYCOR_DYCOR 0
#define DYCOR_BET 1
#define DYCOR_VOLABS 2
#define DYCOR_VMON 3
#define DYCORBETC 4
#define DYCOR_GASMAX 5

#define DAQSETUP 10
#define DAQSETUPADC_TYPE 0
#define DAQSETUP_DAC_LABEL 1
#define DAQSETUP_DETECTOR 2
#define DAQSETUP_SLOT_NUMBER 3



#define DAQSETUP_QUADRANGE 4
#define DAQSETUP_OUT 5
#define DAQSETUP_AOUT_LABEL 6
#define DAQSETUP_FINISHED 7

#define PRINTSETUP 11
#define PRINTSETUPPRINTTO 0
#define PRINTSETUP_PAGE_ORIENTATION 1
#define PRINTSETUPSCALEFACTOR 2
#define PRINTSETUPPAGEEJECT 3
#define PRINTSETUP_OUTPUTFILE 4
#define PRINTSETUP_FINISHED 5



/* STRUCT.H */
/*=== Includes ========================================

#include <stdio.h>
/*#include <math.h>*/
#include <dos.h>
#include <string.h>
#include "c:\lw\include\lwsystem.h"
#include "c:\lw\include\userint.h"
#include "c:\lw\include\dataacq.h"
#include "b:\modular\modular.h"
/*=== Insert other necessary LabWindows includes here=====================*/

/*=== DEFINES ========================================*/
#define RESOURCE_FILE "modular.uir"
#define MASS_CNVRT 20
#define WAIT 1
#define NO_WAIT 0
#define INTEGER 2
#define DOUBLE 8
#define NO_RESTRICT 0
#define RESTRICT 1
#define FILE_EXISTS 1
#define NEW_FILE 2
#define TRUE 1
#define FALSE 0
#define TUBE_BARO 0
#define BUBBLE_BARO 1
#define BUBBLER 2
#define BULB 3
#define LABEL 0
#define MAX 13
#define MIN 12
#define BAROTRON_VOLTAGE 10.0
#define MASS_FLOWTMETER_VOLTAGE 5.0
#define TINY 1.0e-12
#define PI 3.14159
#define HE 0
#define NITROGEN 1
#define ARGON 2
#define THOUSAND 0
#define HUNDRED 1
#define TEN 2
#define ONE 3
#define PCLPM16 13
#define KINETICS_PANEL 1
#define MASSSPECPANEL 2
#define STRIPCHART_PANEL 3
#define QUIT 0

struct device {
int index; /* Control panel index

*/

double range; /* Maximum range of device
*/

double gas_correct; /* Correction factor if carrier gas is different */



/* than the device was meant to measure

struct gas_input {
int type; /* 0=TUBE_BARO,1=BUBBLE_BARO,2=BUBBLER,3=BULB
struct device barotron;
struct device flowmeter;
double range; /* Corrected range for device
double amount[3]; /* mixing ratios in bulb or vapor press. in bubbler
int press_chan; /* channel # for bubbler's barotron
double voltage; /* scaled voltage from board
double max_volts; /* Maximum voltage from device

*/
double reading; /* Sc

struct FlowTubeParameters {
int gas_type; /* Co:
double gascorrect;/* he
double gas_mw; /* Mo
double temp; /* Fl
double radius; /* Fl
double eata; /* Re

struct PlotParameters {
double x[100];
double y[100];
double y_sigma[100];
int numpoints;
int plothdl[100];
int errhdl[100];
int plotstyle;
int plotcolor;
double slope;
double intercept;
double sigma_slope;
double sigma_intercept;

};
struct sample {

double mean;
double variance;

};
struct Titles {

char species[3] [40];
char channel[8][40];

};
struct Axis {

int yauto;
int xauto;
double x_min;
double xmax;
double y_min;
double y_max;

};struct handles
struct handles {

aled reading in appropriate units for user

ntrol panel index
at capacity correction in flowmeters
lecular weight of carrier gas
owtube Temperature in Kelvin
owtube radius in centimeters
ynold's number constant

x coordinate
y coordinate
standard deviation of each y point
number of points taken
/* plot handle for each point
plot handle for error bar on each point
plot style number
plot color number
slope of line fit
intercept of fit
standard deviation of slope
standard deviation of intercept

/* Statistical Mean of the sample
/* Statistical Variance of the sample

/* names of the chemical species
/* names given to each input channel



short hFlowsPanel;
short hChannelSetup;
short hEditLabels;
short hFlowtubeParams;
struct {

short hPrintSetup;
short PrintTo;
short Orientation;
short ScaleFactor;
short PageEject;
char OutputFile[80];

} PrintSetup;
};

/*=== FUNCTION DECLARATIONS ========================================/
void ActivateBarotron(struct handles *panel);
void ActivateBubblerFlow(struct handles *panel);
void ActivateBulbFlow(struct handles *panel);
unsigned char bin(char *string);
void Board2819Ready(void);
void ChangeXYRange(short hPanel,short graph,short change_x,short change_y,

short xauto,double x_min,double x_max,short yauto,
double y_min,double ymax);

short chart(struct gas_input *channel, struct handles *panel,
struct FlowTubeParameters *flowtube,struct Titles *labels);

float CounterRate(short milliseconds);
void DeactivateCtrls(struct handles *panel);
float DTVIn(unsigned char channel);
void DTVOut(unsigned char channel,float voltage);
short dycor(struct. gas_input *channel, struct handles *panel,

struct FlowTubeParameters *flowtube, struct Titles *labels);
void EditNames(struct Titles *labels,struct handles *panel);
void EditFlowtubeParamters(struct FlowTubeParameters *flowtube,

struct handles *panel,struct gas_input *channel);
float GetCounts(short milliseconds);
short InitializeBoards(void);
void InitDT2801(void);
void InitDT2819(void);
short kinetic(struct gas_input *channel, struct handles *panel,

struct FlowTubeParameters *flowtube, struct Titles *labels);
short LoadProgramPanels(struct handles *panel);
short mass_spec(struct gasinput *channel, struct handles *panel,

struct FlowTubeParameters *flowtube,struct Titles
*labels);
void PrintSetup(struct handles *panel);
void ReadFlows(struct gas_input *channel,struct handles *panel,

struct FlowTubeParameters *flowtube,
double *partial_pressure,double *total_flow,
double *tube_pressure,double *velocity);

float ReadVoltage(short channel);
short SaveSetupParameters(struct gas_input *channel,

struct FlowTubeParameters
*flowtube,struct Titles *labels);
void SetChanNum(struct gas_input *channel,struct handles *panel);
void SetupChannels(struct gas_input *channel,struct Titles *labels,

struct handles *panel,struct FlowTubeParameters *flowtube);

short SetupParameters(struct gas_input *channel,struct handles *panel,



struct FlowTubeParameters *flowtube,struct Titles *labels);
void UpdateChannelPanel(struct Titles *labels,struct handles *panel);
void UpdateMainCtrls(struct gas_input *channel, struct Titles *labels,

struct handles *panel);
void wlsf(struct PlotParameters *plot);
void WriteVoltage(float voltage);



/* MODULAR.C */
extern unsigned _stklen = 8192;
#define KINETICS_PANEL 1
#define MASSSPECPANEL 2
#define CHART_PANEL 3
#define NI_12BIT 0
#define DT_12BIT 1
#include <stdio.h>

#include "b:\modular\struct.h"

/* Global Variables */
short AnalogBoardType, CounterOrAnalog, AnalogOutput, Slot, QuadRange;
float SamplesPerMS;
short GetHardwareInfo(void);

void main(void) {
int hMenuBar,id,handle,hPanel,i,mode;
struct FlowTubeParameters flowtube;
struct gas_input channel[8];
struct Titles labels;
struct handles panel;
FILE *fp;

/* ready print setup parameters */
panel.PrintSetup.PrintTo=l /* LPT1 */;
panel.PrintSetup.OutputFile[0]=0; /* null file */
panel.PrintSetup.Orientation=0; /* Portrait */
panel.PrintSetup.ScaleFactor=0; /* Screen Size */
panel.PrintSetup.PageEject=0; /* No Page Eject */

/* check for hardware setup */
if((fp=fopen("hardware.prm","rb"))!=NULL) ( /* file exists, load values */

/* get Analog Board Type */
fread(&AnalogBoardType,sizeof(int),l,fp);
/* Counter Board or Analog Board on Mass Spec? */
fread(&CounterOrAnalog,sizeof(int),l,fp);
/* Get Output Channel to Mass Spec */
fread(&AnalogOutput,sizeof(int),l,fp);
/* Get Slot number for possible NI Board */
fread(&Slot,sizeof(int),1,fp);
/* Get Range of Mass Spec */
fread(&QuadRange,sizeof(int),l,fp);
/* close file */
fclose(fp);

else { /* create file and save results */
/* inform user of need to creat hardware file */
MessagePopup("HARDWARE.PRM NOT FOUND. PREPARE TO ENTER BOARD

INFORMATION.");
AnalogBoardType=0;
CounterOrAnalog=0;
AnalogOutput=1;
Slot=0;
QuadRange=500;
if(!GetHardwareInfo()) return;

}



/* load main menu bar */
hMenuBar = LoadMenuBar (RESOURCE_FILE, STARTMENU);
if (hMenuBar < 0) {

MessagePopup("Unable to load the required menu bar from the resource
file.");

return;
i

id = STARTMENUBOARD D_SETSET;
while (id == STARTMENU_BOARD_SET) {

GetUserEvent (WAIT, &handle, &id);
switch(id) {

case STARTMENU_BOARD_SET:
if(!GetHardwareInfo()) return;
break;

default:
break;

}
}
if (id == STARTMENU_QUIT) return; /* quit now */
/* User is done modifying the hardware setup. Now run regular setup with

*/
/* all the flows. Prepare to pass information to any of the three modes

*/

if (!(LoadProgramPanels(&panel))) {
MessagePopup("Error: can't get panels. Exiting...");
return;

}

DisplayPanel (panel.hFlowsPanel);
/* Setup Paramters */

if(!SetupParameters(channel,&panel,&flowtube,&labels)) return;

/* Setup Boards */

if(!InitializeBoards()) return;

/* Unload menu bar */
UnloadMenuBar();

/* User has chosen one of the three modes. Now loop between modes */
switch (id) {

case STARTMENU_SWITCH_KINETICS: /* ADD LATER */
mode = kinetic(channel,&panel,&flowtube,&labels);
break;

case STARTMENU_SWITCH_MASS_SPEC:
mode = mass_spec(channel,&panel,&flowtube,&labels);
break;

case STARTMENU_SWITCH_CHART:
mode = chart(channel,&panel,&flowtube,&labels);
break;

default:
mode = chart(channel,&panel,&flowtube,&labels);
break;

I



while(TRUE) {
switch(mode) {

case KINETICS_PANEL:
mode = kinetic(channel,&panel,&flowtube,&labels);
break;

case MASSSPEC_PANEL:
mode = mass_spec(channel,&panel,&flowtube,&labels);
break;

case STRIPCHART_PANEL:
mode = chart(channel,&panel,&flowtube,&labels);
break;

case QUIT:
return;

default:
MessagePopup("Unknown choice. Exiting...");
return;

short GetHardwareInfo(void) {
int hPanel,id,i;
FILE *fp;

hPanel = LoadPanel (RESOURCE_FILE, DAQSETUP);
if (hPanel < 0) {

MessagePopup("Unable to load the required panel from the resource
file.");

return 0;
}
InstallPopup(hPanel);
/* Let user input information */
id = -1;
/* Set Panel to Current Values */
SetCtrlVal(hPanel,DAQSETUPADC_TYPE,AnalogBoardType);
SetCtrlVal(hPanel,DAQSETUP_DETECTOR,CounterOrAnalog);
SetCtrlVal(hPanel,DAQSETUP_OUT,AnalogOutput);
SetCtrlVal(hPanel,DAQSETUP_SLOT_NUMBER,Slot);
SetCtrlVal(hPanel,DAQSETUP_QUAD_RANGE,QuadRange);
while(id != DAQSETUP_FINISHED ) {

GetPopupEvent(WAIT,&id);
switch(id) {

case DAQSETUP_ADC_TYPE:
/* See if it's a National Instruments board. If not, */
/* deactive slot # control */
GetCtrlVal(hPanel,DAQSETUP_ADC_TYPE,&i);
if(i == NI_12BIT) { /* Activate slot # control */

SetInputMode(hPanel,DAQSETUP_SLOT_NUMBER,TRUE);
}
else if( i == DT_12BIT ) { /* Deactivate slot # control */

SetInputMode(hPanel,DAQSETUP_SLOT_NUMBER,FALSE);
}
break;

default:
break;

}

/* Get all control values */



GetCtrlVal(hPanel,DAQSETUP_ADCTYPE,&AnalogBoardType);
GetCtrlVal(hPanel,DAQSETUP_DETECTOR,&CounterOrAnalog);
GetCtrlVal(hPanel,DAQSETUP_OUT,&AnalogOutput);
GetCtrlVal(hPanel,DAQSETUP_SLOT_NUMBER,&Slot);
GetCtrlVal(hPanel,DAQSETUP_QUAD_RANGE,&QuadRange);
/* unload Panel */
RemovePopup(0);
UnloadPanel(hPanel);
/* open file and save results */
if((fp=fopen("hardware.prm","wb"))!=NULL) {

/* save Analog Board Type */
fwrite(&AnalogBoardType,sizeof(int),l,fp);
/* Counter Board or Analog Board on Mass Spec? */
fwrite(&CounterOrAnalog,sizeof(int),l,fp);
/* save Output Channel to Mass Spec */
fwrite(&AnalogOutput,sizeof(int),l,fp);
/* save Slot number for possible NI Board */
fwrite(&Slot,sizeof(int),l,fp);
/* save Range of Mass Spec */
fwrite(&QuadRange,sizeof(int),l,fp);
/* close file */
fclose(fp);

)
else { /* Error, notify user and continue */

MessagePopup("Disk error, can't save hardware parameters.");

return 1;
I



/* EDIT2.C */
#include "struct.h"

==*/

/* These routines are dedicated to mapping the channels on the board to either
*/
/* flowmeters or barotrons. The baratrons are used to monitor the pressure of
*/
/* the flowtube or the pressure over a bubbler which sets its mixing ratio
when */
/* the vapor pressures of the solution are known. Flowmeters are either
*/
/* attached to a bubbler or a gas bulb with the mixing ratios previously set.
*/
/* These routine also provide a way to link the barotron on a bubbler to the
*/
/* bubbler itself. The interactive panel activates or deactivates the valid
*/
/* choices depending on the device chosen. You can also change the names of
*/
/* the channels and the names of the chemical species. You also can enter
their*/
/* vapor pressues or mixing ratios
*/

==*/

void SetupChannels(struct gas_input *channel,struct Titles *labels,
struct handles *panel,struct FlowTubeParameters *flowtube){

/* Logic of Channel Popup is: */
/* If the channel # is changed, update panel to show that */
/* channel's parameters. Deactivate or activate appropriate */
/* controls based on channel's type. */
/* If the channel type is changed, activate or deactivate the */
/* appropriate controls. */
/* If a setting is changed, place value in appropriate variable. */

int flag,control,i,val;

InstallPopup(panel->hChannelSetup);
flag = TRUE;
while(flag) {

GetPopupEvent(WAIT,&control);
GetCtrlVal(panel->hChannelSetup,SETCHANNEL_CHANUM,&i);
switch (control) {

case SETCHANNEL_CHANUM:
SetChanNum(channel,panel);
break;

case SETCHANNEL_TYPE:
GetCtrlVal(panel->hChannelSetup,SETCHANNELTYPE,&channel[i].type);
if((channel[i].type==TUBE_BARO) I(channel [i] .type==BUBBLE_BARO)) {

ActivateBarotron(panel);
channel[i].max_volts = BAROTRON_VOLTAGE;

I
else if(channel[i].type == BUBBLER) {

ActivateBubblerFlow(panel);
channel[i].max_volts = MASS_FLOWTMETER_VOLTAGE;



GetCtrlVal(panel-
>hChannelSetup,SETCHANNEL_ASSOCBARO,&channel[i].press_chan);

else if(channel[i].type == BULB) {
ActivateBulbFlow(panel);
channel[i].max_volts = MASS_FLOWTMETER_VOLTAGE;

}
break;

case SETCHANNEL_BARORANGE:
channel[i].max_volts = BAROTRON_VOLTAGE;
/* Get variables of that type */
GetCtrlVal(panel-

>hChannelSetup,SETCHANNEL_BARORANGE,&channel[i].barotron.index);
switch (channel[i].barotron.index) {

case ONE:
channel[i].barotron.range = 1;
break;

case TEN:
channel[i].barotron.range = 10;
break;

case HUNDRED:
channel[i].barotron.range = 100;
break;

case THOUSAND:
channel[i].barotron.range = 1000;
break;

default:
channel[i].barotron.range = 1000;
break;

break;
case SETCHANNEL_FLOWRANGE:

GetCtrlVal(panel-
>hChannelSetup,SETCHANNEL_FLOWRANGE,&channel[i].flowmeter.range);

break;
case SETCHANNEL_MIXRATIO1:

GetCtrlVal(panel-
>hChannelSetup,SETCHANNEL_MIXRATIO1,&channel[i].amount[0);

break;
case SETCHANNEL_MIXRATI02:

GetCtrlVal(panel-
>hChannelSetup,SETCHANNEL_MIXRATIO2,&channel[i].amount[1]);

break;
case SETCHANNEL_MIXRATIO3:

GetCtrlVal(panel-
>hChannelSetup, SETCHANNEL_MIXRATIO3,&channeli] .amount [2]);

break;
case SETCHANNEL_BUBVP1:

GetCtrlVal(panel-
>hChannelSetup,SETCHANNELBUBVP1,&channel[i].amount[0]);

break;
case SETCHANNEL_BUBVP2:

GetCtrlVal(panel-
>hChannelSetup,SETCHANNEL_BUBVP2,&channel[i].amount[l]);

break;
case SETCHANNEL_BUBVP3:

GetCtrlVal(panel-
>hChannelSetup,SETCHANNEL_BUBVP3,&channel[i].amount[2]);



break;
case SETCHANNEL_METERTYPE:

channel[i].max_volts = MASS_FLOWTMETER_VOLTAGE;
GetCtrlVal(panel->hChannelSetup,SETCHANNEL_METERTYPE,

&channel[i].flowmeter.index);
switch (channel[i].flowmeter.index) {

case HE: /* Helium */
channel[i].flowmeter.gas_correct = 1;
break;

case NITROGEN: /* Nitrogen */
channel[i].flowmeter.gas_correct = 1.42;
break;

case ARGON: /* Argon */
channel(i].flowmeter.gas_correct = 1;
break;

default:
channel[i].flowmeter.gas_correct = 1;
break;

break;
case SETCHANNEL_ASSOCBARO:

GetCtrlVal(panel->hChannelSetup,SETCHANNEL_ASSOCBARO,&val);
if(channel[val].type != BUBBLE_BARO) {

MessagePopup("Warning! That channel is not presently set for a
barotron!");

channel[i].press_chan=val;
break;

case SETCHANNEL_FINISHED:
flag = FALSE;
break;

case SETCHANNEL_EDITNAMES:
EditNames(labels,panel);
break;

/* Correct flowmeter ranges for the gases used */
for(i=l;i<=7;i++) {

if((channel[i].type == BUBBLER) I(channel[i].type == BULB)) {
channel[i].range = channel[i].flowmeter.range *

channel[i].flowmeter.gas_correct / flowtube->gas_correct;

else channel[i].range = channel[i].barotron.range;

RemovePopup(0); /* Removes current popup */

/*---------------------------------------------------------------------------*/

/* This function sets all the controlto the values associated with the */
/* channel number indicated on the channel control slide. */
/*-------------------------------------------------------------------------*
void SetChanNum(struct gas_input *channel,struct handles *panel) {

int i;
GetCtrlVal(panel->hChannelSetup,SETCHANNEL_CHANUM,&i);
SetCtrlVal(panel->hChannelSetup,SETCHANNEL_TYPE,channel[i].type);
if((channel[i].type == TUBE_BARO) II(channel[i].type==BUBBLE_BARO)) {

ActivateBarotron(panel);
/* Set the proper values on the proper controls */



SetCtrlVal(panel-
>hChannelSetup,SETCHANNEL_BARORANGE,channeli)].barotron.index);

else if(channel[i].type == BUBBLER) {
ActivateBubblerFlow(panel);
/* Set the proper values on the proper controls */
SetCtrlVal(panel-

>hChannelSetup,SETCHANNEL_FLOWRANGE,channel[i].flowmeter.range);
SetCtrlVal(panel-

>hChannelSetup,SETCHANNEL_METERTYPE,channel[i].flowmeter.index);
SetCtrlVal(panel->hChannelSetup,SETCHANNELBUBVP1,channel[i].amount[0]);
SetCtrlVal(panel->hChannelSetup,SETCHANNELBUBVP2,channel[i].amount[l]);
SetCtrlVal(panel->hChannelSetup,SETCHANNELBUBVP3,channel[i].amount[2]);
SetCtrlVal(panel->hChannelSetup,SETCHANNEL_ASSOCBARO,7-

channel[i].press_chan);

else if(channel[i].type == BULB) {
ActivateBulbFlow(panel);
/* Set the proper values on the proper controls */
SetCtrlVal(panel-

>hChannelSetup,SETCHANNEL_FLOWRANGE,channel[i].flowmeter.range);
SetCtrlVal(panel-

>hChannelSetup,SETCHANNEL_METERTYPE,channel[i].flowmeter.index);
SetCtrlVal(panel-

>hChannelSetup,SETCHANNEL_MIXRATIOl,channel[i].amount[0]);
SetCtrlVal(panel-

>hChannelSetup,SETCHANNEL_MIXRATIO2,channel[i].amount[1]);
SetCtrlVal(panel-

>hChannelSetup,SETCHANNEL_MIXRATIO3,channel[i] . amount[2]);

/* Functions to aid the activation and deactivation of the appropriate
*/
/* controls in the MAIN_SETUP_CHAN panel. */

void ActivateBarotron(struct handles *panel) {
DeactivateCtrls(panel);
SetInputMode(panel->hChannelSetup,SETCHANNEL_BARORANGE,TRUE);

}

void ActivateBubblerFlow(struct handles *panel) {
DeactivateCtrls(panel);
SetInputMode(panel->hChannelSetup,SETCHANNEL_FLOWRANGE,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_METERTYPE,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_BUBVP,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNELBUBVP1,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNELBUBVP2,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNELBUBVP3,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_ASSOCBARO,TRUE);

void ActivateBulbFlow(struct handles *panel) {
DeactivateCtrls(panel);



SetInputMode(panel->hChannelSetup,SETCHANNEL_BULBMIX,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_MIXRATIO1,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_MIXRATIO2,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_MIXRATIO3,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_FLOWRANGE,TRUE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_METERTYPE,TRUE);

void DeactivateCtrls(struct handles *panel) {
SetInputMode(panel->hChannelSetup,SETCHANNEL_BARORANGE,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_METERTYPE,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_FLOWRANGE,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_BULBMIX,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_MIXRATIO1,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNELMIXRATIO2,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_MIXRATIO3,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNELBUBVP,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_BUBVP1,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_BUBVP2,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNELBUBVP3,FALSE);
SetInputMode(panel->hChannelSetup,SETCHANNEL_ASSOCBARO,FALSE);

/* ==.................= = = = = = = = = = = = = = = = = */
/------------------------------------------------------------------------------------*
/* Functions to Update Labels and Ranges on Controls
*/
/* =...............=/--------------------------------------

void UpdateChannelPanel(struct Titles *labels,struct handles *panel) {
/* Update species names */
SetCtrlAttribute(panel->hChannelSetup,SETCHANNEL_MIXRATIO1,LABEL,labels-

>species[Ol);
SetCtrlAttribute(panel->hChannelSetup,SETCHANNEL_MIXRATIO2,LABEL,labels-

>species[l]);
SetCtrlAttribute(panel->hChannelSetup,SETCHANNEL_MIXRATIO3,LABEL,labels-

>species[2]);
SetCtrlAttribute(panel->hChannelSetup,SETCHANNEL_BUBVP1,LABEL,labels-

>species[O]);
SetCtrlAttribute(panel->hChannneSetup,SETCHANNEL_BUBVP2,LABEL,labels-

>species[11]);
SetCtrlAttribute(panel->hChannelSetup,SETCHANNEL_BUBVP3,LABEL,labels-

>species[2]);

void UpdateMainCtrls(struct gas_input *channel, struct Titles *labels,
struct handles *panel) {

/* Update species names */
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANEL_SPECIESi,LABEL,labels-

>species[O]);
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANEL_SPECIES2,LABEL,labels-

>species[1l);
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANEL_SPECIES3,LABEL,labels-

>species[2]);

/* Update channel names */
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN1,LABEL,labels-

>channel[l]);



SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN2,LABEL,labels-
>channel[2]);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN3,LABEL,labels-
>channel[3]);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN4,LABEL,labels-
>channel[41);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN5,LABEL,labels-
>channel[5]);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN6,LABEL,labels-
>channel[6]);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANEL_CHAN7,LABEL,labels-
>channel[71);

/* Set Channel Values to 0 to prevent overflow with new maximum */
SetCtrlVal(panel->hFlowsPanel,FLOWSPANEL_CHAN1,0);
SetCtrlVal(panel->hFlowsPanel,FLOWSPANEL_CHAN2,0);
SetCtrlVal(panel->hFlowsPanel,FLOWSPANEL_CHAN3,0);
SetCtrlVal(panel->hFlowsPanel,FLOWSPANEL_CHAN4,0);
SetCtrlVal(panel->hFlowsPanel,FLOWSPANEL_CHAN5,0);
SetCtrlVal(panel->hFlowsPanel,FLOWSPANEL_CHAN6,0);
SetCtrlVal(panel->hFlowsPanel,FLOWSPANEL_CHAN7,0);

/* Update channel maximums */
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN1,MAX,channel[1].range);
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN2,MAX,channel[2].range);
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN3,MAX,channel[3].range);
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN4,MAX,channel[4].range);
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANEL CHAN5,MAX,channel[5].range);
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN6,MAX,channel[6].range);
SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN7,MAX,channel[7].range);

/* Update channel minimums */

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANEL_CHAN1,MIN,-
.01*channel[l].range);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN2,MIN,-
.01*channel[2].range);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN3,MIN,-
.01*channel[3].range);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN4,MIN,-
.01*channel[4].range);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANEL_CHAN5,MIN,-
.01*channel[5].range);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN6,MIN,-
.01*channel[6].range);

SetCtrlAttribute(panel->hFlowsPanel,FLOWSPANELCHAN7,MIN,-
.01*channel[7].range);

/* -- Routines to simply edit names of labels, concentrations, or mixing
ratios --*/

void EditNames(struct Titles *labels,struct handles *panel)
int id,flag;
flag=TRUE;

InstallPopup(panel->hEditLabels);
while (flag) {



GetPopupEvent(WAIT,&id);
switch (id) {

case SPECNAME_FINISHED:
flag = FALSE;
break;

}
}
/* Get labels */
GetCtrlVal(panel->hEditLabels,SPECNAME_SPECl,labels->species[0]);
GetCtrlVal(panel->hEditLabels,SPECNAME_SPEC2,1abels->species[1]);
GetCtrlVal(panel->hEditLabels,SPECNAME_SPEC3,1abels->species[2]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN1,labels->channel[l]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN2,1abels->channel[2]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN3,1abels->channel[3]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN4,1abels->channel[4]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN5,1abels->channel[5]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN6,1abels->channel[6]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN7,1abels->channel[7]);
RemovePopup(0);
UpdateChannelPanel(labels,panel);

void EditFlowtubeParamters(struct FlowTubeParameters *flowtube,
struct handles *panel,struct gas_input *channel) {

int id,flag,i;
flag=TRUE;

InstallPopup(panel->hFlowtubeParams);
while (flag) {

GetPopupEvent(WAIT,&id);
switch (id) {

case FLOWTPARAM_FINISHED:
flag = FALSE;
break;

}
}
/* Read in the new parameters */
GetCtrlVal(panel->hFlowtubeParams,FLOWTEMP,&flowtube->temp);
GetCtrlVal(panel->hFlowtubeParams,FLOWTPARAM_RADIUS,&flowtube->radius);
GetCtrlVal(panel->hFlowtubeParams, FLOWTPARAM_CARRIERGAS,&flowtube-

>gas_type);
switch(flowtube->gas_type) {

case HE:
flowtube->gas_correct = 1;
flowtube->gas_mw = 4;
break;

case NITROGEN:
flowtube->gas_correct = 1.42;
flowtube->gasmw = 28;
break;

case ARGON:
flowtube->gas_correct = 1;
flowtube->gas_ mw = 40;
break;

)
/* Correct flowmeter ranges for the gases used */
for(i=l;i<=7;i++) {

if((channel[i].type == BUBBLER)I (channel[i].type == BULB))



channel[i].range = channel[i].flowmeter.range *
channel[i].flowmeter.gas_correct / flowtube->gascorrect;

}
RemovePopup (0);

void ChangeXYRange(short hPanel,short graph,short change_x,short changey,
short xauto,double x_min,double xmax,short yauto,
double y_min,double y_max) {

int hPopup,id,flag;
hPopup = LoadPanel (RESOURCE_FILE, XYRANGE);
if (hPopup < 0) {

MessagePopup("Unable to load the required panel from the resource
file.");

return;

flag = TRUE;
InstallPopup(hPopup);
if(changex) {

SetCtrlVal(hPopup,XYRANGE XMIN,x_min);
SetCtrlVal(hPopup,XYRANGE_XMAX,x_max);

}
if(!change_x) {

SetInputMode(hPopup,XYRANGE XMIN,FALSE);
SetInputMode(hPopup,XYRANGEXMAX,FALSE);

}
if(change_y) {

SetCtrlVal(hPopup,XYRANGE_YMIN,y_min);
SetCtrlVal(hPopup,XYRANGE_YMAX,y_max);

if(!change_y) {
SetInputMode(hPopup,XYRANGE_YMIN,FALSE);
SetInputMode(hPopup,XYRANGEYMAX,FALSE);

flag = TRUE;
while(flag) {

GetPopupEvent(WAIT,&id);
switch (id) {

case XYRANGE_XMIN:
GetCtrlVal(hPopup,XYRANGE_XMIN,&x_min);
break;

case XYRANGE_XMAX:
GetCtrlVal(hPopup,XYRANGE_XMAX,&x_max);
break;

case XYRANGE_YMIN:
GetCtrlVal(hPopup,XYRANGE_YMIN,&y_min);
break;

case XYRANGE_YMAX:
GetCtrlVal(hPopup,XYRANGE_YMAX,&y_max);
break;

case XYRANGE_FINISHED:
flag = FALSE;
break;



default:
break;

)

RemovePopup(O); /* Removes current popup */
UnloadPanel(hPopup);
SetAxisRange(hPanel,graph,xauto,x_min,xmax,yauto,y_min,y_max);



/* CHART.C */
#define BOARD_RES 4096
#define MAX_VOLTAGE 10.0
#define NUMPOINTS 300
extern short AnalogBoardType, CounterOrAnalog, AnalogOutput, Slot, QuadRange;
extern short SamplesPerMS;
#include "b:\modular\struct.h"

short chart(struct gas_input *channel, struct handles *panel,
struct FlowTubeParameters *flowtube, struct Titles *labels)

float *mass,*buffer;
int dwell_time,delay_time,hMenuBar,hPanel,ylogon=FALSE;
int position=0,i,j,start=0,handle,id,status,numpoints;
char dirname[80],filename[80],*p;
int xauto, yauto;
double x_min,x_max,y_min,y_max;
double partial_pressure[3],total_flow, tube_pressure,velocity;
FILE *fp;
/*------------------------------------------------------------------------*
/* Load the menu bar from the resource file. Use the constant assigned */
/* in the editor to refer to the menu bar. The handle returned by */
/* LoadMenuBar must be used to reference the menu bar in all subsequent */
/* function calls. If load was successful, the menu bar will be drawn */
/* at the top of the screen. */
/*-----------------------------------------------------------------------*/

hMenuBar = LoadMenuBar (RESOURCE_FILE, CHARTMENU);
if (hMenuBar < 0) {

MessagePopup("Unable to load the required menu bar from the resource
file.");

return 0;
}

/*-----------------------------------------------------------------------*/
/* Load the panel from the resource file. Use the constant assigned */
/* in the editor to refer to the panel. The handle returned by */
/* LoadPanel must be used to reference the panel in all subsequent */
/* function calls. If the panel handle is negative, the load failed, */
/* so print a message and exit the program. Otherwise, display the */
/* the panel. */
/*-----------------------------------------------------------------------*/

hPanel = LoadPanel (RESOURCE_FILE, STRIPCHART);
if (hPanel < 0) {

MessagePopup("Unable to load the required panel from the resource
file.");

return 0;
}

DisplayPanel (hPanel);

/*-----------------------------------------------------------------------
/* Dynamically allocate memory for the masses and the corresponding */
/* signals. This memory will be freed upon leaving this panel. This */
/* prevents the program from exceeding the limited memory available. */



/* One floating point value will be allocated for each of the possible */
/* outputs on the DAC board.
/*-----------------------------------------------------------------------

if((mass = (float *) malloc(5 * sizeof(float))) == NULL) {
/* Insert a popup message to tell user problem */
MessagePopup("Not enough memory for masses.");
return 0;

if((buffer = (float *) malloc(5 * NUMPOINTS * sizeof(float))) == NULL) {
/* Insert a popup message to tell user problem */
MessagePopup("Not enough memory for buffer.");
return 0;

/*--------------------------------------------------------------------*/
/* Look for the file that has the values from the last time his panel */
/* was activated. If it doesn't exist, load variables with defaults. */
/* If it does exist, read in values and restore panel states. */
/*-----------------------------------------------------------------------

if ((fp = fopen("chart.prm","rb")) == NULL ) { /* file doesn't exist */
/* Read in default variables */
GetCtrlVal(hPanel,STRIPCHART_DWELL,&dwell_time);
GetCtrlVal(hPanel,STRIPCHART_CHAN_DELAY,&delay_time);
position=0;
for(i=0;i<5;i++) mass[i] = 0;
for(i=O;i<NUMPOINTS;i++) buffer[i] = 0;

else { /* file was found */
/* read in masses */
fread(mass,sizeof(float),5,fp);
/* read in buffer */
fread(buffer,sizeof(float),5*NUMPOINTS,fp);
/* read in position */
fread(&position,sizeof(int),l,fp);
/* read in dwell_time */
fread(&dwell_time,sizeof(int),l,fp);
/* read in delay_time */
fread(&delay_time,sizeof(int),l,fp);
/* see if log scale is being used */
fread(&ylogon,sizeof(int),l,fp);
/* close file */
fclose(fp);
/* recall panel state */
RecallPanelState(hPanel,"chart.pnl");
/* Take care of menu bar state */
if (ylogon==TRUE) {

SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGON,TRUE);
SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGOFF,FALSE);
SetInputMode(hMenuBar,CHARTMENU_SETUP_YLOGON,FALSE);
SetInputMode(hMenuBar,CHARTMENU_SETUPYLOGOFF,TRUE);

else {
SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGON,FALSE);
SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGOFF,TRUE);
SetInputMode(hMenuBar,CHARTMENU_SETUP YLOGON,TRUE);
SetInputMode(hMenuBar,CHARTMENU_SETUP YLOGOFF,FALSE);



}

GetProgramDir(dirname);
/*====-================= MAIN LOOP ===================================*/

while (TRUE) {
/*---------------------------------------------------------------------*/
/* Call GetUserEvent with the wait parameter set to FALSE. This will */
/* cause the function not to wait for an event. When an event occurs,*/
/* the handle variable will either match the menu bar handle or the */
/* panel handle. The id variable will match one of the menu bar or */
/* control ID constants assigned in the editor. */
/*-------------------------------------------------------------------*/

GetUserEvent (NO_WAIT, &handle, &id);
/* ---------------------------------------------------------------------

*/
/* If the handle matches the menu bar handle, decode the id variable

*/
/* to figure out which menu item or immediate command was selected.

*/
/* ---------------------------------------------------------------------

*/
if (handle == hMenuBar) {

switch (id) {
case CHARTMENUFILE_SAVEDATA : /* Save CHART */

status=FileSelectPopup(dirname,"*.dat","Select file to save
data. ",NO_RESTRICT,NO_RESTRICT,TRUE,filename);

if(status) {
if(status==FILE_EXISTS) {

status=ConfirmPopup("That file already exits.
Overwrite?");

}
if(status) {

fp = fopen(filename,"wt");
/* WRITE DATA TO FILE */
fprintf(fp,"Delay = %d (msec)\t Dwell = %d

(msec)\n",
delay_time,dwell_time);

for(i=0;i<5;i++) {
fprintf(fp,"Mass %g\t",mass[i]);

}
fprintf(fp,"\n");
for(i=position;i<5*NUMPOINTS;i+=5) {

for(j=0;(j<5) && ((i+j) < 5*NUMPOINTS);j++)
fprintf(fp,"%g\t",buffer[i+j]);

}
fprintf(fp,"\n");

}
for(i=0;i<position;i+=5) {

for(j=0;(j<5) && ((i+j) < position);j++) {
fprintf(fp,"%g\t",buffer[i+j]);

}
fprintf(fp,"\n");

}
fclose(fp);
/* save dir for future use */



p=strrchr(filename,'\\');
if(p!=NULL) {

*p=0;
strcpy(dirname,filename);

}
}

break;
case CHARTMENU_FILE_SAVESETUP : /* Save flows setup */

SaveSetupParameters(channel,flowtube,labels);
break;

case CHARTMENU_FILE_PRINT : /* Print out Chart */
OutputGraph(0,panel->PrintSetup.OutputFile,

panel-
>PrintSetup.ScaleFactor,hPanel,STRIPCHART_CHART);

break;
case CHARTMENU_FILE_PRINTSETUP :

PrintSetup(panel);
break;

case CHARTMENU_SETUP_CHAN :
SetupChannels(channel,labels,panel,flowtube);
/* Update the screen */
UpdateMainCtrls(channel,labels,panel);
break;

case CHARTMENU_SETUP_FLOWTUBPAR:
EditFlowtubeParamters(flowtube,panel,channel);
/* Update the screen */
UpdateMainCtrls(channel,labels,panel);
break;

case CHARTMENU_SETUP_YLOGON:
SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGON,TRUE);
SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGOFF,FALSE);
SetInputMode(hMenuBar,CHARTMENU_SETUP_YLOGON,FALSE);
SetInputMode(hMenuBar,CHARTMENU_SETUP_YLOGOFF,TRUE);
/* Rescale Y axis, 21 refers to y log axis variable */
SetGraphAttribute(hPanel,STRIPCHART_CHART,21,TRUE);
ylogon = TRUE;
break;

case CHARTMENU_SETUP_YLOGOFF:
SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGON,FALSE);
SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGOFF,TRUE);
SetInputMode(hMenuBar,CHARTMENU_SETUP_YLOGON, TRUE);
SetInputMode(hMenuBar,CHARTMENU_SETUP_YLOGOFF,FALSE);
/* Rescale Y axis, 21 refers to y log axis variable */
SetGraphAttribute(hPanel,.STRIPCHART_CHART,21,FALSE);
ylogon = FALSE;
break;

case CHARTMENU_SETUP_CHANGEXY:

GetAxisRange(hPanel,STRIPCHART_CHART,&xauto,&x_min,&xmax,&yauto,&ymin,
&y_max);

ChangeXYRange(hPanel,STRIPCHART_CHART,0,1,xauto,x_min,x_max,yauto,y_min,
y_max);

break;
case CHARTMENU_SWITCH_KINETICS:
case CHARTMENU_SWITCH_MASS_SPEC:
case CHARTMENU_FILE_QUIT :



/* SAVE STATES */
if ((fp = fopen("chart.prm","wb")) == NULL ) { /* error */

/* Tell user there was an error. */
MessagePopup("File error- can't save data.");

}
else { /* okay */

/* save masses */
fwrite(mass,sizeof(float),5,fp);
/* save buffer */
fwrite(buffer,sizeof(float),5*NUMPOINTS,fp);
/* save position */
fwrite(&position,sizeof(short),l,fp);
/* write dwell_time */
fwrite(&dwell_time,sizeof(short),l,fp);
/* write delay_time */
fwrite(&delay_time,sizeof(short),l,fp);
/* record if log scale is being used */
fwrite(&ylogon,sizeof(int),l,fp);
/* close file */
fclose(fp);
/* save panel state */
SavePanelState(hPanel,"chart.pnl");

}
/* free arrays */
free(mass);
free(buffer);
/* Unload menubar and panel */
UnloadMenuBar();
UnloadPanel(hPanel);
/* return proper value */
if(id == CHARTMENU_SWITCH_KINETICS) return KINETICS_PANEL;
else if(id==CHARTMENU_SWITCH_MASS_SPEC) return MASSSPEC_PANEL;
else if(id==CHARTMENU_FILE_QUIT) return QUIT;
break;

default :
break;

}

else if(handle == hPanel) {
switch (id) {

case STRIPCHART_START :
/* Set flag to start */
start = 1;
break;

case STRIPCHART_STOP
/* Clear start flag */
start = 0;
break;

case STRIPCHART_CLEAR :
/* delete graph and clear buffer */
position = 0;
ClearStripChart(hPanel,STRIPCHART_CHART);
break;

case STRIPCHARTDWELL
/* get new dwell time */
GetCtrlVal(hPanel,STRIPCHART_DWELL,&dwell_time);
break;

case STRIPCHART_CHAN_DELAY



/* Get the new delay between channels */
GetCtrlVal(hPanel,STRIPCHART_CHAN_DELAY,&delay_time);
break;

case STRIPCHART_MASS1 :
/* the new mass for mass[0] */
GetCtrlVal(hPanel,STRIPCHART_MASS1,&mass[0]);
break;

case STRIPCHART_MASS2 :
/* the new mass for mass[l] */
GetCtrlVal(hPanel,STRIPCHART_MASS2,&mass[1]);
break;

case STRIPCHARTMASS3 :
/* the new mass for mass[2] */
GetCtrlVal(hPanel,STRIPCHART_MASS3,&mass[2]);
break;

case STRIPCHART_MASS4
/* the new mass for mass[3] */
GetCtrlVal(hPanel,STRIPCHART_MASS4,&mass[3]);
break;

case STRIPCHART_MASS5 :
/* the new mass for mass[4] */
GetCtrlVal(hPanel,STRIPCHART_MASS5,&mass[4]);
break;

default :
break;

}

ReadFlows(channel,panel,flowtube,partialpressure,&total_flow,
&tubepressure,&velocity);

if(start) ( /* get points */
if(position == 5*NUMPOINTS) position = 0;
for(i=0;i<5;i++) {

/* see that mass is non zero */
if(mass[i]!=0.0) {

/* Set mass spec to proper mass */
WriteVoltage(mass[i]*10.0/(float)QuadRange);
/* Delay appropriate amount between channels */
delay(delay_time);
/* Get data */
buffer[position+i] = GetCounts(dwell_time);

}
else buffer[position + i] = 0;

}
/* plot points */
PlotStripChart(hPanel,STRIPCHART_CHART,buffer,5,position,0,3);
position += 5;

}



/* KINETIC.C */
1*----------------------------------------------------------*
/* LabWindows replacement program for "Jayne-Ware" kinetics program.

by Darryl D. Spencer
April 19, 1994

*/

/*...======================================.*/

/* This program controlls the Extrell Mass Spectrometer/Flowtube setup
used by Darryl Spencer and Roger Meads for the Alumina experiment.
The computer used a National Instruments Lab-PC board in a 286 to read
the voltage signals from the various mass flowmeters, baratrons, and
the lock-in amplifier. An output signal controlled the mass the Extrel
stayed on.

The screen had an XY Graph that showed the signal as a function of
injector distance. Point could be taken or erased and a line fitted.
A graph could also be printed. Other data from the flowmeters and
baratrons was continually updated on the screen.

This Program seeks to do similar things in a similar way but different
enough to take advantage of LabWindow's capabilities and my own
preferences. */

/*======================================*/

/*=== Includes ========================================*/

#include "b:\modular\struct.h"

/*=== Global Variables for Hardware ======================================*/

extern short AnalogBoardType, CounterOrAnalog, AnalogOutput, Slot, QuadRange;
extern short SamplesPerMS;

/*=== Prototypes for functions used only in this file ====================*/
void GetPoint(int numsamples,int dwell,struct sample *point);
void ChangeMass(double *mass);

/*=== Start of Kinetic Function ========================================*/

short kinetic(struct gas_input *channel, struct handles *panel,
struct FlowTubeParameters *flowtube, struct Titles *labels)

{

/* File access variables */
char dirname[68],filename[80],*p;
FILE *fp;

/* Needed Handles */
int hMenuBar,hPanel,handle;
/* Control Variables */
int id,control,val;
int xauto, yauto;
double x,y,x2,y2;
double x_min,x_max,ymin,y_.max;

/* Data Acquisition Variables */



struct PlotParameters plot;
struct sample point;
int x_pos,currentplot.hdl;
double numerator[3],partial_pressure[3],flow,total_flow;
double velocity, tubepressure, pressure,time,sigma;
double mass,signal,reynolds;
double sum_x,sum_xsq,mean,variance;

/* Error, Indexes, and Flag Variables */
int status,i,j;
struct time tl,t2;

/* Reset Important Variables */
plot.numpoints=0;
plot.plotstyle=3;
plot.plotcolor=15;
current_plot_hdl=l;
time = 0;
velocity = 1000;
x_pos=0;

/*-------------------------------------------------------------------- */
/* Load the menu bar from the resource file. Use the constant assigned */
/* in the editor to refer to the menu bar. The handle returned by */
/* LoadMenuBar must be used to reference the menu bar in all subsequent */
/* function calls. If load was successful, the menu bar will be drawn */
/* at the top of the screen. */
/*---------------------------------------------------------------------*/

hMenuBar = LoadMenuBar (RESOURCE_FILE, KINMENU);
if (hMenuBar < 0) {

MessagePopup("Unable to load the required menu bar from the resource
file.");

return 0;

/*-----------------------------------------------------------------------*/
/* Load the panel from the resource file. Use the constant assigned */
/* in the editor to refer to the panel. The handle returned by */
/* LoadPanel must be used to reference the panel in all subsequent */
/* function calls. If the panel handle is negative, the load failed, */
./* so print a message and exit the program. Otherwise, display the */
/* the panel.
/*-----------------------------------------------------------------------

hPanel = LoadPanel (RESOURCE_FILE, KINETICS);
if (hPanel < 0) {

MessagePopup("Unable to load the required panel from the resource
file.");

return 0;
)

DisplayPanel (hPanel);
/*-------------------------------------------------------------------*
/* Look for the file that has the values from the last time his panel */
/* was activated. If it doesn't exist, load variables with defaults. */
/* If it does exist, read in values and restore panel states. */



/ * -- - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - - -

if ((fp = fopen("kinetic.prm","rb")) == NULL ) { /* file doesn't exist */
/* Read in default variables */

}
else { /* file was found */

/* read in plot info */
fread(&plot,sizeof(plot),l,fp);
fread(&x_pos,sizeof(int),l,fp);
fread(&mass,sizeof(double),l,fp);
fread(&currentplot_hdl,sizeof(int),l,fp);

/* close file */
fclose(fp);
/* recall panel state */
RecallPanelState(hPanel,"kinetic.pnl");

GetProgramDir(dirname);
/*==================MAIN PROGRAM LOOP ========================-==========*/

while (TRUE) {
/*---------------------------------------------------------------------*/
/* Call GetUserEvent with the wait parameter set to FALSE. This will */
/* cause the function not to wait for an event. When an event occurs,*/
/* the handle variable will either match the menu bar handle or the */
/* panel handle. The id variable will match one of the menu bar or */
/* control ID constants assigned in the editor. */
/*-------------------------------------------------------------------*/

GetUserEvent (NO_WAIT, &handle, &id);
/* ---------------------------------------------------------------------

*/
/* If the handle matches the menu bar handle, decode the id variable

*/
/* to figure out which menu item or immediate command was selected.

*/
/* ---------------------------------------------------------------------

*/
if (handle == hMenuBar) {

switch (id) {
case KINMENUFILESAVEDATA

status=FileSelectPopup(dirname,"*.dat","Select file to save
data.",NO_RESTRICT,NO_RESTRICT,TRUE,filename);

if(status) {
if(status==FILE_EXISTS) {

status=ConfirmPopup("That file already exits.
Overwrite?");

}
if(status) {

fp = fopen(filename,"wt");
fprintf(fp,"Velocity\tTube Pressure

(torr)\tTemperature (K)\n");

fprintf(fp,"%g\t%g\t%g\n",velocity,tube_pressure,flowtube->temp);
fprintf(fp,"Slope\tSlope Stdev\n");
fprintf(fp,"%g\t%g\n",plot.slope,plot.sigmaslope);



fprintf(fp,"Intercept\tIntercept Stdev\n");

fprintf(fp,"%g\t%g\n",plot.intercept,plot.sigmaintercept);
fprintf(fp,"Flowmeter voltages");
for(i=l;i<=7;i++) {

fprintf(fp,"%g\t",channel[i].voltage);

fprintf(fp,"\n");
fprintf(fp,"Time\tSignal\tStdev.\n");
for(i=0;i<plot.numpoints;i++) {

fprintf(fp,"%g\t%g\t%g\n",plot.x[iptyi,plot.y_sigma[i));

/* print out raw information */
fclose(fp);
/* save dir for future use */
p=strrchr(filename,'\\');
if(p!=NULL) {

*p=0;
strcpy(dirname,filename);

>PrintSetup.

break;
case KINMENU_FILESAVESETUP :

SaveSetupParameters(channel,flowtube,labels);
break;

case KINMENU_FILE_PRINT : /* Print out Graph */
OutputGraph(0,panel->PrintSetup.OutputFile,

panel-
ScaleFactor,hPanel,STRIPCHART_CHART);

break;
case KINMENU_FILE_PRINTSETUP :

PrintSetup(panel);
break;

case KINMENU_ACQUIRE_GETPOINT :
/* Average 32 points with a .1 second dwell time */
beep();
x=0;
sum_x=0;
sumxsq=0;

for(i=0;i<32;i++) {
x=GetCounts(100);
sum_x += x;
sum_xsq += pow(x,2);

mean = sum_x/(double)i;
variance = (sum_xsq - (pow(sumx,2)/i)) / (i-1);
variance = fabs(variance);
beep();
plot.x[plot.numpoints] = time;
plot.y[plot.numpoints]=mean;
sigma = sqrt(variance);
plot.y_sigma[plot.numpoints]=sigma;
/* Plot point on the screen */
currentplothdl = PlotPoint(hPanel,KINETICS_GRAPH,



time,mean,plot.plotstyle,plot.plotcolor);
plot.plot_hdl[plot.numpoints] = current_plot_hdl;
/* Plot error bar on the screen */
current_plot_hdl=PlotLine(hPanel,KINETICS_GRAPH,

time,mean + sigma,time,mean -
sigma,plot.plotcolor);

plot.err_hdl[plot.numpoints] = current_plot_hdl;
/* Increase point count */
plot.numpoints++;
break;

case KINMENU_ACQUIRE_DELPOINT :
if(plot.numpoints>0) {

/* Delete Point */
DeleteGraphPlot(hPanel,KINETICS_GRAPH,

plot.plothdl[plot.numpoints-l],0);
/* Delete error bar */
DeleteGraphPlot(hPanel,KINETICS GRAPH,

plot.err_hdl[plot.numpoints-l],1);
/* Decrease Point Count */
plot.numpoints--;
beep();

}
break;

case KINMENU_ACQUIRE_INCREASEX:
x_pos++;
SetCtrlVal(hPanel,KINETICS_INJECTOR_POSITION,x_pos);
break;

case KINMENU_ACQUIRE_DECREASEX:
x_pos--;
SetCtrlVal(hPanel,KINETICS_INJECTOR_POSITION,x_pos);
break;

case KINMENU_ACQUIRE_RESETX:
x_pos = 0;
SetCtrlVal(hPanel,KINETICS_INJECTOR_POSITION,xpos);
break;

case KINMENU_ACQUIRE_LINFIT :
/* Call least squares fit routine. */
if(plot.numpoints < 3) {

MessagePopup("Need at least 3 points for a fit!");
break;

}
wlsf(&plot);
x = plot.x[0];
y = exp( x*plot.slope + plot.intercept );
x2= plot.x[ (plot.numpoints) - 1 ];
y2= exp( x2*plot.slope + plot.intercept );
PlotLine(hPanel,KINETICS_GRAPH,x,y,x2,y2,15);
beep();
SetCtrlVal(hPanel,KINETICS_SLOPE,plot.slope);
SetCtrlVal(hPanel,KINETICS_INTERCEPT,plot.intercept);
SetCtrlVal(hPanel,KINETICS_SLOPE_ERR, sqrt(plot.sigma_slope));

SetCtrlVal(hPanel,KINETICS_INTERCEPT_ERR,sqrt(plot.sigma-intercept));
break;

case KINMENU_ACQUIRE_DELGRAPH :
if(!ConfirmPopup("Are you sure you want to delete this?"))

break;



DeleteGraphPlot(hPanel,KINETICS_GRAPH,-1,1);
plot.numpoints=0;
break;

case KINMENU_ACQUIRE_CHANGEMASS:
/* Put in code for popup mass menu. */
ChangeMass(&mass);
break;

case KINMENU_SETUP_CHAN :
SetupChannels(channel,labels,panel,flowtube);
/* Update the screen */
UpdateMainCtrls(channel,labels,panel);
break;

case KINMENU_SETUP_FLOWTUBPAR:
EditFlowtubeParamters(flowtube,panel,channel);
/* Update the screen */
UpdateMainCtrls(channel,labels,panel);
break;

case KINMENU_SETUP_YAUTON:
/* turn y autoscale on */

GetAxisRange(hPanel,KINETICS_GRAPH,&xauto,&xmin,&x_max,&yauto,&y_min,
&y_max);

SetAxisRange(hPanel, KINETICS_GRAPH,xauto,x_min, x_max, , ymin,ymax);
/* Disable Y autoscale on choice */
SetMenuBarAttribute(KINMENU_SETUP_YAUTON,6,0);
/* Check Y autoscale on choice */
SetMenuBarAttribute(KINMENU_SETUP_YAUTON,7,1);
/* Enable Y autoscale off choice */
SetMenuBarAttribute(KINMENU_SETUP_YAUTOFF,6,1);
/* Uncheck Y autoscale off choice */
SetMenuBarAttribute(KINMENU_SETUP_YAUTOFF,7,0);
break;

case KINMENU_SETUP_YAUTOFF:
/* turn y autoscale off */

GetAxisRange(hPanel,KINETICS_GRAPH,&xauto,&xmin,&x_max,&yauto,&y_min,
&y_max);

SetAxisRange(hPanel,KINETICS_GRAPH,xauto,x_min,xmax,2,y_min,y_max);
/* Enable Y autoscale on choice */
SetMenuBarAttribute(KINMENU_SETUP_YAUTON,6,1);
/* Uncheck Y autoscale on choice */
SetMenuBarAttribute(KINMENU_SETUP_YAUTON,7,0);
/* Disable Y autoscale off choice */
SetMenuBarAttribute(KINMENU_SETUP_YAUTOFF,6,0);
/* Check Y autoscale off choice */
SetMenuBarAttribute(KINMENU_SETUP_YAUTOFF,7,1);
break;

case KINMENU_SETUP_XAUTON:
/* turn x autoscale on */

GetAxisRange(hPanel,KINETICS-GRAPH,&xauto,&xmin,&xmax,&yauto,&ymin,
&ymax);

SetAxisRange(hPanel,KINETICSGRAPH,1,xmin,xmax,yauto,ymin,y_max);
/* Disable x autoscale on choice */
SetMenuBarAttribute(KINMENU_SETUP_XAUTON,6,0);



/* Check x autoscale on choice */
SetMenuBarAttribute(KINMENU_SETUP XAUTON,7,1);
/* Enable x autoscale off choice */
SetMenuBarAttribute(KINMENU_SETUP_XAUTOFF,6,1);
/* Uncheck x autoscale off choice */
SetMenuBarAttribute(KINMENU_SETUP_XAUTOFF,7,0);
break;

case KINMENUSETUPXAUTOFF:
/* turn x autoscale off */

GetAxisRange(hPanel,KINETICS_GRAPH;&xauto,&x min,&xmax,&yauto,&y_min,
&y_max);

SetAxisRange(hPanel,KINETICS_GRAPH,2,x_min, xmax,yauto,y_min,y_max);
/* Enable x autoscale on choice */
SetMenuBarAttribute(KINMENU_SETUPXAUTON,6,1);
/* Uncheck x autoscale on choice */
SetMenuBarAttribute(KINMENU_SETUPXAUTON,7,0);
/* Disable x autoscale off choice */
SetMenuBarAttribute(KINMENU_SETUP_XAUTOFF,6,0);
/* Check x autoscale off choice */
SetMenuBarAttribute(KINMENU_SETUPXAUTOFF,7,1);
break;

case KINMENUSETUP_CHANGEXY:

GetAxisRange(hPanel,KINETICS_GRAPH,&xauto,&xmin,&x max,&yauto,&y_min,
&y_max);

ChangeXYRange(hPanel,KINETICS_GRAPH, 1,1, xauto,xmin,xmax,yauto,ymin,
y_max);

break;
case KINMENU_SWITCH_CHART:
case KINMENU_SWITCH_MASS_SPEC:
case KINMENU_FILE_QUIT :

/* SAVE STATES */
if ((fp = fopen("kinetic.prm","wb")) == NULL ) { /* error */

/* Tell user there was an error. */
MessagePopup("File error- can't save data.");

}
else { /* okay */

/* read in plot info */
fwrite(&plot,sizeof(plot),l,fp);
fwrite(&xpos,sizeof(int),l,fp);
fwrite(&mass,sizeof(double),l,fp);
fwrite(&current_plot_hdl,sizeof(int),l,fp);
/* close file */
fclose(fp);
/* save panel state */
SavePanelState(hPanel,"kinetic.pnl");

}
/* Unload menubar and panel */
UnloadMenuBar();
UnloadPanel(hPanel);
/* return proper value */
if(id == KINMENU_SWITCH_CHART) return STRIPCHART_PANEL;
else if(id==KINMENU_SWITCH_MASS_SPEC) return MASSSPEC_PANEL;
else if(id==KINMENU_FILE_QUIT) return QUIT;
break;



default :
break;

else if(handle == hPanel) {
switch (id) {

case KINETICS_INJECTOR_POSITION:
GetCtrlVal(hPanel,KINETICSINJECTOR_POSITION,&x_pos);
break;

default:
break;

/* ======== Calculate variables and put them on the screen */
ReadFlows(channel,panel,flowtube,partial_pressure,&total_flow,

&tubepressure,&velocity);
/* Calculate time in seconds */
time = ((float)x_pos)/(velocity+TINY);
SetCtrlVal(hPanel,KINETICSTIME,time);

/*-------------------- Show current plot postion on screen ------------
*/

signal = GetCounts(1) + TINY;
SetCtrlVal(hPanel,KINETICS_SIGNAL,signal);

/* current plot_hdl =
PlotPoint(hPanel,KINETICS_GRAPH,time,signal,2,plot.plotcolor); */

/* Alternative code to move a cursor to signal site. */
SetGraphCursor(hPanel,KINETICS_GRAPH,l,time,signal);

/*------------ Delete current plot position on screen ---------- */
/* DeleteGraphPlot(hPanel,KINETICS_GRAPH,currentplot_hdl,l); */

==*/

/* Functions to Change or Edit Various Parameters. Functions are provided to
*/
/* change basic experimental constants such as the mass selected. Others are
*/
/* used to reflect a change in hardware configuration in the flows.
/ * ==----------------------------------------------------------------------------------

==*/

/*-------------- Routine to set the mass spectrometer to a new mass ----------
-- * /

void ChangeMass(double *mass) {
int flag,control,hMassPanel;
double signal;



hMassPanel = LoadPanel (RESOURCE_FILE, SELECTMASS);
if (hMassPanel < 0) {

MessagePopup("Unable to load the required panel from the resource
file.");

return;

InstallPopup(hMassPanel);
flag = TRUE;
while(flag) {

GetPopupEvent(NO_WAIT,&control);
switch(control) {

case SELECTMASS MASSVALUE:
/* Get new mass selected */
GetCtrlVal(hMassPanel,SELECTMASS_MASSVALUE,mass);
/* Insert code to Set Mass Spec to mass chosen */
WriteVoltage((*mass)*10.0/(float)QuadRange);
break;

case SELECTMASS_INCRBY1:
*mass += 1.0;
SetCtrlVal(hMassPanel,SELECTMASS_MASSVALUE,*mass);
/* Insert code to Set Mass Spec to mass chosen */
WriteVoltage((*mass)*10.0/(float)QuadRange);
break;

case SELECTMASS_INCRBYP1:
*mass += 0.1;
SetCtrlVal(hMassPanel,SELECTMASS_MASSVALUE,*mass);
/* Insert code to Set Mass Spec to mass chosen */
WriteVoltage((*mass)*10.0/(float)QuadRange);
break;

case SELECTMASS_DECRBY1:
*mass -= 1.0;
SetCtrlVal(hMassPanel,SELECTMASS_MASSVALUE,*mass);
/* Insert code to Set Mass Spec to mass chosen */
WriteVoltage((*mass)*10.0/(float)QuadRange);
break;

case SELECTMASS_DECRBYP1:
*mass -= 0.1;
SetCtrlVal(hMassPanel,SELECTMASS_MASSVALUE,*mass);
/* Insert code to Set Mass Spec to mass chosen */
WriteVoltage((*mass)*10.0/(float)QuadRange);
break;

case SELECTMASS_FINISHED:
flag = FALSE;
break;

/* Insert code to get signal from spectrometer */
signal = GetCounts(100);
/* Put it on screen */
SetCtrlVal(hMassPanel,SELECTMASS_MASSIGNAL,signal);

)I
RemovePopup(0);

*-==*/ ------------------- -
==*/
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Routines for acquiring and processing data
*/

==*/

/*------ GetPoint acquires and averages points and calculates the variance ---
-- */

void GetPoint(int numsamples,int dwell,struct sample *point) {
double sum_x, sum_xsq;
float x;
int i;
x=O;
sum_x=0;
sum_xsq=0;

for(i=0;i<numsamples;i++) {
x=GetCounts(dwell);
sum_x += x;
sum_xsq += (x*x);
/* Insert Code to Update Screen Readout */

point->mean = sum_x/(double)i;
point->variance = (sum_xsq - (sum_x*sum_x)/((double)i) .) / ((double)(i-1));
point->variance = fabs(point->variance);

/*--------------- Weighted least squares fit for plotted data ----------------
-*/

void wlsf(struct PlotParameters *plot) {
double sum_wx=0,sum_wxsq=0,sum_wy=0,sumwysq=0,sum_wxy=0,sumweight=0;
double weight,x,y,D,slope,intercept,var_slope,varintercept;
double ssew=0,x2,y2;
int i;

for(i=0;i<plot->numpoints;i++) {
x = plot->x[i];
y = log(plot->y[i]);
weight = (plot->y[i] *plot->y i ] )/pow(plot->ysigma[ i ,2);
sum_wx += x*weight;
sum_wy += y*weight;
sum_wxsq += x*x*weight;
sum_wysq += y*y*weight;
sum_wxy += x*y*weight;
sum_weight += weight;

D = (sum_weight*sum_wxsq - sum_wx*sum_wx);
slope = ((sum_weight * sum_wxy) - (sum_wx * sum_wy)) / D;
intercept = ((sum_wy*sumwxsq)-(sumwxy*sum_wx)) / D;

/* Calculate errors */

ssew = sumwysq - slope*sumwxy - intercept*sumwy;

plot->slope = slope;
plot->intercept = intercept;
var_slope = (ssew*sum_weight)/((plot->numpoints - 2) * fabs(D));
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var_intercept = (ssew*sumwxsq)/((plot->numpoints - 2) * fabs(D));
plot->sigma_slope = sqrt(var_slope);
plot->sigma_intercept = sqrt(var_intercept);
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/* MASSSPEC.C */
#define PLOT_COLOR 9
#define MAX_ZOOM 5

#define INITX1 0
#define INITY1 0
#define INITY2 12

#define TRUE 1
#define FALSE 0

#define BOARD_RES 4096
#define MAX_VOLTAGE 10.0

#include "b:\modular\struct.h"

extern short QuadRange;

short mass_spec(struct gas_input *channel, struct handles *panel,
struct FlowTubeParameters *flowtube, struct Titles

*labels) {
float *masses,*signals;
float start_mass,end_mass,sweep_rate,mass;
double clx,cly,c2x,c2y,dx,dy,c3x,c3y,tmp;
int i,j,start_index,end_index,pause,dwell,handle2,id2;
int xauto, yauto,status,ylogon=FALSE;
char filename[40],dirname[80],junk[80],*p;
double x_min,x_max,y_min,y_max;
double partial_pressure[3],total_flow,tube_pressure,velocity;
FILE *fp;

int hPanel,hMenuBar,handle,id,zoomlevel;

float tablx[MAXZOOM],tably[MAX_ZOOM],tab2x[MAX_ZOOM],tab2y[MAX_ZOOM];

/*-------------------------------------------------------------------- */
/* Load the menu bar from the resource file. Use the constant assigned */
/* in the editor to refer to the 'menu bar. The handle returned by */
/* LoadMenuBar must be used to reference the menu bar in all subsequent */
/* function calls. If load was successful, the menu bar will be drawn */
/* at the top of the screen. */
/*-----------------------------------------------------------------------*/

hMenuBar = LoadMenuBar (RESOURCE_FILE, MASSMENU);
if (hMenuBar < 0) {

MessagePopup("Unable to load the required menu bar from the resource
file.");

return 0;
}

/*-------------------------------------------------------------------- */
/* Load the panel from the resource file. .Use the constant assigned */
/* in the editor to refer to the panel. The handle returned by */
/* LoadPanel must be used to reference the panel in all subsequent */
/* function calls. If the panel handle is negative, the load failed, */
/* so print a message and exit the program. Otherwise, display the */
/* the panel. */
/* -----------------------------------------------------------------------
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hPanel = LoadPanel (RESOURCE_FILE, MASSSPEC);
if (hPanel < 0) {

MessagePopup("Unable to load the required panel from the resource
file.");

return 0;
}

DisplayPanel (hPanel);

/*-----------------------------------------------------------------------*/
/* Dynamically allocate memory for the masses and the corresponding */
/* signals. This memory will be freed upon leaving this panel. This */
/* prevents the program from exceeding the limited memory available. */
/* One floating point value will be allocated for each of the possible */
/* outputs on the DAC board. */
/*---------------------------------------------------------------------*/

if((masses = (float *) malloc(BOARD_RES * sizeof(float))) == NULL) {
/* Insert a popup message to tell user problem */
MessagePopup("Not enough memory for masses array.");
exit(0);

}
if((signals = (float *) malloc(BOARD_RES * sizeof(float))) == NULL) {

/* Insert a popup message to tell user problem */
MessagePopup("Not enough memory for signals array.");
exit(0);

/*----------------------------------------------------------------------
/* Look for the file that has the values from the last time his panel */
/* was activated. If it doesn't exist, load variables with defaults. */
/* If it does exist, read in values and restore panel states. */
/*-----------------------------------------------------------------------*/

if ((fp = fopen("massspec.prm","rb")) == NULL ) { /* file doesn't exist */
/* Read in default variables */
GetCtrlVal(hPanel,MASSSPEC_SWEEPRATE,&sweep_rate);
GetCtrlVal(hPanel,MASSSPEC_STARTMASS,&start_mass);
GetCtrlVal(hPanel,MASSSPEC_ENDMASS,&endmass);

}
else ( /* file was found */

/* read in masses */
fread(masses,sizeof(float),BOARD_RES,fp);
/* read in signals */
fread(signals,sizeof(float),BOARD_RES,fp);
/* read in sweep_rate */
fread(&sweep_rate,sizeof(float),l,fp);
/* read in start_mass */
fread(&startmass,sizeof(float),1,fp);
/* read in end_mass */
fread(&end_mass,sizeof(float),l,fp);
/* see if log scale is being used */
fread(&ylogon,sizeof(int),l,fp);
/* close file */
fclose(fp);
/* recall panel state */
RecallPanelState(hPanel,"massspec.pnl");
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/* Take care of menu bar state */
if (ylogon==TRUE) {

SetMenuItemCheckmark(CHARTMENU_SETUP YLOGON,TRUE);
SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGOFF,FALSE);
SetInputMode(hMenuBar,CHARTMENU_SETUPYLOGON,FALSE);
SetInputMode(hMenuBar,CHARTMENU_SETUP_YLOGOFF,TRUE);

}
else {

SetMenuItemCheckmark(CHARTMENU_SETUP YLOGON,FALSE);
SetMenuItemCheckmark(CHARTMENU_SETUP_YLOGOFF,TRUE);
SetInputMode(hMenuBar,CHARTMENU_SETUP_YLOGON,TRUE);
SetInputMode(hMenuBar,CHARTMENU_SETUP_YLOGOFF,FALSE);

}

GetProgramDir(dirname);

/*====================== MAIN LOOP ===================================*/

while (TRUE) {
/*------------------------------------------------------------------ */
/* Call GetUserEvent with the wait parameter set to FALSE. This will */
/* cause the function not to wait for an event. When an event occurs,*/
/* the handle variable will either match the menu bar handle or the */
/* panel handle. The id variable will match one of the menu bar or */
/* control ID constants assigned in the editor. */
/*------------------------------------------------------------------ */

GetUserEvent (NOWAIT, &handle, &id);
/*---------------------------------------------------------------------

*/
/* If the handle matches the menu bar handle, decode the id variable

*/
/* to figure out which menu item or immediate command was selected.

*/
/*---------------------------------------------------------------------

*/
if (handle == hMenuBar) {

switch (id) {
case MASSMENU_FILE_SAVEDATA : /* Save Mass Spectrum */

status=FileSelectPopup(dirname,"*.dat","Select file to save
data. ",NO_RESTRICT,NO_RESTRICT,TRUE,filename);

if(status) {
if(status==FILE_EXISTS) {

status=ConfirmPopup("That file already exits.
Overwrite?");

if(status) {
fp = fopen(filename,"wt");
/* Input file wil now say */
/* "sweep rate\tstart mass\tend mass\tstart index\tend

index\n"*/
/* Now write that line */
fprintf(fp,"sweep rate\tstart mass\tend mass\tstart

index\tend index\n");
/* Now write important parameters */

fprintf(fp,"%g\t%g\t%g\t%d\t%d\n",sweeprate,start_mass,endmass,
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start_index,end_index);
/* Input file will now say "Mass\tSignal\n" */
/* Now write in that line */
fprintf(fp,"Mass\tSignal\n");
/* Now write masses and signals */
for(i=start_index;i<=end_index;i++) {

fprintf(fp,"%g\t%g\n",masses[i],signals[i]);

fclose(fp);
/* save dir for future use */
p=strrchr(filename,'\\');
if(p!=NULL) {

*p=0;
strcpy(dirname,filename);

}
break;

case MASSMENU_FILE_SAVESETUP : /* Save flows setup */
SaveSetupParameters(channel,flowtube,labels);
break;

case MASSMENUFILE GETOLDSPEC:
GetProgramDir(dirname);
status=FileSelectPopup(dirname,"*.dat","Select file to save

data.",NO_RESTRICT,NO RESTRICT,TRUE,filename);
if(status) {

if(status==FILE_EXISTS) {
fp = fopen(filename,"rt");
/* Input file now says */
/* "sweep rate\tstart mass\tend mass\tstart index\tend

index"*/
/* Now read in that line */
fgets(junk, 80 , fp);
/* Now get important parameters */
fscanf(fp,"%f%f%d%d",&sweep_rate,&start_mass,&end_mass,

&start_index,&end_index);
/* get carriage return */
fgets(junk,80,fp);
/* Input file now says "Mass\tSignal\n" */
/* Now read in that line */
fgets(junk,80,fp);
/* Now read in masses and signals */
for(i=start_index;i<=end_index;i++) {

fscanf(fp,"%f%f",&masses[i] , &signals[i]);

fclose(fp);
/* Set controls to proper values */
SetCtrlVal(hPanel,MASSSPEC_SWEEPRATE,sweep_rate);
SetCtrlVal(hPanel,MASSSPEC_STARTMASS,startmass);
SetCtrlVal(hPanel,MASSSPEC_ENDMASS,end_mass);
/* reset x axis on spectrum */

GetAxisRange(hPanel,MASSSPEC_SPECTRUM,&xauto,&xmin,&xmax,
&yauto,&y_min,&y_max);

x min=start mass;
x max=end mass;

SetAxisRange(hPanel,MASSSPEC_SPECTRUM,xauto,xmin,xmax,yauto,ymin,ymax);
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/* clear graph */
DeleteGraphPlot(hPanel,MASSSPEC_SPECTRUM,-1,1);
PlotXY(hPanel,MASSSPEC_SPECTRUM,masses+start_index,

signals+start_index,endindex-start_index,
3,3,0,11,1,15);

/* Set appropriate active controls */
SetCtrlAttribute(hPanel,MASSSPEC_DELETE,15,TRUE);
SetCtrlAttribute(hPanel,MASSSPECZOOMIN,15,TRUE);
SetActiveCtrl(MASSSPEC_SPECTRUM);
/*-------------------------------------------------------

---------- */
/* The initial axis configurations are preserved so that

it may */
/* always be possible to return to the original zooming

level. */
/*-------------------------------------------------------

---------- */
zoomlevel = 0;
tablx[zoomlevel] = startmass;
tably[zoomlevel] = y_min;
tab2x[zoomlevel] = end_mass;
tab2y[zoomlevel] = y_max;

}

break;
case MASSMENU_FILE_PRINT: /* Print out mass spec */

OutputGraph(0,panel->PrintSetup.OutputFile,
panel->PrintSetup.ScaleFactor,
hPanel,MASSSPEC_SPECTRUM);

break;
case MASSMENU_FILE_PRINTSETUP:

PrintSetup(panel);
break;

case MASSMENU_SETUP_CHAN
SetupChannels(channel,labels,panel,flowtube);
/* Update the screen */
UpdateMainCtrls(channel,labels,panel);
break;

case MASSMENU_SETUP_FLOWTUBPAR:
EditFlowtubeParamters(flowtube,panel,channel);
/* Update the screen */
UpdateMainCtrls(channel, labels,panel);
break;

case MASSMENU_SETUP_YLOGON:
SetMenuItemCheckmark(MASSMENU_SETUP_YLOGON,TRUE);
SetMenuItemCheckimark(MASSMENU_SETUP_YLOGOFF,FALSE);
SetInputMode(hMenuBar,MASSMENU_SETUP_YLOGON,FALSE);
SetInputMode(hMenuBar,MASSMENU_SETUP_YLOGOFF,TRUE);
/* Rescale Y axis, 21 refers to y log axis variable */
SetGraphAttribute(hPanel,MASSSPEC_SPECTRUM, 21,TRUE);
ylogon = TRUE;
break;

case MASSMENU_SETUP_YLOGOFF:
SetMenuItemCheckmark(MASSMENU_SETUP_YLOGON,FALSE);
SetMenuItemCheckmark(MASSMENU_SETUP_YLOGOFF,TRUE);
SetInputMode(hMenuBar,MASSMENU_SETUP_YLOGON,TRUE);
SetInputMode(hMenuBar,MASSMENU_SETUP_YLOGOFF,FALSE);
/* Rescale Y axis, 21 refers to y log axis variable */
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SetGraphAttribute(hPanel,MASSSPEC_SPECTRUM,21,FALSE);
ylogon = FALSE;
break;

case MASSMENU_SETUP_CHANGEXY: /* CHANGE RANGES ON AXIS */

GetAxisRange(hPanel,MASSSPEC_SPECTRUM, &xauto, &xmin,&x_max, &yauto,&y_min,
&y_max);

ChangeXYRange(hPanel,MASSSPEC_SPECTRUM,1,1,xauto,x_min,x_max, yauto,ymin, y
max);.

break;
case MASSMENU_SWITCH_KINETICS:
case MASSMENU_SWITCH_CHART:
case MASSMENU_FILE_QUIT : /* END PROGRAM */

/* SAVE STATES */
if ((fp = fopen("massspec.prm","wb")) != NULL ) {

/* write masses */
fwrite(masses,sizeof(float),BOARDRES, fp);
/* write signals */
fwrite(signals,sizeof(float),BOARD_RES,fp);
/* write sweep_rate */
fwrite(&sweep_rate,sizeof(float),1,fp);
/* write start_mass */
fwrite(&start_mass,sizeof(float), l,fp);
/* write end_mass */
fwrite(&endmass,sizeof(float) ,1,fp);
/* record if log scale is being used */
fwrite(&ylogon,sizeof(int),l,fp);
/* close file */
fclose(fp);
/* save panel state */
SavePanelState(hPanel,"massspec.pnl");

/* free arrays */
free(masses);
free(signals);
/* Unload menubar and panel */
UnloadMenuBar();
UnloadPanel(hPanel);
/* RETURN PROPER VALUE */
if(id == MASSMENU_SWITCH_KINETICS) return KINETICS_PANEL;
else if(id==MASSMENU_SWITCH_CHART) return STRIPCHART_PANEL;
else if(id==MASSMENU_FILE_QUIT) return QUIT;
break;

default :
break;

else if(handle == hPanel) (
switch (id) {

case MASSSPEC_SCAN :
/* disable copy data graph feature and make cursors */
/* dissapear temporarily */
SetGraphAttribute(hPanel,MASSSPEC_SPECTRUM,30,1);
SetCursorAttribute(hPanel,MASSSPEC_SPECTRUM,1,2,3);
SetCursorAttribute(hPanel,MASSSPEC_SPECTRUM,2,2,3);
/* clear graph */
DeleteGraphPlot(hPanel,MASSSPEC_SPECTRUM,-1,1);
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/* reset x axis on spectrum */

GetAxisRange(hPanel,MASSSPEC_SPECTRUM,&xauto,&x_min,&xmax,&yauto,&y_min,
&y_max);

xmin=start_mass;
x_max=end_mass;

SetAxisRange(hPanel,MASSSPEC_SPECTRUM,.xauto,x_min,xmax,yauto,ymin,y_jax);
/* take a spectrum */
/* calculate dwell time in milliseconds */
dwell = (1000L*QuadRange)/(BOARD_RES * sweeprate);
/* make sure dwell is at least one millisecond */
if(dwell==0) dwell=1;
/* compute appropriate place to start in array for starting

mass */
start_index = (int) ((start_mass * BOARDRES) / QuadRange);
/* compute appropriate place to stop in array for end mass */
end_index = (int) ((end_mass * BOARD_RES) / QuadRange);
/* Screen will redraw only once every other second. Calculate

the number */
/* of points that can be taken per second

*/
pause = (int)(.1*(BOARD_RES * sweep rate)/(float)QuadRange +

2);
/* make sure pause isn't greater than all the points needed */
if(pause>(end_index-start_index)) pause=end_index-start_index;
/* Outer loop goes through all needed masses */
for(i=start_index;i<end_index;i+=pause) {

/* Inner loop lasts about one tenth of a second */
for(j=0;(j<pause)&&((i+j)<end_index);j++) {

masses[i+j] =((float)QuadRange * (i+j)) /
(float)BOARD_RES;

/* set spectrometer to mass */
WriteVoltage(masses[i+j]*10.0/(float)QuadRange);
/* get signal */
signals[i+j] = GetCounts(dwell);

/* Plot Spectrum Segment*/
if(i!=start_index) {

PlotXY(hPanel,MASSSPEC_SPECTRUM,masses+i-1,
signals+i-l,j+1,3,3,0,11,1,15);

else {
PlotXY(hPanel,MASSSPEC_SPECTRUM,masses+i,

signals+i,j,3,3,0,11,1,15);

/* Allow for user to abort scan */
GetUserEvent (NOWAIT, &handle2, &id2);
if((handle2 == hPanel)&&(id2 == MASSSPEC_SCAN)) break;

}
/* Abort here if user pressed acquire during scan */
if((handle2 == hPanel)&&(id2 == MASSSPECSCAN)) {

DeleteGraphPlot(hPanel,MASSSPEC_SPECTRUM,-1,1);
SetCtrlAttribute(hPanel,MASSSPEC_SCAN,15,TRUE);
SetCtrlAttribute(hPanel,MASSSPECDELETE,15,FALSE);
SetCtrlAttribute(hPanel,MASSSPEC_ZOOMIN,15,FALSE);
SetCtrlAttribute(hPanel,MASSSPEC_ZOOMOUT,15,FALSE);
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SetCtrlAttribute(hPanel,MASSSPEC_RESTORE,15,FALSE);
break;

/* Plot Spectrum */
DeleteGraphPlot(hPanel,MASSSPEC_SPECTRUM,-1,1);
SetGraphAttribute(hPanel,MASSSPEC_SPECTRUM,30,0);
SetCursorAttribute(hPanel,MASSSPEC_SPECTRUM,1,2,0);
SetCursorAttribute(hPanel,MASSSPEC_SPECTRUM,2,2,0);
PlotXY(hPanel,MASSSPEC_SPECTRUM,masses+start_index,

signals+start_index,end_index-
start_index,3,3,0,11,1,15);

/* Set appropriate active controls */
SetCtrlAttribute(hPanel,MASSSPEC_DELETE,15,TRUE);
SetCtrlAttribute(hPanel,MASSSPEC_ZOOMIN,15,TRUE);
SetActiveCtrl(MASSSPEC_SPECTRUM);
/*-------------------------------------------------------------

---- */

/* The initial axis configurations are preserved so that it
may */

/* always be possible to return to the original zooming level.
*/

/*-------------------------------------------------------------
---- */

zoomlevel = 0;
tablx[zoomlevel] = start_mass;
tably[zoomlevel] = ymin;
tab2x[zoomlevel] = end_mass;
tab2y[zoomlevel] = y_max;
break;

case MASSSPEC_DELETE :
/* -------------------------------------------------------------

---- */

/* When a plot is deleted, the panel's controls are reset to
the */

/* status in which they were in the beginning.
*/

/*-------------------------------------------------------------
---- */

DeleteGraphPlot(hPanel,MASSSPEC_SPECTRUM,-1,1);
SetCtrlAttribute(hPanel,MASSSPEC_SCAN,15,TRUE);
SetCtrlAttribute(hPanel,MASSSPEC_DELETE,15,FALSE);
SetCtrlAttribute(hPanel,MASSSPEC_ZOOMIN,15,FALSE);
SetCtrlAttribute(hPanel,MASSSPEC_ZOOMOUT,15,FALSE);
SetCtrlAttribute(hPanel,MASSSPECRESTORE,15,FALSE);
break;

case MASSSPEC_ZOOMIN :
/*----------------------------------------------------------

---- */

/* When the Zoom In button is pushed, the axes will be re-
scaled */

/* to the window defined by cursors 1 and 2. Because all
relative */

/* positions of the 2 cursors are allowed, swaps may be
needed. */

/*----------------------------------------------------------
---- */

GetGraphCursor(hPanel,MASSSPEC_SPECTRUM,1,&clx,&cly);

110



GetGraphCursor(hPanel,MASSSPEC_SPECTRUM,2,&c2x,&c2y);
if (clx == c2x II cly == c2y)

MessagePopup("Deltas must be non-zero...");
else {

if (clx > c2x) {
tmp = clx;
clx = c2x;
c2x = tmp;

)
if (cly > c2y) {

tmp = cly;
cly = c2y;
c2y = tmp;

/*----------------------------------------------------------

/* Update zooming level. If zooming level is maximum,
*/

/* further zooming. The Zoom Out and Restore buttons should

/* always be enabled after zooming in.

/*----------------------------------------------------------

SetCtrlAttribute(hPanel,MASSSPEC_RESTORE,15,TRUE);
SetCtrlAttribute(hPanel,MASSSPEC_ZOOMOUT,15,TRUE);
zoomlevel++;
if (zoomlevel == MAX_ZOOM)

SetCtrlAttribute(hPanel,MASSSPEC_ZOOMIN,15,FALSE);
else {

/*-------------------------------------------------------

/* Store the current range of each axis in a table, so

/* they may be restored at a later point.

/*-------------------------------------------------------

tablx[zoomlevel] = clx;
tably[zoomlevel] = cly;
tab2x[zoomlevel] = c2x;
tab2y[zoomlevel] = c2y;

)
SetAxisRange(hPanel,MASSSPEC_SPECTRUM, 0,clx, c2x,0,cly, c2y);

break;
case MASSSPEC_ZOOMOUT :
case MASSSPEC_RESTORE :

/*-------------------------------------------------------------

/* Update zooming level. If zooming level is minimum, disable

/* further zooming. The Zoom In button should always be
*/

/* after zooming out.

/*-------------------------------------------------------------
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SetCtrlAttribute(hPanel,MASSSPEC_ZOOMIN,15,TRUE);
if (id == MASSSPEC_RESTORE)

zoomlevel = 0;
else

zoomlevel--;
if (zoomlevel == 0) {

SetCtrlAttribute(hPanel,MASSSPECRESTORE,15,FALSE);
SetCtrlAttribute(hPanel,MASSSPEC_ZOOMOUT,15,FALSE);

/*-------------------------------------------------------------
---- */

/* Restore the scaling range of the previous zooming level.
*/

/*-------------------------------------------------------------
---- */

clx = tablx[zoomlevel];
cly = tably[zoomlevel];
c2x = tab2x[zoomlevel];
c2y = tab2y[zoomlevel];
SetAxisRange(hPanel,MASSSPEC_SPECTRUM,0,clx,c2x,0,cly,c2y);
break;

case MASSSPEC_SWEEPRATE :
GetCtrlVal(hPanel,MASSSPEC_SWEEPRATE,&sweep_rate);
break;

case MASSSPEC_STARTMASS:
GetCtrlVal(hPanel,MASSSPEC_STARTMASS,&startmass);
break;

case MASSSPEC_ENDMASS :
GetCtrlVal(hPanel,MASSSPEC_ENDMASS,&end mass);
break;

/*---------------------------------------------------------------------
*/

/* Read the current position of each cursor.
*/

/* ---------------------------------------------------------------------
*/

GetGraphCursor(hPanel,MASSSPEC_SPECTRUM,1,&clx,&cly);
GetGraphCursor(hPanel,MASSSPEC_SPECTRUM,2,&c2x,&c2y);
GetGraphCursor(hPanel,MASSSPEC_SPECTRUM,3,&c3x,&c3y);
/*---------------------------------------------------------------------

*/
/* Update cursor readouts.

*/
/*---------------------------------------------------------------------

*/
SetCtrlVal(hPanel,MASSSPEC_C1 X,clx);
SetCtrlVal(hPanel,MASSSPEC_C1_Y,cly);
SetCtrlVal(hPanel,MASSSPEC_C2_X,c2x);
SetCtrlVal(hPanel,MASSSPEC_C2 Y,c2y);
SetCtrlVal(hPanel,MASSSPEC_DELTA_X,c2x-clx);
SetCtrlVal(hPanel,MASSSPEC DELTA_Y,c2y-cly);
SetCtrlVal(hPanel,MASSSPEC X POS,c3x);
SetCtrlVal(hPanel,MASSSPEC_YPOS,c3y);

ReadFlows(channel,panel,flowtube,partialpressure,&total_flow,
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&tubepressure,&velocity);
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/* READFLOW.C */
#define BOARD_RES 4096
#define MAX_VOLTAGE 10.0
#include "b:\modular\struct.h"

void ReadFlows(struct gas_input *channel,struct handles *panel,
struct FlowTubeParameters *flowtube,
double *partial_pressure,double *total_flow,
double *tube-pressure,double *velocity)

int i,j,hPanel;
char hours_min_sec(401;
/* Data Acquisition Variables */
struct PlotParameters plot;
struct sample point;
int current_plot_hdl;
double numerator[3],flow;
double pressure;
double signal,volume,reynolds;

hPanel = panel->hFlowsPanel;
/* ----- Read Voltages from all baratrons and flowmeters ----- */
for(i=l;i<=7;i++) {

channel[i].voltage = ReadVoltage(i);
channel[i].reading = channel[i].voltage*channel[i].range /

(channel[i].max_volts+TINY);
)
/* Code to update species partial pressures in flowtube

*/
/* Mixing ratio of species = (ratiol*Flowl+ratio2*Flow2+ratio3*Flow3) /

*/
/* total_flow

*/
/* Partial Pressure = total_pressure*mixingratio

*/

for(i=0;i<3;i++) {
partial_pressure[i]=0; /* Clear Variables */
numerator[i] =0;

)
*totalflow=0;
for(i=l;i<=7;i++) {

if(channel[i].type == BUBBLER) {
flow = channel[i].reading;
*total_flow += flow;
pressure = channel[channel[i].press_chan].reading;
for(j=0;j<3;j++)

numerator[j] += ( channel[i].amount[j] * flow / (pressure +
TINY));

else if(channel[i].type == BULB) {
flow = channel[i].reading;
*total_flow += flow;
for(j=0;j<3;j++) numerator[j] += flow*channel[i].amount[j];

else if(channel[i].type == TUBEBARO) (
*tube_pressure = channel[i].reading;
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/* Calculate Velocity, time, and Reynold's number
*/

/* velocity = flow(corrected for new pressure and temperature)/ Area
*/

*velocity = (*total_flow)*flowtube->temp*760/
(273*(*tube_pressure)*PI*flowtube->radius*flowtube->radius+TINY);

*velocity /= 60; /* convert from minutes to seconds */

/* Calculate Reynold's number. */
switch (flowtube->gas_type) {

case HE: /* Helium */
flowtube->eata = -.0007246 * flowtube->temp * flowtube->temp

+.8026 * flowtube->temp + 22.74;
break;

case NITROGEN: /* Nitrogen */
flowtube->eata = 182.7;
break;

case ARGON: /* Argon */
flowtube->eata = -4.921e-5 * flowtube->temp * flowtube->temp

+.09364 * flowtube->temp + 199.3;
break;

reynolds = flowtube->gas_mw * (16.03 / flowtube->temp * *tubepressure)
* flowtube->radius * *velocity / flowtube->eata;

for(i=0;i<3;i++)
partialpressure[i] = numerator[i] * (*tube_pressure)/(*total_flow

+TINY);

/*-------------------- Display values on screen ----------------------
*/

SetCtrlVal(hPanel,FLOWSPANEL_CHAN1,channel[1].reading);
SetCtrlVal(hPanel,FLOWSPANEL_CHAN2,channel[2].reading);
SetCtrlVal(hPanel,FLOWSPANEL_CHAN3,channel[3].reading);
SetCtrlVal(hPanel,FLOWSPANEL_CHAN4,channel[4].reading);
SetCtrlVal(hPanel,FLOWSPANEL_CHAN5,channel[5].reading);
SetCtrlVal(hPanel,FLOWSPANEL_CHAN6,channel[6].reading);
SetCtrlVal(hPanel,FLOWSPANEL_CHAN7,channel[7).reading);
SetCtrlVal(hPanel,FLOWSPANEL_SPECIES1,partial_pressure[0]);
SetCtrlVal(hPanel,FLOWSPANEL_SPECIES2,partial_pressure[1]);
SetCtrlVal(hPanel,FLOWSPANEL_SPECIES3,partialpressure[2]);
SetCtrlVal(hPanel,FLOWSPANEL_VEL,*velocity);
SetCtrlVal(hPanel,FLOWSPANEL_RN,reynolds);
SetCtrlVal(hPanel,FLOWSPANEL_TEMP,flowtube->temp);

/* ------------------- Update the time -------------------------*/
strcpy(hours_min_sec,TimeStr());
SetCtrlVal(hPanel,FLOWSPANEL_TIME,hours_min_sec);I.
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/* SETUP.C */
#define PC_LPM_16 13

#include "b:\modular\struct.h"
/*======================================*/
/* Setup For Program */
/*======================================*/

extern short AnalogBoardType, CounterOrAnalog, AnalogOutput, Slot, QuadRange;
extern float SamplesPerMS;
short LoadProgramPanels(struct handles *panel) {

/*-----------------------------------------------------------------------*/
/* Load the panel from the resource file. Use the constant assigned */
/* in the editor to refer to the panel. The handle returned by */
/* LoadPanel must be used to reference the panel in all subsequent */
/* function calls. If the panel handle is negative, the load failed, */
/* so print a message and exit the program. Otherwise, display the */
/* the panel. */
/*-------------------------------------------------------------------- */

panel->hFlowsPanel = LoadPanel (RESOURCE_FILE, FLOWSPANEL);
if (panel->hFlowsPanel < 0) {

MessagePopup("Unable to load the required panel from the resource
file.");

return 0;

panel->hChannelSetup = LoadPanel(RESOURCE_FILE, SETCHANNEL);
if (panel->hChannelSetup < 0) {

MessagePopup("Unable to load the required panel from the resource
file.");

return 0;
I

panel->hEditLabels = LoadPanel (RESOURCE_FILE, SPECNAME);
if (panel->hEditLabels < 0) {

MessagePopup("Unable to load the required panel from the resource
file.");

return 0;
}

panel->hFlowtubeParams = LoadPanel(RESOURCE_FILE, FLOWTPARAM);
if (panel->hFlowtubeParams < 0) {

MessagePopup("Unable to load the required panel from the resource

file.");
return 0;

}

panel->PrintSetup.hPrintSetup = LoadPanel(RESOURCE_FILE, PRINTSETUP);
if (panel->PrintSetup.hPrintSetup < 0) {

MessagePopup("Unable to load the required panel from the resource

file.");
return 0;

return 1;
}
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short SetupParameters(struct gas_input *channel,struct handles *panel,
struct FlowTubeParameters *flowtube,struct Titles *labels) {

/*-----------------------------------------------------------------------*/
/* Load up critical values from the previous time the program was run. */
/* This file should be in the same directory as the program and be */
/* called "dkin.prm". If this file cannot be found, load into the */
/* variables the default values. These are saved when the user uses */
/* the Save Setup command from the File menu. Values are a binary file. */
/* The format the variables are saved in are the following order: */
/* struct gas_input channel[8]; */
/* struct FlowTubeParameters flowtube; */
/* struct Titles labels; */
/* */
/*--------------------------------------*/
int flag = FALSE;
int status,i,j;
FILE *fp;

fp=fopen("dkin.prm","rb");
if(fp!=NULL) { /* Success, found the file, now read in parameters. */

status=fread(channel,sizeof(channel[0]),8,fp);
if(status!=8) flag = (flag 1I 1);
status=fread(flowtube,sizeof(*flowtube),l,fp);
if(status!=1) flag = (flag I1 1);
status = fread(labels,sizeof(*labels),l,fp);
if(status!=1) flag = (flag 1I 1);
fclose(fp);

}
else flag = 1;
if(flag) { /* Error, establish default values. */

/* Initial state is that all readings come from a flowtube barotron */
/* in the resource file. Therefore, set every channel to that */
/* setting. */
for(i=l;i<=7;i++) (

channel[i].type = TUBE_BARO;
channel[i).barotron.index = TEN;
channel[i].barotron.range = 10.0;
channel[i].flowmeter.index = HE;
channel[i].flowmeter.range = 10.0;
channel[i].flowmeter.gas_correct = 1.0;
channel[i].range = 10.0;
for(j=0;j<3;j++) channel[i].amount[j] = 0;
channel[i].press_chan=2;
channel[i] .max_volts = BAROTRON_VOLTAGE;
channel[i].voltage = .1;
channel[i].reading = .1;

}
/* Make one channel a flow so we have some velocity */
channel[3].type = BULB;

/* Setup flowtube settings */

flowtube->gas_type = HE;
flowtube->gas_correct = 1.0;
flowtube->gas_mw = 4.0;
flowtube->temp = 200;
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flowtube->radius = 1.4;
flowtube->eata = 1.0;

/* Get labels */
GetCtrlVal(panel->hEditLabels,SPECNAME_SPEC1,labels->species[0]);
GetCtrlVal(panel->hEditLabels,SPECNAME_SPEC2,1abels->species[1]);
GetCtrlVal(panel->hEditLabels,SPECNAME_SPEC3,1abels->species[2]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN1,labels->channel[1]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN1,labels->channel l]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN2,1abels->channel[2]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN3,1abels->channel[3]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN4,1abels->channel[4]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN5,1abels->channel[5]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN6,1abels->channel[6]);
GetCtrlVal(panel->hEditLabels,SPECNAME_CHAN7,1abels->channel[7]);

/* Put values into places from file */
/* Put the Labels in */
SetCtrlVal(panel->hEditLabels,SPECNAME_SPEC1,labels->species[0]);
SetCtrlVal(panel->hEditLabels,SPECNAME_SPEC2,1abels->species[1]);
SetCtrlVal(panel->hEditLabels,SPECNAME_SPEC3,1abels->species[2]);
SetCtrlVal(panel->hEditLabels,SPECNAME_CHAN1,labels->channel[1]);
SetCtrlVal(panel->hEditLabels,SPECNAME_CHAN1,labels->channel[1]);
SetCtrlVal(panel->hEditLabels,SPECNAMECHAN2,1abels->channel[2]);
SetCtrlVal(panel->hEditLabels,SPECNAMECHAN3,1abels->channel[3]);
SetCtrlVal(panel->hEditLabels,SPECNAMECHAN4,1abels->channel[4]);
SetCtrlVal(panel->hEditLabels,SPECNAMECHAN5,1abels->channel[5]);
SetCtrlVal(panel->hEditLabels,SPECNAMECHAN6,1abels->channel[6]);
SetCtrlVal(panel->hEditLabels,SPECNAME_CHAN7,1abels->channel[7]);

/* Set the channel # indicator to the top of the slide */
SetCtrlVal(panel->hChannelSetup,SETCHANNEL_CHANUM,0);
SetChanNum(channel,panel);
UpdateMainCtrls (channel,labels,panel);
UpdateChannelPanel(labels,panel);

/* Set Flowtube Variables */
SetCtrlVal(panel->hFlowtubeParams,FLOWTPARAM_FLOWTEMP,flowtube->temp);
SetCtrlVal(panel->hFlowtubeParams,FLOWTPARAM_CARRIERGAS,flowtube-

>gas_type);
SetCtrlVal(panel->hFlowtubeParams,FLOWTPARAM_RADIUS,flowtube->radius);

return 1;

/* -------------------------------------------------------------------- *

/* Save critical values. See SetupParameters(...) above. */
/* This file should be in the same directory as the program and be */

/* called "dkin.prm". Values are a binary file. */
/* The format the variables are saved in are the following order: */

/* struct gas_input channel[8]; */
/* struct FlowTubeParameters flowtube; */
/* struct Titles labels; */
/* -------------------------------------------------------------------- *
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short SaveSetupParameters(struct gas_input *channel,
struct FlowTubeParameters *flowtube,struct Titles *labels) {

int flag = FALSE;
int status;
FILE *fp;
fp=fopen("dkin.prm","wb");
if(fp) { /* Success, found the file, now write in parameters. */

status=fwrite(channel,sizeof(channel[0]),8,fp);
if(status!=8) flag = (flag II 1);
status=fwrite(flowtube,sizeof(*flowtube),l,fp);
if(status!=1) flag = (flag I1 1);
status = fwrite(labels,sizeof(*labels),l,fp);
if(status!=l) flag = (flag 1I 1);

fclose(fp);
return 1;

/* Setup for boards */

short InitializeBoards(void) {

int i,boardCode,status;
double voltage=0,total_voltage=0,interval;
float rate =0;
struct time tl,t2;
char result[50];
/* See if its an National Instruments Board */
if(AnalogBoardType == 0) ( /* NI Board */

/* See if we need to auto detect the board number */
if(Slot == 0) {

for(i=l;i<=4;i++) {
status=InitDABrds(i,&boardCode);
if(status < 0) continue;
else {

Slot = i;
break;

}
}
if(i==5) {

MessagePopup("Board couldn't be found.");
return 0;

else {
status=Init_DABrds(Slot,&boardCode);
if(status < 0) {

MessagePopup("Board couldn't be found.");
return 0;

}

/* Now Congifure board */
/* look for PCLPM 16 Board */
if(boardCode == PC_LPM_16) AI_Configure(Slot,-1,1,5,1,0);
else AIConfigure(Slot,-1,1,10,1,0);
AI_Clear;
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AO_Config(Slot,AnalogOutput,1,10,0);
/* Now see how much time it takes to do 5000 scans */
MessagePopup("Calibrating A/D timing.");
gettime(&tl);
for(i=0;i<5000;i++) {

AI_VRead(Slot,0,1,&voltage);
total_voltage += voltage;

gettime(&t2);

else { /* DT2801 board */
/* Now see how much time it takes to do 5000 scans */
MessagePopup("Calibrating A/D timing.");
InitDT2801();
gettime(&tl);
for(i=0;i<5000;i++) {

rate += DTVIn(0);

gettime(&t2);
)
/* Calculate time interval */
interval=(float)t2.ti_hund/100.0+(float)t2.ti sec+(float)t2.ti_min*60.0

((float)tl.ti_hund/100.0+(float)tl.ti_sec+(float)tl.ti-min*60.0);
SamplesPerMS = 5000.0/(interval*1000);
if (SamplesPerMS < 1.0) SamplesPerMS=1.0;
sprintf(result,"Sampling rate is %f per millisecond.", SamplesPerMS);
MessagePopup(result);
return 1;

void PrintSetup(struct handles *panel)
int flag,control,hPanel,status;
char dirname[80],filename[80];

hPanel = panel->PrintSetup.hPrintSetup;

InstallPopup(hPanel);
/* Setup Values to present ones */
SetCtrlVal(hPanel,PRINTSETUP_PRINT_TO,panel->PrintSetup.PrintTo);
SetCtrlVal(hPanel,PRINTSETUP_OUTPUTFILE,

panel->PrintSetup.OutputFile);
SetCtrlVal(hPanel,PRINTSETUP_PAGE_ORIENTATION,

panel->PrintSetup.Orientation);
SetCtrlVal(hPanel,PRINTSETUP_SCALE_FACTOR,

panel->PrintSetup.ScaleFactor);
SetCtrlVal(hPanel,PRINTSETUP_PAGE_EJECT,

panel->PrintSetup.PageEject);

flag = TRUE;
while(flag)
{

GetPopupEvent(WAIT,&control);
switch (control)
{

case PRINTSETUP_PRINT_TO:
GetCtrlVal(hPanel,PRINTSETUP_PRINT_TO,&panel->PrintSetup.PrintTo);
if(panel->PrintSetup.PrintTo)
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( /* print to iptl */
/* make output filename a null string */
panel->PrintSetup.OutputFile[0]=0;

}
else
{ /* need to get a filename to print to file */

GetProgramDir(dirname);
status=FileSelectPopup(dirname,"*.prn","Select file to print

to.",NO_RESTRICT,NO_RESTRICT,TRUE,filename);
if(status)
{

if(status==FILE_EXISTS)
{

status=ConfirmPopup("That file already exits.
Overwrite?");

if(status) strcpy(panel->PrintSetup.OutputFile,filename);
else (

panel->PrintSetup.OutputFile[0]=0;
/* Put setttings back to print to LPT1 */
panel->PrintSetup.PrintTo = 1;
SetCtrlVal(hPanel,PRINTSETUP_PRINT_TO,1);

I
/* Write filename to panel */
SetCtrlVal(hPanel,PRINTSETUP_OUTPUTFILE,

panel->PrintSetup.OutputFile);
break;

case PRINTSETUP_PAGE_ORIENTATION:
/* 1 = Landscape, 0 = Portrait */
GetCtrlVal(hPanel,PRINTSETUP_PAGE_ORIENTATION,

&panel->PrintSetup.Orientation);
break;

case PRINTSETUPSCALE_FACTOR:
/* 1 = full size, 0 = screen size */
GetCtrlVal(hPanel,PRINTSETUP_SCALE_FACTOR,

&panel->PrintSetup.ScaleFactor);
break;

case PRINTSETUPPAGE EJECT:
/* 1 = eject , 0 = don't eject */
GetCtrlVal(hPanel,PRINTSETUP_PAGE_EJECT,

&panel->PrintSetup.PageEject);
break;

case PRINTSETUP_FINISHED:
flag = FALSE;
break;

)

if(panel->PrintSetup.OutputFile[0]==0)
{.

ConfigurePrinter("LPTl",panel->PrintSetup.Orientation,
0,0,panel->PrintSetup.PageEject);

else
{

ConfigurePrinter(panel->PrintSetup.OutputFile,
panel->PrintSetup.Orientation,
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0,O,panel->PrintSetup.PageEject);

RemovePopup (0);
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/* DRIVERS.C */
extern short AnalogBoardType, CounterOrAnalog, AnalogOutput, Slot, QuadRange;
extern float SamplesPerMS;
#include "b:\modular\struct.h"
float GetCounts(short milliseconds) {

float rate = 0;
double voltage, total_voltage=0;
long i,samples;

if(CounterOrAnalog) return CounterRate(milliseconds);
else {

samples = (long)(milliseconds*SamplesPerMS + .5);
if(AnalogBoardType == 0) { /* NI Board */

for(i=0;i<samples;i++) {
AI_VRead(Slot,0,1,&voltage);
total_voltage += voltage;

else { /* DT2801 Board */
for(i=0;i<samples;i++) {

total_voltage += DTVIn(0);

rate = total_voltage / samples;
return rate;

float ReadVoltage(.short channel) {
double voltage;
/* NI Board */
if(AnalogBoardType == 0) {

AI_VRead(Slot,channel,l,&voltage);
return (float) voltage;

/* DT2801 */
else return DTVIn(channel);

void WriteVoltage(float voltage) {
/* NI Board */
if(AnalogBoardType == 0) {

AO_VWrite(Slot,AnalogOutput,voltage);
return;

/* DT2801 */
else {

DTVOut(AnalogOutput,voltage);
return;

}
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/* DT2801.C */
#define Base Ox2EC
#define Command (Base + 1)
#define Status Command
#define Data Base
#define Command_Wait 0x04
#define Write_Wait 0x02
#define Read_Wait 0x05
#define DataInFull 0x02
#define Ready 0x04
#define Data_Out_Ready 0x01
#include <conio.h>

/* #include "b:\modular\struct.h" */
void InitDT2801(void);
float DTVIn(unsigned char channel);
void DTVOut(unsigned char channel,float voltage);

void InitDT2801(void) {
unsigned char byte;

/* Stop board from whatever it's doing */
outp(Command,0x0F);
/* Read Data Register to Clear Data Out Flag */
byte = inp(Data);
/* Wait for Data in Full flag to clear and Ready flag to set. */
/* Then write RESET command */

/* Wait for Data in Full flag to clear and Ready flag to set. */
/* Then write Clear command */
do {

byte = inp(Status);
} while((byte & Data_In_Full) I (!(byte & Ready)));
outp(Command,0x01); /* Clear Command*/

void DTVOut(unsigned char channel, float voltage) {
unsigned char byte,low,high;

low = ((short)(voltage/10.0*4096)) % 0x100;
high = ((short)(voltage/10.0*4096)) / 0x100;

/* Wait for Data in Full flag to clear and Ready flag to set. */
/* Then write WRITE DAC IMMEDIATE command */
do {

byte = inp(Status);
} while((byte & Data_In_Full) (!(byte & Ready)));
outp(Command,0x08); /* WRITE DAC Immediate */

/* Wait for Data in Full flag to clear. */
/* Then write DAC SELECT BYTE */
do {

byte = inp(Status);
} while(byte & Data_In_Full);
outp(Data,channel); /* 0 means output channel 0 */

/* Wait for Data in Full flag to clear. */
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/* Then write low byte */
do f

byte = inp(Status);
} while(byte & Data_In_Full);
outp(Data,low);

/* Wait for Data in Full flag to clear. */
/* Then write high byte */
do {

byte = inp(Status);
} while(byte & Data_In_Full);
outp(Data,high);

float DTVIn(unsigned char channel) {
unsigned char byte,low,high;
float voltage;

/* Wait for Data in Full flag to clear and Ready flag to set. */
/* Then write READ A/D IMMEDIATE command */
do {

byte = inp(Status);
} while((byte & Data_In_Full) I (!(byte & Ready)));
outp(Command,0x0C); /* READ A/D Immediate */

/* Wait for Data in Full flag to clear. */
/* Then write Gain of 1 (0x00) */
do (

byte = inp(Status);
} while(byte & Data_In_Full);
outp(Data,0x00); /* 0 means Gain = 1 */
/* Wait for Data in Full flag to clear. */
/* Then write channel number */
do {

byte = inp(Status);
} while(byte & Data_In_Full);
outp(Data,channel);

/* Wait for Data Out flag to be set and Ready flag too */
do {

byte = inp(Status);
} while(!(byte & (Data_Out_Ready I Ready)));
low = inp(Data);
/* Wait for Data Out flag to be set and Ready flag too */
do {

byte = inp(Status);
} while(!(byte & (Data_Out_Ready Ready)));
high = inp(Data);
voltage = (0x100 * high + low)*10.0/4096;
return voltage;

}
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/* DT2819.C */
#define BASE 0x230
#define CONTROL_STATUS_REG (BASE + 4)
#define COMMAND REG (BASE + 1)
#define DATA_PORT (BASE + 0)

#define BASE 0x230
#define CONTROL_STATUS_REG (BASE + 4)
#define COMMAND REG (BASE + 1)
#define DATA_PORT (BASE + 0)
#include <conio.h>
/*. #include "b:\modular\struct.h" */
#include <dos.h>
void InitDT2819(void);
unsigned char bin(char *string);
void Board2819Ready(void);
float CounterRate(short milliseconds);

void InitDT2819(void) (
/* Initialize DT2819 */
Board2819Ready(;
outp(CONTROL_STATUS_REG,0x00);
Board2819Ready(;
outp(COMMAND REG,OXFF);
Board2819Ready();
outp(COMMAND REG,Ox5F);
/* Select 1 MHz clock */
Board2819Ready();
outp(CONTROL STATUS REG,0x40 /*bin("01000000")*/);
/* Go to Master Mode Register */
Board2819Ready();
outp(COMMANDREG,0x17 /*bin("00010111")*/);
/* low byte */
/* FOUT=F1, no comparator, ToD disabled */
Board2819Ready();
outp(DATA_PORT,0x00 /*bin("00000000")*/);
/* high byte */
/* BCD div, no auto-inc, 8-bit bus, FOUT enab. */
/* FOUT divide by 1 */
Board2819Ready();
outp(DATA_PORT,OxCl /*bin("11000001")*/);
/* Set up Mass Spec counters */
/* Timer 1 */
/* point to counter 1 mode register */
Board2819Ready();
outp(COMMAND_REG,0x01);
/* no hardware trig, reload from load, count rep.*/
/* bin count, count up, TC active high pulse */
Board2819Ready();
outp(DATA_PORT,0x29 /*bin("00101001")*/);
/* active high TCN-1 gate, count rising edge, */
/* count source 1, (the mass spec) */
Board2819Ready();
outp(DATAPORT,0x21 /*bin("00100001"1)*/);
/* point to counter 1 load register */
Board2819Ready();
outp(COMMANDREG,OxO9);
/* Fill with 0 */
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Board2819Ready();
outp(DATA_PORT,0x00);
Board2819Ready();
outp(DATA_PORT,0x00);
/* Timer 2 */
/* point to counter 2 mode register */
Board2819Ready();
outp(COMMANDREG,OxO2);
/* no hardware trig, reload from load, count once*/
/* bin count, count up, TC pulse inactive */
Board2819Ready();
outp(DATA_PORT,0x08 /*bin("00001000")*/);
/* no gating, count rising edge, source = TCN-1 */
Board2819Ready();
outp(DATA_PORT,OxOO /*bin("00000000")*/);
/* point to counter 2 load register */
Board2819Ready();
outp(COMMANDREG,OxOA);
/* Fill with 0 */
Board2819Ready();
outp(DATA_PORT,0x00);
Board2819Ready();
outp(DATA_PORT,0x00);
Board2819Ready();

/* Set up timers */
/* Timer 4 */
/* point to counter 4 mode register */
Board2819Ready();
outp(COMMANDREG,0x04);
/* no hardware trig, reload from Load & Hold */
/* count rep, bin count, count down, TC pulse*/
Board2819Ready();
outp(DATA_PORT,0x61 /*bin("01100001")*/);
/* no gate, count rise, source=F3 (10 KHz) */
Board2819Ready();
outp(DATA_PORT,OxOD /*bin("00001101")*/);

/* Timer 5 */
/* point to counter 5 mode register */
Board2819Ready();
outp(COMMANDREG,OxO5);
/* no hardware trig, reload from Load, count once*/
/* bin count, count down, TC toggle */
Board2819Ready();
outp(DATA_PORT,bin("00000010"));
/* no gate, count rise, source = TCN-1 */
Board2819Ready();
outp(DATA_PORT,0x00 /*bin("00000000")*/);
/* point to counter 5 load register, fill with 2 */
Board2819Ready();
outp(COMMANDREG,OxOD);
Board2819Ready();
outp(DATA_PORT,0x02);
Board2819Ready();
outp(DATA_PORT,0x00);
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unsigned char bin(char *string) {
unsigned char byte = 0;
unsigned char *bit = string;
short i;
for(i=0;i<8;i++,bit++) if(*bit-'0') byte=(bytej(0x80>>i));
return byte;

}
void Board2819Ready(void) {

char byte;
/* Wait until bit 7 of the Status Register clears to 0. */
/* Board requires 1.5 microseconds between reads and writes */
do {

byte = inportb(CONTROLSTATUS_REG);
} while(128 & byte);

float CounterRate(short milliseconds) {
unsigned char low,high,byte;
unsigned short counterl,counter2;
long total;
float rate;

if(milliseconds==0) milliseconds = 1;
/* point to counter 4 load register*/
Board2819Ready();
outp(COMMAND_REG,OxOC);
/* Fill with 1 millisecond delay */
Board2819Ready();
outp(DATA_PORT, (10*milliseconds) % Oxl00 );
Board2819Ready();
outp(DATA_PORT, (10*milliseconds) / Oxl00 );
/* point to counter 4 Hold register */
Board2819Ready();
outp(COMMAND_REG,0x14);
/* Fill with gate time in milliseconds */
Board2819Ready();
outp(DATA_PORT, 1 );
Board2819Ready();
outp(DATA_PORT, 0 );

/* set output of counter 5 low */
Board2819Ready();
outp(COMMAND_REG,bin("11100101"));

/* load and arm counters 1,2,4,5 */
Board2819Ready();
outp(COMMAND_REG,0x7B /*bin("01111011")*/);
Board2819Ready();
/*Watch for TC 5 going high */
.do {

byte = inp(COMMAND_REG);
} while(!(byte & 32));
/* Output went high */

/* Disarm and save 1,2,4,5 */
Board2819Ready();
outp(COMMAND_REG,0x9B /*bin("10011011")*/);
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/* Get counts */
/* point to counter 1 hold register */
Board2819Ready();
outp(COMMANDREG, Oxl);
Board2819Ready();
low = inp(DATA_PORT);
Board2819Ready();
high = inp(DATA_PORT);
counterl = 256*high + low;
Board2819Ready();
/* point to counter 2 hold register */
outp(COMMANDREG, Ox12);
Board2819Ready();
low = inp(DATA_PORT);
Board2819Ready();
high = inp(DATA_PORT);
counter2 = 256*high + low;
total = 65356*counter2 + counterl;
rate = ((float) total) * 1000.0/ milliseconds;
return rate;
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