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Abstract

The 2.4 meter primary mirror of the MDM/Hiltner Telescope is modeled

using the finite element method and analyzed for structural deformations

caused by gravity acting on the mirror and its primary support systems. The

finite element data is applied in two separate optical codes in order to analyze

the effects of mirror surface deformation on image quality.

A series of point loads is applied to the mirror, and the resulting

structural and optical perturbations are measured in order to ascertain the

relationship between applied forces and deformation of mirror optical quality.

Finally, an active optics support system is proposed for the primary

mirror. The design includes a linear optimization routine that acts to minimize

reflected wavefront distortions by adjusting pressures in the new axial

supports. The results of the active system predict that it is possible to achieve a

diffraction limited image with the MDM/Hiltner Telescope.

In preparation for the finite element and optical analysis, and the

design of an active optics system, the thesis introduces the theory of bending

of thin plates, the methods of finite element and optical analysis, and the

astronomical optics and wavefront aberrations appropriate to this subject.

Thesis Supervisor: John L. Tonry Reader: Wit Busza

Professor of Physics Professor of Physics
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Chapter 1

Introduction

The goals of this thesis are to accurately model the primary mirror of

the Michigan, Dartmouth, MIT 2.4 meter Hiltner Telescope (MDM), to produce a

detailed structural and optical analysis of the mirror's performance, and to re-

design the primary mirror's axial support system in order to minimize optical

aberrations caused by gravity induced mirror deformation.

Two preliminary goals will serve to prepare for the finite element and

optical analysis and axial support re-design. The first preliminary goal is to

investigate the mechanics that explains the how the mirror responds to

applied force. This is done by deriving the equations that describe bending of

beams and plates, and applying those equations to analytical examples that

share some commonalty with the MDM mirror.

The second preliminary goal is to describe the behavior of light as it

enters and travels through a reflecting telescope. Of particular interest are

the nature of wavefront aberrations, the wave equations that describe these

aberrations, and the specific optical testing methods that have been selected to

quantify the aberrations in the MDM model.



1.1 Background & Motivation

The ability to collect light and to resolve images are the two primary

performance criteria for a telescope. Aperture size determines a telescope's

ability to collect light and contributes to the telescope's ability to see very

faint objects. The other primary criteria, image resolution, is a measure of a

telescope's ability to resolve small objects, or to resolve small, far away objects

that lie in close proximity to one another. Resolution is a function of light

collection ability, the quality of the incoming wavefront, and the quality of

the telescope's optics.

Anything that detracts from a perfectly formed image constitutes a

problem for astronomers and for telescope designers. - Historically, the two

most persistent sources of imaging problems have been atmospheric

turbulence and telescope mechanics.

Atmospheric turbulence is associated with temperature variations that

cause changes in air density. These density changes cause some parts of an

incoming astronomical wavefront to be slowed relative to other parts. The

result is a spatial and temporal wavefront perturbation that can be defined as a

complex phase aberration. The real part of the complex phase aberration is a

phase shift of the wavefront - this is called "the seeing". The imaginary part

of the phase aberration is a measure of intensity fluctuations known to

astronomers as scintillation. Poets call it the "twinkling" of the stars.

Imperfect telescope optics are another major cause of blurred images. A

perfectly formed incoming wavefront (no atmospheric turbulence or any

other sort of interference) that. reflects from a telescope's primary mirror will

form a less than optimal image if any part of the reflecting surface suffers

from deformation. Deformations typically are caused by gravity acting on the

mirror's mass, externally induced vibrations that affect telescope structure,

or temperature variations acting across the mirror. The result is that the

mirror structure bends or deforms, and the optical surface loses its shape.

Until very recently, designers and astronomers have been limited in

their attempts to correct the effects of either the atmospheric turbulence or



the telescope structure problems. Though the physics of turbulence has long

been well understood, the technology for correcting a turbulence-degraded

wavefront did not exist. And for a very long time, the best answer to gravity,
thermal and wind induced distortions in the optical surfaces was to build a

very rigid optic.

Overview of Telescope Technology Evolution

The very first telescopes were relatively primitive refracting

instruments of small light gathering and limited resolving capability. The

pace of early post-Galileo telescope development was limited by the difficulties

encountered grinding and polishing large surface area lens. Another

challenge was the requirement to properly suspend . the optic within the

telescope tube so that the optical axis was properly aligned, and in such a way

that the optic did not deform.

A major early innovation that addressed the problems of light

gathering ability and optical and tubular support was the reflecting telescope.

Isaac Newton, Guillaume Cassegrain and James Gregory in the early 17th

century independently designed compact, reflecting telescopes that utilized

secondary mirrors to redirect the reflected wavefront to a position acceptable

for observing. Newton (using a folding flat mirror) , Cassegrain (using a

small convex mirror), and Gregory (using a small concave secondary) defined

the basic configurations of the reflecting telescope only fifty years after

Galileo's first refractor.

For several centuries following the Newton era refracting and

reflecting telescope designs competed with each other for astronomical

primacy. Technology development followed an irregular path. While

advances helped both designs, the early years favored the refractors.

Innovations included advances in grinding, polishing and manufacturing

lenses, the development of counterweights to improve tube suspension, and a

discovery that some astronomical objects show a well defined, measurable

parallax, which contributed a strong boost to the refractor's ability to render

precise measurements. Refractors continued to be the telescope of choice

through the end of the 19th century.



The optic suspension handicap proved to be an acute and persistent

problem for the refractor community. Engineers could not support massive

lenses while adequately maintaining lens figure and optical quality. This

inability placed an upper bound on lens mass and aperture size. The Yerkes

Observatory 40" refractor and the Lick 36" refracting telescope of the late

19th century represented the pinnacle of refracting technology.

A breakthrough innovation in the late 19th century was the

development of the ability to deposit silver on glass. This made possible the

manufacture of large area, precisely figured astronomical mirrors. The high

quality of the reflecting surface made with the silver deposition technology

gave reflectors optical and structural advantage over refractors. This

advantage, combined with the problems inherent in . peripherally supported

massive glass lenses, effectively made the refractor obsolete. The reflector

became the instrument of choice.

The reflecting telescope breakthrough did not address the problems of

telescope-optic support. As the primary mirrors grew very large, so did the

challenges of building support systems that could maintain the mirror's

designed optical figure. Increases in mirror size came at the price of

increased weight, unwanted mirror flexure and the associated loss of optical

figure and resolution. The traditional answer to the unwanted bending of the

mirror brought on by the mirror's own mass and the action of gravity was to

make very rigid mirrors. The thinking was that a stiff mirror made out of a

material with a very low coefficient of thermal expansion would act, due to its

own stiffness, to resist structural deformation.

Active and Adaptive Optics

This thinking began to change as early as 1953 with an idea by Horace

W. Babcock, who proposed that a mirror's surface could be adapted in order to

correct for errors in the phase of the incoming wavefront. Though Babcock

lacked the resources to develop his idea, his bold vision initiated the

innovations that would address not only the mechanical difficulties of

astronomical optics, but the atmospheric difficulties as well.
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The Strategic Defense Initiative, the 1980's era anti-missile effort of the

US Department of Defense, adopted and developed Babcock's idea in order to

develop a capability to optically identify Soviet satellites from ground-based

sites. The SDI's success with deformable optics, now called active and adaptive

optics, became available to civilian astronomical applications in the 1980's.

Active optics is a method for correcting the structural deformations

commonly found in large astronomical mirrors due to the effects of gravity

and thermal forces acting on the mirror's structure. The system bends the

mirror back into shape and restores the required optical figure to the

reflecting surface.

The active optics concept utilizes a deformable mirror, a set of actuators,

and an information set. The actuators mounted on the back side of the mirror

replace the traditional passive axial support system found in older telescope

designs. The information set describes the mirror's known response to force

inputs, as well as the differences between the mirror's optimal surface figure

and the figure that actually exists as a result of mirror orientation and

ambient conditions. This data is used in the actuator control system to adjust

the mirror surface and correct structural deformations.

Adaptive optics is a much more ambitious technology. The adaptive

concept is to rapidly alter the mirror surface by using a closed loop control

system to compensate for phase changes in the incident wavefront caused by

atmospheric turbulence. Adaptive optics systems include segmented, highly

deformable thin mirrors, actuators and actuator control systems, wavefront

sensors and data processors.

An adaptive optics system measures the relative phases of the

components of the incident wavefront. This is done by segmenting the mirror

surface, and measuring wavefront tilt in each zone. This information is fed to

a control system which is responsible for positioning the actuators that drive

each of the mirror segments. Given wavefront data, the control system adjusts

the individual segments of the mirror's surface in such a way that any wave

component arriving later than another actually travels a shorter distance to

the focal point. A collateral benefit of adaptive optics is that the technology

11



inherently compensates for any mirror deformation problems that arise due to

gravity, thermal forces or vibration.

The differences between the two types of systems is best seen by looking

at their respective speeds. Few active systems work faster than 1 Hz - the

mechanical causes of mirror system deformation addressed by active optics,
gravity and heat, proceed on a relatively long time scale. Adaptive optics, on

the other hand, compensates for rapidly varying atmospheric wavefront

distortions. Some adaptive systems use bandwidths of 100 to 1000 Hz.

1.2 MDM and the Old School

The MDM /Hiltner Telescope located at Kitt Peak, Arizona is a member of

the older school of reflecting telescopes. In the hierarchy of telescope

evolution, MDM falls into the stage that just predates the onset of

active/adaptive optics. The primary mirror, not considered deformable, is

designed to rely on its own stiffness and support system in order to maintain

correct optical figure.

The MDM primary mirror is 2.4 meters in diameter, and weighs

approximately 1990 kg. The mirror is made of Cervit, a glass-composite

material that is very stiff (Elasticity - 9.2 E10 N/m2) and that exhibits a very

low coefficient of thermal expansion (approximately zero). The mirror rests

in a mirror cell, supported by an axial and a radial support system.

Primary axial support is provided by a set of three neoprene air

bladders. The air bladders are controlled to provide a constant pressure across

the mirror's back surface. Also providing axial support is a set of three hard

points located at radius = .825 meters, at intervals of 1200. The neoprene air

bladders are adjusted by a control system so that the hard points support a load

of no more than 30 pounds ( = 135 Newtons) in the axial direction. The hard

points effectively constrain the mirror from moving in the radial plane. The

pressure control that maintains a constant and uniform set of reaction forces

on the hard points is the only active control component. Hence, MDM might

be called a semi-passive, or tilt-active control system.

12



Radial support is provided by a neoprene mercury belt located along the

mirror periphery at the axial center of mass. The mercury inside the belt acts

an analog computer, feeding down to provide support as the mirror is rotated

away from the zenith, or pure vertical orientation. The belt acts as a buffer

between the mirror and the mirror cell. If the mirror is rotated to the

horizontal, the mercury belt is sufficient to support all the mirror's mass.

The MDM/Hiltner telescope exhibits many of the problems common to

heavy, rigid mirrors. Most of these problems are directly related to the

mirror's mass, its primary axial support, and the lack of active control over

the primary mirror's surface. This thesis endeavors to solve these problems.

1.3 Objectives and Approach

The principal objectives of this research are academic. If MIT

continues its association with the MDM consortium, it is possible that the axial

support re-design developed in this thesis will be implemented. Otherwise, it is

hoped that the analysis contained in this study will help to improve the quality

of information delivered by MDM/Hiltner. Academic objectives are as follows:

(1) Develop an accurate model of the MDM primary mirror and its support

system to determine the nature of the structural and optical distortions that

are induced by the action of gravity.

(2) Determine the mirror's reaction to force inputs, and develop a correlation

between the mirror's reaction to force (Newtons) and its optical performance.

(3) Design a new axial support system that minimizes gravity induced

deformations. Investigate the feasibility of an active axial support system.

Finite element analysis is the primary structural analysis tool. An

optical analysis package that utilizes the method of Zernike polynomials, and a

spot-diagram/contour-diagram code written by Professor John Tonry (MIT,

1995) serve as the optical analysis tools. The axial support redesign was

accomplished with the aid of a least squares optimization code written by Dr.

Martinus Van Schoor (MIT, 1995). The thesis is composed of three parts:

13



Part 1: Chapters 2, 3 , 4 and 5.

Chapters 2 and 3 investigate the mechanics of the bending of plates and

beams and serve as a theoretical guideline for investigating the methods of

structural analysis and finite elements. Chapter 4 is an exercise in fitting

numbers to bending theory. Deflection solutions are found for a series of

beams and plates under various load and support conditions. Chapter 5
introduces the method of finite element analysis.

Part 2: Chapters 6, 7 and 8.

Chapter 6 is a limited investigation of geometric and physical optics.

Ideal wavefront behavior in a telescope system is discussed. Chapter 7

develops basic optical aberration theory. Chapter 8 describes the method of

Zernike polynomials in optical analysis. Zernike polynomials are a set of

orthogonal polynomials that act to decompose an aberrant wavefront. The

individual polynomial coefficients are used to evaluate the relationship

between measured optical surface distortions and active support changes.

Part 3: Chapter 9, 10 , 11 and 12.

Chapter 9 describes the finite element model of the MDM 2.4 meter

mirror and support system. The model is verified by a real world experiment

done at Kitt Peak. With the telescope in a purely vertical orientation, a

telescope technician drained the air from the axial air bladders, which put the

mirror to rest on the three hard points. A star image was taken. The same

procedure was accomplished with the model, and the optical results are

compared to the actual results.

Chapter 10 presents the results of finite element and optical analysis for

the mirror under various load conditions. Both finite element and optical data

are presented. Chapter 11 proposes and tests a new active axial support design

based on unit load response and a least squares optimization. Chapter 12 offers

lessons learned and recommendations.

14



Chapter 2

The Beam Equation

This chapter introduces the mechanics of bending of rigid bodies and

develops an equation that describes bending in solid beams. This derivation

follows the presentation of classic mechanics in Housner (Ref. 1) and

Timoshenko (Ref. 2). In combination with the next chapter's treatment of the

plate equation, this chapter will serve as a prelude to the analytical and

numerical study of the mechanical behavior of the MDM/Hiltner Telescope's

2.4 meter primary mirror.

Linear stress-strain relations, displacement functions and Hooke's Law

form the basis for both the theory of elasticity and the beam equation. The

beam equation,

d4v
EIx~ = P.

describes a solid beam's response to applied force. The equation assumes a

linear stress-strain relations to calculate the deformation of a solid body under

the influence of stress.

15



2.1 Linear Relation Between Stress and Strain

A linear stress-strain relationship means that a solid body (a wooden

beam or a telescope mirror) will deform in proportion to the applied force.

These changes in geometry can be predicted with a high degree of accuracy if

the applied stress is within that material's elastic limits. When stressed beyond

elastic limits, the material becomes plastic and will not recover its shape.

2.1.1 Properties of Stress

Stress is defined as force per unit area:

stress = lim force
A -0 area

The stress vector has two components, the normal stress vector and the

tangential stress vector, as shown in Figure 2.1. The normal stress vector is

denoted by the symbol 6, and is defined as the force per unit area that acts

normally to the face of a solid. The three components of normal stress are ax,

Ty, and oz, such that Cx is a stress normal to the x-face on which it is acting.

The stress that acts tangentially to the face of the solid is called the shear

stress. Shear stress is denoted by t; txy means that I acts on the x-face in a

direction parallel to the y-axis.

Figure 2.1: Total stress vector is a combination of normal and shear stress.

16
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A complete description of the state of stress of a body requires that the

stress at every infinitesimal point in the body be known. For any given point

in a body, the total stress is a linear sum of normal and tangential stress.

stress = a~ x + Tx•y + rxz

stress, = T + a y + y,,z (2.1)

stress = tZx + zyY + (7z .

From equations (2.1), the state of stress experienced by a body at any

point can be represented by a matrix of nine scalar stress components:

T C 'r Yr
Z x ly xTzyx Zy yz,
Zr· auZ

U, ZY z

= stress.

For a small body element to be in static equilibrium, the vector sum of

all forces acting on that element must be zero. Equilibrium also requires that

the sum of all moments be zero. In the case of a three dimensional solid
element, the stress tyyx multiplied by the area on which it works equals a force

T yx dx dz. This force multiplied by a radius dy gives a moment 'Tyx dx dy dz.

Equilibrium requires that the sum of the moments be zero, therefore

"yx dx dy dz = Txy dx dy dz.

Since the areas are equal, in an equilibrium state opposing shear stresses are

equal and indistinguishable:

Txy = Tyx ,

and for any element in equilibrium, the two in-plane components of shear

stress are equal.

17



2.1.2 Displacements and Displacement Functions

The deformation of a solid body can be described in terms of

displacements of any point within that body. For a continuous body that

exhibits a linear response to stress, these displacements are functions of

position. The displacement functions u(x, y, z), v(x, y, z) and z(x, y, z) describe

the displacement of a small element of a continuous body under stress from

some original position P(x, y, z) to a new position P'(x, y, z).

For a body to be considered continuous, all physical properties must be

specified at every point and be continuous throughout the body. This

definition effectively states that the average properties of a small element of a

material may be used to characterize the entire material's volume.

Displacement of a point within a continuous body may result from

rotation, deformation, or translation. (This paper will not address translation.)

Rotation

Figure 1.2 shows the rotation of a small unit element about a point. This

rotation produces displacements that can be defined in terms of position. In

the figure, a small angle rigid body rotation occurs at a point "A" about the z-
axis. The rotation "wz" of the square element displaces corner "B" .

X

Figure 2.2: A small body rotation about a point "A".

18
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The displacement relative to "A" due solely to rotation are

(du)rotation = COy dz - COz dy

(dv)rotation = (Oz dx - COx dz

(dw)rotation = Oxdy - Cty dx.

The components of rotation can be generalized (eqn (2.3) below):

1 dw dv
S2 (dy dz)

Normal Strain

Normal strain of an element is defined as an incremental change in the

element's length divided by the element's original length. Extension is

positive strain, while contraction is negative strain. Figure 2.3 (below) shows

positive strains experienced by a small element as the result of normal stress.

x

4-
) = 8 dx

x

Y4

Figure 2.3: An element showing normal strain. Each side has of the

element has been extended a small fraction of its original length.

Positive strains shown in Figure 2.3 are defined by "e":

A (dy) A (dz)
' dy e dz

19
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A (d

A(dy) = E dy

A (dx)
dx

(2.4)

1 dud dwtx =2 (Id~z dx
l =(u dw
x2 dz dx



Figure 2.4. (below) shows the positive strains of the element in terms of

displacements. The x and y coordinates of the corners of the element have

been displaced in the x- and y-directions as a result of a stretching of the

material in the element.

Figure 2.4: Positive strains in terms of displacement functions.

The element has been stretched in the x-direction by an amount

(du) normal strain = A (dx) =x + dx + u + dx - (x + dx + u).

The x-, y-, and z-direction displacements are found by canceling terms:

(du),, =A (dx) = - dx.normal strain dx

(dv) normal strain = A (dy) = -dy,

dw
(dw) normal strain A (dz) = -dz.

dz

Normal strains (from eqn 2.4) are defined in terms of displacements by

du dv dw
dx' 8 dy ' Zd

(2.5)

(2.6)
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Shearing Strain

An element can deform without changing the length of its sides. In this

"shear strain" case, called distortion or pure shear, neither rigid body

displacement, normal strain nor rotation are involved. The element

experiences a change in its geometry that is best characterized as an angular

deformation, as shown in Figure 2.5:

x

Y

Figure 2.5: Shearing strain as two simple shearing deformations.

The total shearing strain in Figure 2.5 is

7xy = xy + Eyx

where the terms Exy and Eyx describe angular deformations of the sides "dx"

and "dy" and are called the xy-components of shearing strain of the element.

If there is no rotation involved in the displacements, e = e y

The shearing strains can be expressed in terms of displacements. As

can be seen in the Figure 2.6, the rate of change of displacement with respect

to the x- and y-axis define the total shearing strain.
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uy
ay

Figure 2.6: Shear strain as rates of change of displacement functions.

Shearing strains are defined in terms of displacements:

dv du
xy dxdy

dv dw
'y =Z - + -dz d

du dw
Y'x = +xdz Tx

Summary

The state of strain at any point in a continuous body can be specified by

examining the variations in displacements. Displacements are functions of

position and result from rotation, normal strain and shearing strain. The total

differential of the displacement functions is:

du du dudu = -dx +-dy +-dzax dy dz

dv dv dvdv = -dx + -dy + dz
dx dy dz

dw dw dwdw • dx + -dy + dz.
dx dy dz

(2.8)
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2.1.3 Hooke's Law & The Extension of a Beam

Hooke's Law states that a solid material will deform in proportion to the

applied force. Hooke formalizes the linear relationship that exists between

stress and strain in many materials. Strains from normal x-axis stress are

1
ex  - x,

E

V
y = - xx ,E

V

E (2.9)

Figure 2.7 illustrates the meaning of the constants E and "v". The

elasticity "E" is defined as the ratio of longitudinal stress/strain, E= / ..

The ratio of contractive strains

Poisson ratio

Y and 8 z to the tensile strain Ex is the

(ratio of contraction in y and z for stretching in x ).

Figure 2.7: Normal stress acting on a beam element

showing contraction in y and z for stretching in x.

Equations analogous to equation (2.9) define a body's response (strain)

to force (stress) applied in the y and z directions.

v 1 v

For a z-direction linear the force, the stress-strain relations are

V
x -- z,

V
Y = -- O
Y &E

1
z E

(2.10)

(2.11)
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The linear relation between shearing stress and shearing strain is

xyG
7 =G

where the term "G" is the shearing modulus. The complete description of

linear deformation includes terms for thermal expansion, normal and

shearing stress. For an isotropic material, Hooke's Law is:

x E(ax- v - z ) xy G

E E nG

EB G

Beam Extension

Figure 2.7 shows a solid beam of known material under

direction stress. If all other stresses equal to zero:

a constant x-

x = o y z Txy xt Tyz. (2.13)

The resulting linear strains are

1
Ex CoE

v

y 0-E
E

There is zero shearing stress:

V
ez -= =o.E

7 xz = 7 xy = yz = 0

The length of the beam increases by an amount proportional to the

force, if it remains within the elastic limits of the material. The measured

increase in length is

ALX = L = aL sL
E E
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2.2 Pure Bending of Beams

A beam bends in reaction to an applied load. The load may be due to

gravity or to a point loading somewhere along the beam's length. Consider a

cantilever beam that experiences a vertical force at its free end. Assume that

the applied load, represented by a delta function, bends the beam slightly, but

not enough to induce any shearing strain.

The beam experiences both compression and tension as it bends. For a

downward force (please see Figure 2.8) the material at the top of the beam

along the long axis will be pulled slightly apart, while the material along the

bottom of the beam will be compressed. The crunching together of the lower

part and the pulling apart of the top part are manifestations of horizontal

stress induced by the action of the point load acting at the beam's end.

Figure 2.8: Cantilever beam with point load showing both

compression and tension. The neutral axis runs between

the top and bottom of the beam and experiences no strain.

If the applied force in Figure 2.8 is constant, the beam reaches a point

of static equilibrium where sum of all forces acting on the beam equals zero:

+ e9y + F (gravity)= 0 (2.16a)
dx dy

+ + Fy(gravity)=O0 (2.16b)
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From the diagram, ax is solely a function of "y", where "y" is a measure

of disyance from th neutral axis. The point load creates a smoothly varying

horizontal stress that is a linear function of y-axis position:

x = y= cy. (2.17)
Yo

The total stress in the x-direction is the integral sum of the incremental

stresses over the entire face of the beam. The total force experienced by the

beam is the integral sum of linear stress multiplied by incremental area:

Fx = IrxdA = JcydA, and c1 = o
Yo

The linear stress described in equation (2.17) acts incrementally and at

a distance from the beam's neutral longitudinal axis giving rise to a bending

moment. Each stress increment acts at some small distance from the neutral

axis, creating a little unit of torque. The total moment is the integral sum of

these cross products. Since the applied stress is oriented in the x-direction and

varies linearly with y, the moment acts about the z-axis in the y-direction:

Mxz = yoaxdA . (2.18)

The subscript "x" denotes the direction of the applied force, and the

subscript z denotes the axis around which the beam bends. From the definition

of the stress in equation (2.17), the moment equation can be expanded

Mx = fyx dA = Jcy2 dA = cIl (2.19)

where "I", the second moment of area, is defined

Iz = J y2 dA = J y2dxdy . (2.20)

The stress can now be defined in terms of the bending moment, the second
moment of area, and the radius from the neutral axis:
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(2.21)
Max = cy= xzy

IZ

Hooke's Law thus relates stress to strain, and strain to bending moment,

Iex -
E

1
E = (2.22)

El,

Radius of Curvature and the Beam Equation.

Strain and bending moment are related to the beam's radius of

curvature. The radius of curvature is defined by the displacement of the

beam's neutral axis. This relationship establishes a differential equation for

displacement which is known as the beam equation.

The angle between the undisplaced and the displaced neutral axis in

Figure 2.8 is equivalent to tan 0 =dv/dx. For a very small angle, tan 0 is

approximately equal to 0:

tan 0 = dv/dx 0 = tan 0 = dv/dx.

The radius of curvature of bending is defined as (Ref 3)

3

Rx = (dvoldx)j = a constant
d2v/ dx2

(2.23)

where Vo is a displacement in the y-direction. In the limit of small

deflections, (dvo/dx)2 approaches zero and the curvature can be defined as a

second order condition of the deflection:

S= d2 V /d 2.
Rx

(2.24)

Arc length ds is defined: R dO = ds. Therefore, (dO / ds) = 1 = d2vo0 /d 2.
Rx
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The trick, at this point, is to relate the strain E x to the radius of

curvature, and thereby derive a second order differential equation of bending.

This is done in Housner (Ref. 4) by examining a beam element under

horizontal (x-direction) stress that bends around the z-axis in the y-direction.

In the Housner relation, the neutral axis defines the coordinate system,
so that "y" is a measure of vertical distance from the undisplaced neutral axis.

The geometry of the beam element shows that the displaced beam's radius of

curvature, the angle dO between the displaced and undisplaced neutral axis,
the arc length ds of the element's displaced neutral axis, and the x-direction

strain are related by the equation

y dO = Ex ds.

From the above relation,

1/R = Ex/y

Therefore, the curvature is related to the second derivative of the deflection,

and the moment:

1 M d 2v
=- = (2.25)R EI dx

This produces a second order equation for displacement and moment:

d2v
EI = M (2.26)

dx2

Combining (2.25) and (2.26) establishes a second order equation which can be

integrated to obtain a function for the y-axis displacement of the beam:

d2vo _ d = . (2.27)
dx2 ds Elz
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2.3 A "Technical Theory" of Bending

The methodology of "pure bending", described in Section 2.2 , requires

an exact stress function. Since exact stress functions are rarely available, it is

possible to construct approximate displacement functions by using

equilibrium conditions as long as beam deflections remain small and the

forces acting upon the beam cause little or no shearing strain. In the

language of beam theory, the idea of small deflections translates to "plane

sections remain plane", so that any cross section of the beam that is planar

before bending will be planar after bending. Practically speaking, the

criteria for applying this approximation technique is to use beams that

experience little or no shearing stress and that exhibit a ratio of beam depth to

length that is much less than one.

This section develops the "Technical Theory of Bending" for a beam of

continuous and isotropic construction and symmetric cross section. The

assumptions are summarized below:

E x
E (2.28)

Y =0 (2.29)

Y 1x = • = y z 0 (2.30)

dv <<1. (2.31)
dx

The first equation is Hooke's relation between stress and strain for

materials operating within the limits of their elasticity. The second equation

specifies that the beam experiences no y-direction strain. The deformation of

the beam is limited to expansion and contraction in the x-direction. The third

equation is the condition that there is no shearing strain. Lastly, the fourth

equation explicitly limits beam deformation to small angles, thus completing a

small scale, no shear, bending-only scenario.
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Under the assumptions given, the y-direction strain is zero, so the

displacement function v is solely a function of x:

v = f, (x).

Shearing strain is also zero,

du dv
dy ax

and the displacement u is a function of both x and y:

dv
u = -direction strain is given by

Since x-direction strain is given by

du
= , then

x x

d2v
E, = -y-

dx 2

d 2v
and T = EE8 = -Ey

dx 2

The bending moment is the integral sum of the applied force multiplied

by the radius of action:

MXZ = -f ygdA = J Ey2 d2- (2.35)

Since "dA" is equal to (dy dz), the integral is an expression for the moment of

inertia of the cross-sectional area about the z-axis:

d2v d _d2v
M, = E- ' y2dA = EI 2

xz dX2 J dx 2

d2vM = Elxt Z dX2 (2.36)

Equation (2.36) describes a beam experiencing small bending deflections.
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The Beam Equation From the Applied Loads

The equations of equilibrium are of three types: forces parallel to the

beam axis, forces normal to the beam axis, and moments. A differential

relationship exists between the bending moment and the beam's equilibrium

condition. The figures below depict a beam under a point load, and a free body

diagram of a beam element.

X

Figure 2.9: A cantilever beam under a distributed load,

showing x-direction stress and displacement function v(x,y).

+ dT

M + dM/ de

Figure 2.10: Free body diagram of a beam element in static equilibrium.
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In Figures 2.9 and 2.10, "t" is a distributed force per unit length along

the beam's neutral axis, "Q" is the shearing force, "T" is the tension resulting

from x-direction stress, and "M": is the moment. Element length is "ds". Forces

parallel to the axis and in equilibrium are:

dT dO
tds + dT - QdO= , -- = -t + Q

ds ds
Forces in equilibrium normal to the beam axis are:

dO dO
dQ + pds + Tsin + (T + dT) sin-• = 0.

2 2
Moments in equilibrium are:

(2.37)

(2.38)

dM + Qds = 0

The small angle approximation

dM
ds

sin = 8, drops the second order term:

dQ TdO

ds ds

The second derivative of M can then be related to the derivative of Q:

d2M dQ dO
ds2  ds ds

The basic beam equation-moment identity (2.36 ) is substituted:

d2v

MU=El
xz d2

dM = El = p+Td 2M Z dx2 d 2v ds
ds2 Z dx" dx2 ds

(2.39)

(2.40)

(2.41)

(2.42)

For a situation where T = 0, the equation is fourth order in terms of the

applied load. The beam equation becomes

d4v
El' = p. (2.43)
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Dimensional Analysis of the Beam Equation

A brief dimensional analysis of displacement functions and their

derivatives will shed some light on the fourth order equation that describes

action in terms of force per unit length. The displacement functions u(x,y)

and v(x) are in units of length:

v(x) => meters.

The first derivative w.r.t. space is the slope, and is dimensionless:

dv

dx

The second derivative has units of inverse length. When multiplied by

the elasticity and second moment of area, units of torque result:

d ' v _ dO 1d 2 d - (meters '),
dx2 ds

N _kg
Em

m 2 s2m
I = f y2dydz m4

d 2v
EI- = M

dx 2

N 4 1
m 2 m

The first derivative of the moment (which

displacement function) is the shear force:

dM

dx

is the third derivative of the

kg m

s 2

Finally, the second derivative of the moment (which is the fourth

derivative of the displacement) gives force per unit length:

d 2M dQ 2  d2 N

dx2 dx dX 2 m
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Delta Functions and Half-Range Functions

A likely place to apply the technical theory of bending is to a beam that

experiences forces of known magnitude, position and direction, but whose

exact stress distribution is unknown or is not continuous. These forces may be

distributed along the length of the beam, or be concentrated in certain

positions. An example of a distributed force is the body force generated by the

beam's mass acted on by a gravity field. Examples of concentrated forces are

end supports of a simply supported beam, or point loads that are applied at

some position along the length of the beam.

The point load at the center of a simply supported beam represents not

only a concentrated force, but a serious discontinuity problem. The solution to

this potential conundrum is the "half-range" function, which is a member of

the family to which Dirac delta functions belong.

One of the defining properties of delta functions that makes them so

appropriate for this type of work is the fact that a delta function has value

only at one spot. Everywhere else, it has zero magnitude.

45(x-a)=0 for x a

The other property of the delta function that makes it appropriate is

that the delta spikes to infinity, but the area under the curve is equal to unity.

It therefore acts as the perfect modifier to a point load of arbitrary magnitude:

+00

fI6(x)=1.

It is useful to view the delta function as a member of a set of functions

called half-range functions. By definition, half-range functions produce a

value only when the argument is positive:

{x-a} = 0 forall (x-a) < 0,

{x-a}=(x-a) forall (x-a)>O.
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The half-range functions are denoted by brackets. The delta function,

considered as a member of the larger set of half-range functions, is defined as

3(a) = {x - a}- .

The general differential forms of the half range functions

d

__{x-dx

d
x-dx

a}" = n{x-a}'"-

a}' ={x-a}0 =0

for

for

=1 for

are :

n•O

x<a

x>a

d
d{x -a =dx {x -a} - ' = 0 for

=00 for

x<a and x>a

x=a

=-{x - a}-2 = 0 for

=+oW for

x<a and x>a

x = a

The half-range functions can be shown in integral form.

integral of the delta function generates a step function.

{x-a}"-

0

1dx = {x-a}"
n

for

Note that the

n 0.

j{x-a}-'dx= {x-a}.x

f {x- a}° dx= {x- a}1.
0x

f {x - a}'dx= {x-a}2

0xI-) d·I-)
f f x- alldx Ix- al
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Chapter 3

The Plate Equation

This chapter derives the radial plate equation,

V'w(r) =q
D

Stress-strain relations, equilibrium equations and deformation

conditions are used to develop the equation of bending of a thin plate which

experiences a force perpendicular to the plate's horizontal plane. The

motivation for this derivation is found in the classic mechanics texts written

by Timoskenko (Ref. 5) and Housner (Ref. 6).

The plate equation in conjunction with appropriate boundary

conditions will be used to approximate the mechanical behavior of the MDM

primary mirror and provide an analytical check for results obtained with the

NASTRAN finite element model.
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3.1 Plate Equation From Stress-Strain Relations

This derivation of the plate equation uses the example of a thin,
isotropic plate built of uniform material which experiences a relatively small

vertical stress and zero vertical shear. The plate deforms in such a way as to

produce no stretching or contraction of the middle surface.

These initial conditions allow deformation of the plate only by

horizontal bending strain. This means that the middle axis or "neutral axis" of

the plate will be displaced, but not deformed. This eliminates the possibility of

middle surface z-direction strain. Any load that is applied to the plate will

contribute zero shearing stress to the plate's middle surface.

3.1.1 Thin Plate Stress-Strain Relations

The thin plate shown in the diagram below exhibits a depth that is much

less than its length or width. The plate's middle surface lies in the x-y plane.

The depth is measured in "h" units. The top surface is located at coordinates

(x, y, z = h/2), while the bottom surface is located at (x, y, z = -h/2).

I I

I I
Figure 3.1: A thin rectangular plate with middle surface in the x-y plane.

The conditions described above are those that were used to justify the

technical theory of bending of beams in Chapter 2. The technical theory of
bending of a thin plate uses deformation and stress-strain conditions to
develop a function w(x,y) that describes the transverse displacements of the

middle surface of the plate. (Please see Table 3.1.)
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Table 3.1: Assumptions for technical theory of bending of a thin plate.

Equation (3.1.a) states that "w" is independent of "z", so that the

displacement of the middle surface is a function of only x and y. In other

words, all points through the thickness of the plate that share the same x and y

coordinates are displaced from their equilibrium positions relative to the

middle surface by the same amount. There is no pure z-direction strain.

Equations (3.1.b) and (3.1.c) state that there is zero middle surface shearing

strain. Equations 3.1.d-f describe the x- and y- direction bending strain.

The displacement functions in the x, y and z-directions are:

dw du dw du
+-= 0 (3.2.a) +-= 0 (3.2.d)

du dw d dw
d- d (3.2.b) _ = -- (3.2.d)

dw dw
u= -z + fl(x,y) (3.2.c) v=-z-+ f 2(x,y) (3.2.e)

From Chapter 2, normal strain is defined as the rate of change of

displacement with respect to position:

du = - (3.3) = . (3.4)6= (3.3) . (3.4)
dx ~
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Substituting equations (3.3) and (3.4) into (3.2) yields a relation between

normal strain and the displacement functions u(x,y) and v(x,y):

du d2w
Z T -2 E dv - . (3.6)

0 0ý
(3.5)

Horizontal shear stress deforms the plate through the angle y. Shear
strain is the rate of change of "u" and "v" with respect to "y", and "x".

I du dv
S G- dy dx

Substituting equation (3.2.c) and (3.2.e) into (3.7) leads to a second

derivative of "w" with respect to both x and y:

(3.7)

du = 2w

q -dxdy (3.10)
dv d 2wx = -z

axdydx

The resulting strain-displacement relations between normal

x- y- direction strain and the displacement function w(x,y) are:

_u d 2w

x d- d-z
dv 2w

dy= d=

3.1.2 The Plate Equation From Equilibrium Conditions

The plate equation is derived by relating the strain-displacement

conditions of equation (3.9) to the applied load. The trick is to isolate the z-

direction normal stress as a function of middle surface displacement.

Unfortunately, the z-direction normal stress appears in the equilibrium

equations only in a relation with yz and T'. So there is some work to do.

The first step in deriving the fourth order plate equation is to list the
general equilibrium equations for a plate under stress. The next step will be to
invert the stress-strain relations in Table 3.1. The most tedious chore is to

substitute the inverted stress-strain relations into the general equilibrium
equations, and then determine by integration the shear and normal stresses.
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The actual equation will result from equating the normal stresses to the

intensity of the applied load at the upper surface of the plate.

Step 1: The General Equilibrium Equations

For a rigid body in equilibrium the sum of all forces and torques

(moments) that act on the body must be zero:

SForces = 0 C Moments = 0.

The general equilibrium equations that describe the plate at rest are:

da x d+-+ + - =O
&x dy dz

da, drz d%
L + Yz + = 0+ + =0

+ z + d = 0.
ay az ax

Step 2: Invert the Stress-Strain

(eqns 3.10)

Relations

Inverting these relations expresses the plate's stresses in terms of

strains, Poisson ratio, elasticity and shearing

Stress-Strain Relations The Inversions

1E = (a . ) E (Ex+ VEE
E 1- v2

1E1 = -I - va=) , = E +VEx
y E 1- v 2

7x =1 Y rx =Gyxy
GTable 3.1: Inverted stress in a thin plate as a linear function of strain.

Table 3.1: Inverted stress in a thin plate as a linear function of strain.
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In terms of the curvature of the middle surface, the inverted relations

are:

E (d2w d2w
A, 1- v 2  

d 2

E (d2w d2W= -z v)x--

S = -z (1- v)x
* I-- V2 ax ay

(3.12)

(3.13)

(3.14)

The next steps will integrate the equilibrium equations, and expand the

tangential shear stress and normal stress functions.

Shear and Normal Stresses From

The equilibrium equation can be re-written as

-•xz =( x +
dz dx ady

and then integrated to create equation (3.21) below:

h

_x+ v ( + xy
hdzx f dx dy
2 2

h

In order to integrate equation (3.16), the normal and shear stresses must

be differentiated. The stress normal to the x-face (equation 3.12) is written in

equation (3.12) as a function of middle surface displacement.

change in the x-direction is (equation (3.17)):

oda• E _ 2 w E d • 2W
=- -z -V-d +x V = -z 92)Z d( 2dx x 1 2 2 1 2 2 ý2

Its rate of
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The derivative with respect to the y-axis of the shear stress that is

tangential to the x-face in the y-direction is:

dy -v 1- v2 (

Substituting equations

v) ( dv£
( dx dy I

(3.16) and (3.17) into (3.18) defines

+ dK+ I -z 1- v(1

E d(d2wTxZ= (1-v2)dx •

The final result is:

Z"= E Vh 2  
2

2(1- 2) 4

The process for obtaining Tyz is exactly analogous to the above

development of xz Shearing stress acting on the y-face in the z-direction is:

E =  z2 (2 v2 ) d(d 2 w +  J .1 (3.20)
Normal 2(1- v2) 4 result from a z-direction load applied to the surface

Normal stresses that result from a z-direction load applied to the surface
of the thin plate are found by using the third of the equations

ada,
dz

of equilibrium:

+ oZ+ + = 0.ax dy
(3.10)

(3.21)
A=12 (dr, + dryzZ.

az fdx .dyz x S

42

(3.18)

h

d2w 1 2
+ 1Jzdz.

2 z

d2W
V+

2 wl

jx7)]. (3.19)

d dw
- ( v) d



Integrating the above equation develops a fourth-order, partial

differential equation that defines bending in a thin plate. To do this

integration it is necessary to first differentiate the z-direction shear stresses.

While this protracted derivation may be causing a loss of any intuitive feel,
the development of the plate equation from this point onward is straight

forward. All that remains is to differentiate the shear stresses that constitute,

along with the z-face normal stress, one of the general equations of

equilibrium of a plate at rest. Differentiating the shear stress (equations

(3.19) and (3.20) above) that acts on the x-face in the z-direction yields:

dr E (h2  2) 2 (d2w d2w)l
dx 2(1- v2) 4 2 (3.22)

Differentiating the stress that acts on the y-face in the z-direction produces:

dz_ E h2 (d 2 w2 2 2W)
Cz +D C .D (3.23)

dy 2(1- v 2 ) 4 /Ly2 2 +  2  (3.23)

From (3.21), the vertical normal stress Oz is:

hz = h/2( + z .

Substituting the results of equations (3.22) and (3.23) into (3.21) produces z-

axis normal stress:

h

2 E h 2 2 2 2 2 (d2 w d2
,= f dz[2(1- v) 4  z D xx2 2 +2 x +

h

2E (h2 2 2 d2 )(d2 w d 2w

z 2(1 - v) 4 X 2 2

h
SE h2 4w] . (3.24)

rz f= 2(1- v2) 4
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The operators V2 and V4

V2w= x 2+ w and V4w= 2+ w

Completing the integral using the del operator yields:

h

E V4w h  Z2 ZV -2 v
2(1- v2)  z 4

E lh2 h 2 3S= - V2)4w ---h z +- '1. (3.25)
z 2(1 -v ) 12 4 3'+

This equation shows that the normal stress applied to the surface of the

thin plate is a parabolic function of distance in the z-direction. The stress

varies proportionately with the cube of the depth of the plate.

Note that according to these definitions, z=-h/2 represents the upper

surface of the plate. By setting z=-h/2 in the above stress equation, the

intensity of the applied load is:

z-E hV4w

2 (1 2) 12

The elasticity, Poisson ratio and vertical-position constants can be

combined into a quantity called the "flexural rigidity", or D.

E h3

(I - V'2)12

The final form of the equation is a fourth order equation that describes
a plate's surface deflections in terms of load per unit area.

(d4 w d4 w d4w) 4q=Dd- +2 4 +- = DV4w. (3.26)
dX4 dx2 dy2 dy4 )
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3.2 Plate Equation for a Circular Plate

The expeditious way to develop the equation that describes deflections in

circular plates is to assume a symmetric load distribution centered at the

middle (r=O) of the of the circular plate. This assumption grants the use of 0

symmetry and allows a clean transformation of the Bi-Laplacian (eqn 3.26)

from Cartesian to polar coordinates. The result is

d2 rd 2 W d (I dw _ rq

d2-r dr2  dr r dr D

Here, "r" is the radius of the plate, "w" is the deflection function, "q" is the load

per unit area, and "D" is the flexural rigidity. Equation (3.26) is re-written as

V4w(r) = q (3.28)D

A more useful form of the above equation allows a simplified

integration. The final radial plate equation is:

Id dFld dw q
---d r --I dr- dW = (3.29)
r dr dr r dr drJJ D

The solution functions to the radial plate equation rely heavily on the

equilibrium boundary conditions for shear forces and moments. The simple

coordinate transformation provides no additional insight into the physics of

the plate's deflections, but additional insight is not necessarily needed. The

effort to work through a physical derivation of the equation based on

conditions of static equilibrium is both redundant and extremely time

consuming. Instead, this paper will look at certain analytical examples in

order to verify the accuracy of the finite element modeling of the

MDM/Hiltner 2.4 meter primary mirror.
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Chapter 4

Beam and Plate

Analytical Solutions

This chapter solves six beam and two plate problems using the technical

theory of bending. These analytical solutions provide a bench-mark for

testing the veracity of the numerical techniques of finite element modeling.

All beam solutions assume that there is zero y- and z-direction strain.

The plate problems assume zero z-direction strain. It is also assumed that the

beams and plates are thin - length is much greater than depth.

46



4.1 Analytical Solutions to the Beam Equation

The following series of examples solves the beam equation for the cases

of cantilever and simply supported beams under point and uniform loads.

4.1.1 Cantilever Beam with a Point Load

Cantilever beam with a point load at beam's end.

The bending moment generated by a point load at the beam's end is

dv -Px2
S EI-= + Plx+c,.

dx 2

The slope at the point where the beam meets the wall (x=0) is zero, so, C, =0:

-Px3  Plx2
Elv(x) = - + - + C2.

6 2

Deflection at x = 0 is also zero: v(x = 0) = 0, and c2 =0,

· ·=P (-x+ Ix 2

ElI 6 2

v(x = 1)=
3El

v(X 1)= 5•13
2 48EI

The final results are,
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Figure 4.1:

I

d vEI = -P(x -1).
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4.1.2 Cantilever Beam With Uniform Load

Figure 4.2: Cantilever beam under the influence

of gravity, a uniform load distribution.

This example is most easily solved by applying the fourth order beam

equation. The fourth order beam equation is in units of force per unit length:

d4v
EI • Po

The first integration yields shearing force, which equals zero at the free end:

EI - = Pox + c,
dx

S c = -po.

The second integration yields the moment, which is also zero at the free end:

d2v X2
El d•-•2 = Po-• - PolX + c2, v" (x =l)=O O c2 2= 12

2

The moment for the uniformly loaded beam is

EId 2v  px2 plx + p12Po x- T
dx2  2 2

The boundary conditions at x=O ensure that the last two constants of
integration are zero: v' (x = 0) = v(x = 0) = 0

dv PoX 3  polX2  Pol 2X
EI = + 2'

dx 6 2 2

The final integrations yield:

EIv(x) 4 plx3  P 2X2

Elv(x) +
24 6 4
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x 4  3 12X2
Elv(x) = Po 4 6 +4

At the free end the deflection is

Po x 4  X3  12X2 Po014

v(x = 1) = + - =
EI 24 6 4 ) 8EI

At the beam's center the deflection is

v(x =1/ 2)= p14 (17
24EI 16"

4.1.3 Cantilever Beam, Distributed and Point Loads

Point
Gravity Load

Figure 4.3: Cantilever beam under point and gravity loads.

This case is solved using superposition. From Sections 4.1.1 and 4.1.2,

v(x), = P - + xEl 6 2
Po X4  lx 3  12X 2

E- 24 6+ -
El · =24 6 4

The superposition of the two equations yields a result for the combined case:

Ix3 12X2

6 4
6 4
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4.1.4 Simply Supported Beam & A Distributed Force

Po

Simply supported beam under a uniform (gravity) load Po.Figure 4.4:

The above diagram depicts a straight beam composed of uniform

material that is simply supported at both its ends. The support at the right end

is on wheels which allows the right end of the beam to move slightly to the left

as the beam bends. Without these wheels the x-direction stress induced by the

uniform load would cause a lateral force that would pull on the supports. The

bending moments about the z axis that result from stress in the x-direction are:

d2v
Mx = EIzd .

The moment has two components. One results from the left support, or

torque = radiusx force = xx .

The other component results from the cumulative effect of incremental

mass acting at a distance "x", or

torque = radius x force = (x)J pdx =
0 2

Total bending moment at the point "x" is the sum of the component torques:

S-plx px2

S 2 2
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Solving through integration yields:

d2v -plIx px2
Elz -- =

zdX2 2 2
dv -plx 2  px 3

El-dx= + + ,
Zd 4 6 '

El v(x)= -p lx 3  px4

12 24

Constants are determined by applying boundary conditions at the beam's ends:

v(x = 0)= O,

-p13 p13+ p + Cl = 0,
12 24

C2=-o

p13
-= C, =

24

The final equation for this simply supported beam under a uniform load is:

-2plx3 px4 pl 3

EI24(x + + x
24 24 24

-2plx3 ()4 p13
S EIz2v(x) = - 2 p x + 4+ .

24 24 24

4.1.5 Simply Supported Beam With Center Point Load

"P

Figure 4.5 Simply supported beam under a point load at x =1/2.

The above diagram depicts a simply supported beam under the stress of a

delta function point load at its mid-point. It is important to note that in this

example, the only force experienced by the beam is this delta force applied at

the beam's mid-point. There is no distributed, or "body" force. Hence, when

setting up the delta functions in the fourth order equation, the only force
supported by the simple supports is the delta force at the beam's mid-point.
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The beam equation equates displacement to force per unit length:

d4v P
EIner -{o

dx 2

The integration gives

d3v
EI-=

dx 3

P
2

SP-1

2

°+Px-20 + c,.

The boundary conditions show that there is no moment at x=0, so

Also, there is no moment at the right hand side, or at x = 1.

P 1
v"(x =1)=0= -(1) + P - +

2 2

and c, = -P. The second and first order equations become

d2 v P
El - n= x}'

d2 2

and, finally,

dv P
dx 4

1

P2

EIv(x) = -{x}'
12

At x = 0 and x = 1 the beam's deflection is zero.

X3

- P- + c3x + c4.6

Therefore, c4 = 0.

v(x = )= 0= 1
12

P ( I' P3P 3 3Pl2

S 3  48
48

The final deflection is:

P
Elv(x) = -{x} 3 +

12

P 3 x
6 27

Px 3 3P12
+ 48.

6 48

Maximum deflection is at the point where the first derivative is equal to zero.

P 3
Elv(x)= =-{x}

12

3Pl2

+ x.
48
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EI d x' 2dX2 2 +P{x }1+ cx + C2.

C2 =-0.
Therefore,

X-- +C3,

1. 1 PX36

+-6 2 -2



4.1.6 Simply Supported Beam, Gravity & Point Load

Figure 4.6: Simply supported beam under the influence of a

point load (P) and gravity (Po = force/unit' length).

Total deflection of the simply supported beam under both point and

distributed loads can be determined through the superposition of the two

previously solved cases. The two independent deflection equations are

EIv(x) = plx x3 - 2x2 +12'
24 1

PP P 113 Px 3  3P12Elv(x)= -({x} + x- - -- +-x
12 6 21 6 48

Superposition produces the result:

Plx x 3 _ +2I 31 113 3 31'x
v(x)-=24p 2x2 +2+ i{x} + - }3 3

24EIzI EIz (12 6 2 6 48

At the beam's mid-point, x = • the equation simplifies to2'

EIzvx pl= 2 (121) +1
3

2 96 48
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4.2 Radial Plate Analytical Solutions

The radial plate equation is a bi-Laplacian:

V4w(r, ) =•
D

For cases of axial symmetry, the plate equation can be grouped into a

more easily integrated form:

1 d rd [ d dw qr-- (r- r-=-
r dr drLr dr dr )J D

The first and second integrations yield

d [. d (dw q q rr Lr• dr I -D rdr = -+c

-- r -q I -+c 1 dr=r-f + dr= Cr dr dr D r (2 D 2 r) D

The second result is simply

1(d dw q r2
r dr dr -D 4 c l+ 2

Integrating again,

r--= +,r-- + cnr+cr dr
dr Db 4 ' 2 )

which becomes

dw q(r4  r2
r-- +c6 2
dr D16

2

+ c, In r + c2
4

ri
Inr-I + c2 r-+C 3 .22 2
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This gives the function's slope:

dw qr(r4

dr D 16
c (Inr--) +c -r+c .
2 2 2

The slope integrates to the displacement function:

C4 2  2  2

w(r)== - + Inr- + c -+c3nr+c 4.D 64 4 4 4-

4.3.1 Solution to a Plate Clamped at the Edges

If a plate is clamped at its edges, it will have no linear or rotational

motion at any point along its outer radius, r = R. Therefore the displacement at

the plate's edge is zero, w(r = R) = 0, and the slope at the plate's edge is zero,

w'(r = R) = 0.

Figure 4.8: Plate clamped around its edges.

Knowing that both slope and displacement are zero at the plate's edge

greatly simplifies the plate equation. Since, at r = 0, In r = In 0, and since

In 0 = oo, then C, and C3
both must equal zero. This simplifies the equation

for a clamped plate:

55

t-f-~-t



q(r4 2
w(r)= -q -- +c2 -2+C4C .D (64 42

The boundary condition that determines the coefficient C, is the fact

that at the edge (where r = R), the slope is zero:

dw 0  q (R'
dr D(16

C
2 8

The displacement is zero at the edge:

R4  R2 R2

64 8 4 4

This makes it possible to isolate the remaining coefficient:

R 4  R 4

0- + c4,
64 32 4 S64

The displacement function

64Dq ~ r4
w(r)= --

64D 64

for a clamped axi-symmetric plate is:

R2 r2  R4 •
32 64

w(r)= q (r2 -R2) 2

64D

The clamped plate will attain its maximum deflection at its center (r = 0):

qR4
w(r = 0) = 4

64D
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4.3.2 Solution for a Simply Supported Plate

The simply supported plate offers several boundary conditions that

expedite finding an analytical solution. At the plates edge, (r = R), the plate

will have zero deflection. The plate will have a moment of zero at the edge

because there is no restriction on the edge's rotational freedom. And, finally,

slope is zero at r = 0 in the case of a symmetrically loaded, thin circular plate.

Figure 4.9: Simply supported plate under its own weight.

The general solution to the plate equation is

q r4  C1 r2  c, r2  r2 +c4
Dw(64 c4  4 4

As in the case of the clamped plate, the coefficients C, and c3 are zero

because In r cannot equal infinity. This simplifies the general solution:

q r4 c r 2

w(r)=-- -- + 2 + c4(64 4 4

The moment at the plate's edge is:

Adw v dwMr= -D -+ - .

( dr r dr

Using the above equation for w(r), the moment is written
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M =-D 3rr ýD 16

Evaluated at r = R, the moment is zero:

MrIr=R 0=3R2 c vR2 vc2
M, = 0= - +'! + 2

16 2 16 2

0= (3+ v)+ c2(1+ v).8

It is possible to isolate the second coefficient:

-R' (3 + v) - R2
8 (1+v) 8 where

At r = R, the displacement is zero:

q R 4 2R 4/ +C4w(r= R)= 0= q +46-4D(64 644

The result for the final coefficient is:
R4
R (1- 2) = c,.
64

An analytical solution for the simply supported circular plate is:

w(r)q= 64 (r4 - 2pR2r2 + 2R4p - R4).
64D

For the maximum deflection at r = 0, the deflection equation is

w(r= O)= (-R4 + 2PR4 ) = qR (2# - 1)
64D 64D
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Chapter 5

Finite Element Analysis

The analytical methods developed in the previous sections on structural

mechanics describe stress and displacement in terms of partial differential

equations. For problems of beams and plates under asymmetric loads,

analytical methods quickly become cumbersome.

The MDM primary mirror, while homogeneous and continuous, creates a

challenging analytical problem. The mirror varies in thickness as a result of

its hyperbolic figure and thus exhibits a non-uniform mass distribution. The

mirror's axial support system includes three hard point supports that anchor

the mirror's translational movement and produce local point loads on the

mirror's back surface. The combination of non-uniform mass distribution,

hard point axial supports, and a desire to test the mirror with asymmetric loads

makes closed form mathematical treatment difficult. The alternative is a

numerical technique called finite element analysis.

This chapter describes the basic concepts of the finite element method

and briefly introduces the NASTRAN code before applying FEA and NASTRAN to

the same beam and plate examples previously solved analytically.
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5.1 Conceptual Finite Element Analysis

Finite element analysis is a numerical procedure for solving continuum
mechanics problems that is commonly used by engineers. The essence of the
finite element method is a series of linear equations that create a piece-wise
approximation of a mechanical structure that, together with boundary
conditions, are solved to find displacements and stress fields. The primary tool
used in this thesis for analyzing the MDM primary mirror's structural
properties is the NASTRAN finite element code.

The finite element model's linear equations include information about
model geometry, applied forces, and material properties such as stiffness,
density, and Poisson ratio. The FEA method breaks a structure down into many
small subregions, or elements. The elements are defined and interconnected
by nodes. The nodes are exercised by the linear equations and simulate a
structure's response to force. The sum of the nodal displacements Odetermines
the model's structural behavior.

5.1.1 Introduction to The Finite Element Method

Section (5.1.1) introduces FEA using a plane truss model. The section
demonstrates how a structure can be modeled as an assembly of small elements,
how the so-called "stiffness" matrix is produced, and how such a matrix is used
to solve structural problems.

Figure 5.1: Plane truss. Nodes and elements numbered arbitrarily.
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Figure 5.1 is an example of a direct physical argument that illustrates

the finite element method. (Ref 7) For any node "i" (i = 1, 2, 3) in Figure 5.1,

the x-axis displacement is labeled "ui ", and the y-axis displacement is labeled

"vi". For any bar element "i" , A, = cross-sectional area, E i = elasticity, and

L i= length. The axial force F, and change in length ei of any of the three

bars are related by the expression

FiLi
e - , (5.1)

A EiE

Equation (5.1) is derived from the stress-strain relation:

e. 1= strain = stress.
Li Ei

Stiffness is defined as the ratio of force to displacement and is assigned

the symbol "k ". For the bar element "i", the stiffness is

k F = (5.2)
e i

A degree of freedom (d.o.f.) is defined as the displacement or rotation of

a node. Then for any element "i" in a set of "m" elements, where each node

has "n" degrees of freedom, and each node suffers a general displacement "d",

the following equations hold:

kild , + k2d2 + ...... + kInd = F

k21d1 + k22d2 + ...... + k2,d, = F2

* 0 0 *

* 0 0 0kildl + ki2d2 + ...... + kindn = Fi (5.3)

kmIdI + km2d2 + ...... + kmd, = ,,,.
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Equations (5.3) can be summarized in matrix form

[K] {d} = {r} (5.4)

where [K] is the element stiffness matrix, {d} is the element nodal

displacement vector, and {r} is the vector of element nodal loads. Equation

(5.4) can be solved for the displacement vector {d}. This is a solution for all

nodal displacements and element deformations. From the deformations, it is

possible to compute the stresses, and a complete structural solution is obtained.

5.1.2 Explicit Plane Truss and the Stiffness Method

Figure 5.1 is a two-dimensional truss, each node with two translational

degrees of freedom. If a force of unit magnitude is applied in the positive x-

direction to node 1, four other force applications will be required to maintain

truss static equilibrium. The goal of this example is to set up the calculation of

forces that must be applied to maintain static equilibrium given the stiffness

and displacement matrices that describe the three bar truss.

Force is equal to the bar element stiffness constant "k" multiplied by

the associated element displacement. The applied force moves node 1 to the

right, stretching bar element 3 by an amount

e3 =u 1

and stretching bar element 2 by an amount

e 2 =uIcos8.

The forces along the two individual bar axis are thus

F 3 =k 3e 3= k 3u 1

F 2 =k 2 e 2 = k 2u cos8 .
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The force required to stretch bar element 2 can be broken down into

horizontal and vertical components:

F 2x = k2 uI cos2 6

F zy = k zu I cos 0 sin 0.

(horizontal)

(vertical)

These component forces are summarized graphically in Figure 5.2.

Figure 5.2: Forces required to maintain static equilibrium
in the displacement state {D} -= {u 0 0 0 0 0.

If [K, ] represent the stiffness matrix for displacement u , the forces acting

to maintain static equilibrium for the unit displacement are :

[Kj]u, = [k3 +k 2cos2q

0

-k 2 cosqsin q

- k zcos 2q k 2cosqsin q] u
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Given three nodes, each with two d.o.f., there are six unit displacement

possibilities. Let the force vectors for those six displacements be

[K2 ], [K3 ], [K4], [Ks], and [K6].

Nodal forces are the sum of the six cases:

[K, K2 K3 K4 Ks K6]1
U

2

v

u 3

V3,

Pi
p 1q1

P2
q 2

p3

q3

In a standard abbreviation, the structure stiffness equation is

[K]{D} = {R}.

If the applied forces are known, it is possible to obtain the nodal

displacements by inverting the stiffness matrix.

5.1.3 Utility of Direct Physical Argument

The trouble with the method of direct physical argument is

stiffness matrix is generated by analyzing the structure in its entirety.

a brute force approach.

(5.5)

(5.6)

that the

This is

A more theoretical and general approach to describing finite element

methodology uses the system's total potential energy. The next section

addresses total potential energy and its application within the FEA method.

The operational details of building the finite element matrices and solving the

ensuing equations are not trivial. The numerical method is best suited to

digital computers, pre-processors and FEA codes such as NASTRAN.
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5.2 Energy Methods

The use of direct physical arguments for constructing finite element

models is effective only for such simple systems as beams and bars. To model

more complex systems one must be able to reduce the continuum problem to one

with a finite number of d.o.f.'s.

The alternative to direct physical argument is an energy form of the

Raleigh-Ritz method. (Ref 8) The energy method expresses the total potential

energy of a mechanical system as a function of displacements, and then works

to minimize the total potential energy with respect to a set of general

coordinates in order to approximate displacements and stress fields. The finite

element Rayleigh-Ritz method uses interpolation to express the displacements of

each point in a continuum in terms of a finite number of degrees of freedom.

This combination of energy method and interpolation has the advantage of not

requiring a particular geometry or a specific number of degrees of freedom.

5.2.1 Energy Method Definitions

A "system" is defined to include a structure and all the forces acting on

that structure., The system is "conservative" if, when displaced and then

returned to the initial configuration, the forces involved do zero net work.

The "compatibility condition" is the condition that a displacement field is

continuous and single valued. No cracks appear in stretching, no kinks appear

in bending, and no parts overlap one another.

The concept of "current potential energy" describes the system's current

energy state and disregards any prior or future state.

A configuration or a displacement field is "admissible" if it violates

neither internal compatibility nor essential boundary conditions.
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5.2.2 The Principle of Minimum Potential Energy

The Principle of Minimum Potential Energy states that "among all

admissible configurations of a conservative system, those that satisfy the

equations of equilibrium make the potential energy stationary with respect to

small variations in displacement. If the stationary condition is a minimum, the

equilibrium state is stable." (Ref. 9) Minimum potential energy is best

explained with an example. Consider the system in Figure 5.4:

Fig 5.4 A: Unstretched linear spring of stiffness "k".

P

K-
Fig 5.4 B:

L + DD

Stretched linear spring of stiffness "k".

The system in Figure 5.4 is conservative: it will do zero net work in the

course of moving back and forth. Its one degree of freedom defines all
admissible configurations. The potential energy of the stretched spring is
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P == kD2 + P(H-D), (5.7)

where H, is the symbol for potential energy, kD2 is the work done and the
2

strain energy stored in stretching the spring D units, while P (H - D) is the

potential energy available for load P. If the potential energy is stationary

(invariant) with respect to small displacements, then the equilibrium condition

is stable. Equilibrium equations (eqn 5.8) and conditions (eqn 5.9) are generated

by differentiating the potential energy (5.7) and setting the differentiation

equal to zero:

dH
d P 0 = kD-P. (5.8)

dD

P
D = -- (5.9)k

This balance of energy argument is a result of the virtual work principle.

The virtual work principle states that zero net work is done during an

infinitesimal displacement dD from an equilibrium configuration. Stated

mathematically, the virtual change in potential energy is

dl, = (kD-P)dD, (5.10)

where

M dI dld dH
d iL - dD+ P dD +... + dDn (5.11)

P dD, D2  dDn

is the total differential if the potential energy is a function of position:

17P = 1i7(DO, ,D2, D3,..., Dn)
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5.2.3 Developing the Total Potential Energy

A body accrues potential energy from three sources: internal stresses

(strain energy), body forces (gravity) and point loads. A general expression for

P is generated by integrating over the body's volume the potential energy

states of individual elements.

Strain Energy

Strain energy results from an elastic material undergoing stress and

changing shape. The work done by stress as it acts on an element of

infinitesimal volume can be calculated by integrating the sum of the products of

all infinitesimal stresses multiplied by the associated displacements.

The stress acting on each x-face of an element is (+± adydz). If the

element is not rigid, it displaces. The work done by the displacing stress is

work = (axdydz)(dx dx) = Jaxdex(dxdydz). (5.12)
0 0

The stress {(o and strain {E} vectors for any element are:

{s5= {X,, ay' az9, xyT Tyz, TZ}

e)} = e{, EY, EZ, 7,, yz, Yul}

The stress-strain relation, including initial conditions, is then

s} = [E] e} - [E] eo} + {so}. (5.13)

Let U0 be defined as strain energy per unit volume. On a unit cube, the

strain energy per unit volume is equal to

dU o = ax dex + ay de, + ... + zxdy, = {s}rT{de}. (5.14)
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The rate of change of potential energy with respect to displacements is

aduo ao auo
de = x e 9Y, .. d. Z, = T (5.15)

which, in matrix form and using equation (5.12), is

{ •eUf =  {s}={[E] {e} - [E] leo + So. (5.16)

Integrating equation (5.16) yields potential energy per unit volume:

Uo= {e}T[E]{e} - {e}T [E]{eo} + {e}' (so}. (5.17)
2

Body Forces and Point Loads

Body forces, defined as {F}, cause a loss of potential energy when

displacing elements. In a unit volume, the potential change for an element

experiencing a deformation due to gravity is the work produced by the product
of the body forces {F} and the associated displacements {f} = {u v w}:

Potential Change = - Fx u - F, v - Fz w. (5.18)

Concentrated forces (here defined as (P}) and their displacements

(defined as {D}) usually act on individual nodes:

{D}T{P} = DP,+D 2P2 + .... (5.19)

Total Potential Energy

A body of volume has total potential energy contributions from strain
energy, body forces and point load forces:

II, = JUodV -J{f}T{F} - {D}T{P}. (5.20)
V V
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5.3 Rayleigh-Ritz

The Rayleigh-Ritz method uses interpolation to describe displacements

within a continuum in terms of a finite number of degrees of freedom. (Ref.

10) The method, as used in finite element analysis, is an iterative process that

begins by establishing an assumed displacement field, generates a set of trial

solutions, and then applies a test criterion to the set of trial solutions in order

to select the final answer. The test criterion used in this paper is that the total

potential energy be stationary.

Figure 5.5: An elastic cantilever beam of cross-sectional area A,

elasticity E, with a uniformly distributed axial load q = cx.

The total potential energy equation for the beam in Figure 5.5 is

LE caU)2 L
7 = Adx - J-uAdx,o 2 dx oA

where q/A = Force. The assumed displacement field and uniaxial stress are

u = u(x)

ox = Ee x

(Assumed Displacement Field)

(Uniaxial Stress).

The most simple "admissible" assumption that conforms to the boundary
condition u = 0 at x = 0, is

U = alx. (First Attempt at Solution) (5.24)
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The Rayleigh-Ritz solution is found by testing the first attempted

solution. This is done by inserting the equation (5.24) into the potential

energy equation (5.21), differentiating and finding the unknowns:

AEL 2 CL3

H 2= - a1 - ap 2 3

d H
da =
dal

cL2  cL 2  cL
a = U = X, =

3AE' 3AE 3A

A second solution attempt is the expanded admissible:

u = al 1 + 2 X (5.26)

Again, the Rayleigh-Ritz assumed solution is tested using the new trial solution

in the potential energy equation (5.21), and then differentiated:

i = E (al +2a 2 x)Adx - ((aix + a x2)Adx

2 4a L3 a a L4

S= EA(a 2 2 L  ++2a a L2  4 2L3- C a a2
S2 1 3 2 4

(5.27)

dal da2

The matrix form of the solution is equation (5.28):1 L a, 4 a,
AEL = {} =

L 4L2 / 3  a2 12 3L a

which determines the displacement and the stress:

cL (7 Lx -3x 2  
x  (7L - 6x).

12A E 12A

} cL=

2 12AE -3

(5.28)
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The next solution attempt is a cubic. The general polynomial

assumption for this elastic cantilever beam is

u = ax + a2x 2 + a3x 3 + ... + ann .  (5.29)

The exact solution for this problem the cubic solution,

u = 3Lx - 3). (5.30)
6A E

Continuing to test the general solution will produce results until a

convergence with the exact solution is found. This convergence is achieved

through the iterative application of an assumed field function. Completeness

means exactness, and is achieved only if there are sufficient terms in the trial

field to match actual displacements. Enough terms must be used so that the

model can displace into shapes that correctly describe the actual structure's

deformation. Otherwise, the actual deformations can only be modeled by

superposing terms of the assumed displacement field.

The Rayleigh-Ritz method is a finite element solution technique because

of this piece wise approach to fitting exact shapes and slopes. In FEA codes,
Raleigh-Ritz is applied to define a simple polynomial over a small portion of

the structure. This then becomes piece-wise polynomial interpolation as the

code sums the polynomials in order to build assumed displacement fields

representative of the structure.
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5.4 Analytic and FEA Methods Compared

This section compares analytical and numerical solutions for a series of

beam and plate examples in order to validate the FEA technique and the

NASTRAN code, calibrate finite element method accuracy, and investigate the

material properties of Cervit. (The MDM primary mirror is made of

homogeneous Cervit.)

Distributed loads in the MDM finite element model (as well as in the

actual telescope) are a result of gravity pulling the mirror against the air-bag

axial support and the mercury belt radial support systems. Point loads are

created by the action of the three hard points pushing up against the back of

the mirror. Solving for the deflection of a beam under the influence of both

point and distributed loads, and looking at the behavior of a thin, circular,

simply supported plate will provide a rough estimate of what should be

expected in the MDM model.

5.4.1 Cantilever Beam Numerics

A single beam geometry and set of material properties is selected for

both cantilever and simply supported beam models.

Structural Dimensions Material Properties

length = 2.4 meters Elasticity = 9.18E10 N/m 2

height = .1 meters Density = 2.5 kg/mr3

width = .1 meters Poisson Ratio = .22

Table 5.1: Properties of the beam used in the trial FE analysis.

The other common inputs are inertia and point load magnitudes:

+h +w

I f= ] ly2 dydz -= 8z = 8.33E-6rm4
-h -w 12
22

P = point load magnitude = 25 N



Model 1: Cantilever Beam, Point Load at Beam's End

The cantilever beam is modeled in NASTRAN as a single element.

Support schemes are created in NASTRAN by specifying nodal degrees of

freedom and by applying point and distributed loads. The condition that the

beam have zero deflection at x = 0 (where the beam meets the wall) is specified

by constraining "node 1" to zero translational and rotational degrees of

freedom. The point load is obtained by directing a down vector of magnitude

25 N at the end node. The single element model proves sufficient to generate

an exact solution for deflection at the end point. From Section 4.1.1,

P (13 1 5P13
V(X = ) = , vxEv(x=3 = 48EI

Analytical Results Numerical Results

v (x=L) = -1.5059 meters v (x=L) = -1.5065

mass = 60 kg mass = 60 kg

Table 5.2: Analytical vs. finite element y-axis deflections in a cantilever beam.

Model 2: Cantilever Beam, Uniformly Distributed Load

The distributed load cantilever beam is modeled using ten beam
elements. In the previous point load example, a single element is sufficient to

model the point load because NASTRAN assigns point loads to single nodes.

The distributed load example requires multiple elements so that it may
simulate the effects of a broadly distributed force application. NASTRAN
applies gravity loads by looking at the mass represented by each individual
element, multiplying the element mass by the gravitational acceleration (9.81
m/s2), dividing this total force by the number of nodes that define the
element, and then distributing the force amongst those defining elements.
Hence, more elements lead to a better approximation of a distributed force.
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Model 2: Cantilever Beam, Distributed Load (cont.)

Section 4.1.2 develops the equations of bending for a cantilever beam

under z-axis gravity, showing deflections at the beam's middle and end points.

Table 5.3 compares analytical and numerical results for a cantilever example:

Po 14

8EI
v(x=l/2)= po° 4 (17)24E 1 6

Analytical Results Numerical Results

v(x = 1)= -1.3295488E- 3 meters v (x = l) = -1.334509E-3 meter

v(x = 1/2) = -4.7088E-4 meters v(x = 1/2) = -4.721769E-4 meters

mass = 60 kg mass = 60 kg

Table 5.3: Deflections in a cantilever beam under a uniformly distributed load.

The analytical and numerical results are nearly identical. In both the
v (x = 1/2) and the v (x = 1) computations, NASTRAN deflections are slightly

larger than analytical results. The difference is within 1%.

Model 3: Cantilever Beam With Point and Gravity Loads

The cantilever beam deflections that result from the combined action of

a uniformly distributed and point loads are the superposition of the two

separate cases. Deflections at middle and end points, from Section 4.1.3, are

x P X4 Ix3 12X2 6p _3 x 2 2 P  3
v- +- +- -+- +- }El)= O 24 6 4 El 6 2 El

pol4 P13

v(x=1) = +-
8El 3El

v(x=1/2)= 
4 (17) +1348

24EI 16 El 48

Analytical Results Numerical Results
v(x=l)= -. 14801488 meters v(x=l)= -. 14851575 meters

v(x = 1/2) = -. 04752997788 meters v(x =1/2) = -. 04754983 meters

Table 5.4: Cantilever beam under point and gravity loads, y-axis deflections.
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5.4.2 Simply-Supported Beam Numerics

The simply supported beam series uses the same geometry and materials

constants as the cantilever beam FE models. Changes were in the use of

boundary conditions to simulate the action of simple supports at beam's end.

Node 1, the left hand side boundary, is constrained for zero translational

motion in x, y, or z, and zero rotational motion about the x or z axis. Zero

translational motion provided NASTRAN with its required single point

constraint, anchoring on point of the beam. Node II1, at the right hand

boundary. is constrained from movement in z, as any support will preclude a

vertical deflection at the support point location. Node 11, and all other nodes

2-10, were allowed to move in the x-direction, as any beam that deflects

downward must be allowed to travel slightly in x. These nodes were also

constrained from lateral motion and from rotation about the x- or z-axis.

Model 4: Simple Supports, Uniformly Distributed Load

P0

Figure 5.6: Simply supported beam with a uniformly distributed load.

This model also uses 10 elements in order to simulate the action of the

uniformly distributed gravity load p o. From Section 4.1.4,

EIv(x) p -2x2 +1
24 1l 2 2 EIz9 6(12+1

Analytical Results I Numerical Results

vm(x=/I= 1.3011E-4 meters vm x = = 1.374411E-4 metersVmax(x 2) a

76

Table 5.5: Deflections for a simply supported beam, uniform load.



Model 5: Simply Supported Beam With a Point Load

The equation of bending for a simply supported beam under the

influence of a point load is found in section 4.1.5. Maximum deflection is

attained at the middle point:

E 1V( = P 1 + P 3 I)3 3P2 I P13EIvy x ={ + -1 + +
2 12 2 6 6 6 2 48 2 48

Table 5.5: Simply supported beam with a point load.

Numerical and analytical results are the same for the point load case

(Model 5), while the distributed load case (Model 4) shows a slight variance.

The difference is explained by the FE model's piece-wise approximation of the

distributed load as FE uses ten elements, with a measure of force applied to each

element, in order to approximate the load distribution.

Model 6: Simply Supports With Distributed and Point Loads

The combination of the point and distributed load cases is proven

(Section 4.1.6) to be the superposition of the individual case results.

EIzv x = 1 pl(1221)+- -

2/ 96 48

Table 5.6: Deflections for a simply supported beam

with both distributed and point loads.
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5.4.3 Plate Numerics

The next two models analyze the behavior of circular plates that deflect

under gravity loads. The first of the two models is clamped along the plate's

circumference. The second is simply supported.

Deflections in circular plates of constant thickness can be found using

classical small deflection theory, as developed by Timoshenko and Housner and

addressed in Chapter Three of this thesis. Analysis of the boundary conditions

that create the simple and clamped supports is found in Chapter Four.

The two circular plate models are designed to incorporate some features

of the MDM/Hiltner primary mirror. The plates are, 2.4 meters in diameter,

and use the material constants of Cervit. The plates differ from the actual

mirror in both overall figure and thickness. MDM/Hiltner has a parabolic

surface figure, and a thickness ranging from .162 meters at the inner radius to

.234 meters at the outer radius. The plates are of constant .02 m thickness.

Structural Dimensions Material Properties

radius = 1.2 meters Elasticity = 9.18E10 N/m 2

thickness = .02 meters Density = 2.5 kg/mr3

mass = 234 kg Poisson Ratio = .22

Table 5.7: Properties of the circular plates that deflect under gravity

The plate models were constructed on the LapCAD preprocessor by

sweeping a simple, two dimensional multi-element rectangle through 3600 in

300 increments. Each 300 "slice" contains six elements. The elements are all

.02 meters thick, but vary in surface area and volume in relation to their

radial position. There is a central hole of radius .02 meters.

The general circular plate deflection equation is:

V4w(r)= where D E h'

D' (1- v2)12
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In the case of the plate model, D is exactly

9.18E+10 (.02)-
D = 9.18E10 (02)= 64,463.4628

(I -(.225)) 12

The plate examples are under gravity loads. The analytical and

numerical mass calculations show slightly different results. (NASTRAN uses a

piece-wise continuous circular geometry.)

Volume = r (ro2ued - rnner)*height = .0905 m3

analytical mass = Pcerv * Volume = 226.3kg

mass * 9.81

Surface Area

(2.5E + 3)*(.0905)*9.8 1
q 4.5226

4.5226

Circular Plate, Clamped, Under Z-Axis Gravity

The equation for a clamped circular plate under a uniform load is

w(r)= q (r 2 - R 2 )2 , where q = 490.76 - 1.19E-4.
64D 64D 64*64,463.4628

Deflections are uniform for points of equal radius. Table 5.8 (below) shows

analytical and FEA deflections for the radial arm along the positive x-axis.

Radius .02 .2 .4 .6 .8 1.0

Analytic 2.47E-4 2.33E-4 1.95E-4 1.39E-4 7.61E-5 2.30E-5

FEA 2.35E-4 2.16E-4 1.81E-4 1.29E-4 7.01E-5 1.99E-5

Table 5.8: Deflections of a clamped circular plate under gravity, in meters.

The finite element calculations match the analytical calculations within

an average of 5% for the clamped circular plate model.
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Model 8: Circular Plate, Simply Supported, Under Gravity

The general solution for a simply supported plate under uniform load is

w(r) = q ((r4 - 2R 2 r2 + 2R 4 - R 4).64D

Deflections are:

Radius .02 .2 .4 .6 .8 1.0

Analytic 1.03E-3 9.73E-4 8.59E-4 6.99E-4 4.99E-5 2.64E-5

FEA 8.99E-4 8.58E-4 7.76E-4 6.43E-4 4.56E-5 2.34E-5

Table 5.9: Deflections for a simply supported circular plate under gravity.

Units are meters.

Summary

The finite element calculations produce 90 - 99% of the maximum

deflections predicted by the plate equation. This is an inexact result and could

be caused by modeling the plates with an insufficient number of elements, and

thereby an insufficient number of degree of freedom.
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Chapter 6

Introduction to Astronomical Optics

This chapter introduces geometrical and physical optics techniques for

modeling light behavior and quantifying the quality of images produced by

optical systems.

Physical optics treats light as a transverse electromagnetic wave.

Diffraction theory is a subset of physical optics that applies the principle of

superposition to study wave behavior in optical systems. Diffraction theory

considers each point on the wavefront as the source for another, secondary

wavefront. These secondary wavefronts, or "wavelets", iteratively reproduce,

modeling the wavefront as a superposition of a large number of wavelets. The

"diffraction integral", the sum of these superposed wavelets, describes the

characteristics of the image of a point source object, and established the

diffraction limit.

Geometrical optics ignores the wave nature of light, instead treating

light as a ray that behaves vectorially. What wave theory describes as a

"spherical wavefront", geometrical optics labels a "fan of rays". What wave

theory calls a "planar wavefront", geometrical optics calls a "bundle of

parallel rays". Geometrical optics models the behavior of light as a set of

vectors that strikes reflective and refractive surfaces and forms an image

when the vectors assemble along what is known as the system's optical axis.

81



6.1 Geometrical Optics and Image Formation

Stars emit light in the form of expanding spherical waves. Earth-bound

observers perceive the portion of the spreading stellar wavefront to be almost

exactly flat, since the radius of curvature of the emitted spherical wavefront is

the semi-infinite distance from the star to the observer and the angle between

the incoming rays is infinitesimally small. The combination of infinite radius

and very small angle allows the use of the geometric optics model.

6.1.1 How MDM Forms an Image

A reflecting telescope is designed to collect the (virtually) parallel rays

of the incident stellar wavefront, and through the coordinated action of

primary and secondary mirrors to focus these rays to a single point so that

they may be collected by instrumentation. The surface of the primary mirror

is designed so that reflected star light is transformed from a bundle of parallel

rays (the planar wavefront) into a fan of converging rays. The surface cross-

section that enables a mirror to convert a plane wave into a converging wave

is that of a conic section.

The MDM/Hiltner 2.4 meter telescope is a two-mirror system, and

belongs to the family of Cassegrain telescopes. The primary and secondary

mirror surfaces are hyperboloids. In order to expeditiously link the concepts

of image formation, aberration theory, and mechanical deformations of optical

surfaces, this paper will make the simplifying approximation that the MDM

mirror can be treated as a paraboloid. The parabola is the correct surface form

to convert a plane wave into a spherical wave, and focus the light to a point.

This simplification eliminates the modeling complications of dealing with a

second mirror, allowing the analysis to concentrate on a single reflected

wavefront.

An ellipse is defined (Ref. 11) as "the set of points in a plane whose

distances from two fixed points (the foci) in the plane have a constant sum".

(Please see the figure, below.)
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Figure 6.1: An ellipse, its foci, and an internally oriented normal.

Figure 6.1 shows a vector that emanates from one foci of the ellipse,

"reflects" from the locus of elliptical points and "arrives" at the other focus.

The definition of the ellipse requires that no matter what the initial direction

of the vector's propagation, the resulting internal reflection will cross the

other foci. The key concept is that, by definition, inside an ellipse, the

distance traveled from the first focus to the periphery and back to the second

focus, is a constant sum.

Figure 6.2: Conic surface reflecting parallel rays. Rays parallel to the optical

axis will be reflected to a common focal point by a parabolic surface.
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In Figure 6.2 (Ref. 12), the incident planar wavefront propagates from

left to right parallel to the mirror's optical axis. Two arbitrarily selected rays

reflect from the curved surface; one reflects at height "y", and travels down to

the "z" (optical) axis. The other ray travels along the "z" (optical) axis both

before and after reflection. The goal of this example is to show that the

surface that brings these rays to a common focus is a parabola.

In order that all rays arrive at the same point, all optical path lengths

are required to be equal. The optical path length is defined as the distance

traveled from the point of emission (the star) to the focal point (B). Since both

rays travel the same distance from the star to the immediate area of the optical

system, it is possible to neglect the majority of this semi-infinite distance and

consider only the portion of the total path length from just outside the system.

From this point (labeled with an *) to a common focus, equal OPL's require

2f=l + (f-A).

From the geometry in Figure 6.2,

12 =2 + (f -A) 2.

From the requirement that all OPL's be equal, it must be true that

1= (f+A).

Therefore, (f+A)2 = y2 +(f-A) 2

which is equivalent to saying

y2 = 4fA or, y2 =-4fz (6.1)

This is the equation of a parabola with vertex at (0,0). The complete

equation of a paraboloid of revolution where f is defined as the focal length, is

x 2 +y 2 =-4fz . (6.2)
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6.1.2 Conic Sections of Revolution

The goal of this section is to form a general equation for conic sections

in order to develop the relationship between focal length and radius of

curvature for a parabolic mirror. (Ref. 13) Figure 6.2 depicts an optical system

composed of a concave mirror with a light source a distance "s" from the

mirror vertex, and a light collector at distance "S'". All rays have equal total

OPL from the source to the mirror and on to absorption at the collector.

Figure 6.2 Rays reflecting from an elliptical surface between conjugates.

In Figure 6.2, one ray travels from the point source "B" up to the mirror

surface at height "y" and then back down to the optical axis at point "B' ". The

other travels along the optical axis from "B" to the mirror vertex and back to

the collector at point " B' ". From equal optical path lengths,

L + L' = - (s + s'). (6.3)

The lengths L and L' are defined as:

L2 = y+ (-s - A)2 & L',2=y2 +( - A)2
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It is possible to eliminate L and L' from equation (6.3) , as shown in

Schroeder. (Ref. 14) If A = -z , then

2 ss' , SSy - 4z'- + 42 2 = 0,
s+s' (s+s')2

(6.4)

which is the equation for an ellipse with center at x = 0, y = a . To develop a

general equation for a conic section, Schroeder chooses

2a = s+s' and b2 = ss', (6.5)

c
and defines the eccentricity of the ellipse as e=-, where "c" is the distance

a
from one of the foci to the center of the ellipse and C2 =a2 -b 2

Schroeder substitutes s and s' values in equation (6.5) for a and b,

2b 2  2ss'

a s+s'

and defines the variable "R" as the ratio
ss' R

(s+s') 2

(6.6)

(6.7)

Schroeder substitutes equations (6.5), (6.6) and (6.7) into equation (6.4), and

then rotates the result to obtain an equation for a conic surface of revolution:

r2 - 2Rz + z2 (1+ K)= 0. (6.8)

The "conic constant" is K=-e 2  and p2 =x2 +y 2 . A table of conic

equations in terms of "K" is presented below:

Prolate ellipsoid e2 < 0 K> 0

Sphere e= 0 K=0

Oblate ellipsoid 0 < e < 1 -1 <K<0

Paraboloid e = 1 K=-1

Hyperboloid e > 1 K <-1

Table 6.1: Conic constants and eccentricity.
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Focal Length and Radius of Curvature

Radius of curvature and focal length provide measures of a mirror's

figure and performance. In the case of a flawed mirror, it is possible to

measure image aberration by comparing actual and intended focal points. The

example of an incoming ray that travels parallel to the mirror's optical axis at

a height "y" above the mirror's vertex will be used to develop the relationship

between a parabolic mirror's radius of curvature and its focal length.

Figure 6.4: Parabolic surface with normal to the surface at height "y".

For a perfect paraboloid and parallel incoming rays, equal optical path

lengths require that the rays reflect from the mirror surface and strike the

optical axis at a common focal point. The diagram shows the focal length "f" is

f =z+z o.

From the geometry, the length zo is related to the height "y" by

Yzo=
tan20

From the double angle formula,

(6.9)
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Y y(1-tan2 ') (6.10)
tan 2o 2 tan 4

Basic calculus defines the slope of the normal to a curve as the inverse

of the slope of the curve at the point of tangency. Since the slope of the curve

in the diagram is dy/dz, the slope of its normal is dz/dy. From the diagram, the
slope of the normal is tan . Therefore,

dz
-=tan . (6.11)
dy

The general expression for a conic section derived in Section 6.1.2 is

p2- 2Rz + z2(l+ K)= 0 (6.12)

where "R" is the ratio defined in equation (6.7). From equation (6.12),

dz ydzY = (6.13)
dy [R-(I+K)z]

Substituting equation (6.11) into equation (6.10) yields:

y -(1 tan' 2 ) _ y2 t  tan0]
2tan-0 2 tan4

Zo= 2[ R - (I+ K )z ]  Y ]
YyR-(R-(I+K+K)z])z y

R (l+K)z y2
z= (6.14)2 2 2[R-(1+K)z]

To finally put "R" and "f" into the same expression, zo can be

substituted into the equation that describes focal length, f=z+zo. First, an

expression for "z" is obtained by re-arranging equation (6.8) in terms of "z":
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Z= R R1- 1 2 (1l+K)1 .Si+K1 y2

Expanding this expression for "z" in a power series produces

2R 8R' 16R5

Adding z and zo (equations 6.14 & 6.16) determines the focal length:

f = zo+ z

R (I+K)y 2  (1+K)(3+K)y4

2 4R 16 R3

(6.15)

(6.16)

(6.9)

(6.17)

For a parabolic mirror of perfect figure, K = -1, and r = R, so that the

relation between focal length and curvature for a parabolic dish is

_ R

(6.18)
J

22

For any other conic section, the change in focal length as a function of
p (where p2=X2 +y 2 ) is

A f = f(actual) - f(perfect paraboloid)

Af = - (1+ K)p 2  (1+ K)(3 + K)p4

4R 16 R3
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6.2 Physical Optics & Diffraction

The previous two sections employed the concepts of geometric optics to

describe the behavior of light as it passes through an optical system.

Geometric optics predicts that any system governed by Fermat's principle can

produce, in the absence of aberrations, a true point image. In the physical

world, this prediction is inaccurate. True "point" images do not occur - the

wave nature of light sets a minimum image size. In an otherwise perfect

optical system, this limit on the minimum image size is known as the

"diffraction limit".

"Diffraction" is a term coined by the 17th century scientist Francesco

Grimaldi to describe what he saw as the deviation of light from rectilinear

propagation. (Ref. 15) The diffraction effect can most easily be understood as

a characteristic of wave phenomena that occurs whenever a portion of a

wavefront is in some way obstructed. If an opaque screen is placed between a

point source of light and a white screen, the shadow cast on the screen will not

be perfectly sharp. Dark fringes will appear around the edges of the screen,

lending a "smearing" effect to the edges of the image.

Edge-effects and dark and bright fringes are the result of constructive

and destructive interference between waves. In fact, there is no physical

distinction between interference and diffraction. It is a convention that the

term "diffraction" is used to describe the wave-related behavior of light in

certain situations, usually in regard to wave propagation around obstructions

and edges.

The earliest attempt to quantify the diffraction phenomena was by

Christiaan Huygens who, in 1690, asserted that every point on a primary

wavefront serves as the source of spherical secondary wavelets. Huygens'

considered the primary wave to be an envelope of secondary wavelets - but he

did not account for the action of the many ensuing wavelets, nor for the

differences in behavior between waves of very small and very large

wavelengths.
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Fresnel modified the Huygens model by incorporating the concept of

interference. Fresnel asserted that the amplitude of the electric wave at any

point beyond the primary wave is a superposition of wavelet amplitudes and

relative phases.

Kirchhoff enhanced the Fresnel-Huygens model, introducing a more

rigorous approach that employed differential equations. Yet neither Kirchoff

nor any succeeding approach satisfactorily models the edge-effects of

propagating light. Exact solutions to the differential equations of rigorous

diffraction theory are rare. Given the mathematical complexity, Chapter 9 will

use Huygens' concept of the diffraction integral as a sum of wavelets across

the face of an aperture.

6.2.1 The Diffraction Integral

Each point on a wavefront can be envisioned as the source of a

spherical wavelet. The electromagnetic result at a distant point is the

cumulative effect of constructive and destructive interference of all these

little Huygens wavelets. The face of the aperture in an optical system such as a

reflecting telescope is the source of a primary wavefront which is, in turn,

the source for an infinite number of tiny Huygens wavelets. Each wavelet can

be considered to be the source for an infinite number of tiny sub-wavelets.

This iterative process repeats itself along the entire focal length until,

finally, the propagating wavelets reach the image plane. The diffraction

integral, taken at the image plane, is the incremental sum of all these

propagating wavelets.

This derivation of the diffraction integral begins with the divergence

theorem and its corollary, Green's Theorem. Green's theorem is used to

develop the Kirchhoff integral theorem. The Kirchhoff integral theorem is

useful because it relates the value of any scalar wave function at any point

inside an arbitrary closed surface to the value of that wave function at the

surface.

91



The geometry of the electromagnetic field reflected by a telescope

mirror can be modeled by Kirchoff in a Gaussian sense, despite the fact that

the integral theorem is a scalar quantity. The Fresnel-Kirchoff integral

formula considers the beam of wavelets reflecting from the mirror to be a

scalar volume, while the image formation on the image plane is considered to

be a scalar surface value. (Ref. 16)

The divergence theorem states that there exists a connection between

surface and volume integrals.

*ffn F ds = ffJV -F dr. (6.19)
surface volume

This relationship can loosely be described by saying that the rate of change of

the amount of "stuff" inside some volume is equal to the rate at which that

"stuff" is flowing through the enclosed surface. By setting

F=UVV-VVU

and then using the vector identity,

VO(UV V) = UV 2 V + (VU)*(VV), (6.20)

the divergence relation (eqn 6.19) becomes a form of Green's theorem.

Green's theorem states that if two functions U and V are any two scalar

point functions that satisfy conditions of continuity and integrability, then

fJ i * (VVU-UVV)ds = ff (VV 2 U-UV 2 V)dT. (6.21)
surface volume

If the two functions "U" and "V" satisfy the wave equations

1 d'2 U 1 d 2 V
V2 U I= and V2 V

C2 dt2 c2 dt 2
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and also have a time dependence of the form e , the volume integral in

equation (6.21) is equal to zero:

r * (0V U-U r V ds = 0. (6.22)
surface rr

The wave theory of light considers the reflection of a plane wave from a

parabolic dish to be a converging spherical wave. In this instance it is logical

to choose "V" to be a spherical wave of the form

i(kr-ot)

V = V o (6.23)
r

Any solution that describes the convergence of a wave to a particular

focal point must consider the case where the radius "r" of the spherical wave

goes to zero. At the point "P" where r -- 0, the function "V" becomes infinite.

The answer to the little challenge of infinite "V" at r = 0 is to exclude the

small point "P" from the integration. This can be accomplished by

subtracting an integral over a small sphere of radius "p" centered at P.

Equation (6.22) becomes

ff • - U d eikr d s -ff eikr dU - d e ikr  p2 d" = 0 (6.24)
r dr dr r r dr dr r r=p

where dQ is an element of solid angle centered at P. The corresponding

element of area is p2 dA. The terms Vo and e'"' are canceled as common

factors.

As the radius of the small sphere approaches zero, the integral on the

right hand side approaches the value that the original function "U" has at

point "P". Equation (6.24) thus becomes

(erd d eikr')
UP=fff U - U- d. .. ds, (6.25)

( r dr dr r
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which is the Kirchhoff integral theorem linking the value of any scalar wave

function at any point "P" inside an arbitrary surface to the wave function

value at the surface. A function of the form

i(kr-ow)eU=Uo
r

when used in equation (6.22), produces a result of the form

-iax ikr d d eikr

U, = Uo e "ff U - U ds, (6.25)
r dr dr r

where the integration is applied only to the area of the aperture.

Equation (6.26) can be further simplified by assuming that any

variation in the factor eikr is generated primarily by the exponential term.

This assumption allows the I/r term to be replaced by its mean value and thus

taken out of the integral. (Ref. 17). Using this assumption, equation (6.25)

reduces to

UP =Cff eikr ds, (6.27)

which is the Fresnel-Kirchhoff diffraction integral. Equation (6.27) obtains

the distribution of diffracted light simply by integrating the phase factor eikr

over the area of the aperture. This result is the sum of all amplitude

contributions "dU" from each little incremental area of wavefront "ds"

Equation (6.27) is thus a simple scalar sum, and represents the amplitude

at the imaging surface from all aperture-related sources.
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6.2.2 Diffraction Limit and the Point Spread Function

One of the very practical advantages of diffraction theory is that it

provides a reality check for geometric optics.

One example where geometric optics needs a reality check is the case of

the spot diagram. A spot diagram is produced by geometrically tracing a

number of rays through an optical system from the object plane to the image

plane. The spot can be computed numerically by using Snell's law to calculate

the angle of reflection and multiplying by the focal length. This is useful as

long as significant aberrations exist in either incident or reflected

wavefronts. Caution should be used when calculating a geometric spot

diagram for a wavefront that exhibits little or no aberration - the

geometrically generated spot diagram will live up to its name and produce a

spot on the image plane, and thereby defy the wave nature of light.

The reality check for the spot diagram comes in the form of a Point

Spread Function. The Point Spread Function (PSF) is a ratio of intensities

derived from diffraction analysis, and is often used to measure the imaging

performance of an optical system.

Diffraction integrals in general and PSF's in particular are cumbersome

when the wave in question exhibits significant aberrations. In the absence of

aberrations, the PSF can be determined in closed form by evaluating the

diffraction integral, and calculating the normalized intensity.

The amplitude distribution given by the diffraction integral in the

previous section is

Up =Cfe ikr ds. (6.27)

To calculate the diffraction pattern of a circular aperture, (Ref. 18)

choose "R" as the radius of the aperture, and "y" as the variable of

integration, so that an arbitrary radial distance from the center of the

aperture is defined
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r = r0 + y sin0.

Then the element of area "ds" is the product of a strip of width "dy" and a

length

2 R2 -y 2

The amplitude distribution of the diffraction pattern can then be given,

according to (Ref. 19),

U, =CeikroSeikysine 2 R2 - y 2 dy. (6.28)

If the substitutions

YU --u R
R

and p = kRsinO

are made, the amplitude distribution becomes

+1

U(p) = j e'"P 1 - u2 du. (6.29)

The intensity at some point "P" is the absolute square of the time-averaged

amplitude of the electro-magnetic wave at that point "P":

I = UP2

That intensity, normalized to unity at the point where the intensity is a

maximum, is called the Point Spread Function (PSF). (Ref. 20) Changed into a

standard Bessel function integral, the PSF is

I 2J, (p)_

1 = [ p
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where J1 is the Bessel function of the first kind.

A plot of the intensity function is the Airy disk pattern, which consists

of a bright central disk surrounded by concentric circular bands of rapidly

diminishing intensity. The bright central area of the Airy disk is the best that

a wave-related phenomenon can do to create a true "spot diagram". The radius

of the first dark ring is given by the first zero of the Bessel function, at p =

3.832. The angular radius of this first dark ring is thus

sin 3.832 1.22 (6.31)
sin 8= 8, (6.31)

kR D

2w t
where = , D = 2R, and 0 is small.

This is the diffraction limit, the approximate minimum angular

separation between two equal point sources such that they can just barely be

resolved. It is a direct function of the wave nature of light, and throws cold

water on the measures of image radius offered by geometric ray tracing spot

diagrams.
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Chapter 7

Basic Aberration Theory

A perfectly formed optical surface will produce in its exit pupil a

distortion-free wave. If the optical surface under study is a parabolic mirror,

and if the incident wave is planar, then the reflected wave will be perfectly

spherical and will converge into a diffraction limited image at the focal point.

If the reflecting mirror is not perfectly shaped, that is, if there are

small imperfections or distortions in the mirror surface, the reflected wave

will also be imperfect and will form a blurred image. The blurred image is said

to result from certain wavefront aberrations.

This chapter introduces wavefront aberration theory using the methods

of geometrical optics as described by Creath. (Ref. 21) The chapter begins by

writing an equation for an unaberrated wavefront, and then addresses how

the equation might change in a series of aberration scenarios. In these

aberrations, parts of the wave reach the image plane outside the area

described by the diffraction limit, or away from the geometrical focal point.

The method goes on to describe standard first and third order aberration

patterns, the relation between these aberration patterns and Zernike

polynomials, and the use of Zernike polynomials as numerical tools.
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7.1 The Aberration-Free Wavefront

The aberration-free wavefront equation describes wavefront

distribution, and acts as a basis for quantifying wavefront aberrations.

Fig. 7.1: Relation between image and exit pupil coordinates.

The origin in Figure 7.1 is the center of the exit pupil (vertex of the

mirror). "R" is the radius of curvature of the spherical wavefront. The z-axis

is the optical axis, the x-axis the "meridianal" axis, and the y-axis is the

"tangential" axis. The unaberrated spherical wavefront equation is

x 2 +y2 +(z-R)2 = R2. (7.1)

If "x" and "y" are small compared to "R", and if "z" is small so that z2

can be ignored, then equation (7.1) can be written as

(7.2)
x2 + y2

Z =

2R

The spherical wavefront distribution in the exit pupil converging to the point

(x o,, , zo) at a distance "R" is X 2 + y2W(x, y) =
2R
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7.2 OPD, Defocus and Lateral Shift

The optical path difference (OPD) is the path difference between the

aberrated and the ideal unaberrated wavefront. The OPD is positive if the

aberrated wave leads the unaberrated wave. (See Figure 7.2.)

+ OPD

ideal aberrated
wavefront wavefront

Fig. 7.2: Definition of Optical Path Difference.

Another way to visualize OPD is to consider a parabolic mirror that

suffers from a warping action that has turned the edges of the mirror inward,

beyond the normally parabolic curvature.

Fig. 7.3: Ideal and deformed wavefronts and the OPD between the two.

The OPD produced by the warped mirror in Figure 7.3 is a measure of

the distance between the actual, flawed wavefront and the ideal wavefront that

would exist if the optic were correctly figured.
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Defocus

The OPD can be used to describe the nature of an aberration, as can be

seen in the next figure where an OPD is actually equivalent to a defocus term

in the wave equation. Figure (Fig. 7.4) shows an observation plane that has

been interposed in front of the Gaussian image plane. The observation plane

is thus effectively an image plane that has been shifted along the optical axis

toward the exit pupil by a small amount ( Ez ).

Fig. 7.4: Defocus in a spherical wavefront from a focus shift .

The original wavefront has a radius of curvature of (R + e z) , while

the observation plane lies at a radius of "R" from the exit pupil vertex. In this

scenario, the original wavefront has a distribution

xy 2 I+2 2
W(x, y) = + -R - i +2 .y l

2(R+E,) 2R)1+
(7.4)

For an "Ez" much smaller than R, equation (7.4) reduces to

101

-R
lane

vlane

7.2.1



(7.5)
X2 + y2 2 x + y2

2R 2 R2

The second term of the RHS of equation (7.5) is a defocus term, and is the

optical path difference between the two wavefronts. This wavefront

aberration known as defocus effectively shifts the focal point of the

wavefront along the optical axis.

7.2.2 Lateral Shift and Tilt

Now consider a system that exhibits a vertical shift of the converging

wavefront's focal point, so that it moves the focal point a small distance in the

positive direction along the x o axis.

Fig. 7.5: A lateral shift of the image position along the x 0 - axis.

The equation of the wavefront in Figure 7.5 can be written

y2+(x-e) 2 +(z-R)2= R2 . (7.6)
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As in Section 7.2.2, the change in focal position is small so that

z << R,

thus E andZ2 can be neglected. The resulting wavefront distribution is

x 2 + y 2
W(x,y) = 2R - x-

R

The OPD found in equation (7.7) is

AW(x,y)=- x
R

(7.7)

(7.8)

which is a lateral shift in the position of the focus. An analogous argument

quantifies a transverse shift of the focus along the Y o axis, with an OPD of

A W(x, y) -y
R

(7.9)

This transverse shift of the center of the wavefront is commonly called "tilt".

The combination of the OPD's from equations (7.5), (7.8) and (7.9) is

wx2 + y2 ) xJ 2 +2 J
W(xy)= 2R - Ez x EV

-x- y-.
R R

(7.10)

and describes a wavefront with center of curvature at the point Ex,Ex z)
which lies in an image plane coordinate system (x , Y o, o), where the

coordinate system's origin is a distance R from the exit pupil vertex.
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7.3 Angular, Transverse, Longitudinal Aberrations

The wavefront of equation (7.10) is aberrated. Ray theory describes the

aberrated wave as producing rays that cross the image plane in different

places - creating something other than a perfect focus. Diffraction theory

shows the aberrated wave as creating an imperfect pattern on the image

plane, irregular in shape and contour with an energy distribution larger than

the minimum prescribed by the diffraction limit.

Figure 7.6 depicts two wavefronts. The ideal, unaberrated reference

wavefront exits the pupil as a spherical wave, converging to a point focus at

the image plane's origin. The aberrated wavefront's rays intersect the image

plane along a length of distance "E".

Figure 7.6: Transverse, Longitudinal and Angular Aberrations

The OPD in the Figure 7.6 is exaggerated - theory states that the OPD

between aberrated and unaberrated wavefronts is very small, so that the sine

of the angle "a0" equals the angle itself. This angle between the ideal ray and

the aberrated ray is called the "angular aberration", and is defined as
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SdA W(x,y)
C - -

ndx

"n" is the refractive index, and will be set equal to one. The distance "e"

along the x- and y-axis of the image plane is a measure of "transverse

(7.11)

aberration". The x-axis transverse aberration is

(7.12)
E A W(x, y)

Ex = Rax = -R
ndx

The y-axis transverse aberration is

S=RA W(x,y)
Y =Ra =-Rndy

' ' nd y
(7.13)

A third measure of aberration is the longitudinal distance between the

image plane and the point along the optical axis where the aberrated ray

crosses. It is the "longitudinal aberration". From Figure 7.6,

Ez  R
- , (7.14)

EX X-Ex

so that the longitudinal aberration, in a small angle approximation, is

R R 2 d W(x,y)
Sndxx x ndx

(7.15)

The wavefront OPD in normalized coordinates is

h 2 x'

h
A W - x Edx.

R o

(7.16)

(7.17)
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7.4 Seidel Aberrations

In section 7.2, the wavefront distribution

W(x,Y + y2(x2 + -2E-- y (7.10)
2R 2R2 R R

is used to describe a spherical wavefront with center of curvature at the point

(x X EX, E z). This point lies in an image plane coordinate system (x0, y0 oZ),

where the origin is a distance R from the exit pupil vertex. (Please see Fig 7.1)

W. T. Welford (Ref. 22), in his development of the aberration types of Sir

William Hamilton, drew the coordinate system in Figure 7.1 in such a way that

the image point forms in a plane defined by the x and z axes. This makes yo

equal to zero, and allows W(x,y) to be written as a power series expansion:

W(x, y, x) = W(x2+y2, xXo,x )

aaa(x2 +y 2) + a2xx0 + a3 x"2+ b1 (X2+ 2)2

+ b xxo(X 2 + y2 ) + bx 2 X + b4 2 (X2 + Y2)

+ b5x x + b6x + ........ (7.11)

It turns out that imperfect optical surfaces often exhibit certain

common design/manufacturing errors that give rise to well defined test

patterns. The infinite series in equation (7.11) is a decomposition of the errors

that are often seen in waveforms passing through various aberrated optical

surfaces. The first three terms in equation (7.11) give rise to the tilt and

defocus. aberrations described in Section 7.2..
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The terms with coefficients b, to b, are fourth degree polynomials,

and reduce to third order when expressed as transverse ray aberrations.

Expressing the aberrations in polar coordinate form,

x = pcos0 y = psin0,

and the polar expansion is

W(xo,p, o) = Wkm xpl Cos m
j,m.n

k = 2j+m, and I = 2n + m,

+ W040 4 + W1 31 X 0 3 COs + W 222 p COS 2

+ W220 x 2 + W31 3 pcos0. (7.12)

Aberration Functional Aberration

Coefficient Form Name
W 2

200 X piston
Will x pcos tilt

_ W020 2P focus

0W40 4P spherical
WI31 Xop 3 Cos6 coma

W222 o2 COS astigmatism

W220 X0 p2  field curvature

W3110 COS distortion

Table 7.1: Associating the functional form with the aberration name.

Spherical aberration, coma, astigmatism, field curvature and distortion

are sometimes called the Seidel aberrations, after Ludwig von Seidel (1821-

1896), who pioneered the study of the monochromatic third order aberrations.
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7.4.1 Spherical Aberration

Spherical aberration is represented by the term

AW= W 4 op 4 = Wo0 40 (X 2 +y 2 )2 .

In spherical aberration, the marginal rays (the rays reflected from the

edge of the mirror) cross the optical axis at some point other than the paraxial

focus. This can be caused by symmetric wavefront distortion characterized by

concentric contour lines at the outer radii of the wavefront.

Figure 7.7: A deformed parabolic mirror forcing the marginal rays to

aberrant focus, showing Spherical Aberration (SA).

Figure 7.7 shows the SA described by concentric contours. It can be

imagined that the outer portions of the optic have been bent inward so that

the designed parabolic figure more closely resembles a spherical figure. This

forces the marginal rays to cross the optical axis short of the paraxial focus.

Had the outer portions of the optic been deformed outwards, the marginal

focus would have been beyond the paraxial focus along the optical axis.
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Figure 7.8 shows the uniform contour intervals of

along the outer radii that so characterizes the aberration.

Figure 7.8

the wavefront that

Contours of constant spherical aberration.

The visual effect of spherical aberration is to soften the contrast of the

image with the background, and to blur image details.

Transverse Spherical Aberration

Transverse spherical aberration (TSA) measures the distance from the

optical axis to the point where the marginal rays strike the image plane. From

the definition of a transverse aberration in Section 7.3 ,

R cAW
E ,

h dxW

R dAW
S= h dy

4RWO40 2
Ey = - x( + y 2

S h

4RW4
= 0 4 0h y(x2 + y 2 )

where "h" is the geometrical pupil radius. The aberration is symmetric about

the principal ray, and the transverse variant can be written

E,, = Y 4RW 4o 3
Le =L,= h
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7.4.2 Coma

The name "coma" originates from the visual similarity some observers

perceive between the elongated comatic image and the sight of a comet

streaking across the night sky. Coma is described by the term

AW= W 131x op 3 Cos6= W 131xox(X 2 y). (7.13)

The presence of the single field term "x 0 " in equation (7.13) ensures

that coma lacks the uniformly symmetric distortion contour pattern of

spherical aberration. The coma pattern is one of asymmetric contour lines.

Figure 7.9: Contours of aberration for coma, from Shannon (Ref. 23).

The transverse aberration components of coma are

Ex = -RwY31xo(3X2 +  2)= -hW131 x op2(2 + cos2 0)

2R R
, W  x131oxy= W131 x 2sin 2 0.

h h

Where this thesis utilizes Creath's (Ref. 24) wave equation "W(x,y)" to

describe wavefronts and aberrations, Schroeder (Ref. 25) uses a more

geometric method that emphasizes optical path lengths. Schroeder emphasizes
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that an aberration can be defined as being either an "on-axis" or "off-axis"

object. An on-axis object lies on the mirror's optical axis, and an "off-axis"
object's incoming rays make an angle "0" with the optical axis. Schroeder

describes coma as an off-axis aberration, and defines transverse coma as

TCA oc. 2  s'R2

where "y" is the height of the point of the ray's reflection from the mirror,

"R" is the mirror's radius of curvature, s' is the focal length, "f" is the angle

the incoming ray makes with a line parallel to the mirror's optical axis. TCA

stands for "transverse comatic aberration". This approach shows coma as
being linearly proportional to the optical-axis angle 0, with a heavy " y2 ,,

dependence that drives the aberration's geometry. This " y2 " dependence

means that rays incident on the outer portion of the mirror will focus at a

different height than rays reflecting from the center of the mirror. This

creates an elongated image.

7.4.3 Astigmatism

The word "astigmatism" derives from the Greek; "a" means not, and

"stigma" means spot or point. Hence, the word "astigmatic" suggests an

aberration that is not circularly symmetric. This is quite accurate, as the

extreme condition of astigmatism is a line image. Astigmatic images, like

comatic images, are members of the "off-axis" class of optical faults. The term

in the Creath/Wolford wave equation that describes astigmatism is

AW = W 22 2 x2P 2 cos 2P = W222XOx2

Figure 7.5 below shows the propagation of an astigmatic wavefront. The

tangential plane is defined as any plane through the optical axis. The sagital

plane contains the chief ray and is perpendicular to the tangential plane.

(Ref. 26)
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An ideal, unaberrated converging spherical wave takes on the

appearance of a propagating cone converging toward a point. In the case of

astigmatism, the cross section of this developing cone deforms as it progresses

away from the mirror. It starts its reflective life as a perfectly circular cross-

section, then grows progressively more elliptical as the wave propagates

toward its focus. It finally reaches an extreme of eccentricity at the

"tangential focus", where this ever more eccentric cone collapses into a two-

dimensional line. This line, exactly aligned with the sagital plane, is called the

tangential line image, and is a distance from the mirror that is defined as the

tangential focus length.

Figure 7.10: Astigmatic cone of rays leaving the optic becomes elliptical,

forming a line image at tangential focus. The line image grows open,

before again becoming elliptical, and forming a sagital line image.

As the wave continues to propagate it grows again, regaining a cone-

type geometry and rapidly exhibiting, once again, nearly circular symmetry.

This reborn circular symmetry is soon lost to another eccentric, elliptical

deformation. The extreme of this second elliptic is a two-dimensional line

image that forms in the tangential plane and is known as the "sagital line

image". This sagital line image is oriented at 900 to the tangential line image

at a distance from the vertex known as the sagital focal length.
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The components of transverse astigmatism in the meridional plane are

E, =0,

2R 2 2R 2 pcos8.
x W222 xx W222 X COS

h h

These components will form a line image of length

2ex or, equivalently 4R 2
SW222 Xo -

h

If the wavefront aberration is compounded by a focal shift of length

EZ x2 2zh2R

then the wave front aberration becomes

AWW= X2X 2  z (X2  y2Aw=W 222 2 0 2 (x2 +

and the resulting transverse aberration becomes

L, - y zhRE ) or Ex =- h W222 0 xx.
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7.4.4 Distortion

Distortion has the effect of distorting the image. The image of any

straight line that meets the origin is a straight line, while the image of any

other straight line is curved. The wave function term and the length of

transverse image shift associated with distortion are

AW = W311 x pcos6 = W311X0 x

7.4.5 Field Curvature

Field curvature is described by the wave function term

A220 0p 2 =W 220  (x 2+y 2).

The aberration has the same p2 dependence as a focal shift, and is
2

proportional to the square of the field height Xo .  The visual appearance of

field curvature (please see Figure 7.11, (Ref. 27)) is that of a true point image

on a curved surface. The imaginary surface on which the image appears is

called the Petzval Surface.

Figure 7.11: Field Curvature and the Petzval Surface.
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Chapter 8

Optical Analysis: "SURFACE",

"PCFRINGE", and the Method of

Zernike Polynomials

The optical performance of the MDM/Hiltner primary mirror is

analyzed with the help of two optical analysis codes. Both codes numerically

calculate the form of the reflected wavefront by using the surface deflection

data generated by the NASTRAN finite element analysis.

"SURFACE", written by Professor John Tonry (MIT, 1996), uses NASTRAN

deflection data to map the mirror surface and then simulates a reflected

wavefront by tracing a large number of individual rays from the point of

reflection at the mirror surface toward the ray's intersection with the image

plane. The code's image plane can be moved forward and backward along the

optical axis so that a spot diagram can be made at any point along the reflected

wavefront's path. This valuable option makes possible a sequential view of the

wavefront's propagation on either side of the nominal focal point.

In addition to creating the spot diagrams, SURFACE provides a measure

of spot diagram quality by quantifying the density of the rays that constitute

the spots. This ray density is used to produce spot diagram RMS, Peak to Valley,
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RMS, P-V, and encircled energy are

given in units of microns.

SURFACE also produces a wavefront contour plot that shows the

reflected wave (and hence, the mirror surface) as it travels through the exit

pupil. RMS and Peak-Valley measurements are calculated for this contour plot.

Another set of optical tests is accomplished with a code called PCFRINGE,

which quantifies reflected wavefront aberrations by fitting the series of

Zernike polynomials to the NASTRAN mirror surface deflection data.

The Zernike polynomials used in PCFRINGE are a set of orthogonal

polynomials that can be used as basis functions to describe the composition of

a wavefront. Zernike polynomials are commonly used to interpret optical test

results. The coefficients associated with these polynomials provide a measure

of higher order wavefront aberrations. These coefficients are used in this

thesis both as an analytical tool and as a control component in a least squares

optimization process that services a prospective active optics system.

8.1 Zernike Polynomials and Wavefront Fitting

Frits Zernike in the 1930's endeavored to devise a set of polynomials that

would bring algebraic order to certain problems associated with his studies of

optical image formation. The resulting polynomial series that bares Zernike's

name expresses wavefront data in polynomial form.

Zernike polynomials are a set of orthogonal polynomials within a unit

circle that act to decompose an aberrant wavefront. The individual

polynomials describe types of aberration normally seen in optical analysis.

The polynomials of the Zernike series decompose the aberrant wave by fitting

the optical path difference (OPD) between an ideal, unaberrated wave and that

of a deformed, aberrated wave in component form. The individual components

of the Zernike series, as modified by their coefficients, characterize specific

optical aberrations. Each of the polynomial terms are of the same form as a

type of aberration commonly observed in optical tests.
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The Zernike polynomials are one of an infinite number of complete sets

of polynomials in two real variables, p and 0, that are orthogonal and

continuous over a unit circle. Several properties (described below)

distinguish Zernike polynomials from other sets of orthogonal polynomials

and make them usable for fitting wavefront data. (Ref. 28):

The first defining property of the Zernike polynomials is that they

exhibit a simple rotational symmetry. They form a product of the form

R(p)G(6)

where G(9) is a continuous function that repeats itself every 2 7 radians.

The second property is that the above polynomial must satisfy a

requirement that a rotation of the coordinate system by an angle "a" will not

change the polynomial's form, so that:

G(6 +a) = G(6)G(a).

The set of trigonometric functions that meets this requirement is

G(O) = e±'me,

where "m" is any positive integer or zero.

The third defining property is that the radial function must be a

polynomial in "p" of degree "n" and contain no power of "p" less than "m".

The fourth defining property is that R(p) must be even if "m" is even,

and odd if "m" is odd.

The radial component of Zernike polynomials can be derived from

Jacobi polynomials. Orthogonality and normalization properties are (Ref. 29)
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JR (p) R"'(p)pdp= 1 and R(1) = 1.
o 2(n + 1))

The radial polynomial can be factored into R n-m (P) = a (P) P "

where the polynomial Q '(p) is of order 2(n - m). Q " () can be written

n-m) = (2n - m -s)! 2(n-m-s)

s=o s !(n-s)!(n-ms)!

The practical application of the radial polynomial uses sines and

cosines. The series can be defined as a sum of OPD components

A W = A W + A Qo ( + Q, (p)pm (B. cosmO + Cn, sin mO

where A W is the mean wavefront optical path difference.

In order to see the Zernike series as directly equivalent to the

wavefront distribution developed in Section 7.4, it is necessary to group like

terms and then equate the like terms with the wavefront aberration

coefficients. (Ref. 30) The wavefront distribution, using the first nine

Zernike terms, before regrouping is:

W(p, 6') = Z o + Z, pcos6' + Z 2psin0' + Z3(2p 2 - 1)

+ Z 4 p 2 cos20' + Z5 p2 sin 2 8'

+ Z 6 (3p 2 - 2)pcosO' + Z7 (3p 2 - 2)psin '

+ Z,(6p4 - 6p 2 - 1).
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Regrouping the first nine terms and equating them with aberrations yields:

w(p,6 ') = Zo - Z, - Z,

+(Z, - 2Z 6)pcos9' + (Z2 - 2Z,)psin 9'

+ (2Z3 - 6Z 8 + Z4 cos28' + Z5 sin26')p2

Piston

Tilt

Focus & Astigmatism

+ 3(Z6cos0' + Z,sine')p 3

+ Zs P4 .

Coma

Spherical

The above equation can be rewritten using the identity

acosa +b sina = a2 +b2 cos l - t ba

The result is a wavefront equation that isolates the aberration coefficients:

w (p, 8') = z 0 - z, - z, + Piston

p (Z -2Z)2 +(z -2Z,)2 x cos e -tal 2 Tilt

+ p2(2Z,3 - 6 Z±Z +Z) Focus

Astigmatism+ 2p2 Z+Z 2cos9 -+tan(Z/Z)

+ 3p' 2 z+Z2cos[6 -ta '(z,/z,)]
ý Z 6 /z)

+ 6p'Z ,.

Coma

Spherical

The next sections list the first thirty-six Zernike terms, and show a

pictorial view of the aberrations they represent.
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8.2 Table of Zernike Polynomials

n m No. Polynomial

0 0 0 1

1 1 1 pcos8 x tilt

2 psinO y tilt
0 3 2 p 2 -1 focus

2 2 4 p2 cos20

5 p2 sin28

1 6 (3p 2 - 2)pcos 9

7 (3p 2- 2)psin

0 8 6p 4_ p 2 + 1

astigmatism @ 00

astigmatism @ 450

coma and x - tilt

coma and y- tilt

spherical and defocus

3 3 9 p3 cos30

10 p'3 sin30

2 11 (4p 2 - 3)p 2 cos26

12 (4 p 2 - 3)p2 sin26

1 13 (10p 4 -12p 2 + 3)pcos 8

14 (10p 4 -12p 2 + 3)p sin 0

0 15 20p 6 - 30p4 + 12p 2 + 1
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4 4 16

17

3 18

19

2 20

21

1 22

23

0 24

p'4 cos46

p 4 sin 40

(5p2 - 4)p 3 cos39

(5p 2- 4)p 3 sin38

(15p 4 -20p 2+ 6)p 2 cos2

(15p 4 - 20p 2 + 6)p'sin28

(35p6 - 60p 4 + 30p 2 - 4)pcos6

(35p 6 - 60p 4 + 30p 2 - 4) psin

70p' - 140p 6 + 90p 4- 20p 2 + 1

5 5 25

26

4 27

28

3 29

30

2 31

32

1 33

34

0 35

p 5 cos50
p'5 sin 50

(6p 2- 5)p4 cos4

(6p 2- 5)p4 sin40

(21p 4 - 30p 2+ IO)p3cos38

(21p 4- 30p 2 + 10)p 3 sin30

(56p 6 - 105p 4+ 60p' - 10)p2 cos26

(56p 6 - 105p 4 + 60p 2 - O1)p2 sin29

(126p' - 280p 6 + 210p 4 - 60p 2 + 10)pcosO

(126p 8- 280p 6 + 210p 4 - 60p2 + 10)psinO

252p' - 630p 8 + 560p 6 -210p 4 +30p 2 - 1

6 0 36 924p 12 - 2772p' 0• + 3150p - 1680 p6 + 420 p 4

-42p 2 +1
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8.3 PCFRINGE

PCFRINGE (abbreviated as PCF) is the IBM-PC compatible version of a

FORTRAN program written by James D. Rancourt and John S. Loomis at the

University of Arizona's Optical Science Center. PCF takes its input data from a

finite element model and produces both ray tracing and diffraction analysis.

PCF is this thesis' primary optical-analysis tool for the MDM mirror model

PCFRINGE accepts two basic inputs from a finite element model. The

first is a "geometry" file that contains information describing the identity

and location of all nodes and elements in the FE model. The second is a

"displacement" file that contains information describing all nodal

displacements that occur as a result of load conditions imposed in the running

of the finite element model.

From the FE geometry and displacement information and user-supplied

command and control files, PCF knows the mirror's radius of curvature and the

identity of the nodes that constitute the surface of the mirror model. (Focal

length is equal to 1/2 the radius of curvature.) PCF constructs an "ideal", or

"reference" wavefront using the geometry and radius of curvature

information. The code acts to compute displacements normal to the surface at

each nodepoint using the displacement data, and thus creates an "actual" or

"aberrated" wavefront.

The primary analytical tool of PCF is the Zernike polynomial fit. The

code fits the Zernike polynomials to the optical path length difference

between the reference and aberrated wavefronts. This fitting of Zernike

polynomials transforms information on mirror surface structure into an

algebraic measure of wavefront distortion.

PCF performs its optical analysis by manipulating the Zernike

coefficients. The coefficients state explicitly how much of any particular

aberration (coma, astigmatism, etc.) exists in the subject wavefront. The

Zernike manipulation produces contour maps, spot diagrams, radial energy

distributions and RMS data. Diffraction analysis based on a fast Fourier

transform yields a point spread function and a modulation transfer function.
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Chapter 9

The Mirror, the Model,

and Model Verification

Chapter 9 presents a detailed description of the Michigan Dartmouth

MIT/Hiltner telescope's 2.4 meter primary mirror and its axial and radial

support systems. This chapter also describes the finite element model that is

used to analyze the mirror and its support systems. Finally, the chapter

describes the structural experiment that was conducted on the MDM/Hiltner

telescope at Kitt Peak to test the finite element model's accuracy. The

experiment's optical results are presented.

The finite element model described and verified here is used in Chapter

10 for an examination of the mirror's structural and optical response to

applied force. In Chapter 11 the model is used to design an active optics system

for the MDM/Hiltner primary mirror.
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9.1 The MDM/Hiltner Primary Mirror,

and Axial and Radial Support Systems

The Michigan, Dartmouth, MIT/Hiltner Telescope is a Cassegrain-type

reflecting telescope located on the southwest ridge of Kitt Peak, near Tucson,

Arizona, about two miles from the site of the National Optical Astronomical

Observatories. The telescope's primary mirror, the subject of this thesis'

research, is 2.4 meters in diameter, weighs approximately 1990 kg, and has a

focal length of 4.82 meters.

The primary mirror structure is continuous and homogeneous, and is

made of Cervit, a glass-composite material produced by Owens-Illinois, Inc.

Cervit is a relatively stiff material (Elasticity - 9.2 E10 N/m 2 ) that exhibits a

very low coefficient of thermal expansion. Cervit is a member of a family of

micro crystalline-polycrystalline materials called glass-ceramics. (Ref. 31)

At the time of its introduction, Cervit represented a significant

advancement in optical mirror materials. Cervit showed advantages in

polishability, expansion coefficient, stiffness, microcreep and stability. In

other words, it was the stiffest stuff that would take a good polish that anyone

could make, and was a great material for the mirror design philosophy that

called for stiff, rigid mirrors as the best way to ensure a good optical figure.

Table 9.1 compares the material properties of Cervit to other, more well known

substances. (Ref. 31)

Material Density Elasticity Poisson Ratio _ *

Cer-Vit C-101 2.5E3 Kg/m 3  9.18E10 N/m2  .25 0

Pine 417 Kg/m 3  8.0 E9 N/m 2

Glass 2.5E3 Kg/m 3  5.51E10 N/m2  9

Aluminum 2.62E3 Kg/m 3  6.90E10 N/m2  .33 23

Steel 7.9E3 K/lm3  20.67E10 N/m2  .33 11

Table 9.1: *The thermal expansion coefficient a is a dimensionless

constant that satisfies the relation a = (AL/L)/AT.)
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The mirror's reflecting surface has a hyperbolic figure, while its back

surface is flat. This gives the mirror a variable thickness. The central hole

defines the inner radius, which is .1524 meters. The mirror's thickness at this

inner radius is .1622 meters. Calculation of the mirror's thickness at the outer

radius is complicated by the "knob" that protrudes from the mirror body at the

outer edge of the reflecting surface. The vertical height of the mirror's front

surface at the outside radius is .2334 meters above the plane of the mirror's

back surface. Figure 9.1 is a conceptual cross-section.

Figure 9.1: Conceptual radial profile (r, z) of a slice

of the MDM primary mirror.

Key node definitions in Figure 9.1 give the mirror's exact dimensions.

These dimensions were extracted from the G.L. Barnes finite element analysis

of August, 1990 (Ref. 32), and confirmed by the telescope blueprints (Ref. 33).

Pt. 1 defines the radius of the inner hole at the mirror's bottom surface

(r = .1524 m, z = 0).

Pt. 2 defines the radius of the inner hole at the mirror's top surface

(r = 1524 m, z =.1622 m).

Pt. 3 defines the exact radius of the hard points (r = .8255 m, z = 0). The three

hard points are spaced at 1200 intervals across the bottom surface.

Pt. 4 defines the outer radius along the mirror's bottom (r = 1.143 m, z = 0).
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Pt. 5 defines center of mass. This is also the center of the mercury belt. The

lower boundary of the mercury belt is at (r = 1.143 m, z = .0845 m). The

upper Hg belt boundary is at (r = 1.143 m, z = .1163 m).

Pt. 6 defines the node at which the mirror's outside wall drives laterally

upward, creating "the notch". (r = 1143.0 m, z = 170.18 m).

Pt. 7 defines the node at which the mirror's outer wall is again

perpendicular to the back surface. (r = 1.181 m, z =.2083 m)

Note that the scale of the notch is exaggerated in Figure 9.2.

Pt. 8 defines the mirror's outer rim, the outside radius of the reflecting

surface. (r = 1.181 m, z = .2334 m). Points 1-8 define the hyperbolic

reflecting surface, which has a primary conic constant of -1.050145.

The radius of curvature is 9.6327 meters, the focal length is 4.82 meters.

The mirror rests in a mirror cell, supported by axial and radial support

systems. Primary axial support is a set of three neoprene air bladders which

provide a constant pressure across the mirror's back surface. Also providing

axial support is a set of three hard points located at r = .825 meters, at intervals

of 1200. The hard points effectively constrain the mirror from moving in the

radial plane. Hard point locations are shown in Figure 9.2.

Figure 9.2: Hard points in relation to central hole and

mirror outer radius. Radius at SPC's = .8255 meters.
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An air pressure controller maintains a specified hard point loading by

regulating pressure in the three neoprene air bags. When the mirror is

oriented in the purely vertical direction, the three hard points exert a

uniform reaction force of 30 pounds (= 135 Newtons). This effectively gives
the axial support system one degree of freedom and control over mirror tilt.

The axial support system can thus be considered tilt-active.

Radial support is provided by a neoprene bladder filled with mercury

belt that runs along the mirror periphery at the axial center of mass. The

mercury acts as its own analog computer, feeding along the mirror's radial

center of mass as the mirror is rotated away from the pure vertical. The

mercury exerts a pressure that is proportional to the angle between the optical

axis and the pure vertical. The belt acts to support all the mirror's mass if the

mirror is rotated to a horizontal orientation. The mercury belt acts as a

tangential buffer between the mirror and the mirror cell.

9.2 FEA Model Description

This section describes the finite element model of the 2.4 meter primary

mirror and its support systems. This FE model serves as the basis for all

subsequent structural and optical analysis.

9.2.1 Model Objectives

The primary objective in building this finite element model is to make

an accurate numerical tool for investigating the mechanical and optical

behavior of the 2.4 meter mirror and its support system. Specific objectives

for the model include the desire to investigate gravity induced deflections in

the primary mirror, mirror response to the hard point reaction forces, and

mirror reaction to externally applied force inputs.

In a later chapter, the model will be used to design and test an active
axial support system so that gravity induced degradations in the mirror may be
corrected.
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9.2.2 Model Assumptions

Certain assumptions were made about the mirror and the finite element

techniques that are used in modeling the mirror. The more significant

assumptions are:

* It is assumed that the mirror experiences only small deflections. In other

words, the ratio of z-axis deflection to the radius of the deflection point

from the center of the mirror's central hole is small.

* The finite element model's nodes require no rotational degrees of freedom.

This assumption is a corollary to the small deflection assumption.

* The mirror's hyperbolic figure can be approximated as a parabolic figure

without causing a loss of accuracy in modeling the mirror's mechanical or

optical response. The ratio of the parabolic conic constant to the primary

mirror's conic constant is 1/1.050145 = .95225.

* The supporting action of the axial neoprene airbags and the radial

neoprene mercury belt can be simulated by using the pressure functions

available in the NASTRAN finite element code.

* It is assumed that single point constraints (zero degrees of translational

and rotational freedom) are sufficient to model the action of the three hard

points. This assumption proved to be less than wholly accurate in a model

verification experiment conducted at Kit Peak. In that experiment, all air

pressure was released from the axial support airbags, placing the full

weight of the mirror on the hard points. The hard points compressed

under the load of the 1990 kg mirror by approximately .10 mm. It was

decided that in the absence of unlimited time and funding, the use of single

point constraints to represent the compressible hard points would be a

workable approximation.
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9.2.3 Building The Basic Mesh

The model mesh was built on the Macintosh LapCAD finite element

preprocessor. The method chosen was to draw a two-dimensional profile of a

slice of the mirror in the x-z plane. The information described in Section 9.1

was used to define the critical nodes. The two dimensional slice was segmented

into a mesh, and the 2-D mesh was then extruded around a center point

through 3600 to create the basic mirror mesh. The extrusions were done in

steps of 150. This produced a three dimensional mirror mesh that has the

appearance of a home-baked pie sliced into twenty four pieces.

A primary concern in building the finite element model was to limit the

number of elements and thus the total number of degrees of freedom and

overall model complexity. This was done with the understanding that a limit

on the number of elements might translate into a limit on the model's

sensitivity and hence a loss of model accuracy.

Two steps were taken to limit model complexity. First, the elements in

the 2-dimensional mesh were created with an aspect ratio greater than 1:1. A

larger elemental aspect ratio means that fewer elements and fewer degrees of

freedom are required to span the space in the mirror's radial profile.

The second simplifying design consideration was to limit the number of

steps in the 3600 extrusion of the 2-dimensional mesh to 24 sections of 150.

Several model variations were initially made that effectively tested the

sensitivity and complexity of meshes made of 12, 24 and 36 extrusion steps. The

results showed that 12 steps of 300 per step were insufficient to accurately

model mirror edge deflections. The added sensitivity gained in the 36 step

model came at the cost of adding many more degrees of freedom and

significantly increasing required CPU time. The compromise between

sensitivity and simplicity was made by deciding on a model built in 24

extrusion steps of 150 per step.

Figures 9.3 and 9.4 on the following two pages illustrate the basic three-
dimensional mirror mesh.
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Figure 9.3 Horizontal view of the finite element

mesh for the MDM primary mirror model.
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Figure 9.4A: Distribution of 150 extrusion steps and location of

SPC's (hard points) in relation to the model's x and y-axis.

Figure 9.4B Vertical view of the finite element

mesh for the MDM primary mirror model.
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9.2.4 FE Model of the Axial Support System

The actual mirror is supported in the z-axis by three neoprene air bags

and three hard points. When the optical axis of the mirror is oriented to the

vertical, the air bags that support the bottom mirror surface are controlled so

as to maintain a constant residual thirty pound (133 N) reaction load on each of

the hard points. In this vertical orientation, approximately half of the mass of

the mercury radial support belt rests on the mirror's perimeter. This adds 15

kg to total mirror mass.

Total mirror mass = 1990 kg.

Total mercury mass supported by the mirror = 15 kg.

Total mass to be supported = 2005 kg.

Force = mg = 2005 kg* 9.81 m/s 2 = 19669.05 N.

The FE model uses a NASTRAN pressure function to simulate axial airbag

pressure support. Pressure applied to the mesh's bottom surface elements is

calculated as a function of total mirror mass, bottom surface area, gravity

orientation and hard point loading. The hard points are modeled as single

point constraints (SPC's). The model's SPC's support a residual load of

approximately 30 pounds (133 N) each. The SPC nodes constrain all

translational and rotational motion.

The residual reaction load of 30 pounds per hard point (133 N/hard

point) reduces the total load supported by the axial air bags by approximately

400 N. The calculation for simulating the axial airbag pressure is:

Total Force = 19669 N (mirror mass) - 400 N (Hard Points) = 19229 N.

Bottom Surface Area = If(r uter - r,~ner) = 4.0314 m2.

Pressure = Force/Area = 4779.8 N/m 2 .

When the mirror is rotated away from a purely vertical orientation, the

effective gravity load changes according to the sine of the angle formed by

the optical axis and the pure vertical axis. As the angle increases, the load is

transferred from the axial to the radial support system.
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9.2.5 Modeling the Radial Support System

The mercury belt radial support system applies pressure in proportion

to the mirror's vertical orientation. The system is comprised of a neoprene

rubber tube which contains approximately 15 kg of mercury. The neoprene

bladder has inner and outer flanges. The inner flange fits into an indentation

in the mirror that runs along the mirror's outer circumference at the vertical

center of mass. The outer flange is supported by the mirror cell. These

flanges hold the mercury belt in place.

The model simplifies the belt/mirror interface by using a series of 24

smooth sidewall elements in place of the more complicated flange/indentation

structure. Each sidewall element is 32 mm in height and of length .2994 m.

The action of the mercury is modeled by applying pressure directly across the

face of these exterior sidewall elements. The radial pressures are calculated

on the basis of Archimedes principle. The pressure calculation is

Pressure = p(density)*g(acceleration)*h(height) (9.1)

where h is the height of a vertical column of mercury. The total force exerted

across any element by mercury pressure is

B

F = Jpg(hsin9)(r+rcosO)rh'dO. (9.2)
A

where 0 is the angle between the optical axis and the horizontal, h' is the

width of the mercury belt, and 4 measures tangential angle. The (r + rcos 4)

term is a measure of "vertical" diameter for calculating effective mercury

column height. The point where 4 = 0 is the lowest point of the mercury belt as

the mirror's optical axis is rotated toward the horizon. The area of a mercury

element, (r h'do) is a constant. The calculation is

B
P = F/A = pg(hsinO)r2h'j(1+cosO)dO .0095 (9.3)

A

where (.0095) is the surface area of each the model's mercury belt elements.
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Table 9.2 presents incrementally averaged pressures for the FE model

mercury belt. Column 1 lists the elements' location. Columns 2 - 5 list the

pressures for each element at certain mirror orientations. The angle 0 is the

angle between the optical axis and the pure vertical. At "00" the optical axis is

straight up; at "90" the optical axis is parallel to the horizontal. Please see

Figure 9.4A for the 4 orientations. 0 = 0 is always the mirror's low point.

4 0 =00 0 = 30 0 = 45 0 = 90

0 - i/12 2534.90 151637.15 214445.25 303274.29

T/12 - 2n/12 2534.90 146499.82 207180.05 292999.64

2n/12 - 3n/12 2534.90 136575.27 193144.75 273150.54

3n/12 - 4n/12 2534.90 122539.83 173295.83 245079.67

41c/12 - 51c/12 2534.90 105350.01 148985.98 210700.01

57c/12 - 6n/12 2534.90 86177.25 121871.86 172354.49

67/12 - 7n/12 2534.90 66328.14 93801.26 132656.29

71c/12 - 81c/12 2534.90 47155.38 66687.14 94310.76

8i/12 - 9n/12 2534.90 29965.55 42377.29 59931.11

9n/12 -10it/12 2534.90 15930.12 22528.38 31860.24
10 /12-117/i12 2534.90 6005.57 8493.07 12011.14
11/12-127c/12 2534.90 868.24 1227.87 1736.48

12n/12-13i7/12 2534.90 868.24 1227.87 1736.48

13x7/12-14n/12 2534.90 6005.57 8493.07 12011.14

141L/12-15t/12 2534.90 15930.12 22528.38 31860.24

157c/12-16n/12 2534.90 29965.55 42377.29 59931.11

16n/12-177c/12 2534.90 47155.38 66687.14 94310.76

17n/12-18/ /12 2534.90 66328.14 93801.26 132656.29

1817/12-19ir/12 2534.90 86177.25 121871.86 172354.49

197/12-20n/12 2534.90 105350.01 148985.98 210700.01

20/12-21/12 2534.90 122539.83 173295.83 245079.67

211n/12-227c/12 2534.90 136575.27 193144.75 273150.54

221r/12-23n/12 2534.90 146499.82 207180.05 292999.64

23n/12-247c/12 2534.90 151637.15 214445.25 303274.29

Chart 9.2: Pressures are in Pascals. The density of mercury is

1.36E4 kg/m 3. The height of the mercury elements is .032m.

Column two uses an average h'.
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9.3 Model Verification

An experiment was conducted on the MDM/Hiltner telescope at Kitt Peak

to test the finite element model's ability to replicate actual results. The

telescope was oriented with the optical axis pointing in the vertical, the

telescope was focused on a star, and all air pressure was released from the air

bag axial supports. The resulting star image made by the deformed primary

mirror was recorded electronically using the telescope's "Charlotte" CCD.

To make the comparison between telescope reality and finite element

model, the model was exercised under the same support conditions. The

NASTRAN pressure function applied to the mesh bottom surface elements was

set to zero. The model assigned all of the mirror's weight to the three SPC's

(hard points). The deformation produced in both the actual mirror and the

model, as demonstrated by spot images and contour diagrams, is dramatic.

The image created by the actual MDM mirror sitting on its three hard

points resembles a snowflake, and is termed the "Starflake". This "Starflake"

image, shown in Figures 9.3.1, 9.3.3 and 9.3.4, exhibits a six-fold symmetry. An

extreme astigmatism is present, with three well defined line images forming,

each moved off-center by an equal distance. The image radius (for

approximately 100% encircled energy) measures 2.85 arc seconds.

Figure 9.3.6 is a series of nine spot diagrams taken at increments of .05

mm showing the model's attempt to duplicate the starflake image. Spot #5 is

taken at the model's nominal focal. Spot #1 is taken at the model's nominal

focal plane minus .20 mm. Spot #9 is at the nominal plane plus .20 mm.

The spot diagram series shows the tortured propagation of the starflake

wave front as it twists through space. The model's best representation of the

Starflake occurs at .10 mm beyond the nominal focal plane. The model's

starflake shape and size is very similar to the actual starflake. This similarity

is enhanced by slightly blurring the model's starflake image in order to

approximate the seeing conditions experienced at MDM the evening of the test.
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Figure 9.3.1: The left hand picture is the actual starflake image taken by the
MDM/Hiltner telescope with the primary mirror resting on the hard point

supports. The image on the right is made by the finite element model, with a
certain amount of blurring introduced so as to match the seeing conditions

that existed at Kitt Peak the night of the verification experiment.

Figure 9.3.2: The model's starflake image without
blurring., and rotated 900 counterclockwise.

136



Figure 9.3.3: Comparison of actual "Starflake" image and the image created
by the model at .10 mm beyond the nominal focal length.

137



Figure 9.3.4: MDM/Hiltner "Starflake".

Figure 9.3.5: Finite element version of "Starflake",
blurred to match Kitt Peak seeing conditions.
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Figure 9.3.6 A: SURFACE contour plot of mirror on hard points.

focus +.1Bm

fo ous -. SEWm

focus +.15m.

nominal focus

focus -A. 2.m

focus +.85mm

focus -. 10mm

Figure 9.3.6 B: Spot diagrams from mirror on hard points.
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Model starf lake at f + .iBmr. Model starf lake at f + .15mm.

Figure 9.3.7: Enlargements of spot images at .10 mm and .15 mm beyond

nominal focus for the model resting on the hard points.

Table 9.3 presents optical results for the "Starflake" image and the

model's rendition of the "Starflake". The 50% and 100% energy columns are

measures of angular width, in arc seconds, for encircled energy. The RMS is

an average ray displacement from center spot measured in arc seconds.

Table 9.3: The model's

is at approximately

best representation of the "starflake" image

at .10 mm beyond nominal focal length.
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Focal Plane vs. RMS 50% Energy: 100% Energy:

Nominal Arc seconds Arc seconds

Nominal - .20 mm 2.22 2.05 3.62

Nominal - .15 mm 1.98 1.85 3.165

Nominal - .10 mm 1.78 1.70 2.75

Nominal- .05 mm 1.65 1.60 2.59

Nominal Focus 1.59 1.55 2.485

Nominal + .05 mm 1.61 1.55 2.53

Nominal + .10 mm 1.72 1.67 2.75

Nominal + .15 mm 1.90 1.85 3.05

Nominal + .20 mm 2.12 2.06 3.395

"Starflake" 2.85



Chapter 10

Structural and Optical Analysis

of the MDM/Hiltner Primary Mirror

This chapter presents the results of a finite element and optical analysis

of the 2.4 meter primary mirror of the Michigan Dartmouth MIT/Hiltner

Telescope. The structural analysis is accomplished using the NASTRAN finite

element code and the finite element model described in Chapter 9. The optical

analysis uses NASTRAN supplied data processed by the PCFRINGE and SURFACE

optical test codes.

The analysis examines the MDM primary mirror and its support systems.

The case study which verifies the finite element model is also analyzed. This

verification relieves all air pressure from the mirror's axial support air bags,

causing the mirror to deform as it rests on its hard points. Other scenarios

investigate the mirror's structural and optical sensitivity to externally applied

point forces. Point loads of 20, 40, 60, 80 and 100 pounds are applied to nodes

that define the interface between the mercury belt radial support and the

mirror's side wall. There are three basic cases: application of a single spike

force in the negative "z" direction, application of a pair of spike forces

pointed in the negative "z" direction, and simultaneous application of two pair

of spike forces, one pair oriented in the positive "z" direction and the other

pointed in the negative "z" direction.

141



10.1 Analysis of the MDM Primary Mirror

This section analyzes the mirror in its nominal state. The mirror's

optical axis is oriented in the pure vertical, so that gravity is applied in the

negative "z" direction of the mirror's reference frame. The axial and radial

support systems are set to function normally. Figure 10.1.1 below presents a

conceptual cross section of the mirror and its axial and radial support systems.

Hg Belt
Radial Support
I

Hg Belt
Radial Support

I

Hard Point Air Bags at Hard Point
Supports 4800 N/m 2 Supports
30 lbs. 30 lbs.

Figure 10.1.1: The 1995 kg mirror sitting on its nominal support configuration.

10.1.1 Mirror Structural Response

The mirror body is characterized by a flat back surface and a

hyperbolic front reflecting surface. The mirror material is continuous and

homogeneous. This combination of mirror shape and continuous composition

creates a non-uniform mass distribution throughout the body of the mirror.

When positioned with the optical axis oriented in the vertical, the

mirror's full weight rests on the axial support air bags and the three hard

points. The axial air bags exert a uniform pressure across the back of the

mirror, while the hard points experience a small z-axis reaction load.

The combination of uniform axial pressure across the back of the

mirror with the mirror body's non-uniform mass distribution creates a stress

field and bending moment that pushes the center of the mirror upward while
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causing the mirror's exterior rim to droop. This axial-pressure induced

bending moment serves to put the surface of the mirror under tension and the

back of the mirror under compression. The back surface compression draws

the exterior rim of the back surface inward. The surface tension is

responsible for the bulging of the mirror center.

The mirror surface around the inner radius is forced up by = .402 m m.

The greatest z-direction sag is in the outer rim area between each of the hard

point radials, and is = .388 pm.

The second major deformation mode is a readily discernible

triangulation of the mirror surface. This trefoil shape is created by the action

of the hard points' thirty pound reaction loads, the mirror's variable

thickness, and the uniform axial support pressures. The stress field that

causes a bulging of the mirror center and drooping of the mirror rim is

interrupted by the constraining action of the hard point supports. This

constrains mirror surface deformation, as seen in the fact that the smallest z-

axis deformations appear on the outer edge of the mirror's surface and are

located on the hard point radials. The greatest z-axis deformations are located

along the outer edge between the hard point radials. The hard points act to

locally prop-up the radial to which they are attached, while causing a slight

valley to form in the interregnum.

Figure 10.1.2 on the next page is a juxtaposition of two PCFRINGE

representations of the wavefront behavior as it leaves the mirror. Figure

10.1.2 A plots exit pupil wavefront variations in contour intervals of .2 % (h =

.633 pm). Figure 10.1.2B is an attempt at a three dimensional representation of

wavefront variations. The graphics depict differences from a perfect

reference wavefront. A perfect, converging spherical wavefront would be

presented in Figure 10.1.2A as a circle with zero contours, and in Figure

10.1.2B as a flat surface.

NASTRAN z-axis surface deflections can be seen in Figure 10.1.3 on the

following page. The scale on the right hand side of the mirror depiction in

Figure 10.1.3 is in millimeters.
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CONTOUR STE

Figure 10.1.2A: Wavefront contour diagram at the exit pupil. MDM primary

mirror in the vertical orientation, nominal axial and radial support.

Figure 10.1.2B: Wavefront 3D graphic. Exit pupil, MDM primary mirror, in the

vertical orientation, nominal axial and radial support.
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Hard Point Reaction Forces

Table 10.1.1 (below) presents the reaction forces experiences by the

three hard point supports under nominal support conditions when the

mirror's optical axis is oriented in the vertical.

Hard Point X-Axis RF (N) Y-Axis RF (N) Z-Axis RF (N)

SPC 1 302 0 129

SPC 2 -151 262 129

SPC 3 -151 -262 129

Table 10.1.1: Reaction forces at SPC's 1, 2 & 3 for the nominal case.

The reaction forces calculated by NASTRAN at the model's three single

point constraints show the compression experienced by the mirror's back

surface. The outer rim of the mirror's back side is drawn inward by the

uniform axial pressure acting on the mirror's non-uniform mass distribution.

SPC 1 is pushing in the positive x-direction while SPC 2 & 3 push in the

negative x-direction in opposition to the inward movement of the mirror rim.

The same story is seen in the y-direction, as SPC's 2 & 3 oppose the compressive

stress experienced by the mirror's back. The SPC's exhibit uniform z-axis

residual loads of 129 Newtons as required by programmed boundary conditions.

RMS and Peak-Valley

Table 10.1.2 presents a measure of wavefront behavior in the exit pupil.

Peak-Valley measures the difference between maximum and minimum z-axis

displacements. The RMS is the average surface displacement in microns.

RMS (tm) P-V (tm) P-V (k)

Wavefront 0.385 1.572 2.483

Mirror Surface 0.1925 0.786 1.242

Table 10.1.2: Nominal MDM mirror surface with air bags

and Hg belt on, z-axis gravity
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10.1.2 Optical Results For the Nominal Mirror

The structural deformations degrade the mirror's optical performance.

The triangular symmetry in the mirror surface is reflected by the shape of the

spot images formed at various focal planes. The drooping of the mirror's outer

rim and the bulging of the center area act to create a defocus condition, as well

as to introduce almost three quarters of a wavelength of spherical aberration.

Figure 10.1.3 B (on the next page) is a series of 9 spot diagrams taken at

intervals of .05 mm along the optical axis. Spot diagram #1 is made at the

nominal focal length minus .20 mm. Spot #5 is made at the mirror's nominal

focal length, and Spot #9 is at nominal focus plus .20 mm. These spots show a

distinct trefoil that grows more acute in the region near the actual focus. The

spot series shows quite clearly that the mirror does not focus at its designed

focal length of 4.82 meters when resting on the designed support system.

Table 10.1.3 is an aggregation of data on the series of 9 spots centered

on the design focal length. The 50% and 100% Energy columns are measures of

angular width, in arc seconds, for encircled energy. The RMS is the average

ray displacement from center spot measured in arc seconds.

Spot Location vs. RMS 50% Energy 100% Energy

Nominal Focus (Arc seconds) (Arc seconds) (Arc seconds)

Nominal Focus - .20 mm 1.76 1.76 2.45

Nominal Focus - .15 mm 1.39 1.39 1.94

Nominal Focus - .10 mm 1.02 1.02 1.41

Nominal Focus - .05 mm 0.66 0.65 0.92

Nominal Focus 0.30 0.28 0.40

Nominal Focus + .05 mm 0.15 0.10 0.29

Nominal Focus + .10 mm 0.48 0.43 0.81

Nominal Focus + .15 mm 0.84 0.79 1.38

Nominal Focus + .20 mm 1.21 1.17 1.88

Table 10.1.3: Data for

Columns 2, 3 and

spot series around the design focus.

4 are in units of arc seconds.
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SURFACE contour plot of the nominal mirror.

Nominal Mirror, Verical Orientation, Sequenced Focal Planes

spot 7 @ +.18mm spot 8 @ +.1smm

spot: L -.05mm spot 5 (@ nominal focus spot 6 @. +.5mm

0
spot i'@ -. 20mm

Figure 10.1.3 B:

spot 2 @-.i5mm spot 3 8-.iOmm

Spot diagrams for nominal mirror.
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Third Order Aberrations

Table 10.1.4 presents third order optical aberration generated by

PCFRINGE. PCFRINGE fits Zernike polynomials to NASTRAN surface deflection

and then projects the result to the mirror's nominal focal point. Both the

spherical aberration and the defocus can be attributed to the bulging of the

center and drooping of the surface rim that is caused by uniform axial

pressure acting on the mirror's non-uniform mass distribution.

Nominal MDM Tilt Defocus Astigmatism Coma SA
Waves 0 -1.103 0 0 .776

Table 10.1.4: Third order aberrations for the MDM primary mirror

under nominal support conditions, optical axis in the vertical.

Actual Focus

Figure 10.1.3 B shows that the mirror focuses somewhere between the

nominal focus and a point .10 mm beyond nominal focus. Figure 10.1.4 on the

following page is a series of spot diagrams taken at intervals of .01 mm,

starting from nominal focus minus .10 mm and running to .10 mm beyond the

nominal focus. Significant data for the set of 15 spot diagrams depicted in

Figure 10.1.4 is listed below. The 50% and 100% energy columns are measures

of radius in arc seconds for encircled energy. RMS is an average ray

displacement from center spot measured in arc seconds. The data suggest that

the actual focal plane for the mirror under nominal conditions is at

approximately .04 mm beyond the design focal length.

Spot RMS 50% Energy 100% Energy

Nominal + .02 mm 0.17 0.15 0.295

Nominal + .03 mm 0.12 0.09 0.25

Nominal + .04 mm 0.11 0.09 0.225

Nominal + .05 mm 0.15 0.10 0.24

Nominal + .06 mm 0.20 0.14 0.325

Table 10.1.4: Spot diagrams in increments of .01 mm around the nominal focal

plane. Columns 2, 3 and 4 are in units of arc seconds.
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Comparison of Actual vs. Nominal Spot Images

Images at both the actual focus and the nominal focus exhibit a well

defined trefoil. This triangular symmetry is the result of the 30 pound (133N)

reaction forces at the hard point supports. The outer edges in the regions

between hard point radials are massive, and respond to their unsupported

gravity condition by deflecting downward. This forces the material that lies

along the hard point radials to create small, very stiff ridges. The result is a

reflecting surface with a triangular symmetry that throws light off in a

distinctive pattern.

A'~i ."oC FRR TW' NCmItW 1 Mt ••.

Ou~ Ier~~ NEa-am F
. .. ..m EV 1 ...rE S -G D... .CU .

got. dte . ,mAe noni.-asph~• ,•tI •s fnminal •.oo plat.

Figure 10.1.5: Spot diagrams taken at the design and actual focus for the MDM

primary mirror under nominal support conditions, optical axis vertical. The

actual focus occurs at .04 mm beyond the nominal focus.

The next section will detail the structural results obtained from placing

the model under the conditions of the verification experiment at MDM; all air

is relieved from the axial support air bags. The resulting triangulation is

extreme, but the cause and effect are essentially the same as exhibited in the

nominal mirror.
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10.2 Mirror Resting on Hard Points

The action of the three hard points pushing against the mirror's mass

creates a series of ridges and valleys in the mirror, as seen in Figures 10.2.1

and 10.2.2. The ridges are created along the radials on which the SPC's are

located. The valleys form between the SPC radials. The ridge-valley surface

shape can be explained by Rayleigh Ritz theory: it is the lowest order mode

that reaches a minimum total potential energy.

Each ridge line can be interpreted as a longitudinal axis around which

the mirror material bends. These ridge lines are very stiff in the longitudinal

direction, as any solid material becomes much stiffer in one direction after

having experienced bending in a perpendicular direction. The highest

deflection points are at the outer radius along these ridge lines, and measure

+.032 gm (microns) above the reference (unaberrated) position. The lowest

position are in the valleys between SPC radials at the outer radius and measure

-4.646 gm. This gives a wave front Peak-Valley (twice the structural P-V) of

9.322 gm. The RMS surface displacement is 2.083 gm.

RMS (Am) P-V (Wm) P-V (X)
2.083 9.322 14.7267

Table 10.2.1: Mirror surface RMS and P-V measures for

the case of the mirror resting on three hard points.

The model correctly locates the hard points (SPC's) at the radial and

vertical center mass, as can be seen by examining the action of deflections in

Figure 10.2.1. The dark green contours in the NASTRAN z-axis contour plot

indicate a mean deflection of approximately 2.307 pgm. This is half of the

difference between the peak value of +.0038 gm and the minimum value of

-.4646 gpm. The outer radius is deformed into a sine wave pattern, the peaks

and valleys of the sine wave being separated by the uniform and symmetric

dark green band of the mean contour. It can be seen that there exists an

overall balance in the mass distribution on either side of the hard points.
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Hard Point Reaction Forces

Table 10.2.2 (below) presents a comparison of the reaction forces

experienced by the three hard points in the nominal case and in the current

scenario where they support all the mirror's mass.

Hard Point X-Axis RF (N) Y-Axis RF (N) Z-Axis RF (N)

SPC 1 302 /-1238 0 /-3 129 / 6506

SPC 2 -151 / 619 262 / -1071 129 / 6506

SPC 3 -151 / 619 -262 / 1071 129 / 6506

Table 10.2.2: Reaction forces at SPC's 1, 2 & 3 for the nominal case and the

"air bags off' case wherein the SPC's support the full weight of the mirror.

The z-axis reaction force component shows the three SPC's supporting

the full weight of the mirror.

The reaction forces calculated by NASTRAN at the model's three single

point constraints show force orientations that are the opposite of those found

in the nominal configuration. Here, the x-axis component of the reaction

force on SPC 1 is pulling on the mirror in the negative x-direction.

Conversely, SPC 2 & 3 are pulling the back of the mirror in the positive x-

direction. Tension is also seen in the y-direction reaction forces on SPC's 2 &

3. The stress field induced by resting the mirror on the three hard points puts

the bottom surface of the mirror under tension in the horizontal plane and

draws the outer rim of the mirror's back side outward.

Figure 10.2.1 shows the NASTRAN plot of z-axis surface deflections. The

contours of the NASTRAN plot are measures of the z-axis difference between

the actual surface node position and a reference, or unaberrated node position.

Figure 10.2.2A is a PCFRINGE wave front diagram showing the wavefront as it

exits the mirror pupil. The contour lines are measures of difference from a

perfectly spherical wave front, and can also be construed as measures of

surface displacement in the mirror face. The contour lines are drawn at

intervals of .4 X (wavelengths), where X = .633 pm.
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MOM with no axial airbag support: all weight on hard points
2-15-1996

:l_. 7 .5

PHYS - MIT~4I1YLrflI'4 r

CONTOUR STEP

Figure 10.2.2A: Wavefront contour diagram at the exit pupil. MDM primary

mirror in the vertical orientation, mirror resting on hard points.

Figure 10.2.2B: Wavefront 3D graphic. Exit pupil, MDM primary mirror,

in the vertical orientation, mirror resting on hard points.

155

T NORFEVAW 
Pt



Optical Results, Mirror Resting on Hard Points

The wavefront that results from the extreme mirror deformation

exhibits a six fold symmetry, showing a three fold line astigmatism. The

picture below shows the starflake image that forms at a point .10 mm beyond

the mirror's nominal focus. Table 10.2.3 shows RMS and encircled energy data

for the series of 9 spot diagrams on the following page.

Figure 10.2.3: Starflake image: MDM/Hiltner model with all air bag axial

support turned off. Note the six fold symmetry, and the three line astigmatism

Focal Plane vs. RMS 50% Energy: 100% Energy:

Nominal Arc seconds Arc seconds Arc seconds

Nominal - .20 mm 2.22 2.05 3.62

Nominal - .15 mm 1.98 1.85 3.165

Nominal - .10 mm 1.78 1.70 2.75

Nominal- .05 mm 1.65 1.60 2.59

Nominal Focus 1.59 1.55 2.485

Nominal + .05 mm 1.61 1.55 2.53

Nominal + .10 mm 1.72 1.67 2.75

Nominal + .15 mm 1.90 1.85 3.05

Nominal + .20 mm 2.12 2.06 3.395

Table 10.2.3: RMS and encircled energy of 9 spot images resulting

from the extreme "air bags off" mirror deformation.
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Figure 10.2.3 A: SURFACE contour plot of mirror on hard points.

focus +.1ema

fo.us -. 85wl

focus +.15mm

nominal focus.
mi -24-rn-a

focus -.15 mm

fous +. Smm

focus -. 18mm
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Figure 10.2.3 B: Spot diagrams from mirror on hard points.



10.3 Single Point Load Perturbations

A series of point loads are applied to the mirror in order to investigate

the mirror's sensitivity to applied force. Point loads of magnitude 20, 40, 60, 80,
and 100 pounds are applied in the negative z-direction to a node at the position

(r = 1.143 m, 0 = xr, z = .082 m). This node is part of the mercury belt radial

support, is located on the negative x-axis, and is an equal distance from SPC 2

and SPC 3., as shown in Figure 10.3.1.

Figure 10.3.1: Location of a series of "spike" forces

at (r = 1.143 m, 0 = n, z = .082 m).

10.3.1 Structural Response to A Point Load

The application of a downward spike force creates a torque which

rotates the mirror about the three hard points. This rotation pushes the center

of the mirror up, putting the surface material under tension. The material on

the back of the mirror is compressed as the outer rim of the mirror's backside

is forced inward. This inward motion is opposed in the x-direction by all three

hard points, as can be seen in Table 10.3.1 on the next page. (Please see

Figures 10.3.2 A, B, C and D for plots of mirror surface z-direction deflections.)

The 20 pound point load initially exaggerates the triangulation effect

seen in the nominal mirror in Section 10.1, Figure ?.?. The center of the

mirror reaches a maximum positive deflection of .4181 g±m above the design

position. The surface area in the vicinity of the point load application shows

the greatest negative deflection at -.8938 pm.
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The 60 pound spike force noticeably squeezes the center of the mirror,

changing the triangulation pattern into something that resembles an ellipse.

The load on SPC 1 has gone negative, meaning that tension exists and the SPC is

now holding the mirror down. At 80 pounds of spike force the surface

triangulation pattern is completely removed. The mirror surface bulges into a

highly eccentric ellipse centered to the east of the central hole. The 100

pound spike-force pushes the mirror surface beyond the elliptical shape into a

series of contour ridges that run north-south, parallel to the mirror surface's

y-axis. A steep gradient has formed along the negative x-axis.

SPC Reaction Forces

Table 10.3.1 below shows hard point reaction forces. Charts 10.3.1 X, Y, Z

on the next page show the linearity of reaction forces. Figures 10.3.2 A, B, C

and D on the following four pages show NASTRAN and SURFACE generated

contour plots of z-axis spike force induced perturbations.

Case/Reaction Force X-Axis RF (N's) Y-Axis RF (N's) Z-Axis RF (N's)

Nominal: SPC 1 302 0 129

SPC 2 -151 261 129

SPC 3 -151 -261 129

20 lb's: SPC 1 387 0 76

SPC 2 -194 196 200

SPC 3 -194 -196 200

60 ib's: SPC 1 558 0 -30

SPC 2 -278 66 343

SPC 3 -278 -66 343

80 lb's: SPC 1 642 0 -82

SPC 2 -321 1 414

SPC 3 -321 -1 414

100 lb's: SPC 1 728 0 -135

SPC 2 -364 -65 485

SPC 3 -364 65 485

Table 10.3.1: SPC reaction forces for spike loads. RF's in Newtons.
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Chart 10.3.1 X: X-Axis reaction forces for the spike load series.

Y-Axis Reaction Forces

400
20 0

0*
-2 o -- 4 6 8 10

-400ike, Pounds x 10

Spike, Pounds x 10

SPC 1

-SPC 2

- -- SPC 3

Chart 10.3.1 Y: Y-Axis reaction forces for the spike load series.

Z-Axis Reaction Forces

500

0

-500

Spike, Pounds x 10

2 4 6 8

Chart 10.3.1 Z: Z-Axis reaction forces for the spike load series.

Z-Axis Surface Displacements

NASTRAN and SURFACE z-axis surface displacement contour plots follow.
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Figure 10.3.2 B: Surface contour plot of 60 pound spike perturbation.

Figure 10.3.2 C: Surface contour plot of 80 pound spike perturbation.
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Mirror Surface RMS and P-V

The RMS kink in Chart 10.3.2 is

modes. The primary deflection mode is

from the point load adds linearly to the

Table 10.3.2:

due to the linear action of two distinct

due to gravity. The mode that results

gravity mode. P-V is also linear.

RMS and P-V data for spike-force series.

Spike Series RMS

1.500.

E
1.000.

S0.500.ý

0 00 1
100 4 6

Pounds (x1O)

Chart 10.3.2: Mirror surface RMS under the influence of spike loads.

Spike Series P-V

0 2 4 6 8 10

Pounds (x 10)

Chart 10.3.3: Peak-Valley for the series of spike loads.
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Case Nominal 20 lb Spike 60 lb Spike 80 lb Spike 100 lb Spike

RMS .385 4m .486 jtm .898 gm 1.133 gm 1.378 4m

P-V 1.572 4m 2.602 4m 4.679 4m 5.710 gm 6.752 im
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10.3.2 Optical Response to A Point Load

Figures 10.3.3, 10.3.4 and 10.3.5 on the next three pages show the

aberrated mirror's contour shape and the associated spot diagrams. The spot

diagrams are taken at .05 mm intervals on either side of the mirror's nominal

focal point. The spots show that increasingly large spike loads create

increasing amounts of tilt, coma and astigmatism.

The spot diagrams for the 20 pound perturbation show that the actual

focal point is approximately .04 mm beyond the nominal focal point. The

wavefront shape transitions at this point from a shape that resembles a tear

drop with a horizontal orientation to a tear drop with a vertical orientation.

The vertically oriented tear drop exhibits a noticeable triangulation.

Figures 10.3.4 A and B show the 60 pound perturbation results. The tear

drop pattern in the area before nominal focus is elongated. The transition at

the actual focus is more abrupt than the 20 lb. case, developing a horizontal

definition that transitions to a vertical definition at the actual focus. The wave

form in the post-focus phase is reminiscent of a crescent moon.

The 100 pound perturbation result is seen in Figures 10.35 A and B. Pre-

nominal focus tear drop shapes are even more elongated. The trefoil shape of

the original focal-area aberration gives way to an extreme oblation so that the

wavefront in the area of nominal focus is a horizontally elongated blob. The

astigmatic change in orientation is more abrupt, and the post focus vertical

image more well defined.

This series of convoluted wave forms may be best quantified by RMS.

Tables 10.3.3 A, B and C on the page following the last spot diagram present

RMS and 50% and 100% encircled energy radii. The 50% and 100% energy

columns are measures of angular width, in arc seconds, for encircled energy.

The RMS is the average ray displacement from center spot measured in arc

seconds. Third order optical aberration data calculated by PCFRINGE for an

image taken at the nominal focus is presented in Table 10.3.4 and Charts 10.3.3

and 10.3.4 on the page following the spot diagram data.
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Figure 10.3.3 A: SURFACE contour plot of 20 pound spike perturbations.
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Figure 10.3.3 B: Spot diagrams of 20 pound spike perturbations.
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Figure 10.3.4 A: SURFACE contour plot of 60 pound spike perturbations.
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SURFACE contour plot of 100 pound spike perturbations.
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Case: 20 lb Spike RMS 50% Energy 100% Energy

Nominal - .20 mm 1.79 1.78 2.60

Nominal - .15 mm 1.42 1.41 2.10

Nominal - .10 mm 1.05 1.04 1.60

Nominal - .05 mm 0.69 0.66 1.10

Nominal Focus 0.34 0.31 0.58

Nominal + .05 mm 0.18 0.12 0.38

Nominal + .10 mm 0.47 0.40 0.90

Nominal + .15 mm 0.83 0.77 1.44

Nominal + .20 mm 1.20 1.14 1.92

Case: 60 lb Spike RMS 50% Energy 100% Energy

Nominal - .20 mm 1.85 1.81 3.10

Nominal - .15 mm 1.49 1.44 2.65

Nominal - .10 mm 1.13 1.05 2.10

Nominal - .05 mm 0.78 0.71 1.60

Nominal Focus 0.47 0.43 0.80

Nominal + .05 mm 0.34 0.29 0.65

Nominal + .10 mm 0.53 0.43 1.13

Nominal + .15 mm 0.85 0.75 1.58

Nominal + .20 mm 1.20 1.10 2.08

Case: 100 lb Spike RMS 50% Energy 100% Energy

Nominal - .20 mm 1.93 1.83 3.80

Nominal - .15 mm 1.58 1.45 3.15

Nominal - .10 mm 1.24 1.12 2.60

Nominal - .05 mm 0.92 0.82 2.25

Nominal Focus 0.65 0.60 1.35

Nominal + .05 mm 0.53 0.46 1.15

Nominal + .10 mm 0.65 0.53 1.27

Nominal + .15 mm 0.91 0.78 1.74

Nominal + .20 mm 1.23 1.10 2.23

Tables 10.3.3 A, B & C: RMS and encircled energy, in arc seconds.
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Chart 10.3.3: Astigmatism, Coma and Spherical Aberration at the

nominal focal point as functions of force.

Tilt & Defocus, Spike Force

2.00

S1.00 "- Defocus
> 0.00
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-2.00

Spike Force, Pounds x 10

Chart 10.3.4: Tilt and Defocus at the nominal focal point as functions of force.

Case Tilt (X) Defocus (W) Astigmatism (W) Coma () I SA (k)
Nominal 0 -1.103 0 0 .776

Spike 20 lb .296 -1.172 .653 .097 .799

Spike 60 lb .887 -1.312 1.961 .292 .845

Spike 80 lb 1.181 -1.382 2.610 .389 .868

Spike 100 lb 1.478 -1.452 3.267 .486 .891

Table 10.3.4: 3rd Order aberrations at nominal focal point, in wavelengths.
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Actual Focus

Table 10.3.5 (below) shows image RMS and 50% encircled energy radius

measured in arc seconds as functions of the amount of perturbing force that is

applied to the mirror. Chart 10.3.5 presents the encircled energy data for the

actual focus in graphic form.

Case: Actual Focus RMS 50% Energy

(Arc Seconds) (Arc Seconds)

Nominal .11 .09

Spike 20 lb. .16 .12

Spike 60 lb. .34 .29

Spike 80 lb. .44 .37

Spike 100 lb. .54 .46

Table 10.3.5: Encircled energy as a function of applied force at the

actual focus for single spike perturbations.

Chart 10.3.5: Image RMS and 50 % encircled energy radius calculated

at the reflected wavefront's actual focus for the series of spot diagrams

generated in the single point load analysis.
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10.4 Perturbations From Two Point Loads

In a further investigation of the mirror's sensitivity to applied force, a

series of paired or "coupled" point loads are applied to nodal components of the

mercury belt radial support. Pairs of point loads of magnitude 20, 40, 60, 80,
and 100 pounds are applied in the negative z-direction to nodes at the position

(r = 1.143 m, 0 = n/2 & 0 = 3n/2, z = .082 m). Both nodes are part of the mercury

belt radial support. One is located on the positive y-axis, the other is on the

negative y-axis. This arrangement creates a two-fold symmetry with respect

to the SPC's, as shown in Figure 10.4.1.

Figure 10.4.1: Location of two paired "spike" forces, oriented in negative "z"

direction: (r = 1.143 m, 0 = n/2, z = .082 m), (r = 1.143 m, 0 = 3x/2, z = .082 m).

10.4.1 Structural Response to A Pair of Point Loads

The application of simultaneous point loads along the y-axis squeezes

the mirror into a wedge pattern. The leading edge of the wedge is defined

along the positive x-axis. The trailing edge of this wedge pattern forms along

the mirror's outer surface in an orientation perpendicular to the x-axis. The

wedge grows more acute as the magnitude of the point loads increases. Points

of greatest positive deflection are found along the negative x-axis. Points of

greatest negative deflection are found along the surface's periphery in the

first and fourth quadrants.
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The wedge pattern can be explained as the result of the interplay

between the point loads and the hard point supports. The hard point supports
form a natural triangle that contribute to mirror surface behavior under a
variety of load conditions. In this case, mirror surface deflections can be
plotted in relation to an imaginary set of lines that join the hard points. The
greatest negative deflections occur in areas that lie along lines perpendicular
to the imaginary connections between SPC 1 and SPC 2, and between SPC I and

SPC 3. The greatest positive deflections lie along the negative x-axis, which

bifurcates the right triangle created by connecting the SPC's. This pattern is

depicted in Figure 10.4.2, below.

Max Neg
Deflection

G1 x

Gradient of

Figure 10.4.2: Triangulation formed by the interplay of coupled

point loads, and the three hard points and the gradients of

maximum positive and negative displacements.

Contour plots of the mirror surface deflecting under the combined

action of the paired point loads and the reaction forces of the SPC's are shown

in Figures 10.4.3A - 10.4.3F, on the next five pages. The plots are made by

SURFACE. Following the contour plots are charts of mirror surface deflections

and mirror surface RMS.
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Figure 10.4.3 A: Surface contour plot of nominal mirror.

Figure 10.4.3 B: Surface contour plot of two 20 pound spike perturbations.
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Figure 10.4.3 B: Surface contour plot of two 40 pound spike perturbations.

Figure 10.4.3 B: Surface contour plot of two 60 pound spike perturbations.
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Figure 10.4.3 B: Surface contour plot of two 80 pound spike perturbations.

Figure 10.4.3 B: Surface contour plot of two 100 pound spike perturbations.
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Surface Deflections and RMS

Chart 10.4.1 compare deflections at certain points on the mirror surface

with the eflected wavefront RMS as mesured at the exit pupil.the gradients of

maximum positive and negative deflection in the mirror surface. Figure 10.4.4

is a graphic of the locations of the surface points chosen for display.

Figure 10.4.4: Selected displacement points for

loads. Points Q and R are on the radial of

the series of two paired point

maximum negative gradient.

Force, Pounds x 10

Chart 10.4.1: Z-axis displacements for selected points, and RMS, for the

two paired point load case.
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Reaction Force Trends

The application of two simultaneous downward spike forces at the

extremes of the y-axis is opposed by the hard points. A bending moment is

created which pushes the y-axis rim of the mirror down, and the center of the

mirror up. This puts the surface material under tension and the material on

the back of the mirror under compression. The outer rim of the mirror's

backside is forced inward. This inward motion is opposed in the y-direction by

all three hard points. The y-axis stress acts to relieve the x-axis stress that is

found in the nominal support case. The paired spike forces apply a symmetric

z-axis load, which is reflected in the uniform and linear distribution of z-axis

reaction forces. Table 10.4.1 below and Charts 10.4.2 X, Y and Z on the next page

present the reaction forces for each of the two point load cases.

Table 10.4.1: SPC reaction forces for a pair of spike loads. RF's in Newtons.
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Case/Reaction Force X-Axis RF (N's) Y-Axis RF (N's) Z-Axis RF (N's)

Nominal: SPC 1 302 0 129

SPC 2 -151 261 129

SPC 3 -151 -261 129

20 lb.'s: SPC 1 232 0 189

SPC 2 -161 377 189

SPC 3 -161 -377 189

40 lb.'s: SPC 1 163 0 248

SPC 2 -81.5 492 248

SPC 3 -81.5 -492 248

60 lb.'s: SPC 1 93 0 308

SPC 2 -46.5 608 308

SPC 3 -46.5 -608 308

80 lb.'s: SPC 1 23 0 368

SPC 2 -11.5 723 368

SPC 3 -11.5 -723 368

100 lb.'s: SPC 1 -47 0 428

SPC 2 23.5 839 428

SPC 3 23.5 -839 428



X-Axis Reaction Forces, Two Spikes

400 T
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Chart 10.4.2 X: X-axis reaction loads for the two-point-load series.

Y-Axis Reaction Forces
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Chart 10.4.2 Y: Y-axis reaction loads for the two-point-load series.
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Chart 10.4.2 Z: Z-axis reaction loads for the two-point-load series.
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10.4.2 Optical Response, Pair of Point Loads

Spot diagrams taken at .05 mm intervals on either side of the mirror's

nominal focal point show the astigmatism produced by the simultaneous

application of point loads to the mirror's edge along the y-axis. Figures 10.4.5,

10.4.6 and 10.4.7 on the next three pages show the aberrated mirror's contour

shape and associated spot diagrams for the 20, 60 and 100 lb. load cases.

The shapes of the spot diagrams that result from the two point load

application to the y-axis are the opposite of the results from the single point

load application to the x-axis. In the case of the single spike force, a distinct

horizontal astigmatism appeared in the area before nominal focus. That

astigmatism reverses itself into a vertical orientation at the actual focus.

In the current case of applying point loads to each extreme of the

mirror's y-axis, the initial astigmatic orientation is in the vertical. This

orientation reverses to a horizontal orientation at the actual focus. That the

two waveforms resulting from the single point load case and the paired load

case would have opposite orientations is to be expected. Both load applications

squeeze the mirror into astigmatic shapes - one warps the mirror around the

y-axis and the other around the x-axis. The magnitudes of the comparative

astigmatisms do not show a linear relation because of the differences in

orientation between hard point support and location of load application.

Coma is less prevalent in this two point series than in the single spike

series. Spherical aberration is enhanced by the two point loads. This, too, is

expected - the action of the point loads pushes portions of the mirror's surface

away from a parabolic figure and into a more spherical shape. Please see

Table 10.4.3 and Charts 10.4.3 and 10.4.4 for third order data.

Tables 10.4.2 A, B and C on the page following the spot diagrams present

spot diagram data. The 50% and 100% energy columns are measures of angular

width, in arc seconds, for encircled energy. The RMS is the average ray

displacement from center spot measured in arc seconds.
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Figure 10.4.5A: SURFACE contour plot of two 20 lb. point loads.

Figure 10.4.5B: Spot diagram from two 20 lb. point loads.
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SURFACE contour plot with two 60 lb. point loads.
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Spot diagram from two 60 lb. point loads.
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SURFACE contour plot from two 100 lb. point loads.
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Spot diagram from two 100 lb. point loads.
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Case: 1-20 lb. Cpl RMS 50% Energy 100% Energy

Nominal - .20 mm 1.80 1.80 2.71

Nominal - .15 mm 1.43 1.42 2.10

Nominal - .10 mm 1.07 11.05 1.56

Nominal - .05 mm 0.70 0.66 1.10

Nominal Focus 0.35 0.30 0.54

Nominal + .05 mm 0.17 0.13 0.14

Nominal + .10 mm 0.46 0.39 0.90

Nominal + .15 mm 0.82 0.75 1.45

Nominal + .20 mm 1.19 1.12 1.96

Case: 1-60 lb. Cpl RMS 50% Energy 100% Energy

Nominal - .20 mm 1.90 1.84 3.11

Nominal - .15 mm 1.54 1.46 2.56

Nominal - .10 mm 1.18 1.07 2.01

Nominal - .05 mm 0.83 0.70 1.46

Nominal Focus 0.52 0.44 0.96

Nominal + .05 mm 0.35 0.34 0.69

Nominal + .10 mm 0.51 0.39 1.00

Nominal + .15 mm 0.81 0.69 1.68

Nominal + .20 mm 1.1 1.04 2.00

Case: 1-100 lb. Cpl RMS 50% Energy 100% Energy

Nominal - .20 mm 2.02 1.87 3.51

Nominal - .15 mm 1.66 1.49 2.95

Nominal - .10 mm 1.32 1.12 2.46

Nominal - .05 mm 1.00 0.82 1.96

Nominal Focus 0.72 0.60 1.45

Nominal + .05 mm 0.57 0.51 1.10

Nominal + .10 mm 0.64 0.53 1.35

Nominal + .15 mm 0.87 0.72 2.00

Nominal + .20 mm 1.18 1.00 2.41

Table 10.4..2 A, B & C: Image RMS and encircled energy, in arc seconds.
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Chart 10.4.3: Tilt and Defocus at the nominal focal point as functions of force.

Chart 10.4.4: Astigmatism, Coma and Spherical Aberration at the

nominal focal point as functions of force.

Case Tilt Defocus Astigmatism Coma SA

Nominal 0 -1.103 0 0 .776

Spike 20 lb. .296 -1.172 .653 .097 .799

Spike 60 lb. .887 -1.312 1.961 .292 .845

Spike 80 lb. 1.181 -1.382 2.610 .389 .868

Spike 100 lb. 1.478 -1.452 3.267 .486 .891

Table 10.4.3: 3rd Order aberrations at nominal focal point, in wavelength.
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Actual vs. Nominal Focus

Table 10.4.4 (below) shows image RMS and 50% encircled energy radius

measured in arc seconds as functions of the amount of perturbing force that is

applied to the mirror. Chart 10.4.5 presents the encircled energy data for the

actual focus in graphic form. The region of actual focus occurs between .04

mm and .05 mm beyond the nominal focus.

Case: Actual vs. RMS 50% Energy

Nominal Focus (Arc Seconds) (Arc Seconds)

Nominal .1 1/ .09/

Two 20 lb. spikes .16/ .14/

Two 40 lb. spikes .26/ .23/

Two 60 lb. spikes .35/ .34/

Two 80 lb. spikes .46/ .43/

Two 100 lb. spikes .57/ .51/

Table 10.4.4: Encircled energy as a function of applied force at the

actual/nominal focus for two simultaneous point load perturbations.

Chart 10.4.5: Encircled energy RMS and 50 % energy radius calculated

at the reflected wavefront's actual focus for the series of spot diagrams

generated in the pairing of two point loads.
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10.5 Perturbations From Two Pair
of Anti-Parallel Point Loads

In another investigation of the mirror's sensitivity to applied force, a

series of two sets of paired point loads are applied to nodal components of the

mercury belt radial support. One pair of forces is oriented in the negative "z"

direction, while the other pair is oriented in the positive "z" direction. The

point load magnitudes are 20, 40, 60, 80, and 100 pounds. The series is applied to

nodes located at the extremes of the x-axis and the y-axis. Figure 10.5.1.

illustrates the configuration:

Figure 10.5.1: Positive forces are applied at (r = 1.143 m, 0 = R/2, z = .082 m)

and at (r = 1.143 m, 0 = 3x/2, z= .082 m). Negative forces are applied at

(r = 1.143 m, 0 = 0, z= .082 m) and at(r = 1.143 m, 0 = n, z= .082 m).
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10.5.1 Structural Response to Two
Anti-Parallel Pair of Point Loads

The effect of applying anti-parallel pairs of point loads is ultimately to

warp the mirror into a "potato chip" mode. This "potato chip" shape results

from the anticlastic bending of the mirror structure caused by the anti-

parallel, off-axis point loads interacting with the hard point supports.

The couple that acts on the x-axis creates negative bending moments

about the y-axis. The couple that acts on the y-axis creates positive bending

moments around the x-axis. The conflicting moments act to reduce the overall

magnitude of deflections that would be possible if only one couple was applied.

The configuration exhibits a two fold deflection symmetry about the x-axis.

The low point on the face of the deformed mirror is found through out

the series directly above the x-axis negative point load. The high points on the

mirror surface migrate from their initial position in an area surrounding the

central hole to points at the outer rim that are located slightly to the positive x

side of the y-axis. This migration is a function of increasing point load force,

the anticlastic bending moment, and the relative locations of point loads and

SPC's. Surface shapes and deflection magnitudes can be seen in Figures 10.5.2,

10.5.3, and 10.5.4, which are NASTRAN and SURFACE z-axis contour plots.

Reaction Force Trends and Surface Shape Migration

At 20 lbs. per point load, the hard points interact with the two negative

point loads applied along the x-axis to force the center of the mirror to bulge

upwards. This x-axis negative point load dominance is gradually overcome by

the positively oriented y-axis point loads. At approximately 30.5 lbs. of force

per point load, the y-axis SPC reaction forces reach zero. Beyond 30.5 lbs. per

point load, the y-axis SPC reaction forces show that the hard point-mirror
interface in the y-direction is under tension rather than compression. This
means that the upward vector applied by the two y-axis point loads is finally
forcing the mirror surface rim upwards, transitioning the surface shape from

that of a y-axis ridge into a shape that closely resembles a potato chip.
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The x-axis reaction forces act to oppose the bending that is induced by

the negative point loads applied at x = +/- 1.143 m. As the point loads push

down along the x-axis, the mirror bends around the y-axis The resulting

tension in the mirror surface pushes the mirror center into a bulge. The back

of the mirror is compressed, and the x-axis reaction forces reveal the work

done by the hard points in resisting this compression.

Throughout the series, the z-axis SPC reaction forces remain a constant

129 N. The combination of z-axis point loads applied to the mirror always sums

to zero, hence the z-axis reaction force is unchanged at 129 N.

Case/Reaction Force X-Axis RF (N's) Y-Axis RF (N's) Z-Axis RF (N's)

Nominal: SPC 1 302 0 129

SPC 2 -151 261 129

SPC 3 -151 -261 129

20 lb.'s: SPC 1 510 0 129

SPC 2 -255 91 129

SPC 3 -255 -91 129

40 lb.'s: SPC 1 716 0 129

SPC 2 -358 -80 129

SPC 3 -358 80 129

60 lb.'s: SPC 1 924 0 129

SPC 2 -462 -250 129

SPC 3 -462 250 129

80 lb.'s: SPC 1 1130 0 129

SPC 2 -565 -422 129

SPC 3 -565 422 129

100 lb.'s: SPC 1 1338 0 129

SPC 2 -669 -594 129

SPC 3 -669 594 129

Table 10.5.1: SPC reaction forces for two pair of spike loads.
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The following two charts present SPC reaction forces graphically. Note

the y-axis reaction force point of transition from compression to tension.

Chart 10.5.1 X: X-axis reaction forces for two sets of anti-parallel point loads.

Y-Axis Reaction Forces, 2 Cples

4 Annn

Chart 10.5.1 Y: Y-axis reaction forces for two sets of anti-parallel point loads.

Surface Contour Plots

On the following pages Figures 10.5.2 and 10.5.4 show NASTRAN z-axis

surface deflection results. The scale shown on the NASTRAN plots is in

millimeters. Figures 10.5.3A-10.5.3B are SURFACE contour plots showing z-axis

surface deflections that display the migration trend in deformed mirror

surface shapes.
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Figure 10.5.3A: Surface contour plot of four anti-parallel 40 lb. spikes.

Figure 10.5.3B: Surface contour plot of four anti-parallel 80 lb. spikes.
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RMS, P-V, and Specific Deflections

The slight RMS kink in Chart 10.5.2 is due to the linear action of two

distinct modes. The primary deflection mode is due to gravity. The mode that

results from applying anti-parallel sets of point loads adds linearly to the

gravity mode. P-V is linear, as are the surface deflections in Chart 10.5.3.

RMS and P-V, Anti-Parallel Pairs

0 _10S 15

_ 0 _, _ ,-'--"--_ I I " -- --- P-V
0 2 4 6 8 10

Force, Pounds x 10

Chart 10.5.2: RMS and P-V for the series of paired, anti-parallel point loads.

Chart 10.5.3: All spots are on the mirror surface. Polar coordinates are:

Spot A = (r = 1.181, 0 = 0), Spot B = (r= 1.181, 0= 5R/12), Spot C = (r=1.181, 0 = n/2),

Spot D = (r = 1.181, 0 = 3n/2), Spot E = (r = 1.181, 0 = 7t). Spot E is the series' point

of maximum negative deflection, Spot B the point of max positive deflection.
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10.5.2 Optical Response to Four Point Loads

Spot diagrams taken at .05 mm intervals on either side of the deformed
mirror's nominal focal point show that the optical result of applying anti-
parallel sets of point loads in a symmetric configuration is a pure astigmatism.

Figures 10.5.5, 10.5.6 and 10.5.7 on the next three pages show the aberrated

mirror's contour shape and associated spot diagrams for the 20, 60 and 100 lb.

load cases. (Please also see Table 10.3.4 and Charts 10.3.3 and 10.3.4.)

The 20 lb. load case structural result is a ridge of positive deflections

that runs along the mirror surface's y-axis. The 20 lb. case spot diagram series

is very reminiscent of the spot diagrams of both the single load case (Section

10.3) and two-point-load case (Section 10.4). These show an astigmatic

transition from a horizontal to a vertical orientation taking place at the actual

focus. The tear-drop shapes hint at the triangulation seen in earlier cases.

The spot diagrams for the 60 and 100 lb. cases are startling different.

The 60 lb. and 100 lb. loading creates the "potato chip" shape in the mirror

surface. The y-axis SPC reaction forces show tension, and there is real

contrast between the positive deflections found to the east of the y-axis along

the mirror's rim and the negative deflections found in the vicinity of the x-

axis point load applications. Especially in the 100 lb load case, the astigmatism

is very well defined. The spots at .10 mm before nominal focus and .20 mm

beyond nominal focus show very tightly defined line images. The actual focal

point for these two cases, as determined by a spot analysis taken at .01 mm

intervals, is at nominal + .05 mm. This means that spot images seen at nominal

- .10 mm and at nominal + .20 mm form at equal distances from the actual focus,

and represent classic astigmatic line images.

Tables 10.4.2 A, B and C on the page following the spot diagrams present

encircled energy data in terms of RMS and 50% and 100% encircled energy
radii. The 50% and 100% Energy columns are measures of angular width, in

arc seconds, for encircled energy. The RMS is the average ray displacement

from center spot measured in arc seconds. The 3rd order aberration data in
Table 10.5.3 and Charts 10.4.4 and 10.4.5 is generated by projecting the Zernike
polynomial surface fit to the nominal focus.
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Figure 10.5.5 A: SURFACE contour plot of perturbation of four 20 pound spikes.

Figure 10.5.5 B: Spot diagrams from perturbation of four 20 pound spikes.
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SURFACE contour plot of perturbation of four 60 pound spikes.
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Figure 10.5.7 A: SURFACE contour plot, perturbations of four 100 pound spikes.

Figure 10.5.7 B: Spot diagrams from perturbation of four 100 pound spikes.
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Case: 4-20 lb. Spikes RMS 50% Energy 100% Energy

Nominal - .20 mm 1.78 1.75 2.70

Nominal - .15 mm 1.41 1.37 2.15

Nominal - .10 mm 1.05 0.99 1.70

Nominal - .05 mm 0.69 0.63 1.15

Nominal Focus 0.36 0.33 0.58

Nominal + .05 mm 0.26 0.19 0.525

Nominal + .10 mm 0.52 0.43 1.105

Nominal + .15 mm 0.87 0.79 1.555

Nominal + .20 mm 1.23 1.16 2.05

Case: 4-60 lb. Spikes RMS 50% Energy 100% Energy

Nominal - .20 mm 1.81 1.72. 3.05

Nominal - .15 mm 1.46 1.34 2.50

Nominal - .10 mm 1.11 1.00 2.00

Nominal - .05 mm 0.78 0.69 1.75

Nominal Focus 0.52 0.47 1.10

Nominal + .05 mm 0.45 0.38 0.79

Nominal + .10 mm 0.64 0.51 1.35

Nominal + .15 mm 0.95 0.79 1.85

Nominal + .20 mm 1.29 1.14 2.35

Case: 4-100 lb. Spikes RMS 50% Energy 100% Energy

Nominal - .20 mm 2.05 1.81 3.40

Nominal - .15 mm 1.75 1.54 3.35

Nominal - .10 mm 1.47 1.29 2.80

Nominal - .05 mm 1.25 1.12 2.40

Nominal Focus 1.10 1.07 2.05

Nominal + .05 mm 1.07 1.03 1.675

Nominal + .10 mm 1.17 1.00 2.15

Nominal + .15 mm 1.36 1.14 2.70

Nominal + .20 mm 1.62 1.36 3.20

Table 10.6.2 A, B & C: Spot data for two anti-parallel couples, in arc seconds.
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Chart 10.5.4: Tilt and Defocus at the nominal focal point as functions of force.

Chart 10.5.5: Astigmatism, Coma and Spherical Aberration at the nominal

focal point as functions of force. Note the astigmatic dominance

Case: 4 Spikes Tilt (k) Defocus Astigmatism Coma () SA

Nominal 0 -1.103 0 0 .776

Spike 20 lbs. .524 -1.099 1.415 .068 .775

Spike 40 lbs. 1.048 -1.095 2.828 .135 .773

Spike 60 lbs. 1.574 -1.092 4.250 .203 .772

Spike 80 lbs. 2.095 -1.088 5.656 .270 .770

Spike 100 lbs. 2.622 -1.085 7.077 .338 .768

Table 10.5.3: 3rd Order aberrations at nominal focal point, in wavelengths.
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Actual vs. Nominal Focus

Table 10.5.4 (below) shows image RMS and 50% encircled energy radius

measured in arc seconds as functions of the amount of perturbing force that is

applied to the mirror. Chart 10.5.6 presents the encircled energy data for the

actual focus in graphic form. The region of actual focus occurs between

.04 mm and .05 mm beyond the nominal focus.

Case: Actual vs. RMS 50% Energy

Nominal Focus Arc Seconds) (Arc Seconds)

Nominal 0.11 / 0.30 0.09 / 0.28

Four 20 lb. spikes 0.24 / 0.36 0.21 / 0.33

Four 40 lb. spikes 0.44 / 0.52 0.40 / 0.47

Four 60 lb. spikes 0.65 / 0.70 0.60 / 0.66

Four 80 lb. spikes 0.86 / 0.90 0.81 / 0.85

Four 100 lb. spikes 1.07 / 1.10 1.03 / 1.07

Table 10.5.4: RMS & encircled energy as functions of applied force at the

actual/nominal focus for two simultaneous point load perturbations.

Chart 10.5.6: Encircled energy RMS and 50 % encircled energy radius

calculated at the reflected wavefront's actual focus for the series of spot

diagrams generated in the pairing of two point loads.
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Chapter 11

Active Optics for the MDM/Hiltner

2.4 Meter Mirror

Active optics gives the astronomer the capability to optimize optical

image quality by actively managing the telescope mirror's surface. This

chapter describes an active optics design for the MDM/Hiltner 2.4 meter

primary mirror, and presents the numerical results achieved when using the

active optics design to correct mirror deformations induced by the variable

loading cases addressed in Chapter 10.

The unique aspect of this project is that it seeks to back-fit active optics

to an older, rigid mirror, a mirror which is composed of a relatively dense and

stiff homogeneous glass-composite material. The original MDM/Hiltner

mirror design philosophy built a mirror that resists gravity-induced

deformation by virtue of its own stiffness. This chapter's design philosophy

applies a set of actively controlled actuators to the mirror's back surface in

order to minimize any gravity induced deformities and thereby recover the

mirror's optimal optical performance.
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11.1 Active Optics System Theory

The proposed active optics system for the MDM/Hiltner 2.4 meter

primary mirror is a set of twelve air bag actuators placed across the back

surface of the mirror. These actuators are controlled with information

obtained from finite element analysis, a Zernike polynomial optical analysis,

and a least squares optimization code. The least squares optimization generates

an information set of actuator loads that acts to minimize mirror surface

distortions as measured by the Zernike polynomial coefficients.

The first step in setting up the system is to conduct a finite element

analysis of the primary mirror and its support structure. This generates two

sets of information. For the first information set, the FE analysis calculates the

mirror and the mirror support structure's response to gravity. For the second

set, the FE analysis calculates the mirror's response to unit force loads as

applied by each of the twelve actuators.

The FE information describing both mirror response to gravity and to

unit force loads is fitted to Zernike polynomials. The coefficients of the first 36

Zernike terms are calculated for each case and assembled into matrix vectors.

The vectors of Zernike coefficients for the twelve actuator unit loads

represent orthogonal displacement basis functions. The optimization code

OPTICSMIN superposes these basis functions with the data from the aberrated

mirror and runs a least-squares optimization. The optimization calculates the

amount of each basis function that is needed to cancel out the mirror's

aberrations.

If the desired goal is a diffraction limited image, then the active optics

system is given a target of all zero Zernike coefficients. (Perfection in the

world of Zernike polynomials means all zero coefficients.) The least squares

code then acts to find the exact combination and magnitude of orthogonal

displacement modes that, when added to the aberrated mode, yields the desired

result.
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The wavefront, as represented by Zernike polynomials , is of the form

36

w = C z1 (r,6) (11.1)
i='

where the C 's are the Zernike coefficients. The aberrated wavefront that

results from a gravity induced deformation of the mirror surface is

represented as a Zernike series,

36

Wabea = d C  e arra d z i(r, ). (11.2)
i=1

The goal or "target" wavefront is

36

w target = Ctarge
t Zi (r, ). (11.3)

i=1

The method superposes the orthogonal basis modes (created with unit

actuator loads) with the aberrated wavefront in the least squares optimization

code to determine the magnitude of each orthogonal basis modes needed to

achieve the desired wavefront. The mode magnitudes are identified by the

variable ai, and the orthogonal basis modes are represented by the wj]'s. The

superposition, called the "optimizing" mode, is described by

wopt = alw] + a w [+ .... + a w + aberrated. (11.4)

The next step is to find the coefficients a,. This is done by minimizing

the difference between the target wavefront and the optimizing mode (the

superposition of orthogonal basis modes and the aberrated wavefront):

[wtarge -w op M inin um (11.5)

=> [ wtaret - w = 0 (11.6)
da target opt
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Since w,,get is not a function of aj,, equation (11-6), when modified with

a weighting function R, becomes in matrix form

d [-2w, RRT W + w RRw,] = 0.
da tgt opt opt opt

Recall that

n 36

wo,, = ajw + Cbef r ed Z.(r,0),
j=I i=l

36
where w = Clj] Zi(r,0),

so that the differentiation in equation (11-7) becomes

- 2 C, ZT, RRT Zop Cop + CTp ZT RR'Zot Copt a = 0.

By letting

CT, ZT, RRT Zo Co, = Aopt opt opt opt and C Z RR' Z, Cop, = B,

the desired vector quantity can be calculated:

a = [A]-'[B]T. (11-9)

The vector a can be viewed as the magnitude of actuator input required

to obtain the target wavefront. In actuality, a is a series of coefficients that

prescribe how much of each orthogonal actuator basis vector is required to

make their superposition with the aberrated wavefront equal to zero.

To be complete, the active optics system (and hence the optimization

code) must be designed so that the resulting post-control static equilibrium

avoids image shifts due to mirror tilt. This is accomplished by imposing a

constraint on the least squares optimization that specifies the sum of the

forces applied to the mirror by the active control system.

A text of the least squares optimization code can be found in the thesis

appendix.
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11.2 Description of the Active Optics System

The active optics system consists of the original finite element model of

the mirror and its mercury bladder radial support system modified with a new

axial support system. The new axial support system is designed to be

completely active. This means that the mirror's weight is almost entirely

supported by the active system when the mirror is oriented at or near a

vertical position.

The new design uses twelve neoprene air bags configured in two

concentric rings of six bags. The three hard points are retained. The least

squares optimization code described in Section 11.1 determines axial support

pressure loadings. The twelve airbags apply force to the back of the mirror in

the axial direction, and can only push against the mirror. (While the

optimization code has the capability to generate commands for negative force

applications, the air bags can only push.) Applied force is adjusted by

changing the individual bag pressures. Commands for pressure changes are

generated by an air bag pressure controller. It is assumed that a variation of

the MDM/Hiltner telescope's present air bag controller that incorporates this

thesis's finite element data and least squares optimization will be sufficient to

control air bag pressures.

The use and location of the three axial support hard points of the

original MDM/Hiltner design remain unchanged. The introduction of active

axial support, however, facilitates the possibility of varying the reaction

forces applied to these hard points.

Lateral support is provided by the original mercury bladder system.

Because the radial support forces act through the center of mass of the mirror,

no overturning moments are created by the radial support system and no

active interface with the axial support control system is required.

Figure 11.1 on the next page presents the relative size and location of

the twelve air bag actuators. The bags are distributed around the mirror in

two concentric circles, with each circle containing six air bags.
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Figure 11.1: Vertical view of the two concentric rings of air bag

actuators showing SPC locations and Bag #1 through Bag #12.

The purpose of the air bags is to deform the mirror in such a way as to

cancel out surface deflections caused by gravity loading. The control

information that determines the amount of actuator force required to achieve

this counter-bending is obtained by running finite element and optical

analysis of unit load applications. Each air bag is individually turned on while

the other bags and gravity are turned off. The finite element analysis then

calculates the mirror's response to unit force loads, and the optics analysis

calculates the set of Zernike polynomial coefficients that best fit the unit load

wavefront.

Since unit load inputs are independent of gravity, the Zernike

coefficients that are generated can be used to correct gravity deformations at

any mirror orientation. Figures 11.2.1, 11.2.2, 11.2.3 and 11.2.4 on the next four
pages show the NASTRAN results of turning on individual bags while turning

other bags and gravity off.
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11.3 Explanation of Design Configuration

The most simple and least expensive approach to installing an active

optics system in the MDM/Hiltner telescope is to retain the basics of the

existing design and improve the three air bag component of the primary axial
support system. It would be uneconomical to redesign the entire interface
between the mirror and the mirror cell. Therefore, the decision was taken to
keep the three hard points as integral parts of the axial support system.

The reasons for selecting this design configuration are rooted in the
decision to keep the three hard points as integral parts of the axial support

system, and from the results of Chapter 10's finite element analysis. That

analysis shows that under nominal support and load conditions the interior of

the mirror bulges up while the exterior sags. This deflection mode is

attributed to the combined action of the mirror's non-uniform mass

distribution being pushed by a uniform axial supporting pressure. The

placement of the hard points at the mirror's radial center of mass serves to add

a triangulation effect to the mirror's deflection mode.

To compensate for the natural tendency of the mirror to bulge in the

middle and sag along the outside, it was decided to place concentric rings of

actuators around the mirror's back surface inside and outside the natural

point of reference created by the hard points.

Hard point location also determined the distribution of the air bags

within the concentric rings. Section 10.2 presents the finite element analysis

of the mirror with all air bags turned off, and the mirror resting on the three

hard points. The results show that ridge lines form along the radials that

define hard point location. Experimentation showed that centering the

actuators along the ridge lines facilitates the optimization and achieves good

results with a minimal number of actuators.

The final design arranges the airbags so that six of the bags are

centered on hard point radials. This design configuration minimizes the
number of actuators (and hence, costs) and facilitates the optimization used in
the system's active control.
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11.4 Nominal Mirror Active Control

This section applies the twelve air bag active optics system to the finite

element model of the MDM/Hiltner telescope. The procedure fits the first

thirty six Zernike polynomial terms to the finite element model of the mirror

surface. The Zernike coefficients are then supplied to the least squares

optimization code (OPTICSMIN, Ref. ). OPTICSMIN calculates air bag pressure

changes required to bend the mirror in such a way as to minimize the Zernike

polynomial coefficients. The code is constrained to recommend pressure

changes which maintain 30 pound z-axis reaction loads on each hard point.

Active control results show that it is theoretically possible to correct

gravity induced deformations and create a diffraction limited image with the

MDM/Hiltner primary mirror.

11.4.1 Active Control of Perturbed Mirror

The nominal case orients the mirror in the pure vertical. All the air

bag axial supports are turned on, and each of the three hard points supports a

30 pound z-axis reaction load. Analysis (please see Section 10.1) shows a

bulging in the mirror's middle and sagging along the outer radius as a result

of the mirror's non-uniform mass distribution reacting to the application of a

uniform axial air bag supporting force. Hard point reaction loads contribute a

triangulation effect that exaggerates the optical distortion.

Figure 11.4.1 on the next page shows a PCFRINGE contour plot of the

uncorrected mirror surface's z-axis deflections. Figure 11.4.2 is a graphic of

OPTICSMIN pressure changes. OPTICSMIN recommends reductions in interior

bag pressures and increases in outer bag pressures to correct the bulging of

the interior surface and the sagging of the outer surface. The exterior air

bags show an alternating pattern. Airbags that underlie SPC radials show a
smaller positive change than the bags that underlie the area between SPC

radials. This compensates for the triangulation caused by the hard points. The

interior bags show an alternating pattern that offsets the exterior pattern.
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CONTOUR STEP

Figure 11.4.1: PCFRINGE contour plot showing z-axis

deflections for the uncorrected mirror surface.

Figure 11.4.2: Changes in axial air bag pressures called for by OPTICSMIN in

order to minimize the Zernike coefficients in the reflected wavefront.
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Structural Results of Active Control

The active control results are striking. Mirror surface RMS is reduced

from .385 pm to .010 gpm. Peak to Valley is reduced from 1.572 gm to .032 p.m.

The PCFRINGE contour plot of Figure 11.4.3 below shows that the largest

deflection in the corrected mirror surface is less than .2 1. .

Figure 11.4.4 on the next page shows the NASTRAN color contour plot of

the optimized surface. The scale of the NASTRAN color contour plot, shown on

the right-hand side of Figure 11.4.4, is in millimeters. The NASTRAN plot

shows a distinctive set of contour shapes in the corrected mirror, but with

very small deflections and contour steps. The greatest deflection is

approximately .03 pgm, or less than 5% of the wavelength of the incident light.

CONTOUR STEP

Figure 11.4.3: PCFRINGE z-axis contour plot of the mirror

surface corrected with active control. Plot is scaled to

show deflections in contour intervals of .2 ,.
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Figure 11.4.4: NASTRAN contour plot showing z-axis

deflections for the corrected mirror surface.
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Reaction Forces in the Corrected Mirror

Table 11.4.1 below compares SPC reaction forces before and after active

control. The optimization maintains the desired 133 N z-axis reaction force at

each hard point. The x- and y-direction forces produced at the SPC's show a

reversal from compression to tension, as well as smaller magnitudes. X-

direction SPC resistance now totals -52 N, as opposed to the +302 N resistance in

the uncorrected mirror. Y-axis resistance is reduced from 262 N to -49 N.

Hard Point X-Axis RF (N) Y-Axis RF (N) Z-Axis RF (N)

SPC 1 302 /-52 0 / 0 129 / 133

SPC 2 -151 / 26 262 / -49 129 / 133

SPC 3 -151 / 26 -262 / 49 129 / 133

Table 11.4.1: Reaction forces at SPC's 1, 2 & 3 before/after active control.

Surface Deflections in the Corrected Mirror

The optimization is checked

points on the mirror surface.

C

by comparing surface deflections at sample

A

Figure 11.4.5: Sample locations for deflection comparison between the

uncorrected and corrected mirror. The *'s are locations of the SPC's.

Sample Point A B C D E F G H

No Active -. 230 -.315 -.388 -.335 +.402 +.402 +.402 +.402

With Active -. 019 -.022 -.019 -.022 -.026 -.026 -.026 -.026

Table 11.4.2: Comparison of deflections of the mirror surface before

and after active control optimization. All units are gm.
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11.4.2 Optical Results

Figure 11.4.4 on the next page shows a series of 9 spot images taken at

.05 mm intervals along the optical axis on either side of the nominal focus.

These spot diagrams are calculated by a ray tracing code that is not subject to

diffraction limits. The radius of 100% encircled energy for the spot image at

the optimized nominal focus is .03 g m. The diffraction limit of a telescope

mirror that has a focal length of 4.82 meters and a diameter of 2.4 meters is

d.l. = 1.22-
D

= .067 arc seconds

where f is the focal length, D is the mirror's diameter and X is the wavelength

of the incident light (% = .633 mm). This result shows that the optimized mirror

is diffraction limited.

Table 11.4.3 below presents RMS and encircled energy data for the series

of 9 spot diagrams in Figure 11.4.6. The table also includes data for the

uncorrected mirror, so as to provide the reader with a basis for evaluating the

magnitude of improvement gained by the active optics system.

Nominal Focus RMS 50% Encircled 100% Encircled

Energy Energy

NF - .20 mm 1.76 / 1.48 1.76 / 1.45 2.45 / 2.10

NF - .15 mm 1.39 / 1.11 1.39 / 1.08 1.94 / 1.60

NF - .10 mm 1.02 / 0.74 1.02 / 0.71 1.41 / 1.10

NF - .05 mm 0.66 / 0.37 0.65 / 0.34 0.92 / 0.57

Nominal Focus 0.30 / 0.03 0.28 / 0.03 0.40 / 0.03

NF + .05 mm 0.15 / .038 0.10 / 0.36 0.29 / 0.57

NF + .10 mm 0.48 / 0.75 0.43 / 0.74 0.81 / 1.08

NF + .15 mm 0.84 / 1.12 0.79 / 1.11 1.38 / 1.56

NF + .20 mm 1.21 / 1.49 1.17 / 1.47 1.88 / 2.10

Table 11.4.3: Comparison of nominal mirror vs.

with the active optics system. All data is in

the same mirror

arc seconds.

218



0
f + . loom

S
f - .5emm

1; - .2mm

f + .-5aM

MOM ACTIVE CONTROL
DIFFRACTION LIMITEC FOCUS

F - ism*

* 2Owini

0
f + .85M0

f - .100

Figure 11.4.6: A series of 9 spot diagrams taken at .05 mm intervals on either

side of the nominal focus of the active mirror. The spot diagram at the

nominal focus is diffraction limited.
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Third Order Aberrations

The following table presents third order aberrations exhibited by the

mirror before and the application of after active control.

3rd Order Aberration Before Active After Active

Tilt 0.0 0.0

Defocus -1.103 0.017

Astigmatism 0.0 0.0

Coma 0.0 0.0

Spherical Aberration 0.776 0.015

Table 11.4.5: Third order aberrations before and after active

control. Data is given in wavelengths (X = .633 pm).

Summary

The deformations allowed by the passive support system tend to displace

the mirror's actual focus; the outer edge droops and the middle surface bulges

upward. Chapter 10 shows that these deformations create defocus and

spherical aberration in the reflected wavefront. Best focus for the passively

supported mirror is at .04 mm beyond the nominal focus.

The active support system focuses perfectly at the nominal focus,

eliminating both the defocus and spherical aberration errors. The symmetry

in the spot diagram data for the active mirror demonstrates that the reflected

wavefront propagates without distortion. This can be seen by comparing the

width of the spot images at equal points before and after the nominal focus.

Active control produces identical spot image width at .20 mm beyond nominal

focus and at .20 mm before nominal focus.
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11.5 Correcting Gravity and Point Load
Perturbations With Active Control

The twelve air bag active optics system is used to correct perturbations

caused by gravity and the application of a 20 pound point load. The point loads

are applied to a node located at (r = 1.143 m, 0 = n, z = .082 m) that is part of the

mercury belt radial support, as shown in Figure 11.5.1 and analyzed in Section

10.3. The load is appled in the negative z-direction. Numerical results show

that it is theoretically possible for the twelve air bag active control system to

correct the combined gravity and point load induced deformations and, in the

20 pound case, achieve a diffraction limited image.

204
Poil
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Figure 11.5.1: Vertical view of the location of the 20 and 100

pound point loads: (r = 1.143 m, 0 = n, z = .082 m).

11.5.1 Active Control of Perturbed Mirror

The 20 pound point load creates a small torque which induces a rotation

of the mirror about the three hard points, pinching the middle of the mirror.

This action amplifies the triangular surface distortion and general bulging in

the middle of the mirror that is created by gravity induced deformation. The

point load application also creates a non uniform distribution of reaction loads

among the hard points.

The optimization is programmed to minimize the Zernike coefficients

and to produce 129 N reaction forces on the hard points. Pressure changes

recommended by OPTICSMIN are shown in Figure 11.5.2.
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20., 89.6N spike a -x axis Hg node, before active control
2-15-1996

13: 17: 4
PH5S - MITWAVEFRONT P

CONTOUR STEP

Figure 11.5.2: PCFRINGE z-axis contour plot of surface deflections for a 20

pound load applied to the outside wall of the mirror on the negative x-axis.

y

Figure 11.5.3: Pressure changes recommended by OPTICSMIN

for the case of a single 20 pound point load perturbation.
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The pattern and magnitude of pressure changes are very similar to

those of the nominal case, meaning that the active control system is still

primarily dealing with gravity induced deformations. The active optics system

relieves pressure near the mirror's central hole, allowing the thinner part of

the mirror to settle slightly. The largest pressure differential is applied to Bag

10, as Bag 10 is located directly under the point load.

Structural Results of Active Control

Active control achieves a significant improvement in RMS and P-V

measures of mirror surface distortion for the 20 pound spike perturbation.

These RMS and P-V values nearly match those obtained when optimizing the

nominal mirror case. The perturbed mirror surface RMS is reduced from .486

gm to .012 gm. Peak to Valley is reduced from 2.602 gm to .071 gm.

20a, 89.6N spike. w. RCTIVE CONTROL - optmzed to O's

WAVEFRONT PLOT

2-15-1996
13:59:12

PHTS - MIT

<0, .0

CONTOUR STEP

Figure 11.5.4: PCFRINGE z-axis contour plot of the mirror

surface corrected with active control. Plot is scaled to

show deflections in contour intervals of .2 ..
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Surface Deflections in the Corrected Mirror

The NASTRAN plot shows that the largest surface deflections occur

immediately above the node where the point load is applied. - The next most

severe set of deflections occurs in the valleys between hard points. The

surface areas above the hard points produce deflections of median magnitude.

Active control adjusts the entire mirror surface downward - there is no point

of zero deflection!

A comparison of z-axis deflections at certain points in the mirror before

and after optimization demonstrates the overall improvement achieved by

active control. Figure 11.5.6 shows the locations of the points selected, and

Table 11.5.1 compares z-axis deflections. Point "C" is immediately above the

point load application. Note the deflection magnitudes at Point "C" with and

without active control.

B

C A

Figure 11.5.6: Sample points for comparing gravity and point load

induced deflections with and without active control.

The *'s are the SPC's.

Table 11.5.1: Deflections under the influence of gravity and a 20 pound point

load, before and after active control. The last three columns show surface

deflections above the hard points. All units are gLm.
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Sample Point A B/D C E F/G/H SPC 1 SPC 2 SPC 3

No Active -. 282 -. 194 -. 894 +.418 +.418 -.019 -.019 -. 019

With Active -.049 -.0351 -.053 -.021 -.024 -.021 -.021 -.021



Reaction Forces in the Corrected Mirror

Table 11.5.2 below compares SPC reaction forces before and after active

control. The optimization restores the desired z-axis reaction force loading at

each hard point. Air bag pressure changes also relieve the x- and y-direction

forces produced at the SPC's. X-direction SPC resistance changes from

compression to tension, and is reduced from 387 N to -39 N. Y-axis also changes

compression to tension, and the magnitude os reduced from 196 N to -34 N.

Hard Point X-Axis RF (N) Y-Axis RF (N) Z-Axis RF (N)

SPC 1 387 /-39 0 /0 76/ 136

SPC 2 -194 / 19 196 / -34 200 / 140

SPC 3 -194 / 19 -196 / 34 200 / 140

Table 11.5.2: Reaction forces at SPC's 1, 2 & 3 before/after active control.

11.5.2 Optical Results of Active Control

The optical result of active control of the twenty pound point load case is

a diffraction limited image. Figure 11.5.7 (next page) shows a series of 9 spot

images taken at .05 mm intervals along the optical axis on either side of the

nominal focus. The diffraction limit of the mirror is approximately .067 arc

seconds. (Please see Section 11.4). The spot taken at the nominal focus in

Figure 11.5.4 shows a radius of .03 arc seconds for 50% encircled energy, and

.07 arc seconds for 100% encircled energy.

Best focus for the passive, perturbed mirror is at .04 mm beyond the

nominal focus. The active support system focuses to a diffraction limit at the

nominal focus, but does not produce as tight a grouping as is achieved in the

nominal case. The spot diagram data for the perturbed active mirror shows

that the reflected wavefront propagates with a very small but still noticeable

distortion. The conclusion is that the twelve air bag configuration is

sufficient to correct deflections caused by point loads of relatively small

magnitude.
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Figure 11.5.7: Series of 9 spot diagrams taken at intervals of .05 mm

along the optical axis of the mirror as it experiences gravity and a

20 pound point load.

Table 11.5.3 (below) presents the RMS and encircled energy data for the

spot diagrams of Figure 11.5.7. Data from the spot diagrams of the uncorrected

20 pound spike perurbation are also shown for urposes of comparison.
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Table 11.5.3: RMS and encircled energy data for the

a 20 pound point load without / with active control.

mirror under gravity and

Data is in arc seconds.

Third Order Aberrations

3rd Order Aberrations Uncorrected Active Control

Tilt 0.296 X 0.001 X

Defocus -1.172 X -0.007 X

Astigmatism 0.653 X 0.003 ,

Coma 0.097 X 0.005 X

Spherical Aberration 0.779 X 0.023 X

Table 11.5.4: Third order aberrations before and after active

control is used to correct gravity and 20 pound spike force

induced aberrations. Data is in wavelengths (X = .633 gtm).

Summary

Deformations created by gravity and a point load are almost completely

corrected by the pressure changes in the axial air bags. Tilt and astigmatism

introduced by the spike load. have been removed. The active system is capable

of correcting external perturbations of relatively small magnitude.
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Nominal Focus RMS 50% Energy Radius 100% Energy Radius

NF - .20 mm 1.79 / 1.49 1.78 / 1.46 2.60 / 2.16

NF - .15 mm 1.42 / 1.12 1.41 / 1.09 2.10 / 1.60

NF - .10 mm 1.05 / 0.74 1.04 / 0.72 1.60 / 1.10

NF - .05 mm 0.69 / 0.37 0.66 / 0.35 1.10 / 0.58

Nominal Focus 0.34 / 0.04 0.31 / 0.03 0.58 / 0.07

NF + .05 mm 0.18 / .037 0.12 / 0.35 0.38 / 0.57

NF + .10 mm 0.47 / 0.74 0.40 / 0.73 0.90 / 1.08

NF + .15 mm 0.83 / 1.11 0.77 / 1.10 1.44 / 1.60

NF + .20 mm 1.20 / 1.48 1.14 / 1.47 1.92 / 2.11



11.6 Active Control of 100 Pound
Point Load / Gravity Perturbation

The twelve air bag active optics system is used to correct perturbations

caused by gravity and the application of a 100 pound point load. (Please see

Section 10.3.) The point load is applied in the negative z-direction to the

mercury belt node on the mirror's negative x-axis at (r = 1.143 m, 0 = n,

z = .082 m).

10(
Poil
Lo,

Figure 11.6.1: Vertical view of the location of the 100

pound point load: (r = 1.143 m, 0 = n, z = .082 m).

11.6.1 The 100 Pound Point Load / Gravity Perturbation
The 100 pound point load induces bending that changes the shape of the

mirror surface. A broad positive deflection band is created across the mirror's

center. Maximum negative deflection is in the area of the point load. The 100

pound point load causes a non-uniform reaction force distribution.

OPTICSMIN is programmed to minimize the Zernike coefficients and to

reproduce 135 N z-axis reaction forces on the hard points. The face of the

perturbed mirror is seen in the PCFRINGE z-axis contour plot in Figure 11.6.2

on the next page. Pressure changes are presented in Figure 11.6.3. The active

control pattern seen in Figure 11.6.3 can be viewed as a series of adjustments

based on the need to use Bag #10 to counter the impact of the spike load.
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CONTOUR STEP

Figure 11.6.2: PCFRINGE z-axis contour plot of surface deflections for a 100

pound load applied to the outside wall of the mirror on the negative x-axis.

tI~x

Figure 11.6.3: Pressure changes to optimize the 100 lb point load perturbation.
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The pattern of pressure changes indicates that the primary source of

deformation is no longer gravity, but the 100 pound point load. Bag #10,
located above the point load, compensates for the point load. The adjacent

interior bag, Bag #4, is reduced to compensate for the increase in pressure in

Bag #10. Bag #1 is increased, and Bag #7 is decreased, showing an alternating

pattern from left to right across the x-axis. The alternating pattern of

increasing and decreasing pressure continues around both interior and

exterior actuator rings.

Structural Results of Active Control

Active control of the 100 pound point load perturbation recovers the

shape and the magnitude of deflections displayed by the uncorrected nominal

mirror. These less than perfect shapes and deflections result from using only

twelve actuators in the active control system to counter a more extreme

deflection shape. A significantly higher number of actuators would afford a

more flexible and sensitive response. Please see Figure 11.6.4, below.

CONTOUR STEP

Figure 11.6.4: PCFRINGE z-axis contour plot of the active mirror surface

scaled to show deflections in contour intervals of .2 X.
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Surface Deflections, RMS and P-V in the Corrected Mirror

Table 11.6.1 is a measure of the effectiveness (limitations?) of the twelve

air bag active system as it compares z-axis deflections at specific points along

the mirror surface before and after optimization. The active control system is

able to reduce the magnitude of the deflections, but is incapable of removing

them. Figure 11.6.6 shows the locations of the points selected for comparison.

B

Figure 11.6.6: Sample points for comparing deflections

with and without active control. The *'s are the SPC's.

Table 11.6.1:

100 pound

Mirror surface deflections under the influence of gravity and a

point load, before and after active control. All units are gm.

Structural response to active control can be gauged by the improvement

in reflected wavefront RMS and P-V measures. These measures are improved,

and seem to be very close to those of the pre-optimization nominal mirror case.

Case: 100# Spike RMS P-V

No Active Control 1.378 gm 6.752 gm

Active Control 0.390 gm 1.830 gm

Table 11.6.2: RMS and P-V measures in gm for both

the uncorrected and the corrected mirror.
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Sample Point A B/D C E F/G/H SPC 1 SPC 2 SPC 3

No Active -.425 +.4813 -2.917 +.4813 +.4813 +.030 -. 198 -. 198

With Active -. 359 -. 359 -. 545 +.385 +.385 -. 018 -. 018 -. 018



Reaction Forces in the Corrected Mirror

The active control system restores the 135 N z-axis reaction forces, and

thereby eliminates mirror tilt. The code's pressure changes maintain fairly
strong x- and y-axis reaction force components. These reaction forces

describe a back surface that is under compression, and reflect both the

pressure changes in the outer bags and the presence of the 100 pound spike.

Hard Point X-Axis RF (N) Y-Axis RF (N) Z-Axis RF (N)

SPC 1 +727 / +386 0 / 0 -135 / +135

SPC 2 -363 / -193 -65 / +337 485 / +135

SPC 3 -363 / -193 +65 / -337 485 / +135

Table 11.6.3: SPC reaction forces for the uncorrected and corrected

mirrors under the influence of a 100 pound point load.

11.6.2 Optical Results, Correcting 100 Pound Point Load

The series of 9 spot diagrams in Figure 11.6.7 below are taken at .05 mm

intervals on either side of the nominal focus. The spot series shows that the

100 pound point load in combination with gravity induced mirror distortions

overcomes the twelve air bag system's ability to reform a perfect wavefront.

The active mirror remains focused at a point beyond nominal, and the

spherical aberration remains at levels seen in the nominal case. Active

control significantly improved the astigmatism and coma.

The effect of the point load is seen in the spots taken at .20 mm to .10 mm

short of the nominal focus. The severe triangulation effect created by

correcting the 100 pound distortion is seen in the spots taken at .10 mm to .20

mm beyond the nominal focus. The point load throws the actual focus in the

corrected mirror to approximately 05 mm beyond nominal.

Table 11.6.4 presents spot data in an attempt to isolate the actual focus.

Figure 11.6.8 shows a series of six spots taken between the nominal focus and

.05 mm beyond nominal. Table 11.6.6 isolates the actual focus.
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SPOT SERIES FOR 1•9# SPIKE, .,5mm INCREMENTS

MtOMIMIL FOCUS - .185m.

,0 N FOCUS+.
NMOIKItL ,FOClSi + .8Sum

Figure 11.6.7: Spot diagram series at .05 mm intervals about the nominal focus

for the case of the mirror under a 100 pound point load with active control.
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Nominal Focus RMS 50% Energy Radius 100% Energy

NF - .20 mm 1.93 / 1.77 1.83 / 1.76 4.35 / 2.60

NF -. 15 mm 1.58 / 1.40 1.45 / 1.39 3.70 / 2.05

NF - .10 mm 1.24 / 1.03 1.12 / 1.02 3.00 / 1.55

NF - .05 mm 0.92 / 0.66 0.82 / 0.65 2.30/ 1.00

Nominal Focus 0.65 / 0.31 0.60 / 0.29 1.55 / 0.51

NF + .05 mm 0.53 / 0.16 0.46 / 0.13 0.96 / 0.36

NF + .10 mm 0.65 / 0.48 0.53 / 0.43 1.15 / 0.81

NF + .15 mm 0.91 / 0.84 0.78 / 0.79 1.63 / 1.34

NF + .20 mm 1.23 / 1.21 1.29 / 1.16 2.12 / 1.78

Table 11.6.4: RMS and encircled energy data for the mirror under gravity and

a 100 pound point load without / with active control. Data is in arc seconds.

Third Order Aberrations

The 100 pound spike induces a significant amount of astigmatism and

coma, and adds to the mirror's inherent spherical aberration. Active control

mitigates the astigmatism, tilt and coma induced by the spike force, but is

unable to improve the optics beyond that seen in the nominal mirror.

3rd Order Aberrations Uncorrected Active Control

Tilt 1.47 X .003 ,

Defocus -1.452 X -1.102 X

Astigmatism 3.267 X .016 X

Coma .486 X .014 X

Spherical Aberration .891 X .729 X

Table 11.6.5: Third order aberrations before and after active control

is used to correct gravity and 100 pound spike force induced

aberrations. Data is in wavelengths (7 = .633 gim).
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Finding the Corrected Mirror's Actual Focus
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Figure 11.6.8: The reflected wavefront's transition through actual focus for

the active mirror under the influence of gravity and a 100 pound point load.

Nominal + RMS 50% Energy Radius 100% Energy Radius

@ +.03 mm 0.14 0.10 0.32

@ +.04 mm 0.13 0.10 0.28

@ +.05 mm 0.16 0.13 0.36

Table 11.6.6: Spot diagram data for finding the actual focus of the

corrected mirror. All data is in arc seconds

Summary

Active control recovers the parameters found in the nominal,

uncorrected mirror. The gross astigmatism and coma created by the 100 pound

spike force are removed, but the improvement is not diffraction limited. This

can be attributed, in part, to the limited capability of an active axial support

system comprised of only twelve air bags.
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11.7 Correcting Perturbations From Gravity
and Four Point Loads With Active Control

The twelve air bag active optics system is used to correct perturbations

caused by gravity combined with four simultaneous 20 pound point load

applications. The point loads are applied as two sets of paired forces. One set is

oriented in the positive z-direction, and is applied to the two mercury belt

nodes on the mirror's y-axis (r = 1.143 m, 0 = 7/2, 3n/2, z = .082 m). The other

set is oriented in the negative z-direction, and is applied to the two mercury

belt nodes on the mirror's x-axis at (r = 1.143 m, 0 = 0, 1c, z = .082 m).

y

O x

Figure 11.7.1: Two 20 lb. point loads are oriented in the positive

Z-direction, and two are oriented in the negative z-direction.

11.7.1 Active Control of Four 20 Pound Point Loads

The point loads, paired so that two loads push up while the other two pull

down, produce anticlastic bending moments. The bending is locally

constrained by the three hard points to restrict any translational or rotational

movement. The deformed mirror surface is defined by an oval shaped ridge of

positive deflection that runs along the mirror's y-axis. The ridge is displaced

slightly toward the positive x-axis.

The optimization is programmed to minimize the Zernike coefficients

and to produce 129 N reaction forces on the hard points. OPTICSMIN

recommended pressure changes are shown in Figure 11.7.3.
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CONTOUR STEP

Figure 11.7.2: PCFRINGE plot of deflections from two pairs of antiparallel 20

pound loads applied to the outside wall of the mirror on the negative x-axis.

Figure 11.7.3: Pressure changes recommended by OPTICSMIN

for the case of two pairs of antiparallel 20 pound point loads.
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The pattern and magnitude of pressure changes recommended by

OPTICSMIN suggests the severity of the deformation mode introduced by the

four paired point loads. The optimization calls for a 93% reduction in pressure

for Bag #1, while asking for large increases in Bags #2, #6 and #7. This

indicates that the multiple airbag design reaches its limit with these four 20

pound point loads. Active control of larger magnitude anticlastic

perturbations requires actuators that can pull as well as push.

Structural Results of Active Control

Active control removes the most deleterious effects of the multiple point

loading, and returns the mirror to a shape that is reminiscent of the gravity

deformation found in the nominal mirror case (Section 10.4). This case's

optimized shape is triangulated, but is the reverse of the shape produced by

the nominal mirror case. Active control produces a maximum negative

deflection around the mirror surface outer edge, and a maximum positive

deflection around the inner radius.

CONTOUR STEP

Figure 11.7.4: PCFRINGE z-axis contour plot of the mirror surface

corrected with active control. Scale is in contour intervals of .2 X.
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RMS, P-V and Surface Deflections in the Corrected Mirror

Table 11.7.1 displays wavefront RMS and P-V at the exit pupil with and

without active control. Active control improves wavefront RMS and P-V,

though the improvement is not dramatic. (Actual surface deflections are half

the wavefront values shown Table 11.7.1.)

Case: 2-20# Pairs RMS (4m) P-V (4m)

No Active Control 0.624 3.185

Active Control 0.309 1.367

Table 11.7.1: Mirror with two paired 20 pound point

loads and gravity, before and after active control.

Table 11.7.2 compares z-axis deflections at certain points in the mirror

before and after optimization Figure 11.7.6 shows the locations of the points

selected for comparison in the table.

Figure 11.7.6: Sample points

induced deflections with and

for comparing gravity

without active control.

and multiple point load

The *'s are the SPC's.

Point A B/D C E/F/G/H I SPC 1 SPC 2 SPC 3

No Active -. 318 -. 110 -1.173 +.431 -.211 .003 .003 .003

With Active -. 142 -. 188 -. 281 +.364 -.042 -. 025 -. 025 -. 025

Table 11.7.2: Deflections of the mirror surface under the influence of gravity

and multiple 20 pound point loads, before and after active control. Last three

columns show surface deflections above the hard points. All units are gm.
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Reaction Forces in the Corrected Mirror

Table 11.7.3 (below) compares SPC reaction forces before and after

active control. The z-axis reaction forces are undisturbed by the point loading

and active control. Air bag pressure changes relieve the x-direction reaction

forces, as the differential pressure works against the point loading. Reaction

forces in the y-axis change from compression to tension, and increase in

absolute magnitude. This is a result of the limited permutations available with

the twelve bag configuration, and the optimization's decision to utilize an

alternating pressure pattern to minimize the Zernike coefficients.

Hard Point X-Axis RF (N) Y-Axis RF (N) Z-Axis RF (N)

SPC 1 509 / 135 0 / 0 129 / 129

SPC 2 -255 / -67 91 / 148 129 / 129

SPC 3 -255 / -67 -91 / -148 129 / 129

Table 11.7.3: Reaction forces at SPC's 1, 2 & 3 before/after active control.

11.7.2 Optical Results of Active Control

Figures 11.7.7 A & B (please see the next page) show series of 9 spot

images taken at .05 mm intervals along the optical axis on either side of the

nominal focus for both the corrected and uncorrected mirrors. The corrected

wavefront exhibits a consistent, sharp triangulation as it propagates through

the area of actual focus, which is a significant improvement over the

astigmatic form that propagates from the uncorrected mirror.

Table 11.7.4 on the following page presents spot diagram RMS and

encircled energy data for both the corrected and uncorrected mirrors. In the

area of nominal and actual focus, active control improves wavefront RMS and

50% encircled energy radius by approximately 33%. The data shows, though,

that the corrected wavefront is far from perfect. As in the case of the 100

pound spike perturbation, active control is able to recover a mirror surface

quality that is approximately equal to that of the nominal mirror without

active control.
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Figure 11.7.7A: Spots of uncorrected mirror, .05 mm intervals.

Figure 11.7.7B: Spot diagrams of corrected mirror, also at .05 mm intervals.

244



Table 11.7.4: RMS and encircled energy for the mirror under four 20 pound

point loads and gravity, without/with active control. Data in arc seconds.

Third Order Aberrations

The PCFRINGE data in Table 11.7.5 of 3rd order aberrations shows that

astigmatism and coma have been largely eliminated, while significant defocus

and spherical aberration remain. The magnitude of these aberrations is

approximately the same as seen in the nominal mirror case before the

application of active control.

3rd Order Aberrations Uncorrected Active Control

Tilt 0.521 , 0.006 X

Defocus -1.099 : -0.878 X

Astigmatism 0.406 X 0.011 X

Coma 0.067 1 0.018 X

Spherical Aberration 0.775 X 0.613 X

Table 11.7.5: Third order aberrations with and without

active control. Wavelength is .633 pm.
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Nominal Focus RMS 50% Encircled 100% Encircled

Energy Energy

NF - .20 mm 1.78 / 1.71 1.75 / 1.70 2.70 / 2.40

NF -. 15 mm 1.41 / 1.34 1.37 / 1.33 2.15 / 1.95

NF - .10 mm 1.05 / 0.97 0.99 / 0.95 1.70 / 1.39

NF - .05 mm 0.69 / 0.60 0.63 / 0.57 1.15 / 0.90

Nominal Focus 0.36 / 0.25 0.33 / 0.21 0.58 / 0.38

NF + .05 mm 0.26 / .19 0.19 / 0.13 0.53 / 0.46

NF + .10 mm 0.52 / 0.53 0.43 / 0.48 1.11 / 1.93

NF + .15 mm 0.87 / 0.90 0.79 / 1.85 1.56 / 1.45

NF + .20 mm 1.23 / 1.27 1.16 / 1.22 2.05 / 2.00



Actual Focus

Spot diagrams taken at .01 mm intervals around the nominal focus

(Figure 11.7.8, data in Table 11.7.6) show that the actual focus of the active

mirror is at .03 mm beyond nominal focus.

Figure 11.7.8: Actual focus. Spots are at .01 mm intervals.

Nominal + RMS 50% Energy Radius 100% Energy Radius

@ +.01 mm 0.19 0.15 0.32

@ +.02 mm 0.14 0.10 0.26

@ +.03 mm 0.11 0.09 0.23

@ +.04 mm 0.14 0.09 0.33

@ +.05 mm 0.19 0.13 0.46

Table 11.7.6: RMS and encircled energy, in arc seconds, for Figure 11.6.7.

Summary

The two anti-parallel pairs of 20 pound point loads test the 12 air bag

system to the limits of its capability. The small number of actuators limits the

system's ability to compensate for the complex wavefront distortion.
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11.8 Correcting Two Pair of Anti-Parallel

100 Pound Point Loads

The twelve air bag active optics system is used to correct perturbations

caused by gravity and two pair of 100 pound point loads. (Please see Section

10.5.) One pair is oriented in the positive z-direction and is applied to the two

mercury belt nodes on the y-axis (r = 1.143 m, 0 = rt/2, 3r/2, z = .082 m). The

other pair is oriented in the negative z-direction, and is applied to the two

mercury belt nodes on the mirror's x-axis (r = 1.143 m, 0 = 0, nt, z = .082 m).

y

0x

Figure 11.8.1: Two 100 lb. point loads are oriented in the positive

Z-direction, and two are oriented in the negative z-direction.

11.8.1 Active Control of Four 100 Pound Point Loads

The bending caused by the 100 pound point loads creates a shape that is

completely different than the 20 pound case. The aberrated mirror looks like a

horse saddle, pushed down along the x-axis and pulled up along the y axis. The

deformations are symmetric about the x-axis, creating a grossly astigmatic

surface.

Again, the optimization is programmed to minimize the Zernike

coefficients and leave a z-axis reaction force of 129 N on each of the three

hard points. A PCFRINGE z-axis contour plot of the deformed mirror and the

OPTICSMIN recommended pressure changes are displayed in Figures 11.8.2 and

11.8.3 on the next page.
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CONTOUR STEP

Figure 11.8.2: PCFRINGE plot of deflections from two pairs of antiparallel 100

pound loads applied to the outside wall of the mirror on the negative x-axis.

bx

Figure 11.8.3: Pressure changes recommended by OPTICSMIN

for the case of two pairs of antiparallel 100 pound point loads.
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The alternating pattern of pressure changes is exactly the same as the

pattern recommended for the 20 pound anti-parallel pairs case. The

magnitudes, however, are a different story. The active control wants to pull on

the back of the mirror, as seen in the three digit negative pressure

differentials. This case is therefore beyond the capability of the design.

Structural Results of Active Control

The twelve air bag system struggles against the four antiparallel 100

pound point loads. The active mirror surface is a bizarre pattern of peaks and

valleys, high points poking up in the area between hard points and low points

actually occurring on the surface directly above the hard points. Figure 11.8.4

is a PCFRINGE contour plot of the corrected surface, while the NASTRAN result

is Figure 11.8.5 on the next page.

\IJ

CONTOUR STEP

Figure 11.8.4: PCFRINGE z-axis contour plot of the mirror surface

corrected with active control. Scale is in contour intervals of .2 X.
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RMS, P-V and Surface Deflections in the Corrected Mirror

Despite the odd looking contour pattern, the optimization brings the

mirror surface to a quality that surpasses the uncorrected nominal mirror.

Case: 2-100# Pairs RMS (Am) P-V (4m)

No Active Control 2.493 12.581

Active Control 0..270 1.469

Nominal Mirror 0.385 1.572

Table 11.8.1: Two paired 100 pound point loads and gravity, before and

after active control. Note the order of magnitude improvement.

Reaction Forces in the Corrected Mirror

Table 11.8.3 (below) compares SPC reaction forces before and after

active control. The z-axis reaction forces are slightly changed by active

control. Pressure changes turn x-direction tension into compression while

the y-axis change is only one of magnitude. The system is working hard to

compensate for the 100 pound load that points downward at the mirror

periphery between hard points #2 and #3. As in the 20 pound anti-parallel

pairs, the limited permutations available with the twelve bag configuration.

Hard Point X-Axis RF (N) Y-Axis RF (N) Z-Axis RF (N)

SPC 1 1338 / -528 0 / 0 129 / 132

SPC 2 -669 / 264 -594 / -308 129 / 133

SPC 3 -669 / 264 594 / 308 129 / 133

Table 11.7.3: Reaction forces at SPC's 1, 2 & 3 before/after active control.

11.8.2 Optical Results of Active Control

Figures 11.8.6 and 11.8.7 on the next page compare the spots generated

by the uncorrected and corrected mirrors. The extreme line astigmatism is

converted into a sort of trefoil that shows no reversal of orientation at the

actual focus. The RMS and encircled energy radii show varying improvement.
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Figure 11.8.6: Uncorrected mirror showing extreme line astigmatism.
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Nominal Focus RMS 50% Encircled Energy

NF - .20 mm 2.53 / 1.52 2.27 / 1.42

NF - .15 mm 2.29 / 1.17 2.01 / 1.06

NF - .10 mm 2.11 / 0.82 1.77 / 0.73

NF - .05 mm 1.97 / 0.51 1.55 / 0.41

Nominal Focus 1.89 / 0.35 1.58 / 0.27

NF + .05 mm 1.89 /0.52 1.59 / 0.48

NF + .10 mm 1.96 / 0.83 1.58 / 0.75

NF + .15 mm 2.09 / 1.17 1.60 / 1.07

NF + .20 mm 2.28 / 1.53 1.77 / 1.44

Table 11.8.4: RMS and encircled energy for the mirror under four 100 pound

point loads and gravity, without/with active control. Data in arc seconds.

Third Order Aberrations

Table 11.8.5 shows a uniform level of residual aberration present in the

corrected mirror. The most significant change is elimination of astigmatism.

3rd Order Aberrations Uncorrected Active Control

Tilt 2.622 X 0.038 X

Defocus -1.085 X -0.022 X

Astigmatism 7.077 X 0.0356 X

Coma .338 X 0.088 X

Spherical Aberration 0.768 X -.038 X

Table 11.7.5: Third order aberrations with and without

active control. Wavelength is .633 gtm.

Summary

It should be noted again that these results are produced by an active

control that pulls on the back of the mirror - something which is beyond the

capabilities of this active design. The case does show, however, that correction

of extreme mirror deformation is possible.
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Chapter 12

Conclusions and Recommendations

The results of the verification experiment indicate that the finite

element model of the MDM/Hiltner primary mirror and associated support

systems accurately describes the mirror's structural response to gravity. The

model shows that the combination of uniform axial pressure across the back of

the mirror, the mirror body's non-uniform mass distribution, and the effect of
the reaction forces exerted on the mirror's back by the three hard point

supports causes two distinct deformation modes:

* The center of the mirror bends upward while and the mirror's exterior rim

droops outward and down, creating the conditions for a transverse

spherical aberration at the mirror's designed focal point.

* The second major deformation mode is a readily discernible triangulation

of the mirror surface created by the action of the hard points' thirty pound

reaction loads, the mirror's variable thickness, and the uniform axial

support pressures.
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These two fundamental structural deformations degrade the mirror's

optical performance. The triangular symmetry in the mirror surface is seen

in the shape of the spot images formed at various focal planes. The drooping

of the mirror's outer rim and the bulging of the center area act to create a

defocus condition, as well as to introduce almost three quarters of a

wavelength of spherical aberration.

The model shows that the mirror's response to external forces is linear,

and that a relationship can be established between applied force and mirror

surface RMS. The model also shows the linear relationship between externally

applied point loads and aberrations in mirror produced imagery.

The model predicts that both structurally induced errors and the effects

of artificial point loading can be corrected. The thesis proposes an active

optics system for the MDM/Hiltner 2.4 meter primary mirror that would use a

set of twelve air bag actuators placed across the back surface of the mirror.

These actuators would be controlled with information obtained from this

thesis' finite element analysis, the Zernike polynomial optical analysis, and

the least squares optimization code. The information generated by the least

squares optimization would be used to vary the pressures in the axial air bags

so as to minimize mirror surface distortions as measured by the Zernike

polynomial coefficients.

Model generated active control results show that it is theoretically

possible to correct gravity induced deformations and create a diffraction

limited image with the MDM/Hiltner primary mirror.

The author harbored two primary concerns about the efficacy of the

finite element model of the MDM/Hiltner mirror and support system. The first

concern addressed the use of NASTRAN pressure functions to simulate the

action of the axial air bags and radial mercury bags. Results seem to indicate

that the pressure functions adequately model the interface between support

system and mirror body. In both the axial and radial cases, the effect of the

support system is to apply a distributed force to the mirror body. The NASTRAN

pressure functions provide an accurate and controllable simulation of this

applied force distribution.
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The second major area of concern was the use of single point

constraints in the finite element model to represent the action of the three

hard points. This showed mix success. The verification experiment showed

that the real hard point supports suffer a small compression when supporting

the full weight of the mirror. Single point constraints do not compress. The

translational shift experienced by the actual mirror when all air bag pressure

was released had to be accounted for optically, by searching along the optical

axis for the actual point of focus. In this way it was determined that the hard

points had compressed by approximately .10 mm.

On the other hand, the use of single point constraints as hard points

provided a NASTRAN benefit. The NASTRAN code produced measures of

reaction forces at the SPC's in all three axis. These reaction force

measurements were quite valuable in analyzing the structural behavior of the

mirror body.

It is recommended that further study of the MDM/Hiltner telescope be

done using this finite element model. The model accurately simulates mirror

structural and optical behavior. Given the resources of more time and money,

this model could accurately quantify structural and optical deformations

through out the full range of optical axis orientations.

When positioned with the optical axis oriented in the vertical, the mirror's full

weight rests on the axial support air bags and the three hard point supports.

The axial air bags exert a uniform pressure across the back of the mirror,

while the hard points experience a small z-axis reaction load. This
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