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Abstract

In recent years, functional magnetic resonance imaging (fMRI) has emerged as a powerful
technique for localizing human functional brain activity non-invasively. Seminal studies
by Woolsey et al. [58], Penfield et al. [38,39], Merzenich et al. [31], and Sur et al. [54]
have shown that there exists a somatotopic map in the primary somatosensory cortex of
humans and lower primates, and have described many of its organizing principles. Such
studies, however, were done with macro and microelectrodes, which directly recorded
electrical activity in the cerebral cortex. FMRI techniques measure cortical activation
indirectly by non-invasively monitoring the regional cerebral blood flow (rCBF) within
the cortex and overlaying this map on anatomical scans for localization. We report on
experiments performed to better understand the fMRI signal evoked by somatosensory
stimulation. We attempt to map somatotopically the palm of the hand, the volar surface of
the forearm, and the glabrous surfaces of the thumb and forefinger. Further, we report on
lateral inhibition in the somatosensory representation for the palm of the hand and the
volar surface of the forearm. We propose empirical models to describe this lateral inhibi-
tion and discuss its potential neural and hemodynamic underpinnings.

Thesis Supervisor: Suzanne Corkin
Title: Professor of Behavioral Neuroscience
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Chapter 1

Introduction

The somatosensory cerebral map plays a vital role in human perception [8]. A method for

acquiring a precise map of the human somatosensensory cortex non-invasively and repeat-

ably would be tremendously useful to our understanding of somatosensory function. With

the advent of functional magnetic resonance imaging (fMRI), this achievement may be

possible. No detailed study of the somatotopic mapping capabilities of fMRI has been

published. Because fMRI potentially allows for a non-invasive, repeatable study of the

mapping of the cortex, many medical afflictions related to the mapping of somatosensory

cortex (e.g. phantom pain, tumors) can be addressed and studied with this technique.

The fMRI technique measures metabolic changes associated with neuronal activity; there-

fore, a precise study of this metabolic signal and its connection to previously elaborated

cortical maps is necessary. The somatosensory system has been studied extensively with a

number of techniques, from macro and microelectrode electrical recordings to optical and



PET imaging. Through each method, our understanding of the relation between the corti-

cal map and human perception has deepened as principles of organization have been

revealed.

In this study, we examine fMRI activity in the postcentral gyrus during somatosensory

stimulation. We report on the characteristics of this signal and present empirical models to

explain some of the organizing principles of the somatosensory cortex as it is uncovered

through the fMRI signal. We show that detailed somatotopic mapping of body regions are

not possible with our fMRI methods. However, we show that we are able to approach the

established human somatotopic map (Penfield et al., [39]) with precise localization of the

hand representation and precise localization of the range of the forearm, thumb, and fore-

finger representations. Furthermore, we show that purely excitatory models of hand and

forearm representation do not fully describe the response of the fMRI signal to hand and

forearm somatosensory stimulation (Gehi et al., [18]). Rather, models incorporating lat-

eral inhibition must be employed.



Chapter 2

Background

2.1 Basic Anatomy

Perceptions acquired through our sensory systems form the basis of our knowledge of the

world. Perception begins in receptor cells that are sensitive to particular stimuli. From

these receptor cells, the sensory pathways are linked by neurons from the periphery

through intermediate stages (e.g., the thalamus) and to the cerebral cortex. The soma-

tosensory system, in particular, mediates the sensations of touch, limb proprioception,

temperature, and pain. Somatosensory information is relayed from the periphery recep-

tors, through the spinal cord to the thalamus, and to the cerebral cortex by means of two

somatosensory ascending pathways: the dorsal column-medial lemniscal system which

mediates cutaneous touch, vibration, and limb proprioception, and the anterolateral system

which mediates pain and cutaneous temperature [24].



The dorsal column-medial lemniscal system pathway ascends ipsilaterally in the spinal

cord. The axons of this dorsal column ascend to the caudal medulla of the brain stem into

the ipsilateral hemisphere and synapse on the cells of the dorsal column nuclei. From

there, the medial lemniscus tract decussates and projects to the ventral posterior nucleus of

the thalamus. Neurons in the ventral posterior nucleus project through the internal capsule

to the primary somatosensory cortex (SI) (Figure 1), which constitutes the major portion

of the postcentral gyrus. The secondary somatosensory cortex (SII) that is lateral to the

primary somatosensory cortex, lying in the upper bank of the lateral sulcus (sylvian fis-

sure), receives input primarily from SI (Figure 2) [22].

Perhaps the most striking feature of somatosensory systems is the orderly manner in

which the peripheral receptor sheet (the body surface) is represented in the spinal cord, the

thalamus, and finally the cerebral cortex. Various portions of the peripheral receptor sheet

are represented such that contiguous surfaces in the periphery are represented by neigh-

boring neurons in the central nervous system. This phenomenon is known as topographic

organization; in the somatosensory system, this topography is known as somatotopy.



Figure 1. Diagram of the location of SI and SII on the lateral surface of the cerebral cortex
[24].
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Figure 2. Diagram of the dorsal column-medial lemniscal and anterolateral systems show-
ing the ascent of somatosensory input from the receptor to SI and SII [24].
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2.2 First Evidence of Maps

In a landmark study by Woolsey, Marshall, and Bard [reviewed in 58], important features

of the overall organization of the postcentral parietal cortex (SI) in macaque monkeys

were found by recording evoked potentials from the surface of the brain. Woolsey et al.

studied which portions of the body surface given a tactile or punctate stimulus, were capa-

ble of evoking responses at recording sites of the brain. The responses were detected with

macroelectrodes placed in a closely spaced grid along the postcentral gyrus. By removing

parts of the brain, they were able to explore even those cortical areas buried within the

central sulcus that are also part of SI. These studies led to the following conclusions:

First, the region of the postcentral gyrus activated by tactile stimuli include Brodmann

areas 1, 3a, 3b, and 2. Second, the cortex is activated almost exclusively contralaterally.

Third, there is an orderly representation of body parts within the somatosensory cortex

with a medial-to-lateral sequence corresponding to tail-to-tongue of the body surface.

Fourth, the cortical organization does not exactly reflect the body surface in that there are

certain discontinuities in the cortical map. Fifth, the skin surfaces with the greatest tactile

sensitivity have the greatest representation in the cortex [reviewed in 54].

2.3 Organizational Principles of Somatosensory Maps

A detailed study by Merzenich, Kaas, Sur, and Lin [31] added greater specificity to our

understanding of the primate somatosensory representation in the postcentral gyrus by

showing that the classical primary somatosensory region (SI) including Brodmann areas 1,



3a, 3b, and 2 of cerebral cortex contained as many as four separate representations of the

body rather than one (Figure 1). This study consisted of an analysis of receptive field

locations for extensive arrays of closely placed microelectrode recording sites in the pari-

etal cortex of owl monkeys. With these techniques, the researchers were able to record

from single neurons. Merzenich et al.'s study led to several important conclusions: First,

the extensive mapping of the SI region of the owl monkey showed unequivocal evidence

that there were at least two cutaneous representations of the body surface in owl monkeys,

one in Brodmann area 1 and one in Brodmann area 3b. This study showed that the con-

cept of a single sensory homunculus in SI, a specific representation of body regions in

localized cerebral cortex, must be abandoned or placed in serious doubt for primates. Sec-

ond, Brodmann area 3a is outside this cutaneous sensory strip, and there is an orderly rep-

resentation of deep body structures probably coextensive with Brodmann area 2. Third,

what previously had been described as a sensory homunculus did not represent the cutane-

ous representations found. The SI representation is better described as composites of sub-

units, each of which is internally somatotopic. Within each sector, progressions of

recording sites correspond to progressions of receptive fields. Thus, cortical representa-

tions are organized to favor continuities in somatotopy. Disruptions, to a large extent, are

a simple consequence of the impossibility of representing the three-dimensional skin sur-

face on the two-dimensional cortex surface without splits. Further, the problem of pre-

serving continuity in representation is increased when body representations become

distorted as a consequence of greater or less sensory sensitivity [29, 52].

Sur, Merzenich, and Kaas [54] quantified the observation that receptive field size is



inversely proportional to magnification, and they delineated discontinuities in body repre-

sentation. Again experimenting on owl monkeys, Sur et al., within the cortical, contralat-

eral representation of body regions in the postcentral gyms, derived receptive fields at

many hundreds of cortical sites. The representations of the body surface in cortical areas

3b and 1 were reconstructed by demarcating the regions of cortex that received cutaneous

input from given body parts. The cortical magnification factor for any skin surface was

obtained by dividing its cortical representation by its skin surface area. Sur et al. found

that regions with high cortical magnification, such as the glabrous hand or foot of the owl

monkey, cannot maintain the same topography with the rest of the forelimb or hindlimb

that exists on the skin. Thus, there are numerous discontinuities in receptive field progres-

sion. However, regions with more equal magnification factors, such as the forearm, arm,

trunk, or leg, may maintain topography across cortical regions of representation. But per-

haps the most important observation of the study was that the smaller the area of cortex

devoted to a given region or subregion of the body surface, the larger the receptive fields

on that part of the body. Further, the relation found between field size and inverse magni-

fication was found to be a linear one [52]. Thus, definite organizational principles of

somatosensory cortex were methodically laid out, suggesting that the search for more

extensive constants among the representations of primate somatosensory cortex may be

fruitful.



Chapter 3

Evidence of the Importance of Maps for Human Perception

3.1 The Somatosensory Homunculus

A landmark study by Penfield and Rasmussen [39] was the first detailed study of the

somatosensory mapping of the human cerebral cortex. They described detailed cortical

stimulation protocols collected during operations for focal epilepsy in conscious patients.

The surgical problem was to remove epileptogenic tissue without damaging the precentral

and postcentral gyri, thereby avoiding paralysis and sensory loss. To this end, motor and

sensory areas were mapped out carefully by stimulation. A bipolar electrode with the

points separated approximately 3 mm was used for stimulation, and the sensation was

described by the awake patient. Sensory responses were elicited primarily from the post-

central cortex. Penfield and Rasmussen's mapping conclusions regarding the somatosen-

sory representation of man in the postcentral gyrus are summarized in the somatosensory

homunculus, derived by averaging their results across subject hemispheres (Figure 3).



This representation has come to be the established human somatosensory homunculus, the

localization of human body representations to specific areas of SI. The right side of the

figurine laid upon the cross section of the postcentral gyrus of the left hemisphere was

drawn in proportion to the extent of cortex devoted to it. The length of the underlying

block lines indicated more precisely the comparative extent of each body representation

[38, 39]. This study revealed a link between human somatic perception and the gross

mapping of the somatosensory cortex by demonstrating the correlation between locus of

cortical stimulation and locus of body sensation.



Figure 3. The Penfield somatosensory homunculus derived from bipolar electrode stimu-
lation of the postcentral gyrus [39].
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3.2 Effect of Parietal-Lobe Lesions on Somatosensory Thresholds

In a study conducted by Corkin, Milner, and Rasmussen [8], patients at the Montreal Neu-

rological Institute undergoing surgery for the relief of focal epilepsy, were tested for pres-

sure sensitivity, two-point discrimination, point localization, and position sense of the

hand. These tests are indicative of the sensitivity of the somesthetic acuity of body

regions. For instance, the tip of the forefinger, a particularly sensitive region, has a much

lower threshold for pressure sensitivity than the forearm, a relatively insensitive region.

The findings of Corkin et al. obtained from patients with well-defined unilateral cortical

excisions were unequivocal in reaffirming the role of the postcentral gyrus in discrimina-

tive sensitivity. Lesions that included the postcentral hand area were associated with

severe and lasting sensory loss on the contralateral hand. Further, parietal-lobe lesions

that were thought to spare the hand area of the postcentral gyrus produced either transient

sensory defects of the contralateral hand or none at all. Importantly, Corkin et al. found

that a lesion in the postcentral gyrus that is relatively small in total extent can produce a

profound and lasting somesthetic defect of the contralateral hand while a much larger pos-

terior parietal lesion does not. This study suggested that it is the locus, and not the

amount, of parietal cortex that is the important parameter in somatosensory perception.

Perceptual deficits in a given body region arose from lesions to the corresponding region

of the SI map. Again, the spatial organization of the SI map was intimately tied to percep-

tion [7, 8, 9].



3.3 Plasticity of Cortical Maps

Merzenich, Kaas, Wall, Sur, Nelson, and Felleman [32] described a remarkable plasticity

of primate somatosensory cortical maps. Detailed maps of the hand surface representation

in areas 3b and 1 of squirrel and owl monkeys were derived before, immediately after, and

at subsequent intervals following median nerve section. The studies revealed that the

details of the cortical map structure in areas 3b and 1 are dynamically maintained. It was

found that while large cortical sectors were initially silenced by median nerve section, rep-

resentations of bordering glabrous skin surfaces progressively expanded to larger and

larger portions of the cortical area previously devoted to the median nerve. By 22 days,

reoccupation of the former median nerve area was complete. As predicted by Sur et al.

(1980), concomitant with changes in representational magnification over time were

inverse changes in receptive field sizes [32].

Correlated to this neural reorganization of the somatosensory system of monkeys is the

perceptual phenomenon of adult humans known as the phantom perception, the vivid per-

ception derived from amputated body parts. Ramachandran et al. [43] showed that upper

limb amputees had referred sensations in their phantom body part following stimuli that

were delivered to the lower face on the same side of the amputation or to a region proxi-

mal to the stump of the amputated body part. The distribution of referred sensations sug-

gested that a lateral-to-medial and a medial-to-lateral remapping of the deafferented

somatosensory cortex had occurred [43]. Changes in the organization of maps observed

by Merzenich et al. were shown to be correlated with the pattern of referred sensations in



amputees. Again, the mapping of the primary somatosensory cortex was a vital factor in

the maintenance of somesthetic perception in humans.



Chapter 4

Toward a Non-Invasive Mapping of Human

Somatosensory Cortex

Given the relation between map organization of the cerebral cortex and human somatosen-

sory perception, there is a great need for a non-invasive procedure for documenting and

monitoring the map. The need was met in the technique of functional magnetic resonance

imaging (fMRI). The use of fMRI for monitoring brain activity stems from the studies

correlating brain activity to regional cerebral blood oxygenation and blood flow (rCBF).

The measurement of rCBF with fMRI has become an important tool for identifying brain

areas associated with specific functions in humans in vivo.

4.1 Connection between rCBF and Neuronal Activity

Under normal conditions, the brain needs glucose as its source of energy. However,



because there is only minor glycogen storage in the human brain, a permanent supply of

glucose via the blood is necessary. Such reasoning points to a connection between blood

flow to the brain and neuronal activity. Studies done by Sokoloff et al. [reviewed in 22]

confirmed this connection using 2-deoxy-glucose. By monitoring the accumulation of 2-

deoxy-glucose, which cannot be catabolized as glucose but uses the same carrier system as

glucose to enter the brain, Sokoloff et al. demonstrated a close correlation between rCBF

and glucose consumption in the rat brain. They further demonstrated that changes in

rCBF followed changes in neuronal activity by a few seconds. Leniger-Follert and Hoss-

mann [reviewed in 22] found that after direct electrical stimulation of the sensorimotor

cortex of the cat, blood flow increased within 1 sec and persisted until the end of stimula-

tion. Thus, increases in neuronal activity led to increases in rCBF. However, whether the

glucose was needed in the perikaryon, the axon, or the synapse of the neuron was unclear.

A study done by Duncan et al. [reviewed in 22] of the cerebral metabolism at a cellular

level showed that 2-deoxy-glucose uptake occurred not in cell bodies, but in areas rich in

synapses, dendrites, and axons. Erulkar [reviewed in 22] showed that the glucose utiliza-

tion is coupled mainly to presynaptic, not postsynaptic, neuronal activity. These studies

suggested that presynaptic activity in cortical regions should increase neuronal glucose

utilization and consequently rCBF [22], though they do not distinguish between excitatory

and inhibitory presynaptic activity (Moore et al., [34]).

4.2 Localizing Functional Brain Activity Using fMRI

FMRI is a tool used to study changes in rCBF. When doing an fMRI scan, the subject is



placed into a strong, homogenous magnetic field, 1.5-4.0 Tesla (T). Consequently, various

atomic nuclei, particularly the proton nuclei of hydrogen atoms, align themselves with this

external field and reach a thermal equilibrium. The proton nuclei precess about the

applied field at a characteristic frequency although at a random phase with respect to one

another. The application of a brief radio frequency (rf) electromagnetic pulse induces a

transient coherence to the spin magnetization, resulting in a brief rf signal. The rate at

which the radio signal, also known as the magnetic resonance (MR) signal, decays (T2*)

depends upon a variety of physical factors of the medium. The presence of tissues with

differing magnetizability causes local variations in the signal loss, allowing for the forma-

tion of a magnetic resonance anatomical image. In a study by Thulborn [reviewed in 3], it

was demonstrated that the signal decay rate of deoxyhemoglobin is more rapid than that of

oxyhemoglobin. Ogawa and Lee [reviewed in 3] subsequently reported that by monitor-

ing T2*, cortical blood vessels became more visible as blood oxygen was lowered. This

effect became known as the blood oxygenation-level dependent (BOLD) method. Turner

[reviewed in 3] demonstrated that with high-speed, echo-planar imaging, it was possible

to observe the timecourse of these oxygenation changes. Thus using blood as an endoge-

nous contrasting agent, it was possible to observe with rapid, functional MRI methods the

transient changes in the MR signal that accompany the hemodynamic events of brain

activity. FMRI allowed the non-invasive observation of the hemodynamic changes

accompanying neuronal activity. Kwong et al. [reviewed in 3] found that variations in the

prolonged rate at which the MR signal approaches equilibrium, Tl, could also be used to

observe the increased flow of blood into an imaging volume. Further, it was found that

while T2* probably reflects the signal changes in the venous system, Tl is more biased



toward the arterial system, giving a truer account of neuronal activity. The hemodynami-

cally induced signal changes at 2-5% were small, but with adequate signal-to-noise ratios

in the MR images, these changes were clearly visible [3].



Chapter 5

Previous Somatosensory or Motor Studies Using

fMRI or PET

There have been no detailed fMRI studies of primary somatosensory cortex of humans.

This review describes PET and fMRI studies of primary somatosensory and motor cortex,

having similar mapping properties to primary somatosensory cortex. PET, like fMRI,

measures rCBF, an index of neuronal activity in primary somatosensory and motor cortex.

5.1 Somatotopic Mapping of Human Motor Cortex with PET

As shown in humans by Penfield et al. [38] in the study of epileptic patients, the human

motor cortex, primarily occupying the precentral gyrus, is also somatotopically organized.

Grafton et al. [19] conducted a PET study of the motor somatotopy of humans. In this

study, several images of rCBF were obtained using PET in 12 normal subjects while they



performed a set of motor tracking tasks. Subjects were presented with a randomly mov-

ing, half-centimeter target displayed on a 13-in video monitor. In a control experiment,

subjects followed the target with their eyes. In subsequent experiments, subjects followed

the target under several conditions: with the index finger, allowing rotation only of the

axis about the first metacarpophalangeal joint; with the hand, allowing rotation only at the

shoulder joint; with the great toe; and with the tongue extended. The investigators mea-

sured the site of maximal activation in primary motor cortex and the peak percentage

increase of rCBF, and then mapped the point maxima for each stimulation onto an MRI-

generated coronal section. All subjects demonstrated focal increases in rCBF that fol-

lowed the classic somatotopic representation of the motor cortex as defined by Penfield et

al. In a similar study Grafton et al. [19] documented within-arm somatotopy in the human

motor cortex with PET. Six subjects tracked a target, rotating only about the first metacar-

pophalangeal joint, the wrist, the elbow, or the shoulder. Again, maxima determined

whether there was a consistent homuncular pattern. Grafton et al. found that the different

responses in the motor cortex formed a well-defined homuncular representation, with the

finger movements most inferolateral and shoulder movements most superior, in accor-

dance with the established Penfield et al. homunculus. However, the "approximate area of

the rCBF responses for each task overlapped extensively" [19].

5.2 Somatotopic Mapping of Human Motor Cortex with fMRI

A seminal study done by Kwong et al. [28] first reported rCBF changes observable with

fMRI without an exogenous contrasting agent. Seven normal human subjects performed



visual and motor tasks to localize signal intensity changes. To visualize these changes, the

investigators used a stimulation paradigm alternating between resting and stimulated

states. Regions of cortical activity could then be revealed by magnitude subtraction of

averaged baseline images from all subsequent activation images. The primary visual cor-

tex (V1) was evaluated using flash photic stimulation. Image analysis revealed that the

temporal response of VI signal intensity changes was 4.4 sec delayed from activation. A

similar subtraction and time series analysis was performed during a hand squeezing, motor

activating task. The activated region corresponded to the expected homuncular region

within the primary motor cortex. The temporal response of the motor task was similar to

that of the visual task. All analyses were done on a single coronal or oblique coronal

image that contained the respective motor or visual cortex [28].

Kim et al. [27] studied human motor cortical activity using a 4T whole-body MRI system.

They instructed 6 human subjects to make repetitive opposing thumb and forefinger

movements in three experimental conditions: with the right hand, left hand, and both

hands. They calculated the difference between averaged baseline and averaged task-

induced image intensities, and compared the baseline and activation conditions with a t-

test (2<.0001). They then overlaid all pixels with statistically significant activation on an

anatomical map. All subjects showed localized activation in the lateral region of the

motor cortex. Kim et al. found the expected somatotopy of activation, though the area of

motor cortex activated in the task was smaller than the area activated in electrical stimula-

tion studies (Penfield et al. [39]) [27]. This effect, however, may have been due to the

stringent threshold used in the experiment.



Rao et al. [44, 45] conducted a human motor cortex study on 8 subjects using a 1.5T MRI

scanner. Again the paradigm consisted of multiple periods of baseline alternating with

periods of muscle activation. The activation tasks required self-paced repetitive move-

ments of the fingers, elbow, and toes on the subject's right, dominant side. The finger and

toe movements consisted of repetitive flexion and extension of the metacarpophalangeal

joints, except the thumb and great toe. The arm movements consisted of flexion and

extension of approximately 250 at the elbow with the shoulder at a constant approximately

200 flex. Rao et al. found that movements of the toes produced signal changes in the left

motor cortex that were more medial than those produced by finger movements, deriving

again somatotopy in accordance with the established motor homunculus. Importantly,

Rao et al. found that there was little or no spatial overlap observed between the activation

sites for the toe and finger movements. Signal intensity changes for the elbow, however,

situated between that of the fingers and toes, overlapped with the changes observed with

the finger movements [44, 45].

5.3 Somatotopic Mapping of Human Somatosensory Cortex with PET

Roland and Seitz [47] measured activity in the human somatosensory cortex using PET.

They stimulated 10 subjects with 3 stimulation paradigms in 3 experiments. In one exper-

iment, subjects were passively stimulated by vibrating the hand. In a haptic condition,

subjects actively explored the shape of blocks with the hand. In the third experiment, sub-

jects opposed the thumb and forefinger at a constant frequency. Brain activation measured



by PET in the Roland and Seitz study was defined to be in any area encompassing at least

three uncorrelated pixels and having a spot for which the change in rCBF between a base-

line, control experiment and the stimulation experiment was larger than 5.0 mL. All three

tasks produced SI activity in the hand area of approximately similar magnitude and loca-

tion. Only passive vibration activated SII selectively [47].

5.4 Somatotopic Mapping of the Human Somatosensory Cortex with fMRI

Fried et al. [14] conducted an fMRI study of the entire Rolandic cortex, comprising the

somatosensory and motor cortex. They asked 9 subjects to perform a motor activation

task, consisting of repetitive flexion and extension of the toes of the dominant foot for the

duration of the scan. A baseline, resting scan of equivalent duration was compared with

the experimental condition. Fried et al. found that the most prominent changes in signal

intensity occurred in regions known to represent the lower extremity in primary motor and

somatosensory cortices. During the prolonged motor stimulation, Fried et al. found a

decline in the MR signal, probably due to an increase in the deoxyhemoglobin content

during conditions of sustained activity. Fried et al. warned that the temporal dynamics of

the MR signal should be considered in analyzing functional scanning procedures. The

delivery time and nature of the stimulus impose important effects on neuronal habituation

as well as on changes in blood flow and metabolism [14].



Chapter 6

Methods and Approach

6.1 Experiment

The following experiments were performed with two goals: first, to study the somatotopic

mapping of the palm of the hand, the volar surface of the forearm, and the glabrous sur-

face of the thumb and forefinger with fMRI, and second, to document the detailed organi-

zation of this representation in the palm and volar forearm.

6.1.1 Subjects

Five normal, right-handed subjects (4 female, 1 male; ages 21 to 25) participated in the

fMRI experiments. The subjects will be known as Subjecti, Subject2, Subject3, Subject4,

and SubjectS, numbered in chronological order of experiment date. Subject2 had an ado-



lescent hand surgery to remove a swollen, painful nerve ganglion in the back of the left

hand, immediately above the wrist joint. However, Subject2 reported no loss of sensation

following the surgery and is included in this study. Subject3 had suffered a torn ligament

in the left ring finger prior to the scan, but, the experimental stimulus did not contact this

area of the hand. All other subjects reported no aberrations of the stimulated regions or of

the nervous system.

6.1.2 Experimental Apparatus

All fMRI experiments were performed at the MGH-NMR Center in Charlestown, MA,

using a 1.5 T General Electric Signa, MRI scanner modified by Advanced NMR Systems.

A full head coil (as opposed to a surface coil) allowed bilateral acquisitions to be made.

High-speed, echo-planar MRI data were taken with a TR of 2500, a TE of 80, and 10 con-

tiguous oblique coronal slices, each 7 mm thick, giving 96 images per slice for a 4 min

scan. After sagittal localizer MRI images were acquired, we oriented the angle of the

slices, so that they followed the postero-to-anterolateral progression of the postcentral

gyrus (Figure 1). Oblique coronal slices aided in the subsequent analysis because the

entire postcentral gyrus would often be contained in three or four slices. The resolution of

the coronal slices was 3x3 mm2 per pixel of image. Figure 4 shows an example of the ori-

entation of the oblique coronal slices for a single subject.

Each subject received somatosensory stimulation through repeated stimulation with a von

Frey hair (gauge 15, loglo mg = 5.88) at approximately 3-5 Hz. The von Frey hair gave a



punctilious stimulus of a consistent pressure. This point stimulus should activate cutane-

ous receptors, giving activation primarily in areas 1 and 3b of SI.



Figure 4. Oblique coronal slices through the parietal cerebral cortex of Subject4. The 6
slices are oriented at an angle along that of the cingulate sulcus, completely encapsulate SI
(see Figure 1).



Oblique Coronal Slices through the Parietal Cerebral Cortex



6.1.3 Imaging Paradigms

A motor stimulation paradigm was introduced into the experimental procedures. Similar

to Kwong et al. [28], Grafton et al. [19], and Rao et al. [44, 45], the 4 min scanning time

consisted of a series of alternating activation and baseline conditions. Prior to entering the

scanner, subjects were told that during the activation epoch, they should constrict their

hand as if squeezing a rubber ball, but that their fingers should not contact the hand or

each other. In this manner, the squeezing motion should activate the primary motor cortex

in the precentral gyms. All paradigms were administered bilaterally. Figure 5 diagrams

the motor stimulation paradigms.

The sensory stimulation paradigms were also designed with alternating stimulation and

baseline. The hand/forearm paradigms used stimulation of the hand, forearm, and simul-

taneously hand and forearm. The thumb/forefinger paradigms used stimulation of the gla-

brous surface of the thumb, the glabrous surface of the forefinger, and simultaneously

thumb and forefinger. All paradigms were performed bilaterally. For this study, only sin-

gle area stimulations were analyzed (e.g., hand stimulation, forearm stimulation, but not

simultaneous hand and forearm stimulation). Figure 5 shows diagrams of the hand/fore-

arm and thumb/forefinger stimulation paradigms. The order of stimulation within the sen-

sory stimulation paradigms were balanced across the 4 min scan to thwart drift in rCBF

and neuronal habituation from corrupting the fMRI signal (Figure 5). Table 1 summarizes

the experiments performed with each subject:



Table 1: fMRI Experiments Performed

Number of Areas of Length of
Subject Scans Stimulation Epochs

(sec)

Subjectl 4 hand/arm 30

2 thumb/forefinger 30

Subject2 4 hand/arm 20

2 thumb/forefinger 20

Subject3 2 hand/arm 20

2 thumb/forefinger 20

Subject4 2 hand/arm 20

2 thumb/forefinger 20

Subject5 2 hand/arm 20

2 thumb/forefinger 20



Figure 5. Diagram of motor, hand/forearm, and thumb/forefinger stimulation paradigms
for all subjects.
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6.2 Analysis

6.2.1 Identification of the Postcentral Gyrus

To analyze the functional data acquired from the fMRI scans, it was first necessary to

identify the postcentral gyrus in the 10 oblique coronal slices for each subject. Due to

variation in the sulci and gyri between subjects, the location of the postcentral gyrus in

oblique coronal sections was inconsistent. There were, however, a number of techniques

that one could use to identify and verify the location of the postcentral gyrus.

As previously discussed, the postcentral gyrus is located posterior to the central sulcus and

anterior to the postcentral sulcus (Figure 1). It was virtually impossible to anatomically

identify these sulci directly from the high resolution anatomical MRI images of the

oblique coronal slices. To locate these sulci, we resliced the high resolution scans of the

brain in three planes of section - coronal, sagittal, and axial. Once the brain could be

viewed from all three perspectives, it was possible to identify with confidence the progres-

sion of the central, precentral, and postcentral sulci. This procedure was done by begin-

ning on the most dorsal axial sections and progressing ventrally through the brain.

Eventually a "T" crossing of the superior frontal sulcus with the precentral sulcus became

evident. The central and postcentral sulci were identified as the two sulci immediately

posterior to the precentral sulcus because the precentral, central, and postcentral sulci fol-

low roughly parallel, medial-to-lateral and posterior-to-anterior paths. Once these sulci

were identified, the precentral and postcentral gyri were localized on the high resolution



oblique coronal slices.

We also analyzed motor activation as a further verification of the location of the precentral

and postcentral gyri. As demonstrated by Kwong et al. [28], Kim et al. [27], and Rao et al.

[44, 45], functional mapping of the primary motor cortex with fMRI is robust. All five

subjects showed significant activation (p<.05) within the precentral gyrus during motor

activity, confirming the anatomical localization.

6.2.2 Epoch Comparisons

We used the statistical methods developed by Weisskoff et al. at the MGH-NMR center to

analyze function MRI raw data. This analysis compared epochs within a functional scan

using the Kolmogorov-Smirnov (K-S) statistic. This statistic is similar to the student's t-

test in that it is sensitive to changes in the mean. Unlike the student's i-test, however, this

analysis also detects changes in the skew and variance. Unfortunately, such parametric

analyses rely on pooling data points from the paradigm epochs, thereby losing any within-

epoch temporal resolution. This pooling prevents detailed analysis of sensory transients.

Such temporal resolution, however, was not necessary to this mapping study.

Before performing the K-S statistical analysis, we processed the functional raw data

through a number of formatting conversions that prepared the data for the K-S map

grinder. The K-S map grinder took as input the formatted raw data and parameters indi-

cating which epochs to compare statistically, and then implemented a pixel-by-pixel com-



parison of the functional scan epochs for each oblique coronal slice. When this functional

K-S map was superimposed on the high-resolution MRI coronal slice, areas of functional

activity could be identified. "Functional activity" indicated regions of the brain that were

significantly more active in one condition than in another (e.g., experimental vs. baseline).

The K-S map displayed a color-coded map of the activated regions conveying levels of

significance. For this study, significant functional differences were taken to be at or

beyond p<.05 level of significance (above the 95% confidence threshold). We chose this

permissive threshold for several reasons: First, as a first pass at somatosensory functional

mapping, we wanted to be lax in our exclusion of activated areas. Second, the head coil

had a low signal to noise ratio, so we were looking for changes on the order of 1-2%.

Third, preliminary studies showed that, with the exception of hand stimulation, using a

more stringent threshold would give an extremely poor sampling of activation.

The K-S map software also permitted a specific region of interest (ROI) of the functional

image to be studied. The functional data corresponding to the pixels within this ROI

could be averaged and the timecourse of the raw data viewed. The timecourse displayed

the image-by-image (96 total for 4 min) signal intensity for the averaged ROI. For exam-

ple, Figure 6 illustrates hand activation (Subject3: right-hand stimulation). The time-

course shows a response to hand and simultaneous hand and forearm stimulation.

We performed a number of different epoch comparisons with the K-S mapping technique.

We did a motor(squeeze)/baseline comparison for the motor paradigms. For the hand/arm

paradigm, we did a hand/baseline comparison, a hand/arm comparison, and a summed



(not simultaneous) hand+arm/baseline comparison. Equivalent K-S comparisons were

done for the thumb/forefinger paradigm with thumb analogous to hand and finger analo-

gous to arm. A table outlining abbreviations that will be used hereafter for the compari-

sons follows:

Table 2: Comparison Abbreviations

Comparison Abbreviation

hand/baseline positive H/B

hand/baseline negative B/H

forearm/baseline positive A/B

forearm/baseline negative B/A

hand/forearm positive H/A

hand/forearm negative A/H

hand+forearm/baseline positive H+A/B

hand+forearm/baseline negative B/H+A

thumb/baseline positive T/B

thumb/baseline negative B/T

forefinger/baseline positive F/B

forefinger/baseline negative B/F



Figure 6. Example of K-S map and timecourse generated in the analysis of a right-side
hand/forearm experiment on Subject3. The highlighted region of interest (ROI) corre-
sponds to the hand representation in the contralateral postcentral gyrus. The timecourse of
the fMRI signal closely follows epochs of hand and simultaneous hand and forearm stim-
ulation.
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6.2.3 Straightening the Postcentral Gyrus

In order to compare the localization of activation along the postcentral gyrus between

hemispheres, it was desirable to straighten the postcentral gyrus in each oblique coronal

slice, merge the slices into one slice, and normalize the length of the postcentral gyrus.

The human postcentral gyrus located between the central and postcentral sulcus travels in

a medial-to-lateral, anterior-to-posterior manner from the cingulate sulcus to the sylvian

fissure [37]. The postcentral gyrus has a thickness of approximately 3-5 mm [37]. Thus,

an outline was overlaid on the region of the slices that was believed to contain the postcen-

tral gyms. This region was taken to be the outer edge of the cortex from the cingulate sul-

cus to approximately 6 mm dorsal to the sylvian fissure. In an effort to exclude SII,

located in the upper bank of the sylvian fissure (Figure 1), the outlined region stopped

short of the sylvian fissure. Figure 7 shows our definition of the postcentral gyrus in yel-

low.

Once the postcentral gyrus was outlined, areas of activation (P2<.05) were identified within

the borders of the outlined region. Localization of the areas of activation was defined as

the linear distance along the superficial edge of the postcentral gyms.

Once straightened, a box plot of a particular comparison could be constructed. The post-

central gyrus progresses from those slices most posterior to those most anterior and from

the more medial region of the outlined area to the more lateral region. However, the post-

central gyrus also displays a characteristic double S-shaped path along this progression.



Therefore, regions of the postcentral gyrus often jump back and forth between the oblique

coronal slices. Figure 8 shows an example of a straightened postcentral gyrus (Subject5,

left hemisphere). Location along the postcentral gyrus has one degree of freedom in our

reconstruction, i.e., the length along the postcentral gyrus.



Figure 7. Grid overlay for measurement of the postcentral gyrus. Pixels are 1.5x 1.5 mm2 .
Our measurement of the postcentral gyrus stops at 5 mm prior to the start of the sylvian
fissure, underestimating the full extent of the postcentral gyrus.



Sample Outline of Postcentral Gyrus



Figure 8. Straightening, merging, and normalizing procedure. Red boxes represent areas
of activation along each oblique coronal slice. The area of each box corresponds to the
area of the activated region. The postcentral gyrus of Subject5 was completely contained
in slices 2, 3, 4, and 5, with 2 being the most posterior and dorsal. The edge of each slice
at 0 mm represents the most medial extent of the outlined postcentral gyrus; the edge at
120 mm represents the most lateral extent. Blue lines indicate the extent along the merged
slice of each activated area. The length of each line was found by taking the hypotenuse
of a right triangle with one leg as the distance along a slice and the other leg as the thick-
ness of each slice, 7 mm. Once merged into a single slice, the length was normalized to
100 mm.
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6.2.4 Merging and Normalizing the Postcentral Gyrus

Due to deviations in the path, shape, and length of the postcentral gyrus, it was necessary

to merge the slices and normalize the postcentral gyms to make comparisons among sub-

jects and to acquire a better sampling of data. To this end, we developed a technique to

collapse the activated areas on each slice into a single slice. One could imagine drawing a

smooth curve along the center of the straightened slices along the entire postcentral gyrus,

adding 7 mm, the thickness of each slice, whenever a border between slices was crossed,

and calling this the single slice. Subsequently drawing the closest perpendicular from an

activated area to this smooth curve would indicate where along the smooth curve, or the

single slice, the activated areas would lie. To approximate this ideal systematically and

consistently, the following procedure was used: First, we selected the slice extending most

medially as the reference slice. All other slices were merged into this reference slice.

Second, the localization of any activated areas in the reference slice was taken to be at

their location on the unmerged plot. Third, localization of activated areas in all other

slices were referenced to this reference slice by taking the linear distance until the slice

crossed the reference slice, and summing this with the hypotenuse of a right triangle con-

structed from the thickness of each slice (7 mm) as one leg and the linear distance along

the non-reference slice as the other leg. This procedure is best understood with the illus-

tration in Figure 8. The extent of the progression along the merged slices is shown for

each activated area in blue. Once the slices were merged into one slice, the extent of the

postcentral gyrus was normalized to a length of 100 "postcentral gyrus units". Because

our outlined postcentral gyms was approximately 100 mm in length (90 - 120 mm) for



each subject, a "postcentral gyrus unit" roughly corresponded to 1 mm (Figure 8 shows a

box plot of the complete straightened, merged, and normalized postcentral gyrus).



Chapter 7

Results

With the resulting straightened and merged data describing the activated areas in the post-

central gyrus, meaningful results could be ascertained, not only for a single scan, but also

across scans and subjects. The central questions of the study regarding somatotopic map-

ping and lateral inhibition will be addressed with these results.

7.1 Motor Control

In addition to providing anatomical verification, the motor paradigm controlled for the

quality of the fMRI signal in response to external stimulation of each subject. As was

shown by Kwong et al. [28], this motor task is a robust activator of the fMRI signal. In 5/

5 subjects, 10/10 hemispheres, clear activation due to the motor stimulation task was

present in the precentral gyrus. The clarity of the response is apparent not only in the

intensity of the activity shown in the K-S map but also in the ROI timecourse. Clear divi-



sions occur between motor stimulation and baseline epochs.

7.2 Somatotopic Mapping

The results of a somatotopic mapping study of the hand, forearm, thumb, and forefinger

stem from the positive comparisons of a single stimulated region with baseline. Box plots

of the straightened, merged, and normalized K-S maps (p<.05) obtained with the hand/arm

paradigm for all subjects are in the Appendix.

7.2.1 Noise in the Postcentral Gyrus

Before evaluating the somatotopic map, we analyzed the noise along the postcentral gyrus

that surpassed our threshold of activation (p<.05). A subject scanned with identical epoch

lengths but with an auditory task, completely unrelated to our somatosensory paradigm

was analyzed by comparing alternating epochs. Because auditory stimulation is known

not to project to the postcentral gyrus, we considered activation in the postcentral gyrus to

be noise. A box plot of this auditory task is shown in Figure 9. The activated areas spread

along the entire the postcentral gyrus (Figure 10). The location of the activated areas does

not have a normal (Gaussian) distribution (mean, 56.58 mm; SD, 29.56 mm) for the data

from the two hemispheres.

To get an indication of the extent to which noise influenced our results, we generated

another plot relating the location of the activated regions to the product of the area and the



-log 10(1-value), p<.05. These plots will be known as ALP (Area, Localization, P-value)

plots. Such ALP plots incorporate the area, intensity (p-value and number of activated

areas), and location of activated regions in the postcentral gyrus, the three central factors

in our determination of somatotopy. The ALP plot of the postcentral gyrus during the

auditory task is shown in Figure 10. The noise lacks a Gaussian distribution.

This noise distribution can be compared with the distribution of a body region representa-

tion. For example, the H/B comparison data accumulated over all subjects, both hemi-

spheres, showed a much more localized, Gaussian distribution. Figure 10 shows a

histogram and ALP plot of the localization of the hand along the postcentral gyrus. Here

the histogram has a more Gaussian, focused shape of the histogram (mean: 62.94 mm, SD:

21.02 mm).



Figure 9. Box plot of auditory task (noise) activated areas in the postcentral gyrus. Acti-
vated areas spread along the entire extent of the gyrus. Line thickness of rectangles is pro-
portional to -loglO(p-value) of the K-S statistic.
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Figure 10. (a) Histogram of the localization of auditory task (noise) activated areas in the
postcentral gyrus. Activated areas do not have a normal distribution. (b) ALP plot of the
localization of auditory task (noise) activated areas in the postcentral gyrus. Activated
areas scaled by area and level of significance still do not have a normal distribution. (c)
Histogram of the localization of accumulated hand/baseline positively activated areas in
the postcentral gyrus for all subjects. Gaussian distribution (mean : 62.94, SD : 21.02) is
shown for comparison. (d) ALP (Area, Localization, P-value) plot of the localization of
accumulated hand/baseline positively activated areas in the postcentral gyrus for all sub-
jects. When activated areas are scaled by area and level of significance, the distribution is
Gaussian in appearance.
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7.2.2 Somatotopy within Subjects

Table 3 shows the mean location of activated areas for H/B, A/B, T/B, and F/B compari-

sons, for individual hemispheres of each subject. The expected order, medially to later-

ally, of the representation along the postcentral gyrus for body regions, in accordance with

the established Penfield homunculus, is: forearm, hand, forefinger, thumb (Figure 3) [39].



Table 3: Somatotopic Mapping of Each Subject

Subject Hemisphere Forearm Hand Forefinger Thumb
(mm) (mm) (mm) (mm)

Subjectl right mean: 12.60 mean: 73.85 mean: 65.30 mean: 66.90
SD: 0.52 SD: 20.24 SD: 12.77 SD: 37.90

(n=2) (n=8) (n=3) (n=3)

left mean: 60.77 mean: 75.48 mean: 80.48 mean: 84.16
SD: N/A SD: 3.25 SD: N/A SD: 12.82

(n=l) (n=3) (n=l) (n=2)

Subject2 right mean: 54.07 mean: 60.31 mean: 59.42 mean: 54.39
SD: N/A SD: 1.15 SD: 24.60 SD: 6.77

(n=1) (n=2) (n=4) (n=3)

left mean: 79.10 mean: 62.83 mean: 41.01 mean: 67.97
SD: 16.42 SD: 23.81 SD: 32.41 SD: 22.76

(n=6) (n= 16) (n=4) (n=4)

Subject3 right mean: 64.13 mean: 64.29 mean: 62.76 mean: 79.78
SD: 12.38 SD: 17.54 SD: 20.73 SD: N/A

(n=2) (n=3) (n=3) (n=l)

left mean: N/A mean: 59.08 mean: 71.11 mean: 84.43
SD: N/A SD: 13.38 SD: 13.31 SD: N/A

(n=0) (n=3) (n=2) (n=l)

Subject4 right mean: 52.41 mean: 45.54 mean: 46.40 mean: N/A
SD: N/A SD: 17.62 SD: 6.01 SD: N/A

(n=1) (n=6) (n=2) (n=0)

left mean: 75.40 mean: 65.43 mean: 77.22 mean: 61.81
SD: 19.39 SD: 20.00 SD: 19.93 SD: 18.02

(n=2) (n=5) (n=3) (n=2)

SubjectS right mean: N/A mean: 52.80 mean: N/A mean: 44.51
SD: N/A SD: N/A SD: N/A SD: 36.41

(n=0) (n=1) (n=0) (n=3)

left mean: N/A mean: 60.27 mean: 36.68 mean: 75.33
SD: N/A SD: 5.44 SD: 19.97 SD: N/A

(n=0) (n=2) (n=3) (n=1)



Only hand stimulation activated all 10 hemispheres (p<.05), with the number of activated

areas ranging from 1-16 per hemisphere (Subjectl and Subject2 had 4 hand/arm paradigm

scans while the other subjects had 2). Forearm, thumb, and forefinger activation were

equally consistent among all subjects, ranging from 0-4 areas of activation per hemisphere

(p<.05).

Somatotopy results were: 4/7 hemispheres showed hand/forearm somatotopy; 6/8 hemi-

spheres showed thumb/forefinger somatotopy; 5/7 hemispheres showed hand/thumb

somatotopy. Only 1/6 hemispheres (Subjectl, left hemisphere) showed complete somato-

topy corresponding to the Penfield homunculus. Similar to Grafton et al. [19], when

studying somatotopy, we compared the means of the distributions, disregarding the stan-

dard deviations, because representations were significantly overlapping.

Although these results are interesting, the lack of activated areas in the postcentral gyrus

for the stimulated areas (with the exception of hand) made within-subject, within-hemi-

sphere somatotopic mapping difficult to interpret. As previously shown, noise is inher-

ently present in the fMRI signal within the postcentral gyrus, making clear somatotopic

mapping of a single hemisphere inconclusive with these methods.

7.2.3 Somatotopy across Subjects

To get more meaningful somatotopic mapping results, the stimulation/baseline positive

comparisons data for each subject were accumulated. The histograms (Figure 11) show



the discrepancy between the number of areas activated by hand stimulation and those acti-

vated by other stimulations. The histogram of the response to hand stimulation have dis-

tinctly Gaussian distribution. Forearm, forefinger, and thumb stimulations produce a less

pronounced distribution. Nevertheless, these representations are localized to the lateral

half of the postcentral gyrus with a few outliers (compare with Figure 10). From the accu-

mulated data, 78% of the forearm activated areas, 70% of the thumb activated areas, and

68% of the forefinger activated areas lie in the lateral half of the postcentral gyrus. All

stimulations effected areas covering nearly the entire length of the postcentral gyrus.

We conclude, in accordance with Grafton et al. [19], that the fMRI response to somatosen-

sory stimulations of neighboring regions are significantly overlapping. Thus representa-

tions are not consistent with the findings of Woolsey et al. [reviewed in 58], Penfield et al.

[38], or Merzenich et al. [31] who used extracellular recordings and defined nonoverlap-

ping, suprathreshold representations in SI. Perhaps with fMRI, we are seeing overlapping,

subthreshold representations similar to the intracellular recordings of Moore et al. [35],

though the noise inherent in the signal prevents more concrete claims.



Figure 11. Histograms of the localization of accumulated hand/baseline, forearm/base-
line, thumb/baseline, and forefinger/baseline positively activated areas in the postcentral
gyrus for all subjects. Only hand has a Gaussian distribution although forearm, thumb,
and forefinger are localized primarily to the lateral half of the gyrus. All representations
are overlapping.
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ALP plots (Figure 12) give a less discretized distribution of the activated areas along the

postcentral gyrus. Additionally, area and 1-value parameters from the K-S statistical map

amplify particular data points. From the hand ALP plot, we see an even more distinct

Gaussian distribution. The distribution of regions of the postcentral gyrus that respond to

hand stimulation is centered at approximately 60-65 mm along the normalized postcentral

gyrus. The distributions of the forearm, thumb, and forefinger stimulation regions are,

again, not Gaussian but generally localized to the lateral half of the postcentral gyrus. The

representation of the different stimulations through the fMRI signal are overlapping.

From the ALP plots, we can also compare the intensity of the fMRI signal in response to

different stimuli. Hand stimulation gives a much more intense response than forearm,

thumb, or forefinger stimulation (mean of -loglO(I-value)*area: 44.07 - hand, 24.07 -

forearm, 29.07 - thumb, 27.71 - forefinger).



Figure 12. ALP plots of the localization of accumulated hand/baseline, forearm/baseline,
thumb/baseline, and forefinger/baseline positively activated areas in the postcentral gyrus
for all subjects. Only hand has a Gaussian distribution; forearm, thumb, and forefinger are
localized primarily to the later half of the gyms. When activated areas are scaled by area
and level of signifance, hand/baseline positive activation is more intense than other body
regions.
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Table 4 compares the mean and SD of location along the normalized postcentral gyrus for

the accumulated single stimulation data.

Table 4: Somatotopic Mapping across All Activated Areas

Forearm Hand Forefinger Thumb
(mm) (mm) (mm) (mm)

mean: 65.13 mean: 62.94 mean: 57.72 mean: 65.04
SD: 25.81 SD: 21.02 SD: 25.97 SD: 27.70

(n= 18) (n=49) (n=25) (n=20)

The results indicate that the detailed somatotopic mapping predicted by the Penfield

homunculus is not observed.

We aligned the hemispheres to control intersubject and interhemispheric variability of the

position of representations along the postcentral gyrus. Because the hand localization

using the H/B comparison was the most robust somatotopic mapping indicator, the mean

of the hand activated areas within each hemisphere was taken as an origin for alignment.

This alignment provides a more accurate assessment of the size of the hand representation

and reduces the representation jitter, allowing more subtle aspects (e.g., somatotopy, lat-

eral inhibition) of organization to be observed. In this manner, hemispheres were

"zeroed" before the subject data were accumulated. In histograms and ALP plots, the

postcentral gyrus now extends from approximately -60 to 40 mm. Histograms and ALP

plots of the zeroed hemispheres for H/B, A/B, T/B, and F/B comparisons are cleaner, but

the results are the same (Figures 13 and 14).



Figure 13. Histograms of the localization of accumulated hand, forearm, thumb, and fore-
finger positive comparisons data for all subjects. Histograms have been aligned to the
individual centers of hand activation to reduce smearing of the distributions.
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Figure 14. ALP plots of the localization of accumulated hand, forearm, thumb, and fore-
finger positive comparisons with baseline for all subjects. ALP plots have been aligned to
the individual centers of hand activation to reduce smearing of the distributions.
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Additionally, we averaged across the means of each individual hemisphere (Figure 15,

means are shown in Table 2). Table 5 compares the mean and SD of the localization of

each body region representation when averaged across individual hemispheres.

Table 5: Somatotopic Mapping Across Individual Hemispheres

Forearm Hand Forefinger Thumb
(mm) (mm) (mm) (mm)

mean: 56.93 mean: 62.99 mean: 60.04 mean: 68.81
SD: 21.96 SD: 8.88 SD: 15.67 SD: 13.67

Hand localization is focused while thumb, forefinger, and particularly forearm activation,

is more spread. And again, all regions are localized to the lateral half of the normalized

postcentral gyrus. With this averaging procedure, however, we recovered almost com-

plete somatotopic mapping of body regions in accordance with the Penfield homunculus:

Forearm is medial to hand, forefinger is medial to thumb, but hand is not medial to forefin-

ger. With different averaging procedures, we recovered different somatotopic mappings

of the forearm, forefinger, and thumb. Averaging across the means of the individual hemi-

spheres, the procedure used by Penfield et al. [39], gave somatotopic mapping most

closely in accordance with the Penfield homunculus.



Figure 15. Histograms of the localization of hand, forearm, thumb, and forefinger positive
baseline comparisons, averaging across each hemisphere.
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Our data support several conclusions regarding a somatotopic mapping of forearm, hand,

forefinger, and thumb with fMRI. First, forearm, hand, thumb, and forefinger have over-

lapping representations on the normalized postcentral gyrus. Second, the representations

of forearm, thumb, and forefinger are localized to the lateral half of the normalized post-

central gyrus. Third, the representation of hand is approximately two-thirds along the

length of the postcentral gyrus. Comparing these results with those expected in accor-

dance with the Penfield homunculus (Figure 16), we see that we correctly identified the

hand representation at two-thirds of the length of the normalized gyrus, and that we cor-

rectly identified the forearm, thumb, and forefinger as in the vicinity of the hand. By aver-

aging across hemispheres, we approached detailed somatotopy.



Figure 16. Comparison of the localization of the center of the hand representation found
through our fMRI methods with the Penfield homunculus. The red "H" represents the
localization of the hand region at 62.95 mm along our normalized postcentral gyrus. The
Penfield homunculus is represented along the outline in yellow, extending past the outline
to the sylvian fissure.
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7.3 Lateral Inhibition

Somatotopic mapping was done with HIB, A/B, T/B, and F/B comparisons. We also per-

formed a number of other comparisons done in the data analysis. These other compari-

sons were used to understand the organization of somatosensory representation in the

postcentral gyms. In particular, we studied the interaction between the hand and forearm

representations. Three forms of presentation will be used to display the data: box plots,

histograms, and ALP plots.

7.3.1 Possible Models

Two possible models are proposed here and compared with the data. The two models con-

sidered are the noninhibitory and inhibitory models.

In the noninhibitory model (Figure 17), the hand representation is modelled with a large

spatial spread along the postcentral gyrus and a definite center. The forearm representa-

tion is modelled as less spatially spread, in accordance with the Penfield homunculus. The

forearm representation overlaps the hand representation although the centers of the distri-

butions are distinct. This overlap is predicted by a correlation between the hemodynamic

fMRI signal and a subthreshold somatosensory representation (Erulkar et al., [reviewed in

20]) rather than with the suprathreshold somatosensory representation correlated with

extracellular recordings (Merzenich et al., [31]). Figure 17 also shows what one would

expect for H/A, A/H, H+A/B, and B/H+A comparisons: H/A comparisons would lead to a



decreased intensity and spread of signal compared to H/B comparisons; H+A/B compari-

sons would lead to an increased intensity and spread of signal compared to H/B and A/B

comparisons.

In the inhibitory model (Figure 18), the hand representation is similar to that in the nonin-

hibitory model, but displays regions of lateral inhibition (negative activation). The fore-

arm representation is also similar to that in the noninhibitory model, but displays regions

of lateral inhibition. Figure 18 also shows what one would expect for H/A, A/H, H+A/B,

and B/H+A comparisons: H/A comparisons would lead to an increased intensity of signal

compared to H/B comparisons; H+A/B comparisons would lead to an increased spread of

signal compared to H/B and A/B comparisons; B/H+A comparisons would lead to an

increased intensity and medial shift of signal compared to B/H and B/A comparisons.



Figure 17. Noninhibitory model of hand and forearm representation. The forearm repre-
sentation is modeled as medial to the hand representation (Penfield et al. [39]) but overlap-
ping (Grafton et al. [19]). The hand representation is modeled as wider and more
responsive than forearm with regard to its density of cutaneous receptors. Expected fMRI
signal response with a hand/forearm and hand+forearm/baseline comparison is also
shown.
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Figure 18. Inhibitory model of hand and forearm representation. The inhibitory model is
identical to the noninhibitory model except for regions of lateral inhibition that have been
included. The expected fMRI signal response with a hand/forearm and hand+forearm/
baseline comparison is shown.
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7.3.2 Box Plots, Histograms, and ALP Plots of Hand, Forearm Comparisons

The box plots of the H/B, B/H, A/B, and B/A comparisons (Figure 19) illustrate the rela-

tive frequency of inhibited areas in the B/A comparison compared with inhibited areas in

the B/H comparison. Inhibition in the B/A comparison often overlaps activation in the H/

B comparison. The box plots of the H/A, A/H, H+A/B, and B/H+A comparisons (Figure

20) show the striking increase in the number of activated areas in the H/A comparison rel-

ative to the H/B comparison. Not only are there more areas of activation (n=93 vs. n=49),

but the activation is more robust (thicker lines correspond to lower 2-values). However,

the number of activated areas of A/H comparison (n=18) relative to the A/B comparison

(n=15) is roughly equivalent. Thus performing H/A and A/H comparisons increase the

intensity of the hand representation but do effect the arm representation. The H+A/B

comparisons show roughly the same intensity (n=39 vs. n=49) as the H/B comparisons but

with a more spread distribution. The B/H+A comparisons shows intense inhibition. In the

B/H+A comparisons, inhibition is more medial than in the B/H and B/A comparisons

(mean B/H+A inhibition: 44.72 mm, mean B/H inhibition: 49.20, mean B/A inhibition:

55.25).



Figure 19. Box plots of hand/baseline and forearm/baseline positive and negative compar-
isons for all 5 subjects, all 10 hemispheres. Red rectangles indicate hand activation; blue
rectangles indicate hand inhibition. Red circles indicate forearm activation; blue circles
indicate forearm inhibition. Line thickness of rectangles and circles is proportional to -
log(p-value) of the KS statistic. Forearm inhibition overlaps hand activation. Hand acti-
vation is increased relative to arm activation.
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Figure 20. Box plots of hand/forearm and hand+forearm/baseline positive and negative
comparisons for all 5 subjects, all 10 hemispheres. Red rectangles on the hand/forearm
comparisons indicate hand activation; blue circles on the hand/arm comparisons indicate
forearm activation. Red rectangles on the hand+forearm/baseline comparisons indicate
hand and forearm activation; blue rectangle on the hand+forearm/baseline comparisons
indicate hand and forearm inhibition. Line thickness of rectangles and circles is propor-
tional to -log(p-value) of the KS statistic. The frequency of hand activation in the hand/
arm comparisons is increased relative to the hand/baseline comparisons of Figure 24.
Hand and forearm inhibition in the hand+forearm/baseline is increased relative to the
hand/baseline and forearm/baseline comparisons of Figure 24.
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Accumulated data box plots (Figure 21) displaying activation and inhibition for the eight

comparisons further emphasize these trends. Inhibition in the B/A comparison is centered

in the hand area defined by the activation in the H/B comparison. The intensity of activa-

tion in H/A comparisons increases in relation to the H/B comparisons. In the B/H+A

comparisons, there is a medial shift and increased intensity of inhibition in relation to

inhibition in the B/H and B/A comparisons.



Figure 21. Accumulated data box plots across all 5 subjects, all 10 hemispheres of the
four hand/arm paradigm comparisons shown in Figures 24 and 24. The trends described
for Figures 19 and 20 become clearer in these accumulated data box plots.
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The zeroed and accumulated data histograms (Figure 22) of the 10 hemispheres for the 8

positive and negative comparisons: H/B, B/H, A/B, B/A, H/A, A/H, H+A/B, and B/H+A

illustrate the findings found in the accumuled box plots. Arm inhibition in the B/A histo-

gram is localized to the hand representation revealed in the H/B comparison. Arm activa-

tion is flanked by arm inhibition as revealed in the A/B and B/A comparisons. Hand

activation is intensified in the H/A comparison in relation to the H/B comparison. Fore-

arm activation is similar in intensity in the A/B comparison in relation to the A/H compar-

ison. Hand and forearm inhibition is slightly intensified and shifted medially in the B/

H+A comparison in relation to the H+A/B comparison. Also, H/B and B/H comparisons

reveal inhibition in the hand representation medial to the hand activation. This last result

was not clearly seen in the box plots.



Figure 22. Histograms of the eight hand/arm paradigm accumulated data comparisons
after localization was zeroed in each hemisphere to the center of hand/baseline positive
activation. Positive activation is shown in red; negative activation is shown in blue. Arm
inhibition overlaps hand activation. Hand activation in the hand/arm comparison is more
intense relative to the hand/baseline comparison. Forearm inhibition is shifted medially
and is more intense than hand inhibition and arm inhibition.
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The presence of inhibition found in the cumulative box plots and cumulative histograms

were evident in the ALP plots (Figures 23 and 24). Inhibition dominated the B/A ALP

plot. Inhibition in the B/H ALP plot was localized medial to the activation in the H/B

ALP plot. Arm inhibition was again more intense in relation to hand inhibition. The

intensity of the hand activation in the H/A ALP plot was magnified in relation to the hand

activation in the H/B plot. Arm activation, however, was not present in the A/H ALP plot.

The B/H+A comparison displayed a more medial and more intense inhibition than the B/H

or B/A comparisons.
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Figure 23. ALP plots of the eight hand/arm paradigm accumulated comparisons prior to
zeroing to hand activation. The same trends witnessed in the box plots and histograms are
evident here. Compare these ALP plots with the noninhibitory and the inhibitory models
in Figures 17 and 18.

103



Cum Pos&Neg Hand/Base ALP plot

50
distance (mm)

100

Cum Pos&Neg Hand/Arm ALP plot

distance (mm)

distance (mm)
Cum Pos&Neg Hand+Arm/Base ALP plot

4UU

200

0

-230

-4nn
100 0 50

distance (mm)
100

400

200

0

-200

_Ann
0--rvv

4UU

200
TI

CL 0

I -200

_-An400

0--rvv
0

Cum Pos&Neg Arm/Base ALP plot

---

)0

· AA

---

CT



Figure 24. ALP plots of the eight hand/arm paradigm accumulated comparisons after
localization was zeroed in each hemisphere to the center of hand/baseline positive activa-
tion. The discussed trends of organization are even clearer than in Figure 23. Compare
these ALP plots with Figures 17 and 18.
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7.3.3 Correspondence with the Models

The data from the various hand/forearm comparisons presented with box plots, histo-

grams, and ALP plots all pointed to a model including a spatially localized inhibitory

component. B/A comparisons generated substantial inhibition that consistently over-

lapped the hand representation, a first indication of the presence of inhibition. Why fore-

arm inhibition dominated forearm activation was unclear. B/H comparisons generated a

well-localized inhibition medial to the hand representation. Although these B/H compari-

sons did not show inhibition lateral to the hand representation, this may have resulted

from our premature section of the postcentral gyms at its lateral extent (done to reduce

corruption of our data by activation in SII). H/A comparisons showed increased intensity

in the fMRI signal, a result predicted only by the inhibitory model. When hand activation

was compared with the overlapping forearm inhibition, the hand activation became more

pronounced. Forearm activation did not occur in the A/H comparisons. When forearm

activation was compared with the broader and more pronounced, overlapping hand activa-

tion, forearm activation was obscured. H+A/B comparisons, by contrast, did not show an

increase in intensity predicted by the noninhibitory model. B/H+A comparisons showed

an increased intensity and medial shift of inhibition, which is predicted by the inhibitory

model.

With these results, we modified the inhibitory model to fit the data more closely. Based on

the substantial inhibition shown by the B/A comparisons, we increased the amplitude of

the forearm inhibitory sidebands. We also shifted the location of the forearm representa-
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tion so that the hand inhibitory sideband did not overlap the forearm activation region.

Figure 25 shows the final empirical inhibitory model of hand and forearm representation.
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Figure 25. An empirically corrected version of the inhibitory model first presented in Fig-
ure 18. The extent of overlap of forearm and hand, and the intensity of arm inhibition
were varied to more closely fit the data. This final empirical model of the representation
of hand and forearm as seen through the fMRI signal shows striking similarities to the
experimental ALP plots of Figure 24.
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7.4 Possible Sources of Error

There were several sources of error in these experiments and subsequent analysis that may

have corrupted our data. Our experimental procedures were not ideal. Stimulation of

body regions with a von Frey hair was not a completely consistent somatosensory, cutane-

ous input. Stimulation of the hand and forearm were more easily accomplished than stim-

ulation of the thumb and forefinger because the forearm and hand were relatively larger

and flatter. During stimulation of the thumb and forefinger, the von Frey hair would some-

times slide off so that the goal of stimulation with only a point stimulus was not achieved.

This inconsistency may explain the inconclusive somatotopic findings of the thumb and

forefinger in comparison with the hand and forearm.

No study of the interference of the fMRI signal from the presence of experimenters has

been done. It is possible that one or two experimenters applying the somatosensory stim-

ulus during the functional scans could affect the validity of the fMRI signal. We did not,

however, find any consistent perversion to the timecourse of the signal due to such inter-

ference, and there was, a priori, reason to believe that experimenter presence should not

affect signal strength (Kwong, personal communication).

There were a number of misrepresentations of data that could have occurred when doing

the K-S analyses. Because fMRI techniques are reporting on changes in rCBF of approxi-

mately 2-5%, noise in the data could have resulted in noise in the K-S map, as was previ-

ously shown. This noise could have come in various forms. For instance, a large spike of



rCBF or a gradual drift in the rCBF in a studied region may have affected the K-S map. In

general, any substantial change in the rCBF not on the order of 20 or 30 sec might have

resulted in error. With our threshold at p<.05, such noise in the data would have been

eliminated from the K-S map with 95% confidence. Also, our stimulation paradigms were

designed so that stimulation epochs were balanced in the 4 min scan to reduce the effect of

drift.

The straightening and merging procedure with the postcentral gyrus also introduced a

potential source of error. In this procedure we made a basic assumption that the postcen-

tral gyrus took no sharp turns in its medial to lateral course. A postcentral gyrus with

sharp turns would have been warped by the merging. In addition, as activated areas

extended far from the line they were meant to be mapped to, the error in their placement

along the straightened postcentral gyrus was increased. This basic assumption was a gen-

eralization of the anatomy of the cerebral cortex, a practice that is never completely

dependable. In the subjects of this study, however, such turns of the postcentral gyrums

were not observed.
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Chapter 8

Discussion and Conclusions

8.1 Somatotopic Mapping of the Postcentral Gyrus with fMRI

A complete, detailed mapping of the forearm, hand, thumb, and forefinger was not possi-

ble with these fMRI methods. Rather, we were able to precisely localize only the hand

region along the postcentral gyrus while the forearm, thumb, and forefinger areas were

found to be in the vicinity of the hand, on the lateral half of the normalized postcentral

gyrus. These findings are consistent with the established location of the represented

regions on the Penfield homunculus (Figure 16).

But why was it possible to localize the hand while the forearm, forefinger, and thumb

localizations were inconclusive with these methods? As previously discussed, we

expected certain body representations to be devoted a larger cortical area due to an

increased acuity in sensation from increased innervation [24]. For example, the hand

113



region, an extensively innervated region of the body that plays an important role in fine

tactile acuity was represented with a larger cortical area than the forearm region, a less

extensively innervated body region. The Penfield homunculus clearly demonstrates this

phenomenon. Perhaps if a body region has a more extensive cortical area devoted to the

mapping of cutaneous stimulation, the fMRI signal would be more robust. We saw this

phenomenon in our results: hand stimulation elicited 49 activated areas; forearm stimula-

tion elicited 25 activated areas; forefinger stimulation elicited 18 activated areas. With

only 18-25 activated areas, we were not able to surpass the crucial signal to noise ratio in

the fMRI signal to give detailed somatotopy.

It is also possible that we were limited by the resolution of the fMRI signal. Resolution of

the functional scans was 3x3x7 mm3. If the representation of the forefinger or forearm did

not extend well beyond this limiting resolution among the majority of the 10 hemispheres,

we should not have expected that we could localize these regions within the postcentral

gyrus.

The representation of the thumb, however, is comparable in spatial extent to the hand. We

would expect to see thumb activation in as broad a region as hand activation. The Penfield

homunculus shows, in fact, that the thumb and hand are among those body regions with

the largest relative magnification in their cortical representation. The only explanation

that we can put forth for this discrepancy is experimental error.

We conclude from the somatotopic mapping study that detailed somatotopy across 5 sub-
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jects, 10 hemispheres is difficult to realize with these fMRI methods. While a distinct

hand representation was localized, forearm, thumb, and forefinger activation did not over-

come the noise in the fMRI signal. Greater sampling of subjects may be the answer to this

problem.

8.2 Lateral Inhibition in the fMRI Signal

Lateral inhibition of body representations as seen through the fMRI signal was definitely

present in our data. There are two alternative hypotheses that predict inhibition in the sig-

nal: inhibition from neuronal interactions, or inhibition from metabolic fluctuations.

8.2.1 Neuronal Somatosensory Lateral Inhibition

The presence of neuronal lateral inhibition in the somatosensory system is a well-reported

phenomenon [10, 53, 34, 48]. Neuronal lateral inhibition arises from the divergence of

signals that occur at each relay station as a cutaneous receptor signal travels to the cerebral

cortex. For example, a point stimulus such as a von Frey hair, will activate several touch

receptors in the area around the stimulus. The impulses from these touch receptors will

discharge a group of cells in a dorsal column nucleus, which discharge a group of cells in

the ventral posterior nucleus of the thalamus, and which discharge a group of cells in the

primary somatosensory cortex. The population of cells that are activated at each relay sta-

tion is controlled by two factors: first, the afferent pathway that was activated initially by

the stimulus connects anatomically to a certain population of cells; and second, the popu-
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lation of neurons at each relay station directly activated by the initial stimulus also dis-

charge inhibitory neurons that will restrict the final population of responding neuronal

cells. This inhibitory phenomenon produces the resolution and localization of the stimu-

lus at each relay station of the central nervous system and eventually in the cerebral cortex

(Figure 26) [24].

Dykes et al. [10] reported on the role of y-amino-butyric acid (GABA) in cat primary

somatosensory cortex. They found that GABA mediated the local inhibitory influences of

neuronal response to cutaneous stimuli. Extracellular recordings revealed that bicuculline

methiodide (BMI) antagonized the GABA mediated influences and enlarged the size of

the neuronal receptive-fields. Thus, Dykes et al. demonstrated the presence of lateral inhi-

bition by demonstrating the predicted enlargement of the receptive field when antagoniz-

ing inhibition (Figure 27) [10]. Additionally, Sur [53] reported center-surround

organization in somatosensory neurons within the somatosensory cortex of macaque mon-

keys, and Moore et al. [34] reported the presence of lateral inhibition in intracellular

recordings of rat somatosensory cortex, results consistent with the presence of neuronal

lateral inhibition.

Schroeder et al. [48] reported the presence of intracortical inhibition in the somatosensory

cortex of squirrel monkeys in a study of the organization of latent inputs within area 3b

after median or ulnar nerve section. They found that input from the radial nerve had

access to the cortical regions normally driven by input from the median and ulnar nerves;

the representation of the glabrous hand was inhibited by nondominant input from the
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radial nerve and dominant input from the median or ulnar nerves [48].

These studies clearly demonstrated lateral inhibition of neighboring representations in the

postcentral gyms. It is possible that the lateral inhibition we witnessed in the study of the

organization of hand and forearm in the somatosensory cortex through fMRI is also due to

this neuronal inhibition. However, there are several potential problems with this idea.

FMRI is a measure of rCBF fluctuation in the cortex. As previously discussed, the corre-

lation of rCBF to neuronal activity has been well-researched and well-established. None-

theless, inhibitory surround of individual neurons may not scale to the spacial extent of the

inhibition we see with the fMRI signal, although the inhibition by nondominant input

reported by Schroeder et al. is the correct spatial magnitude. Further, inhibition in the cor-

tex is mediated by local inhibitory interneurons. Although these interneurons inhibit the

surrounding neurons, they themselves are the most highly metabolically active neurons in

the brain [24] and may increase the strength of the metabolic signal while inhibiting the

neurons around them.
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Figure 26. Neuronal inhibition due to the discharge of inhibitory neurons at each relay
station of the central nervous system. This diagram shows how inhibition at the point of
stimulation is conveyed through the neuronal pathways [24].
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Figure 27. Enlargement of neuronal receptive fields when inhibition is antagonized.
Dykes et al. found that bicuculline methiodide (BMI) blocks GABA mediated inhibition
in cat primary somatosensory cortex. These studies support the presence of intracortical
surrounding lateral inhibition [10].
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8.3.2 Metabolic Somatosensory Lateral Inhibition

Changes in rCBF indicate relative changes in regional cerebral oxygen metabolism. Seitz

et al. [49] found that rCBF increases in primary somatosensory cortex could be detected

with PET in response to vibratory somatosensory stimulation. Further, these rCBF

increases were accompanied by rCBF decreases in the superior parietal cortex, the paral-

imbic association area, and the left globus pallidus. Thus, the increases and decreases in

rCBF were balanced so that the mean global CBF did not change during somatosensory

stimulation compared with rest [49]. These findings support similar conclusions of Ingvar

et al. in a study of language production using an intracarotid Xenon injection technique

[reviewed in 49].

Kawashima et al. [25] similarly demonstrated cross-modality inhibition in selective atten-

tional tasks using PET studies of rCBF. A series of PET studies were performed on

human subjects engaged in a somatosensory task in "eyes open" and "eyes closed" condi-

tions. During these tasks, Kawashima et al. found a significant decrease of rCBF in the

visual cortex during eyes opened and eyes closed conditions, suggesting that decreases in

rCBF in unattended areas during somatosensory tasks would occur, irrespective of input to

the unattended areas. Thus, Kawashima et al. demonstrated not only clear selective acti-

vation of cortical regions known to participate in modality specific tasks, but also selective

deactivation of unattended areas across modalities [25].

Drevets et al. [11] found focal activation and inhibition within the somatosensory cortex.
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They monitored PET measurements in primary and secondary somatosensory cortices

during the period when somatosensory stimuli were expected. They found that in antici-

pation of innocuous touching or localized, painful shocks, rCBF decreased in parts of the

somatosensory cortex homunculus map located laterally, outside the regions devoted to

representation of the skin area corresponding to the locus of expected stimulation. For

example, they found that an anticipated stimulus to the fingers resulted in a decreased

rCBF in the face area; anticipated stimulus to the toes resulted in a decreased rCBF in the

finger and face area. However, no significant changes in rCBF occurred in the regions of

the cortex representing the anticipated stimulus region. Such findings support the notion

that analysis of the form of suppressing background activity may facilitate the processing

of signals that respond to external stimuli [11].

Our findings of lateral inhibition in response to cutaneous stimuli of adjacent representa-

tions in the postcentral gyrus followed from the work of Seitz et al. [49], Kawashima et al.

[25], and Drevets et al. [11]. We found that during the period in which somatosensory

stimulation was administered to a given skin surface, fMRI signal intensity in regions of

the postcentral gyrus mapped to the stimulated surface increased while signal intensity in

those regions adjacent decreased. Such inhibition may be due to a local rationing of oxy-

genated blood similar to that described by Seitz et al., Kawashima et al., and Drevets et al.

This report is the first demonstration of lateral inhibition in the fMRI signal from soma-

tosensory stimulation.

We conclude that lateral inhibition of rCBF, and thus the fMRI signal, following hand and

123



forearm stimulation is a logical and coherent finding. Furthermore, by using the lateral

inhibition of representations in the cortex as a baseline for comparative analyses, the

detection of somatosensory response in an fMRI signal can be facilitated by boosting the

intensity of a desired representation (as in our H/F comparisons). With our somatotopic

mapping methods, we were able to derive crude somatotopic maps in accordance with the

Penfield homunculus. It has not escaped our attention that the effects of lateral inhibition

could be utilized further to generate a more complete, detailed somatotopic map with

fMRI.
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Appendix
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Appendix. Red rectangles on the hand/baseline comparisons indicate hand activation;
blue rectangles indicate hand inhibition. Red circles on the forearm/baseline comparisons
indicate forearm activation; blue circles indicate forearm inhibition. Red rectangles on the
hand/forearm comparisons indicate hand activation; blue circles indicate forearm activa-
tion. Red rectangles on the hand+forearm/baseline comparisons indicate hand and fore-
arm activation; blue rectangle indicate hand and forearm inhibition. Line thickness of
rectangles and circles is proportional to -log(p-value) of the KS statistic.

131



C]

Li

El

0

0\

0oOO

0

0

C')

7--

0C-

0O0u
U
d)

•C

0PDCd,UQ(U

D7

0

II II

E0

'-

U,

4E

C-

El

F-



C

aoc

C

tr

CC

C

00

0

0

0

C

tCc

CC'-4o

Cn

000
0

0

00

0

o
e .U

. o

s *C

II II



U,

0t

0,

LZD

31-

U,

B

El

0

+

u0,
Caf



'1

U,?

0

U

II

LI

0

0

U

0

0

Ua

II0



C)In
0

O

0

U

II

0
0

0

©



0

0

U
ri)

0d

o 03

II II

LIZI

Ec1

0

E~J



LZ

El

0

D
EJ

n~~

U,

0

D
0 U,

ti)

0
U,

0

CU,I
+

0C/J

DEE

m



E1I

0

0

Cl

II

0

0

L-I

'1)

'0

II

D



El

Lmi

II II

o0
>

0



0

0

Cfd

..

p
0

o Cd

II II
00

O

O

00



C

C

C

C

C

rCC
Ce

Do

I I

El]

0)

C,,

ta

ri

u

oZ

CI )

I0



0e

0i

I II
'0

D7

0
O

CcI

+

,0



El

EJI

El1

El U,

c 4-

II

LED

C'

S

U

d,

'-4

a4,

* -

01



0

0
0

0

0

0

0
'-40r

0

C

0o
u)

CI

1

'-4

0t

05

0

II
0



c

I
t

LI

B
EZ

111

oc

o

I

II II

0

D

El

O

0)

:L
-D



O

O

O0

E103
n

o 0

Sii
II II

EZD

'-I

U,

0

E±J

E
Fý

'-

CC



U

0

CC

II II

LZD

]
0

EJ
0

Coc

C
I.-

C

C

C

C'

C

C

0
00

0

S0

C



oc

C

00

0

C-,

0

0

Ce

.0

> I,



c

c
CCC

111

0

O
00

o-

0

0

0

0

0

LI

oo
*14

U=

EU

II



D

53

EI I

1
0

II

O

0

I I

El

0

0

U

tl)

'03

0


