
Integrating Speech Recognition and Generation

Capabilities Into Timeliner

by

James M. Napier

Submitted to the Department of Electrical Engineering and Computer Science in

Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering and Master of

Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 24, 1996

Copyright 1996 James M. Napier. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

grant others the right to do so.

A uthor /
Department of Electrical E neerin g and Computer Science

x ,, •/ May 24, 1996

C ertified by-......................../
Richard Berthold

VI-A Company Supervisor

Certified by.. 4 ... 0 ICertified byS.ep.an.e.eneff
Stephanie Seneff

I Thesis Supervisor

A ccepted
F. R. Morgenthaler

Chairm partment Committee on Graduate Theses

MASSACHUSET rs INSTi. U..i
OF TECHNOLOGY

JUN 11 1996 t ng

Integrating Speech Recognition and Generation Capabilities into
Timeliner

by
James M. Napier

Submitted to the Department of Electrical Engineering and
Computer Science

May 24, 1996

In Partial Fulfillment of the Requirements for the Degree of Bachelor of
Science in Computer Science and Engineering and Master of Engineering

in Electrical Engineering and Computer Science

ABSTRACT

Timeliner is a control sequence language designed for real-time script operation. It is
designed to be used on board the International Space Station allowing the crew members
to control script operation with relative ease. The addition of speech recognition and
generation capabilities into the Timeliner interface further increases the user friendliness
by allowing crew members to be freed from the constraints of a mouse driven X window
interface. The recognition and generation modules show the extensibility of the current
interface and provide a proof-of-concept basis for further study into the functionality
gained through a speech interface.

Thesis Supervisor: Stephanie Seneff
Title: Principal Research Associate, MIT Laboratory for Computer Science

Table of Contents

1 Introduction 7
1.1 Thesis Overview .. 7
1.2 Timeliner Overview
1.3 Station Operation ...
1.4 Enhanced Interface...10
1.5 Considerations for the Interface... 10
1.6 Sum m ary .. 11

2 Project Scope ... 13
2.1 Requirements ... 13
2.2 Commercial Versus Internally Developed Software 14
2.3 Commercial Speech Recognition... 14
2.4 Comparison of Speech Recognition Packages............................. 15
2.5 IN3 Speech Recognition 16
2.6 Speech Generation ... 16
2.7 Personal TrueTalk Speech Generation..................................... 17
2.8 Microphone ... 17
2.9 Integrating .. 18

3 Implementation .. 19
3.1 Organization of Speech Recognition ... 19
3.2 Timeliner Displays...19
3.3 Mimicing Mouse Clicks.. 21
3.4 Verbal Command Contexts .. 21
3 .5 E n ab lin g IN 3 .. 24
3.6 Creating Commands.. 26
3.7 Speech Commands for Timeliner 26
3.8 Training the Commands.. 26
3.9 Organization of Speech Generation... 27
3.10 Enabling Personal TrueTalk 28
3.11 Complexity...30
3.12 Demonstration Script 30
3.13 Sum m ary .. 31

4 R esults 33
4.1 Does it Work? .. 33
4.2 Recognition Ability...34
4.3 Generation Ability .. 34
4.4 Relation to Current Interface 35
4.5 Summary ... 35

5 Conclusions ... 37
5.1 Recognition Strengths .. 37
5.2 Recognition Weaknesses .. 37
5.3 Open Issues for Recognition ... 38
5.4 Generation Strengths.. 38
5.5 Generation Weaknesses ... 39

5.6 Open Issues for Generation.. 40
5.7 Further R esearch ... 40
5.8 E xtensions 4 1
5.9 U tility 4 1

A cknow ledgm ents .. 43
Appendix A Timeliner Windows .. 45

A .1 M ain W indow 45
A.2 Command Window 46
A.3 Bundle File Selection Window ... 47
A.4 Executor Status Window...48
A.5 Script Messages Window.. 49
A.6 Bundle Status Window 50
A.7 Current Bundles Window .. 51
A.8 Current Sequences Window ... 51

Appendix B Verbal Commands 53
B.1 IN 3 Command Window ... 53
B .2 C om m ands 54

Appendix C Program Code .. 59
C. 1 Ada Code for Speech Generation 59
C.3 C code for Speech Generation ... 61
C .4 Tcl/T K Scripts.. ... 62

Appendix D Timeliner Script... 65
D. 1 Demonstration Script 65

R eferen ces ... 85

4

List of Figures

Figure 3.1: Sequence Control Window.............................. 20
Figure 3.2: Context State Diagram of Spoken Commands............................ ... 22
Figure 3.3: IN3 W indow 25
Figure 3.4: TrueTalk Window .. 28
Figure A. 1: Timeliner Main Window ... 45
Figure A.2: Comm ands W indow ... 46
Figure A.3: Bundle File Selection Window.............................. 47
Figure A.4: Executor Status W indow .. 48
Figure A.5: Timeliner Script Messages Window 49
Figure A.6: Bundle Status Window .. 50
Figure A.7: Current Bundles W indow 51
Figure A.8: Current Sequences W indow .. 51
Figure B.1: IN3 Command Edit Window ... 53

List of Tables

Table 1.1: Simple Timeliner Script... 8
Table 2.1: Speech Recognition Packages ... 15
Table 2.2: Speech Generation Packages .. 17
Table 3.1: C om m and Sets 23
Table B .1: List of Com m ands... 54
Table C.1: TL_Speech_Gen_Interface Specification 59
Table C.2: TL_Speech_Gen_Interface Body 60
Table C.3: Speak_Message C Procedure 61
Table C.4: Tcl Script TTSayOnce.Tcl 62
Table C.5: Tcl Script TTSayAgain.Tcl..63

Chapter 1

Introduction

1.1 Thesis Overview
The goal of this thesis is to show the feasibility and usefulness of a speech interface with

Timeliner--a control sequence language designed for the International Space Station. The

addition of a speech interface for Timeliner will provide the crew with a greater ability to

control the operation of Timeliner scripts being run on board the station. The speech inter-

face should include both a speech recognition module to interpret the crew's verbal com-

mands and a speech generation module to audibly relay messages from Timeliner scripts.

This chapter discusses the goals of the research and the organization of the thesis. It

gives an overview of Timeliner and of the necessities of a speech interface for Timeliner.

1.2 Timeliner Overview
Timeliner is a language designed at the Charles Stark Draper Laboratory under contract

from the National Aeronautics and Space Administration(NASA)1 and the Boeing Corpo-

ration. The goal is to be able to handle the scheduling and monitoring of events on board

the International Space Station. This could include both station operation and scientific

experiments performed on the station.

Timeliner is designed to alleviate the demands placed on the crew by mechanizing cer-

tain aspects of their daily workload. The shrinking of funds for research in space has

forced projects such as the International Space Station to bear an even greater load by try-

ing to maximize the use of the station. This corresponds to a greater workload for the

crew.

1. NASA Contract No. NAS 9-18426 Task Order Control 95-123

Timeliner provides a way to automate various parts of experiments while still allowing

the crew to interact with and control the operation of these scripts. The scripts can be set

up to run autonomously or with crew interaction. Timeliner provides facilities for doing

this. With Timeliner, the experiments can be more easily maintained and can be parallel-

ized.

The Timeliner language is designed for writing sequencing procedures to operate com-

plex systems. It can handle multiple tasks in real-time. The language itself is very English-

like allowing easy comprehension by non-programmers. The Timeliner language is devel-

oped using the Ada programming language [1] which provides facilities for real-time

tasks and data abstraction.

The following table is a simple Timeliner script which shows the English-like and

easy-to-understand syntax [2].

Table 1.1: Simple Timeliner Script

--This is a simple Timeliner script which waits on an action and then sets a variable

BUNDLE TestExperiment
SEQUENCE Main ACTIVE

START Monitor
WHENEVER Pump_Speed > 10 THEN

SET Valve OPEN
END WHENEVER

CLOSE SEQUENCE Main
SEQUENCE Monitor INACTIVE

EVERY 5.0 BEFORE Experiment_Off
IF Pump_On THEN

SET PumpSpeed TO Pump_Speed + 1
END IF

END EVERY
CLOSE SEQUENCE Monitor

CLOSE BUNDLE TestExperiment

It starts up a sequence, Main, which opens a valve when the pump speed is greater

than 10. In parallel with this operation, the sequence Monitor gets started which incre-

ments the value of the pump speed as long as the experiment off variable is false. It is very

easy to understand since it reads like a check-list.

In order to make the script operation easily controlled, Timeliner supports an X-win-

dow interface. Through a variety of panel displays (See "Timeliner Windows" on

page 45), the operation of every script being executed by Timeliner may be viewed and

controlled.

1.3 Station Operation
Since the station requires that various operations be performed to control station opera-

tion, Timeliner is a tool by which those operations may be automated. A script does not

necessarily require crew participation in order to function. Therefore, certain scripts can

be used to control basic tasks, such as temperature control of the station modules.

Another main aspect of the station is to provide a platform for performing the myriad

of microgravity experiments that have been conceived. Through a script, an experiment

can be controlled with Timeliner, and the crew can be easily involved with the experiment

via the X-window interface.

The simple-to-understand scripts facilitate the correct running of experiments. It is

very costly if an experiment is done incorrectly. Timeliner provides an extra measure of

safety because the crew can easily follow the script operation. Also, the script can signal

them to perform certain operations while the experiment is running.

This interactivity of Timeliner is a major advantage for performing experiments on

board the station. Certain operations cannot be sufficiently automated and still require

human intervention. Also, some experiments are quite complex. Timeliner's scripting lan-

guage provides a mechanism for the scientists who created the experiment to easily

describe experimental parameters. This allows for a greater chance of successful comple-

tion of the experiment.

1.4 Enhanced Interface

The current interface requires the crew to be at a display in order to interact with the

scripts being run. Mouse inputs are needed to control the script operation and any mes-

sages that are sent from Timeliner are displayed to the screen, requiring the crew to be

able to view the screen in order to see the messages. A speech interface would alleviate

some of these constraints.

To allow the crew to be mobile, the first step is to provide a mechanism so the crew

need not use mouse inputs to control the operation of Timeliner. A speech recognition

module could fulfill this role. Any commands done using a mouse would correspond to

verbal commands given through a headworn microphone. The second step is to allow the

messages that are sent to the screen to also be routed to a speech generation module so the

crew could hear the messages through a headset. This would free the crew to perform the

experiment while still receiving feedback from the script operation. Sound has the signifi-

cant advantage that it does not require direct focus of attention on the part of the crew in

order to receive the information.

A speech interface also allows for quicker control by the crew since they no longer

need to "float" over to the displays to direct Timeliner. The addition of speech will provide

multiple avenues of feedback so the crew can use whichever is more convenient; and the

information provided is now more understandable. The redundancy of the information is

an asset because it utilizes both sight and sound instead of merely sight.

1.5 Considerations for the Interface
The speech interface has some important aspects which affect the final product. The litmus

test is how the interface appears to the crew and its ease of use. The additional speech

interface should be relatively transparent to the crew. While the speech interface is inte-

grated to some degree, it should never compromise the current interface usability. It

should allow them to better understand the script operation and allow them to do their jobs

more efficiently and with less stress. This would also empower script writers to further aid

the crew in understanding how an experiment works. Additional messages might be war-

ranted if the verbal messages would enhance the functioning of the crew.

1.6 Summary
In this chapter, we have shown why Timeliner helps the crew accomplish its mission, spe-

cifically in performing experiments. We discussed why a speech interface would further

promote the purpose of Timeliner with added functionality. The crew would be given a

better tool to accomplish their tasks. The next chapter covers the steps we took to define

the requirements of a speech interface for Timeliner.

Chapter 2

Project Scope
This chapter discusses the requirements that a speech interface must meet for Timeliner. It

also introduces the software packages that are used to create the speech interface.

2.1 Requirements
The speech interface needs to be modular with respect to the rest of Timeliner. Not only

does the problem lend itself to modularity, but it is a good practice since some versions of

Timeliner might not require the use of a speech interface. It should also be relatively light-

weight with regards to size and speed. While functional versions of Timeliner are run on

workstations, the flight version must use station computers, which are Intel TM 386 proces-

sor-based. It might be desirable, for example, to completely replace either the recognizer

or generator with a different package. With a good interface, such a process would be triv-

ial.

In addition to being lightweight, the speech interface should be easily maintained. This

includes the ability to change the interface with relative ease. It should be possible to add

speech recognition commands quickly and simply. Considering the application, there will

be a limited number of users and a relatively small vocabulary. Therefore, it is conceivable

to use a system that requires training, but the training should be straightforward. A serious

issue is the recognition performance. It should provide good recognition in the face of

noise. To this end, a microphone of good caliber should be used to help reduce the signal-

to-noise ratio.

The timing of the speech interface should be relatively quick. While the speech recog-

nition will happen in parallel with the script operation, it should also appear to have an

effect as soon as possible to reflect the changes made by the verbal commands. Further-

more, the generated speech must be comprehensible, and it would be advantageous if it

were customizable to the crew's preferences to some degree.

It should be noted that this thesis deals with a functional version of Timeliner, which

runs on a SunTM Sparcl0 workstation. This thesis is centered around a proof-of-concept

for the idea of a speech interface for Timeliner. This results in some additional constraints

on the speech interface modules. The software must run under the correct operating sys-

tem and the purchase of any items used for the thesis must be cost-effective.

2.2 Commercial Versus Internally Developed Software
The end goal of this research is to show the feasibility of a speech interface for Timeliner.

Commercial speech recognition and generation packages provide a viable option for use

with this thesis. Additionally, the Timeliner Project would like to continue with this

research after this thesis is done, and commercial software allows for continued support

for the features desired. There is no need to reinvent the wheel in order to accomplish the

goal of this research.

2.3 Commercial Speech Recognition
There are various types of speech recognition algorithms used in different commercial

packages. Each provides trade-offs between the recognition rate, the size of the vocabu-

lary, and the need for training. Some packages require discrete speech, while others allow

for continuous speech input. Each of these attributes' importance depends on the applica-

tion of the recognizer. In this case, the International Space Station and Timeliner provide a

specific environment in which the recognition must perform.

The recognition in this environment must be extremely accurate. It would be very con-

fusing if the recognition failed to recognize a spoken command, but it would be even

worse if it misinterpreted a spoken command. Also, the station will most likely have a rel-

atively high amount of noise due to computer fans and environment control devices. The

recognition needs to provide accurate results in spite of a noisy environment.

The speech recognition is limited to the number of commands that the displays pro-

vide. This is on the order of about 100 commands. This means that the recognition pack-

age need not have a huge vocabulary. More importantly, however, it means that the

recognition package could use training in order to provide recognition. This holds true

because there will be a limited number of crew members, so the training could occur with

each crew member. Remember, though, that the training should be relatively easy and

quick in order to be usable.

The requirement about discrete speech versus continuous is rather flexible. It would be

nice if the recognition could handle continuous speech, but the crew could just as easily

deal with a package that requires discrete speech. The only constraint is that the crew

should not have to enable the recognition with anything other than a voice command (e.g.

depressing a button to initiate recording).

2.4 Comparison of Speech Recognition Packages
The following table shows the comparison of some commercial speech recognition pack-

ages that are available for the Sun Sparc 10TM running Solaris®2.5.

Table 2.1: Speech Recognition Packages

Packag Recognition Model Training Discrete vs.
e Required Continuous

Abbot Connectionist Hidden No Continuous free
Markov Model

IN 3 Energy Template Yes Continuous $500

Lotec Templates and Word Yes Continuous free
Hypothesis

Hark Hidden Markov Model No Continuous Expensive (depends
on vocabulary size)

2.5 IN3 Speech Recognition
Based on all the factors related to the recognition environment, IN 3 (pronounced in-cube)

seems to be the best choice [3]. It provides a mechanism for easily training the verbal

commands and it has very good recognition. It uses continuous word-spotting algorithms

based on an energy template, or voice pattern, of the verbal commands. A command can

be recognized within a verbal utterance without requiring that the command itself be

bounded by silence.

The user interface is very intuitive and, therefore, commands can be easily added. The

software provides multiple ways to add context sensitivity to the recognition. This means

that certain commands should only be recognized when a certain condition exists (the

crew is focused in a specific window, for example). Through the concept of contexts, IN 3

constrains its pattern recognition to only a subset of possible verbal commands. This

greatly increases the recognition rate and decreases the occurrence of incorrect recogni-

tion.

Since one of the goals is to mimic mouse input to the displays, it is necessary to be

able to control X-events from the recognition of the verbal commands. IN3 has the ability

to capture X-events when creating commands and then perform those X-events when it

recognizes the corresponding command. Another great aspect is that the software can

appear transparent by loading up automatically with the correct verbal templates and with

the recognition active. However, the recognition parameters can be changed by bringing

up a simple user interface. IN 3 is very flexible and robust. It is integrated well with X-win-

dows and is relatively cost-effective.

2.6 Speech Generation
The speech generation is relatively straightforward with regards to its constraints. It

should be able to take a string of text and convert it to audible speech in a comprehensible

manner. Since this environment will be routing text messages to the speech generation

module from Timeliner, the module should operate on text and output good comprehensi-

ble speech.

The following table shows some speech generation packages and the important

attributes associated with each.

Table 2.2: Speech Generation Packages

Generation OutputText-driven CostPackage Quality

rsynth Yes poor free

Entropic's Yes good $500
Personal
TrueTalk TM

YorkTalk No fair Unknown

2.7 Personal TrueTalk Speech Generation
Entropic's Personal TrueTalk T generation package provides a very good interface for tak-

ing text from various sources and converting it to speech [4]. The software was developed

at Bell Laboratory which is known for good speech generation software. The output is

extremely comprehensible and has very good intonation in a sentence. The quality is well

worth the cost. Also, the software provides a few ways to send the speech to the genera-

tion engine--TCP/IP ports, Tcl/TK routines, and by typing the text in an X-window. The

X-window interface allows a very simple way to test the speech output quality for quick

development. And since the final result must look transparent, the window need not be

used, because the text can be sent via a Tel script. It runs well on the workstation and also

provides ways to change the output speech according to user preferences.

2.8 Microphone
The microphone on a regular workstation is an omni-directional microphone, which intro-

duces all the background noise of the environment in which it is being used. Therefore, it

is necessary to acquire a better microphone in order to increase the speech recognition rate

by reducing the signal-to-noise ratio. A good directional headworn microphone costs

$200, but the sound quality is much improved. Also, the headworn microphone mimics

what the International Space Station crew really has. It frees up the hands so that other

things can be done and lowers the chance of interference from other talkers who may be

present.

2.9 Integrating
This chapter has focused on the necessary requirements that a speech interface must fulfill

to be used with Timeliner. It also introduced the two software packages that are used to

create the speech interface, IN 3 and Personal TrueTalk. The use of the speech recognition

software and the speech generation software allow for specific modules to be hooked into

Timeliner to create the speech interface. Therefore, the remainder of the thesis focuses on

the integration of the speech recognition and generation modules and on the issues associ-

ated with a speech interface for Timeliner.

Chapter 3

Implementation
This chapter shows how the speech interface is created. It gives further insight to the orga-

nization of commands into contexts, patterned after the Timeliner displays. Finally, it

introduces a Timeliner script that shows the utility of a speech interface for Timeliner.

3.1 Organization of Speech Recognition
The speech recognition should mimic the possible mouse inputs to the display. Each dis-

play has a set of possible commands that can be accomplished through mouse clicks. In

order to increase the recognition rate, each display has a certain set of verbal commands

that can be recognized while within that display's context. Therefore if a new window

comes up within Timeliner, a new context is activated. The contexts based on windows

create a hierarchy of commands that are recognized. There are also commands which

allow the crew to navigate between the windows and scroll within windows.

This chapter deals with the way in which the speech recognition and generation are

connected to Timeliner. The creation and training of commands and the routing of mes-

sages to the generation package are discussed. Finally, we introduce a demonstration

Timeliner script that we created to show the value of a speech interface with Timeliner.

3.2 Timeliner Displays
There are approximately nine windows in the Timeliner X-window interface. Each one

corresponds to a different context for the speech recognition. The buttons on each allow

various access to the other windows in the interface as well as control over the scripts

being run. This is the only way a crew member can get status, currently. The speech inter-

face extends this by allowing the crew to hear messages and to control the windows with

voice commands.

The following Timeliner display is an example (See "Timeliner Windows" on

page 45). There are verbal commands associated with each button and scroll bar that can

be depressed. The buttons provide the crew with access and control over the sequence that

is running. Different sequences can be loaded up and viewed even while other sequences

are running. The recognition must be able to differentiate between the "START," "STEP,"

and "STOP" commands, which are all Timeliner commands. Also, the mouse navigation

controls for the scroll bars and for selecting lines in the sequence correspond to

"SCROLL" commands and "SELECT NEXT" and "SELECT PREVIOUS" commands,

respectively.

Executir CORE

Bund COMMANDALLTEST qen MASTER

q~nC.Sta WAITINGLFOR_10 Current Statement # 1 24

,TS50= >("abcdefghijklamopqrstuEvwxyzABDEFGHI P
,TSI=>"B"

23 wait 5.0

HOLD AT
25 wait 10.0
iU Ti

26 MESSAGE "Conimanding types out of numeric range -- byte Stemnt#:

Figure 3.1: Sequence Control Window

20
i• ••. :..:!.•:• ..•.......::: :•- .• '.•,.•:.+• ...

:jr• rg~~~-3 ,,,• sL~uo ii~~ :•ii-ii:ii•• •i
• : •.• . .:, ,:-...•=."::.:.:-..:• -.-. •..:. ,:.:.

:i•[,•' J •I•;:•m • • $``• [• •1 • •]•`t•P . • • .,. •:: !:•!•i!,-i?•i' i•!!•!!:!|.i.

ii~~ ~~~ i! -,?:7:':,:":? : :,,

il ! • -•, J • . . . • , :•,i::i •i-:••:: - • ,:•:ii•:. ,,
r •i••,,•!,!i~ •!• :i!: ~ ! !i'i''i:i:• :li ii:ii:i•• :i•ii:i:•i :: • i , : :•• • • ••• :• •: ' · ' :? : : , :•• : : • :': • ••:, ,•,: ,:, : •: • •• •:: :

:Yi• • i~ i•tt ::• • ,!,:•:,,::?,',::i•:,:i:•:::,I: • i, i:,,i:•:i::• ::;e n c :",ro • ` .W i••n`::••:••• • •..• ;:•ii•:- ::: :•,i::: .':::,-3::", ,7, ,.•{•••••i "

. . • • •. - = . .:• . • .. ; ... • : .•. : . . .• • •. ::.: .. : •• . : . .

3.3 Mimicing Mouse Clicks
The ability to mimic mouse actions is not straightforward. There are certain advantages to

mouse movements that do not easily translate into verbal commands. Therefore, care must

be taken to insure that as much of the current interface is extended to verbal commands as

possible. One advantage of verbal commands is that their utterance can be closely tied to

the action which they perform. For instance, most buttons of the Timeliner window inter-

face have a corresponding verbal utterance that is the same as the text label of the button

(See "List of Commands" on page 54).

Some mouse movements are not associated with specific buttons--window focus for

example. In order to switch between windows, there are verbal commands that reference

specific windows. This provides a mechanism by which different classes of verbal com-

mands can be loaded depending upon the current active window.

3.4 Verbal Command Contexts
The contexts of each window differ, thereby creating subsets of verbal commands for the

recognition package. This is needed because sometimes the same verbal command should

do something different depending on the window that is active (the context). For example,

the command "DISMISS" is used in many windows to cause the window to disappear, but

the actual X-event that takes place differs for each one. If there were no mechanism to

allow for contexts, then each "DISMISS" would have to be unique in its verbal command

template.

Each command need only be recognized when the user is activating the portion of the

Timeliner interface that is related to the command. By keeping the commands separated

into a hierarchy of classes, the number of commands that the recognition engine must cor-

rectly recognize is certainly reduced, thereby increasing the recognition rate. To augment

this hierarchy, there must be a manner to maneuver between states of the command hierar-

chy. This results in a state diagram that provides connectivity while maintaining local min-

imization of the number of active commands. The following figure shows the state

diagram of all the commands and the contexts in which they are active.

Figure 3.2: Context State Diagram of Spoken Commands

Notice that there must be a class of commands which are always recognized. This

allows for commands to switch between the different windows, hence the different con-

texts.

(scra~oll Leff Page Up)
Scroll Down Scroll Fighat

SelectNe xt) Pich Directory

Select FPreeoue)
(-Bundle File Seleolon Wndo w)

IN3 has two different ways to recognize contexts within an application. The first is a

field related to each command that maintains the X-event class name in which the com-

mand should be activated. While this sounded promising, it proved to be of little use since

the class names within the same application are the same. The second method uses a con-

cept of command sets. Each command is part of at least one command set, represented by

a bit mask. Therefore, there can be commands that are a part of multiple command sets,

allowing some commands to be activated within multiple contexts.

At any one time, at most two command sets are active, one of which is always the

default. The default command set is called "NEVER_OFF" and any commands contained

within can always be recognized. The following table lists every command set, the win-

dow with which it is associated, and the number of commands in each set.

Table 3.1: Command Sets

Number of
Command Set Associated Window

Commands

Bundle Status Bundle Status Window 19

Commands Commands Window 14

Current Bundles Current Bundles Window 5

Current Sequences Current Sequences Window 5

Executor Status Executor Status Window 16

Find File Bundle File Selection Window 14

Never Off not applicable 10

Sequence Control Sequence Control Window 21

Timeliner Timeliner Window 12

Timeliner Script Messages Timeliner Script Messages Window 7

The total number of distinct commands currently implemented is 100. From the above

table, it is obvious that the use of contexts severely cuts down the number of commands

that the recognizer must deal with at any one time (by more than a factor of five).

An interesting thing to note concerns incorrect recognition in this framework. The

effect of incorrect recognition is severely limited through the use of contexts. By carefully

choosing the verbal commands within a context, false recognition can usually be avoided.

Also, since the command sets are associated with certain windows, false recognition can

be limited to harmless functions. In order to get access to the potentially undesirable com-

mands of a non-active window, it is first necessary to say a command which moves the

focus from the current window to the unwanted window. Luckily, when the command to

switch to a new window is recognized, there are multiple indications that such a situation

has occurred. First, the window related to the new context is suddenly brought to the front

of the display if it is behind other windows. Then, IN 3 has a setting that causes an audible

beep to occur that indicates that a new context is active. With this feedback, it becomes

apparent that a new context/window has been activated. Of course, this is usually unneces-

sary as long as the verbal commands are chosen wisely.

3.5 Enabling IN3

In order to make the speech interface as modular as possible, IN 3 is started up as its own

process rather than being a necessary component of the Timeliner baseline. In this way,

the recognition is not critical to the operation of Timeliner, yet still provides the function-

ality of an integrated package. In fact, it is possible to create voice commands that load up

and run the necessary components to initiate Timeliner. While not necessary for a final

version of the commands, this feature is very valuable when designing the commands,

because Timeliner can be quickly restarted when problems arise during the initial design

of new verbal commands.

The default for IN 3 is to load up a window interface that provides many tools for

developing new commands and using them. The following figure shows the main window

for IN 3 .

S 1IN3 Voice Command - Timeliner

ptions)

C 4v 1

Corp. Inc,

File:) Edit; View -) O0

52 Commands Loaded

(1,)_M ICROPHONE
(]Bundle File Selection Win
(,))Bundle Status
(,))Bundle Status Window
(Cancel
(, Clear

) Commands
, Cormmands Window

1(ýDismiss(Bundle Status)
,) Dismiss(Cornmmands)

(],) Dismiss(Exec Status)
4)Dismiss(Seq Control)

V2,2 Copyright 1992-95, Command

Status: Recognition is active

Figure 3.3: IN 3 Window

This window is very useful when developing and testing new commands. It gives

feedback about what commands get recognized and which commands have voice tem-

plates associated with them. From this window, menus allow the commands to be created,

trained, and refined. However, during a full integration with Timeliner, IN 3 need not be

started with a window interface. Therefore, the speech recognition could appear com-

pletely transparent to the crew members on board the station.

i- ~x..~.~l-i;...~....l-.lr~.l~l.lllllr-~~~ -~-I~-~-Y1LI

·111~11111·111------·--·~----·I~·--·I~--::

3.6 Creating Commands
Commands are created using a window interface with IN 3. First information needs to be

created identifying the command, its operation, and its context. This is accomplished in

the command window of IN 3 (See "IN3 Command Edit Window" on page 53).

3.7 Speech Commands for Timeliner
The commands for Timeliner are easily created using the interface for IN3 . Each com-

mand allows for window navigation or mouse clicking associated with the Timeliner inter-

face. The commands are simple to say and easy to remember since their function either

corresponds directly to buttons with labels or are intuitive scrolling functions with names

such as "SCROLL UP" and "PAGE DOWN" (See "List of Commands" on page 54).

3.8 Training the Commands
In order for the speech engine to recognize a command in IN 3, each command must be

associated with a template. The template is a recording of the time frequency energy pat-

tern of the spoken command by a particular speaker. IN 3 allows commands to be dupli-

cated, with different verbal templates associated with the duplication. It is even possible to

have the commands with different templates perform the same action (one could have

"CLOSE WINDOW" and "DISMISS" do the same thing). Using this, each crew member

has a unique template for the commands that the crew member can say.

The energy patterns associated with each command allow for variations in speech rate

and pitch. It is important to note that this means that each verbal command can be recog-

nized correctly when spoken by someone else besides the person on whom it was trained.

Thus, there is very little guarantee of authentication on the part of the speaker (See "Fur-

ther Research" on page 40).

The commands are trained by a simple creation using IN3's interface. Each command

being trained is repeated twice before moving on to the next command. Then, all the new

commands are repeated one more time. This minimizes the problems that occur when

users change their speech pattern when training the commands as compared to normal

operation. If such a change occurs, then the recognition rate suffers. By having to speak

them, one after the other, the user unconsciously reverts to a normal speech pattern,

increasing the likelihood of correct recognition.

IN3 also allows a command to be refined. This is a similar operation, but it merely

adjusts the previous template with the newer recording of the energy pattern. Since the

creation routine is very simple for commands, it might be easier just to recreate the com-

mands if there is any doubt about a template's correctness. Considering the number of

commands and the number of users of this recognition system, it is not unreasonable to

have to train the recognition. This cuts down greatly on the restrictions of the speech rec-

ognition task with an acceptable trade-off of a relatively small increase in training time.

3.9 Organization of Speech Generation
The generated speech should mimic the messages that are displayed on the screen. It

should provide a simple way for the crew to learn of any change in status of the current

scripts which are running. This provides a distinct advantage over a textual display of the

message to the Timeliner window interface. Most importantly, the messages will be easily

distinguishable from other feedback to the crew. The speech generation has the possibility

to distill the plethora of information that the Timeliner script contains into a simple audi-

ble message of status. Of course, a primary requirement is for the speech to be comprehen-

sible. Therefore, the messages might need to be reformatted to insure the best possible

form for the generation engine.

The generation package should be as modular as possible since it only relies on text

strings from Timeliner scripts. Since the messages are already routed to the Timeliner dis-

plays, it is from this point in the code that the messages can also be sent to the speech gen-

eration engine. One thing to aim for is fault tolerance. It would be unwise to expect

Timeliner to wait for the generation engine to complete, since messages could be arbi-

trarily large. Instead, the messages should be sent to a separate process which takes care of

the speech generation package, thereby insuring that Timeliner can continue.

3.10 Enabling Personal TrueTalk
The speech generation software, Personal TrueTalk, normally loads up as a window inter-

face. This window can be closed while still allowing speech generation to continue. The

window allows the user to adjust various settings such as voice gender, voice rate, and vol-

ume level. Also, part of the window is an area for trying out sentences so that the user can

get an idea of how the speech generation will sound. The following figure shows the main

window for TrueTalk.

Personal TrueTalk(tn) LB

Figure 3.4: TrueTalk Window

TrueTalk provides multiple ways other than typing into the window in order to pass

text to the generation engine. One manner is the ability to speak highlighted X-selections.

Another is through the use of TCP/IP ports. The text can also be passed using Tcl/TK

commands. The TCP/IP port method likely provides the most secure method for passing

text to TrueTalk since TCP is a reliable protocol. However, one problem that can arise is

that causality is not necessarily maintained. If one text message gets delayed due to a fail-

ure in sending and another process has begun to speak a new selection, there is no inherent

guarantee as to which will arrive first. In all fairness, however, a mechanism could be

implemented which strictly enforces causality. However, it is preferable if an elaborate

control system can be avoided while still achieving causality.

As it turns out, the use of Tcl/TK commands can maintain causality without complex

control. TrueTalk has an added TK command called "TTplay" which speaks strings that

are passed to TrueTalk. By using this, it is simple to create a Tcl script that calls a genera-

tion package with a "send" command.

The generation package is called from a Timeliner call when the message is output to a

display. This is done with only one procedure called "speak_TL_message" in the Ada

package "TL_speech_gen_interface" (See "Ada Code for Speech Generation" on

page 59). It is called and given the message that should be spoken as a string.

In order to interface the Ada code with a Tcl/TK script, an intermediate C program is

used (See "C code for Speech Generation" on page 61) [5]. The Ada procedure prepares

the string and calls another procedure which is actually the C code.

The C code starts up a process of a Tcl interpreter with a Tcl script. The Tcl script is

responsible for making the actual TK "send" call to the generation engine (See "Tcl/TK

Scripts" on page 62) [6]. One problem that arose is related to the time it takes to actually

speak a message. Sometimes in Timeliner scripts, a few messages are quickly displayed

one after another. Therefore, care is taken to insure that any new messages wait until the

engine is not busy before proceeding. To recognize that the generation engine was busy

speaking a command, another "send" had to be devised to get access to a variable called

"TTPlaying". One problem with this call is that "TTPlaying" does not exist until the first

time that the engine attempts to speak some text. Therefore, two Tcl scripts are needed.

The first Tcl script assumes that the engine is not busy and calls it without checking that it

is busy. This Tcl script is only executed the first time the C procedure is called. Then, any

time another message needs to be spoken, a different Tcl script gets called, which makes

the check on the variable and waits until the generation engine is no longer busy.

This method also doesn't drop messages. It is bad to receive every other message, for

example. However, it is unclear whether there should be some mechanism which drops

messages after a certain period of time so that extremely old messages do not get spoken

(See "Generation Strengths" on page 38).

3.11 Complexity
A guiding principle behind the design was Occam's razor which states that simplicity is

better than complexity. In cases where it was unclear for certain design issues, such as

using Tcl/TK instead of TCP/IP, this principle was applied. While maintaining simplicity,

this implementation does not sacrifice value for the speech interface.

3.12 Demonstration Script
In order to show the usefulness of the current speech interface implementation, a demon-

stration script was created (See "Demonstration Script" on page 65). The data used to

create the demonstration Timeliner script is a real space station payload experiment from

NASA's Marshall Space Flight Center in Huntsville, Alabama. An important aspect of this

demonstration script is the interaction required from Timeliner and the crew in order to

complete the experiment. Each aspect of the experiment asks the crew to do certain tasks

before continuing the experiment. This use of Timeliner helps the crew by making sure

that each item on the experiment's checklist is done (and in the proper order).

This script shows the usefulness of the speech interface to aid the crew in understand-

ing script operation. The messages are spoken as well as displayed and the crew is sig-

nalled when their interaction is required. Also, the crew are allowed to leave the terminal,

in order to do parts of experiment, while still staying in contact with the script operation.

This insures that messages are not mistakenly overlooked because the crew is not watch-

ing the displays at every moment. Also, it relieves the crew from having to go back over to

where the displays are located in order to signal Timeliner to continue once the crew com-

pletes the manual operation needed for the experiment. This enhances the current interface

with additional functionality.

3.13 Summary
This chapter discussed the actual implementation of a speech interface for Timeliner. We

showed that the use of contexts within verbal command recognition significantly lowers

the number of commands that are active for the recognizer. We also demonstrated the

advantages of speech generation and how we interfaced with the generation from the

Timeliner displays. The demonstration script illustrates the benefits of a speech interface

for Timeliner by revealing how it can be used to help the crew. The next chapter discusses

our results for this research.

Chapter 4

Results
This chapter gives the results of our research. It illustrates the effectiveness of the recogni-

tion software and the generation software to further enhance the Timeliner interface.

4.1 Does it Work?
Obviously, the most important litmus test for the speech interface is whether it works.

Each separate package integrates with Timeliner perfectly. However, we had a problem

with the workstation we were using which makes it very difficult for both the recognition

and the generation to take place at the same time. This is because both packages must use

the /dev/audio device. Since our workstation currently has a speakerbox, which hooks up

to the microphone, only one package can gain access to the audio devices at a time. It

turns out that there is a way to solve this problem by each package following a protocol of

surrendering the audio device when another process asks for it. Unfortunately, TrueTalk

does not follow this protocol. We were forced to change the code to stop recognition while

a message is spoken, but it would be better if that were not necessary. It turns out to be

very annoying not to be able to speak while something is being spoken. In fact, the current

version can wait up to six seconds to reenable recognition after something gets spoken in

the worst scenario. However, in a real experiment on the space station, it is likely that the

crew would have operations to perform during the delay.

Other than that problem, the speech recognition and generation both complement the

windows interface of Timeliner with the functionality of a speech interface. The interface

is transparent to the user. This means that when they are running, it is not evident that the

actual recognition and generation software are not part of the Timeliner baseline. Yet dur-

ing creation and testing, the window interfaces of each software package allow for sepa-

rate testing and evaluation of the speech interface.

4.2 Recognition Ability
The speech recognition of IN3 is very reliable and predictable. The recognition normally

is very accurate. The recognition rate is very dependent upon the environment in which

the training takes place. The errors in recognition usually involve similar commands. This

should be avoided if possible. However, most of the problems associated with the recogni-

tion are correctable.

The codec used in the current model of the speakerbox in the Sparc 10 being used has

problems with a background hiss that gets recorded along with the microphone input. This

causes the automatic gain adjustment feature of the recognition software to be set much

too high, thereby lowering the effectiveness of the recognition software. After consulting

with the company that created IN 3, adjustments were made to minimize the effect of this

deficiency in the speaker.

4.3 Generation Ability
The speech generation works extremely well. It provides a very comprehensible output of

the Timeliner messages in a timely manner and in a causal fashion.

There is still an open-ended question concerning the treatment of acronyms, however.

Acronyms provide a serious challenge to speech generators because the acronyms are not

usually real words. In addition, some acronyms, when spoken, are changed by adding

vowels in order to make the acronyms sound like a word. Currently, TrueTalk merely

spells out the acronyms. This seems very reasonable, especially considering the learning

curve required by humans to correctly deal with acronyms. However, it is likely that a

table could be created that relates common acronyms to their phonetic interpretation and

then the generation engine could consult such a table.

Messages could be better designed if the creator has the foreknowledge that the mes-

sages are going to be sent to a speech generator. This would cause the designer to pay

closer attention to the messages being created. In fact, in the future, multiple messages

could be maintained; one intended for screen display, and another which is phonetically

engineered for specific input to a generator.

4.4 Relation to Current Interface
The speech interface enhances the current window interface with obvious additional func-

tionality. It empowers the crew by allowing mobility. It provides further feedback to the

crew members through voice messages and it provides the crew with the ability to control

Timeliner operation with easy voice commands. The utility of the speech interface reveals

itself in any script that gets run. The demonstration script (See "Timeliner Script" on

page 65) shows how useful it is to be able to interact with the script while still maintaining

control over the operation with better efficiency. This demonstration script does not show

every possible use of the new speech interface. By having such an interface for Timeliner,

the creators of the Timeliner scripts can probably design even better uses of the speech

recognition and generation features.

4.5 Summary
This chapter revealed the results of a speech interface for Timeliner. It analyzed the advan-

tages that the additional interface has for the crew and for Timeliner. The final chapter

draws conclusions about the research.

Chapter 5

Conclusions
This chapter discusses the strengths and weaknesses of the current implementation. It also

goes into the open issues that we discovered and elucidates further research that could be

done, as well as the extensions that could be added.

5.1 Recognition Strengths
The speech recognition provides a useful interface for the crew. The recognition can be

very convenient to use in most respects. It would not be suitable for entering keyboard

inputs but it does an admirable job of saving mouse strokes. The recognition proves to be

very accurate for medium sized phrases with rare mistakes. Also, the verbal utterances can

be within longer phrases and the software is still able to recognize the command. This

means that the crew need not maintain a regimented form for speaking the verbal com-

mands as long as the verbal commands, themselves, are relatively similar to the templates.

5.2 Recognition Weaknesses
There are some problems with the recognition software, but most are ones that can be

avoided with some precautions. One must be careful with the choice of voice commands

within overlapped contexts. If the commands are too similar, then it is unlikely that the

software will be able to recognize all the commands correctly. However, one factor that

really attributes to this is the signal-to-noise ratio in the environment. In our environment,

we had some background noise, but it turned out that the majority of noise was introduced

by a poor speaker input to the workstation being used. This problem is quickly remedied

by insuring a good input to the recognition software.

A simple rule to follow is to train the recognition software in the environment in which

the recognition will take place. This seems to present a problem for Timeliner's intended

use--on the space station--but there will be very accurate station simulators on the ground

that will provide a close replica of the station itself, including background noise. There-

fore, the training of the verbal commands can take place with the crew in a station simula-

tor.

5.3 Open Issues for Recognition
Some of the problems we encountered had no clear solutions. We implemented the soft-

ware on a relatively powerful workstation. On the space station, the computers will be 386

cpu-based. This presents a rather drastic drop in performance. There are speech recogni-

tion packages that are designed for such computers but it remains to be seen whether the

quality can match what was demonstrated by this research. Also, not all of the mouse

operations so easily lend themselves to voice commands. Picking an item from a list is

performed easily with a mouse but not so easily with voice commands, especially when

the items are not accessible by the software package. Some mouse commands are simply

left out of the current recognition interface. This seems to be outside the realm of what the

recognition software needs to do. A less conspicuous problem concerns what the actual

commands are called. Sometimes the verbal commands do not have visual counterparts,

so the crew must remember the commands they must say rather than looking at a display.

The development of these command names is ad hoc and relies on the developer's prefer-

ences as to what to name certain commands.

5.4 Generation Strengths
The speech generation provides very comprehensible speech from text strings that are

routed from Timeliner. One of the biggest strengths is the fact that the speech is another

avenue for feedback to the crew members. With a screen full of displays, it is easy to miss

a message displayed to the screen. It turns out to be much more noticeable when the same

messages are also spoken. The generation software can change various attributes such as

voice pattern, gender, and speed. These provide the means to set up the generation soft-

ware to suit the crew. We designed the speech generation so that all messages that are dis-

played on the screen will get spoken in the correct order and so that no messages are lost.

This is important for the space station since causality could matter a great deal. It is still

unclear whether really old messages should still get spoken. It would be trivial to add a

time-of-existence field for messages if deemed necessary.

The interface for the generation is very simple and intuitive. This benefits Timeliner

by providing simple access to spoken messages.

5.5 Generation Weaknesses
The generation software has a few areas where it could be improved. In order to get the

correct inflection on the voice output, it is necessary to put the text of the message in a

sentence-like form rather than sending it word-by-word. This, however, seems reasonable

and is usually the way that one would want to organize the output. The most annoying

aspect of the generation software is that words that are in all capital letters get spelled.

This means that the text either needs to be in mixed case or all lower case to produce sen-

tences. Unfortunately, many of Timeliner's internal commands are capitalized. It would be

nice if the software provided a flag that could be set to change this behavior so that it

would speak, rather than spell, sentences of all capital letters. However, acronyms get cor-

rectly spelled as long as they are in capital letters.

Currently messages are spoken only once. If the crew were busy, it would be desirable

for them to be able to request that the message be repeated. This is something that would

be possible given better integration between the speech recognition, Timeliner, and the

speech generation.

5.6 Open Issues for Generation
An interesting area for research involves associating a priority with the messages. For

instance, the crew might want to suppress messages from certain Timeliner scripts and

allow messages to be spoken from others. If messages were given different priorities, then

messages could reach the crew if they were important enough. Also, messages could sig-

nal the crew that they should pay attention, because an important message is about to be

spoken. With these abilities, Timeliner would truly start to become an integral participant

in station operation, freeing up the crew.

Another issue involves the messages themselves. Currently, the messages spoken are

almost identical to the messages displayed to the screen. It might give the script develop-

ers more control if there were optional recognition-specific messages that could be associ-

ated with every normal message. In this manner, the developers could adapt a message to

the specific speaking nuances of the generation software and still have a standard message

that gets displayed. Along with this, the generation software could provide more functions

if it had more hooks into Timeliner.

5.7 Further Research
There are a lot of topics that still need research in order to better understand the uses of a

speech interface with Timeliner. The speech recognition could deal with authentication for

example, if the patterns were closely tied to the speaker's individual voice patterns. With

this, it would be possible to load up different sets of voice commands for different crew

members. This would provide safer operation for the station since each crew member

would only have access to the commands they were suppose to use. A less stringent ver-

sion of this is possible in the current version, but there is no guarantee that the wrong crew

member couldn't start up some other crew member's command templates.

Certain commands have serious consequences in a real space mission. At present, it

would be unadvisable to allow voice versions of these commands since there is the outside

chance that the recognition will make an incorrect match. However, it is possible to add

some redundancy checks to the commands so that it would take more than one voice com-

mand to initiate certain actions. Or, it is possible to load up different sets of commands

based on their criticality.

5.8 Extensions
The next step for this software seems to be a real-time version. This would further verify

the utility of a speech interface with Timeliner and prove that it is feasible for on board the

International Space Station. Also, further study should be done on the inclusion of a

speech interface into the Timeliner baseline. More utility could be gained by further inte-

grating the packages.

An exciting addition to the speech interface would be a small display that travels with

the crew--such as a heads-up display. With this, the crew would be completely free, with

nothing requiring hand inputs, thereby allowing the crew to better accomplish the experi-

ments. Everything that the crew needed would be headworn.

5.9 Utility
This research was to be a proof-of-concept endeavor. It has shown the utility of a speech

interface with Timeliner. The speech recognition complements the current X-window

interface by freeing the crew from mouse constraints. In addition, the speech generation

provides functionality through extra feedback to the crew with messages from Timeliner.

This research shows that it is both economically and technically feasible to include a rela-

tively good speech interface with Timeliner. Hopefully, it will spawn further study, result-

ing in a working version out in space.

Acknowledgments

I am grateful to all the members of the Timeliner Project at Draper Laboratory. Their hard
work and their patience were invaluable. I would especially like to thank Richard Berthold
and the Lab for allowing me to undertake this research as a Draper Fellow. I would also
like to acknowledge the help I received from Frank Kreimendahl, Tony Bogner, Pete Mat-
thews, John Martin, and Kevin Lee while completing this research.

I appreciate the time that my advisor, Stephanie Seneff put forth in helping me finish
my thesis. She was always available when I needed her.

Finally, I would like to thank my family for all their support throughout my school
experience. I am at this point in my life due to their unwavering belief in me.

Thanks be to my Lord and Saviour Jesus Christ.

Jim Napier

Appendix A

Timeliner Windows

A.1 Main Window
The following figures show the current Timeliner interface. Each button and scroll bar in

the displays have corresponding voice commands to control them.

Figure A.1: Timeliner Main Window

Figure A. 1 shows the window that initially comes up when Timeliner is started. From

this window, the user can open the commands window (to load and install a script) or open

the status windows (to view scripts running). This is the only place where the user can exit

Timeliner.

" I II itLNtK

Welcome to TIMELINER¸ Jf•!•ii~~~i•!!!i~~~i~iii•!•~ ii ,,!i iii• % ,i ,,,,•• • i ll••• •i•i; -::"::::::i% k ! i•••i::•!!!!!!!• !i•i': : :i i•!) i i~ i ii• •) • • l i l• !•i!i • i!! iii i~ • • ! l • ili• i ~i !!i!•l • •i! i~ • !• iY ii • i •! il i•!!iii~ iiiii~ il i~ lii•
; !!iiiii ~ --i• ii iiiiii i

I
• ii ii i - :- i • -ri · · iii.., .! I iiii'iiill iiiiii• •ii "!i••i :i i i i•• •• i!.~lii iii~~

i~~~~~~~~~i ~~~:) !i i i •!I!~~il ·:•ii iii.i i- i ilili i! i li iiiii!ii i!iii!i!ii iii III illii~ llii i!

r:::: : -- : : ::: -:-:- j : : ----- :::; - :- : -:

A.2 Command Window

- · - A·eES A N .I~_r J·

TIMELINER COMMAND PANEL

Executor: CORE

Bundle File Pathname : FIND FILE

A/users/rtb2448iverosion8/envfile_ serverCOMMAND ALL TEST.TLk-

Priority:

Delta: T:

Bundle Name: :OMMANDALLI

START STOP

STEP
JUMP To.

Bundle Name :

Sequence Name :

Statement Number :

COMMANDALL_-1

MASTER

DISMISS

Figure A.2: Commands Window

Figure A.2 shows the commands window. From this window, the user can control bun-

dle installation and a sequence within a bundle. The user can also load up a script from the

file server.

----------------------------- ------------------- --------- -

I I , , i

INSTALL]

REMOVE HALT ,

FREEZE ALL

A.3 Bundle File Selection Window

Figure A.3: Bundle File Selection Window

Figure A.3 shows the bundle file selection window. From this window,; the user can

search through the file system to find Timeliner scripts to load.

BUNDLE FILE SELECTION

Filter
r Mad tIfSSA/use hMb2ia0i8e o8iflkjre, ILq

Direct*rie Piles

24481erioiISleniwft1 serve~. IYDRPU~MP TEST.TLX
244 oscaeWeftie servez4mports

S40ers' Slenv~fteBsw~i

see~ction,

SSAii*ir2448 "is8?@~invfueservrCOMMAND-ALL-TEST.TLN-·'fCancel

A.4 Executor Status Window

Figure A.4: Executor Status Window

Figure A.4 shows the executor status window. The user gets information about the

bundles which are loaded and can control the loaded bundles. The user can get more infor-

mation about a particular bundle by pressing the bundle status button.

A.5 Script Messages Window

Se TIMELINER SCRIPT MESSAGES

HRS MINS SECS

2 54

S251 0 0 CONSTRAINT EXCP:
200 1 1 COMMANING ALL TYPES WITHIN RANGE
199 1 1 STARTING COMMAND TEST
133 1 1 CaMANDING ALL TYPES WITHIN RANGE
132 1 1 STARTING CO~MAND TEST

As

Figure A.5: Timeliner Script Messages Window

Figure A.5 shows the Timeliner script messages window. The user sees messages dis-

played from the script being run and from Timeliner's executor. Each message here is spo-

ken using the speech generation software, except the initial numbers for statement

number, bundle number, and sequence number.

BUNDLE STATUS

TIMELINER BUNDLE STATUS

Executor : CORE

COMMANDALLTEST
S.TART Bundle

STOP

RESUME Sequence

I : MASTE

: 2: --

23: --

v 5: --

v 7:- --

S : --

ame Stmt # Sequence Status

R 24 WAITING_FOR_IO

-- VACANT

-- VACANT

-- VACANT

VACANT
-- VACANT

-- VACANT

-- VACANT

-- VACANT

US-- N J VACANT
PRVIU NEX CANT is

Figure A.6: Bundle Status Window

Figure A.6 shows the bundle status window. The user gets information about a partic-

ular bundle, specifically the sequences contained within the bundle. The user can control

each sequence within the bundle and can get more information about a particular sequence

by pressing the sequence control button.

A.6 Bundle Status Window

1:._J<-
k. : : i 1 II ,

I
-·-

Ig .- I

: : : :

----;;...: :-:-::: -: :

A.7 Current Bundles Window

Figure A.7: Current Bundles Window

Figure A.7 shows the current bundles window. The user can change what bundle is

displayed in the bundle status windows by selecting a bundle in this list.

A.8 Current Sequences Window

Figure A.8: Current Sequences Window

Figure A.8 shows the current sequences window. The user can change what sequence

is displayed in the sequence control window by selecting a sequence in this list.

Z CUAKKtNL I UNULLS

COMMAND_ALL_TEST

OK DISMISS
1* Jl~

I lllllllll 1111111_
LUKKX K I I btU tiVtl

MASTER

OK jDISMISS
:II.111·llll si4 K . I

rJlllll~13~_L~

Appendix B

Verbal Commands

B.1 IN3 Command Window

The following figure represents the editing window for creating verbal commands.

IN3 Editor: Edit Command

Edit:: Edit keys perform function in keystroke window Window/ Pointer Probes:

All keyboard input is captured when pointer is in: keystrke window Names ->) Tracker -)

.Keysrokes: {Warp:cormnands:449: 358)3 MBL+}{MBL-

Microphone,

Turn On
•

Toggle Return Ente L Space Ins De BS PrSc Compose insert Home PgUp

Mouse uttons: Left: Control Shift Alt Inser MetHoe

Left Middle:: i Right I Up
Right: Control Shift Meta

Enable iin ontext(s): Delay:) 10 Belongs to Command Set(s)

. * ALL* :> Belongs To. BUNDLE STATUS
- Switch To: MANDS

FIND FILE

ModifyY Add Dlete1 Reset

Figure B.1: IN 3 Command Edit Window

Figure B. 1 shows the edit window in IN 3 for creating new commands or editing exist-

ing commands. The edit field is where the user can specify mouse events through the use

of the tracker button. Also, command sets to which the commands belong may be speci-

fied as well as a transition to a new command set once the command is finished.

B.2 Commands
The following table describes each command; it lists the command set and the action of

the command.

Table B.1: List of Commands

Command Name Command Set Action

_MICROPHONE Never Off Toggle Recognition

Bundle File Selection Win- Find File, Never Off, Focus the Window
dow Timeliner

Bundle Status Executor Status Open Bundle Status Win-
dow

Bundle Status Window Bundle Status, Never Focus the Window
Off, Timeliner

Cancel Find File Depress Cancel Button

Clear Timeliner Script Mes- Depress Clear Button
sages

Commands Timeliner Depress Commands But-
ton

Commands Window Commands, Never Off, Focus the Window
Timeliner

Current Bundles Window Current Bundles, Never Focus the Window
Off, Timeliner

Current Sequences Window Current Sequences, Focus the Window
Never Off, Timeliner

Default Commands Enter Default Text

Dismiss(Bundle Status) Bundle Status Depress Dismiss Button

Dismiss(Commands) Commands Depress Dismiss Button

Dismiss(Current Bundles) Current Bundles Depress Dismiss Button

Dismiss(Current Seqs) Current Sequences Depress Dismiss Button

Dismiss(Exec Status) Executor Status Depress Dismiss Button

Table B.1: List of Commands

Command Name Command Set Action

Dismiss(Seq Control) Sequence Control Depress Dismiss Button

Dismiss(TL Script Msgs) Timeliner Script Mes- Depress Dismiss Button
sages

Display Auto Sequence Control Display Auto Menu

Display Manual Sequence Control Display Manual Menu

Display Output Off Executor Status Display Output Off
Menu

Display Output On Executor Status Display Output On Menu

Executor Status Window Executor Status, Never Focus the Window
Off, Timeliner

Exit Timeliner Depress Exit Button

Filter Find File Depress Filter Button

Find File Commands Depress Find File Button

Freeze All(Commands) Commands Depress Freeze All But-
ton

Freeze All(Executor Status) Executor Status Depress Freeze All But-
ton

Halt(Commands) Commands Depress Halt Button

Halt(Executor Status) Executor Status Depress Halt Button

Hold At(Commands) Commands Depress Hold At Button

Hold At(Seq Control) Sequence Control Depress Hold At Button

Install Commands Depress Install Button

Jump To(Commands) Commands Depress Jump To Button

Jump To(Seq Control) Sequence Control Depress Jump To Button

Next Bundle Status Depress Next Button

Okay(Current Bundles) Current Bundles Depress Okay Button

Okay(Current Seqs) Current Sequences Depress Okay Button

Okay(Find File) Find File Depress Okay Button

Page Down(Find File) Find File Scroll Down a Page

Table B.1: List of Commands

Command Name Command Set Action

Page Down(Seq Ctrl) Sequence Control Scroll Down a Page

Page Down(TL Scrpt Msgs) Timeliner Script Mes- Scroll Down a Page
sages

Page Up(Find File) Find File Scroll Up a Page

Page Up(Seq Ctrl) Sequence Control Scroll Up a Page

Page Up(TL Scrpt Msgs) Timeliner Script Mes- Scroll Up a Page
sages

Pick Bundle(Bundle Status) Bundle Status) Open Current Bundles
Window

Pick Bundle(Seq Ctrl) Sequence Control Open Current Bundles
Window

Pick Directory Find File Select Top Directory

Pick Eight(Bundle Status) Bundle Status Pick Eighth Bundle

Pick Eight(Status) Executor Status Pick Eighth in List

Pick File Find File Select Top File

Pick Five(Bundle Status) Bundle Status Pick Fifth Bundle

Pick Five(Status) Executor Status Pick Fifth in List

Pick Four(Bundle Status) Bundle Status Pick Fourth Bundle

Pick Four(Status) Executor Status Pick Fourth in List

Pick Nine(Bundle Status) Bundle Status Pick Ninth Bundle

Pick One(Bundle Status) Bundle Status Pick First Bundle

Pick One(Status) Executor Status Pick First in List

Pick Sequence(Seq Ctrl) Sequence Control Open Current Sequences
Window

Pick Seven(Bundle Status) Bundle Status Pick Seventh Bundle

Pick Seven(Status) Executor Status Pick Seventh in List

Pick Six(Bundle Status) Bundle Status Pick Sixth Bundle

Pick Six(Status) Executor Status Pick Sixth in List

Pick Ten(Bundle Status) Bundle Status Pick Tenth Bundle

Table B.1: List of Commands

Command Name Command Set Action

Pick Three(Bundle Status) Bundle Status Pick Third Bundle

Pick Three(Status) Executor Status Pick Third in List

Pick Two(Bundle Status) Bundle Status Pick Second Bundle

Pick Two(Status) Executor Status Pick Second in List

Previous Bundle Status Depress Previous Button

Remove(Commands) Commands Depress Remove Button

Remove(Executor Status) Executor Status Depress Remove Button

Resume(Bundle Status) Bundle Status Depress Resume Button

Resume(Commands) Commands Depress Resume Button

Resume(Seq Control) Sequence Control Depress Resume Button

Scroll Down(Find File) Find File Scroll Down

Scroll Down(Seq Ctrl) Sequence Control Scroll Down

Scroll Down(TL Scrpt Timeliner Script Mes- Scroll Down
Msgs) sages

Scroll Left(Find File) Find File Scroll Left

Scroll Left(Seq Ctrl) Sequence Control Scroll Left

Scroll Right(Find File) Find File Scroll Right

Scroll Right(Seq Ctrl) Sequence Control Scroll Right

Scroll Up(Find File) Find File Scroll Up

Scroll Up(Seq Ctrl) Sequence Control Scroll Up

Scroll Up(TL Scrpt Timeliner Script Mes- Scroll Up
Msgs) sages

Select Next Current Bundles, Cur- Select Next in List
rent Sequences, Find
File, Sequence Control

Select Previous Current Bundles, Cur- Select Previous in List
rent Sequences, Find
File, Sequence Control

Sequence Control Bundle Status Depress Sequence Con-
trol Button

Table B.I: List of Commands

Command Name Command Set Action

Sequence Control Window Never Off, Sequence Focus the Window
Control, Timeliner

Start(Bundle Status) Bundle Status Depress Start Button

Start(Commands) Commands Depress Start Button

Start(Seq Control) Sequence Control Depress Start Button

Status Timeliner Depress Status Button

Step(Commands) Commands Depress Step Button

Step(Seq Control) Sequence Control Depress Step Button

Stop(Bundle Status) Bundle Status Depress Stop Button

Stop(Commands) Commands Depress Stop Button

Stop(Seq Control) Sequence Control Depress Stop Button

Timeliner Script Messages Never Off, Timeliner, Focus the Window
Window Timeliner Script Mes-

sages

Timeliner Window Never Off, Timeliner Focus the Window

Update Sequence Control Depress Update Button

Appendix C

Program Code

C.1 Ada Code for Speech Generation
The following code is designed to be called by a Timeliner procedure with a message to be

spoken. This code, in turn, calls some C code to spawn the process of speaking the mes-

sage via a Tcl/TK script.

Table C.1: TL_SpeechGen_Interface Specification

package TL speechgen_interface is
procedure speak TLmessage(the_msg: in STRING);

end TL_speech_gen_interface;

Table C.2: TL_Speech_Gen_Interface Body

with SYSTEM;
with TEXTIO;
with LANGUAGE;

package body TL_speechgen_interface is

use LANGUAGE;

--C Routine to send text to speech generation module

procedure speak_message(the_msg : in SYSTEM.ADDRESS);

pragma INTERFACE(C, speakmessage);
pragma INTERFACE_NAME(speak_message, C_SUBP_PREFIX &
"speakmessage");
pragma LINK_WITH("speak_message.o");

--Procedure to handle formatting msg correctly
procedure speak_TLmessage(the_msg : in STRING) is

msg_length : constant NATURAL := themsg'LENGTH;
C_msg_length: constant NATURAL := NATURAL'SUCC(msg_length);
C_msg:STRING(1..C_msg_length);

begin

--convert ada string into C string
C_msg(1..msg_length) := the_msg;
C_msg(C_msg_length) := ASCII.NUL;

--call the c routine to speak the message
speak_message(C_msg(1)'ADDRESS);

--catch all exceptions because we don't want this to kill Timeliner
exception

when others =>
text_io.put_line("Couldn't output audible message.");

end speak_TL_message;

end TL speech_gen_interface;

C.3 C code for Speech Generation
The following code calls the TCL scripts that are responsible for calling the speech gener-

ation software.

Table C.3: Speak_Message C Procedure

#include <stdio.h>
#include <stdlib.h>

#define MAXSTRING 100

void speak message(char *the_msg)

char command[MAXSTRING], *tmp_file_name;
FILE *ifp;

/*need a variable to know when we've called this proc more
than once*/
static int more_than_once = 0;

tmp_file_name = tmpnam(NULL);
/* tmp_file_name = "TLmsg_str.txt";*/

if (!more_than_once) {
sprintf(command, "wish -f ttsayonce.tcl %s",

tmp_file_name);
more_than_once++;}

else {
sprintf(command, "wish -f ttsayagain.tcl %s",

tmpfile_name); }
ifp = fopen(tmpfile_name, "w");
fprintf(ifp, "%s", the_msg);
fclose(ifp);

system(command);

remove(tmp_file_name);

I

C.4 TcVl/TK Scripts
The following code is the two scripts necessary to enable speech generation. They call the

speech generation software through the Tcl command TTplay.

Table C.4: Tcl Script TTSayOnce.Tcl

Read text, either from the file if a name was given,
or from stdin if no arguments were given,
and send to TrueTalk

Run this file (ttsayonce.tcl) by entering:
wish -f ttsayonce.tcl
or
wish -f ttsayonce.tcl filename

wm withdraw.

if { $argc > 1 } I
puts "Usage: $argvO \[filename\]"
exit 1

if { $argc == 1) {
set infile [open [lindex $argv 0] r]

puts "Sending contents of [lindex $argv 0] to TrueTalk."
} else {

set infile stdin
puts "Reading input from stdin."

I

set text [read $infile]

#check to make sure truetalk is running
set x [lsearch [winfo interps] ttgui.tcl]
if {$x == -1} {
it isn't running so don't send the text to truetalk
puts "TrueTalk is not running, so the messages will not be spoken."

} else {

puts "About to speak->$text<-"

catch {send ttgui.tcl after 0 TTplay \{\{ $text\}\) I m
I

exit 0

Table C.5: Tcl Script TTSayAgain.Tcl

wm withdraw.

if { $argc > 1 } {
puts "Usage: $argvO \[filename\]"
exit 1

}

if { $argc == 1) {
set infile [open [lindex $argv 0] r]

puts "Sending contents of [lindex $argv 0] to TrueTalk."
} else {

set infile stdin
puts "Reading input from stdin."

}

set text [read $infile]

#check to make sure truetalk is running
set x [lsearch [winfo interps] ttgui.tcl]
if {$x == -1} {
it isn't running so don't send the text to truetalk
puts "TrueTalk is not running, so the messages will not be spoken."
} else {

#The variable TTplaying must already exist
#In order to insure that TTplaying already exists
#a call to TTplay must take place before this program is called.

set vrb [send ttgui.tcl {set tmpr $TTplaying}]
if {$vrb == 1)} {

puts "Waiting to speak->$text<-"}

while { $vrb == 1 } {
set vrb [send ttgui.tcl {set tmpr $TTplaying) }]}

puts "About to speak->$text<-"

catch (send ttgui.tcl after 0 TTplay \{\{ $text\}\} I m
I

exit 0

Appendix D

Timeliner Script

D.1 Demonstration Script
The following code is a Timeliner script designed specifically to show the usefulness of a

speech interface for Timeliner. It was created from real data obtained from the Marshall

Space Flight Center in Huntsville, Alabama. It comes from a payload experiment.

The AGHF is a Bridgeman furnace designed for directional solidification of semicon-

ductor crystals. The AGHF consists of three modules: the electronics module, the core

facility module, and the gas storage module. The furnace chamber pressure is controlled

by a sensor, and goes below the Spacelab pressure of 1013 bar, but during sample extrac-

tion, a slight overpressure of 7 mbar will aid the astronaut.

--This Timeliner script is derived from a payload operating procedure designed
--to run an AGHF Furnace experiment.

BUNDLE AGHF_Experiment

DECLARE In_Time BOOLEAN
DECLARE Start_Time NUMERIC
DECLARE Stop_Time NUMERIC

--The following variables would really be external for the experiment
--but are internal here just for ease of development and testing
DECLARE ExpVent_Bleed_Vlv BOOLEAN
DECLARE Exp_Vent_Vlv BOOLEAN
DECLARE Argon 1_2_Main BOOLEAN
DECLARE Process_Finished_Light BOOLEAN
DECLARE Hot_Sample_Light BOOLEAN
DECLARE Setup_Sample_Light BOOLEAN
DECLARE Reprogramming_Light BOOLEAN
DECLARE PreheatingPhaseLight BOOLEAN

DECLARE
DECLARE

DECLARE

DECLARE

DECLARE

DECLARE

DECLARE
DECLARE

Vacuum_Valves_Open_Light BOOLEAN
Operations_Light BOOLEAN
Failure_Light BOOLEAN
EP_OffLight BOOLEAN
EP_OnLight BOOLEAN
Chamber_Open_Light BOOLEAN
Load_PROM_Light BOOLEAN
Power_Light BOOLEAN

--Definitions for variables
DEFINE OPEN AS TRUE
DEFINE CLOSED AS FALSE

--This is the main sequence for controlling the experiment

SEQUENCE Master ACTIVE

--needed to allow for the internal variables to ease development
CALL Initialize_Variables

WAIT 5.0
MESSAGE "This is a script designed to control a furnace experiment in space."
WAIT 5.0

--activate it
CALL Setup_Activation

--Done with Setup and Activation so simulate the actual physical process
CALL Automatic_Run

--deactivate it
CALL Deactivation_Shutdown

--remove cartridges
--not included to speed up run
-- CALL CartridgeRemoval

WAIT 5.0
MESSAGE "Done with the experiment. Have a nice day."

CLOSE SEQUENCE Master

SUBSEQUENCE Setup_Activation

MESSAGE "Flip the Lamp switch on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check that the lamps are operating."
WAIT 2.0
MESSAGE "If lamps not operating then notify POCC."
WAIT 3.0
MESSAGE "Resume to continue." PAUSE

--Start automatic checks for malfunctions
CALL Start_Malfunction_Procedures

MESSAGE "Note: Process chamber lamps will remain on throughout the experi-
ment."

WAIT 2.0

MESSAGE "Check for obvious damage inside chamber through viewport, such as"
MESSAGE " condensation on mirror, glass particles, damage to LMR locking fin-

gers."
MESSAGE "Resume to continue." PAUSE

IF ((Exp_vent_bleed_vlv /= CLOSED) or(Exp_vent_vlv /= OPEN)) THEN
MESSAGE "Notify POCC. Problem with vent or relief valve."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

END IF

MESSAGE "Check that the manual valve is open, otherwise notify POCC."
WAIT 1.0

MESSAGE "Resume to continue." PAUSE

MESSAGE
WAIT 1.0
MESSAGE

MESSAGE
WAIT 1.0
MESSAGE

"Unstow gray tape and temp stow."

"Resume to continue." PAUSE

"Unstow experiment plug, tether to EGSE J72 connector cap."

"Resume to continue." PAUSE

MESSAGE "Turn lock handle to Unlocked Position after releasing it by"

MESSAGE "pushing the manual latch outside while manually pushing the"
MESSAGE "release bolt."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Turn the diffuser locking nut of locking cartridge"

MESSAGE " counter-clockwise about 7 revolutions."
WAIT 3.0
MESSAGE "Push the diffuser locking nut to loosen center rod of locking cartridge."
WAIT 3.0

MESSAGE "Check that the center rod is moving freely in and out."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE
MESSAGE
MESSAGE
MESSAGE
WAIT 4.0

"Caution. After 7 counter-clockwise revolutions of the locking"
" wheel, the locking cartridge becomes free."
"Contact of the locking cartridge with the interior of the"
" chamber and time of open chamber should be minimized."

MESSAGE "Turn locking wheel of locking cartridge counter-clockwise 7"

MESSAGE " revolutions and remove locking cartridge."

WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Insert experiment plug to close chamber port."

WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Turn lock handle counter-clockwise to Locked Position."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Temp stow locking cartridge with gray tape."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Notify POCC, Record temp stow location."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Unstow Sample Simulation connector and connect to J71 connector
saver."

WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Flip the Power switch on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

WAIT 10.0 --really wait 2 minutes

MESSAGE "Check that the EP Off light is off, the Failure light is off,"
MESSAGE " and that all other lights are on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check with POCC (to verify telemetry data transmission)."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

--no commands to ease speed of testing
-- COMMAND Enable_EMONS ...

MESSAGE "Check that all AGHF parameters are enabled."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

SET Argonl_2_main TO OPEN

MESSAGE "Stow the gray tape."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

CLOSE SUBSEQUENCE Setup_Activation

SUBSEQUENCE Deactivation_Shutdown

--no commands to ease speed of testing
-- COMMAND Inhibit_EMONS

MESSAGE "Check that all AGHF parameters are inhibited"
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

IF (Process_FinishedLight = OFF) THEN
MESSAGE "Notify POCC that the Process Finished light is off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

END IF

MESSAGE "Notify POCC if the lamps are not operating."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check for obvious damage inside chamber."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Flip the Start/Continue switch up."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

IF (HotSample_Light = ON) THEN
MESSAGE "The sample is still too hot."

END IF

MESSAGE "Check that the Hot Sample light is off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Waiting for two minutes."
WAIT 10.0 --really should be 120.0

IF (Setup_Sample_Light = OFF) THEN
MESSAGE "Notify POCC that the Set Up Sample light is off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

END IF

MESSAGE "Unstow the locking cartridge."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "The following directions must be completed within 40 seconds."

SET In Time TO FALSE
EVERY 1.0 BEFORE In_Time THEN

SET Start_Time TO TIME
MESSAGE "Press the Press-To-Release-Lock Handle up."
WAIT 1.0

MESSAGE "Resume to continue." PAUSE
MESSAGE "Check that the Released light is on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE
MESSAGE "Turn lock handle to Unlocked Position."
MESSAGE "If the Press-To-Release-Lock Handle doesn't retract,"
MESSAGE "Finger push it back into place."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE
SET Stop_Time TO TIME
IF (Stop_Time - Start_Time > 40.0) THEN

--Took too long
MESSAGE "Too much time has elapsed. Try again."

ELSE
SET In_Time TO TRUE

END IF
END EVERY

MESSAGE "Mark the cartridge label with a check."
WAIT 1.0
MESSAGE "Resume to continue."

MESSAGE "Disconnect cartridge cable from the Pulse Marking Connector"
MESSAGE " and the Sample Signal Connector."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Unstow and don deerskin gloves."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Unstow processed cartridge's protective sheath and temp stow."
WAIT 1.0

MESSAGE "Resume to continue." PAUSE

MESSAGE "Damage to the process chamber interior and to the cartridge and"
MESSAGE "cartridge port inner surface should be avoided. Time of open"
MESSAGE "should be minimized."
WAIT 1.0

MESSAGE "Warning! Cartridge may be hot."
WAIT 2.0

MESSAGE "Open velcro strap to release cartridge tether while holding cartridge."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Remove processed cartridge from process chamber."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Disconnect cartridge cable from cartridge connector."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Insert processed cartridge into protective sheath."

WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Stow the processed cartridge, cartridge cable, and simulation cable."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Doff and stow deerskin gloves."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Do not scratch the cartridge port inner surface."
MESSAGE "By watching through viewport, choose a proper orientation of the"
MESSAGE " locking cartridge crankpin to avoid damage to the LMR locking fin-

gers"
MESSAGE " which are on the cooling zone."
WAIT 2.0

MESSAGE "Using locking cartridge alignment mark, insert locking cartridge"
MESSAGE " while observing through viewport."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Turn locking wheel of locking cartridge clockwise 7 revolutions."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Turn lock handle counter-clockwise to Locked Position."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Tightly screw the diffuser locking nut of locking cartridge."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Remove Prom."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Stow Prom."

WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Disconnect and stow experiment plug."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Replace three connector covers."
WAIT 1.0

MESSAGE "Resume to continue." PAUSE

SET ARGON 1_2_Main TO CLOSED

--Stop automatic malfunction checks
CALL Stop_Malfunction_Procedures

MESSAGE "Flip Power switch off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Flip Lamp switch off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

CLOSE SUBSEQUENCE Deactivation_Shutdown

SUBSEQUENCE Cartridge_Removal

--Should really be done for each cartridge

MESSAGE "Check with POCC that mandatory sample cooldown time has
expired."

WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check that the Process Finished light is on."

WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Notify POCC if lamps are not illuminated."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check for obvious damage inside chamber through viewport such as"

MESSAGE " condensation on mirror, glass particles, damage to LMR locking fin-
gers."

WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Flip Start/Continue switch up firmly and quickly."
MESSAGE "Immediate response may not occur."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check that the Hot Sample light is off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

WAIT 10.0 --really should wait 2 minutes.
MESSAGE "Check that the Set Up Sample light is on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

SET In_Time TO FALSE
EVERY 1.0 BEFORE InTime THEN

SET Start_Time TO TIME
MESSAGE "Press the Press-To-Release-Lock Handle up."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE
MESSAGE "Check that the Released light is on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE
MESSAGE "Turn lock handle to Unlocked Position."
MESSAGE "It the Press-To-Release-Lock Handle doesn't retract,"
MESSAGE "Finger push it back into place."
WAIT 1.0

MESSAGE "Resume to continue." PAUSE
SET Stop_Time TO TIME
IF (Stop_Time - Start_Time > 40.0) THEN

--Took too long
MESSAGE "Too much time has elapsed. Try again."

ELSE
SET In_Time TO TRUE

END IF
END EVERY

MESSAGE "Unstow wipes and temp stow."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Mark the cartridge label with a check."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Disconnect cartridge cable from the Pulse Marking Connector"
MESSAGE " and the Sample Signal Connector."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Unstow and don deerskin gloves."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Unstow processed cartridge's protective sheath and temp stow."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Damage to the process chamber interior and to the cartridge and"
MESSAGE "cartridge port inner surface should be avoided. Time of open"
MESSAGE "should be minimized."
WAIT 1.0
MESSAGE "Warning! Cartridge may be hot."
WAIT 2.0

MESSAGE "Open velcro strap to release cartridge tether while holding cartridge."
WAIT 1.0

MESSAGE "Resume to continue." PAUSE

MESSAGE "Remove processed cartridge from process chamber."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Disconnect cartridge cable from cartridge connector."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Insert processed cartridge into protective sheath."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Stow the processed cartridge, and temp stow the cartridge cable."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Doff and temp stow deerskin gloves."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Insert the Experiment Plug."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Turn lock handle counter-clockwise to Locked Position."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check that the Chamber Open light is off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Connect Sample Simulation connector to J71 connector saver."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

-- COMMAND Close_ChamberVacuumVlv

MESSAGE "Note: the furnace chamber vacuum valve has now been powered off'
MESSAGE " and the valve has been closed. The Vacuum Valves Open light"
MESSAGE " will come on in about 5 steps."

WAIT 2.0

MESSAGE "Flip the Press-To-Release-Lock Handle up."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Flip the Start/Continue switch up."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check that the Load Prom light is on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Verify a Prom is attached (either color)."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Flip the Start/Continue switch up."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check that the Reprogramming light is on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Flip the Start/Continue switch up."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check that the Preheating Phase light is on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check that the Furnace Movement Position is decreasing towards 0.0."
WAIT 1.0

MESSAGE "Resume to continue." PAUSE

MESSAGE "Notify POCC that furnace translation has started."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

CLOSE SUBSEQUENCE Cartridge_Removal

SUBSEQUENCE Automatic_Run

MESSAGE "Notify POCC before starting automatic run."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

IF (Reprogramming_Light = OFF) THEN
MESSAGE "Warning: Notify POCC that the reprogramming light is off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

END IF

MESSAGE "Flip the Chamber Vacuum Valve Switch to Automatic."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Flip the Start/Continue switch up."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

IF (Preheating Phase_Light = OFF) THEN
MESSAGE "Warning: Notify POCC that the Preheating Phase light is off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

END IF

IF (Vacuum_Valves_Open_Light = OFF) THEN
MESSAGE "Warning: Notify POCC that the Vacuum Valves Open light is off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

END IF

IF (Operations_Light = OFF) THEN
MESSAGE "Warning: Notify POCC that the Operation light is off."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

END IF

MESSAGE "Check that the Reprogramming light is blinking."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

EVERY 5.0 WITHIN 30.0
MESSAGE "AGHF Experiment Running..."

END EVERY

CLOSE SUBSEQUENCE Automatic_Run

SUBSEQUENCE Start_Malfunction_Procedures

START Check_Failure_And_EP_Off_ It
START Check_Setup_Sample_It
START Check_Chamber_Open_It
START Check LoadPROM It
START Check_Power_And_EP_On lt

CLOSE SUBSEQUENCE Start_Malfunction_Procedures

SUBSEQUENCE StopMalfunction_Procedures

STOP Check_FailureAnd_EPOff_ It
STOP Check_Setup_Sample_It
STOP Check_Chamber_Open_It
STOP Check_Load_PROM_It
STOP Check_Power_AndEP_On_It

CLOSE SUBSEQUENCE Stop_Malfunction_Procedures

SEQUENCE Check_Failure_And_EP_Off_lt

WHENEVER ((Failure_Light = ON) AND (EPOffLight = On)) THEN
MESSAGE "Warning: The Failure Light is on and the EP Off Light is On."

MESSAGE "Report light status to POCC."
WAIT 2.0
MESSAGE "Flip Power On/Off switch off."

WAIT 1.0
MESSAGE "Resume to continue." PAUSE

WAIT 10.0

MESSAGE "Flip Power On/Off switch on."
WAIT 1.0
MESSAGE "Resume to continue." PAUSE

MESSAGE "Check with POCC to report light status."
END WHENEVER

CLOSE SEQUENCE Check_Failure_And_EP_Off_lt

SEQUENCE Check_Setup_SampleIt

WHENEVER (Setup_Sample_Light = OFF)
MESSAGE "Warning: The Setup Sample Light is off."
MESSAGE "Notify POCC."
END WHENEVER

CLOSE SEQUENCE Check_Setup_Sample_It

SEQUENCE Check_ChamberOpen_It

WHENEVER (Chamber_Open_Light = ON)
MESSAGE "Warning: The Chamber Open Light is on."
MESSAGE "Notify POCC."

--really more involved than this
MESSAGE "Stopping Experiment."
HALT AGHF_Experiment

END WHENEVER

CLOSE SEQUENCE Check_Chamber_Open_lt

SEQUENCE Check_Load_PROM_It
WHENEVER (Load_PROM_Light = OFF)

MESSAGE "Warning: The Load Prom Light is off."
MESSAGE "Notify POCC."

END WHENEVER

CLOSE SEQUENCE Check_Load_PROM_It

SEQUENCE Check_Power_And_EP_On_lt
WHENEVER (PowerLight = OFF)

MESSAGE "Warning: The Power Light is off."
IF (EPOn_Light = ON) THEN

MESSAGE "EP On light is on. Notify POCC of faulty Power light."
ELSE

MESSAGE "The EP On light is off. The power failed. Notify POCC."
END IF

END WHENEVER
CLOSE SEQUENCE Check_Power_And_EP_On_lt

SUBSEQUENCE Initialize_Variables
SET Exp_Vent_Bleed_Vlv TO CLOSED
SET Exp_Vent_Vlv TO OPEN
SET Process_Finished_Light TO OFF
SET Hot_Sample_Light TO OFF
SET Setup_Sample_Light TO ON
SET Reprogramming_Light TO ON
SET Preheating_PhaseLight TO ON
SET Vacuum_Valves_Open_Light TO ON
SET Operations_Light TO ON
SET FailureLight TO OFF
SET EP_OffLight TO OFF
SET EP_On_Light TO OFF
SET ChamberOpen_Light TO OFF
SET Load_PROMLight TO ON
SET Power_Light TO ON

CLOSE SUBSEQUENCE Initialize_Variables

CLOSE BUNDLE AGHF_Experiment

References

[1] Nyberg, K. A., The Annotated Ada Reference Manual, Grebyn Corporation,
Vienna, VA, 1991.

[2] C. S. Draper Laboratory, SSP 3059 Timeliner User Interface Language, Revision
C, C. S. Draper Laboratory, Cambridge, MA, 1995.

[3] Command Corporation, Inc., IN3 Voice Command User's Guide for SPARCsta-
tionTM, Version 2, Command Corporation, Inc., Atlanta, GA, 1994.

[4] Entropic Research Laboratory, Inc., Personal TrueTalkTM User's Guide, Entropic
Research Laboratory, Inc., Washington, DC, 1995.

[5] Kelley, A. and Pohl, I., A Book on C, Second Edition, The Benjamin/Cummings
Publishing Company, Inc., Reading, MA, 1990.

[6] Ousterhout, J. K., Tcl and the TK Toolkit, Addison-Wesley Professional Comput-
ing Series, Addison-Wesley Publishing Company, Reading, MA, 1994.

