Image Based Rendering Using Algebraic Techniques

by

Theodoros K. Evgeniou

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 21, 1996

@ Massachusetts Institute of Technology **1996**

Image Based Rendering Using Algebraic Techniques

by

Theodoros K. Evgeniou

Submitted to the Department of Electrical Engineering and Computer Science

May 21, 1996

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Computer Science and Engineering and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis presents an image-based rendering system based on algebraic relations between different views of an object. The system uses pictures of an object taken from known positions in space. Using two such images it can generate "virtual" views of the object as it would look from any position near the two points that the two input images were taken from. The system is based on the trilinearity constraints that bind any new view with the two example images.

We implemented the system and tested it on real images of an object and computer generated images of a face. As a side result, we developed and used a new method for camera calibration. The method uses three images of an object and is also based on the trilinear constraints that bind these images.

In addition, we present the relation between these algebraic constraints and a factorization method for shape and motion estimation. As a result we propose a method for motion estimation in the special case of orthographic projection.

Thesis Supervisor: Professor Tomaso Poggio *Uncas and Helen Whitaker Professor, Department of Brain and Cognitive Sciences*

 $\overline{\mathbf{4}}$

Acknowledgments

I would like to thank my supervisor Professor Tomaso Poggio for his advice and support throughout working on this thesis. Without his guidance this work would have been impossible. The discussions we had were the source for many of the ideas presented.

I also wish to thank Tony Ezzat for providing a big part of the code that i used, as well as for the fruitful and often funny discussions that we had. Thanks also to Steve Lines for collaborating on related projects and for the interesting discussions we had, and to Mike Jones and David Beymer for their helpful contributions in the past. Finally I would like to thank Shai Avidan for helpful ideas through often and long electronic communication.

Finally, I am grateful to my parents, Evgeniou Hartaba Haido and Evgeniou Kostantinos, and my wonderful sister Evgeniou Kostantina for their constant support, warmth and encouragment. Nothing would be possible without them. This thesis is dedicated to them.

 $\overline{6}$

 \mathcal{L}_{max} , where \mathcal{L}_{max}

Contents

Chapter 1

Introduction

1.1 Motivation and Goal of the Thesis

In recent years image-based rendering systems have been an emerging subject of research within the computer graphics and computer vision communities. Applications range from generation of virtual reality effects, to object recognition by matching real images to virtual ones. The underlying idea of these systems is that the representation of the images is based purely on photometric observations and not on any indirect models. Traditionally objects and scenes have been approximated using either geometric models such as mathematical descriptions of the boundaries of the objects, or physics-based models, or, more typically, 3-D models. However the limitations of these approaches are apparent when one tries to render realistic images, since the complexity of the real-world does not permit accurate and efficient modeling.

Geometric modeling has the problem that it cannot be used for complicated surfaces such as faces or other flexible objects. Although it might work satisfactorily for some simple objects and scenes, it might not for other complicated ones. Similar problems arise with physics-based models. The complexity of such models makes them intractable. Furthermore, building 3-D models of objects, although it can work efficiently for simple planar surfaces, is often inefficient for more complicated ones. There is again a major trade off between the complexity of the model, ie. how well to approximate a non-planar surface using small patches, and its realism. Achieving high visual realism requires in many cases high complexity which leads to inefficient rendering.

Given these, the need for image based rendering systems is clear. When the representa-

tion of an objects or a scenery is based on its actual images the realism that can be achieved is higher than that when some approximation model is used. Moreover, the computation required for rendering using these systems is independent of the complexity of the scene and can be done efficiently enough for real-time use [4].

There are two new approaches in image based rendering. One is using morphing techniques, while the other is using algebraic techniques. Image morphing is the simultaneous interpolation of shape and texture. In this group, noticeable work has been the one by Beymer, Shashua, and Poggio [3] partly based on the ideas presented in [19]. They showed that morphing based on using correspondences between input images is applicable for generating virtual images of faces with changes in pose and expressions such as smiles. Other morphing techniques are described in [31], [21] and [5]. Despite their differences they are all based on the idea of interpolation, therefore they do not give much freedom for virtual camera motion, namely extrapolation.

The other new approach in image based rendering is to use "natural" algebraic relations that exist between different views of the objects in order to generate virtual images. The main difference from the aforementioned approach is that this one is only suitable for rigid transformations but also enables significant extrapolation from the example images. There has been a significant amount of work very recently done in this area ([11], [12], [13], [17], [18], [24]). Some of these approaches are presented briefly in the next chapter. Noticeable has been the work of [18] on rendering sceneries. Using cylindrical projections of a scenery taken from known positions, they manage to reconstruct the scenery from arbitrary positions by reconstructing the plenoptic function describing it. The plenoptic function is a parameterized function describing everything that is visible from a given point in space.

The goal of this thesis is to develop a method similar to the one in [18] but which can be used for objects. Instead of having cylindrical images of a scenery, we are given pictures of an object taken from known positions around it. Then, using these images we want to be able to generate virtual views of the object as they would look from arbitrary positions. We want the system to be robust and to allow for arbitrary camera motion, ie zoom and in place rotation, as well as considerable extrapolation from the example images. The long term goal is to combine the system with existing ones for non-rigid transformations of objects (ie. face expressions) [8] in order to build a complete tool that can be used for rendering images of objects under any rigid or flexible transformation.

Moreover, part of the thesis is to further study algebraic results used for computer vision. The goal is to find the hidden connection between the algebraic relations among images of an object and the estimation of the objects shape and motion. As a result of this study, a method for shape and motion estimation of an object undergoing rigid motion is developed.

1.2 Contribution of the Thesis

Summarizing, the contributions of the research described in this thesis are briefly the following:

- 1. We developed a new method for image-based rendering and we tested it on real images.
- 2. We developed and implemented a new method for camera calibration.
- 3. We showed the relation between algebraic constraints connecting images and the shape and motion factorization method described in [29].
- 4. We proposed a simple method for motion estimation in the special case of orthographic projection and suggested possible extensions for the general perspective case.

1.3 Layout of the Thesis

The thesis is organized as follows:

- ***** In chapter 2 the necessary background as well as a brief description of related previous work and ideas are presented.
- ***** In chapter 3 our method and the problems that our systems had to solve are presented in detail.
- ***** Chapter 4 discusses the implementation of the system and shows results.
- ***** In chapter 5 we refer to a different but related problem. The problem of recovering shape and motion using the ideas of the rest of the thesis. A theoretical result is presented and a method for shape and motion estimation is proposed.
- Finally, in chapter 6 we state conclusions and suggestions for further work.

 $12\,$

Chapter 2

Background and Related Previous Work

2.1 Background

Before going to the main part of the thesis we need to provide the necessary background. We present the basic ideas of projective geometry and its use in computer graphics.

2.1.1 Camera Model and Projective Geometry

The camera model we use is that of a *pinhole camera* described in figure 2-1. Objects are viewed under *perspective projection.* The center of projection is the *optical center* of the camera, which we also define to be the origin of our camera coordinate system *(CCS)* **-** also called the *standard coordinate system of the camera.* The image plane **-** or *retinal plane* is parallel to the XY-plane of our *CCS,* and at distance *f* from the optical center, called the *focal length* of the camera. We define an image coordinate system *(ICS)* such that the origin is the projection of the optical center on the retinal plane which we assume is at the center of our image. **If** we define the *X, Y* axis of the *ICS* to be parallel to the *X* and *Y* axis of the *CCS,* respectively (see figure 2-1), then we can easily see that the image coordinates of the projection of an object point $O = (X, Y, Z)$ are given by:

$$
x_i = -f \cdot X/Z
$$

$$
y_i = -f \cdot Y/Z
$$
 (2.1)

Figure 2-1: The Pinhole Camera Model

Clearly any point on the line through *O* and the center of projection has the same image.

It seems that when one wants to compute image coordinates using the aforementioned approach one has to deal with ratios. Using ratios is not very computationally efficient and also makes the mathematics complicated. Fortunately there is a way to avoid these ratios. The traditional solution is to use *Projective Geometry* instead of the Euclidean one. After all, images are generated using *central projection.*

In projective geometry the 3-dimensional Euclidean space R^3 is considered to be a subspace of the 4-dimensional Projective space P^4 . A point in P^4 is described by its coordinates up to a scale factor. This means that, ie. $(X, Y, Z, W) \simeq (2X, 2Y, 2Z, 2W)$. There is a natural injective mapping from R^3 to P^4 defined by:

 $M: \mathbb{R}^3 \mapsto P^4$ such that $(X, Y, Z) \mapsto (X, Y, Z, 1)$.

The remaining points of P^4 , which are the ones of the form $(X, Y, Z, 0)$, are called *ideal* points. In the same way we have a similar relation between the 2-dimensional Euclidean space and the 3-dimensional Projective Space. A point (X, Y) in R^2 corresponds to $(X, Y, 1)$ in P^3 and points $(X, Y, 0)$ are the ideal points of P^3 .

By modeling our spaces as Projective instead of Euclidean we gain the following:

1. First, we notice that points that are on the plane parallel to the image plane through the center of projection - called the *focal plane* - have no images (see figure 2-1). Modeling the image plane as a Euclidean 2-Dimensional plane is therefore not suitable since we cannot account for the "images" of these points. However, if we model it as a 3-dimensional Projective space, then we can define the images of these object points to be the ideal points of the retinal plane. This way all object points are treated the same.

2. There is a very important practical reason for using projective geometry. As stated above, using Euclidean geometry, the coordinates of a point on the image plane are given as ratios (equation 2.1). However, in the corresponding projective spaces, we have that the coordinates of an object point $(X, Y, Z, 1)$ (we can set the fourth coordinate to 1 so that we preserve the "natural" correspondence with Euclidean coordinates defined above. For the moment we also don't deal with the object points that have no image, therefore we can assume that z_i below is not zero) on the image plane are given simply by:

$$
\begin{bmatrix} x_i/z_i \\ y_i/z_i \\ 1 \end{bmatrix} \simeq \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \begin{bmatrix} -f \cdot X \\ -f \cdot Y \\ Z \end{bmatrix}
$$
(2.2)

Therefore we can use linear algebra and avoid the nonlinearities introduced by the aforementioned ratios.

If the coordinates of the object point are given relative to another coordinate system, which we call World Coordinate System *(WCS),* then, if

$$
K = \left[\begin{array}{cc} R & T \\ 0 & 1 \end{array} \right] \tag{2.3}
$$

is the matrix of transformation between the *WCS* and the *CCS,* the coordinates of the object point in the *CCS* are given **by:**

$$
\left[\begin{array}{cc} R & T \\ 0 & 1 \end{array}\right] \cdot \left[\begin{array}{c} X \\ Y \\ Z \end{array}\right] \tag{2.4}
$$

therefore its projection on the image plane is given by:

$$
\begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = M \cdot D \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}
$$
(2.5)

The product $P = M \cdot D$ is called the *camera matrix*.

The matrix:

$$
D = \left[\begin{array}{cc} R & T \\ 0 & 1 \end{array} \right] \tag{2.6}
$$

is called matrix of the *external parameters* of the camera. It describes the position of the camera relative to the *WCS.*

 \mathbf{r}

The matrix:

$$
M = \left[\begin{array}{cccc} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right]
$$
 (2.7)

is called matrix of the *internal* - *or intrinsic* - *parameters* of the camera. However, the matrix in equation 2.7 is a special case of the general form. Apart from the focal length, there are five other parameters that depend on the camera. First notice that in reality the line connecting the center of projection and the center of the image is not always perpendicular to the image plane. Therefore, we have to move the image coordinate system so that its origin is the projection of this perpendicular. This adjustment gives two more parameters: the coordinates of the actual origin of the image coordinate system in terms of the system described above. Furthermore, there is typically some scale distortion so that the unit lengths of the image axis are unknown - not the same as the corresponding ones in the camera coordinate system. This scale distortion gives two more factors - one for each axis. Finally, there is a last factor that gives the angle between the axis - in practice the X and *Y* axis may not be orthogonal. When one takes into account all these, one can easily

find that the general form of the matrix of the intrinsic parameters of the camera is:

$$
M = \begin{bmatrix} -fk_u & 0 & u_0 & 0 \\ 0 & -fk_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}
$$
 (2.8)

where k_u and k_v are the scaling factors for the X and Y axis respectively, and u_0 , v_0 are the image coordinates of the actual origin of the *ICS* relative to the one we assumed at the beginning. For more information on the derivation of this matrix the reader can refer to **[91.**

Estimating the intrinsic parameters of the camera is called *calibration* of the camera. Various methods for doing camera calibration have been developed ([10], [25]). In the next chapter we describe a method that we developed and used.

Before changing topic, we should mention here a very usual approximation to the perspective projection model described above. Sometimes we assume that the *Z* coordinates of the object points are almost constant. This is the case when, for example, the objects are far relative to the focal length, therefore changes in the *Z* coordinates are negligible. In this case we can write the image coordinates in equation 2.1 as:

$$
x_i = -f \cdot X/Z_0 = f' \cdot X \tag{2.9}
$$

$$
y_i = -f \cdot Y/Z_0 = f' \cdot Y \tag{2.10}
$$

When we use this approximation we say that the image is generated under *orthographic projection.* In this case it is easy to see that the camera matrix is given **by:** (assuming *f'* is 1, all other internal parameters are 0, and the external parameters matrix is the identity one)

$$
\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right].
$$
 (2.11)

so the image coordinates using equation 2.5 (in projective spaces) are given by (x_i, y_i, z_i) = $(X, Y, 1)$. This is a simplification that we will use in chapter 5.

Having this background we can now examine an algebraic relation between images that

has been traditionally used in systems. The interested reader can refer to [9] and [16] for more information on projective geometry and its use in computer graphics.

2.1.2 Epipolar Geometry

Suppose we are given two images of the same object point **O** taken from two different known positions as shown in figure 2-2. Clearly, if we know the projection of the point on image 1, then the projection of the point on image 2 is constrained: it has to lie on line *12* as shown in figure 2-2. This line is the intersection of the second image plane with the plane through O and the optical centers C_1 and C_2 of the two cameras. Symmetrically, its projection on image 1 has to lie on line l_1 .

If p_1 and p_2 are the image coordinates of the point in the two images, we must have that:

$$
p_1 = P1 \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}
$$
 (2.12)

and

$$
p_2 = P2 \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}
$$
 (2.13)

where P_1 and P_2 are the camera matrices as described above. If P_{11} , P_{21} are the top 3x3 submatrices of P_1 and P_2 respectively, then it is easy to see [9] that we must have:

$$
p_2 = P_{21} \cdot P_{11}^{-1} \cdot p_1 \tag{2.14}
$$

Moreover, if e_2 is the projection of C_1 on the second image and E_2 is the 3x3 antisymmetric matrix representing the dot-product with e_2 (that is, $E_2a = e_2 \times a$) then E_2p_2 is a vector perpendicular to line l_2 . This means that $p_2^T E_2 p_2 = 0$ which, using equation 2.14, gives that:

$$
p_2^T \cdot E_2 \cdot P_{21} \cdot P_{11}^{-1} \cdot p_1 = 0 \Rightarrow
$$

\n
$$
\Rightarrow p_2^T \cdot F \cdot p_1 = 0
$$
\n(2.15)

Figure 2-2: The epipolar geometry.

where $F = E_2 \cdot P_{21} \cdot P_{11}^{-1}$.

The matrix *F* in equation 2.15 is called the *Fundamental Matrix* between images **1** and 2 and when we know it we say that we have *weakly-calibrated* the camera. Lines **11** and *12* are called *epipolar lines.* Since all epipolar lines are on a plane that goes through the two optical centers all these lines go through the same point on each image $(e_1$ and e_2 in figure 2-2): the projection of the optical center of the camera for the other image. This point is called the epipole - one for each image.

This equation holds for any pair of corresponding points and it defines the *epipolar geometry* between the two images. Recovering this geometry has been the subject of research the recent years. For more information the reader can see [7], [9], [17]. We will use this geometry in the next chapter when we deal with the problem of occlusions.

2.2 Related Previous Work

The first results on algebraic relations between images of the same object appear in the work of Ullman and Barsi described in [30]. They first showed that under the special case of orthographic projection one can get linear relations between the image coordinates of an object point seen in three images. Later it was shown in [28] that "1.5" example views are enough to predict new images of an object (the "1.5 view theorem"). These results implied that in the special case of orthographic projection new views of an object can be generated as *linear combinations of example views.*

Later these results were generalized for the perspective case [23], [24]. However, in this case the relations become trilinear, and the number of parameters needed increases. These "new" relations were first tested on images in [22], [24]. The results of those experiments

were encouraging ([22], [24]). In this thesis we use these results with real images. Close to the method we use is the one described in [1] developed independently and at the same time as this work.

Another approach in image-based rendering has been to use the epipolar geometry described in the previous section. Clearly one can use the epipolar geometry between views in order to predict where a point should project in a new view. For example, if we knew the epipolar geometry between view 1 and 3, and between view 2 and 3, then we could predict view 3 from views 1 and 2 by projecting a point of images 1 and 2 on the point of intersection of the two epipolar lines in image 3.

Using this idea [17] describes a method for reprojection in the weakly-calibrated case. The method is based on finding intersections of lines as described above. However, finding intersections of lines is noisy and in the case of epipolar lines in some degenerate cases impossible [17]. Therefore systems based on this approach were sensitive to noise and did not provide a wide range of virtual views. This were the main reasons we avoided such an approach.

Given this background we are now ready to describe our system.

Chapter 3

Reprojection Using Trilinearity Constraints

3.1 The Method

We are interested in generating new views of an object given a set of reference images. Through this discussion we assume that all views of the object are taken using the same camera, therefore the internal parameters do not change from image to image. We set the world coordinate system to be the standard coordinate system of camera 0. Let *{Io, I, ...In}* be the *n* reference views of an object, and P_i be the camera matrix for I_i . That is, if M are the coordinates of a point in the scene in the standard coordinate system of camera *i,* then the projection of the point on image *i* has image coordinates $P_i \cdot M$.

Define K_i to be a matrix that depends on the external parameters of camera *i*:
 $\left[\begin{array}{cc} 0 & \overline{1} \end{array}\right]^{-1}$

$$
K_i = \left[\begin{array}{cc} R_i & T_i \\ 0 & 1 \end{array}\right]^{-1} \tag{3.1}
$$

where R_i is the rotation matrix of camera *i* relative to camera 0, and T_i is the translation vector between the position of camera *i* and camera 0. Clearly $R_0 = I_{3x3}$, and $T_0 = 0_{3x1}$. Then, if P_i is the camera matrix for image *i*, we get that $P_i = P_0K_i$, since, if M are the coordinates of a point in the scene relative to the world coordinate system, then the coordinates of the same point relative to the standard coordinate system of camera *i* are

given by K_iM . The coordinate system and the whole camera just moved, so, it is as if we just moved the point to a new position - which explains the inversion of the position matrix. Therefore, if x and x' are the images of M in the two views, then $x = P_0M$ and $x' = P_0(K_iM) = (P_0K_i)M = P_iM$. Matrix P_0 depends only on the internal parameters of our camera. So, if we estimate *Po,* we can get the camera matrix for any position we want.

Suppose now that we want to generate the image of the object as it would be seen from a position which is related to the origin of our world coordinate system by the matrix:

$$
K = \left[\begin{array}{cc} R & T \\ 0 & 1 \end{array}\right]^{-1} \tag{3.2}
$$

We get this view in two steps. First we have to find pairs of reference views whose matrices K_i^{-1} are "close" to K^{-1} . Close matrices in this case are the matrices of the reference cameras that are closer to the virtual one. However, for simplicity, in our case we used the system with only two reference images, therefore we did not have to do this step. Having a pair of reference images I_i , I_j , we can get the new image coordinates of a point appearing in both reference views using the trilinearity constrains described in [24]. The idea is that if a point appears in three images with image coordinates $(x_1, y_1), (x_2, y_2), (x_3, y_3)$, then, as one would expect because of the low dimensionality of our space, the three pairs of image coordinates have to satisfy specific algebraic relations. Therefore, if we know the relations and two of the pairs, we are able to find the third pair of image coordinates. Different ways of getting these relations are described in [11] and in [13]. Moreover, in the special case of orthographic projection these relations become linear as first found in [30]. We show this in the Appendix.

For computational purposes we use the trilinear relations as derived in [11] that we include in the Appendix. Here we present only one of those equations. Let the rows of *Pi* be 1, 2, 3, the rows of P_j be 4, 5, 6, and the rows of the new matrix $P_{new} = P_0K$ be 7, 8, 9. Let a point X in the scene project on I_i , I_j and the new image on $p_i = [x, y]$, $p_j = [x', y']$ and $p_{new} = [x'', y'']$ respectively. Then the following equations hold:

$$
x'' = \frac{(xx', -x, yx', -y, x', -1) \cdot ([2367], [2347], [3167], [3147], [1267], [1247])}{(xx', -x, yx', -y, x', -1) \cdot ([2369], [2349], [3169], [3149], [1269], [1249])}
$$
\n
$$
y'' = \frac{(xy', -x, yy', -y, y', -1) \cdot ([2368], [2358], [3168], [3158], [1268], [1258])}{(xy', -x, yy', -y, y', -1) \cdot ([2369], [2359], [3169], [3159], [1269], [1259])},
$$
\n(3.3)

where **-** stands for dot product and [1234] represents the determinant of matrix [1234].

So, once we compute the new camera matrix (given *Po* and the new external parameters) we can predict the position of any point of the reference images in the new image.

3.2 Important Issues

3.2.1 Finding Correspondences Between the Reference Images

It is clear from the aforementioned that once we are given two reference images it is important to find the pairs of image points p_i , p_j mentioned above that correspond to the same object point. Finding these correspondences is a very critical step as one can easily see.

There are many ways to define correspondence between two images. In this thesis, a *dense, pixel-wise* correspondence between two images is defined: for every pixel in image A, we associate a flow vector that refers to the corresponding pixel in image B. The flow vectors are relative to the current pixel position, so for a pixel in image A at position (i, j) , the corresponding pixel in image B lies at position $(i + \Delta x(i, j), j + \Delta y(i, j))$, where Δx and Δy are arrays that contain the x and y components of the flows, respectively. Δx and *Ay* are the same size as the images A and B.

There are also many ways to obtain such a dense, pixel-wise correspondence between the example images. We adopt the approach used by Beymer, Shashua, Poggio [3], who utilized optical flow algorithms borrowed from the computer vision literature. Specifically, they used the optical flow algorithms developed by Bergen and Hingorani [2]. For details the reader can refer to those sources.

3.2.2 Camera Calibration

Another crucial step is the calibration of the camera. As we see, the image coordinates of a point in the new view depend directly on the camera matrices and therefore on the internal parameters of the camera (equation 3.3). It is important, therefore, to have a good initial estimate of these parameters.

We developed a calibration method similar to the one in [18]. The matrix of the internal parameters of the camera, which in our case is the camera matrix *Po,* is determined as follows:

Given three images of the object, I_0 , I_1 , I_2 with corresponding camera matrices P_0 , P_1 ,

P2 as described above, we use two of the images, say *I,* and *12,* to generate the third one, *lonew* using our method and initially assuming that *Po* is the "identity" matrix (essentially a 3x3 identity matrix with a fourth column of zeros appended to it). We then determine the actual P_0 by minimizing the following error function:

$$
error(P_0) = 1 - Correlation(I_{0new}, I_0)
$$
\n(3.4)

where the correlation is defined as:

$$
Correlation(I_1, I_2) = \frac{E(I_1I_2) - E(I_1)E(I_2)}{\sigma(I_1)\sigma(I_2)}
$$
\n(3.5)

where $E(I_j)$ is the expected - average - intensity value of the pixels of image I_j , $\sigma(I_j)$ = $(E(I_j^2) - E(I_j)^2)^{\frac{1}{2}}$, and $E(I_1I_2)$ is the expected value of the product of intensities of points that are superimposed when we put the images one "on top of" the other. This minimization is done using Powells' multivariable minimization method [20]. At this point we have an estimate of *Po* which is typically very different from the initial "identity" matrix.

3.2.3 Noise in the External Parameters

Our method assumes that the positions of the camera for the example images are known accurately. Clearly, in reality, it is difficult to know exactly where the camera is located. Therefore we should expect some noise.

In this thesis we did not account for this noise. We simply assumed the locations are accurately known. However, when we tested the program with adding noise to the input locations, we found that it is not very sensitive to this error. Instead, we found that the calibration of the camera was giving slightly different internal parameters in each case. This implies that the internal parameters that we compute incorporate any small error in the external ones. However we did not examine this further. It is still an open question how errors in one set of parameters influences the estimation of the other.

3.2.4 Solving for occlusion

Clearly not all points appearing in the reference views will appear in the new image. Moreover, not all points appear in both reference images. Generally detecting these occlusions is

an unsolved problem. In this thesis we used a heuristic similar to the one used in [31]. This heuristic however solves only some occlusion cases. Specifically, in the case that two pixels are reprojected onto the same pixel in the new image, we choose the one that is closer to the epipole in the first example corresponding to the new camera position. We estimate the position of the epipole using again the camera matrices directly. By [11], the location of the epipole in example one should be (in terms of the camera matrices as described in the previous section):

$$
epipole_{1new} = ([1789], [2789], [3789]) \tag{3.6}
$$

where, like in equation 3.3, the rows of the first camera matrix are 1, 2, 3, the rows of the new camera matrix are 7, 8, 9, and *[abcd]* represents the determinant of the 4x4 matrix whose rows are rows a, b, c, d.

However this method does not handle occlusions such as the ones between the example images ([31]). The visibility problem is very important in many cases (depending on the object), and further research needs to be done.

26

 ~ 10

Chapter 4

Implementation and Experimental Results

We implemented the method as described in the previous chapter. However, experimentally we found out several sources of noise. In this thesis we did not study the exact reasons of these problems. Below we present the problems, we suggest reasons for them, and we describe the way we solved them in our program.

4.1 Problems of the Program

4.1.1 Scaling the Image Coordinates

As described in [14], when one uses the image coordinates as pixels (ie **0** to 512) one is vulnerable to instability and therefore more noise. So we had to scale the image coordinates from **(0,** 512) to (-1, 1). This was simply done by subtracting from the pixel coordinates half the size of the image and then dividing with this half. Once we compute the new image coordinates we have to rescale them back to pixel coordinates. Experimentally we noticed that with this technique the system was more noise insensitive. The reasons for this can be found in [14]. We did not study this observation any further, so there might be some more room for improvement if one uses some different scaling technique.

Figure 4-1: Automatic Calibration Results: Attempting Vertical rotation when the examples are all on the horizontal plane

4.1.2 Problems Due to Noisy Camera Calibration

 $\label{eq:2.1} \mathfrak{g}_1\left(\mathfrak{h}_1\right)=\mathfrak{g}_2\left(\mathfrak{h}_2\right)=\mathfrak{g}_1\left(\mathfrak{h}_1\right)=\mathfrak{g}_2\left(\mathfrak{h}_2\right)\mathfrak{g}_2\left(\mathfrak{h}_1\right)=\mathfrak{g}_2\left(\mathfrak{h}_2\right)\mathfrak{g}_2\left(\mathfrak{h}_1\right)$

Experimentally we found that the camera calibration is very noise-sensitive when the camera matrices of the three example images (refer to the previous chapter) have external parameters that depend only on rotations around one of the axis of the world coordinates system (ie, in the case we tried, only around the Y-axis, which means the camera was moving left-right around the object on the XZ plane). In general we found out that the camera calibration was more accurate when we were given examples taken by rotation of the camera around two directions. We suggest that the reason for this is that when the examples are only around one direction (say only the x-coordinates change), it is difficult to estimate camera parameters such as the y-axis scale factor since the changes of the y-coordinates of a point in the example images are negligible. This problem has also been discussed in [25].

We tried the program with examples only around one direction shown in figure 4-4. In that case our calibration method did not give us very good results, so we had to estimate the parameters manually. The difference between the automatic and manual results are show in figures 4-1 and 4-2, where we show the results of trying to virtually move the camera vertically when our examples are only on the horizontal plane. Although the problem might be both calibration noise as well as noise due to the choice of the trilinear equation (as we see next), the difference due to the calibration is apparent.

However, having all example images on a plane is a degenerate case. Even in such a case, though, we can solve the problem by just using some other method to calibrate the camera. Moreover, as we will see below, when the examples are from rotations around two directions, we do not have any such problems.

Figure 4-2: Manual Calibration Results: Vertical rotation. Compare with the images in figure 4.1

4.1.3 Noise Due to the Choice of the Trilinear Equations

Experimentally we noticed that the program was giving different results when we were using different trilinear relations (as shown in the Appendix, there are 9 such relations). Specifically, when our example images were only from the XZ-plane, the system would not be able to generate views outside this plane when it used the relations described in the previous chapter. If instead we would use the following one for the y-coordinates:

$$
y'' = \frac{(xy', yy', y', -x, -y, -1) \cdot ([2367], [3167], [1267], [2357], [3157], [1257])}{(xy', yy', y', -x, -y, -1) \cdot ([2369], [3169], [1269], [2359], [3159], [1259])}
$$
(4.1)

it would work better. We postulate that the reason for this was that when using the equations of the previous chapter we try to estimate the y-coordinates of an image point using mainly the almost negligible changes in the y-coordinates between our examples. Therefore very small errors in the y-coordinates of the points in the example images **-** due to the fact that we use digital images **-** lead to big errors in the new y-coordinates. If however one uses the equations above, one uses the larger changes in the x-coordinates of the examples to estimate the new y-coordinates. **A** way to overcome this problem is to make the program so that different trilinearity equations are used depending on the position of the new virtual camera. So, for example, a rule of thumb could be that if the virtual camera is "close" to the line connecting the cameras for the two example images we use equations **3.3,** while in case the virtual camera is "far" from that line, we use equation 4.1.

4.1.4 Noise Due to Holes

It is unavoidable to have some noise which will most usually lead to overlapping pixels in some places of the new image, and therefore to holes in other. Moreover, in case that we

Figure 4-3: Hole-filling comparison: For the left image we used the first approach. For the second image we used the final approach. Although speed decreased, the results were clearly better.

zoom in, clearly we will have to deal with holes due to lack of information.

Initially we solved the problem of hole filling like in **[8].** Once we generate the new image we **fill** the holes **by** interpolating the pixel values of the edges of the holes along the x-axis or the y-axis. However this approach was not satisfactory.

In the final version we solved the problem of holes as follows. For every four neighbor pixels forming a rectangle in one of the example images, we find their projection in the new image and then we **fill** the interior of the projected rectangle **by** using a bilinear interpolation of the pixel values of the four corners. This approach was significantly better than the previous one. In figure 4-3 we compare the results of the two approaches.

4.2 Summary of the Implementation

Summarizing, the program is organized as follows:

- **1.** Calibrate the camera using at least **3** example images.
- 2. Given a new position of the camera, **find** the corresponding matrix of external parameters and then the new camera matrix.
- **3.** Choose two example images that are close to the one we want to generate.
- 4. Find the dense pixel-wise correspondence between the example images.

Figure 4-4: Calibration Images

- 5. Using the new camera matrix and the camera matrices for the two example images, compute the coefficients for the trilinear equations.
- 6. For every four neighbor pixels forming a rectangle in the first example and their corresponding pixels in the second example, scale the coordinates and find their new coordinates in the virtual image using equations 3.3. Then rescale the new coordinates to pixel ones. Fill the interior of the rectangle in the new example as described above.
- 7. In the case that a pixel in the new image is written more than once, choose the pixel value according to the occlusion method described in the previous chapter.

4.3 Experimental Results

We first tested the program on real images of a lego that we collected in the lab. We took the images around the lego at every 10 degrees. All images were taken on the same plane. We used the three images shown in figure 4-4 to calibrate the camera. The results are shown in figure 4-5. The two example images we used are first two images on the left top. In this figure we see both horizontal rotation every around 5 degrees as well as zoom in and out.

We also tested the program using computer generated images. We used the four examples shown in figure 4-6. Notice that these four examples form a square. Therefore the program should not have the calibration problem described above. Indeed, after calibrating the camera using three of these examples (any three of them), we got the results shown in figures 4-7 and 4-8. In this case we did not have to use any manual estimation of the camera parameters. Notice that the noise due to occlusions was getting bigger the more we extrapolated from the two example images. In the two figures the two example images we used were 2.4 degrees apart in each direction (horizontal-vertical). In figure 4-7 we have 3

Figure 4-5: Lego Automatic Results: The input images are the right top and left bottom corner ones. We do a horizontal rotation and a zoom.

degrees of movement in each direction between consecutive pairs of images. Therefore we achieve satisfactory extrapolation up to **27** degrees in each direction, 12 times the distance between the two examples. In figure 4-8 there is **5** degrees difference vertical between the images. Notice that the noise becomes noticeable when we extrapolate more than about **10** degrees.

The reader can also refer to the World Wide Web page

http://www.ai.mit.edu/people/theos/theos.html

for more demos of the program.

Figure 4-6: Computer Generated Input Images

Figure 4-7: Movie **1:** Both vertical and horizontal rotation of **3** degrees between consecutive images. The only real images are the first two ones on the left top.

Figure 4-8: Movie 2: Vertical rotation of 5 degrees between images. The example images are the same as in figure 4.7

 $\label{eq:2} \mathcal{L} = \mathcal{L} \left(\mathcal{L} \right) \left(\mathcal{L} \right) \left(\mathcal{L} \right) \left(\mathcal{L} \right)$

 $\hat{\mathcal{A}}$

Chapter 5

Shape and Motion Estimation

5.1 Motivation and Background

Computing the motion and shape of a moving object is an important task for many applications such as navigation and robot manipulation. Traditionally algorithms compute shape by using depth values estimated by methods such as triangulation. However these approaches are typically noise-sensitive. Significant has been the work done by Tomasi and Kanade **[29].** In **[29]** they developed a robust method for the special case that the images are taken under orthographic projection. Their method is based on the factorization of the matrix that contains image coordinates of selected features of the moving object. This factorization leads to a product of two matrices: one contains information about the shape of the camera, and the other about the motion of the camera. In [27] the method is extended to the paraperspective case, which is a first order approximation to the general perspective case. Moreover, in [6] a variation of the method for the multi-body case is presented.

The purpose of this chapter is to examine the relation between the factorization method of [29] and the algebraic relations described in the previous chapters. We present this relation in the special case of orthographic projection using two different approaches and we propose a new method for shape and motion estimation when we have two or more images. Finally we suggest possible generalizations for the perspective case.

Figure **5-1:** Coordinate system

5.2 Theory

5.2.1 Problem Statement

We are given a sequence of *F* images of an object taken with a camera that is allowed to undergo any rotation and translation. More specifically, we have a set of *P* object points $p_i = (X_i, Y_i, Z_i), i \in \{1, 2, ..., P\}$ projected on *F* images (frames), $f \in \{1, 2, ..., F\}$, taken under orthographic projection. Frame *f* is obtained by the camera whose orientation is described by the orthonormal unit vectors i_f , j_f and k_f , where k_f points along the camera's line of sight, i_f corresponds to the camera image plane x-axis, and j_f corresponds to the camera image plane y-axis. The camera position is described by the vector t_f from the origin of the world coordinate system to the camera's focal point. The situation is shown in figure 5-1. We assume that the focal length of the camera is 1 and all other internal parameters are 0. Finally, let x_{fi} and y_{fi} be the image coordinates of point p_i in frame f. The problem then is the following. Given x_{fi} and y_{fi} , compute the shape of the object, which in this case means p_i for each of the *P* points, and the motion of the camera, which in this case means i_f , j_f , i_f \cdot t_f and j_f \cdot t_f for each of the *F* frames. We assume that all *P* points are visible in all frames.

5.2.2 Shape and Motion estimation

We organize all of the feature point coordinates into a $2F \times P$ matrix *W*:

$$
W = \begin{bmatrix} x_{11} & \cdots & x_{1P} \\ \vdots & \vdots & \ddots & \vdots \\ x_{F1} & \cdots & x_{FP} \\ y_{11} & \cdots & y_{1P} \\ \vdots & \vdots & \ddots & \vdots \\ y_{F1} & \cdots & y_{FP} \end{bmatrix}
$$
 (5.1)

Each column of the measurement matrix contains all the observations for a single point, while each row contains all the observed x-coordinates or y-coordinates for a single frame.

As we can see from figure 5-2, under orthographic projection a point $p_i = (X_i, Y_i, Z_i)$ relative to the world coordinate system is projected on the image plane of frame *f* at image coordinates (x_{fi}, y_{fi}) given by:

$$
x_{fi} = i_f \cdot (p_i - t_f) = i_f \cdot p_i - i_f \cdot t_f
$$

\n
$$
y_{fi} = j_f \cdot (p_i - t_f) = j_f \cdot p_i - j_f \cdot t_f
$$
\n(5.2)

where the notation is as defined in the problem statement section.

Moreover, if we define the world coordinate system to be such that the origin is at the center of mass of the object we get that:

$$
p_1 + p_2 + \ldots + p_P = 0 \tag{5.3}
$$

which in combination with equation **5.2** gives:

$$
x_{f1} + x_{f2} + ... + x_{fp} = i_f \cdot (p_1 + p_2 + ... + p) + P(i_f \cdot t_f) = 0 + P(i_f \cdot t_f) \Rightarrow
$$

\n
$$
\Rightarrow i_f \cdot t_f = \frac{1}{P}(x_{f1} + x_{f2} + ... + x_{fp})
$$

\nand
\n
$$
y_{f1} + y_{f2} + ... + y_{fp} = j_f \cdot (p_1 + p_2 + ... + p) + P(j_f \cdot t_f) = 0 + P(j_f \cdot t_f) \Rightarrow
$$

\n
$$
\Rightarrow j_f \cdot t_f = \frac{1}{P}(y_{f1} + y_{f2} + ... + y_{fp})
$$

\n(5.4)

Therefore we can compute the camera position (translation) directly from the image coor-

Figure 5-2: Orthographic Projection. Dotted lines indicate perspective projection. The solid perpendicular lines to the image plane indicate orthographic projection.

dinates by taking the average of each row of matrix *W.*

Once we find the camera translation, we can factor it out by subtracting from each entry of *W* the average of the entries of the row it is in. Once we do this we are left with a new matrix *W'* with entries:

$$
x'_{fi} = i_f \cdot p_i
$$

\n
$$
y'_{fi} = j_f \cdot p_i
$$
\n(5.5)

The question now is how to estimate p_i , i_f and j_f . The problem, however, becomes simple after we make the following observations.

First, we can consider matrix W' as the matrix of image coordinates of the P points taken **by** a camera that is located at the origin of the world coordinate system and that is allowed to make only rotations - no translation. So we can start solving the problem of shape and motion estimation from the beginning for this new scenario. Notice that this situation is not realistic, since it would have been impossible to see all points in every frame if a camera were located at the center of the mass of the object. However, we can still use our knowledge for orthographic projection assuming, like at the beginning, that all points are visible in all frames.

Second, from equation 5.5, we get that the new camera matrix for frame *f* is:

$$
K_f = \begin{bmatrix} i_f & 0 \\ j_f & 0 \\ 0_3^T & 1 \end{bmatrix}
$$
 (5.6)

Finally, we know that in the case of orthographic projection, "1.5 views" of an object are enough to predict other images of the object [28]. In other words, as we also see in the appendix, we know that there are α_{f1} , α_{f2} , α_{f3} , α_{f} and β_{f1} , β_{f2} , β_{f3} , β_{f} such that :

$$
(x'_{f1} \cdots x'_{fP}) = \alpha_{f1}(x'_{11} \cdots x'_{1P}) + \alpha_{f2}(y'_{11} \cdots y'_{1P}) + \alpha_{f3}(x'_{21} \cdots x'_{2P}) + \alpha_{f}
$$

\n
$$
(y'_{f1} \cdots y'_{fP}) = \beta_{f1}(x'_{11} \cdots x'_{1P}) + \beta_{f2}(y'_{11} \cdots y'_{1P}) + \beta_{f3}(x'_{21} \cdots x'_{2P}) + \beta_{f}
$$
\n
$$
(5.7)
$$

Furthermore, in this case $\alpha_f = \beta_f = 0$, since there is no translation from frame to frame. So the relations above immediately give us that matrix *W'* has rank 3. This is the *rank 3 theorem* proved in [29]. Using equation 5.7 we get another simple proof of that theorem which is anyway clear from equation 5.5.

Using these equations we can approach the factorization problem of [29] in a different way. We can write W' as a product of a $2F \times 3$ and a $3 \times P$ matrix as follows;

$$
W' = \begin{bmatrix} x_{11'} & \cdots & x'_{1P} \\ x'_{21} & \cdots & x'_{2P} \\ \vdots & \vdots & \ddots & \vdots \\ x'_{31} & \cdots & x'_{3P} \\ x'_{11} & \cdots & x'_{FP} \\ y'_{11} & \cdots & y'_{1P} \\ \vdots & \vdots & \ddots & \vdots \\ x'_{p1} & \cdots & x'_{pp} \\ \vdots & \vdots & \vdots & \vdots \\ x'_{p1} & \cdots & x'_{pp} \\ \vdots & \vdots & \vdots & \vdots \\ x'_{p1} & \cdots & x'_{pP} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p1} & \cdots & x_{1P} \\ \vdots & \vdots & \vdots & \vdots \\ x_{p2} & \cdots & x_{1P} \\ \vd
$$

This is one of the possible factorizations as mentioned in [29]. Indeed, the crucial question is how to factorize *W'*. Notice that for any invertible matrix *A*, from a factorization $W' = MS$ of W' we can get another factorization by simply replacing M with MA and S with $A^{-1}S$. Indeed: $W' = MS = (MA)(A^{-1}S)$ for any invertible 3x3 matrix *A*. So the question is *how*

to factorize W' in order to get the correct motion and shape matrices. The factorization that we want to get is:

$$
W = \begin{bmatrix} x'_{11} & \cdots & x'_{1P} \\ x'_{21} & \cdots & x'_{2P} \\ x'_{31} & \cdots & x'_{3P} \\ \vdots & \vdots & \ddots & \vdots \\ x'_{F1} & \cdots & x'_{FP} \\ y'_{11} & \cdots & y'_{1P} \\ \vdots & \vdots & \ddots & \vdots \\ y'_{21} & \cdots & y'_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{F1} & \cdots & y'_{FP} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ i_{21} & i_{22} & i_{23} \\ \vdots & \vdots & \vdots \\ i_{31} & i_{32} & i_{33} \\ \vdots & \vdots & \vdots \\ i_{F1} & i_{F2} & i_{F3} \\ \vdots & \vdots & \vdots \\ i_{F1} & j_{F2} & j_{F3} \end{bmatrix} \times \begin{bmatrix} X_1 & \cdots & X_P \\ Y_1 & \cdots & Y_P \\ Z_1 & \cdots & Z_P \end{bmatrix}
$$
 (5.9)

since we have that $x_{fi} = i_f \cdot [X_i, Y_i, Z_i]^T$ and $y_{fi} = j_f \cdot [F_i, Y_i, Z_i]^T$.

To get the correct factorization we need one more step. From chapter **3** we know exactly the relations between the entries of the motion matrix we have and the ones we want to have! We can get them from the relation of the $\alpha_f, \, \beta_f$ and the camera matrices. For simplicity, let's define the world coordinate system so that each axis is parallel to the corresponding axis of the camera coordinate system of the first camera. In the general case - since we don't know the orientation of the first camera - the approach is exactly the same although the algebra is more complicated.

With this "alignment" the new camera matrix for the first frame is clearly:

$$
K_1 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \tag{5.10}
$$

Let the rows of K_1 be 1, 2, 3, the rows of K_2 be 4, 5, 6, and the rows of matrix K_f be 7, 8, 9. Using the results of Faugeras [11] or simple geometric arguments we can find that:

$$
\alpha_{f1} = \frac{T_{111}}{T_{313}} = \frac{i_{f1}i_{23} - i_{f3}i_{21}}{i_{23}}, f > 2 \quad \alpha_{f2} = \frac{T_{211}}{T_{313}} = \frac{i_{f2}i_{23} - i_{f3}i_{22}}{i_{23}}, f > 2
$$
\n
$$
\alpha_{f3} = -\frac{T_{331}}{T_{313}} = \frac{i_{f3}}{i_{23}}, f > 2 \qquad \beta_{f1} = \frac{T_{112}}{T_{313}} = \frac{j_{f1}i_{23} - j_{f3}i_{21}}{i_{23}}, f > 1 \qquad (5.11)
$$
\n
$$
\beta_{f2} = \frac{T_{212}}{T_{313}} = \frac{j_{f2}i_{23} - j_{f3}i_{22}}{i_{23}}, f > 1 \qquad \beta_{f3} = -\frac{T_{332}}{T_{313}} = \frac{j_{f3}}{i_{23}}, f > 1 \qquad (5.12)
$$

where T_{ijk} is the determinant of the matrix that is made by choosing the *i*th element of the first column the jth of the second and the kth of the third of the following "matrix":

$$
\begin{bmatrix}\n(23) & 4 & 7 \\
(31) & 5 & 8 \\
(12) & 6 & 9\n\end{bmatrix}
$$
\n(5.12)

using this last step we get that:

$$
W = \begin{bmatrix} x'_{11} & \cdots & x'_{1P} \\ x'_{21} & \cdots & x'_{2P} \\ \vdots & \vdots & \ddots & \vdots \\ x'_{r1} & \cdots & x'_{rP} \\ y'_{11} & \cdots & y'_{1P} \\ y'_{21} & \cdots & y'_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{2P} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{rP} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{rP} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{rP} \\ \vdots & \vdots & \vdots & \vdots \\ y'_{r1} & \cdots & y'_{rP} \\ \vdots & \vdots & \vdots & \vdots \\ y_{r1} & \cdots & y_{r2} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ y_{r1} & \cdots & y_{r2} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ y_{r1} & \cdots & y_{r2} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ y_{r1} & \cdots & y_{r2} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ y_{r1} & \cdots & y_{r2} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ y_{r1} & \cdots & y_{r2} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ y_{r1} & \cdots & y_{r3} & \cdots \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 &
$$

$$
\begin{bmatrix}\n1 & 0 & 0 \\
i_{21} & i_{22} & i_{23} \\
i_{31} & i_{32} & i_{33} \\
\vdots & \vdots & \vdots & \vdots \\
i_{F1} & i_{F12} & i_{F3} \\
0 & 1 & 0 \\
j_{21} & j_{22} & j_{23} \\
\vdots & \vdots & \vdots & \vdots \\
j_{F1} & j_{F2} & j_{F3}\n\end{bmatrix}\n\times\n\begin{bmatrix}\nX_1 & \cdots & X_P \\
Y_1 & \cdots & Y_P \\
Z_1 & \cdots & Z_P\n\end{bmatrix}
$$
\n(5.15)

This is a natural result from the relation (equation 5.11) between the α_f and β_f with i_f and j_f . Indeed, with simple manipulation of those equations, we get that:

$$
i_{f1} = \alpha_{f1} + \alpha_{f3} \cdot i_{21}
$$

\n
$$
i_{f2} = \alpha_{f1} + \alpha_{f3} \cdot i_{21}
$$

\n
$$
i_{f3} = \alpha_{f1} + \alpha_{f3} \cdot i_{21}
$$

\n
$$
j_{f1} = \beta_{f1} + \beta_{f3} \cdot i_{21}
$$

\n
$$
j_{f2} = \beta_{f1} + \beta_{f3} \cdot i_{21}
$$

\n
$$
j_{f3} = \beta_{f1} + \beta_{f3} \cdot i_{21}
$$

\n(5.16)

There is one last problem. As we see in the equation above, in the general case we need to know the orientation of the first and second camera! As a first step we can either assume that we are given this motion, or estimate it using any of the existing methods for motion estimation. The key, though, is that once we estimate shape and motion from the first two images, we can get the motion for any subsequent image without paying much! The motion comes directly as a result of the linearity constraints described in the appendix. To summarize, in the general case we manage to change the question of shape and motion estimation from many images to the question of shape and motion estimation from two images. In the general case that we don't know the first and second camera orientations the equations above become:

$$
W = \begin{bmatrix} x'_{11} & \cdots & x'_{1P} \\ x'_{21} & \cdots & x'_{2P} \\ x'_{31} & \cdots & x'_{3P} \\ x'_{11} & \cdots & x'_{1P} \\ y'_{11} & \cdots & y'_{1P} \\ y'_{21} & \cdots & y'_{2P} \\ y'_{P1} & \cdots & y'_{PP} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ \alpha_{11} & \alpha_{12} & \alpha_{13} \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \beta_{21} & \beta_{22} & \beta_{23} \\ \cdots & \cdots & \cdots \\ \beta_{P1} & \beta_{P2} & \beta_{P3} \end{bmatrix} \times \begin{bmatrix} x'_{11} & \cdots & x'_{1P} \\ y'_{11} & \cdots & y'_{1P} \\ x'_{21} & \cdots & x'_{2P} \end{bmatrix} = (x_{11} = X_{1}, y_{11} = Y_{1})
$$

\n
$$
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \beta_{21} & \beta_{22} & \beta_{23} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_{P1} & \beta_{P2} & \beta_{P3} \end{bmatrix} \times \begin{bmatrix} i_{11} & i_{12} & i_{13} \\ j_{11} & j_{12} & j_{13} \\ j_{11} & j_{12} & j_{13} \\ j_{11} & j_{12} & j_{13} \\ \vdots & \vdots & \vdots & \vdots \\ \beta_{P1} & \beta_{P2} & \beta_{P3} \end{bmatrix} \times \begin{bmatrix} X_{1} & \cdots & X_{P} \\ Y_{1} & \cdots & Y_{P} \\ Y_{1} & \cdots & Z_{P} \end{bmatrix} = (5.18)
$$

\n
$$
= \begin{bmatrix} i_{11} & i_{12} & i_{13} \\ i_{21} & i_{22} & i_{23} \\ i_{31} & i_{32} & i_{33} \\ \vdots & \vdots & \vdots & \vdots \\ i_{p1} & j_{p2}
$$

which is exactly the factorization in [29] derived in a different way using the linearity constraints between different images of an object.

5.2.3 Proposed Method for Motion Estimation with n > 2 Images

Using this theory we can suggest now a method for estimating motion when we are given a sequence of images of an object taken under orthographic projection by a camera undergoing any rigid motion. Organizing the image coordinates in matrix *W* as described above, do:

- 1. Compute the camera position (translation) by averaging the rows of matrix *W.*
- 2. Subtract the translation from the entries of *W* to get matrix *W'.*
- 3. Using any existing method estimate shape and motion for the first two images.
- 4. For every *f >* 2 find corresponding points between image *f* and images 1 and 2. Use these correspondences to estimate the coefficients α_f and β_f of the linear relations described in equation 5.7, using a least squares method to minimize the error.
- 5. Having found the linearity coefficients we can factor W' as a product $W = MS$ like in equation 5.8. However, because of noise this will not be an exact factorization, but it is a good approximation since we estimated α_f and β_f so that we minimize any error.
- 6. Using the known orientation of the first and second camera, we can write down the motion and shape matrices in the general case using equation 5.19.

So, in principle, one can get all subsequent motions by just knowing the first two motions of the camera.

5.3 Shape and Motion under Perspective Case

There are several ways to approximate the perspective case. One way is to use an approximation of the projection equations 2.1 in chapter 2. For example if we replace the ratios with their Taylor expansions we can use similar method as above in the case that we use a first order approximation.

Instead of approximating perspective projection from the beginning by replacing the projection equations as mentioned above, we can use Taylor expansion to replace the trilinearities described in the appendix. If we expand the trilinearities up to first order factors, we can use exactly the same approach described above, but this time the coefficients α_f and β_f will be different. In this case the relation between α_f , β_f and motion is not straightforward. We still know the relation between motion and the initial coefficients of the trilinearity

equations, but after doing the Taylor expansion things get more complicated. We have not studied what happens in case we use higher order approximations, since the algebra gets complicated. However, it is possible that a combination of the aforementioned approach and this one will give good results in the general perspective case.

 $\ddot{}$

Chapter 6

Conclusion and Suggestions for Further Research

6.1 Summary of the Thesis

In the main part of this thesis we designed and tested a new method for generating virtual views of an object undertaking any rigid motion. Given two images taken from known positions *A* and *B* and having the internal parameters of the camera, we showed that one can get any virtual image of the object from any position near *A* and *B* using the trilinearity constraints that bind the new image with the two real ones. As a side result of the thesis we developed a new method for calibration of the camera which we also used to estimate our camera model. We tested both methods on real images of an object as well as on computer generated images of a face. Although further tests are needed to test the robustness of the system, the results we had were encouraging. Using few example images we were able to get a continuous range of virtual images in a satisfactory wide range of views relative to the examples. The new images were realistic and gave nice 3-D effects to the user, and the degree of extrapolation was satisfactory.

In the second part of the thesis we studied the relation between the factorization method for shape and motion estimation presented in [29] and the algebraic relations between images. We presented the basic ideas for motion estimation using the linearity constraints that bind three views of the moving object in the special case of orthographic projection. We showed that shape and motion estimation from $F > 2$ images is equivalent to shape

and motion estimation from 2 images and motion estimation for the remaining ones. As a result of this relation we developed a new simple method for motion estimation from more than two images in the special case of orthographic projection. We also suggested possible extensions for the general case of perspective projection. However we did not implement the proposed method and suggestions. Further research on this approach might lead to a new system for motion estimation.

6.2 Suggestions for Future Research

One of the most important questions to be solved is the visibility problem. Although in many cases, for practical purpose, the heuristic we used is satisfying, the problem still remains for most cases. For example we still cannot detect situations where a point is visible in only one of the example images. We believe that such cases are often the reason that holes appear in the virtual image, since wrong correspondences cause the trilinear relations to break. Very little research has been done on this issue. Although the problem might be unsolvable in general, further research for better heuristics is necessary.

Several other issues need to be studied further. As mentioned in chapter 4, we did not study thoroughly the reasons behind some of the problems of our system. Summarizing, such issues for further study are problems with the camera calibration, noise in the external parameters, differences in the "performance" of the trilinearity relations and the issue of avoiding or filling the holes in the output image. In particular further research is needed for the calibration of the camera. Although the method we developed gave us satisfactory results, we believe that significant part of the noise in the output is due to the calibration stage. Moreover, it would be interesting to compare the robustness and quality of our calibration method against existing ones.

Generally the robustness of our method is still an untouched question. In particular it would be interesting to study, mostly experimentally, the output sensitivity to noise in the estimation of the external parameters of the camera. It is practically very difficult to acquire the example images in a way that we know exactly the position of the camera. So the main question is how the method deals with such noise, and more important, how we can improve in this aspect. As mentioned in chapter 4, it is an interesting question to examine the effects of noisy external parameters of our examples on the internal parameters that

our calibration method gives, and vice versa. For example it would be practically helpful if our camera calibration could "cover" possible errors in our estimation of the positions of the camera during the acquisition of the images. On the other hand an interesting idea would be to combine the system with a shape and motion estimation method like the one described in chapter 5. In this case we would not need to know at all the position of the camera when we acquire the example images. If we can have a good estimate of the motion of the camera we should still be able to use the example images.

At a different but important direction, the system developed in this thesis can be combined with one such as [8] with the long term goal of developing a complete tool that can be used for generation of images of objects undergoing any transformation - rigid as well as flexible. For example we can formally describe the process of generating a new image *Inew* for a given point $\mathbf r$ in the space of transformations as a mapping

$$
I^{new}=g(\mathbf{r};I_1,\cdots,I_n)
$$

where the other arguments of the function are the example images. The mapping *g* can be formally decomposed into $g = \psi \phi$. ψ is the transformation due to a change in viewpoint while ϕ is the transformation due to a non rigid motion of the object in the scene. When the desired image results from a camera transformation, that is a rigid object transformation, $g = \psi$ has the analytic form studied in this thesis. On the other hand, for the non-rigid transformation ϕ we can use a system such as [8].

Research on image-based rendering is still at its first stages. Future research in this area can potentially lead to significant results. We believe that the most important issues that need to be solved are the visibility problem as well as speed and memory efficiency issues. Notice that having many example images of an object means having every point of the object in multiple images. Avoiding such a memory inefficient representation is an important issue. We believe that the question of representation of the objects - ie image-based or 3-D model or something in between - is a central issue in machine vision and computer graphics. Moreover many questions will unavoidably arise from the need to combine image-based rendering techniques for objects with ones for panoramas (such as [18]) as well as with 3-D models used either for some of the objects or for parts of some objects - depending on their representation. Such hybrid systems can potentially lead on

the one hand to realistic virtual reality tools and on the other hand to better understanding of important issues in machine vision as well as our vision system, such as how we represent an object, how we deal with occlusions, or how we find correspondences between different images of an object.

 \sim

Appendix A

A.1 Trilinear Constraints Between Three Images

Like in chapter 3, suppose we are given three images I_1 , I_2 , I_3 of an object point $O =$ *(X, Y, Z)* taken with three cameras from different positions. Let 1, 2, **3** be the rows of the first camera matrix, 4, 5, 6 be the rows of the second and *7,* 8, 9 the rows of the third. Let (x, y) , (x', y') , (x'', y'') be the image coordinates of the projection of O in the three images respectively. We assume **O** is visible in all three images, so its three projections are Euclidean points (their third projective coordinate can be set to 1). Then the 9 trilinear equation that hold between the image coordinates are of the form:

$$
THS_{i,j} = x(u'_i u''_j T_{133} - u''_j T_{1i3} - u'_i T_{13j} + T_{1ij} +
$$

+ $y(u'_i u''_j T_{133} - u''_j T_{1i3} - u'_i T_{13j} + T_{1ij} +$
+ $(u'_i u''_j T_{133} - u''_j T_{1i3} - u'_i T_{13j} + T_{1ij} +$
 (A.1)

for *i*, *j* in 1, 2, 3, where $u'_1 = x'$, $u'_2 = y'$, $u'_3 = 1$, $u''_1 = x''$, $u''_2 = y''$, $u'_3 = 1$, and T_{ijk} is the determinant of the matrix obtained by choosing the *ith* element of the first column, the *jth* element of the second, and the kth of the third of the following matrix:

$$
\begin{bmatrix} 2,3 & 4 & 7 \\ 3,1 & 5 & 8 \\ 1,2 & 6 & 9 \end{bmatrix}
$$
 (A.2)

So, for example, the equations that we use in chapter 3 are derived for $i = 1$, $j = 1$ and for $i = 2$, $j = 2$. Indeed, substituting *i* and *j* we get:

$$
[2369]x''xx' - [2349]x''x + [3169]x''yx' - [3149]x''y + [1269]x''x' - [1249]x'' -
$$

-
$$
[2367]xx' + [2347]x - [3167]yx' + [3147]y - [1267]x' + [1247] = 0
$$
 (A.3)

$$
[2369]y''xy' - [2359]y''x + [3169]y''yy' - [3159]y''y + [1269]y''y' - [1259]y'' -
$$

-
$$
[2368]xy' + [2358]x - [3168]yy' + [3158]y - [1268]y' + [1258] = 0
$$
\n(A.4)

These are the equations as shown in [11].

A.1.1 The Case of Orthographic Projection

Using the formulation above, we can now see why in the special case of orthographic projection the trilinearity constraints become linearities. In the case of orthographic projection the camera matrices, as we show in chapter 2, have a special form: the third row is always **[0001].** Taking this into account we have that, for example for equation A.3, the coefficients become:

$$
[2369] = [2349] = [3169] = [3149] = [1269] = [2367] = [3167] = 0
$$
(A.5)

since all these coefficients are determinants of matrices that have two equal rows (since rows **3,** 6, 9 are all [0001]). The remaining coefficients can be non-zero. Notice that the only nonzero coefficients are the ones of the first or zero order terms, which makes the trilinearity into a linear equation. Similarly all the other trilinearity equations become linear.

Bibliography

- [1] **S.** Avidan and **A.** Shashua. Novel view synthesis in tensor space. CIS Technical Report 9602, Technion University, Israel, January 1996.
- [2] J.R. Bergen and R. Hingorani. Hierarchical motion-based frame rate conversion. Technical report, David Sarnoff Research Center, Princeton, New Jersey, April 1990.
- [3] D. Beymer, A. Shashua, and T. Poggio. Example based image analysis and synthesis. A.I. Memo No. 1431, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1993.
- [4] Shenchang Eric Chen. Quicktime vr an image-based approach to virtual environment navigation. In *SIGGRAPH '95 Proceedings,* pages 29-37, Los Angeles, CA, August 1995.
- [5] Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. In *SIGGRAPH '93 Proceedings,* pages 279-288, Anaheim, CA, August 1993.
- [6] J. Costeira and T. Kanade. A multi-body factorization method for motion analysis. *Proceedings of the International Conference on Computer Vision,* pages 1071-1076, Cambridge, MA, June 1995.
- [7] R. Deriche and Z. Zhang and Q.-T. Luong and 0. Faugeras. Robust recovery of the epipolar geometry for an uncalibrated stereo rig. *Lecture Notes in Computer Science, Vol.800, Computer Vision* - *ECCV '94*
- [8] T. Ezzat. Example-Based Analysis and Synthesis for Images of Human Faces. Master Thesis, Massachusetts Institute of Technology, February 1996.
- [9] O. Faugeras. Three-dimensional computer vision: a geometric viewpoint. MIT Press, **1993.**
- [10] O. Faugeras, Q.-T. Luong and S.J. Maynank. Camera self-calibration: theory and experiments. *Proceedings European Conference on Computer Vision,* pages 321-334, Santa-Margerita, Italy, 1992.
- [11] O. Faugeras and B. Mourrain. On the geometry and algebra of the point and line correspondences between N images. *Proceedings of the International Conference on Computer Vision,* pages 951-956, Cambridge, MA, June 1995.
- [12] 0. Faugeras and L. Robert. What can two images tell us about a third one? *Proceedings of the European Conference on Computer Vision,* pages 485-492, Stockholm, Sweden, May 1994.
- [13] R. Hartley. Lines and points in three views a unified approach. *Proc. Image Understanding Workshop,* Monterey, California, November 1994.
- [14] R. Hartley. In defence of the 8-point algorithm. *Proceedings of the International Conference on Computer Vision,* pages 1064-1070., Cambridge, MA, June 1995.
- [15] B. K. P. Horn and B. G. Schunck. Determining optical flow. *Artificial Intelligence,* 17:185-203, 1981.
- [16] K. Kanatani. Computational Projective Geometry. *Computer Vision, Graphics and Image Processing. Image Understanding,* 54(3), 1991.
- [17] S. Laveau and O. Faugeras. 3-d scene representation as a collection of images and fundamental matrices. Technical Report Technical Report No. 2205, INRIA, 1994.
- [18] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering system. In *SIGGRAPH '95 Proceedings,* Los Angeles, CA, 1995.
- [19] Tomaso Poggio and Roberto Brunelli. A novel approach to graphics. A.I. Memo No. 1354, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1992.
- [20] W.H. Press, B.P. Flannery, S.A. Teukolski and W.T. Vetterling. Numerical recipes in C. Cambridge University Press, Cambridge, Massachusetts, pp.309-317, 1988.
- [21] Steven M. Seitz and Charles R. Dyers. Physically-valid view synthesis by image interpolation. *IEEE Workshop on Representation of Visual Scenes,* Boston, USA, June 1995.
- [22] A. Shashua. Algebraic functions for recognition. *MIT Artificial Intelligence Laboratory, Memo 1452,* Cambridge, MA 1994.
- [23] A. Shashua. Trilinearity in visual recognition by alignment. *Lecture Notes in Computer Science, Vol.800, Computer Vision* - *ECCV '94*
- [24] A. Shashua. Algebraic functions for recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence,* 17(8):779-789, 1995.
- [25] G. Stein. Internal camera calibration using rotation and geometric shapes. *MIT Artificial Intelligence Laboratory, Technical Report 1426,* Cambridge, MA 1993.
- [26] Demetri Terzopoulos and Keith Waters. Analysis of facial images using physical and anatomical models. In *Proceedings of the International Conference on Computer Vision,* pages 727-732, Osaka, Japan, December 1990.
- [27] C. Poelman and T. Kanade. A paraperspective factorization method for shape and motion recovery. *Proceedings European Conference on Computer Vision,* 1994.
- [28] T. Poggio and T. Vetter. Recognition and structure from one 2D model view: observations on prototypes, object classes and symmetries. *Artificial Intelligence Memo 1347,* Massachusetts Institute of Techology, February 1992.
- [29] C. Tomasi and T. Kanade. Shape and motion from image streams: a factorization method. *Technical Report CMU-CS-91-172,* Carnegie Mellon University, Pittsburgh, PA, September 1991.
- [30] Shimon Ullman and Ronen Basri. Recognition by linear combinations of models. *IEEE Transactions on Pattern Analysis and Machine Intelligence,* 13(10):992-1006, 1991.
- [31] Tomáš Werner, Roger David Hersch, and Václav Hlaváč. Rendering real-world objects using view interpolation. In *Proceedings of the International Conference on Computer Vision,* Cambridge, MA, June 1995.