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ABSTRACT

This thesis presents an image-based rendering system based on algebraic relations

between different views of an object. The system uses pictures of an object taken from

known positions in space. Using two such images it can generate "virtual" views of the

object as it would look from any position near the two points that the two input images

were taken from. The system is based on the trilinearity constraints that bind any new

view with the two example images.

We implemented the system and tested it on real images of an object and computer

generated images of a face. As a side result, we developed and used a new method for

camera calibration. The method uses three images of an object and is also based on the

trilinear constraints that bind these images.

In addition, we present the relation between these algebraic constraints and a factor-

ization method for shape and motion estimation. As a result we propose a method for

motion estimation in the special case of orthographic projection.

Thesis Supervisor: Professor Tomaso Poggio

Uncas and Helen Whitaker Professor,
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Chapter 1

Introduction

1.1 Motivation and Goal of the Thesis

In recent years image-based rendering systems have been an emerging subject of research

within the computer graphics and computer vision communities. Applications range from

generation of virtual reality effects, to object recognition by matching real images to virtual

ones. The underlying idea of these systems is that the representation of the images is based

purely on photometric observations and not on any indirect models. Traditionally objects

and scenes have been approximated using either geometric models such as mathematical

descriptions of the boundaries of the objects, or physics-based models, or, more typically,

3-D models. However the limitations of these approaches are apparent when one tries to

render realistic images, since the complexity of the real-world does not permit accurate and

efficient modeling.

Geometric modeling has the problem that it cannot be used for complicated surfaces

such as faces or other flexible objects. Although it might work satisfactorily for some simple

objects and scenes, it might not for other complicated ones. Similar problems arise with

physics-based models. The complexity of such models makes them intractable. Further-

more, building 3-D models of objects, although it can work efficiently for simple planar

surfaces, is often inefficient for more complicated ones. There is again a major trade off

between the complexity of the model, ie. how well to approximate a non-planar surface

using small patches, and its realism. Achieving high visual realism requires in many cases

high complexity which leads to inefficient rendering.

Given these, the need for image based rendering systems is clear. When the representa-



tion of an objects or a scenery is based on its actual images the realism that can be achieved

is higher than that when some approximation model is used. Moreover, the computation

required for rendering using these systems is independent of the complexity of the scene

and can be done efficiently enough for real-time use [4].

There are two new approaches in image based rendering. One is using morphing tech-

niques, while the other is using algebraic techniques. Image morphing is the simultaneous

interpolation of shape and texture. In this group, noticeable work has been the one by

Beymer, Shashua, and Poggio [3] partly based on the ideas presented in [19]. They showed

that morphing based on using correspondences between input images is applicable for gen-

erating virtual images of faces with changes in pose and expressions such as smiles. Other

morphing techniques are described in [31], [21] and [5]. Despite their differences they are

all based on the idea of interpolation, therefore they do not give much freedom for virtual

camera motion, namely extrapolation.

The other new approach in image based rendering is to use "natural" algebraic relations

that exist between different views of the objects in order to generate virtual images. The

main difference from the aforementioned approach is that this one is only suitable for

rigid transformations but also enables significant extrapolation from the example images.

There has been a significant amount of work very recently done in this area ([11], [12],

[13], [17], [18], [24]). Some of these approaches are presented briefly in the next chapter.

Noticeable has been the work of [18] on rendering sceneries. Using cylindrical projections

of a scenery taken from known positions, they manage to reconstruct the scenery from

arbitrary positions by reconstructing the plenoptic function describing it. The plenoptic

function is a parameterized function describing everything that is visible from a given point

in space.

The goal of this thesis is to develop a method similar to the one in [18] but which can

be used for objects. Instead of having cylindrical images of a scenery, we are given pictures

of an object taken from known positions around it. Then, using these images we want to be

able to generate virtual views of the object as they would look from arbitrary positions. We

want the system to be robust and to allow for arbitrary camera motion, ie zoom and in place

rotation, as well as considerable extrapolation from the example images. The long term goal

is to combine the system with existing ones for non-rigid transformations of objects (ie. face

expressions) [8] in order to build a complete tool that can be used for rendering images of



objects under any rigid or flexible transformation.

Moreover, part of the thesis is to further study algebraic results used for computer vision.

The goal is to find the hidden connection between the algebraic relations among images of

an object and the estimation of the objects shape and motion. As a result of this study, a

method for shape and motion estimation of an object undergoing rigid motion is developed.

1.2 Contribution of the Thesis

Summarizing, the contributions of the research described in this thesis are briefly the fol-

lowing:

1. We developed a new method for image-based rendering and we tested it on real images.

2. We developed and implemented a new method for camera calibration.

3. We showed the relation between algebraic constraints connecting images and the shape

and motion factorization method described in [29].

4. We proposed a simple method for motion estimation in the special case of orthographic

projection and suggested possible extensions for the general perspective case.

1.3 Layout of the Thesis

The thesis is organized as follows:

* In chapter 2 the necessary background as well as a brief description of related previous

work and ideas are presented.

* In chapter 3 our method and the problems that our systems had to solve are presented

in detail.

* Chapter 4 discusses the implementation of the system and shows results.

* In chapter 5 we refer to a different but related problem. The problem of recovering

shape and motion using the ideas of the rest of the thesis. A theoretical result is

presented and a method for shape and motion estimation is proposed.

* Finally, in chapter 6 we state conclusions and suggestions for further work.





Chapter 2

Background and Related Previous

Work

2.1 Background

Before going to the main part of the thesis we need to provide the necessary background.

We present the basic ideas of projective geometry and its use in computer graphics.

2.1.1 Camera Model and Projective Geometry

The camera model we use is that of a pinhole camera described in figure 2-1. Objects are

viewed under perspective projection. The center of projection is the optical center of the

camera, which we also define to be the origin of our camera coordinate system (CCS) - also

called the standard coordinate system of the camera. The image plane - or retinal plane -

is parallel to the XY-plane of our CCS, and at distance f from the optical center, called

the focal length of the camera. We define an image coordinate system (ICS) such that the

origin is the projection of the optical center on the retinal plane which we assume is at

the center of our image. If we define the X, Y axis of the ICS to be parallel to the X

and Y axis of the CCS, respectively (see figure 2-1), then we can easily see that the image

coordinates of the projection of an object point 0 = (X, Y, Z) are given by:

i = -fX/Z (2.1)

yi = -f-Y/Z



Image Plane
Center of Proi

(xi, yi)

'Cs

------- -- - -

y-axis

x-axis

Y-axis

CCS

f X-axis

Figure 2-1: The Pinhole Camera Model

Clearly any point on the line through O and the center of projection has the same image.

It seems that when one wants to compute image coordinates using the aforementioned

approach one has to deal with ratios. Using ratios is not very computationally efficient and

also makes the mathematics complicated. Fortunately there is a way to avoid these ratios.

The traditional solution is to use Projective Geometry instead of the Euclidean one. After

all, images are generated using central projection.

In projective geometry the 3-dimensional Euclidean space R 3 is considered to be a

subspace of the 4-dimensional Projective space P4 . A point in P4 is described by its

coordinates up to a scale factor. This means that, ie. (X, Y, Z, W) -- (2X, 2Y, 2Z, 2W).

There is a natural injective mapping from R3 to P4 defined by:

M : R 3 F P4 such that (X,Y,Z) F (X, Y, Z, 1).

The remaining points of P4 , which are the ones of the form (X, Y, Z, 0), are called ideal

points. In the same way we have a similar relation between the 2-dimensional Euclidean

space and the 3-dimensional Projective Space. A point (X, Y) in R 2 corresponds to (X, Y, 1)

in P 3 and points (X, Y, 0) are the ideal points of P 3.

By modeling our spaces as Projective instead of Euclidean we gain the following:

1. First, we notice that points that are on the plane parallel to the image plane through

the center of projection - called the focal plane - have no images (see figure 2-1).

Modeling the image plane as a Euclidean 2-Dimensional plane is therefore not suitable

since we cannot account for the "images" of these points. However, if we model it as

a 3-dimensional Projective space, then we can define the images of these object points

O(X, Y, Z)

Z-axis



to be the ideal points of the retinal plane. This way all object points are treated the

same.

2. There is a very important practical reason for using projective geometry. As stated

above, using Euclidean geometry, the coordinates of a point on the image plane are

given as ratios (equation 2.1). However, in the corresponding projective spaces, we

have that the coordinates of an object point (X, Y, Z, 1) (we can set the fourth coordi-

nate to 1 so that we preserve the "natural" correspondence with Euclidean coordinates

defined above. For the moment we also don't deal with the object points that have

no image, therefore we can assume that zi below is not zero) on the image plane are

given simply by:

X
zi/zi -f 0 0 0 -f X
yi/zi Yi = 0 -f 0 0 -f . (2.2)

Z
1 zi 0 0 1 0 J | Z

1

Therefore we can use linear algebra and avoid the nonlinearities introduced by the

aforementioned ratios.

If the coordinates of the object point are given relative to another coordinate system,

which we call World Coordinate System (WCS), then, if

K = T 1 (2.3)

is the matrix of transformation between the WCS and the CCS, the coordinates of the

object point in the CCS are given by:

R T X
T 1 "Y (2.4)

Z



therefore its projection on the image plane is given by:

X X
zi -f 0 0 0

R T Y Y
i 0 - f 0 0 = M D (2.5)

0 1 Z Z
zi 0 0 1 0

1 1

The product P = M • D is called the camera matrix.

The matrix:

D = 1(2.6)

is called matrix of the external parameters of the camera. It describes the position of the

camera relative to the WCS.

The matrix:

-f 0 0 0

M= 0 -f 0 0 (2.7)

0 0 10

is called matrix of the internal - or intrinsic - parameters of the camera. However, the

matrix in equation 2.7 is a special case of the general form. Apart from the focal length,

there are five other parameters that depend on the camera. First notice that in reality

the line connecting the center of projection and the center of the image is not always

perpendicular to the image plane. Therefore, we have to move the image coordinate system

so that its origin is the projection of this perpendicular. This adjustment gives two more

parameters: the coordinates of the actual origin of the image coordinate system in terms of

the system described above. Furthermore, there is typically some scale distortion so that

the unit lengths of the image axis are unknown - not the same as the corresponding ones in

the camera coordinate system. This scale distortion gives two more factors - one for each

axis. Finally, there is a last factor that gives the angle between the axis - in practice the X

and Y axis may not be orthogonal. When one takes into account all these, one can easily



find that the general form of the matrix of the intrinsic parameters of the camera is:

M= 0 -fk vo 0 (2.8)

0 0 1 0

where k, and k, are the scaling factors for the X and Y axis respectively, and uo, vo are

the image coordinates of the actual origin of the ICS relative to the one we assumed at the

beginning. For more information on the derivation of this matrix the reader can refer to

[91.
Estimating the intrinsic parameters of the camera is called calibration of the camera.

Various methods for doing camera calibration have been developed ([10], [25]). In the next

chapter we describe a method that we developed and used.

Before changing topic, we should mention here a very usual approximation to the per-

spective projection model described above. Sometimes we assume that the Z coordinates

of the object points are almost constant. This is the case when, for example, the objects

are far relative to the focal length, therefore changes in the Z coordinates are negligible. In

this case we can write the image coordinates in equation 2.1 as:

xi = -f . X/Zo = f'. X (2.9)

yi = -f "Y/Zo = f' Y (2.10)

When we use this approximation we say that the image is generated under orthographic

projection. In this case it is easy to see that the camera matrix is given by: (assuming f'

is 1, all other internal parameters are 0, and the external parameters matrix is the identity

one)

0 1 0 0 (2.11)

so the image coordinates using equation 2.5 (in projective spaces) are given by (xi, yi, zi) =

(X, Y, 1). This is a simplification that we will use in chapter 5.

Having this background we can now examine an algebraic relation between images that



has been traditionally used in systems. The interested reader can refer to [9] and [16] for

more information on projective geometry and its use in computer graphics.

2.1.2 Epipolar Geometry

Suppose we are given two images of the same object point O taken from two different known

positions as shown in figure 2-2. Clearly, if we know the projection of the point on image 1,

then the projection of the point on image 2 is constrained: it has to lie on line 12 as shown

in figure 2-2. This line is the intersection of the second image plane with the plane through

O and the optical centers C1 and C2 of the two cameras. Symmetrically, its projection on

image 1 has to lie on line 11.

If pl and P2 are the image coordinates of the point in the two images, we must have

that:

X
Y

pi = P1. (2.12)
Z
1

and

X
Y

P2 = P2 (2.13)
Z
1

where P1 and P2 are the camera matrices as described above. If P1 1, P21 are the top 3x3

submatrices of P1 and P2 respectively, then it is easy to see [9] that we must have:

P2 - P21 " P,-
1 " Pi (2.14)

Moreover, if e2 is the projection of C 1 on the second image and E 2 is the 3x3 antisymmetric

matrix representing the dot-product with e2 (that is, E 2a = e2 x a) then E 2P2 is a vector

perpendicular to line 12. This means that pTE 2p 2 = 0 which, using equation 2.14, gives

that:

T.E 1 P1 = 0:(2.15)
2 FprTFp=0



TmIYoP7
m1

C2

Cl

Figure 2-2: The epipolar geometry.

where F = E2 " P21 -PI11

The matrix F in equation 2.15 is called the Fundamental Matrix between images 1 and

2 and when we know it we say that we have weakly-calibrated the camera. Lines 11 and 12

are called epipolar lines. Since all epipolar lines are on a plane that goes through the two

optical centers all these lines go through the same point on each image (el and e2 in figure

2-2): the projection of the optical center of the camera for the other image. This point is

called the epipole - one for each image.

This equation holds for any pair of corresponding points and it defines the epipolar

geometry between the two images. Recovering this geometry has been the subject of research

the recent years. For more information the reader can see [7], [9], [17]. We will use this

geometry in the next chapter when we deal with the problem of occlusions.

2.2 Related Previous Work

The first results on algebraic relations between images of the same object appear in the

work of Ullman and Barsi described in [30]. They first showed that under the special case

of orthographic projection one can get linear relations between the image coordinates of an

object point seen in three images. Later it was shown in [28] that "1.5" example views are

enough to predict new images of an object (the "1.5 view theorem"). These results implied

that in the special case of orthographic projection new views of an object can be generated

as linear combinations of example views.

Later these results were generalized for the perspective case [23], [24]. However, in this

case the relations become trilinear, and the number of parameters needed increases. These

"new" relations were first tested on images in [22], [24]. The results of those experiments



were encouraging ([22], [24]). In this thesis we use these results with real images. Close

to the method we use is the one described in [1] developed independently and at the same

time as this work.

Another approach in image-based rendering has been to use the epipolar geometry

described in the previous section. Clearly one can use the epipolar geometry between views

in order to predict where a point should project in a new view. For example, if we knew

the epipolar geometry between view 1 and 3, and between view 2 and 3, then we could

predict view 3 from views 1 and 2 by projecting a point of images 1 and 2 on the point of

intersection of the two epipolar lines in image 3.

Using this idea [17] describes a method for reprojection in the weakly-calibrated case.

The method is based on finding intersections of lines as described above. However, finding

intersections of lines is noisy and in the case of epipolar lines in some degenerate cases

impossible [17]. Therefore systems based on this approach were sensitive to noise and did

not provide a wide range of virtual views. This were the main reasons we avoided such an

approach.

Given this background we are now ready to describe our system.



Chapter 3

Reprojection Using Trilinearity

Constraints

3.1 The Method

We are interested in generating new views of an object given a set of reference images.

Through this discussion we assume that all views of the object are taken using the same

camera, therefore the internal parameters do not change from image to image. We set the

world coordinate system to be the standard coordinate system of camera 0. Let {Io, I, ...In}

be the n reference views of an object, and Pi be the camera matrix for Ii. That is, if M are

the coordinates of a point in the scene in the standard coordinate system of camera i, then

the projection of the point on image i has image coordinates Pi -M.

Define Ki to be a matrix that depends on the external parameters of camera i:

i ]-1
Ki Ri Ti (3.1)

where Ri is the rotation matrix of camera i relative to camera 0, and Ti is the translation

vector between the position of camera i and camera 0. Clearly Ro = 13x3, and To = 0 3x1.

Then, if Pi is the camera matrix for image i, we get that Pi = PoKi, since, if M are

the coordinates of a point in the scene relative to the world coordinate system, then the

coordinates of the same point relative to the standard coordinate system of camera i are



given by KiM. The coordinate system and the whole camera just moved, so, it is as if

we just moved the point to a new position - which explains the inversion of the position

matrix. Therefore, if x and x' are the images of M in the two views, then x = PoM and

X' = Po(KiM) = (PoKi)M = PiM. Matrix Po depends only on the internal parameters of

our camera. So, if we estimate Po, we can get the camera matrix for any position we want.

Suppose now that we want to generate the image of the object as it would be seen from

a position which is related to the origin of our world coordinate system by the matrix:

.- 1

R TK = T1 (3.2)

We get this view in two steps. First we have to find pairs of reference views whose matrices

Ki- 1 are "close" to K - 1 . Close matrices in this case are the matrices of the reference

cameras that are closer to the virtual one. However, for simplicity, in our case we used the

system with only two reference images, therefore we did not have to do this step. Having a

pair of reference images Ii, Ij, we can get the new image coordinates of a point appearing

in both reference views using the trilinearity constrains described in [24]. The idea is that if

a point appears in three images with image coordinates (xl, yI), (x2 , Y2), (x 3, Y3), then, as

one would expect because of the low dimensionality of our space, the three pairs of image

coordinates have to satisfy specific algebraic relations. Therefore, if we know the relations

and two of the pairs, we are able to find the third pair of image coordinates. Different ways

of getting these relations are described in [11] and in [13]. Moreover, in the special case of

orthographic projection these relations become linear as first found in [30]. We show this

in the Appendix.

For computational purposes we use the trilinear relations as derived in [11] that we

include in the Appendix. Here we present only one of those equations. Let the rows of Pi

be 1, 2, 3, the rows of Pj be 4, 5, 6, and the rows of the new matrix P,,, = PoK be 7, 8, 9.

Let a point X in the scene project on Ii, Ij and the new image on pi = [x , y], pj = [z', y']

and p.ew = [x", y"] respectively. Then the following equations hold:

, (xz',-x,yx',-y,x',-1).([23671,[2347],[3167],[3147],[1267],[1247])
= (xx',-Z,yX',-y,x',-1).([2369],[2349],[3169],[3149],[1269],[1249]) (3.3)
,, (xy',-x,yy',-y,y',-1).([2368],[2358],[3168],[3158],[1268],[1258])
"-- (xy' ,-x,yy',- y,y',-1).([2369],[2359],[3169, [3159], [1269],[1259])'



where - stands for dot product and [1234] represents the determinant of matrix [1234].

So, once we compute the new camera matrix (given Po and the new external parameters)

we can predict the position of any point of the reference images in the new image.

3.2 Important Issues

3.2.1 Finding Correspondences Between the Reference Images

It is clear from the aforementioned that once we are given two reference images it is impor-

tant to find the pairs of image points pi, pj mentioned above that correspond to the same

object point. Finding these correspondences is a very critical step as one can easily see.

There are many ways to define correspondence between two images. In this thesis, a

dense, pixel-wise correspondence between two images is defined: for every pixel in image

A, we associate a flow vector that refers to the corresponding pixel in image B. The flow

vectors are relative to the current pixel position, so for a pixel in image A at position (i, j),

the corresponding pixel in image B lies at position (i + Ax(i,j),j + Ay(i,j)), where Ax

and Ay are arrays that contain the x and y components of the flows, respectively. Ax and

Ay are the same size as the images A and B.

There are also many ways to obtain such a dense, pixel-wise correspondence between

the example images. We adopt the approach used by Beymer, Shashua, Poggio [3], who

utilized optical flow algorithms borrowed from the computer vision literature. Specifically,

they used the optical flow algorithms developed by Bergen and Hingorani [2]. For details

the reader can refer to those sources.

3.2.2 Camera Calibration

Another crucial step is the calibration of the camera. As we see, the image coordinates of a

point in the new view depend directly on the camera matrices and therefore on the internal

parameters of the camera (equation 3.3). It is important, therefore, to have a good initial

estimate of these parameters.

We developed a calibration method similar to the one in [18]. The matrix of the internal

parameters of the camera, which in our case is the camera matrix Po, is determined as

follows:

Given three images of the object, 1o, 1, /2 with corresponding camera matrices Po, P1 ,



P2 as described above, we use two of the images, say I, and 12, to generate the third one,

lonew using our method and initially assuming that Po is the "identity" matrix (essentially

a 3x3 identity matrix with a fourth column of zeros appended to it). We then determine

the actual Po by minimizing the following error function:

error(Po) = 1 - Correlation(Ionew, lo) (3.4)

where the correlation is defined as:

E(Il 2 )- E-(II)E(2)Correlation(Ii, 12) = E(I)E(I2) (3.5)

where E(Ii) is the expected - average - intensity value of the pixels of image Ij, oa(Ij)

(E(I?) - E(Ij)2) , and E(1l 2) is the expected value of the product of intensities of points

that are superimposed when we put the images one "on top of" the other. This minimization

is done using Powells' multivariable minimization method [20]. At this point we have an

estimate of Po which is typically very different from the initial "identity" matrix.

3.2.3 Noise in the External Parameters

Our method assumes that the positions of the camera for the example images are known

accurately. Clearly, in reality, it is difficult to know exactly where the camera is located.

Therefore we should expect some noise.

In this thesis we did not account for this noise. We simply assumed the locations are

accurately known. However, when we tested the program with adding noise to the input

locations, we found that it is not very sensitive to this error. Instead, we found that the

calibration of the camera was giving slightly different internal parameters in each case. This

implies that the internal parameters that we compute incorporate any small error in the

external ones. However we did not examine this further. It is still an open question how

errors in one set of parameters influences the estimation of the other.

3.2.4 Solving for occlusion

Clearly not all points appearing in the reference views will appear in the new image. More-

over, not all points appear in both reference images. Generally detecting these occlusions is



an unsolved problem. In this thesis we used a heuristic similar to the one used in [31]. This

heuristic however solves only some occlusion cases. Specifically, in the case that two pixels

are reprojected onto the same pixel in the new image, we choose the one that is closer to

the epipole in the first example corresponding to the new camera position. We estimate

the position of the epipole using again the camera matrices directly. By [11], the location

of the epipole in example one should be (in terms of the camera matrices as described in

the previous section):

epipolelnew = ([1789], [2789], [3789]) (3.6)

where, like in equation 3.3, the rows of the first camera matrix are 1, 2, 3, the rows of the

new camera matrix are 7, 8, 9, and [abcd] represents the determinant of the 4x4 matrix

whose rows are rows a, b, c, d.

However this method does not handle occlusions such as the ones between the example

images ([31]). The visibility problem is very important in many cases (depending on the

object), and further research needs to be done.





Chapter 4

Implementation and Experimental

Results

We implemented the method as described in the previous chapter. However, experimentally

we found out several sources of noise. In this thesis we did not study the exact reasons of

these problems. Below we present the problems, we suggest reasons for them, and we

describe the way we solved them in our program.

4.1 Problems of the Program

4.1.1 Scaling the Image Coordinates

As described in [14], when one uses the image coordinates as pixels (ie 0 to 512) one is

vulnerable to instability and therefore more noise. So we had to scale the image coordinates

from (0, 512) to (-1, 1). This was simply done by subtracting from the pixel coordinates

half the size of the image and then dividing with this half. Once we compute the new image

coordinates we have to rescale them back to pixel coordinates. Experimentally we noticed

that with this technique the system was more noise insensitive. The reasons for this can be

found in [14]. We did not study this observation any further, so there might be some more

room for improvement if one uses some different scaling technique.



Figure 4-1: Automatic Calibration Results: Attempting Vertical rotation when the exam-
ples are all on the horizontal plane

4.1.2 Problems Due to Noisy Camera Calibration

Experimentally we found that the camera calibration is very noise-sensitive when the cam-

era matrices of the three example images (refer to the previous chapter) have external

parameters that depend only on rotations around one of the axis of the world coordinates

system (ie, in the case we tried, only around the Y-axis, which means the camera was mov-

ing left-right around the object on the XZ plane). In general we found out that the camera

calibration was more accurate when we were given examples taken by rotation of the camera

around two directions. We suggest that the reason for this is that when the examples are

only around one direction (say only the x-coordinates change), it is difficult to estimate

camera parameters such as the y-axis scale factor since the changes of the y-coordinates of

a point in the example images are negligible. This problem has also been discussed in [25].

We tried the program with examples only around one direction shown in figure 4-4. In

that case our calibration method did not give us very good results, so we had to estimate the

parameters manually. The difference between the automatic and manual results are show

in figures 4-1 and 4-2, where we show the results of trying to virtually move the camera

vertically when our examples are only on the horizontal plane. Although the problem might

be both calibration noise as well as noise due to the choice of the trilinear equation (as we

see next), the difference due to the calibration is apparent.

However, having all example images on a plane is a degenerate case. Even in such a

case, though, we can solve the problem by just using some other method to calibrate the

camera. Moreover, as we will see below, when the examples are from rotations around two

directions, we do not have any such problems.



Figure 4-2: Manual Calibration Results: Vertical rotation. Compare with the images in
figure 4.1

4.1.3 Noise Due to the Choice of the Trilinear Equations

Experimentally we noticed that the program was giving different results when we were

using different trilinear relations (as shown in the Appendix, there are 9 such relations).

Specifically, when our example images were only from the XZ-plane, the system would not

be able to generate views outside this plane when it used the relations described in the

previous chapter. If instead we would use the following one for the y-coordinates:

,, (xy', yy', y', -x, -y, -1) - ([2367], [3167], [1267], [2357], [3157], [1257])
(xy', yy', y', -x, -y, -1). ([2369], [3169], [1269], [2359], [3159], [1259])

it would work better. We postulate that the reason for this was that when using the

equations of the previous chapter we try to estimate the y-coordinates of an image point

using mainly the almost negligible changes in the y-coordinates between our examples.

Therefore very small errors in the y-coordinates of the points in the example images - due

to the fact that we use digital images - lead to big errors in the new y-coordinates. If

however one uses the equations above, one uses the larger changes in the x-coordinates of

the examples to estimate the new y-coordinates. A way to overcome this problem is to make

the program so that different trilinearity equations are used depending on the position of

the new virtual camera. So, for example, a rule of thumb could be that if the virtual camera

is "close" to the line connecting the cameras for the two example images we use equations

3.3, while in case the virtual camera is "far" from that line, we use equation 4.1.

4.1.4 Noise Due to Holes

It is unavoidable to have some noise which will most usually lead to overlapping pixels in

some places of the new image, and therefore to holes in other. Moreover, in case that we



Figure 4-3: Hole-filling comparison: For the left image we used the first approach. For

the second image we used the final approach. Although speed decreased, the results were

clearly better.

zoom in, clearly we will have to deal with holes due to lack of information.

Initially we solved the problem of hole filling like in [8]. Once we generate the new image

we fill the holes by interpolating the pixel values of the edges of the holes along the x-axis

or the y-axis. However this approach was not satisfactory.

In the final version we solved the problem of holes as follows. For every four neighbor

pixels forming a rectangle in one of the example images, we find their projection in the new

image and then we fill the interior of the projected rectangle by using a bilinear interpolation

of the pixel values of the four corners. This approach was significantly better than the

previous one. In figure 4-3 we compare the results of the two approaches.

4.2 Summary of the Implementation

Summarizing, the program is organized as follows:

1. Calibrate the camera using at least 3 example images.

2. Given a new position of the camera, find the corresponding matrix of external param-

eters and then the new camera matrix.

3. Choose two example images that are close to the one we want to generate.

4. Find the dense pixel-wise correspondence between the example images.



Figure 4-4: Calibration Images

5. Using the new camera matrix and the camera matrices for the two example images,

compute the coefficients for the trilinear equations.

6. For every four neighbor pixels forming a rectangle in the first example and their

corresponding pixels in the second example, scale the coordinates and find their new

coordinates in the virtual image using equations 3.3. Then rescale the new coordinates

to pixel ones. Fill the interior of the rectangle in the new example as described above.

7. In the case that a pixel in the new image is written more than once, choose the pixel

value according to the occlusion method described in the previous chapter.

4.3 Experimental Results

We first tested the program on real images of a lego that we collected in the lab. We took

the images around the lego at every 10 degrees. All images were taken on the same plane.

We used the three images shown in figure 4-4 to calibrate the camera. The results are shown

in figure 4-5. The two example images we used are first two images on the left top. In this

figure we see both horizontal rotation every around 5 degrees as well as zoom in and out.

We also tested the program using computer generated images. We used the four ex-

amples shown in figure 4-6. Notice that these four examples form a square. Therefore the

program should not have the calibration problem described above. Indeed, after calibrating

the camera using three of these examples (any three of them), we got the results shown

in figures 4-7 and 4-8. In this case we did not have to use any manual estimation of the

camera parameters. Notice that the noise due to occlusions was getting bigger the more we

extrapolated from the two example images. In the two figures the two example images we

used were 2.4 degrees apart in each direction (horizontal-vertical). In figure 4-7 we have 3



Figure 4-5: Lego Automatic Results: The input images are the right top and left bottom
corner ones. We do a horizontal rotation and a zoom.

degrees of movement in each direction between consecutive pairs of images. Therefore we

achieve satisfactory extrapolation up to 27 degrees in each direction, 12 times the distance

between the two examples. In figure 4-8 there is 5 degrees difference vertical between the

images. Notice that the noise becomes noticeable when we extrapolate more than about 10

degrees.

The reader can also refer to the World Wide Web page

http://www.ai.mit.edu/people/theos/theos.html

for more demos of the program.



I
Figure 4-6: Computer Generated Input Images
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Figure 4-7: Movie 1: Both vertical and horizontal rotation of 3 degrees between consecutive

images. The only real images are the first two ones on the left top.



Figure 4-8: Movie 2: Vertical rotation of 5 degrees between images. The example images
are the same as in figure 4.7
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Chapter 5

Shape and Motion Estimation

5.1 Motivation and Background

Computing the motion and shape of a moving object is an important task for many ap-

plications such as navigation and robot manipulation. Traditionally algorithms compute

shape by using depth values estimated by methods such as triangulation. However these

approaches are typically noise-sensitive. Significant has been the work done by Tomasi and

Kanade [29]. In [29] they developed a robust method for the special case that the images

are taken under orthographic projection. Their method is based on the factorization of the

matrix that contains image coordinates of selected features of the moving object. This fac-

torization leads to a product of two matrices: one contains information about the shape of

the camera, and the other about the motion of the camera. In [27] the method is extended

to the paraperspective case, which is a first order approximation to the general perspective

case. Moreover, in [6] a variation of the method for the multi-body case is presented.

The purpose of this chapter is to examine the relation between the factorization method

of [29] and the algebraic relations described in the previous chapters. We present this

relation in the special case of orthographic projection using two different approaches and

we propose a new method for shape and motion estimation when we have two or more

images. Finally we suggest possible generalizations for the perspective case.



pi

Figure 5-1: Coordinate system

5.2 Theory

5.2.1 Problem Statement

We are given a sequence of F images of an object taken with a camera that is allowed to

undergo any rotation and translation. More specifically, we have a set of P object points

Pi = (Xi, Yi,Zi), i E {1,2,..., P} projected on F images (frames), f E {1,2,..., F}, taken

under orthographic projection. Frame f is obtained by the camera whose orientation is

described by the orthonormal unit vectors if, jf and kI, where kf points along the camera's

line of sight, if corresponds to the camera image plane x-axis, and jf corresponds to the

camera image plane y-axis. The camera position is described by the vector tj from the

origin of the world coordinate system to the camera's focal point. The situation is shown

in figure 5-1. We assume that the focal length of the camera is 1 and all other internal

parameters are 0. Finally, let xfi and yfi be the image coordinates of point pi in frame f.

The problem then is the following. Given xfi and Yfi, compute the shape of the object,

which in this case means pi for each of the P points, and the motion of the camera, which

in this case means if, jf, if - tf and jf - tf for each of the F frames. We assume that all P

points are visible in all frames.



5.2.2 Shape and Motion estimation

We organize all of the feature point coordinates into a 2F x P matrix W:

x11 "" x1P

XF1 " YFP

YFI YFP

(5.1)

Each column of the measurement matrix contains all the observations for a single point,

while each row contains all the observed x-coordinates or y-coordinates for a single frame.

As we can see from figure 5-2, under orthographic projection a point Pi = (Xi, Yi, Zi)

relative to the world coordinate system is projected on the image plane of frame f at image

coordinates (x1fi, yi) given by:

Xfi = if (pi - tf) = if Pi - if tf (5.2)
Yfi =f (Pi - tf) = if " Pi - if tf

where the notation is as defined in the problem statement section.

Moreover, if we define the world coordinate system to be such that the origin is at the

center of mass of the object we get that:

P1 + P2 + ... + pp = 0 (5.3)

which in combination with equation 5.2 gives:

fy + Zf2 + ...+ fp if (P1 + P2 + ... + pP) + P(if t) = 0 + P(if .tf)

Sif tf = (Xf1 + Xf2 + ...- +Xfp)

and (5.4)

Yf + Yf2 + ...+ Yfp =f '( + P2 + ... + pP) + P(if tf) = 0 + P(jf . tfy)

i jf - tf = (YfI + Yf2 + ... + Yfp)

Therefore we can compute the camera position (translation) directly from the image coor-

W =



Image Plane

if

focal

- tf)

world origin

Figure 5-2: Orthographic Projection. Dotted lines indicate perspective projection. The solid
perpendicular lines to the image plane indicate orthographic projection.

dinates by taking the average of each row of matrix W.

Once we find the camera translation, we can factor it out by subtracting from each entry

of W the average of the entries of the row it is in. Once we do this we are left with a new

matrix W' with entries:

i (5.5)
f i if * Pi

The question now is how to estimate pi, if and jf. The problem, however, becomes simple

after we make the following observations.

First, we can consider matrix W' as the matrix of image coordinates of the P points

taken by a camera that is located at the origin of the world coordinate system and that is

allowed to make only rotations - no translation. So we can start solving the problem of

shape and motion estimation from the beginning for this new scenario. Notice that this

situation is not realistic, since it would have been impossible to see all points in every frame

if a camera were located at the center of the mass of the object. However, we can still use

our knowledge for orthographic projection assuming, like at the beginning, that all points

are visible in all frames.



Second, from equation 5.5, we get that the new camera matrix for frame f is:

if 0

K = Jf 0 (5.6)

3oT 1

Finally, we know that in the case of orthographic projection, "1.5 views" of an object

are enough to predict other images of the object [28]. In other words, as we also see in the

appendix, we know that there are af1, af2, i f3, af and 1 , Of 2, Of3, Of such that :

(fx1  'p) = a 1 (x'"1  X ip) + 2f (y21  Yp) + af 3(x '
1 ... Xp) + f

(5.7)
(Y'l ... Y'p) = Orl(X'l . X 'p) + pOf 2 (Y'1 ... YP) + 3f 3 (X'l ... Xp) + P/

Furthermore, in this case af = •f = 0, since there is no translation from frame to frame.

So the relations above immediately give us that matrix W' has rank 3. This is the rank 3

theorem proved in [29]. Using equation 5.7 we get another simple proof of that theorem -

which is anyway clear from equation 5.5.

Using these equations we can approach the factorization problem of [29] in a different

way. We can write W' as a product of a 2F x 3 and a 3 x P matrix as follows;

X1 1 -.. Zp

•31  ..

i I
XF1 ' " FP

Y21 IY' p

Yl ... YFP

.Y~1i · Y~P

1 0 0

0 0 1

a31 a32 a33

aF1 aF2 aF3

0 1 0

021 022 023

-FI OF2 OF3

x11 "'" (5.8)

L JI

This is one of the possible factorizations as mentioned in [29]. Indeed, the crucial question is

how to factorize W'. Notice that for any invertible matrix A, from a factorization W' = MS

of W' we can get another factorization by simply replacing M with MA and S with A - 1 S.

Indeed: W' = MS = (MA)(A-'S) for any invertible 3x3 matrix A. So the question is how

W' =



to factorize W' in order to get the correct motion and shape matrices. The factorization

that we want to get is:

I
2 1

I
X 

•x31

I
XF1

/

Y21

Y2P

S 3Pp

... .. p

. - z4'Fp

1 0 0

i21

i31

0

j21

jF1

i22

i32

iF2

1

j22

jF2

i23

i33

iF3

0

j23

jF3

4 ... Xp

... Yp

... Zp

(5.9)

since we have that xfi = if _ [Xi, Yi, Zi]T and yfi = jf ' [FiY, Z]T.

To get the correct factorization we need one more step. From chapter 3 we know exactly

the relations between the entries of the motion matrix we have and the ones we want to have!

We can get them from the relation of the ao, /3 and the camera matrices. For simplicity,

let's define the world coordinate system so that each axis is parallel to the corresponding

axis of the camera coordinate system of the first camera. In the general case - since we

don't know the orientation of the first camera - the approach is exactly the same although

the algebra is more complicated.

With this "alignment" the new camera matrix for the first frame is clearly:

1 0
Ki= 0 1

00 0

0
0

1

(5.10)

Let the rows of K 1 be 1, 2, 3, the rows of K 2 be 4, 5, 6, and the rows of matrix Kf be 7,

8, 9. Using the results of Faugeras [11] or simple geometric arguments we can find that:

of -- T313 - i23a;I = =f3 > 2
0kf3 = U - = 23 f > 2

f12 -= - Jf2i23-3jf322 f > 1T313 - i23

Tj if2i23--if3i22
af2 = U I

1 2 22 3t 22 f > 2
f2 -T313 - i23 '

ffl = = = 3f J23 3f3i21 f > 1rT313 i23

f3_= -TU-- f>l
/ 3 -- T313 -- i23 '

(5.11)



where Tijk is the determinant of the matrix that is made by choosing the ith element of the

first column the jth of the second and the kth of the third of the following "matrix":

(23)

(31)
(12)

7

8

9

(5.12)

using this last step we get that:

S(Xl = X1, Y11 = Y,)

(5.13)

XP

YP

ZPj

(5.14)

1

0

a 31

I

xiz
21

F1Ix31/

Y21

YF1
Ull

a32 a33

XI
I
11

Y11

Y1P

X '2p2 " P

aF1 aF2

0 1

021 122

PF1 PF2

OF3

0

/23

OF3

X I

.' XFP

... YFP

1

0

a31

aF1

0

021

,F1

0 0
0 1

a3 2 a 33

aF2 aF3

0 1

,22 /23

fF2 OF3

0

1

1 i22

1

X 0o

Si2

0 X1

0 x Y

i23 Z1



1 0 0

i21 i22 i 2 3

i31  i32  i33

... X1  Xp

SiF1 iF12 iF3 X 1 " " YP (5.15)

0 1 0 ZL " . Zp

J21 j22 j23

jF1 jF2 jF3

This is a natural result from the relation (equation 5.11) between the Qa and OP with if

and Jf. Indeed, with simple manipulation of those equations, we get that:

ifl = afl + af13 21

if2 = +•fl + af3 * i21

if3 = afl + f3 i1621)

jfl = fl1 + Of3 -i21

jf2 = 1fl + /f3 " i21

jf3 = Ofl + /f3 ' i21

There is one last problem. As we see in the equation above, in the general case we need to

know the orientation of the first and second camera! As a first step we can either assume

that we are given this motion, or estimate it using any of the existing methods for motion

estimation. The key, though, is that once we estimate shape and motion from the first

two images, we can get the motion for any subsequent image without paying much! The

motion comes directly as a result of the linearity constraints described in the appendix.

To summarize, in the general case we manage to change the question of shape and motion

estimation from many images to the question of shape and motion estimation from two

images. In the general case that we don't know the first and second camera orientations



the equations above become:

I I
X1 1  x 1 p

I X

I I
x 3 1  X 3P

I XzF1 ' FP

YF1 ." P

1 0 0

0 0 1

a31 C32 033

0 F1 0 F2 0 F3

0 1 0

021 022 023

SFI OF2 OF3

x11 ... 1
X XA1 ... YX1P J(11 = X y = Y)

L '2 2'p

(5.17)

1 0 0

0 0 1

a31 a32 a33

aF1 aF2 aF3

0 0 1
121. 122 123

1F1 1F2 OF3

ill i12 i13  X1 ".. Xp

X ji 12 j13 Y1  ... Yp = (5.18)

iz2 i22 i23 Z - - Zp

ll i12 213

i21 i22 i23

i31 i32 i33

... ... ... X ... Xp

SiF1 iF12 iF3 X 1 ... P (5.19)

ill j 12 j 13 [Z ... Zp

j21 j22 j23

iF1 jF2 jF3

which is exactly the factorization in [29] derived in a different way using the linearity

constraints between different images of an object.

W =



5.2.3 Proposed Method for Motion Estimation with n > 2 Images

Using this theory we can suggest now a method for estimating motion when we are given a

sequence of images of an object taken under orthographic projection by a camera undergoing

any rigid motion. Organizing the image coordinates in matrix W as described above, do:

1. Compute the camera position (translation) by averaging the rows of matrix W.

2. Subtract the translation from the entries of W to get matrix W'.

3. Using any existing method estimate shape and motion for the first two images.

4. For every f > 2 find corresponding points between image f and images 1 and 2. Use

these correspondences to estimate the coefficients aY and Pf of the linear relations

described in equation 5.7, using a least squares method to minimize the error.

5. Having found the linearity coefficients we can factor W' as a product W = MS like in

equation 5.8. However, because of noise this will not be an exact factorization, but it

is a good approximation since we estimated af and Pf so that we minimize any error.

6. Using the known orientation of the first and second camera, we can write down the

motion and shape matrices in the general case using equation 5.19.

So, in principle, one can get all subsequent motions by just knowing the first two motions

of the camera.

5.3 Shape and Motion under Perspective Case

There are several ways to approximate the perspective case. One way is to use an approx-

imation of the projection equations 2.1 in chapter 2. For example if we replace the ratios

with their Taylor expansions we can use similar method as above in the case that we use a

first order approximation.

Instead of approximating perspective projection from the beginning by replacing the

projection equations as mentioned above, we can use Taylor expansion to replace the trilin-

earities described in the appendix. If we expand the trilinearities up to first order factors,

we can use exactly the same approach described above, but this time the coefficients af and

oP will be different. In this case the relation between af, Pf and motion is not straightfor-

ward. We still know the relation between motion and the initial coefficients of the trilinearity



equations, but after doing the Taylor expansion things get more complicated. We have not

studied what happens in case we use higher order approximations, since the algebra gets

complicated. However, it is possible that a combination of the aforementioned approach

and this one will give good results in the general perspective case.





Chapter 6

Conclusion and Suggestions for

Further Research

6.1 Summary of the Thesis

In the main part of this thesis we designed and tested a new method for generating virtual

views of an object undertaking any rigid motion. Given two images taken from known

positions A and B and having the internal parameters of the camera, we showed that one

can get any virtual image of the object from any position near A and B using the trilinearity

constraints that bind the new image with the two real ones. As a side result of the thesis we

developed a new method for calibration of the camera which we also used to estimate our

camera model. We tested both methods on real images of an object as well as on computer

generated images of a face. Although further tests are needed to test the robustness of the

system, the results we had were encouraging. Using few example images we were able to

get a continuous range of virtual images in a satisfactory wide range of views relative to

the examples. The new images were realistic and gave nice 3-D effects to the user, and the

degree of extrapolation was satisfactory.

In the second part of the thesis we studied the relation between the factorization method

for shape and motion estimation presented in [29] and the algebraic relations between im-

ages. We presented the basic ideas for motion estimation using the linearity constraints

that bind three views of the moving object in the special case of orthographic projection.

We showed that shape and motion estimation from F > 2 images is equivalent to shape



and motion estimation from 2 images and motion estimation for the remaining ones. As a

result of this relation we developed a new simple method for motion estimation from more

than two images in the special case of orthographic projection. We also suggested possible

extensions for the general case of perspective projection. However we did not implement

the proposed method and suggestions. Further research on this approach might lead to a

new system for motion estimation.

6.2 Suggestions for Future Research

One of the most important questions to be solved is the visibility problem. Although

in many cases, for practical purpose, the heuristic we used is satisfying, the problem still

remains for most cases. For example we still cannot detect situations where a point is visible

in only one of the example images. We believe that such cases are often the reason that

holes appear in the virtual image, since wrong correspondences cause the trilinear relations

to break. Very little research has been done on this issue. Although the problem might be

unsolvable in general, further research for better heuristics is necessary.

Several other issues need to be studied further. As mentioned in chapter 4, we did not

study thoroughly the reasons behind some of the problems of our system. Summarizing,

such issues for further study are problems with the camera calibration, noise in the external

parameters, differences in the "performance" of the trilinearity relations and the issue of

avoiding or filling the holes in the output image. In particular further research is needed

for the calibration of the camera. Although the method we developed gave us satisfactory

results, we believe that significant part of the noise in the output is due to the calibration

stage. Moreover, it would be interesting to compare the robustness and quality of our

calibration method against existing ones.

Generally the robustness of our method is still an untouched question. In particular

it would be interesting to study, mostly experimentally, the output sensitivity to noise in

the estimation of the external parameters of the camera. It is practically very difficult to

acquire the example images in a way that we know exactly the position of the camera. So

the main question is how the method deals with such noise, and more important, how we can

improve in this aspect. As mentioned in chapter 4, it is an interesting question to examine

the effects of noisy external parameters of our examples on the internal parameters that



our calibration method gives, and vice versa. For example it would be practically helpful

if our camera calibration could "cover" possible errors in our estimation of the positions

of the camera during the acquisition of the images. On the other hand an interesting idea

would be to combine the system with a shape and motion estimation method like the one

described in chapter 5. In this case we would not need to know at all the position of the

camera when we acquire the example images. If we can have a good estimate of the motion

of the camera we should still be able to use the example images.

At a different but important direction, the system developed in this thesis can be com-

bined with one such as [8] with the long term goal of developing a complete tool that can

be used for generation of images of objects undergoing any transformation - rigid as well as

flexible. For example we can formally describe the process of generating a new image Inew

for a given point r in the space of transformations as a mapping

Inew = g(r; Ii, - - -,II)

where the other arguments of the function are the example images. The mapping g can be

formally decomposed into g = 00. 0 is the transformation due to a change in viewpoint

while 4 is the transformation due to a non rigid motion of the object in the scene. When the

desired image results from a camera transformation, that is a rigid object transformation,

g = i has the analytic form studied in this thesis. On the other hand, for the non-rigid

transformation 0 we can use a system such as [8].

Research on image-based rendering is still at its first stages. Future research in this

area can potentially lead to significant results. We believe that the most important issues

that need to be solved are the visibility problem as well as speed and memory efficiency

issues. Notice that having many example images of an object means having every point

of the object in multiple images. Avoiding such a memory inefficient representation is

an important issue. We believe that the question of representation of the objects - ie

image-based or 3-D model or something in between - is a central issue in machine vision

and computer graphics. Moreover many questions will unavoidably arise from the need to

combine image-based rendering techniques for objects with ones for panoramas (such as

[18]) as well as with 3-D models used either for some of the objects or for parts of some

objects - depending on their representation. Such hybrid systems can potentially lead on



the one hand to realistic virtual reality tools and on the other hand to better understanding

of important issues in machine vision as well as our vision system, such as how we represent

an object, how we deal with occlusions, or how we find correspondences between different

images of an object.



Appendix A

A.1 Trilinear Constraints Between Three Images

Like in chapter 3, suppose we are given three images 1,, 12, 13 of an object point O =

(X, Y, Z) taken with three cameras from different positions. Let 1, 2, 3 be the rows of the

first camera matrix, 4, 5, 6 be the rows of the second and 7, 8, 9 the rows of the third.

Let (x, y), (x', y'), (x", y") be the image coordinates of the projection of O in the three

images respectively. We assume O is visible in all three images, so its three projections are

Euclidean points (their third projective coordinate can be set to 1). Then the 9 trilinear

equation that hold between the image coordinates are of the form:

THSi, = x(u~ufT133 - u'T 1i3 - uiT13j + Tlij+

+y(uI uT133 - uTV3- u uT 13j + T1ij+ (A.1)+(2 p3 u3 ST

+( - U T1i3 - uiT13j + Tlij+

for i, j in 1, 2, 3, where u' = x', ui = y', u/ = 1, x u• = z", un = y", u' = 1, and Tijk is the

determinant of the matrix obtained by choosing the ith element of the first column, the jth

element of the second, and the kth of the third of the following matrix:

2, 3 4 7

3, 1 5 8 (A.2)

1,2 6 9



So, for example, the equations that we use in chapter 3 are derived for i = 1, j = 1 and for

i = 2, j = 2. Indeed, substituting i and j we get:

[2369]x"xx' - [2349]x"x + [3169]x"yx' - [3149]x"y + [1269]x"x' - [1249]x"-
(A.3)

-[2367]xx' + [2347]x - [3167]yx' + [3147]y - [1267]x'+ [1247] = 0

[2369]y"xy' - [2359]y"x + [3169]y"yy' - [3 159 ]y"y + [1269]y"y' - [1259]y"-
(A.4)

-[2368]xy' + [2358]x - [3168]yy' + [3158]y - [1268]y' + [1258] = 0

These are the equations as shown in [11].

A.1.1 The Case of Orthographic Projection

Using the formulation above, we can now see why in the special case of orthographic pro-

jection the trilinearity constraints become linearities. In the case of orthographic projection

the camera matrices, as we show in chapter 2, have a special form: the third row is always

[0001]. Taking this into account we have that, for example for equation A.3, the coefficients

become:

[2369] = [2349] = [3169] = [3149] = [1269] = [2367] = [3167] = 0 (A.5)

since all these coefficients are determinants of matrices that have two equal rows (since rows

3, 6, 9 are all [0001]). The remaining coefficients can be non-zero. Notice that the only non-

zero coefficients are the ones of the first or zero order terms, which makes the trilinearity

into a linear equation. Similarly all the other trilinearity equations become linear.
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