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ABSTRACT

The human haptic system, which enables all manual perception and action, is

comprised of both tactile and kinesthetic sensory components and a motor subsystem. At

present, many basic questions about manual resolution capabilities of the human haptic

system remain unanswered. Furthermore, the mechanisms by which the sensory and

motor components interact to affect manual resolution are not well understood. To gain

insight into both the abilities and mechanisms of haptic perception, a computer controlled

electromechanical apparatus, called the Linear Grasper, was used to explore how the

human haptic system discriminates some elemental physical properties of objects through

active touch.

The investigation consisted of a series of psychophysical studies designed to

measure human performance in resolving viscosity and mass. In these experiments,

subjects utilized their thumb and index fingers to grasp and squeeze two plates of the

Linear Grasper, which was programmed to simulate various stimulus parameters. During

the experiments, haptic motor performance data in terms of applied forces, velocities and

accelerations were simultaneously recorded. The motor data, in conjunction with the
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discrimination results, were used to characterize the sensorimotor performance and to

investigate the motor strategies utilized in the sensory discrimination of viscosity and mass

by active touch. In a related series of experiments, the manual resolution of velocity and

acceleration were measured by using the Linear Grasper to move the passive thumb and

index fingers of the subjects. The possible relationship between the sensory resolution

limits for these properties and the active discrimination of viscosity and mass was also

examined.

The Just Noticeable Difference (JND), a commonly accepted measure of human

sensory resolution, was found to be 12% and 20% for viscosity and mass, respectively.

An analysis of the motor data lead to the postulation of a simple sensorimotor strategy

that explained the motor performance observed in both discrimination experiments:

Subjects applied the same temporally controlled forces to all stimuli and discriminated on

the basis of differences in the resulting spatial distribution of these forces. This hypothesis

was not only consistent with the observed motor data but also successfully explained the

measured JND performance for both viscosity and mass.
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1
Introduction

Our hand is a remarkably versatile organ. It is through our hands that we interact

with the environment. In fact the world around us is structured to take advantage of the

versatility and dexterity of our hands: virtually every task we perform requires some

degree of manual activity. Sometimes even a rare exception, like conversation, finds our

hands playing a meaningful role. Our ability to use our hands to perform common tasks

such as feeling the texture of an object or manipulating a tool requires the integrated

action of complex sensory, motor and cognitive physiological systems. The term, haptics,

refers to this overall sensorimotor-cognitive system that makes manual activity possible.

Virtual environments are computer generated synthetic environments. Ideally,

human users can interact with these environments to carry out a wide range of sensory,

motor, and cognitive-based tasks. However, current virtual environments (VE) are

predominantly visual and auditory based and support only limited haptic interaction. Thus

the ubiquitous role that our hands play in the natural environment is greatly curtailed in the

VE world. This occurs because of difficulty in designing haptic interfaces (i.e. platforms

that facilitate manual interaction in synthetic environments) that are well matched to the

resolution and capabilities of the human haptic system. Some of the difficulty arises from

current technological limitations in building sophisticated tactual stimulators. However,

another major roadblock for the design of effective haptic interfaces is a lack of

understanding about the basic haptic processes of the human user.
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Compared to our understanding of vision and audition, our knowledge of the

human haptic perception is very limited. Many basic questions about the resolution and

capabilities of the haptic sense remain unanswered. Furthermore, the mechanisms by

which the different sensory and motor components interact to affect manual perception are

not well understood. To gain insight into both the abilities and mechanisms of the haptic

perception, a computer controlled electromechanical device, called the Linear Grasper,

was utilized to explore how the human haptic system discriminates elemental physical

properties of objects through active touch.

Specifically, the goal was to measure the manual resolution of viscosity and mass

through active pinch grasping and to study the underlying sensorimotor mechanisms

involved in the manual perception of these fundamental physical properties. The

investigation partly consisted of a series of psychophysical studies designed to measure

human performance in discriminating these properties. During the experiments, haptic

motor performance data in terms of applied forces, velocities and accelerations were

simultaneously recorded. The motor data, in conjunction with the discrimination results,

were used to characterize the sensorimotor performance and to investigate the motor

strategies utilized in the sensory discrimination of viscosity and mass by active touch. In a

related series of experiments, the passive manual resolution of velocity and acceleration

were measured and the possible relationship between the sensory resolution limits for

these properties and the discrimination of viscosity and mass was also examined.

1.1 Thesis Organization

As an aid to the reader, the basic organization of the body of this thesis is

described below:

In Chapter 2, a background is provided by examining studies that have previously

investigated the haptic discrimination of object properties. The reviewed research includes

pertinent sensory resolution studies, appropriate motor control and performance

investigations, and some neurophysiological studies. From the framework of these

studies, the specific goals of the thesis research are stated at the end of the chapter.

I I
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The experimental apparatus is described in Chapter 3. The description includes a

discussion of the Linear Grasper's physical structure and operating capabilities. In

addition, the associated sensors, instrumentation and data acquisition equipment needed to

perform the experiments are also characterized and the calibration procedures utilized are

presented. The chapter also elucidates the basic structure of the software algorithms

employed to control the device so that the appropriate stimuli were presented during the

experiments.

The experimental method is presented in Chapter 4. The first half of the chapter

includes a description of the procedures, experimental parameters and data analysis

methods used for the viscosity and mass discrimination experiments. The second half the

chapter is similarly organized for the velocity and acceleration discrimination experiments.

The sensory resolution and motor performance results for the viscosity and mass

discrimination experiments conducted under active touch conditions are presented in

Chapters 5 and 6, respectively. In both chapters, the sensory resolution results are

presented first followed by the motor performance data. The sensory resolution results

include data from all experimental conditions along with computed overall average results

and anecdotal observations. The motor data include mean, standard deviation, and

maximum values for the forces, velocities and accelerations measured during the

experiments and are organized by stimulus and subject. The emphasis of these chapters is

on providing basic human factors data on the measured sensory resolutions and the

associated motor performance of the subjects. In addition to this general characterization

of the data, some important stimulus-dependent differences in the motor data are also

highlighted for later explanation in Chapter 8.

In Chapter 7, the sensory resolution results for the velocity and acceleration

discrimination experiments conducted under passive touch conditions are presented.

Because the goal of these experiments was to explore the possible relationship between

the sensory resolution limits for velocity and acceleration and the discrimination of

viscosity and mass, the stimuli in the experiments were chosen to cover the same range of
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velocities and accelerations used in the viscosity and mass discrimination experiments.

The sensory resolution data are presented for all these experimental conditions and overall

averages are also computed.

In Chapter 8, an analysis of the motor data leads to the postulation of a

sensorimotor strategy capable of explaining the sensory resolution and motor performance

observed for all the subjects in the viscosity and mass discrimination experiments. A

general statement of the hypothesized strategy is as follows.

Temporal Force Control-Spatial Force Discrimination (TFC-SFD) Hypothesis:

To discriminate mechanical impedance of objects, subjects apply, on average, the

same temporally controlled forces to all stimuli and discriminate on the basis of

differences in the resulting spatial distribution of these forces.

This hypothesis is first developed by showing that subjects use statistically the

same initial temporal forces profiles for all viscosity and mass stimuli and these profiles

can be well approximated as linear ramps. Next, a simple mathematical model is

developed to show that the same linear force ramp in time will give rise to different spatial

distributions of force and motion depending on the viscosity or mass of the stimuli being

squeezed. From the model, predictions for the manual resolution of viscosity and mass are

made and compared with the actual results presented earlier in Chapters 5 and 6. The

results indicate that the spatially based force discrimination hypothesis could successfully

explain the measured JND performance for both viscosity and mass. It is also consistent

previous observations on the discrimination of mechanical compliance (Tan et al, 1995).

The next section of the chapter focuses on other implications and predictions of the

hypothesis such as showing how the model can explain observed stimulus-dependent

motor data. The final part of the chapter is devoted to a more detailed discussion of the

variation in motor performance during the discrimination experiments.

A summary of the thesis and a discussion of the results are presented in Chapter 9

along with a brief section on potential areas of future research and study. In regard to the

appendices, background material on the pyschophysical decision model utilized to measure

_ __ �� _ ___



5

sensory resolution is presented in Appendix A. In Appendices B and C, typical plots of

recorded motor performance data for the viscosity and mass discrimination experiments

are presented. Finally, Appendix D contains a listing of the software source code used to

control the Linear Grasper during the experiments.

1.2 Research Benefits

It is anticipated that the results of this research will support the development of

better hardware and software for haptic interactions in virtual environments. First, the

quantitative determination of the capabilities of the human haptic system is an important

part of understanding limitations in the manual perception of object properties. This

knowledge has two potential benefits for haptic interface design: (1) It helps determine

necessary parameter values for simple "virtual objects" to ensure that they are manually

discriminable in a particular VE application and (2) Knowledge of limitations in haptic

resolution could give rise to VE rendering techniques that exploit these limitations to

create satisfying synthetic haptic experiences. This second possibility is analogous to the

use of a cinematic film projection rate of thirty frames per second to create the realistic

sense of temporally continuous visual imagery in motion pictures.

Second, it is anticipated that this quantitative investigation of the human haptic

system will provide meaningful human factors data. This data, along with human factors

information from other researchers, should help in the generation of design specifications

for haptic interface components. For example, having data on the human sensory

resolution of various object properties as well as the range of applied forces, velocities and

accelerations utilized in manual tasks should better equip haptic interface designers in

specifying the appropriate sensors, actuators, and other hardware for their VE

applications.

Finally, by seeking to gain insight into the sensorimotor strategies involved in

manual discrimination, it is hoped that this research will contribute to the eventual

identification of the fundamental mechanisms involved in haptic perception. An

understanding of fundamental mechanisms in haptic perception would greatly facilitate the

__ I_ _ - __ 
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modeling and prediction of manual resolution capabilities for a wide range complex

objects. This would have important practical implications not only in the development of

haptic interfaces for virtual environments, but also for other man-machine applications

such as teleoperation. It would also facilitate the design of autonomous robots that must

make use of manual sensing and manipulation.

In coming full circle, it is hoped that the development of better haptic interfaces

will not only provide a means for expanding the opportunity for manual activity in virtual

environments, but eventually provide new and exciting experimental platforms for further

investigating the mechanisms of haptic perception by itself and in conjunction with other

sensory modalities.



2
Background

2.1 The Haptic System

The human haptic system consists of tactile and kinesthetic (proprioceptive)

sensory components as well as a motor subsystem. The tactile sensory part consists of at

least four separate classes of mechanoreceptive organs involved in sensing the nature of

contact between an object and the hand, in addition to other sensory organs activated by

temperature and chemical stimuli. The kinesthetic sensors, located in the joints, tendons

and muscles together with motor command derived neural signals provide information

about limb position and velocity as well as associated forces (Srinivasan, 1994).

In concert with the haptic motor system, the sensory components are used to

explore, grasp and manipulate objects in the environment. An example of this is a typical

exploration task involving active contact between the hand and a physical object. During

this activity, manual contact forces are controlled by motor commands to the appropriate

muscle groups to enable touching, probing and grasping of the object. Throughout this

process, valuable information from tactile and kinesthetic sensory organs is acquired. This

information is used to modify and control the conditions of contact and is cognitively

processed to create perceptual impressions of the object's properties. Typical object

properties that might be perceived during haptic exploration include geometric attributes

such as shape and size; textural properties such as roughness and fabric; and physical

characteristics such as stiffness and mass.

_�_1�__ __1··11 1__ I I_·I L_�_· I II I I_
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A hallmark of all haptic activities involving active contact is a natural interaction

between the sensory and motor subsystems. This is true regardless whether the task is

primarily sensory or motor based. For example, to acquire useful sensory information in

an exploration task, like the one illustrated in the above example, appropriate motor

actions must be utilized. Likewise in a manipulation task, such as using a tool, the motor

driven activity needs sensory feedback for successful performance. Thus, in both

exploration and manipulation, the limitations of either sensory or motor subsystem will

affect the overall performance of the system.

This research is concerned with studying how the haptic system discriminates the

physical properties of viscosity and mass through the mechanism of active pinch grasping.

Therefore, to provide a meaningful background it is useful to review previous studies that

have investigated various aspects of both subsystems from standpoint of understanding the

discrimination of object properties.

Relevant research includes studies that have measured the sensory resolution limits

of the haptic system for other fundamental physical properties of objects; studies that have

quanitified or described the motor actions utilized during discrimination tasks;

investigations that have been carried out into the roles that tactile and kinesthetic sensory

receptors play in the haptic perception of physical properties; motor control studies that

have investigated the effect that physical properties have on motor performance; and

research that has studied the underlying neurophysiological nature of sensorimotor

mechanisms involved in fundamental haptic tasks such as grasping and picking up objects.

2.2 Sensory Resolution Research
Sensory resolution experiments exploring the haptic perception of physical

properties of objects have primarily focused on measuring the sensitivity to fundamental

mechanical characteristics such as stiffness and force and basic physical properties such as

object length. A prime motivation for this approach is that the approximate mechanical

behavior of many deformable objects can be represented by the linear sum of the elemental

properties of constant force, stiffness, viscosity and mass; thus by obtaining information on
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perception of these fundamental mechanical properties, it is hoped that an understanding

of the haptic perception of more complicated objects will also be advanced. Other

relevant sensory resolution studies also include those that have explored the more general

perception of position, and movement within the haptic system. Some of these

investigations have also examined the influence of physical properties such as force and

viscosity on the perception of position and velocity.

A summary of sensory resolution studies involved in directly measuring the ability

to resolve various mechanical and physical properties of objects is presented in Table 2.1.

Some of the research has focused on manual resolution (i.e., primarily involving the

fingers of the hand), while other investigations have examined perception involving one or

both forearms. Generally all the studies have focused on measuring sensory resolution

limits and only to a much lesser degree attempted to characterize and analyze the motor

performance used during the discrimination tasks.

Study

Durlach, et al (1989)

Pang, et al (1991)

Tan, et al (1992, 1995)

Jones & Hunter (1989,
1990a, 1992a, 1992b,
1993)

Property

Object length

Force

Compliance

Force, movement, stiffness, and
viscosity

Results

JND decreased from 10% at
10mm to 3% at 80mm.
JND of approximately 7% over
a range of fixed displacements
and reference forces.
JND of 8% over a range of fixed
displacements.
JND of 22% when terminal
force and mechanical work cues
are roved.
JND ranged from 15% - 99%
when mechanical work cues
were eliminated.
Differential sensory thresholds
of 7%, 8%, 23% and 34% were
measured for force, movement,
stiffness and viscosity,
respectively.

Table 2.1: Sensory Resolution Studies of Physical Properties

-I_I··
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In research exploring manual resolution under active touch using the thumb and

forefinger in a pinch grasp, Durlach et al (1989), reported a Just Noticeable Difference

(JND) for object length that increased monotonically from approximately 1 mm for a

reference length of 10 mm to 2.4 mm for a reference length of 80 mm. The JND can be

viewed as a measure of sensory resolution. Under similar experimental conditions, Pang

et al (1991), found the JND for constant force to be roughly 7% over a range of reference

forces from 2.5 to 10 Newtons (N), and fixed pushing displacements ranging from 5 to 30

mm. These results are consistent with earlier studies of force and weight discrimination

(see review by Jones, 1986). Pang et al also reported that the subjects' average pushing

velocities varied under different test conditions from 57.0 to 117.7 mm/s.

The ability to manually discriminate mechanical compliance ' using the pinch grasp

has been investigated over a range of experimental conditions and the results are less

consistent. When no constant force offset is present and stimuli are presented over a fixed

displacement interval, compliance JNDs of 8% have been reported (Tan et al 1992). A

reference compliance of 4 mm/N and different fixed displacement intervals of 15, 20, 25,

30 and 35 mm were used. However, in all experimental conditions, terminal force cues

and mechanical work cues (the applied force integrated over displacement) were

consistent with compliance and are likely to have played a role in the discrimination

process. When these cues were then disassociated from compliance by using a roving

displacement paradigm, compliance JND increased to 22%. Furthermore, when trial-by-

trial response feedback was eliminated, the JND remained at 22% and subjects appeared

strongly biased to select the stimuli with greater terminal forces and mechanical work

values as less compliant (Tan et al 1995). Finally, when mechanical work cues were

totally eliminated, compliance JND ranged from 15%-99% and discrimination

performance over all experimental conditions could be parsimoniously described by a

terminal force JND of approximately 5% (Tan et al 1995). Thus it appears force and

work cues are important in compliance discrimination.

Mathematically, compliance is the inverse of stiffness or C = 1 / K, where K is the ratio of force to displacement.

- ------ ·
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Jones and Hunter have performed a series of experiments to measure the

perception of movement, force, stiffness and viscosity using a contralateral limb-matching

procedure with the forearms (Jones, 1989; Jones & Hunter, 1990a; Jones & Hunter,

1992a; Jones & Hunter, 1992b; Jones & Hunter, 1993a). They reported differential

sensory thresholds of 7% and 8% for force and movement respectively. In analyzing

thresholds for stiffness and viscosity, they found significant loss in perceptual resolution.

Their results showed an average differential threshold for 23% for stiffness and 34% for

viscosity. The magnitude of the reference stiffness ranged from 0 to 6260 N/m and

reference viscosity values varied from 2 N-s/m to 1024 N-s/m in their experiments. They

hypothesized that the loss in resolution was because force cues had to be integrated with

limb position and velocity information.

Stevens and Guirao (1964) and Scott-Blair and Coppen (1940) performed general

studies on perception of fluid viscosity. Scott-Blair and Coppen reported that subjects had

an 80% correct response rate when presented with bitumen samples differing in viscosity

by 30%. In a magnitude estimation procedure, Stevens and Guirao found that subjects

estimated that the viscosity of silicone fluids grew as absolute viscosity raised to a

fractional power that varied from 0.42 to 0.46. Subjects made judgments under three

procedures: stirring the liquid with a rod with the eyes open, stirring the liquid with the

eyes blindfolded and just shaking or turning the bottle containing the liquid. The effect of

visual and haptic information in the first procedure as opposed to haptic only input in the

second procedure did not seem to influence the magnitude estimation responses.

In mass discrimination experiments carried out in zero-gravity conditions, Ross et

al. (1984), reported that the subjects' Weber fractions for mass were approximately

double their Weber fractions for weight (8 - 15%) obtained for the same objects in an 1-G

environment. In related studies involving the perception of the moment of inertia,

investigators have reported differential sensory thresholds ranging from 28% (Kreifeldt

and Chuang, 1979) to 113% (Ross and Benson, 1986).
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Some of these investigations have also examined the influence of some physical

properties like force and viscosity on the perception of physical properties like position

and velocity. Watson et al (1984) reported that errors in matching the position of the left

index with the right one increased with the stiffness of an elastic load applied to the wrists.

However, when asked to match force instead of position, the errors were generally

independent of the relative starting position of the two fingers. Milner (1986) has

reported that the ability to accurately reproduce target peak velocities with rapid flexion of

the interphalangeal joint of the thumb was degraded for half of his subjects when viscous

loads were intermittently applied to the thumb. Thus, the ability to sense and control

velocity may be influenced and degraded by the presence of viscosity, although there were

only six subjects in this experiment and each subject completed only a total of 80

movements.

2.3 Motor Performance Research
While a significant amount of research has been carried out on human motor

performance and motor control (for example, Hogan, 1984; Bizzi, 1984; Shadmehr, 1993;

and also see reviews by Keele, 1986; and Wickens, 1986), the most pertinent research for

this investigation are those studies that have focused on examining the motor strategies

that are utilizied in haptic discrimination or exploration tasks. Unfortunately, very few

investigations have been carried out that have attempted to describe and quantify the

motor strategies in these tasks.

The most notable exception is the work by Lederman and Klatzky (1987, 1990)

and Klatzky et al (1991,1992 and 1993). These experiments investigated the relationship

between the desired knowledge about certain object properties, for example texture or

temperature, and the hand movements used to acquire information about these properties.

The results suggest that different exploratory procedures are used to ascertain different

object properties, and these procedures are utilized not only because they are sufficient for

performing the task but because they are optimal or necessary. Some examples of the

exploratory hand movement procedures they describe include movement patterns such as

--- ---- -------- I
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lateral motion, static contact and unsupported holding. While these procedures are well

described in the results of the experiments, data on applied forces, and speeds or

accelerations of movements utilized in the exploratory procedures were not measured.

In motor performance research more tangentially related to this thesis, Jones and

Hunter (1992b) explored the influence of viscosity and stiffness on human operator motor

control performance. Their experiments were typically position tracking tasks involving a

manipulandum and visual feedback. They found that tracking performance was enhanced

with increases in either stiffness and viscosity. They hypothesized that the improved

performance was a result of increased kinesthetic feedback that provided additional

information to the operator. They also investigated isometric force tracking and found

that while operator response times were improved over position tracking, steady state

tracking errors were also greater.

2.4 Neurophysiological Studies
Studies interested in illuminating the role of different sensory systems involved in

the perception of mechanical properties have also been carried out. Roland and

Ladegaard-Pedersen (1977) examined the ability of subjects in discriminating the stiffness

of two springs held in the hand. The aim of their research was to study the role of

cutaneous and joint sensory receptors in the perception of stiffness. They found that the

ability to discriminate stiffness was unaffected by local anesthesia of the skin and joints

involved in squeezing the springs. They theorized that tension sensing Golgi organs and

muscle spindles provided sufficient information for stiffness perception. Their results are

similar to that of Srinivasan and LaMotte (1995) who have shown that the mechanisms of

compliance discrimination depend on the nature of the object's surface. They found that

the discrimination of stiffness with springs having rigid surfaces requires kinesthetic

information, whereas purely tactile information from mechanoreceptors in the fingerpad is

adequate for discriminating compliant material with deformable surfaces, such as rubber

specimens with variable compliances.

�I 1 I�-F�-----�IIPLL ---I I - --·
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In another series of experiments, Johansson and Cole (1992) investigated goal

directed grasping and lifting of small objects held in a pinch grasp. Sensors were mounted

on the objects to monitor grip force, load force, acceleration and position. In addition,

neurophysiological recordings were made from tactile afferent fibers during the

manipulation process. The results indicated that humans maintained a consistent ratio of

applied lifting and grip forces to avoid conditions of slip. In addition, when anesthesia was

used to block tactile afferent information from the contact area, control performance was

significantly degraded. They postulated that subjects used tactile sensory information

about mechanical events such as microstiffness in the contact area to activate anticipatory

motor control strategies to minimize object slip. These anticipatory strategies, they

believed, are predictive feedforward mechanisms that are derived from past experiences

with the grasping and lifting task.

2.5 Thesis Goals
To summarize, past research has focused on measuring human sensory resolution

limits of basic physical properties, understanding the role of specific sensory populations in

perception and control, and either exploring how motor performance is influenced by

changing specific mechanical properties of manipulated objects or describing the general

classes of actions taken during haptic exploration. This thesis plans to build onto this

body of research in a number of ways. First of all, discrimination experiments are

proposed to measure the manual resolution of viscosity and mass. These experiments will

provide data on the ability of the hand to resolve differences in mass and viscosity through

pinch grasping. This work will be carried out with the same methods and apparatus as

earlier work by Pang et al (1991) on constant force discrimination and Tan et al (1995) on

compliance discrimination. The results will therefore allow us to determine if there is a

loss in perceptual resolution when the discrimination task requires force cues to be

combined with derivative based displacement cues, as was observed by Jones and Hunter

(1993a) in their experiments involving viscosity discrimination with the forearms. For the
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benefit of improved haptic interface design in virtual environments and teleoperation, these

results will also provide practical human performance data.

Second, since all active manual interactions, including those in sensory dominant

tasks, involve the human motor system, this part of the thesis will also focus on

quantifying and characterizing the motor performance strategies used by subjects during

the discrimination tasks. A number of questions that are of interest from a basic scientific

viewpoint and also from the perspective of haptic interface design will be explored:

· What are the ranges of applied forces, velocities and accelerations utilized

by the subjects during discrimination? Are these ranges influenced by the

nature of the stimuli?

* Do subjects exhibit any apparent motor strategies to assist in

discrimination? For example, do subjects attempt to squeeze a viscous

object with a constant force or grasp it with a constant squeezing velocity?

Are the motor strategies different for mass and viscosity discrimination?

* How stereotypical is the motor performance among subjects? In other

words, do all subjects squeeze the stimuli in a similar fashion or are there

large discrepancies in the nature of the force profiles among subjects?

* What is the variability in motor performance for a particular subject? Is

there a correlation between discrimination performance and motor

performance?

It is anticipated that by exploring questions such as these, in addition to measuring

sensory resolution limits, insight will also be gained into the role motor performance plays

in the discrimination process under active touch conditions.

Finally this thesis proposes to measure the manual resolution of velocity and

acceleration. Along with the work by Durlach et al (1989), this will provide a complete

set of human factors data on the ability to manually assess length, velocity and

acceleration. These experiments were performed under passive conditions (involving little
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or no motor input from subjects) in order to provide information about very basic sensory

resolution limits in the haptic system. In addition, the results from these experiments were

analyzed in conjunction with data from the viscosity and mass discrimination experiments

to determine if any relationship exists between velocity and viscosity JNDs as well as

between acceleration and mass JNDS.

�
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The Linear Grasper

3.1 Introduction
The apparatus used in all the discrimination experiments is a one degree of

freedom stimulator called the Linear Grasper. It is a computer controlled

electromechanical device that can exert bi-directional forces along a linear track. For

active tasks, subjects interacted with the apparatus by grasping and squeezing two parallel

aluminum plates with their thumb and forefinger which resulted in the travel of one of the

plates along the linear track towards the other plate whose position was fixed. In response

to this active finger motion, the Linear Grasper was programmed to produce a resisting

force proportional to velocity in the viscosity discrimination experiments and to

acceleration in the mass discrimination experiments. Finger motion was halted when the

moveable plate pushed by the thumb came into contact with a mechanical stop placed at a

fixed distance along the linear track.

3.2 System Overview
The apparatus consists of four major components: (1) A motor-finger interface

that serves as the actuating mechanism, (2) a component consisting of sensors and

associated instrumentation that measures the applied forces and displacements during the

experiments, (3) a personal computer system that performs the data acquisition and

control of the device and (4) a power amplifier that provides the necessary drive signals to

the actuator. A system block diagram is shown in Figure 3.1. A description of the

components is given below:

_ � C_ _I_ I_ _ ·II _1_1 �II _�__��_LI C� 1�II__
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Figure 3.1: System Block Diagram

3.2.1 Motor-Finger Interface

The motor-finger interface, shown in Figure 3.2, consists of a DC linear-motion

motor attached to a moveable finger plate assembly. The motor consists of a permanent

magnet surrounding an armature coil that is mounted around a moveable piston. When

current is passed through the coil, a resulting force is exerted on the piston. The

magnitude of the force is linearly proportional to the absolute value of the current. The

direction of the current through the coil determines the direction of the force. Hence, a

positive flowing current will generate a force that acts in the opposite direction of a force

created by a negative flowing current. The maximum force that could be generated by the

motor was 50N.

The piston is connected to a moveable finger plate assembly. Attached to a flat

aluminum plate on the top of the finger plate assembly is either a cylindrical roller or a

molded thumb support. The cylindrical roller serves as a consistent point of contact for

the subject's thumb during the viscosity and mass discrimination experiments. The

Persnnal C(mnuter
-~ ~VIL~~
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Figure 3.2: Motor Finger Interface

support is used to support the thumb during the velocity and acceleration discrimination

experiments. The finger plate assembly was confined to travel along a linear track by a

supporting mechanical structure. The distance the assembly can travel is determined by a

mechanical stop placed in the supporting mechanical structure at the opposite end of the

linear track. The location of the stop was adjustable so that fixed travel distances of 5, 10,

15, 20, 25, 30, and 35 mm could be realized. The friction between the device and the

track was found to be approximately 0.4N on average. It was dependent on position but it

was always less that 0.6N. The effective mass of the device was 0.695 kg.

3.2.2 Sensors and Instrumentation

Force, position, velocity and acceleration data were recorded during the

experiments. The applied force was measured by a BLH semiconductor strain gage

mounted a fixed distance below the cylindrical roller (See Figure 3.2). The strain gage

was part of a resistive bridge circuit whose buffered output was amplified through a low
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noise NE5532 operational amplifier. Calibrating the strain gage was accomplished by

applying standardized weights, through a pulley system, to the contact region on the

roller. The relationship between the output signal of the amplifier and the applied force

was determined through regression analysis. The results indicated that force/voltage

relationship was highly linear with R2 values typically greater than 0.998 and the standard

error between estimated and actual force values was always less than 0.025N. During the

operation of the Linear Grasper, the cascaded noise level of the force sensor and the A/D

board was 0.2N.

The displacement of the finger plate assembly along the linear track was measured

with a Sunflower floating linear differential transformer (FLDT). The FLDT was mounted

from the non-moveable support frame of the motor to a rigid arm that extended out from

the finger plate assembly. The signal conditioned output of FLDT had a specified full

scale linearity of 0.10% over its range of travel of 40 mm. The sensor was calibrated by

moving the finger plate assembly to series of fixed displacements (determined by

placement of the mechanical stop) and measuring both the output signal of the FLDT and

the actual position with a micrometer. The overall accuracy of the system including noise

was approximately 0.12mm.

Velocities and accelerations were also recorded during the experiments. The

velocity sensor was an inductive type sensor from Transducer Systems and was connected

to the finger plate assembly in the same fashion as the FLDT. The output of the velocity

sensor was signal conditioned with an Analog Devices AD620 instrumentation amplifier.

Acceleration was measured with a +5g accelerometer from IC Sensors. The

accelerometer was mounted directly below the strain gage on the finger plate assembly.

The sensor's output was amplified with a Burr Brown INA105 instrumentation amplifier

and filtered through an RC low pass filter with a 10Hz break frequency. The low pass

filter was necessary to eliminate noise in the output signal that was created by spurious

vibrations in the assembly as it traveled along the linear track.
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The sensors were calibrated by applying a constant force to the moveable finger

plate assembly. Initially, this was accomplished by attaching a hanging mass to the

assembly through the same pulley system that was used to calibrate the force sensor.

Later, after the motor's force/current relationship was established, the constant force was

generated through a computer controlled drive signal to the motor. The application of

force resulted in the motion of the finger plate assembly along the linear track. While the

force was being applied, the displacement of the assembly and the velocity and

acceleration signals were sampled at lkHz. When the finger plate assembly had traveled

25mm, the force was no longer applied to the device and data acquisition was halted. The

sampled data were then saved to a file.

This procedure was repeated for several different force values. Typical

displacement data are shown in Figure 3.3. In the graph, data points representing the

position of the finger plate assembly are plotted versus time for applied forces values of 2,

4, 6, and 8 Newtons. Best fit curves, in a least-squares sense, are shown as solid lines

through the data points. It was found that the displacement data was well modeled by a

second order polynomial equation of the form:

x(t) =k2t2 + kit + ko (1)

where, x(t), is the displacement of the finger plate assembly as a function of time, t, and

k2, kl, ko are the constant coefficients of the polynomial expression. Typical values of k 2,

kl, ko, are given in Table 3-1 for different input forces. Note that the values of k 2 were

typically several times greater than kl and ko; thus x(t) was basically a simple parabolic

function. By differentiating Equation (1), expressions for velocity and acceleration could

also be determined:

v(t)= x = 2k2t + k (2)

a(t)= x = 2k2 (3)

where v(t) and a(t) represent the time functions of velocity and acceleration, respectively.
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Figure 3.3: Position versus time for different applied forces

Equations (2) and (3) implied that a constant driving force would result in a

constant acceleration of the finger plate assembly and a linearly increasing velocity of the

device. This was consistent with the output recorded from acceleration and velocity

sensors during the procedure. Using values of k2 and k, both the accelerometer and the

velocity sensor were calibrated through regression analysis. The overall accuracy of the

sensors with noise was typically 15 mm/sec2 for the accelerometer and was approximately

0.1 mm/sec for the velocity sensor.

Because the acceleration of the device, in the presence of a constant force, was

constant, the device could be modeled as a mass with a known amount of friction. By

subtracting out the frictional force component, the effective mass of the device could be

calculated by dividing the net applied force to the device by the measured acceleration.

Typical values of mass are presented in Table 3-1 for different input forces. An average

value of 0.695 kg was used for the device's mass.
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Applied Force Friction ko k, k2 Mass

2.0 N 0.4 N 0.5 mm 42.9 mm/sec 1,144.4 mm/sec2 0.703 kg

2.5 N 0.4 N 0.5 mm 49.2 mm/sec 1,504.0 mm/sec 2 0.700 kg

3.0 N 0.4 N 0.6 mm 78.5 mm/sec 1,884.9 mm/sec 2 0.692 kg

3.5 N 0.4 N 0.5 mm 85.7 mm/sec 2,282.0 mm/sec 2 0.681 kg

4.0 N 0.4 N 0.5 mm 104.6 mm/sec 2,621.3 mm/sec2 0.689 kg

Table 3.1: Values of k2, k, ko and mass for different applied forces.

3.2.3 Data Acquisition and Control System

The output signal of each sensor was sampled through a differential input channel

of a Metrabyte DAS-1602 analog-to-digitial (A/D) converter at lkHz by an IBM

compatible 80486DX 66MHz personal computer. The 12 bit A/D converter was

configured for an analog input range of ± 10 volts with a resolution of 0.0049 volts/bit.

This resulted in a the force signal resolution of +0.05 Newtons, a position signal

resolution of +± 0.06 mm, a velocity signal's resolution of +± 0.05 mm/sec and an

acceleration signal resolution of approximately + 4.0 mm/sec2 . The specified maximum

error of the A/D board was 0.2% of + 1 least significant bit and thus had a negligible

effect on the overall accuracy of the sensor readings.

Data acquisition and control during the experiments was performed by experiment

specific software routines running on the IBM compatible 80486DX personal computer.

The source code used for all the experiments is presented in Appendix A. With the

exception of the control loop routine, all four types of discrimination experiments

followed the same basic algorithm. A simplified block diagram of the algorithm is shown

in Figure 3.4.
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Figure 3.4: Block Diagram of the Basic Data Acquisition and Control Algorithm

The initialization routine ensured that the motor-finger assembly was at the

designated starting location on the linear track before each trial. If the assembly was not

in the correct position, the routine sent a drive signal to the motor until the desired starting

position was reached. Additionally, this part of the program was used to measure and

compensate for any DC offsets present in the force, velocity and acceleration signals. The

routine also determined the stimuli presentation order for the experiment and prompted

the subjects with a text message on the computer monitor when the experiment was ready

to begin.

All discrimination experiments involved the presentation of a specific stimulus for a

fixed displacement. The value of the fixed displacement was determined before the

experiment was started. (The experimental protocol followed in the discrimination

.0l
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experiments is explained in greater detail in Chapter 4.) To accurately present the

discrimination stimuli to the subjects over this fixed displacement, two different control

algorithms were developed. One algorithm was designed for the viscosity and mass

discrimination experiments and the other one was developed for the velocity and

acceleration discrimination experiments. The algorithms are described separately:

Viscosity and Mass Simulation Algorithm

Viscosity and mass stimuli were simulated through an impedance control

algorithm. During the experimental trial, the velocity or acceleration of the device was

sampled at kHz and a desired output force was calculated by multiplying the sampled

velocity or acceleration by the damping factor, B, or mass, M, that was being simulated

(F=BV or F=MA). The value of the output force was adjusted to compensate for the

average friction along the track and for any inertial force that was created by the

acceleration of the motor-finger interface's mass. An appropriate control signal was then

determined and sent through a digital-to-analog converter and a voltage-controlled current

source to the actuator (The motor control hardware are presented in Section 3.2.4). The

resulting resisting force of the motor was thus proportional to velocity in the viscosity

discrimination experiments and acceleration in the mass discrimination experiments. The

differences between desired and simulated mass and viscosity values were always less

+± 2.0%.

Velocity and Acceleration Control Algorithm

In the velocity and acceleration discrimination experiments, the goal was to present

subjects with a constant velocity or acceleration stimulus over a fixed displacement. To

accomplish this, a digital control system with proportional feedback and disturbance

rejection was developed. A discrete representation of the feedback system is shown in

Figure 3.5. The first step in designing the control system was to determine the discrete

transfer function of the plant. For a plant, G(s), preceded by a zero-order hold, the

discrete transfer function is defined as (1 - z )Z[G(s)/s} (Kuo).
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D(z)

(Z)

Figure 3.5: Discrete Realization of the Feedback Control System

The plant in this system is a mass, therefore,

z-1 1 z-1 1
G(z)=( )Z( 2 M=( )(Tz )

Z s2M Z M(z- 1)2

thus,

G(z) =
M(z - 1)

where T is the time of the length of the zero order hold and M is the mass of the device

(0.695 kg). Using this, the z-transform of the discretized velocity of the device is:

V(z) = [KR(z)- D(z)](T/M)
z - (1- KK 2 T/M)

where R(z) is the z-transform of reference signal, C(z) is the z-transform of the control

signal and D(z) is the z-transform of a disturbance input to the system. (Examples of

possible disturbances to the system include changes in friction along the track or resistance

from the subject's thumb.) K, and K2 represented the feedforward and feedback gain of

the controller, respectively. With D(z) = O, then a step input, r(kT) = U(kT) results in a

discrete velocity,

v(kT)= U(kT) - (1 KKT )k U(kT)
K1 K1 M
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Thus a step input in the reference signal will result in a step change in the steady-

state velocity, provided the following stability design constraint is met:

KK2T!M 1

Since M = 0.695kg, T = 0.001sec, and K,, K2 > 0, then the design constraint becomes:

K,K2 < 1390

Another design goal is to minimize the influence of a disturbance on velocity. This

is accomplished by making the feedforward gain, K,, as large as practically possible, since

the net input to the system is:

KC(Z)- D(Z)

Through trial and error, gains of K = 7.0 and K2 = 50.0 were chosen for the

control system. These gain settings provided adequate rejection of disturbances to the

system while still ensuring a robustly stable controller. Overall, the system would reach

98% of steady state velocity within seven sampling periods (0.007millisec) and the

standard deviation in desired velocity over the fixed displacement was less than 3%.

Typical results for a control velocity of 85 mm/sec are shown in Figure 3.6. Noticeably

larger gains, especially for K,, would result in small vibrations of the mechanical arm that

connected the velocity sensor to the moving finger plate assembly. This in turn would

lead to a marginally stable mechanical chattering of the finger plate assembly.

Acceleration control was accomplished with the same control loop, but a ramp input to

the system, r(kt) = kT U(kT), was utilized instead of a step input.

For all experiments, once the position of the finger plate traveled beyond a

specified displacement the control algorithm was terminated. The remaining portion of the

software program was responsible for prompting the subject for an allowable response,

recording the response (entered via keyboard input), and returning the finger plate to the

starting position for the next trial. At the completion of the last trial in an experimental
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Figure 3.6: Typical Velocity Plots versus Displacement

trial, run, the pertinent psychophysical data, consisting primarily of the stimulus and

response for each were written to an ASCII text file for later analysis. Additionally, the

force, position, velocity and acceleration data recorded for each trial were written to a

different file in a binary format that facilitated later analysis with Matlab.

3.2.4 Motor Control Hardware

The control signal was supplied to the actuator mechanism of the Linear Grasper

through a Metrabyte digital-to-analog converter (DAC) and a Techron DC power

amplifier. The 12-bit DAC had a + 10 volt output range and a resolution of 4.9

millivolts/bit. The power amplifier acted as a voltage controlled current source with the

current output of the amplifier used to directly control the force generated by the motor.

The force/current relationship of the device was determined with the same apparatus

utilized to calibrate the force sensor. The relationship was linear and constant over the

entire 40 mm stroke range of the piston. The calibrated control signal had a resulting

resolution of 0.04 N.
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Method

4.1 Introduction

The general psychophysical method employed to measure human resolution in

discriminating viscosity, mass, velocity and acceleration was the one-interval, two

alternative forced choice (I-2AFC) paradigm with correct response feedback. The

paradigm's theoretical foundation, metrics, and practical application are well described

elsewhere (Durlach, 1968; Macmillan, 1991; Geschieder, 1985). A summary of the

method taken from notes by Durlach (1968) is presented in Appendix A.

Provided below is a description of the general procedure used in the viscosity and

mass discrimination experiments along with the details of the two different types of

viscosity and mass discrimination experiments that were carried out. Afterwards, a

section describing the method used in velocity and acceleration discrimination experiments

is presented.

4.2 Viscosity and Mass Discrimination Experiments: General Method

4.2.1 Apparatus

The Linear Grasper was used for all viscosity and mass discrimination experiments.

During each experimental trial, the subject interacted with the apparatus by squeezing two

parallel aluminum plates with the thumb and forefinger. This action would result in the



30

Initial Finger Span
d ·

Direction of travel Direction of resisting force

,4 -

Fixed Displacement .~ 1 -1 1 -

Fixed
Plate

.ra

Starting position Mechanical Stop

Figure 4-1: The Layout of the Linear Grasper during an Experimental Trial

movement of one of the plates along a linear track towards the other plate whose position

was fixed. In response to this active finger motion, the Linear Grasper was programmed

to produce a resisting force proportional to velocity in the viscosity discrimination

experiments and acceleration in the mass discrimination experiments. The resisting force

was removed when the moveable plate pushed by the thumb came into contact with a

mechanical stop placed at a fixed distance along the linear track. To minimize any

vibrations due to impact, thin foam pads were placed on the mechanical stop. A diagram

illustrating the process is shown in Figure 4-1. Once the subject entered a response into

the computer, the moveable plate was returned to its starting position for the next trial.

A cylindrical roller mounted on the moveable plate served as the contact point for

the thumb so that measurements from the strain gage mounted at the bottom of the plate

could be accurately converted to force values. The cylindrical roller also ensured that the

pushing force applied by the thumb was always perpendicular to the moveable plate. In

addition to the applied force, the position, velocity and acceleration of the moveable plate

were also measured during the experiment. While these measurements were sampled at

Moveable
Plate

- I l - - -
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l kHz for control purposes, to create manageable sized data records, the data was saved to

a file at 200 Hz.

4.2.2 Subjects

A total of twelve subjects participated in the viscosity and mass discrimination

experiments. The group consisted of six males and six females, ages 18 - 26 years old. Six

of the subjects also participated in the velocity and acceleration discrimination

experiments. The subjects were either undergraduate or graduate students at MIT and

were paid on an hourly basis. All subjects were right handed, with no known hand

disorders and used their right hand for all experiments.

4.2.3 Procedure

The experiments used the one-interval, two-alternative forced choice paradigm.

Because subjects were asked to discriminate viscosity or mass, it was possible that their

interpretation of the instructions might differ. In order to minimize such differences, trial-

by-trial correct response feedback was given to the subjects. During a trial, subjects were

randomly presented with one of two possible stimuli. One of the stimuli was the reference

(e.g., Bo) and the other was the comparison, equal to the reference minus an increment

(e.g., Bo - AB). The value of the increment was constant within an experimental run of 64

trials. For each trial, both stimuli had an equal a priori probability of occurring. Upon

completion of a trial, the subjects were required to indicate which one of the two stimuli

they felt was presented by typing 1 for the larger stimuli or 2 for the smaller stimuli. After

the selection was made for each trial, the subjects were provided with correct response

feedback.

4.2.4 Data Analysis

A 2x2 stimulus-response matrix generated from each experimental run was utilized

to compute a sensitivity index, d', and a response bias, p (See Appendix A for a more

detailed presentation of the psychophysical method). The sensitivity indices from the

experimental runs were used to calculate a commonly accepted measure of sensory
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resolution, the Just Noticeable Difference (JND) for the subjects. The response bias data

was used to determine if subjects were inclined towards selecting a particular response

regardless of which stimulus was presented.

The recorded applied force and motional data sampled during each experiment

were studied with a range of analytical tools and software routines developed within the

computational support environment of Matlab. The algorithms of the more important

analytical and graphical routines are presented in Appendix D.

4.2.5 Experiments with Different Fixed Displacements

The first set of viscosity and mass discrimination experiments were performed for

fixed squeezing distances of 15, 20, 25, 30 and 35 mm. Six subjects took part in these

experiments. Subjects LR, BS, and BR participated in the viscosity discrimination

experiments and subjects CK, BM, and BS took part in the mass discrimination

experiments. Before any experiments were initiated, the experimental procedure was

verbally described and demonstrated to each subject. Afterwards, each subject under went

a training period of 1024 trials (16 experimental runs) to ensure that they were

comfortable with the device and the procedure.

For both experiments, the initial finger span between the thumb and forefinger of

the subjects was set at 105 mm. In each experimental run of 64 trials, the squeezing

distance was kept constant at one of the five fixed displacement values. The fixed

displacement and initial finger span parameters were chosen so that the viscosity and mass

discrimination results would be collected over the same range of values that were used in

the force (Pang et al, 1989) and compliance discrimination experiments (Tan et al, 1995).

Based on preliminary experiments, a reference viscosity, Bo, of 120Ns/m was

presented in the viscosity discrimination experiments and a reference mass, Mo, of 12 kg

was presented in the mass discrimination experiments. These values were chosen to

ensure that applied grasp forces would be generally consistent with those used in the

earlier force and compliance discrimination experiments. The stimulus increment in the

viscosity discrimination experiments (AB) was equal to either 10, 20, or 30% of the

__
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reference viscosity and in the mass discrimination experiments, the stimulus increment

(AM) was equal to 10, 20, 30, or 40% of the reference mass. Thus there were a total of

fifteen experimental conditions (three AB/Bo values for each of five fixed displacements)

for the viscosity experiments and twenty experimental conditions (four AM/Mo values for

each of five fixed displacements) for the mass experiments. Since for each value of the

stimulus increment, numerous experimental runs were performed, subjects typically

completed greater than 3000 trials. It took approximately six weeks to complete the

experiments.

4.2.6 Experiments with Different Reference Values

To determine if Weber's Law was applicable to the discrimination of viscosity and

mass through active grasping, discrimination experiments were carried out at different

viscosity and mass reference values. Reference viscosities of 60Ns/m, 120Ns/m, and

180Ns/m were used in the viscosity discrimination experiments and reference masses of

6.0kg, 9.0kg, and 12.0kg were utilized in the mass discrimination experiments. Subjects

JY, DH and ZS took part in the viscosity discrimination experiments and subjects JN, AM,

and BM engaged in the mass discrimination experiments. As with the fixed displacement

experiments, the experimental procedure was described and demonstrated to each subject

before starting and each subject also underwent a training period of 1024 trials.

A fixed squeezing distance of 25 mm was used for all reference values. To be

consistent with the fixed displacement experiments, the initial finger span between the

thumb and forefinger of the subjects was set at 105 mm. These experimental conditions

allowed direct comparison of the results at 12kg and 120Ns/m for both sets of

experiments.

The stimulus increment in the viscosity discrimination experiments (AB) was equal

to either 10, 15, 20 or 25% of the reference viscosity and in the mass discrimination

experiments, the stimulus increment (AM) was equal to 10, 20, 30, or 40% of the

reference mass. Thus, there were a total of twelve experimental conditions (four AB/Bo
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values for each of three reference viscosities) for the viscosity experiments and twenty

experimental conditions (four AM/Mo values for each of three reference masses) for the

mass experiments. All subjects completed more than 3000 trials (not including training).

The experiments took approximately one month to complete.

4.3 Velocity and Acceleration Discrimination Experiments

4.3.1 Apparatus

The Linear Grasper was also utilized for all the velocity and acceleration

discrimination experiments. The experiments involved passive discrimination and

therefore did not require any motor activity on the part of the subject (such as grasping the

two parallel aluminum plates). As a result the apparatus had to be slightly modified. The

cylindrical roller, that served as the point of contact for the subject's thumb in the viscosity

discrimination and mass discrimination experiments, was replaced with a molded thumb

support attached to the moveable plate. An appropriately sized support was fabricated for

each subject from a hard plastic finger splint and was lined with foam padding to produce

a snug support for the thumb. The support was mounted to the moveable plate so that the

surface of the subjects' thumb pad, when it was in the support, was nearly parallel to the

plate. The support ensured that the subject's thumb remained in contact with the

moveable plate during the experiment.

Before starting an experiment, the subject would first place the forefinger flush

against the fixed plate and then place the thumb in the support so that the hand would be

in a pinch grasp position comparable to what was used in the viscosity and mass

discrimination experiments. To initiate a trial, the subject would hit the space bar on the

keyboard. After a short delay, the Linear Grasper was programmed to drive the moveable

plate (and thus the thumb of the subject) at a constant velocity in the velocity

discrimination experiments or with a constant acceleration in acceleration discrimination

experiments. After the moveable plate traveled a predetermined fixed displacement, the

signal used to control the velocity or acceleration of the Linear Grasper was removed,

__ __ __
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after which the moveable plate decelerated to a stop after a short distance. To avoid the

possibility of impact cues, a mechanical stop was not used to stop the motion of the plate.

Once the subject entered a response, the moveable plate was returned to the starting

position for the next trial.

It is important to note that if the subject applied a resisting or pushing force

greater than 1 Newton, the experiment would immediately stop and the data would not be

used. This was done to ensure that the subject did not apply a grasping force or

impedance to the plate that would result in a significantly erroneous velocity or

acceleration stimulus. It was also implemented as a safety precaution in case the subject's

thumb was somehow caught in the support.

4.3.2 Subjects

The six subjects who participated in the viscosity and mass discrimination

experiments at different references also took part in velocity and acceleration

discrimination experiments. Specifically, subjects JY, DH and ZS engaged in the velocity

discrimination experiments and subjects JN, AM, and BM participated in the acceleration

discrimination experiments. The subjects did not start the experiments until they had

completely finished the viscosity and mass discrimination experiments. The experimental

procedure was described and demonstrated to each subject before starting. Each subject

also underwent a training period of 500 trials to familiarize themselves with the

experiment and the apparatus.

4.3.3 Procedure

The experiments used the one-interval, two alternative forced choice paradigm

with correct response feedback. One of the stimuli was the reference (e.g., Vo) and the

other was the comparison, equal to the reference minus an increment (e.g., V - AV). The

value of the increment was constant within an experimental run of 50 trials. For each trial,

both stimuli had an equal a priori probability of occurring. Upon completion of a trial, the

subjects were required to indicate which one of the two stimuli they felt was presented by
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typing 1 for the larger stimuli or 2 for the smaller stimuli. After the selection was made

for each trial, the subjects were provided with correct response feedback.

4.3.4 Data Analysis

Similar to the viscosity discrimination and mass discrimination experiments, A 2x2

stimulus-response matrix generated from each experimental run was utilized to compute a

sensitivity index, d', and a response bias, (See Appendix A for a more detailed

presentation of the psychophysical method). The sensitivity indices from the experimental

runs were used to calculate the Just Noticeable Difference (JND) for the subjects. The

response bias data was used to determine if subjects were inclined towards selecting a

particular response regardless of which stimulus was presented.

4.3.5 Experimental Parameters

For both experiments, JNDs were measured for a series of reference values. In the

velocity discrimination experiments, reference velocities of 60mm/sec, 80mm/sec

100mm/sec and 120mm/sec were used. In the acceleration discrimination experiments,

reference accelerations of 400mm/sec2, 800mm/sec2, 1200mm/sec 2, and 1600mm/sec 2

were used. The reference values were chosen such that the velocity stimuli were over the

same range of velocities recorded during the viscosity discrimination experiments and

acceleration stimuli were over the same range of accelerations recorded in mass

discrimination experiments. Also consistent with the viscosity and mass discrimination

experiments, the stimuli were presented over a fixed displacement of 25mm and the initial

finger span of the subjects was 105mm.

The stimulus increment in the velocity discrimination experiments (AV) was equal

to either 10, 15, 20% of the reference velocity and in the acceleration discrimination

experiments, the stimulus increment (AA) was equal to 20, 30, or 40% of the reference

acceleration. Thus, there were a total of twelve experimental conditions (three AVNoV

values for each of four reference velocities) for the velocity discrimination experiments

and twelve experimental conditions (three AA/A values for each of three reference
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accelerations) for the mass experiments. The experiments took approximately one month

to complete.
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Viscosity Discrimination Results

5.1 Just Noticeable Difference

5.1.1 Fixed Displacement Results

The JND results for the fixed displacement viscosity discrimination experiments

are plotted with respect to the various fixed squeezing distances in Figure 5.1. Each

subject completed a total of 3,840 trials. The average JND over the five fixed

displacements of 15, 20, 25, 30, and 35 mm was 14.2%. The standard deviation was

1.1% indicating that the JNDs were relatively constant with respect to squeezing distance.

JND data for the individual subjects are presented in Table 5.1. The standard deviation in

the JND among the subjects was 3.2%. This was largely due to the difference between the

performance of subject LZ (average JND of 18.7%) and the other two subjects (average

JNDs of 12.0% and 11.7%). The P values presented in Table 5.2, are generally small for

the experiments indicating that the subjects were unbiased in their responses.

Subject 15mm 20mm 25mm 30mm 35mm Average
JND JND JND JND JND JND

BR 13.6% 15.0% 12.5% 9.2% 9.8% 12.0%
BS 10.9% 12.5% 12.4% 14.0% 8.9% 11.7%
LR 21.9% 18. 7% 15.3% 18.8% 19. 7% 18. 7%

Average 15.5% 15.4% 13.4% 13.8% 12.8% 14.2%

Table 5.1: JND Results for the Fixed Displacement Discrimination Experiments
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Subject 15mm 20mm 25mm 30mm 35mm Average
P P P P P P

BR 0.24 0.39 0.33 0.16 0.26 0.28
BS -0.07 0.11 -0.03 0.12 0.11 0.05
LR 0.00 -0.05 -0.03 0.16 -0.01 0.01

Average 0.06 0.15 0.09 0.15 0.12 0.11

Table 5.2: Bias Results for the Fixed Displacement Discrimination Experiments

5.1.2 Different Reference Results

The JND results for different reference viscosities are presented in Figure 5.2.

Each subject completed a total of 3,072 trials for the three reference values of 60, 120,

and 180 Ns/m. The average JND for all references was 9.5% with a standard deviation of

1.9% between references. The results are reasonably consistent with Weber's law. The

average subject JNDs ranged from a low of 7.3% for subject JY to a high of 11.4% for

subject DH. The standard deviation among the subjects was 1.7%. Individual subject

results for JND and bias are presented in Tables 5.3 and 5.4, respectively. Consistent with

the bias results from the fixed displacement experiments, subjects did not appear to show a

strong predilection towards selecting a particular response.

Subject 60Ns/m 120Ns/m 180Ns/m Average
JND JND JND JND

JY 6.8% 7.7% 7.3% 7.3%
ZS 9.8% 10.0% 9.6% 9.8%
DH 12.1% 12.6% 9.6% 11.4%

Average 9.6% 10.1% 8.8% 9.5%

Table 5.3: JND Results for the Different References

Subject 60Ns/m 120Ns/m 180Ns/m Average
P P P P

JY 0.03 0.05 0.21 0.10
ZS -0.09 -0.11 0.04 -0.05
DH 0.05 0.00 0.09 0.05

Average 0.00 -0.02 0.11 0.03

Table 5.4: Bias Results for the Different References

-I- -. -- .- 
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Figure 5.1: Viscosity JND vs Fixed Displacement

Figure 5.2: Viscosity JND vs. Reference
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5.1.3 Overall Results

The average mean JND for subjects of both experiments was 11.8% with an

overall standard deviation of 4.0%. The average JND for the subjects in the fixed

displacement experiments was somewhat higher than that for the subjects in the

experiment with different references (14.2% versus 9.5%). The mean JND values for the

subjects ranged from a low of 7.3% for subject JY to a high of 18.7% for subject LZ. The

standard deviation of all subject JNDs was 3.5%.

5.1.4 Anecdotal Subject Observations

At the completion of the experiments, the subjects were asked to articulate what

strategies or methods they utilized in the discrimination process. Typically, most subjects

stated that they discriminated on the basis of perceived differences in the "resistance" or

"resisting force" of the viscosity stimuli. Some subjects felt that they discriminated on the

basis of a perceived "viscous force". Futhermore, when their performance was optimal,

the subjects generally felt that they could readily perceive a difference in the "resistance"

of the stimuli during the initial grasping motion and did not require the full squeezing

distance to make a decision. Although subjects were not directly asked to describe the

motor activity they used in the task, some subjects stated that they felt that they had

employed a natural grasping or pinching action during the experiments.

__ �I_ _1__1_ ___I _I
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5.2 Motor Performance

Whereas motor performance data were recorded during both sets of experiments, a

significantly larger amount of data was recorded for the discrimination experiments

involving different reference viscosities. Specifically, in the fixed displacement

experiments, motor performance data were sampled during 400 trials, whereas in the

different reference discrimination experiments, data were recorded for all 9,216 trials.

Because few trials were recorded in the fixed displacement experiments, motor

performance results for these experiments will be limited to plots of typical applied force

and velocity data, some general observations about the data, and a presentation of average

force and motional data. A more comprehensive presentation of motor performance data

is given for the discrimination experiments involving the different reference viscosities.

5.2.1 Fixed Displacement Experiments

In the fixed displacement discrimination experiments, results for subjects BS, LR,

and BR were from data sampled on every fourth trial over the course of 576, 576, and 448

trials respectively. The trials were performed towards the end of the fixed displacement

experiments. Data sampling for a particular trial was initiated once the moveable plate had

been squeezed more than 1.0 mm by the subject. Typical plots of the subjects' force and

velocity versus time and force and velocity versus displacement for the same trial are

shown in Figures 5.3 - 5.8.

An analysis of plots of the subjects' applied force as a function of time indicated

that there were some similarities in the shape of the force profiles for the three subjects.

Primarily, the applied force traces could be divided into three segments: (1) an initial force

ramp, (2) a period of constant force application, followed by (3) a decreasing force profile

towards the end of the trial. Although, as is evident in Figures 5.3 - 5.8, the magnitude of

the applied force and time lengths of the segments varied greatly among the subjects.
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A compilation of the average motor performance data are shown in Table 5.5.

Presented in the table are the average mean forces applied for the reference and

comparison stimuli and the corresponding average mean velocities for the two stimuli.

The data is organized by subject and stimulus pair. For each stimulus, the values were

calculated by computing a mean force and velocity for each trial involving that stimulus

and then computing an average over all the trials.

The data indicates that the average force and velocity varied greatly among the

subjects. Mean forces varied from approximately 3.6 to 9.6 Newtons and velocities from

35 mm/s to 95 mm/s. Despite this, there are some similarities in the subjects' motor

performance: (1) The difference in the average mean force for the reference and

comparison stimuli increases as the difference in the stimuli pair increases, (2) Likewise, a

similar relationship is observed for the velocity data and (3) The average mean reference

velocity is less than the corresponding velocity for the comparison for all stimulus pairs.

Average Mean Average Mean Average Mean Average Mean
Subject AB/B Force for the Force for the Velocity for the Velocity for the

Reference Comparison Reference Comparison

30% 4.23N 3.55N 35.0 mm/s 42.3 mm/s
BS 20% 4.30 3.94 35.8 41.0

10% 4.30 4.06 35.8 37.5

30% 9.60N 7.85N 79.9 mm/s 93.4 mm/s
LR 20% 9.60 8.72 80.1 90.9

10% 9.30 9.52 77.4 88.1

30% 6.15N 5.03N 51.3 mm/s 59.9 mm/s
BR 20 % 7.75 7.43 64.5 77.3

10% 7.00 6.64 58.3 61.5

Table 5.5: Force and Velocity Data During the Fixed Displacement Experiments

Summary data plots for the overall averages of these variables are shown in

Figures 5.9 and 5.10. In these plots, the force and velocity data, averaged over all

subjects, are plotted against the viscosity stimulus values with error bars indicating

standard deviation. These results show that mean force ranged from about 5.5 to 7 N in
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the experiments. In addition, the average value of the mean applied force in each trial

increased with the stimulus intensity, but with a decreasing gradient. In contrast, average

mean velocity values (ranging from 55 mm/s to 70 mm/s) generally decreased with

stimulus intensity.

1

F(N)

814 96 1 Us 1 U20

Viscosity (Ns/m)

Figure 5.9: Average Force ± one STD used by all Subjects in the Fixed
Discrimination Experiments
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Figure 5.10: Average Velocity ± one STD used by all Subjects in the
Fixed Discrimination Experiments

5.2.2 Experiments with Different Reference Viscosities

In the viscosity discrimination experiments with different references, motor

performance data for each subject was recorded for all trials. Since 3,072 trials were

Average Subject Force vs. Viscosity
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performed by each subject, motor performance data consisting of applied force, position,

velocity and acceleration data was recorded for a total of 9,216 trials. Data sampling was

immediately initiated once the moveable plate was at the designated start position.

Because of the large amount of data that was recorded, the force and motional results are

presented in separate subsections. Each subsection presents typical raw data and

computed overall average results. Additional plots of force and motional data can be

found in Appendix B.

5.2.2.1 Force Data

Typical plots of force are shown in Figures 5.11 and 5.12. Each figure consists of

six separate plots, two for each subject. Each plot consists of data from an entire

experimental run. In Figure 5.11, force data are plotted versus time while in Figure 5.12,

the same data are plotted versus squeezing distance. For all plots, the reference viscosity

is 120Ns/m. Plots on the left side of each figure are from experiments when the difference

between the reference and comparison stimuli was 10%, whereas graphs on the right are

from experiments when the difference was 20%. For each plot, there are 64 force traces,

one for each trial of an experimental run. Dotted line force traces indicate those trials

when the reference viscosity was the stimulus while solid lines indicate when the

comparison was the stimulus.

For each subject, the figures indicate that the basic shape of the temporal and

spatial force profiles are generally similar during an experimental run, although there is

variability in the amount of force that is applied on a given trial and in the delay before the

subject begins to apply force to the plate. The time plots indicate that a trial typically took

approximately 0.3 or less seconds to complete. In terms of squeezing distance, JY and ZS

usually reached maximum applied force values within 10-15 mm of travel of the plate,

similar to the performance of the subjects in the fixed displacement experiments (Figures

I
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5.4, 5.6, and 5.8). In contrast, DH generally applied a ramping force over the entire

squeezing distance, although some traces indicate leveling off in force around 20-25 mm.

Summaries of the overall force results for the three references values of 60, 120

and 180Ns/m are presented in Tables 5.6 - 5.8. In each table, the data is organized by

subject and stimulus pair. Results presented in each table include the average mean and

peak applied force for each stimulus, the percent difference in average mean force for

every stimulus pair and the average coefficient of variation in mean force for each stimulus

over the course of an experimental run.

The average mean force was calculated for each stimulus by computing a mean

force for each trial involving that stimulus and then computing an average over all such

trials. To eliminate the effects of variable time delays on force averages, the mean force of

every trial was determined by averaging over distance and not time. This was

accomplished by dividing the total squeezing distance (a value of 25mm was used in all

these experiments) into a series of equal 0.5 mm bins, determining an average force for

each bin and then calculating the overall mean force for that trial by averaging over all

bins. To provide some indication if approximately equal force profiles were applied with

respect to distance for both stimuli, the percent difference in average mean force was also

calculated.

Each peak force value presented in Tables 5.6 - 5.8 is an average of the maximum

forces applied during each trial for that particular stimulus and is presented to provide

information on the range of grasp forces used by the subjects in the experiments.

For every experimental run, the coefficient of variation in mean force data was

calculated for both stimuli by dividing the standard deviation of the mean force by the

average of the mean force. Each value for tables was then computed by averaging over all

experimental runs involving that particular stimulus pair. These results are intended to

provide a measure of the amount of variation in applied force that ocurred during the

course of an experimental run.
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The data from the tables indicate that the average mean force for all subjects

ranged from 5-7 Newtons when the reference viscosity was 60Ns/m. This is contrasted

with the other two experiments where the average mean forces among subjects varied

much more greatly: 9-16 Newtons for 120Ns/m and 5-17 Newtons for 180Ns/m.

Average peak forces ranged from 6-9 Newtons for 60Ns/m to 13-22 Newtons for 120

and 180Ns/m, depending on subject and stimulus pair.

Even though the three subjects applied different average mean forces in the

experiments, all subjects showed a systematic increase in the percent difference between

the reference and comparison force values as the percent difference in stimulus pair also

increased. This result seems to depend only on the percent difference in stimulus pairs. In

other words, the percent difference in the average mean forces for a particular stimulus

pair was generally independent of average mean force applied or the actual viscosities of

the stimuli involved. When averaged over all experimental conditions and stimulus pairs,

the percent difference between the average mean forces for the reference and comparsion

stimuli was approximately 10%. Thus, at least when averaged with respect to squeezing

distance, the mean force applied for the reference is greater that the mean force for the

comparison. A more thorough analysis of this result and its possible implications are

presented in Chapter 8.

The average coefficient of variation in mean force over an experimental run was

about 10% for the reference viscosities of 60 and 120Ns/m and about 15% for the

reference viscosity of 180Ns/m. It is unclear why the coefficient of variation was greater

at 180Ns/m. As opposed to the percent difference in average mean force data, the

coefficient of variation data seems to be relatively independent of stimulus pair. It also

appears to be independent of the average mean force, implying that when subjects apply

greater forces, the variation in the average force value also increases, resulting in an

approximately constant coefficient of variation.
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Average Average Percent Coeff. of Coeff. of
Mean and (Peak) Mean and (Peak) Difference Variation Variation

Reference Comparison in Avg in in
Forces Forces Mean Reference Comp.

Forces Force Force

25% 5.75N (6.93N) 4.85N (6.12N) 15.7% 8.7% 9.6%

JY 20% 5.63 (6.80) 5.03 (6.23) 10.7% 8.6% 8.9%

15% 5.93 (7.17) 5.45 (6.66) 8.0% 8.2% 8.1%

10% 5.88 (7.16) 5.68 (6.88) 3.4% 8.2% 87%

25% 7.03 (8.88) 5.95 (7.84) 15.3% 10.6% 10.4%

ZS 20% 6.90 (8.60) 6.08 (7.77) 12.0% 9.1% 11.5%

15% 6.98 (8.90) 6.25 (8.21) 10.4% 10.6% 12.2%

10% 6.88 (8.78) 6.53 (8.46) 5.1% 10.4% 12.6%

25% 5.84 (7.85) 5.00 (6.99) 14.4% 8.1% 10.6%

DH 20% 5.51 (7.69) 4.87 (6.69) 11.7% 10.6% 11.4%

15% 6.49 (8.57) 5.94 (7.72) 8.4% 8.1% 10.8%

10% 5.37 (7.76) 5.13 (7.44) 4.4% 20.3% 20.8%

Average 6.18N (7.92N) 5.56N (7.25N) 10.0% 10.1% 11.3%

Table 5.6: Stzmmary Force Data for Reference Viscosity = 60 Ns/m

AB/Bo Average Average Percent Coeff. of Coeff. of
Mean and (Peak) Mean and (Peak) Difference Variation Variation

Reference Comparison in Avg in in Comp.

Subject Forces Forces Mean Reference Force
Forces Force

25% 15.83N (18.80N) 13.95N (17.25N) 11.9% 8.2% 11.2%

JY 20% 15.60 (18.54) 14.30 (17.32) 8.3% 8.7% 9.7%

15% 15.58 (18.50) 14.78 (17.77) 5.1% 10.7% 10.2%

10% 15.80 (18.75) 15.43 (18.50) 2.4% 8.8% 6.2%

25% 12.20 (14.48) 10.63 (13.23) 12.9% 10.1% 10.6%

ZS 20% 13.15 (15.57) 11.80 (14.30) 10.3% 8.8% 7.1%

15% 12.73 (14.96) 11.80 (14.12) 7.3% 6.5% 6.0%

10% 12.85 (15.44) 12.15 (14.76) 5.5% 9.9% 9.1%

25% 11.33 (16.68) 9.48 (13.92) 16.3% 9.7% 8.9%

DH 20% 11.32 (16.95) 9.71 (15.04) 14.3% 10.0% 15.9%

15% 10.92 (16.29) 9.92 (14.89) 9.1% 10.5% 11.4%

10% 11.54 (17.17) 10.49 (16.24) 9.1% 11.3% 16.5%

Average 13.24N (16.84N) 12.04N (15.61N) 9.4% 9.4% 10.2%

Table 5.7: Summary Force Data for Reference Viscosity = 120 Ns/m
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Subject AB/Bo Average Average Percent Coeff. of Coeff. of
Mean and (Peak) Mean and (Peak) Difference Variation Variation

Reference Comparison in Avg in in Comp.
Forces Forces Mean Reference Force

Forces Force
25% 14.02N (20.91N) 13.73N (19.11N) 12.4% 18.4% 16.8%

JY 20% 15.40 (20.81) 14.93 (19.30) 10.9% 18.2% 17.4%

15% 15.66 (21.03) 15.74 (20.06) 6.5% 13.52% 8.1%

10% 17.08 (21.99) 16.08 (20.94) 5.7% 9.6% 18.8%

25% 8.60 (12.70) 7.06 (11.22) 18.0% 17.4% 20.6%

ZS 20% 8.14 (12.19) 6.99 (10.90) 14.2% 16.5% 20.8%

15% 8.48 (12.44) 8.02 (11.78) 5.4% 23.9% 19.9%

10% 9.76 (14.44) 9.23 (13.93) 5.4% 16.5% 17.0%

25% 11.32 (15.39) 10.01 (13.73) 11.6% 12.9% 8.3%

DH 20% 11.77 (15.89) 10.47 (14.24) 11.1% 9.8% 11.2%

15% 10.53 (14.69) 9.55 (13.35) 9.3% 11.7% 11.6%

10% 12.21 (16.28) 11.67 (15.50) 4.4% 15.2% 8.0%

Average 11.91N (16.56N) 11.12N (15.34N) 9.6% 15.3% 14.9%

Table 5.8: Summary Force Data for Reference Viscosity = 180 Ns/m

5.2.2.2 Velocity Data

Typical velocity data are plotted Figures 5.13 and 5.14. Each figure consists of six

separate plots, two for each subject. Each plot consists of data from an entire

experimental run. In Figure 5.13, velocity data are plotted versus time, while in Figure

5.14, the same velocity data are plotted versus squeezing distance. The reference viscosity

is 120Ns/m for all plots. Similar to the force plots in Figure 5.11 and 5.12, graphs on the

left side of each figure are from experiments when the difference between the reference

and comparison stimuli was 10%, whereas graphs on the right are from experiments when

the difference was 20%. For each graph, there are 64 force traces, one for each trial of an

experimental run. Dotted line force traces indicate those trials when the reference

viscosity was the stimulus while solid lines indicate trials when the comparison viscosity

was the stimulus.

Because velocity is directly proportional to force in these experiments, the basic

shape of the temporal and spatial velocity profiles are similar to the force traces shown in

- -- _�.
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the previous figures. Thus there is variation both in the magnitude of squeezing velocity

and in the time delay before the plate begins to move. When velocity is plotted against

distance in Figure 5.14, there is evidence of a difference in the velocity profiles for the

reference and comparison stimuli. This difference can be seen as a separation in the

groupings of the velocity profiles for the two stimuli, with the velocity profiles for the

comparison stimulus generally greater than those for the reference stimulus. It can be

observed most noticeably for JY and ZS in the plots on the right side of Figure 5.14, when

the difference in the stimulus pair is 20%.

The overall velocity performance for the three subjects is presented in Tables 5.9

through 5.11 for the three reference viscosities. The data is organized by subject and

stimulus pair. In each table, the average mean velocity for the reference and comparison

stimuli are presented in the third and fourth columns. Similar to the mean force results,

the mean velocities are also averaged over distance. The fourth and fifth columns contain

data on the average peak velocities recorded during the experiments. The last column

contains the percent difference between the two average mean velocities relative to the

reference velocity.

Because velocity in these experiments was linearly proportional to force, the

deviation in velocity as measured by the coefficient of variation would be essentially the

same as force coefficient of variation data presented previously and therefore is not

presented in these tables.

The data indicates that the average velocity over all subjects was around 100 to

110 mm/s for the reference viscosities of 60 and 120Ns/m, and approximately 70 mm/s for

the reference viscosity of 180Ns/m. Average mean velocities for these experiments ranged

from a minimum 50 mm/s to a maximum of 150 mm/s. Subject JY had the greatest overall

average mean velocity of 114 mm/s, followed by ZS with an overall average mean velocity

of 97 mm/s and DH with an overall average mean velocity of 67 mm/s. Average peak

velocities ranged from 100-200 mm/s for reference viscosities of 60 and 120Ns/m and

somewhat less than that for 180Ns/m, averaging over a range of 70-140 mm/s.
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Average Average Average Average Percent
Subject AB/B. Mean Mean Peak Peak Difference in

Reference Comparison Reference Comparison Average Mean
Velocity Velocity Velocity Velocity Velocities

25% 96.3 mm/s 107.5 mm/s 119.5 mm/s 128.4 mm/s -11.6%

JY 20% 91.9 100.8 121.3 132.4 -9.7%

15% 96.0 103.3 115.3 130.9 -7.6%

10% 94.3 100.7 121.3 142.8 -6.8%

25% 120.4 132.8 155.7 164.6 -10.3%

ZS 20% 116.9 127.9 156.3 170.0 -9.4%

15% 118.3 123.1 151.4 171.1 -4.1%

10% 117.0 121.5 158.4 187.0 -3.9%

25% 76.4 83.1 98.7 103.3 -8.8%

DH 20% 73.7 78.6 114.8 121.7 -6.6%

15% 85.0 89.5 101.0 111.3 -5.3%

10% 65.9 69.4 105.2 119.4 -5.3%

Average 96.0 mm/s 103.2 mm/s 126.6 mm/s 140.2 mm/s -7.5%

Table 5.9: Summary Velocity Datafor Reference Viscosity = 60 Ns/m

Average Average Average Average Percent
Subject AB/B. Mean Mean Peak Peak Difference in

Reference Comparison Reference Comparison Average Mean
Velocity Velocity Velocity Velocity Velocities

25% 134.6 mm/s 157.3 mm/s 161.3 mnm/s 174.7 mm/s -16.9%

JY 20% 132.8 151.4 160.1 181.1 -14.0%

15% 132.4 147.5 159.8 187.1 -11.4%

10% 133.5 145.2 162.6 198.5 -8.7%

25% 105.6 122.4 135.8 144.8 -15.9%

ZS 20% 114.4 128.0 132.3 146.9 -11.9%

15% 110.8 120.7 137.7 158.1 -8.9%

10% 111.5 117.4 127.6 155.1 -5.2%

25% 71.5 75.8 117.5 122.1 -8.7%

DH 20% 68.6 71.8 110.7 116.6 -5.2%

15% 64.4 65.7 114.9 126.0 -5.9%

10% 70.4 69.3 114.5 126.4 0.04%

Average 104.2 mm/s 114.4 mm/s 136.2 mm/s 153.1 mm/s -9.4%

Table 5.10: Summary Velocity Datafor Reference Viscosity =120 Ns/m
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Subject AB/Bo Average Average Average Average Percent
Mean Mean Peak Peak Difference in

Reference Comparison Reference Comparison Average Mean
Velocity Velocity Velocity Velocity Velocities

25% 94.2 mm/s 109.2 mm/s 125.3 mm/s 132.0 mm/s -15.9%

JY 20% 94.9 106.5 119.8 134.0 -12.3%

15% 96.6 105.4 118.6 137.0 -9.1%

10% 100.1 104.5 118.4 142.8 -4.5%

25% 48.8 53.3 81.7 87.9 -9.8%

ZS 20% 46.1 49.7 71.5 79.8 -7.7%

15% 49.0 53.2 69.9 78.1 -8.5%

10% 55.3 57.9 73.3 84.3 -4.7%

25% 64.3 72.6 92.4 97.4 -13.0%

DH 20% 65.8 72.3 84.0 89.7 -9.7%

15% 58.6 62.2 90.1 100.6 -6.2%

10% 68.3 71.9 88.1 104.0 -5.2%

Average 70.2 mm/s 76.6 mm/s 94.4 mm/s 105.6 mm/s -8.9%

Table 5.11: Summary Velocity Datafor Reference Viscosity =180 Ns/m

The tables also indicate that the average mean velocity for the reference viscosity is

almost always less than the corresponding average mean velocity for the comparsion

viscosity (the only exception was for subject DH when the reference viscosity was

120Ns/m and the difference and stimulus pairs was 10%). Similar to the force results, the

percent difference in the reference and comparison velocities systematically increased as

the difference in the stimulus pairs increased. This result ocurred for all references and

subjects. Overall the percent difference in the velocity for two stimuli was typically

around 8.5%.
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Mass Discrimination Results

6.1 Just Noticeable Difference

6.1.1 Fixed Displacement Results

The JND results for the fixed displacement mass discrimination experiments are

plotted with respect to the various fixed squeezing distances in Figure 6.1. Subject JS

completed a total of 4,032 trials, while subjects CK and JF both completed 4,480 trials.

The average JND over the five fixed displacements of 15, 20, 25, 30, and 35 mm was

21.0%. This compares with average JND of 14.2% for fixed displacement viscosity

discrimination experiments. The standard deviation was 1.6% indicating that the JNDs

were relatively constant with respect to squeezing distance. JND data for the individual

subjects are presented in Table 6.1. The standard deviation in the JND among the subjects

was 2.6%. The 3 values presented in Table 6.2, are generally small for the experiments

indicating that the subjects were unbiased in their responses.

Subject 15mm 20mm 25mm 30mm 35mm Average
JND JND JND JND JND JND

CK 23.0% 22.0% 28.3% 26.0% 23.2% 24.5%
JS 18.7% 24.0% 19.3% 21.0% 17.5% 20.1%
JF 18.9% 15.2% 20. 7% 21.2% 15.5% 18.3%

Average 20.2% 20.4% 22.8% 22.7% 18.7% 21.0%

Table 6.1: JND Results for the Fixed Displacement Discrimination Experiments

OF
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Figure 6.1: Mass JND versus Fixed Displacement

Subject 15mm 20mm 25mm 30mm 35mm Average

P P P P P 13
CK 0.04 0.01 0.18 0.03 -0.01 0.05
JS 0.28 0.10 0.09 0.13 0.17 0.15
JF 0.20 0.07 0.06 0.13 0.20 0.13

Average 0.17 0.06 0.11 0.10 0.12 0.11

Table 6.2: Bias Results for the Fixed Displacement Discrimination Experiments

6.1.2 Different Reference Results

The JND results for different reference masses are presented in Figure 6.2.

Subjects AM and JN completed a total of 3,072 trials, while subject BM completed a total

of 2,944 trials. The average JND for all references was 19.0% with a standard deviation

between references of 1.1%. Similar to the viscosity discrimination results, the JNDs are

reasonably consistent with Weber's law. The average subject JNDs ranged from a low of

14.3% for subject AM to a high of 23.9% for subject DH. The standard deviation among
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the subjects was 2.4%. The standard deviation for all experimental conditions was 2.9%.

Individual subject results for JND and bias are presented in Tables 6.3 and 6.4,

respectively. The bias results indicate that subjects did not appear to show a strong

predilection towards selecting a particular response.

Subject 6 kg 9 kg 12 kg Average
JND JND JND JND

JN 19.9% 17.9% 21.4% 19.7%
AM 14.3% 17.0% 18.4% 15.9%
BM 22.2% 18.8% 23.9% 21.5%

Average 18.8% 17.8% 20.5% 19.0%

Table 6.3: JND Resultsfor te Different Reference Masses

Manual Discrimination of Mass
JND vs. Reference Mass
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Figure 6.2: Mass JND versus Reference Mass
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Subject 6 kg 9 kg 12 kg Average

JN 0.11 0.16 0.13 0.13
AM 0.04 0.07 0.05 0.05
BM -0.11 -0.06 0.05 -0.04

Average 0.01 0.06 0.08 0.05

Table 6.4: Bias Results for the Different Reference Masses

6.1.3 Overall Results

The average JND for subjects of both experiments was 20.0% with a standard

deviation across subjects of 2.7%. The average JND for the subjects in the fixed

displacement experiments was slightly higher than that for the subjects in the experiment

involving different reference masses: 21.0% versus 19.0%. The mean JND values for the

subjects ranged from a low of 14.3% for subject AM to a high of 28.3% for subject CK.

The average over all experimental conditions was 20.3%, with a standard deviation of

3.4%.

6.1.4 Anecdotal Subject Observations

At the completion of the experiments, the subjects were asked to articulate what

strategies or methods they utilized in the discrimination process. Some subjects stated

that they discriminated on the basis of perceived differences in the "weight" or "heaviness"

of the mass stimuli. Other subjects did not describe any particular strategy for

discriminating the stimuli or simply felt that they discriminated on the basis of differences

in "mass" or "inertia". Consistent with the viscosity discrimination experiments, subjects,

when their performance was optimal, felt that they could readily perceive differences in the

stimuli during the initial grasping motion and did not require the full squeezing distance to

make a decision. Subjects gave no description of the grasping or pinching action used in

the experiments.
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6.2 Motor Performance

Motor performance data were recorded during both sets of experiments. In the

fixed displacement experiment, motor performance data were sampled every fourth trial

over 9,024 trials for a total of 2,256 trials of data. In the discrimination experiment

involving different reference masses, motor performance data were recorded for all 9,088

trials of the experiment.

6.2.1 Fixed Displacement Experiments

In the fixed displacement discrimination experiments, results for subjects CK, JS,

and JF were from data sampled on every fourth trial over the course of 2,944, 2,944, and

3,136 trials respectively. Data sampling was carried out for all fixed displacements except

35mm. For every trial sampled, data acquisition was initiated once the moveable plate

was at the designated start position. The motor performance results are divided into

separate subsections for the force and acceleration data.

6.2.1.1 Force Data

Typical plots of the subjects' applied force versus time are shown Figure 6.3. In

Figure 6.4, the same applied force data is plotted against squeezing distance. For all plots

in Figures 6.3 and 6.4, the reference mass is 12kg and the fixed displacement is 25mm.

Plots on the left side of each figure are from experiments when the difference between the

reference and comparison stimuli was 10%, whereas graphs on the right are from

experiments when the difference was 30%. Each trace on a plot represents data collected

over a single trial during the experimental run. Because data was collected on every

fourth trial there are sixteen traces for each plot. Dotted line force traces indicate those

trials when the reference mass was the stimulus while solid lines indicate trials when the

comparison mass was the stimulus.
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The general shape of the temporal and spatial force profiles shows some

similarities to the applied force plots shown in Chapter 5 for viscosity discrimination

experiments. All plots show some time delay before force is applied to the plate, followed

by force ramp up before a short duration peaking in applied force and finally a relaxation

in the amount force applied as the plate approaches the mechanical stop.

Tabular results of the force data are presented in Tables 6.5 and 6.6. In Table 6.5

the force data is compiled by fixed displacement. Presented are the average mean and

peak forces applied for the reference and comparison mass and the coefficient of variation

results for both stimuli. The results have been averaged over all subjects and stimulus

pairs.

The force data was calculated in the same fashion as in the viscosity discrimination

experiments: The average mean force was calculated for each stimulus by computing a

mean force for each trial involving that stimulus and then computing an average over all

such trials. To eliminate the effect of variable time delays on force averages, the mean

force of every trial was determined by averaging over distance and not time. This was

accomplished by dividing each fixed displacement value for which data was recorded (15,

20, 25, and 30mm) into a series of equal 0.5 mm bins, determining an average force for

each bin and then calculating the overall mean force for that trial by averaging over all

bins. The peak force values presented in Tables 6.5 are averages of the maximum forces

applied during each trial for the reference and comparison stimulus at each fixed

displacement. It is presented to provide information on the range of grasp forces used by

the subjects in the experiments.

For every experimental run, the coefficient of variation in mean force data was

calculated for both stimuli by dividing the standard deviation of the mean force by the

average of the mean force. Each value for tables was then computed by averaging over all

experimental runs involving that particular stimulus. As with the viscosity discrimination

experiments, these results are intended to provide a measure of the amount of variation in

applied force that ocurred during the course of an experimental run.
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Average Average Mean Coefficient of Coefficient of
Fixed Mean and and (Peak) Variation Variation in

Displacement (Peak) Comparison in the the
Reference Force Reference Comparison
Force Force Force

15 mm 5.91N 5.48N 12.7% 14.1%
(8.40N) (7.67N)

20 mm 5.30 4.81 16.0% 13.9%
(7.17) (6.30)

25 mm 5.78 5.45 17.9% 17.4%
(9.56) (8.96)

30 mm 5.55 5.09 15.8% 14.6%
(5.91) (5.53)

Average 5.64N 5.21N 15.6% 15.0%
(7.76N) (7.12N)

Table 6.5: Average Force Data During the Fixed Displacement Experiments

The data indicates that the average applied force for both reference and

comparison stimuli did not vary greatly over variations in the fixed displacement. Over

both stimuli, the mean force ranged from approximately 4.8 to 6.0 Newtons and the

average peak forces ranged from 5.5 to 9.5 Newtons and did not appear to vary

systematically with fixed displacement. For all fixed displacements, however, the mean

and peak forces were always greater for the reference stimulus. Overall, the coefficient of

variation results were typically around 15% for both the reference and comparison stimuli.

The coefficient of variation in applied force also seemed to be independent of the value of

the fixed displacement.

The force results are organized by subject and stimulus pair in Table 6.6. The

force results in the table ranged from 3.7-6.7N depending on subject and stimulus pair. JF

applied the lowest overall average mean force at 4. IN, and had an average coefficient of

variation in applied force of 15.4%. CK had the highest overall average mean force at

6.3N, but exhibited the lowest average coefficient of variation in applied force at 14.1%.

JS had an overall average mean force of 6.1N and the highest average coefficient of

variation in applied force (17.0%).
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Similar to viscosity discrimination experiments, all subjects exhibited a systematic

increase in the difference between the average mean force (when calculated over

squeezing distance) between the reference and comparison stimuli as the percent

difference in stimulus pairs increased. Averaged over all subjects, the percent difference in

average mean force was 0.0%, 4.0%, 11.6%, and 14.0% for AM/Mo = 10%, 20%, 30%

and 40%, respectively.

Average Average Percent Coefficient of Coefficient
Subject AM/Mo Mean Mean Difference in Variation of Variation

Reference Comparison Average for the in the
Force Force Mean Force Reference Comparison

40% 6.29N 5.31N 15.6% 18.4% 17.7%

JS 30% 6.45N 5.76N 11.7% 17.7% 18.4%

20% 6.57N 6.37N 4.2% 18.0% 12.8%

10% 6.10ON 6.19N -2.5% 14.9% 17.7%

40% 4.16N 3.67N 11.8% 17.6% 13.7%
JF 30 % 4.26N 3.66N 14.0% 14.8% 13.3%

20% 4.28N 4.08N 2.4% 15.9% 16.5%

10% 4.21N 4.19N 0.0% 14.1% 14.9%

40 % 6.36N 5.57N 12.4% 12.4% 17.7%
CK 30% 6.42N 5.83N 9.3% 15.6% 12.3%

20% 6.49N 6.17N 5.3% 12.9% 13.6%

10% 6.68N 6.54N 2.4% 14.5% 17.0%

AVG 5.64N 5.21N 7.6% 15.6% 15.0%

Table 6.6: Force Results by Subjectfor the Fixed Displacement Experiments

There are some other similarities in the data: (1) The difference in the average

mean force for the stimulus pair was always quite small (less than the force JND as

measured by Pang et al 1991) when the percent difference in the mass stimuli was below

or near JND and, and (2) The average mean force for the reference was approximately

constant for all stimulus pairs.

6.2.1.2 Acceleration Data

Examples of typical acceleration data recorded during the experiments are plotted

versus time and distance in Figures 6.5 and 6.6. The data is from the same trials plotted in
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Figures 6.3 and 6.4 for the applied force data. The plots show peak accelerations ranging

from 300 to 1200 mm/s2 depending on subject and trial. Because force and acceleration

are directly proportional in these experiments, the acceleration profiles have the same form

as the force profiles. A summary of the average acceleration results for the different fixed

displacements is given in Table 6.7. Acceleration results by subject and stimulus pair are

presented in Table 6.8. Because force and acceleration data are proportional, coefficient

of variation data for acceleration is not presented in either table.

The data in Table 6.7 indicates that the average mean acceleration for both stimuli

was largely independent of fixed displacement, with the acceleration for the reference mass

approximately 25% less than the comparison mass for all fixed displacements for which

data was recorded. When averaged by fixed displacement, the mean acceleration values

ranged from 440 to 620 mm/s2 with overall mean acceleration for both stimuli of 530

mm/s2. The average peak acceleration values ranged from 500 to 900 mm/s 2 and like the

mean accleration values did not seem to vary systematically with fixed displacement.

Average Mean Average Mean Percent
Fixed Displacement and (Peak) and (Peak) Difference in Averag

Reference Comparison Mean Acceleration
Acceleration Acceleration

15 mm 492 mm/s 2 620 mm/s2 -25.6%
(705 mm/s 2) (758 mm/s 2)

20 mm 442 540 -22.7%
(596) (625)

25 mm 482 614 -27.4%
(790) (881)

30 mm 462 576 -24.5%
(495) (542)

Average 470 mm/s 2 588 mm/s 2 -25.1%
(647 mm/s2) (701 mm/s 2)

Table 6.7: Average Acceleration Data for the Fixed Displacement Experiments
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Average Average Percent
Subject AM/Mo Mean Mean Difference in

Reference Comparison Average
Acceleration Acceleration Mean

Acceleration
40% 524 mm/s2 738 mm/s 2 -40.7%

JS 30% 538 686 -27.6%

20% 548 664 -21.1%

10% 508 573 -12.8%

40% 347 mmn/s 2 509 mnm/s 2 -46.9%

JF 30 % 355 436 -22.9%

20% 357 425 -19.3%

10% 351 388 -10.4%

40% 530 mn/s 2 773 mm/s2 -45.8%

CK 30 % 535 694 -29.8%

20 % 541 643 -18.8%

10% 557 606 -8.9%

AVG 470 588 -25.1%

Table 6.8: Average Acceleration Data by Subject for the Fixed Displacement Experiments

The acceleration results in Table 6.8 ranged from 350-750 mm/s 2 depending on

subject and stimulus pair. The overall average mean acceleration for subject JF was 396

mm/s2 which was the lowest for the three subjects. Subjects CK and JS had comparable

results with overall average mean accelerations of 610 and 597 mm/s2, respectively. All

subjects exhibited a systematic increase in the difference between the average mean

acceleration for the reference and comparison stimuli as the difference in stimulus pairs

increased. Averaged over all subjects, the percent difference in average mean acceleration

was -10.7%, -19.7%, -26.8%, and -44.5% for AM/M = 10%, 20%, 30% and 40%,

respectively. Thus, the average mean acceleration for the reference mass was always less

than the corresponding acceleration for the comparison mass and the percent difference in

the two accelerations was roughly equivalent to the percent difference in the masses of the

two stimuli.
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6.2.2 Motor Performance for Different Reference Masses

In the mass discrimination experiments with different references, motor

performance data was recorded for all trials. Thus data was recorded during 3,072 trials

for subjects AM and JN and during 2,944 trials for subject BM. Data sampling was

initiated once the moveable plate was at the designated start position. The motor

performance results are divided into separate subsections for the force and acceleration

data. Additional plots of data from these experiments can be found in Appendix C.

6.2.2.1 Force Data

Typical plots of the subjects' applied force versus time are shown Figure 6.8. In

Figure 6.9, the same applied force data is plotted against squeezing distance. For all plots

in Figures 6.8 and 6.9, the reference mass is 9kg and the fixed displacement is 25mm.

Plots on the left side of each figure are from experiments when the difference between the

reference and comparison stimuli was 10%, whereas graphs on the right are from

experiments when the difference was 30%. Each trace on a plot represents data collected

over a single trial during the experimental run. Because data was collected on every trial

there are sixty four traces for each plot. Dotted line force traces indicate those trials

when the reference mass was the stimulus while solid lines indicate trials when the

comparison mass was the stimulus.

The basic shape of the temporal and spatial force profiles are generally consistent

with the force profiles shown in Chapter 5 for the viscosity discrimination experiments and

in the previous section for the other mass discrimination experiments. The temporal force

profiles in Figure 6.8 show variation in both the time delay before force is applied to the

moveable plate and in the amount of force that is applied. However almost all force traces

consistently show a relatively long duration ramping up of applied force, followed by a

shorter duration peaking and decrease in applied force. Although the duration of the force

ramp seems to make up a considerable amount of the temporal force profile, it occurs over

a relatively short squeezing distance, as seen in Figure 6.9. In these plots, subjects
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typically reached peak applied force within 5 to 10 mm of travel, followed by flat or

decreasing force profiles over the remaining distance.
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The overall force data results are presented in Tables 6.9 - 6.11. In Table 6.9, data

is shown for the 6kg reference and in Tables 6.10 and 6.11, the results are given for 9kg

and 12kg, respectively. Similar to the force data presented in the fixed discrimination

experiments, the average mean and peak force for both the reference and comparison

stimuli, the percent difference in the average mean forces and the coefficient of variation in

mean force are presented. The data is organized by subject and stimulus pair.
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The results indicate that the average mean force over all references was 5.9N for

the reference stimulus and 5.5N over all comparison stimuli. The average mean forces

ranged from 2.5-9.5N and the average peak forces ranged from 4.5-12N, depending on

subject and experimental condition. Whereas, the average mean force applied increased

with reference mass, the average percent difference in mean force for the reference and

comparison was relatively invariant (7.8% ± 0.7%) with reference mass. Both the overall

average mean force and the percent difference are approximately equal to the results in the

fixed displacement mass discrimination experiments (Refer to Table 6.7).
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The percent difference in average mean force shows the same trend observed in the

fixed displacement mass discrimination experiments and the viscosity discrimination

experiments. When averaged over displacement, the percent difference in force increases

with stimulus pair difference. This is observed at each reference mass for all subjects.

Averaged over all subjects, the percent difference in average mean force was 1.9%, 5.8%,

8.8%, and 14.5% for AM/M = 10%, 20%, 30% and 40%, respectively. Thus, the

average mean force for the reference mass was always greater than the corresponding

force for the comparison mass. The overall percent difference between the two average

mean forces was 7.2%, 7.2%, 8.9% for subjects AM, BM, and JN respectively.

The overall coefficient of variation in applied force was approximately 17% for

both stimuli; it was greater than 20% when the reference mass was 12kg and was 14-16%

for the other two references. As

results are generally independent of

seen with previous coefficient of variation data, the

stimuli for the same reference.

Average Mean Average Mean Percent Coefficient Coefficient
and (Peak) and (Peak) Difference of Variation of Variation

AM/Mo Reference Comparison in Avg in the in the
Subject Force Force Mean Reference Comparison

Force Force Force
40% 6.90N (8.28N) 6.05N (7.18N) 12.6% 12.3% 10.5%

AM 30% 6.66 (7.86) 6.09 (7.12) 8.6% 10.4% 9.1%

20% 6.79 (8.13) 6.42 (7.56) 5.4% 11.2% 8.4%

10% 6.81 (8.08) 6.82 (8.13) -0.3% 10.9% 10.8%

40% 4.06 (5.59) 3.65 (4.85) 10.0% 16.1% 13.6%
BM 30% 4.18 (5.64) 3.90 (5.14) 6.7% 14.2% 14.0%

20% 4.05 (5.56) 3.91 (5.31) 3.3% 15.1% 15.2%

10% 4.80 (6.41) 4.65 (6.25) 3.2% 15.8% 17.8%

40% 3.30 (4.31) 2.63 (3.62) 20.2% 13.9% 20.0%
JN 30% 2.92 (4.07) 2.61 (3.57) 10.6% 23.7% 19.6%

20% 3.21 (4.31) 3.01 (3.99) 6.2% 14.8% 13.7%
10% 2.97 (4.08) 2.92 (3.92) 1.6% 29.2% 18.4%

AVG 4.72N (6.03N) 4.39N (5.55N) 7.8% 15.6% 14.3%

Table 6.9: Force Results by Subject and Stimulus Pairfor 6kg
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Average Mean Average Mean Percent Coefficient Coefficient
and (Peak) and (Peak) Difference of Variation of Variation

AM/MO Reference Comparison in Avg in the in the
Subject Force Force Mean Reference Comparison

Force Force Force
40% 6.20N (7.57N) 5.38N (6.57N) 13.2% 12.5% 17.7%

AM 30% 6.37 (7.91) 5.82 (7.30) 8.7% 17.4% 21.4%

20% 5.77 (7.27) 5.41 (6.89) 6.2% 16.4% 17.9%
10% 5.88 (7.46) 5.86 (7.32) 0.3% 21.8% 20.4%

40% 7.88 (9.32) 6.60 (7.69) 16.3% 12.4% 12.1%
BM 30% 7.05 (8.60) 6.40 (7.57) 9.1% 15.2% 16.4%

20% 8.53 (10.3) 7.90 (9.39) 7.4% 11.8% 11.6%

10% 7.50 (9.08) 7.29 (8.82) 2.7% 14.6% 15.4%

40% 4.23 (5.06) 3.55 (4.67) 16.2% 21.4% 13.5%
JN 30% 4.70 (5.80) 4.19 (4.87) 10.8% 22.2% 14.1%

20% 4.74 (5.83) 4.40 (5.36) 7.3% 18.3% 13.5%
10% 4.18 (5.18) 4.02 (4.67) 3.8% 16.1% 13.0%

AVG 6.08N (7.44N) 5.59N (6.19N) 8.5% 16.6% 15.6%

Table 6.10: Force Results by Subject and Stimulus Pair for 9kg

Average Mean Average Mean Percent Coefficient Coefficient
and (Peak) and (Peak) Difference of Variation of Variation

Subject AM/Mo Reference Comparison in Avg in the in the
Force Force Mean Reference Comparison

Force Force Force
40% 9.49N (12.ON) 8.32N (10.3N) 12.3% 15.5% 11.0%

AM 30% 8.27 (10.5N) 7.54 (9.55) 8.8% 17.4% 18.1%
20% 8.85 (11.2N) 8.21 (10.4) 7.2% 13.7% 18.5%

10% 8.93 (1l.IN) 8.66 (10.8) 3.0% 15.0% 16.7%

40% 6.51 (9.20) 5.54 (7.76) 14.9% 18.3% 23.7%
BM 30% 6.39 (8.92) 5.96 (7.95) 6.7% 16.8% 18.3%

20% 6.26 (8.96) 6.06 (8.62) 3.1% 17.8% 29.8%
10% 6.43 (9.32) 6.20 (8.84) 3.5% 22.5% 20.7%

40% 5.45 (7.53) 4.63 (6.16) 15.0% 22.6% 22.1%
JN 30% 5.97 (9.01) 5.43 (8.13) 8.9% 27.4% 28.5%

20% 5.56 (9.19) 5.22 (8.38) 6.1% 27.1% 28.3%
10% 6.05 (9.06) 6.07 (8.87) -0.4% 25.8% 19.8%

AVG 7.01N (9.67N) 6.49N (8.81N) 7.4% 20.0% 21.3%

Table 6.11: Force Results by Subject and Stimulus Pair for 12kg
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6.2.2.2 Acceleration Data

Examples of acceleration data typically recorded during the discrimination

experiments are presented in Figures 6.9 and 6.10. In Figure 6.9, the data is plotted

versus time and in Figure 6.10 the same acceleration data is plotted versus displacement.

The graphs show data from all three subjects and are organized in the same format as
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The plots of acceleration show peak accelerations ranging from 300 - 1500mm/s 2

depending on subject and trial. The acceleration spikes in the beginning of some of the

acceleration traces for subject AM are artifacts caused by contact between the moveable

plate and the mechanical stop of the Linear Grasper, immediately before the trial started.

A summary of the acceleration data by the three reference masses of 6, 9, and

12kg is presented in Table 6.12. The data in table indicates that while the average mean

acceleration for both stimuli decreased as reference mass increased, the percent difference
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acceleration values ranged from 570 to 940 mm/s 2 with overall mean acceleration for both

stimuli of 688 mm/s2. Average peak acceleration values ranged from 928 to 1326 mm/s 2.

Average Mean Average Mean Percent
Reference and (Peak) and (Peak) Difference in

Mass Reference Comparison Average
Acceleration Acceleration Mean Acceleration

6 kg 757 mm/s2 939 mm/s2 -23.9%
(1177 mm/s 2) (1326 mm/s2)

9 kg 666 812 -21.6%
(928) (1072)

12 kg 568 704 -23.8%
(1110) (1190)

Average 664 818 -23.1%
(1078) (1196)

Table 6.12: Average Acceleration Data by Reference Mass

Average Average Percent
Subject AM/Mo Mean Mean Difference in

Reference Comparison Average
Acceleration Acceleration Mean

Acceleration
40% 856 mnm/s 2 1,216 mm/s2 -42.2%

AM 30% 822 1,052 -28.2%

20% 816 952 -16.5%

10% 832 910 -9.3%

40% 692 mm/s 2 972 mm/s 2 -40.8%

BM 30 % 658 858 -30.5%

20% 707 831 -18.2%

10% 714 766 -7.2%

40% 462 mm/s 2 616 mm/s2 -33.6%

JN 30% 471 592 -25.8%

20% 480 555 -15.7%

10% 457 499 -9.1%

AVG 664 818 -23.1%

Table 6.13: Average Acceleration Data by Subject

The mean acceleration results in Table 6.13 ranged from 450-1,200 mm/s 2

depending on subject and stimulus pair. The overall average mean acceleration for subject
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JN was 517 mm/s2 which was the lowest for the three subjects. Subjects BM and AM had

greater overall average mean accelerations of 775 and 932 mm/s2, respectively. All

subjects exhibited a systematic increase in the difference between the average mean

acceleration for the reference and comparison stimuli as the difference in stimulus pairs

increased. Averaged over all subjects, the percent difference in average mean acceleration

was -8.5%, -16.8%, -28.2%, and -38.9% for AMIM = 10%, 20%, 30% and 40%,

respectively. Thus as was the case with the fixed displacement discrimination

experiments, the average mean acceleration for the reference mass was always less than

the corresponding acceleration for the comparison mass and the percent difference in the

two accelerations was roughly equivalent to the percent difference in the masses of the

two stimuli.
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Velocity and Acceleration

Discrimination Results

7.1 Velocity JND Results

The JND results for the velocity discrimination experiments are plotted with

respect to the various reference velocities in Figure 7.1. The subjects for the velocity

discrimination experiments are the same group of subjects that took part in the viscosity

discrimination experiments involving the different reference viscosities. In these

experiments, subject DH completed a total of 2,000 trials, while subjects JY and DH both

completed 2,400 trials. The average JND over the four reference velocities of 60, 80,

100, and 120 mm/sec was 10.9%. The standard deviation between the JNDs for the

individual reference velocities was 1.0% indicating that the JNDs were relatively constant

with respect to reference velocity. However, as seen in Figure 7.1, there is a slight

decrease in the velocity JND as the reference velocity increases.

The JND data for the individual subjects and various reference velocities are

presented in Table 7.1. The standard deviation in the JND among the subjects was 0.9%.

The standard deviation over all experimental conditions was 1.7%. Subject DH had the

lowest average velocity JND of 9.7%, followed by ZS with an average JND of 11.1% and

JY with an average JND of 11.9%. The bias results are presented in Table 7.2. The P

values are generally small and negative for the experiments indicating that the subjects had

a slight preference for selecting the lesser velocity stimulus in their responses.
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60 80 100 120 Average
Subject mm/sec mm/sec mm/sec mm/sec Subject

JND JND JND JND JND
JY 13.4% 12.3% 13.0% 8.7% 11.9%
ZS 11.0% 12.3% 9.9% 11.3% 11.1%
DH 11.9% 10.2% 8.0% 8.8% 9.7%

Average 12.1% 11.6% 10.3% 9.6% 10.9%

Table 7.1: JND Results for the Velocity Discrimination Experiments

60 80 100 120 Average
Subject mm/sec mm/sec mm/sec mm/sec Subject

JY -0.18 -0.20 -0.05 -0.18 -0.15
ZS -0.26 -0.21 -0.11 -0.11 -0.17
DH -0.11 0.04 -0.02 0.02 -0.02

Average -0.18 -0.12 -0.06 -0.09 -0.11

Table 7.2: Bias Results for the Velocity Discrimination Experiments

Manual Discrimination of Velocity
JND vs. Reference Velocity

18%
16%

A

ZS
x

JY

DH

AVG
2% Subject DH: 2000 Trials

0% i I I I I I I II

50 60 70 80 90 100 110 120 130
mm/sec

14% 
x 

12% A

o 10%
z 8% 1) 8%- a - "

6%
4% Subject JY: 2400Trials

Subject ZS: 2400 Trials

Figure 7.1: JND Results for the Velocity Discrimination
Experiments
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7.2 Acceleration JND Results

The JND results for the acceleration discrimination experiments are presented in

Figure 7.2. The subjects for the acceleration discrimination experiments are the same

group of subjects that took part in the mass discrimination experiments involving the

different reference masses. Subject JN completed a total of 2,400 trials, while subject BM

completed a total of 1,400 trials and subject AM completed a total of 1,836 trials. Subject

AM and JN completed the discrimination experiments for the four reference accelerations

of 400, 800, 1200, and 1600 mm/sec 2, and BM completed the experiments for all

reference accelerations except 400 mm/sec2. The average JND for all references was

16.9% with a standard deviation between the individual reference accelerations of 3.0%.

The JND results plotted in Figure 7.2, indicate a large decrease in JND as the reference

acceleration increases from 400 and 800 mm/sec 2 and then an increasing JND as the

references increase to 1200 and 1600 mm/sec2 .

The average subject JNDs ranged from a low of 14.1% for subject AM to a high of

19.8% for subject JN. The standard deviation among the subjects was 2.3%. The standard

deviation for all experimental conditions was 4.2%. JND and bias results for the subjects

and references are presented in Tables 7.3 and 7.4, respectively. Overall the bias results

indicate that subjects did not appear to show a strong predilection towards selecting a

particular response, with the exception of BM when the reference acceleration was 1200

mm/sec2. For that particular experiment, BM shows a reasonably strong bias towards

selecting the lesser acceleration stimulus as the response.

400 800 1200 1600 Average
Subject mm/sec2 mm/sec2 mm/sec 2 mm/sec2 Subject

JND JND JND JND JND

JN 21.8% 15.7% 19.8% 22.0% 19.8%
AM 20.5% 11.5% 11.6% 12.9% 14.1%
BM N/A 11.3% 18.9% 19.7% 16.6%

Average 21.2% 12.8% 16.8% 18.2% 16.9%

Table 7.3: JND Results for the for the Acceleration Discrimination Experiments
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Figure 7.2: JND Results for the Acceleration Discrimination Experiments

Subject 400 800 1200 1600 Average
mm/sec 2 mm/sec 2 mm/sec 2 mm/sec 2 p

JN -0.02 -0.24 0.02 0.13 -0.03
AM -0.03 -0.15 0.20 0.06 0.02
BM N/A 0.00 -0.62 0.02 -0.20

Average -0.03 -0.13 -0.13 0.07 -0.07

Table 7.4: Bias Results for the Acceleration Discrimination Experiments

Manual Discrimination of Acceleration
JND vs. Reference Acceleration
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Analysis of

Sensorimotor Interactions

8.1 Introduction

During the viscosity and mass discrimination experiments, haptic motor

performance data were recorded for 20,960 trials. From a human factors perspective, this

information can be used to provide meaningful quantitative data about the range of forces,

velocities and accelerations used during grasp discrimination tasks. More importantly,

from the standpoint of understanding haptic perceptual processes, this data arises from

controlled motor actions undertaken by subjects during specific manual discrimination

tasks. In essence, subjects have chosen these particular motor actions for the

discrimination tasks they have been asked to do. Unlike experiments with a linear

compliance where force value is determined by the distance squeezed, in the case of

viscosity and mass, the force values are governed by velocity and acceleration profiles,

both of which are arbitrarily chosen by the subjects. As a result, it is not unreasonable to

expect that the motor data should help in characterizing the grasping strategies used by the

subjects. Furthermore, an analysis of the motor actions, in concert with the JND results

from chapters 5 through 7, should provide insight into how the motor performance

strategy affected the discrimination performance of the subjects.

Specifically, we would like to be able to answer certain questions about subjects'

performance, such as: Is there an underlying discrimination strategy that is utilized by all
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subjects in both the viscosity discrimination and mass discrimination tasks? Or conversely,

can we use the motor performance data from the subjects to argue against certain

discrimination strategies? More generally, can we learn anything from the analysis of

motor performance and JND results that could allow us to predict discrimination

performance for more complicated object properties.

8.2 Analysis of Motor Performance Data

8.2.1 Average Temporal Force Ramps are the Same for Both Stimuli

It is unclear at which point during the grasping action that a subject makes a

decision about the nature of the stimulus. For stimulus pairs near or below JND, it is quite

possible that subjects must use the entire squeezing distance. But, when the difference in

the reference and comparison is larger than JND, it is also possible that a subject could

make a decision earlier during the grasping action and not require the entire squeezing

distance. In this case, the usefulness of motor data recorded after a subject has made a

decision is unclear. However, since the subjects do not know which stimulus will

presented on a given trial, any consistency in the motor data should at least be evident

during some initial grasping action.

Plots of applied force versus time are shown in Figures 5.11, 6.13, and in

Appendices B and C for subjects from both the viscosity and mass discrimination

experiments. These figures show, regardless of stimuli, when subjects initially grasp the

plates they tend to apply an increasing force ramp with respect to time. To determine

whether the initial force ramps of the reference and comparison stimulus were different,

average force ramp functions were determined. These functions were calculated by

experimental run for both stimuli. The average force ramp for a particular stimulus was

computed, by averaging over a fixed time interval the force data for all the trials of that

stimulus that were greater than a certain threshold force. The threshold force was utilized

to eliminate the variability in time delay that was present among trials before the initial

force ramp began. The value of the threshold was visually predetermined for every

---- I - · - IIC--IL-_·
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experimental run and was typically between 0.5 - 1.5 Newtons. The fixed time interval

was determined by calculating the average time required for the subjects' applied force

ramp to reach 90% of its peak value.

Typical ramp functions are plotted in Figure 8.1 - 8.4. The force plots in Figures

8.1 and 8.2 are from viscosity discrimination experiments where the difference in stimulus

pair was 10% and 25%, respectively. The plots in Figures 8.3 and 8.4 are for the mass

discrimination experiments where the corresponding stimulus pair differences were 10%

and 40%. In all graphs, two functions are plotted for each subject. Functions plotted with

'o' are average ramp functions for the reference stimulus and functions plotted with '+'

represent the comparison stimulus results. Since both stimuli are presented an equal

number of times during an experimental run, each function is an average of 32 trials of

force data.

Viscosity Discrimination Experiments: 10% Difference

a)

0
U-

0 0.05 0.1 0.15 0.2 0.25
Time(s)

Figure 8.1: Typical Average Force Ramps for AB/Bo = 10%

__



87

Viscosity Discrimination Experiments: 25% Difference

0 0.02 0.04 0.06 0.08
Time(s)

0.1 0.12 0.14 0.16

Figure 8.2: Typical Average Force Ramps for AB/Bo = 25%

Mass Discrimination Experiments: 10% Difference
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Mass Discrimination Experiments: 40% Difference

0
U-

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time(s)

Figure 8.4: Typical Average Force Ramps for AM/Mo = 40%

The figures indicate that different subjects squeeze with different force rates. But

more importantly, the plots show that each of the subjects applies approximately the same

grasping force ramp with respect to time to both stimuli. To ascertain if this was the case

throughout the experiments, the percent difference in mean force for both stimuli during

the force ramp was determined'. The results are presented in Table 8.1 for both

discrimination experiments by subject and stimulus pair. The data confirm that the

difference in average applied force for the reference and comparison during this initial

force ramp was very small and independent of stimulus pair. In fact the difference in mean

force for the reference and comparison during the force ramp is typically much less than

previously measured force JNDs (Pang et al, 1991). The conclusion is that on average,

Since the same threshold force and time period was used for both stimuli, the percent difference in mean
force would reflect any differences in the slopes of the force ramps.
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each of the subjects applied almost identical temporal force profiles for each of the

reference and comparison stimulus pairs presented in the viscosity and mass

discrimination experiments.

AB/Bo JY ZS DH AM/M, AM BM JN

10% 2.2% -0.3% -1.2% 10% -0.6% -0.3% -1.0%

15% -1.8% -1.7% 0.6% 20% 1.4% -1.3% 1.4%

20% 3.0% 0.4% 3.1% 30% 2.9% 2.6% -0.1%

25% -1.0% -0.7% 6.4% 40% -2.5% 4.6% 1.3%

AVG 0.6% -0.6% 2.2% AVG 0.3% 1.4% 0.4%

Table 8.1: Percent Difference In Mean Ramp Force between Reference and Comparison
Stimuli.

8.2.2 Force Ramps are Substantially Linear with Respect to Time

Regression analysis was performed on the force ramp data. For all subjects, it was

found that the force ramp data could be reasonably well approximated by a first order

linear time function, f = at + c, where the variables a and c, are constant with respect to

time for a particular trial. The results are illustrated for Subject ZS in Figure 8.5, where

raw force ramp data is plotted with 'o' and '+' denoting reference and comparison

stimulus respectively, and the solid lines represent the best fit straight line determined

through regression analysis. The figure suggests that the approximation is reasonable,

though there is variability in a and c among trials.

Statistically, the closeness of the raw ramp force data points to the regression line

was measured by calculating R2, the square of the correlation coefficient. The results are

presented in Table 8.2 for both experiments. The results show that the force ramp is linear

in time to an accuracy greater than 99%. Therefore it is quite reasonable to model the

-I �lllllll--��s 111- 11·.~·
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subjects' initial grasp strategy as a linearly increasing
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Subject ZS with Best fit Linear Regression

AB/Bo JY ZS DH AM/Mo AM BM JN

10% .9983 .9928 .9934 10% .9978 .9964 .9965

15% .9899 .9911 .9942 20% .9984 .9969 .9923

20% .9796 .9943 .9925 30% .9983 .9969 .9975

25% .9963 .9947 .9921 40% .9974 .9974 .9946

AVG 0.9910 0.9932 0.9931 AVG 0.9980 0.9969 0.9952

Table 8.2: R2 Values for Linearity of Force Ramp Data
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8.3 A Theory on Active Pinch Grasp Discrimination

To summarize the motor and sensory results so far:

(1) Over an experimental run, the subjects applied linear force ramps with

respect to time to all stimuli. In addition, these force ramps, were on

average, identical for each reference and comparison stimulus pair.

(2) The JND for viscosity was 12% and the JND for mass was 20%; the

JND for velocity was 11% and the JND for acceleration was 17%.

(3) Anecdotally, many subjects reported that discriminated on the basis of

"resistance", "resistive force" and "viscous force" in the viscosity

discrimination experiments and on the basis of "heaviness", "weight" or

"inertia" in the mass discrimination experiments. Additionally, subjects

reported that when their performance was optimal (percent correct scores

were high), subjects could discriminate the stimuli during the "initial

grasping" of the object.

In the rest of the section, a simple theory is developed and a hypothesis proposed to

explain the relationship between these results.

8.3.1 An Initial Grasp Premise

The experiments were designed so that the presentation order of the stimuli could

not be predetermined by the subjects. Therefore further analysis is based on the following

premise: Given, that a subject does not know beforehand what the stimulus will be, the

subject will attempt, on average, to use a similar initial grasp action for every trial. In

other words, for any trial, if a subject does not know what stimulus will be presented,

there is no reason to apply an initial grasp action that will be different than that used for

any other trial. This premise does not attempt to define what this initial grasp action is in

terms applied force, motion, distance or time or even that all subjects will have the same

-·-.-11111114 I--)X�·--·llll�-----i� �C^--.^�--·_ �--.-*tlC- .IIIIY-I�-^IUIII�-m·�XY-P-PIIIYI�YI�I I. �-- I--
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initial grasp action. It only indicates that the subjects will attempt to use a similar

grasping strategy for all the trials of an experimental run.

8.3.2 Constraints on the Initial Grasp Strategy

Because, for any given trial, subjects will encounter an object with an unknown

mechanical impedance, they cannot initially control the force-displacement relationship

without some amount of sensory feedback. The same holds true for any velocity-

displacement, acceleration-displacement, velocity-time, or acceleration-time relationship.

However it is possible for the subjects to initially grasp with a force-time profile that is

independent of the specific impedance encountered on any given trial.

Based on the force data presented in the previous section, this appears to be what

the subjects are attempting to do during the discrimination experiments. Specifically, the

data suggests that throughout both the viscosity and mass discrimination experiments, the

initial grasp action that the subjects used can be well described as a force ramp that is

linearly increasing in time. Additionally, while there is variability in the slope of the force

ramp over the course of the experimental run, on average, the same force ramp is used for

both reference and comparison stimuli.

8.3.3 Implications of Linear Temporal Force Ramp Model

Applying a linearly increasing force ramp with respect to time has ramifications on

the distribution of force with respect to the distance squeezed. In fact, the same f(t) for

different viscosity and mass stimuli will result in a different f(x) for each stimulus. The

same is true for velocity and acceleration with respect to distance. The relationships are

expressed mathematically below:

Assumption:

Subjects apply the force profile over time for all trials and that force profile can be
modeled as:

f(t) = at
where,

a = constant > 0, t>0.
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Implications:

For viscosity:
f (t) = Bi = a t

where, B = reference stimulus;

Thus,
v(t) = f(t) / B = a t / B

where,
v(t) is velocity for the reference stimulus.

Therefore,

at 2

2B
where,

x(t) is position as a function of time.

Therefore time, t, can be expressed as the following function of position:

t(x) = 2 Bx

As a result, the spatial force profile is:

f(x) = /2B

Likewise, it can be shown that the spatial force profile,f-Af, for a comparison
stimulus, B-AB, is:

f(x)- Af(x) = 2a (B - AB)x

Finally, the percent difference in the force profiles at any distance (i.e. at any fixed
value of x) for the two stimuli is:

Af =B-AB
f B

-·111 ·11 IIII ·I�CII�-·l�---···--·--�1^14-11�1- IP�I--l�
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Likewise, this analysis can also be done with respect to velocity, the resulting percent
difference in the velocity profiles at any distance for the two stimuli is:

AV =1
v B-AB

where v+Av, is the velocity for the comparison stimulus.

The same analysis can be performed when the stimulus is a mass,

Let M = reference mass,

Thus,
a(t) = f(t)/ M = at/M

where,
a(t) is acceleration for the reference stimulus.

Therefore,
at 2

2M

where,
v(t) is velocity as a function of time.

Finally,

x(t) = V(' )d = at 3

6M
where,

x(t) is position as a function of time.

Therefore time, t, can be expressed as the following function of position:

t(x)= 36Mx
a

Jt

V~t)=ft T) '
0 M=Jl~
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As a result, the spatial force profile is:

f(x)=3 -6c2Mx

Likewise, it can be shown that the spatial force profile, f-Af, for a comparison
stimulus, M-AM, is:

f(x)- Af(x)= 6c 2 (M- AM)x

It can be shown from above that the percent difference in the force profiles at any
distance for the two stimuli is:

Af M - AM

f M

Likewise, this analysis can also be done with respect to acceleration. The resulting
percent difference in acceleration profiles at any distance for the two stimuli is:

Aa = - M 

a M-AM )

where a+Aa, is the acceleration for the comparison stimulus.

8.3.4 Possible Discrimination Hypotheses Consistent with the Motor Data

Thus, the mathematical model indicates that applying the same linear force ramp in

time for all stimuli gives rise to specific force and motional cues with the respect to

distance. The magnitude of the cues (in other words, the percent difference in the spatial

profiles for the force, velocity and acceleration) depends solely on the ratios of the stimuli

presented in the experiment. To determine which, if any, of these cues are sufficient to

explain the viscosity and mass JND results, the following discrimination strategies are

hypothesized:

A_' _,~ ....- ~ ^I^UI-·1~^11·1~ , .. . --
.---Y---·.·l ·CI i..- ·II I ------ · �-s...--------
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Possible Hypotheses:

Subjects apply a stereotypical force profile, f(t)=at, for both the reference and
comparison stimulus and discriminate on the basis of corresponding differences in (1)
force, (2) velocity or (3) acceleration averaged over distance.

To determine if any of these hypotheses explain the measured viscosity and mass

JND results, theoretical JND predictions based on force, velocity and acceleration values

averaged over distance were calculated using the model. The theoretical JNDs were

calculated by determining the difference in stimulus pair that would result in a percent

difference in force, velocity and acceleration equal to the JND data for those cues. For

example, below are the formulas used to predict the viscosity and mass JNDs based on

force discrimination:

Using the model to solve for AB/B and AM/M in terms of percent difference in

force gives rise to the following two equations:

Substituting the percent difference in force (Af I/f ), with force JND data yields

theoretical JND values for viscosity and mass. Furthermore, because force JNDs are in

the range of 5-10%, we can simplify these equations by eliminating the second and third

order terms and are left with the following approximations:

AB 2 Af
_ 2 Af

B f

AM 3 Af
=

M f

Thus the model predicts the JND for viscosity to be approximately double the JND

for force and the mass JND to be triple the force JND. Or conversely,

AB =- (1- Af ) 2 = 2 Af (A)2
B f f f

M f f f f

- --· -- -- --- le
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Af AB AM
f 2B 3M

Similar calculations were performed for velocity and acceleration. The force-based

predictions utilized force JND data from Pang et al, 1989. (Pang et al, 1989, used the

same device and experimental procedure employed in this thesis.) The velocity-based and

acceleration-based predicted JNDs are calculated using the velocity and acceleration JND

data presented in Chapter 7. The predictions are presented in Table 8.3 along with the

experimentally measured JND values for viscosity and mass.

Predictions Predictions Predictions
Object Measured Based on Based on Based on

Property JND Force Velocity Acceleration
Discrimination Discrimination Discrimination

Average: 12% 13.5% 19% 17%
Viscosity

Range: 7- 19% 10 - 19% 18- 20% 14- 20%

Average: 20% 20% 27% 24.5%
Mass

Range: 14 - 27% 16- 25% 25 - 29% 20 - 29%

Table 8.3: Actual versus Predicted JND Results

The data shows that theoretical JND values based on velocity discrimination

predict noticeably higher JNDs than were measured for viscosity and mass. The

acceleration discrimination hypothesis predicts the measured JND results for mass

reasonably well, but predicts higher JNDs for viscosity than were measured. However,

the theoretical JND predictions from the force based discrimination strategy closely match

both the average and range of the measured JND results for viscosity and mass

discrimination experiments. In addition, a discrimination strategy based on force cues are

consistent with the anecdotal observations by most of the subjects that they discriminated

on the basis of "resistance", "resistive force", "viscous force", "heaviness" and "inertia".

I- ---I- --- ---------- ·------ �--- ...... . .. -. , _ _1_ _ . -. - I---.-- - -
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The comparison of these actual and predicted JND results are also presented graphically in

Figures 8.6 and 8.7 for the viscosity and mass discrimination experiments.
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Figure 8.6: Actual versus Predicted JND Results for the Viscosity
Discrimination Experiments
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8.3.5 The Temporal Force Control-Spatial Force Discrimination (TFC-SFD)
Hypothesis for Active Touch Discrimination

The following sensorimotor strategy is hypothesized to explain all the results of the

viscosity and mass discrimination experiments:

Temporal Force Control-Spatial Force Discrimination (TFC-SFD) Hypothesis:

Subjects apply a temporally controlled force, f(t)=at, and discriminate on the
basis of a resulting spatial distribution of force that is determined by the specific
mechanical properties of the object being grasped.

This hypothesis is based on the recorded motor data for the subjects, explains the

measured viscosity and mass JND results for each of the subjects and is consistent with the

anecdotal observations of the subjects. In essence, the hypothesis postulates that the

"effort" subjects apply in grasping the stimulus can be effectively modeled as a linear force

ramp with respect to time. The mechanical properties of the stimulus transform this

"effort" into a corresponding spatial force function that is perceived as the viscous force

or inertia of the stimulus.

8.3.6 Implications of the Theory

This point is illustrated in Figure 8.8 for subject ZS. The graph in this figure

contains force versus distance plots for all 64 trials of an experimental run where the

difference in the stimulus pair was 25%. Solid lines represent trials where the stimulus

was the reference and dotted lines represent trials where the comparison was the stimulus.

The difference in the average slope of force ramp profiles over time for both stimuli was

less than 1.0% for this experimental run. However, each stimulus influences the spatial

force mapping differently and according to the model for viscosity, this difference is

linearly related to the square root of the ratio of the reference and comparison stimuli.

The result, seen graphically in Figure 8.8, is that at any fixed position, the force for the

comparison stimulus is generally less than that for the reference stimulus.

I _ II_ _ II _ _ _I I___I � I_ I_ · ·I__IWIPII__II_____l_·�---·ll�·_^l-·Y
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Force versus Displacement
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Distance(mm)

Figure 8.8: Force versus Displacement Data for AB/Bo =25%

To quantify the observation that force cues are available early during the pinch

grasp, in Table 8.4, the spatial mean force difference for all stimulus pairs is calculated

over the first 10 mm of distance. The data was calculated by averaging force with respect

to distance in the same fashion as was employed in Chapters 5 and 6 to determine the

average mean force results over the entire fixed displacement. The results in the table

confirm that spatial-based force cues are available during this initial grasping of the object.

Stimulus Pair Average Mean Force
Difference

Viscosity 10% 5.3%
15% 8.1%
20% 12.8%
25% 14.6%

Mass 10% 3.0%
20% 8.2%
30% 10.1%
40% 16.2%

Table 8.4: Mean Spatial Force Differences for the first ten millimeters



101

Based on the TFC-SFD Hypothesis, the reason that subjects are better at

discriminating viscosity than mass is because the same grasp strategy, f(t) = at, results in

greater differences in the spatial force functions for viscosity than mass for the same

stimulus pair difference. This is can be extended to include compliance discrimination.

For any compliance, C, position and time are directly related and the percent difference in

force cues is equal to the stimulus pair difference. A comparison of the spatial mean force

difference data for viscosity, mass, and compliance is shown in Figure 8.9, where the

spatial mean force difference data for these three mechanical properties are plotted versus

stimulus pair. For viscosity and mass, the solid lines in the plot are the best fit straight

lines for the spatial mean force results. The actual data, averaged over all subjects, is

plotted as dark squares for the viscosity results and as gray circles for the mass results.

The theoretical force data for compliance is depicted as a dotted line.

For all stimulus pair differences with viscosity and mass, the spatial mean force

difference between the reference and comparison stimuli is the greater for viscosity than

for mass. Furthermore, when the difference in stimulus pair is equal to the viscosity and

mass JND (indicated by the vertical black lines for viscosity and mass) the percent

difference in spatial mean force approaches the force JND of 7% reported by Pang, et al,

1989. Likewise for compliance, when the difference in stimulus pair approaches

compliance JND (as reported by Tan et al, 1995, using the same device and experimental

paradigm), the percent difference in spatial mean force also approaches the force JND.

Thus, the TFC-SFD hypothesis provides a mechanism to explain the loss in sensory

resolution that occurs when force cues become dependent on derivative based

displacement cues.

The hypothesis does not state whether the subjects measure the mechanical

impedance of the stimulus as an averaged spatial force function or as an integrated spatial

force function. However, research by others (Pang et al, 1989; Tan et al, 1995) involving

constant force and compliance discrimination has showed that force integrated over

distance, in other words mechanical work, greatly influences discrimination judgment.
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The possibility that mechanical work or force is the underlying factor for all these

discrimination experiments is discussed in more detail in Chapter 9.

Figure 8.9: A Comparison of the Spatial mean Force Differences for Viscosity
and Mass

8.3.7 Modifications to the Theory

The theory is based on the idealization that subjects apply the same force ramp

(f(t)=at, where a is a constant) for all trials. However the coefficient of variation data for

force presented in Chapters 5 and 6, indicates there is variability in the applied force from

trial-to-trial. A histogram of the slope (a) values in Figure 8.11 reinforces this fact. In

this figure, slope data for 256 trials is presented for subject ZS from every experimental

run where the reference viscosity was 120Ns/m and the stimulus pair difference was 25%.

The data shows a range of slope values from 40-160N/s for both stimuli with majority of

values clustered around 120N/s. (The standard deviation in the slope data for both stimuli

was approximately 25N/s.) When the mean slopes were calculated for the reference and

comparison stimuli, the difference in the means was only 2.2%. Therefore, although the
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range of slopes is quite large, the implication is, that distributions are nearly the same for

both stimuli and on average, the same force ramp is used for both stimuli. This fact is

further supported by the data in Table 8.1, where the percent differences in spatial mean

ramp force data are presented for all stimulus pairs.

Therefore what the theory actually captures is the overall statistical nature of the

motor data and f(t) = at more accurately describes the mean applied force ramp of the

reference and comparison stimuli than the applied force ramp for every individual trial.

Figure 8.10: The Distibution of Slope Data for Subject ZS when AB/Bo = 25%

8.3.8 Model Predictions for Force and Motional Data

The model predicts that the average percent differences in spatial force, velocity

and acceleration profiles depend primarily on the ratios of the stimuli involved in the

experiment. For the viscosity discrimination experiments, the spatial mean force percent

differences are linearly related to the square root of the ratio of the comparison to the

reference viscosity. Whereas, spatial mean velocity differences are linearly related to the
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square root of the ratio of the reference to the comparison viscosity. In the mass

discrimination experiments, the differences are determined by powers of the cube root of

the ratio of the masses: spatial mean force differences are linearly related to the cube root

of the ratio of the comparison mass to the reference mass and spatial mean acceleration

differences are linearly related to the square of the cube root of the ration of the reference

mass to the comparison mass.

To confirm that the model works reasonably well in describing this data, we can

compare model predictions for the percent difference in force, velocity and acceleration

with actual data. Because the model is only applicable for the ramp portion of force

profile, the actual percent differences were determined over the first 10 millimeters of

travel, because typically the linear force ramp was used in this displacement range.

The results of this analysis are presented versus stimulus pair in Figures 8.11-8.14.

Predicted values are plotted for force and velocity in Figures 8.11 and 8.12 for the

viscosity discrimination experiments along with the actual spatial mean data from these

experiments. Similarly, predicted values are plotted for force and acceleration in Figures

8.13 and 8.14 for the mass discrimination experiments along with the actual spatial mean

data from these experiments. Overall, the plots verify that a good match between the

predicted and actual values exists. The predicted increase in force and motional cues as

the difference in stimulus pairs increases is collaborated with the actual data for both the

viscosity and mass discrimination experiments.

Incidently, the model also provides a partial explanation as to why the spatial mean

force differences presented in Chapters 5 and 6 (which were also spatial averages)

increased with stimulus pair difference. Although in these cases, because the averages

were over the entire fixed distance of 25 mm (and not just the first 10 mm), minor

discrepancies between the model and the data arise. This is because after the first 10 mm

subjects often exhibited some plateauing and reduction in their applied force profiles over

the remaining distance that is not accounted for in the model.
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Figure 8.11: Actual versus Predicted Spatial Mean Force Results
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Figure 8.12: Actual versus Predicted Spatial Mean Velocity Results
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Average Mean Force Difference
Mass Discrimination Experiments
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Figure 8.13: Actual versus Predicted Spatial Mean Force Results
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8.4 Analysis of Coefficient of Variation Data

A summary of the overall force coefficient of variation results for the

discrimination experiments are presented in Table 8.5. Because motor performance was

recorded for only 400 trials in the fixed displacement viscosity discrimination experiments,

coefficient of variation results for this experiment are not included in the table. The results

in the table are a measure of the average variation in mean force for both the reference and

comparison stimulus over the course of an experimental run. The data suggest that for

both the viscosity and mass experiments, the mean forces for both stimuli exhibited

comparable amounts of variation when measured as a percentage of average mean force.

The average coefficient of variation for the viscosity experiments was 10.7% versus

16.3% for the mass discrimination experiments. Thus, there was less variation in mean

force over the course of an experimental run involving viscous stimuli, than an

experimental run involving mass stimuli.-·-~-----~~L1- --rl~1111V~~~lb IIUUU VCI~IZII

Experiment Coefficient of Variation: Coefficient of Variation:
Reference Comparison

Viscosity Discrimination 10.1% 11.3%

Fixed Displacement 15.6% 15.0%
Mass Discrimination

Different Reference 17.4% 17.1%
Mass Discrimination

Table 8.5: Overall Coefficient of Variation Results

Since these results measure the coefficient of variation over an experimental run,

they do not necessarily characterize the trial to trial performance by the subjects. Given,

that subjects are supplied with correct response feedback after every trial, there is a

significant likelihood that their decision strategy involves the comparison of two

consecutive trials, therefore variability in applied mean force between two consecutive

trials may provide a better indication of motor performance consistency than measuring

the coefficient of variation over the entire experimental run. Further, to eliminate
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variations in force due to differences in the stimuli for consecutive runs, it is more useful

to measure the coefficient of variation for consecutive trials involving the same stimuli.

Results of this analysis are presented in Table 8.6 for subjects for which

consecutive trial data existed. Shown is both mean and median trial-to-trial coefficient of

variation data for applied force when same stimuli were presented on consecutive trials.

For each subject, the average mean value was calculated by averaging the mean coefficient

of variation data from every experimental run. Likewise, the average median value was

determined by averaging the median data from every experimental run. (The median is the

middle score of a distribution of data.)

Experiment Subject Mean Trial-to-Trial Median Trial-to-Trial
Coefficient of Variation Coefficient of Variation

JY 6.7% 4.6%

Viscosity ZS 7.8% 5.3%

DH 7.6% 5.0%

Average 7.4% 5.0%

AM 8.6% 6.3%

Mass BM 10.1% 7.4%

JN 12.3% 8.1%

Average 10.4% 7.3%

Table 8.6: Trial-to-Trial Force Variation Results

The data indicate that the average trial-to-trial variations in mean force are

generally equal to the force JND values as measured by Pang, et al 1991. Consistent with

coefficient of variation results over an entire experimental run, the mean trial-to-trial

variation for the viscosity discrimination experiments was less than that for the mass

discrimination experiments (7.4% versus 10.4%). However, the difference between the

two experiments is much smaller when measured from trial-to-trial.

The median results were always lower than the mean results. This indicates that

the coefficient of variation between any two consecutive trials was more likely than not to
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be less than the mean for that experimental run. In fact, for the viscosity discrimination

experiments, nearly 70% of the time the coefficient of variation between consecutive trials

was less than the mean of 7.4%. Hence, for most of the trials, the variation in mean

applied force was less 5.0%. A similar analysis of the mass discrimination experiments

indicates that greater than two-thirds of the time the coefficient of variation was less than

the mean of 10.4%.

Thus, there appears to be two types of variation during an experimental run: (1)

Variability that arises between trials that is approximately equal to the JND for force and,

(2) A variation in mean applied force that occurs more gradually over the entire course of

an experimental run, and is greater than the average trial-to-trial variation. Since in the

first case the variation was often less than or equal to force JND, then it is quite possible

that motor performance variability had only a small impact on the discrimination

performance.



9
Discussion

9.1 Summary of Results

The objective of this research has been to study how the haptic system

discriminates physical properties of objects through the mechanism of active touch. To

accomplish this objective, this thesis has focused on studying the capability of the haptic

system to discriminate two elemental physical properties, viscosity and mass, with active

pinch grasping. In regards to these properties, the investigation has sought to accomplish

three goals: (1) To measure discrimination performance under various conditions, (2) To

obtain human factors data on the applied forces, velocities and accelerations used during

active pinch grasp discrimination, and (3) To characterize the haptic motor strategies

utilized in discrimination tasks with emphasis on exploring how motor performance and

underlying sensory limits may affect discrimination performance.

In regards to measuring discrimination performance, JNDs for viscosity and mass

have been measured for different references and squeezing distances. Overall, the average

JND for viscosity has been found to be 12% and reasonably constant over a range of

references (60-180Ns/m) and fixed squeezing distances (15-35mm). The average JND

for mass was found to be 20% and likewise constant over a span of references (6-12kg)

and similar fixed squeezing distances (15-35mm). When compared to a force JND of 7%

and a compliance JND of 8% obtained under similar experimental conditions using the

same device (Pang et al, 1991; Tan et al, 1995), these results show a loss in sensory
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resolution when the resisting force of the object was proportional to derivative-based

displacements. This degradation in discrimination performance is consistent with the

results of Jones and Hunter (1989, 1992b, 1993), although our JNDs for compliance and

viscosity were much less than theirs (8% and 12% versus 23% and 34%, respectively).

The mass JND results obtained in this thesis are in the range of Weber fractions,

16% - 30%, reported by Ross et al (1984) and are close to the differential sensory

threshold for the moment of inertia of 28% measured by Kreifeldt and Chuang (1979).

But the results are considerably less than the Weber fraction of 113% reported by Ross

and Benson (1986) for moment of inertia.

To support an analysis of the how the sensorimotor interactions might influence

the manual resolution of viscosity and mass, velocity and acceleration JNDs were

measured over the range of velocities and accelerations experienced during the

discrimination experiments. An average JND for velocity of 11% was measured for

reference velocities ranging from 60-120 mm/sec and an average JND of 17% was

measured for accelerations from 400-1600 mm/sec2. These JNDs were measured under

passive conditions (requiring no active effort from the subjects) and attempted to measure

the purely sensory limits of the haptic system in discriminating these properties. Because

the stimuli in these experiments were presented over the same fixed displacements used in

the viscosity and mass discrimination experiments, it is possible that subjects discriminated

on the basis of time to completion for velocity discrimination and terminal velocity or time

to completion for acceleration discrimination. However, those cues would have also been

available if subjects discriminated on the basis of velocity or acceleration during the

viscosity and mass experiments and are thus potentially appropriate cues for the subjects

to use. To fully characterize the manual resolution of velocity and acceleration, beyond

what is necessary to study the mechanisms of viscosity and mass discrimination, it may be

necessary to design experiments that mitigate these cues.

There are no other known studies that have reported data on the manual resolution

of velocity and acceleration, thus these results cannot be directly compared to the results
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of any other work. However, Milner (1986) has reported that the ability to accurately

reproduce target peak velocities with rapid flexion of the interphalangeal joint of the

thumb was degraded for half of his subjects when viscous loads were intermittently

applied to the thumb. Thus, the ability to sense and control velocity may be influenced

and degraded by the presence of viscosity, although there were only six subjects in

Milner's experiment and each subject completed only a total of 80 movements.

In our experiments, haptic motor performance was recorded for 9,616 trials during

the viscosity discrimination experiments and 11,280 trials during the mass discrimination

experiments. During the viscosity experiments, average pinch grasp forces ranged from

3.5-17 Newtons depending on subject and stimulus. Resulting grasp velocities ranged

from 35-195 mm/sec for the viscosity discrimination experiments. Average pinch grasp

forces in the mass discrimination experiments varied from 3.5-7.5 Newtons with resulting

accelerations from 350-1200 mm/sec2. These human factors data compare to average

forces of approximately 4-6 Newtons and velocities from 40-80 mm/sec for comparable

viscous stimuli in contralateral matching experiments involving the forearms (Jones and

Hunter, 1993) and pushing velocities from 20-120 mm/sec in active pinch grasp force

discrimination experiments using the Linear Grasper (Pang et al, 1991).

The third emphasis of this study was to explore the relationship between

discrimination and motor performance. Thus even though the number of subjects was

limited, all subjects whose motor performance was analyzed completed a large number of

trials (typically more than 3,000) to ensure an adequate amount of motor data (in terms of

forces, velocities and accelerations) and discrimination data were acquired. A common

observation for all experimental conditions was that the amount of force and motional

cues available to the subjects, when averaged with respect to squeezing distance, varied

systematically with the difference in stimulus pairs. In essence, it was observed that while

the spatial mean force for the reference stimulus was constant for all stimulus pairs, the

spatial mean force for the comparison decreased as the difference in stimulus pair

increased. As a result, the difference in the spatial mean force between the reference and
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the comparison increased as the difference in stimulus pair increased. In regard to

motional cues, it was observed that while the spatial mean velocity in the viscosity

discrimination experiments (or acceleration in the mass discrimination experiments) for the

reference stimulus was constant for all stimulus pairs, the spatial mean velocity (or

acceleration) for the comparison increased as the difference in stimulus pair increased. As

a result, the difference in the spatial mean velocity (or acceleration) between the reference

and the comparison also increased as the difference in stimulus pair increased.

It appears that these cues arose naturally from a propensity for all subjects to

consistently apply a stereotypical force profile f(t) = at, when initially grasping the

stimulus. This stereotypical force profile was transformed into a distinct mapping of force

versus displacement by the mechanical impedance of the stimulus being grasped. The

resulting JND performance for both viscosity and mass is then best explained by

postulating that subjects discriminate on the basis of differences in the spatial force profiles

of the two stimuli. Specifically, it was found that the JNDs for viscosity and mass

occurred when the spatial mean force difference between the reference and comparison fell

within the range of force JNDs measured by Pang et al (1991) under the similar

experimental conditions.

The precise nature of what differences in the spatial force profiles subjects base

their responses is unclear. Theoretically speaking, the JND results could be predicted

equally well if subjects discriminated based on: (1) Differences in a single force value at

one fixed displacement, (2) Differences in the average force over distance, or (3)

Differences in an integrated force over distance function, like mechanical work. Although,

(1) implies that subjects sample force at just one (and at always the same) fixed

displacement and ignore all other force and motional information available during the trial.

This makes performance depend also on the ability to manually resolve the same single

fixed displacement for every trial and it is generally disadvantageous because it ignores

additional force and displacement information available during grasping. Thus, it is less

likely to be the actual strategy utilized by the subjects.
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There is no clear way to separate (2) and (3) for the experiments in this thesis.

Although, there is some previous evidence from Tan et al (1995), that mechanical work

and perhaps terminal force cues influence the perception of compliance. In experiments

using the Linear Grasper and the same experimental protocol used in this thesis, Tan et al

(1995) demonstrated that mechanical work and terminal force cues bias subject responses

when discriminating compliance in a roving displacement paradigm. Furthermore, when

mechanical work cues were eliminated, compliance JNDs varied from 15-99% and were

most parsimoniously explained by terminal force JNDs from 5-7%. Perhaps the results of

compliance, viscosity and mass discrimination performance can all be explained in terms of

mechanical work or force JNDs. However, experiments to measure mechanical work

JNDs under various conditions need to be performed before the fundamental nature of

mechanical work versus force can be better debated.

Most investigations of kinesthesis have focused on force and position (Clark and

Horch, 1986) and it is unclear how people would estimate mechanical work or perform

some form of force averaging over distance. For force, there appear to be two separate

mechanisms involved in perception: one arising from tension receptors in the Golgi tendon

organs and another resulting from copies of centrally generated motor signals that get fed

back to perceptual areas of the brain, called corollary discharges. These corollary

discharges appear to be intrinisically connected to subjective impressions of "effort"

(McCloskey, 1981). Perhaps, then, subjects attempt to grasp with the same "effort" on

every trial (perceived centrally) and measure the resulting tension (perceived

kinesthetically through Golgi tendon organs) over finger position (also perceived through

appropriate kinesthetic sensory organs). However, it should be noted that the perceptual

interaction between force and position is complicated; for example, it has been shown that

in the presence of a resisting elastic force, subjects tend to underestimate position (Watson

et al, 1984). Thus any discussion about the underlying physiological basis for viscosity

and mass perception is speculative at best.
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9.2 Future Work

There are several potential avenues for future work, two of which are discussed

below.

9.2.1 Complex Object Perception

Because baseline JNDs have been established for the fundamental physical

properties of force, compliance, viscosity and mass, experiments can now be initiated to

measure the ability to discriminate among complex objects that have various combinations

of all or some of these properties. Specifically, experiments could be conducted to

measure the ability of subjects to resolve combinations of these properties into their

constituent components or simply to measure the ability to resolve differences in the

overall mechanical impedance between two complex objects.

These experiments should allow us to test the validity of the active pinch grasp

discrimination hypothesis for more complicated objects. First, by recording motor

performance during these experiments, we should be able to determine if other subjects

apply the same stereotypical force profiles that were recorded for viscosity and mass

discrimination. Furthermore, if we postulate that subjects will apply a similar linear force

ramp, then for any two objects which consist of different linear combinations of these

mechanical properties, we should be able to predict if the resulting spatial force profiles of

the objects will be sufficiently different enough to allow the subjects to discriminate on the

basis of force. Hopefully, combined with other experiments that measure mechanical

work JNDs we may be able to determine if there is an underlying mechanism that can

explain active touch discrimination performance for a wide range of object properties.

9.2.2 Multimodal Perception of Object Properties

Another avenue of future work is in the area of multimodal perception of object

properties. With a baseline of purely haptic based JNDs for these properties, we can

explore the influence of other modalities such as vision and audition on haptic perception

of viscosity or mass, for example.
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Some preliminary work has already been done in this area regarding on the

perception of stiffness in the presence of altered visually presented spatial cues

(unpublished work by the author and Srinivasan). Initial results strongly suggest that the

phenomena of visual dominance (See Rock and Victor, 1963; and a review by Welch and

Warren, 1986) can be used change the perceived stiffness of a "virtual spring". In these

experiments, subjects were given graphically presented visual information on hand

location, as they used pushed with their hand on a force-reflecting device with a force

profile that was linearly increased with the distance pushed. By altering the relationship

between the actual distance pushed and the visually displayed pushing distance, we could

manipulate the relative level of perceived stiffness of the spring. One explanation,

consistent with the pinch grasp discrimination hypothesis, is that by altering the spatial

force mapping with visual information we were able to modify the perceived stiffness of

the spring.

These are only preliminary results, but point to an interesting and potentially very

relevant area of research for virtual environments. Similar research with sound and or

visual cues also needs to be investigated.

9.3 Conclusion

In this thesis, the manual resolution of viscosity and mass was explored and the

role of sensorimotor performance in affecting the discrimination of these properties was

investigated. The results indicated that even though the magnitude of the forces,

velocities, and accelerations were different among subjects and across experimental

conditions, certain fundamental motor performance characteristics could be observed. An

analysis of these motor characteristics lead to the postulation of a simple sensorimotor

strategy to explain motor performance for both viscosity and mass discrimination

experiments. This strategy is not only consistent with the observed motor data but also

successfully predicts the measured discrimination for viscosity and mass.

--- ___ ----



Appendix A

The following is taken directly from Durlach (1968) and is reprinted with permission.

The One Interval Two Alternative Forced Choice (11-2AFC) Paradigm

Basic Structure and Procedure:

The one-interval, two alternative forced choice experiment is designed such that:

1) There are two admissible stimuli, S and S 2.

2) There are two admissible responses, R and R 2.

3) On each trial, the experimenter presents S or S2 randomly with a priori probabilities

P(Si) and P(S 2) = 1 - P(Si).

4) The subject is instructed to respond R1 when stimuli S is presented and R 2 when the

stimuli S 2 is presented.

5) The experimenter "pays off' the subject for responding Rj to Si with a positive reward

when j = i and a negative reward j i.

For all the discrimination experiments carried out in this thesis, S and S 2 are

identified with specific non-zero stimuli, for example, two distinct viscosities. The

paradigm is called "one-interval" because only one of the two admissible stimuli is given

on a single trial. The term "two alternative forced choice" refers to the fact there are only

two allowable responses and that the subject is forced to choose one of them. In addition,

for all the discrimination experiments in this thesis, the subject is provided with correct

response feedback upon selecting a response.
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The results of a particular discrimination experiment can be organized by a 2x2

matrix whose entries are the relative frequencies of responding R, to Sj:

N(RiIS )
i = N(RISj) + N(R2 sij)

where N( Ri I Sj) is the number of times the subject responded Ri to Sj, and N( R I Sj ) + N(

R2 I Sj) is the number of times Sj was presented. To the extent thatf(R, I S ) andf(R, I S2 )

have different values measures the extent to which the subject has demonstrated a

sensitivity to differences in S1 and S2. The extent to which bothf(R] I S ) andf(R2 I S ) are

close to unity measures the degree to which the subject has exhibited a bias to respond R1

rather than R 2-

Decision Model for the 1I-2AFC Paradigm

The axioms of the I-2AFC decision model are:

1) There exists a real random variable X, (the "decision space") with the property that

each stimulus presentation determines a value of X. The decision space is assumed to

be unidimensionable.

2) There exists a fixed cut-off value, C, (the "criterion") on the X axis.

3) The subject responds RI if and only if, X < C and R 2 if and only if, X > C.

The statistics of X are independent of all aspects of the experiment except S and

S2, and are described completely by the conditional probability density functions p,(X,,IS)

and p.(X,,I S). In particular the statistics are independent of the a priori probabilities and

payoffs, and the trials of the experiment are statistically independent.

The model is illustrated in Figure B-1. The conditional response probabilities P(Ri I Sj)

are given by:

P(RIS,)= fp(X4oSi)dXo P(R21SI)= p.(Xo 1 )dX0

P(R,IS 2) = p,(XolS2)dXo P(R21S2)= fcPx(XoIS2)dXo

and are related by:
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Figure A.1: Decision Model for 1I-2AFC Paradigm

P(R, ISj) + P(R2 S) = 1 for j = 1, 2

According to the model, the sensitivity of the system is determined by the extent to which

the densities are nonoverlapping, and the bias of the system by the criterion C. Generally,

the value of C is presumed to depend on the payoffs and the a priori probabilities P(Sj).

For example, if the subject is informed that P(S1 ) >> P(S2), the subject is likely to be

biased towards responding Ri rather than R 2 and therefore will choose a relatively large

value of C. It is also important to note that the decision model implies that a change in a

priori probabilities or payoffs will not affect the underlying conditional probability density

functions.

The model is further specified by assuming the conditional probability densities are

Gaussian and of equal variance:

(XI-Mj)
2

px(XOISj) -A e 2a'
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The assumption that the densities are Gaussian is reasonable if X is assumed to be the sum

of a large number of similar, independent, random variable and assume that some form of

the Central Limit Theorem is applicable. This assumption combined with the assumption

of equal variances makes the model very simple mathematically. From this a sensitivity

index, d', can be defined as the normalized difference between the means of the two

densities (Ml and M 2):

d'= (M 2- MI)/C

A bias, p1, can be defined as the normalized deviation of the response criterion, C, from the

midpoint between the two means:

= [C - (M 2 + MI) /2] /o

The normalization has been chosen so that 13 = 0 when the subject exhibits unbiased

behavior, 3 = 0.5d' when C = M 2 and 13 = -0.5d' when C = M,.

Generally speaking the values of d' are found to be roughly proportional to the

difference between SI and S 2, typically denoted by the incremental difference (AS/Si).

Given this proportionality, performance can be summarized by the slope 6 = d'/(AS/S)

averaged over the different values of AS/S, tested for the same Si. The JND is defined for

the performance threshold of d'= 1. The Weber fraction denoted by JND% is computed

by from the average 6:

JND% = -*100%
6



Appendix B

Viscosity Discrimination Motor Performance Data:

Presented in Appendix B is the motor performance data recorded during the

viscosity discrimination experiments with different references. For each subject, force and

velocity data are plotted versus time and squeezing distance for all references. Because

there was a considerable amount of data recorded during these experiments, for each

subject, only data from one experimental run is shown for each stimulus pair. Data from a

total of 2,304 trials are presented.

---- _ I__I_ Ip� �__I_1�I__� IIIIIICI-�ll)l ·ICI1_I-�---(�CIIIII�--



122

Subject JY: Bref=60Ns/m, Bcomp=54Ns/m

0 0.2 0.4 0.6
T(sec)

Subject JY: Bref=60Ns/m, Bcomp=54Ns/m
.LU

8

r,

4

2

f3
0.8 0 5 10

x(mm)
15 20 25

Subject JY: Bref=60Ns/m, Bcomp=51Ns/m

0 0.2 0.4
T(sec)

Subject JY: Bref=60Ns/m, Bcomp=5lNs/m

E

0.6 0.8

Subject JY: Bref=60Ns/m, Bcomp=48Ns/m

0 0.2 0.4
T(sec)

i
OW

0.6 0.8

0 5 10 15 20 25
X(mm)

Subject JY: Bref=60Ns/m, Bcomp=48Ns/m

5 10 15 20 25
X(mm)

Subject JY: Bref=60Ns/m, Bcomp=45Ns/m Subject JY: Bref=60Ns/m, Bcomp=45Ns/m

0 0.2 0.4
T(sec)

8
8

sk

0.6 0.8

6

4

2

0
5 10 15 20 25

X(m)

Figure B.1: Force Data for Subject JY with Reference Viscosity =60ONs/m. Force data plotted versus
time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was
presented and dotted lines represent trials where the comparison was presented
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Figure B.2: Force Data for Subject JY with Reference Viscosity =12ONs/m. Force data plotted versus
time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was
presented and dotted lines represent trials where the comparison was presented.
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Figure B.6: Velocity Data for Subject JY with Reference Viscosity =180Ns/m. Velocity data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure B.7: ForceData for Subject ZS with Reference Viscosity = 60Ns/m. Force data plotted versus
time and squeezing distance for all stimulus pairs. Solid lines arefor trials where the reference was
presented and dotted lines represent trials where the comparison was presented.
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Figure B.8: ForceData for Subject ZS with Reference Viscosity = 12ONs/m. Force data plotted versus
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presented and dotted lines represent trials where the comparison was presented.
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Figure B.9: ForceData for Subject ZS with Reference Viscosity = 18ONs/m. Force data plotted versus
time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was
presented and dotted lines represent trials where the comparison was presented.
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Figure B.10: Velocity Data for Subject ZS with Reference Viscosity = 60ONs/m. Velocity data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure B.11: Velocity Data for Subject ZS with Reference Viscosity = 12ONs/m. Velocity data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.

Subject ZS: Bref=120Ns/m, Bcomp=lO8Ns/m
U0

>1

-4.,4
U
0
H
oo

0 0.1 0.2 0.3 0.4 0.5
T(sec)

Subj
u zuu
0

' 150

100

0
H

Iect ZS:

U U..

zUU

0

- 150

100
oi
-4
o 50
o

0 0.1

U . : : :

o ' " " " ...

0 i - * * sso >e @@ w *w- sw +9 *9 *w w@ v SS SS z. .t'% ·r :··: · ·,:~ o ~ ~ls·: z · · -· · · · ·:· ·:

n ~·:· · · ·:· · · · · · · ·:· · ·

ject ZS:Sub
Z 

2 0 0

s 150

>1 100

-4
u 50
-4
· A

. .

'

.. · r····
·· ·· ··· ··-·.:.;�:�i�L�·IL�I-.\.·.·C·i\'· ;'-·-·· -· ·

·Irf

... .... ~~...·, .. ..... '" .

· ·

-

~~............ ..... 

-

I n P V

I

Hig es

.. .. . . .. .. . . . . . . . . .. . . . .

: . , . I

v

u1

.I

I

tl

. .. ..· · . . . . ..

..·............

.............. ,

. . . . . .. .

v 



133

Subject ZS: Bref=180Ns/m, Bcomp=162Ns/m

U U./ .(sec)
T(sec)

Subject ZS: Bref=18ONs/m, Bcomp=162Ns/m
u 200

e 1 5 0 ................150

· 0
> 

u.o u.
X(mm)

Subject ZS: Bref=180ONs/m, Bcomp=153Ns/m
u200

E 150 ... .................................

>10

§ 50

0
0 0.2 0.4 0.6 0.8

T(sec)

Subject ZS: Bref=18ONs/m, Bcomp=144Ns/m
u 200

E 150 .................. ........................
.50 

-10

0 0 T(0.2 0.4 0.6 0.8

Subject ZS: Bref=180Ns/m, Bcomp=153Ns/m

e 200

150

, 100'
-,4

50 ..... .

0

X(mm)

Subject ZS: Bref=180Ns/m, Bcomp=144Ns/m
200 

e10 . . .....::: ...... .........>100 ..

O 0

X(v (m)(mm)

Subject ZS: Bref=180Ns/m, Bcomp=135Ns/m
u 200 : ·i• : :.
- 100 ...........
>h100

- ,4
0 1

Subject ZS: Bref=180Ns/m, Bcomp=135Ns/m
u200

150 ... ....

100

0 50 .... ................o

0 0.2 0.4 0.6 0.8 5 10 15 20 25
T(sec) X(mm)

Figure B.12: Velocity Datafor Subject ZS with Reference Viscosity = 18ONs/m. Velocity data plotted
versus time and squeezing distance for all stinmulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure B.13: Force Data for Subject DH with Reference Viscosity =60Ns/m. Force data plotted versus
time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was
presented and dotted lines represent trials where the comparison was presented.
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Figure B.14: Force Data for Subject DH with Reference Viscosity =12ONs/m. Force data plotted
versus tine and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure B.15: Force Data for Subject DH with Reference Viscosity =18ONs/m. Force data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented
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Figure B.16 Velocity Data for Subject DH with Reference Viscosity =60ONs/m. Velocity data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure B.17:Velocity Datafor Subject DH with Reference Viscosity =12ONs/m. Velocity data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure B.18: Velocity Data for Subject DH witht Reference Viscosity =180Ns/m. Velocity data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Appendix C

Mass Discrimination Motor Performance Data:

Presented in Appendix C is the motor performance data recorded during the mass

discrimination experiments with different references. For each subject, force and

acceleration data are plotted versus time and squeezing distance for all references.

Because there was a considerable amount of data recorded during these experiments, for

each subject, only data from one experimental run is shown for each stimulus pair. Data

from a total of 2,304 trials are presented.
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Figure CA.: Force Data for Subject AM with Reference Mass = 6kg. Force data plotted versus time and
squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was presented and
dotted lines represent trials where the comparison was presented.
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Figure C.2: Force Data for Subject AM with Reference Mass =9kg. Force
squeezing distance for all stimulus pairs. Solid lines are for trials where the
dotted lines represent trials where the comparison was presented.
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Figure C.3: Force Data for Subject AM with Reference Mass = 12kg. Force data plotted versus time
and squeezing distancefor all stimulus pairs. Solid lines are for trials where the reference was presented
and dotted lines represent trials where the comparison was presented.
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Figure C.4 Acceleration Data for Subject AM with Reference Mass = 6kg. Acceleration data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure C.5: Acceleration Data for Subject AM with Reference Mass = 9kg. Acceleration data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented

Cl

* 1500

I 1000

* 500

ue 

: : : : :

...... ·. ....... ·........ ........... ........................g

·.: ;.. ... i:.';< -.- .: ..
... ... ....... :;A,. ...... - _:--..... .. :'. .··

:'l _..

20,nr

15 20 25

: : : : 
~~~~·........................................................

.~~~~~~~t. . .

.. A_.....

E)o

'4U0

U
HID
U
U

1500

1000

500

U
* 1500

1000

* 500U
U

*. ..
. ...: .- i...,: :- : :
. ·. . .

': . -. -- .. ';- ' ~,, -. .. ~.-~~ .. :M. · : ,

: : : *

~~~~~'~~~~.... c· · .·

........ _

I . . . . ?

! . . J

IIIl!VV Jill1llS VVV

I
.. . . . . . . . ... . .. . . . . . . . .. . . . . .

. . . . . . .. . .. . . ... . . .. .

I

l i ! I ! !
I

I

I[I
I

. . . . .

.
r

·- ······. ·�·�· · · · · ··· · · · ·· · · ·I

.;: ( i L.:Li.. ·:::' '''' ·... .. �r
·I�.�-�,�:�:�c=�·�:rs--, '";·'·'""'

''' ' ' '''
I

[1 J ~ i i 

----illill o vVv
nn --

S vvv

J!
I

n & . . . !
lB



146

Subject AM: Mref=12kg, Mcomp=1O.8kg
----

Subject AM:
ZUUU

o 150

I 100

* 50
U

0 0.05 0.1 0.15 0.2 0.25
T(sec)

Subject AM: Mref=12kg, Mcomp=9.6kg
I nn 

0 0.05 0.1 0.15 0.2 0.25
T(sec)

0

0

0

A

Mref=12kg, Mcomp=10.8kg

0 5 10 15 20 25
X(mm)

Subject am:
2000 

;Z
0
11

0

Ugli

Subject AM: Mref=12kg, Mcomp=8.4kg
I nn 

0.05 0.1 0.15 0.2 0.25
T(sec)

Mref=12kg, Mcomp=9.6kg

0 5 10
X (m

Subject AM:
2 0 0 0 .

<A

o 15

10
-4

5

u

0 5 10
x(~

15 20 25

Mref=12kg, Mcomp=8.4kg

15 20 25

Subject AM: Mref=12kg, Mcomp=7.2kg

0 0.05 0.1 0.15 0.2 0.25
T(sec)

ZUUU

ClU
I"4

H
UU

1500

1000

500

)

Subject AM:
I- n nn 

Mref=12kg, Mcomp=7.2kg

0 5 10 15 20 25
x( )

Figure C.6: Acceleration Data for Subject AM with Reference Mass = 12 kg. Acceleration data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure C.7: Force Data for Subject BM with Reference Mass = 6kg. Force data plotted versus time and
squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was presented and
dotted lines represent trials where the comparison was presented.

I

R

Subject BM: Mref=6kg, Mcomp=5.4kg

X(mm)
5

5 10
X (mm)

2
W

I

z
N

II I ' - I

I I I, .Vr

.. . . . . . . . . . . . . . . . . . . . . .

_ .

i
. . : . . .

: . . .



Subject BM: Mref=9kg, Mcomp=8.lkg

0 0.2 0.4 0.6 0.8 1
T(sec)

Subject BM: Mref=9kg, Mcomp=7.2kg

148

i
124

1*4

0 0.2 0.4 0.6 0.8
T(sec)

Subject BM: Mref=9kg, Mcomp=6.3kg

10
z

5

0
0 0.2 0.4 0.6 0.8

T(sec)

Subject BM: Mref=9kg, Mcomp=5.4kg

Subject BM: Mref=9kg, Mcomp=8.lkg
13

10

0
5 10

X(mm)
15 20 25

Subject am: Mref=9kg, Mcomp=7.2kg

0 5 10 15 20 25
X((mm)

Subject BM: Mref=9kg, Mcomp=6.3kg

0 5 10 15 20 25
x (mm)

Subject BM: Mref=9kg, Mcomp=5.4kg
qe

0.2 0.4 0.6
T(sec)

i
h-

10

5

n
0.8 1 C 5 10 15 20 25

X(mm)

Figure C.8: Force Data for Subject BM with Reference Mass =9kg. Force data plotted versus time and
squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was presented and
dotted lines represent trials where the comparison was presented.
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Figure C.9: Force Data for Subject BM with Reference Mass = 12kg. Force data plotted versus time
and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was presented
and dotted lines represent trials where the comparison was presented.
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Figure C.10 Acceleration Data for Subject BM with Reference Mass = 6kg. Acceleration data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure C.11: Acceleration Data for Subject BM with Reference Mass = 9kg. Acceleration data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure C.12: Acceleration Data for Subject BM with Reference Mass = 12 kg. Acceleration data
plotted versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the
reference was presented and dotted lines represent trials where the comparison was presented.
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Figure C.13: Force Data for Subject JN with Reference Mass = 6kg. Force data plotted versus time
and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was presented
and dotted lines represent trials where the comparison was presented.
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Figure C.14: Force Data for Subject JN with Reference Mass =9kg. Force data plotted versus time and
squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was presented and
dotted lines represent trials where the comparison was presented.
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Figure C.15: Force Data for Subject JN with Reference Mass = 12kg. Force data plotted versus time
and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference was presented
and dotted lines represent trials where the comparison was presented
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Figure C.16 Acceleration Data for Subject JN with Reference Mass = 6kg. Acceleration data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure C.17: Acceleration Data for Subject JN with Reference Mass = 9kg. Acceleration data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented.
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Figure C.18: Acceleration Data for Subject JN with Reference Mass = 12 kg. Acceleration data plotted
versus time and squeezing distance for all stimulus pairs. Solid lines are for trials where the reference
was presented and dotted lines represent trials where the comparison was presented
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Appendix D

Discrimination Experiments: Software Algorithms

Viscosity/Mass Discrimination Software:

* File: dashd25.c

* Copyright 1994 MIT Research Laboratory for Electronics

* Contents: Linear Dashpot/Viscosity Discrimination Experimental Software
* Created: 05/04/94
* Author: Lee Beauregard
* Revision: 4.1 (4/27/95)

* Remarks: presents 11I 2AFC viscosity stimuli at 1 KHZ with a
* fixed displacement of 25mm & logs position, velocity, acceleration
* and force at a 200 hz sampling rate into MAT-file format.
************************************************************ /

/* INCLUDE FILES

#include "stdio.h"
#include "stdlib.h"
#include "dos.h"
#include "alloc.h"
#include "time.h"
#include "/ASO 1600/C/userprot.h"

/* LOCAL VARIABLES
***************************************************

DDH DAS1600;
char NumOfBoards;
int Err;
int da_value;
long ad_value;

/* Device Handle */
/* Number of boards in DAS 1600.cfg */
/* Function return error flag */
/* Storage for D/A value */
/* Storage for A/D value */
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/* CONSTANTS
**************************************************/

#define DEFAULT_FILE
#define BASE 0x300
#define COUNT_1 OxOd
#define COUNT_2 OxOe
#define CONTROL OxOf

/* TYPES
************* ********** **********************

typedef struct configinfo {
int
int
double
double
int
char
char
char
char
char

num_trials;
*trial;

stiff_l;
stiff_2;
feedback;
subject_name[40];
testdate[40];
hand[40];
age[20];
test_type[40];

char experimenter[40];

"dashpot.cfg"
II base address of das 1600 board
II counter I address
// counter 2 address
I1 timer control byte address

/* Number of trials */
/* Stiffness i */
/* Viscosity Stimulus I */
/* Viscosity Stimulus 2 */
/* Feedback status flag */
/* Subject's name */
/* Date of Experiment */
/* Hand evaluated */
/* Subject's age */
/* Type of experiment */
/* Experiementer's name */

} CONFIG_INFO;

/* LOCAL FUNCTIONS

void initialize_hardware();
void initialize_timer();
void cursor_off();
void cursor_on();
void motor_output();
void print_config();
void print_labels();
void read_config();
double read_velocity();
double read_force();
double read_position();
double read_accel();
double actual_mm( double xdc );
double actual_velocity( double v_dc );
double actual_newtons( double f_vdc );
double actual_accl( double adc );
int rnd_stim(int n, int *s);
int rnd_position();

CONFIG_INFO *create_config();

/* LOCAL VARIABLES

CONFIG_INFO *config; /* Configuration information */

/* MAIN
*********************************************l

void main(argc, argv)
int argc; /* number of command line arguments */
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char *argv[];
I
FILE
time_t
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

/* command line arguments */

*fp,*ptr; /* data and reponse file pointers */
t;
v_vdc; /* velocity measured in volts dc */
a_vdc; /* aceeleration in volts */
x_vdc; /* position in volts dc */
f_vdc; /* force in volts dc */
position; /* position (mm) */
velocity; /* velocity in mm/s */
force; /* force in newtons */
acceleration; /* acceleration in mm/s/s */
foffset,a_offset; /* force offset */
drive; /* linear motor drive (v) */
drive_force; /* driving force to be generated */
damping_coeff; /* damping coefficient (Ns/mm) */
position_data[1500]; /* position data array */
velocity_data[1500]; /* velocity data array */
force_data[1500]; /* force data array */
accel_data[1500]; /* acceleration data array */
select=O; /* data logger selector */
stim_real[2];

int value;
int i.j,l, n_trial;
int index;
int stim[256
int x_data[256];
int response[256];
int x_max;
int cl=0, c2=0;
int missed 1 ,missed2;
int flag,wait,rate=0;
int delta_count;
int delta=O,error=0;
int old_count,new_count,dum;

char
char
char
char

char
char
char
char
char
char
char
char
char
double
double

filename[40];
datafile[40];
matfile[40];

c;

xmat[4];
fmat[4];
vmat[4];
amat[4];
string[3];
*posx="x";
*forf="f';
*velv="v";
*acca="a";

trial[64];
resp[64];

/* random number */
/* trial number */
/* index */
/* array holding stim presentation order */
/* array holding roving distance values */
/* array holding subject response order */
/* maximum position to apply force */
/* counters for correct stimuli detection */
/* counters for missed detections */
/* flags for data logging */
/* count difference in timer routine */
/* sampling rate error values */
/* Isb,msb timer counter values */

/* filename */
/* data file name */
/* mat file name */
/* subject's response */

/*MAT file variables */

/* Configuration information */
if (argc >= 3) (
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strcpy(filename, argv[l] );
strcpy(datafile, argv[2]);
strcpy(matfile, argv[3]);

else {
strcpy(filename, DEFAULT_FILE);
strcpy(datafile, "dashpot.dat");
strcpy(matfile, "dash.mat");

config = create_config();
read_config(filename);
n_trial = config->num_trials;
rnd_stim(n_trial, stim); / generate random stim array
clrscr();
strcpy(xmat, posx);
strcpy(fmat, forf);
strcpy(vmat, velv);
strcpy(amat, acca);

11 DETERMINE FORCE OFFSET

initialize_hardware();
drive=0.0;
motor_output(drive);

printf("Hit the space bar for force sensor calibration\n");
while( !kbhit());
c = getch();

force = read_force();
f_offset = -21.195*force;
a_vdc = read_accel();
a_offset = 3331.8*a_vdc;

for (n_trial = 0; n_trial < config->num_trials; n_trial++) {

initializetimer();

11 RESET GRASPER TO HOME POSITION

drive = -0.10;
motor_output(drive);
x_vdc = read_position();
position = actual_mm( x_vdc );
while( (!kbhito) & (position > 1.5))(

x_vdc = read_position();
position = actual_mm( x_vdc );

cursoroff();
printlabels(n_trial);

/* RANDOMIZE BETWEEN 2 DAMPING COEFFICIENTS */

if (stim[n_trial] == 1)
damping_coeff = config->stiff_l;

--I I
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else
damping_coeff = config->stiff_2;

x_max = 10.0;
x_data[n_trial] = x_max;
x_vdc = read_position();
position = actual_mm( x_vdc );
select = 0.0;
wait= 1;

= 0;

flag = 1;

/* CONTROL LOOP

/ fixed displacement of 35mm
l/ record distance
// measure initial position

// data log every fourth trial
// wait used to store data at 500hz
// reset data array subscript

*/

while( position < x_max) {

if(flag == I ){
outportb( BASE + CONTROL, 0x80 );
old_count = inportb( BASE + COUNT_2 );
dum = inportb( BASE + COUNT_2 );
flag = 0;

outportb( BASE + CONTROL, 0x80 );
new_count = inportb( BASE + COUNT_2 );
dum = inportb( BASE + COUNT_2 );
delta_count = old_count - new_count;
) while ( delta_count == 0 );

/* READ SENSOR DATA
v_vdc = read_velocity();
velocity = actual_velocity( v_vdc );
x_vdc = read_position();
position = actual_mm( xvdc );
f_vdc = read_force();
force = actual_newtons( fvdc ) - f_offset;
a_vdc = read_accel();
acceleration = actual_accl( a_vdc ) - a_offset;

// control byte to read C2 status
// read lsb
// dummy msb read

// wait loop for I msec
/ control byte for C2
// read lsb
// dummy read msb

*/

/* CHECK COUNT VALUE FOR ONE DECREMENT
if (( delta_count != 1 ) && (delta_count != -255 ) && (select == 0))(

/i printf("Sampling rate error. Delta Count = %d\n",deltacount);
error = n_trial + 1;
delta = delta_count;

i/ cursor_on();
)

/* GENERATE DRIVE FORCE
drive = 0.0;
drive_force = damping_coeff*velocity-0.5;
drive = -0.0670*driveforce;

if (drive_force < 30.0) motor_output(drive);

**/

/* convert force to volts */

/* LOG DATA EVERY TRIAL

dot

*/

*/
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if (( 1 < 1500 ) && (rate == 0) && (select == 0.0))
velocity_data[l] = velocity;
position_data[l] = position;
force_data[l] = force;
accel_data[l] = acceleration;
1++;

wait++; /* Sample at 200 hz */
rate = wait%5;
old_count = new_count;

/* End of while loop */

drive = 0.0; /* Shut drive off run */
motor_output(drive);

/* RECORD SUBJECTS RESPONSE */

printf("Type '' for the greater viscosity, Type '2' for the lesser viscosity \n");
c = getch();

while(( c != 'I') & (c != '2'))(
printf("Type '1' for the lesser viscosity, Type '2' for the lesser viscosity \n");
c=getch();

switch( c ){
case '1':

response[n_trial] = 1;
resp[n_trial] = 1.0;
break;

case '2':
response[n_trial] = 2;

resp[n_trial] = 2.0;
break;

/* FEEDBACK PRESENTATION */

if (config->feedback == 1){
if (response[n_trial] == stim[n_trial])

printf("Correct Response\n");
else printf("Incorrect Response\n");

/* WRITE VELOCITY, FORCE AND POSITION DATA TO MAT-FILE

if ((ptr=fopen(matfile, "a+b")) = NULL)
printf("can not open file\n");
return;

j=n_trial+l;
if (stim[n_trial] == 1) trial[n_trial]=l .0;
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else trial[n_trial]=2.0;

itoa(j, string, 10);
strcat(xmat, string);
strcat(fmat, string);
strcat(vmat, string);
strcat(amat, string);
savemat(ptr, 0, xmat, 1, 1, 0, position_data, (double *)0);
savemat(ptr, 0, fmat, 1, 1, 0, force_data, (double *)0);
savemat(ptr, 0, vmat, 1, 1, 0, velocity_data, (double *)0);
savemat(ptr, 0, amat, 1, 1, 0, accel_data, (double *)0);
savemat(ptr, 0, "trmat", 64, 1, 0, trial, (double *)0);
savemat(ptr, 0, "rspmat", 64, 1, 0, resp, (double *)0);
fclose(ptr);
strcpy(xmat, posx);
strcpy(fmat, forf);
strcpy(vmat, velv);
strcpy(amat, acca);

cursor_on();
} /* End o:
drive = 0.0; /* Shut 
motor_output(drive); t* END

WRITE TO RESPONSE DATA FILE

//array holding stim order
//array holding response order

f for loop */
off drive after all trials are run */
) OF ALL TRIALS */

*/

if ((fp=fopen(datafile,"a")) == NULL)(
printf("can not open file\n");
return;

t = time(NULL);
if ( error > 0 ) fprintf(fp, "sample rate error at trial %d\t delta = %d\n",error,delta);
fprintf(fp, "%s\n", config->subject name);
fprintf(fp, "%s\n", config->age);
fprintf(fp, "%s\n", config->hand);
fprintf(fp, "%s", ctime(&t));
fprintf(fp, "%s\n", config->test_date);
fprintf(fp, "%s\n", config->test_type);
fprintf(fp, "%s\n", config->experimenter);
fprintf(fp,"Feedback Status (=on 0=oft): %d\n", config->feedback);
fprintf(fp,"Reference Damping:\t %4.3t\n", config->stiffl);
fprintf(fp,"Damping #2:\t %4.3f\n", config->stiff_2);
fprintf(fp,"TRIAL#\t STIMULUS\t RESPONSE\t ROVING DISPLACEMENT'n");
for ( i=0; i < config->num_trials; i++) {

j=i+l;
fprintf(fp,"%3.ld\t %5.d\t %12.1 d\t %18.1 d\n",j,stim[i],response[i],x_data[i]);

fprintf(fp,"\n");

/* CALCULATE CONFUSION MATRIX AND WRITE TO DATA FILE */
for (n_trial = 0; n_trial < config->numtrials; n_trial++) 

if (stim[n_trial] == 1)(
if (stim[n_trial] == response[n_trial]) cl=cl+l;

if (stim[n_trial] == 2)(
if (stim[ntrial] == response[n_trial]) c2=c2+1;

I*

· _I_1__111_111111 111_1__--�----1.__ _._- -I -1 -----_-_-1_11_
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missed 1= (config->numtrials)/2 - cl;
missed2 = (config->numtrials)/2 - c2;
fprintf(fp, "Damping 1 was correctly detected %d times\n", cl);
fprintf(fp, "Damping I was missed %d times\n", missedl);
fprintf(fp, "Damping 2 was correctly detected %d times\n", c2);
fprintf(fp, "Damping 2 was missed %d times\n", missed2);
fprintf(fp,"\n");
fclose(fp);

cursor_on();

// FUNCTIONS USED IN ALL DISCRIMINATION EXPERIMENTS

/* INITIALIZE HARDWARE
---------------------------------------- . .... .*/

void initialize_hardware(

/* Initialize the hardware/software */
if (( Err = DAS 1600_DevOpen("DAS 1600.CFG", &NumOfBoards )) != 0) {

fprintf(stderr,"test error: %x during DevOpen\n", Err);
exit(Err);

/* Establish communication with the driver */
if (( Err = DAS 1600_GetDevHandle(0, &DAS 1600)) != 0) (
fprintf(stderr. "test error: Error %x during GetDevHandle\n", Err);
exit(Err);

/* CREATE CONFIG
---------------------------------------- . ....... /

CONFIG_INFO *create_config()

CONFIG_INFO *config;

config = (CONFIG_INFO *) malloc(sizeof(CONFIG_INFO));
return(config);

/* READ CONFIG
---------------------------------------- . ... */

void read_config(filename)
char *filename;

char temp[40];
double value;

FILE *fp;

if ((fp = fopen(filename, "r")) == NULL) {
fprintf(stderr,"read_config error: unable to open file %s\n", filename);
exit(l);

fscanf(fp, "%s %d". temp, &(config->num_trials));
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config->trial = (int *) malloc(config->num_trials*sizeof(int));
fscanf(fp, "%s %lf', temp, &value);
config->stiff_l = value;
fscanf(fp, "%s %If", temp, &value);
config->stiff_2 = value;
fscanf(fp, "%s %d", temp, &(config->feedback));
fscanf(fp, "%s", &(config->subject-name));
fscanf(fp, "%s", &(config->age));
fscanf(fp, "%s", &(config->hand));
fscanf(fp, "%s", &(config->test_date));
fscanf(fp, "%s", &(config->testtype));
fscanf(fp, "%s", &(config->experimenter));

/* PRINT CONFIG

void print config(

printf("%lf\n", config->stiff_l);
printf("%olf\n". config->stiff_2);
printf("%d\n", config->feedback);

/* PRINT LABELS

void print_labels(n_trial)
int n_trial;

/* gotoxy(10,3); */

printf("\n");
printf("DASHPOT TRIAL No. %d\n", n_trial+l);

/* gotoxy(2, 8);
printf("Position (mm): ");
gotoxy(2, 10);
printf(" Force (N): ");
gotoxy(2, 12);
printf(" Drive (v): "); */

/* READ POSITION

-double readposition

/* Read channel 0 at gain 1; store sample in ad_value */
if ((Err = K_ADRead(DAS 1600, 0, 0, &ad_value)) != 0) {

fprintf(stderr," test error: Error in K_ADRead operation\n");
exit(Err);

)
return(((double) ((ad_value >> 4) - 2048))/204.8);

/* READ FORCE

double read_force()

/* Read channel 2 at gain 8; store sample in ad_value */
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if ((Err = K_ADRead(DAS 1600, 2, 3, &ad_value)) != 0) {
fprintf(stderr," test error: Error in K_ADRead operation\n");
exit(Err);

return(((double) ((ad_value >> 4) - 2048))/204.8);

/* READ ACCELERATION

double read_accel()

/* Read channel 3 at gain 1; store sample in ad_value */
if ((Err = K_ADRead(DAS 1600, 3, 0, &ad_value)) != 0) {

fprintf(stderr," test error: Error in K_ADRead operation\n");
exit(Err);

return(((double) ((ad_value >> 4) - 2048))/204.8);

/* READ VELOCITY
---------------------------------------- . ...... */

double read_velocity()
{
/* Read channel 1 at gain 1; store sample in ad_value */
if ((Err = K_ADRead(DAS 1600, 1, 0. &ad_value)) != 0) {

fprintf(stderr," test error: Error in K_ADRead operation\n");
exit(Err);

return(((double) ((ad_value >> 4) - 2048))/204.8);

/* MOTOR OUTPUT
---------------------------------------- . ...... */

void motor_output(drive)
double drive; /* motor output (volts) */

da_value = ((int) (drive*204.8) + 2048) << 4;

/* OUTPUT DAvalue TO DAC #0 */
if ((Err = K_DAWrite (DAS 1600, 0, da_value)) != 0) {

fprintf (stderr,"test error: Error in K_DAWrite operation.");
exit(l);

/* CURSOR OFF
----------------------------------------........

void cursor_off()

union REGS in_regs, out_regs;

in_regs.h.ah = 0x01;
in_regs.h.ch = 0x10;
in_regs.h.cl = 0x00;
int86(0x 10, &in_regs, &outregs);
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/* CURSOR ON

void cursor on(

union REGS in_regs, outregs;

in_regs.h.ah = OxOl;
in_regs.h.ch = Ox 10;
in_regs.h.cl = Ox lO;
int86(Ox 10O, &in_regs, &outregs);

/* ACTUAL_ACCL

converts accelerometer voltage to mm/sec/sec */
double actualaccl( double a_dc)

double accelrate;

accelrate = 3331.8*adc;
return( accelrate );

/* ACTUAL_MM

converts voltage measurement of position into actual mm traveled */

double actual_mm( double xdc)

double x_mm;

x_mm = 24.955*xdc + 53.77;

return( x_mm );

/* ACTUAL_VELOCITY

converts velocity voltage measurement to mm/sec */

double actual_velocity( double v_dc)

double speed;

speed = -31.4735*v_dc - 1.26; // away from rest is positive velocity

return ( speed );

/*ACTUAL_NEWTONS

converts force voltage measurement in actual force in newtons */

double actual_newtons( double f_vdc)

double fnewton;
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f_newton = -21.195*f_vdc;

return ( f_newton );

/*TIMER INITIALIZATION ROUTINE

void initialize_timer(

// counterl is a divide-by-n counter

outportb( BASE + CONTROL, 0x74 ); // set counterl control byte
outportb( BASE + COUNT_I, Oxl0 ); /set n = 10,000
outportb( BASE + COUNT_1, 0x27 ); // by loading least sign. byte first

outportb( BASE + CONTROL, 0xc4 ); // set counter2 control byte
outportb( BASE + COUNT_2, Oxff ); // set counter2 at 255
outportb( BASE + COUNT_2, 0xO0 ); / by loading Isb first

/*RANDOM POSITION GENERATOR
----------------------------------------. *

rnd_position()

int x;
x = random (1000);
if( x < 200) return (15);
if (( x >= 200) & (x < 400 )) return (20);
if (( x >= 400) & (x < 600 )) return (25);
if ((x >= 600) & (x < 800 )) return (30);
if ( x >= 800 ) return (35);
return (0);

}

/*RANDOM STIMULUS GENERATOR
----------------------------------------. *

rnd_stim(int n, int *s)

int i,x,n I,z,y,j,k;

z=0; y=0; n I =n/2; j=0; k=0;
randomize();

for(i=0; i<n; i++)(
x = random (20001);
x %=2; // determine if rand num is odd or even
if( x ==0) { //if even.....

if((y<nl )&(j<5)){
y++;
j++;

k=0;
*s= 1;

*s++;

else {
z++;
j=0;
*s = 2;

e;-
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*S++;

} t/if odd ....
else {

if((z<nl) &(k<5))

z++;
k++; j=0;
*s = 2;

*S++;

else (
Y++;
k=0;
*s= 1;
*S++;

if (y==z) return (1); else return (0); /* return(l) if # of stiml=stim2 */

/* SAVE DATA IN MAT-FILE FORMAT

savemat(ptr. type. pname, mrows, ncols. imagf, preal, pimag)

FILE *ptr; /* File pointer */
int type; /* Type flag: Normally 0 for PC. 1000 for Sun. Mac, and */

/* Apollo, 2000 for VAX D-float, 3000 for VAX G-float */
/* Add 1 for text variables. */
/* See LOAD in reference section of guide for more info. */

int mrows; /* row dimension */
int ncols; /* column dimension */
int imagf;/* imaginary flag */
char *pname; /* pointer to matrix name */
double *preal; /* pointer to real data */
double *pimag; /* pointer to imag data */

Fmatrix x;
int mn;
x.type = type;
x.mrows = mrows;
x.ncols = ncols;
x.imagf = imagf;
x.namlen = strlen(pname) + 1;
mn = x.mrows * x.ncols;

fwrite(&x, sizeof(Fmatrix), 1, ptr);
fwrite(pname, sizeof(char), (int)x.namlen, ptr);
fwrite(preal, sizeof(double), mn, ptr);
if (imagf) {(

fwrite(pimag, sizeof(double), mn, ptr);

}

1_ 1_1_ _____ _____~~~~~~~~~~--
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Mass Discrimination Software

* File: mass.c *

* Copyright 1994 MIT Research Laboratory for Electronics *

* Contents: Linear Dashpot
* Created: 05/04/94
* Author: Lee Beauregard
* Revision: 4.1 (5/04/95) *

* Remarks: presents 1I 2AFC mass stimuli at 1 KHZ with a *
* fixed displacement of 25mm & logs position, velocity, accel *
* and force at a 200 hz sampling rate into MAT-file format. *
****************************************************************/

/* INCLUDE FILES

#include "stdio.h"
#include "stdlib.h"
#include "dos.h"
#include "alloc.h"
#include "time.h"
#include "/ASO 1600/C/userprot.h"

/* LOCAL VARIABLES
*4:************************************

DDH DAS 1600; /* Device Handle */
char NumOfBoards; /* Number of boards in DAS 1600.cfg */
int Err; /* Function return error flag */
int da_value; /* Storage for D/A value */
long ad_value; /* Storage for A/D value */

/* CONSTANTS

#define DEFAULT_FILE "dashpot.cfg"
#define BASE 0x300 / base address of das 1600 board
#define COUNT_1 OxOd // counter 1 address
#define COUNT_2 OxOe //counter 2 address
#define CONTROL OxOf I timer control byte address

/* TYPES

typedef struct configinfo {
int num_trials; /* Number of trials */
int *trial; /* Stiffness i */
double stiff_l; /* Compliance 1 (mm/N) */
double stiff_2; /* Compliance 2 (mm/N) */
int feedback; /* Feedback status flag */
char subject_name[40]; /* Subject's name */
char test_date[40]; /* Date of Experiment */
char hand[40]; /* Hand evaluated */
char age[20]; /* Subject's age */
char test_type[40]; /* Type of experiment */
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char experimenter[40];
} CONFIG_INFO;

typedef struct {
long
long
long
long
long

} Fmatrix;

type;
mrows;
ncols;
imagf;
namlen;

/* Experiementer's name */

/* type */
/* row dimension */
/* column dimension */
/* flag indicating imag part */
/* name length (including NULL) */

/* LOCAL FUNCTIONS

void initialize_hardware();
void initialize_timer();
void cursor_off();
void cursor_on();
void motor_output();
void print_config();
void print_labels();
void read_config();
double read_velocity();
double read_force();
double read_position();
double read_accel();
double actual_mm( double xdc );
double actual_velocity( double v_dc );
double actual_newtons( double f_vdc );
double actual_accl( double a_dc );
int rnd_stim(int n, int *s);
int rnd_position();

CONFIG_INFO *create_config();

/* LOCAL VARIABLES

CONFIG_INFO *config; /* Configuration information */

/* MAIN
*************************************$******l

void main(argc, argv)
int argc;
char *argv[];

FILE *fp,*ptr;
time_t t;
double v_vdc;
double a_vdc;
double x_vdc;
double f_vdc;
double position;
double velocity;
double force;
double acceleration;
double foffset,a_offset;
double drive;

/* number of command line arguments */
/* command line arguments */

/* data and reponse file pointers */

/* velocity measured in volts dc */
/* aceeleration in volts */
/* position in volts dc */
/* force in volts dc */
/* position (mm) */
/* velocity in mm/s */
/* force in newtons */
/* acceleration in mm/s/s */
/* force offset */
/* linear motor drive (v) */
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double
double
double
double
double
double
double
double

drive_force;
mass;
position_data[ 1500];
velocity_data[ 1500];
force_data[ 1500];
accel_data[1500];
select=0;
stim_real[2];

int value;
int i,j,l, n_trial;
int index;
int stim[256];
int x_data[256];
int response[256];
int x_max;
int c I =0, c2=0;
int missed I ,missed2;
int flag,wait,rate=O;
int delta_count;
int delta=O,error=0;
int old_count,new_count,dum;

char
char
char
char
char
char
char
char
char
char
char
char
char
double
double

filename[40];
datafile[40];
matfile[40];
c;
xmat[4];
fmat[4];
vmat[4];
amat[4];
string[3];
* posx="x";
*forf="f";
*velv="v";
*acca="a";
trial[64];
resp[64];

/* driving force to be generated */
/* mass stimuli variable (kg) */
/* position data array */
/* velocity data array */
/* force data array */
/* acceleration data array */
/* data logger selector */

/* random number */
/* trial number */
/* index */
/* array holding stim presentation order */
/* array holding roving distance values */
/* array holding subject response order */
/* maximum position to apply force */
/* counters for correct stimuli detection */
/* counters for missed detections */
/* flags for data logging */
/* count difference in timer routine */
/* sampling rate error values */
/* lsb,msb timer counter values */

/* filename */
/* data file name */
/* mat file name */
/* subject's response */
/*MAT file variables */

/* Configuration information */

if (argc >= 3) (
strcpy(filename, argv[l ]);
strcpy(datafile, argv[2]);
strcpy(matfile, argv[3]);

else {
strcpy(filename, DEFAULT_FILE);
strcpy(datafile, "mass.dat");
strcpy(matfile, "mass.mat");

config = create_config();
read_config(filename);

n_trial = config->num_trials;
rnd_stim(n_trial, stim); // generate random stim array

----

k
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clrscr();

strcpy(xmat, posx);
strcpy(fmat, forf);
strcpy(vmat, velv);
strcpy(amat, acca);

ll DETERMINE FORCE OFFSET

initialize_hardware();
drive=0.0;
motor_output(drive);

printf("Hit the space bar for force sensor calibration\n");
while( !kbhit());
c = getch();

force = read_force();
f_offset = -21.195*force;
a_vdc = read_accel();
a_offset = 3331.8*a_vdc;

for (ntrial = 0; n_trial < config->num_trials; n_trial++) {

initialize_timer();

11 RESET GRASPER TO HOME POSITION

drive = -0.10;
motor_output(drive);
x_vdc = read_position();
position = actual_mm( x_vdc );
while ( (!kbhit()) & (position > 1.5)){
x_vdc = read_position();
position = actual_mm( x_vdc );

cursor_off();
print_labels(n_trial);

/* RANDOMIZE BETWEEN 2 MASSES COEFFICIENTS */

if (stim[n_trial] == 1)
mass = config->stiffl;

else
mass = config->stiff_2;

x_max = 10.0; I fixed displacement of 35mm
x_data[n_trial] = x_max; // record distance
x_vdc = read_position(; / measure initial position
position = actual_mm( x_vdc );

select = 0.0; / data log every fourth trial
wait = 1; / wait used to store data at 500hz
I = 0; // reset data array subscript

_�_1�1_ _11_-�1.--1. ·�-Ll-s_·1-�1111�-------_11_---1_11111_-I I- -- -�I^ I
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flag = 1;

/* CONTROL LOOP

while( position < x_max) {

if (flag == 1 )(
outportb( BASE + CONTROL, 0x80 );
old_count = inportb( BASE + COUNT_2 );
dum = inportb( BASE + COUNT_2 );
flag = 0;
}

do{ / wait loop for I msec
outportb( BASE + CONTROL, 0x80 );
new_count = inportb( BASE + COUNT_2 );
dum = inportb( BASE + COUNT_2 );
delta_count = old_count - newcount;
} while ( delta_count == 0 );

/* READ SENSOR DATA
v_vdc = read_velocity();
velocity = actual_velocity( v_vdc ):
x_vdc = read_position();
position = actual_mm( x_vdc );
f_vdc = read_force();
force = actual_newtons( fvdc ) - f_offset;
a_vdc = read_accel();
acceleration = actual_accl( a_vdc ) - aoffset;

//control byte to read C2 status
// read Isb
1 dummy msb read

I control byte for C2
//read Isb

// dummy read msb

*l

CHECK COUNT VALUE FOR ONE DECREMENT
if (( delta_count != I ) && (delta_count != -255 ) && (select == 0)){

error = n_trial + 1;
delta = delta_count;
cursor_on();

GENERATE DRIVE FORCE
drive = 0.0;
drive_force = (mass*acceleration/1000)-0.5;

if (drive_force < 30.0 )
drive = -0.0670*drive_force;
else 

drive=0.0;
motor_output(drive);
printf(" Program terminated\n");
printf(" Applied Force = %5.21f\t Drive Force = %5.21f\n", force, driveforce);
cursor_on();
exit(0);

if (( I < 1500 ) && (rate == 0) && (select == 0.0))
velocity_data[l] = velocity;
positiondata[l] = position;
force_data[l] = force;

*l

A'k

'W.
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accel_data[l] = acceleration;
1++;

wait++;
rate = wait%5;

/ Sample at 200 hz

old_count = newcount;

1/ End of while loop

drive = 0.0;
motor_output(drive);

/I Shut drive off run

*//* RECORD SUBJECT'S RESPONSE

printf("Type 'I' for the greater mass, Type '2' for the lesser mass\n");
c = getch();

while(( c != 'I') & (c != '2')){
printf("Type '1' for the greater mass, Type '2' for the lesser mass\n");
c=getch();

switch( c ){
case '1':

response[n_trial] = 1;
resp[n_trial] = 1.0;
break;

case '2':
response[n_trial] = 2;

resp[n_trial] = 2.0;
break;

}

FEEDBACK PRESENTATION */

if (config->feedback == 1){
if (response[n_trial] == stim[n_trial])

printf("Correct Response\n");
else printf("Incorrect Response\n");

/* WRITE VELOCITY, FORCE AND POSITION DATA TO MAT-FILE
---------------------------------------- *

if ((ptr=fopen(matfile, "a+b")) == NULL)(
printf("can not open file\n");
return;
I

j=n_trial+l;

if (stim[n_trial] == 1) trial[n_trial]=1.0;

/*

}
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else trial[n_trial]=2.0;

itoa(j, string, 10);
strcat(xmat, string);
strcat(fmat, string);
strcat(vmat, string);
strcat(amat, string);

/* printf("%s\n", xmat);
printf("%s\n", fmat);
printf("%s\n", vmat);
printf("%s\n", amat); *

savemat(ptr, 0, xmat, 1, 1, 0, position_data, (double *)0);
savemat(ptr, 0, fmat, 1, 1, 0, force_data, (double *)0);
savemat(ptr, 0, vmat, 1, 1, 0, velocity_data, (double *)O);
savemat(ptr, 0, amat, 1, 1, 0, accel_data, (double *)0);
savemat(ptr, 0, "trmat", 64, 1, 0, trial, (double *)0); //array holding stim order
savemat(ptr, 0, "rspmat", 64, 1, 0, resp, (double *)0); //array holding response order
fclose(ptr);

strcpy(xmat, posx);
strcpy(fmat, forf);
strcpy(vmat, velv);
strcpy(amat, acca);

cursor_on();
/* End of for loop */

drive = 0.0; /* Shut off drive after all trials are run
motor_output(drive); /* END OF ALL TRIALS

/* WRITE TO RESPONSE DATA FILE */

if ((fp=fopen(datafile,"a")) == NULL){
printf("can not open file\n");
return;

t = time(NULL);
if ( error > 0 ) fprintf(fp, "sample rate error at trial %d\t delta = %d\n",error,delta);
fprintf(fp, "%s\n", config->subject_name);
fprintf(fp, "%s\n", config->age);
fprintf(fp, "%s\n", config->hand);
fprintf(fp, "%s", ctime(&t));
fprintf(fp, "%s\n", config->test_date);
fprintf(fp, "%s\n", config->test_type);
fprintf(fp, "%s\n", config->experimenter);
fprintf(fp,"Feedback Status (I=on 0=off): %d\n", config->feedback);
fprintf(fp,"Reference Mass:\t %4.3f\n", config->stiff_l);
fprintf(fp,"Mass #2:\t %4.3fXn", config->stiff 2);

fprintf(fp,"TRIAL#\t STIMULUS\t RESPONSE\t ROVING DISPLACEMENTn");
for ( i=0; i < config->num_trials; i++) {

j=i+l;
fprintf(fp,"%3. 1 d\t %5. I d\t % 12.1 d\t % 18.1 d\n"j,stim[i],response[i],x_data[i]);

fprintf(fp,"\n");
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/* CALCULATE CONFUSION MATRIX AND WRITE TO DATA FILE */

for (n_trial = 0; n_trial < config->numtrials; n_trial++) {
if (stim[n_trial] == 1)(

if (stim[n_trial] == response[n_trial]) cl=cl+l;

if (stim[n_trial] == 2)(
if (stim[n_trial] == response[n_trial]) c2=c2+1;

missed 1 = (config->num_trials)/2 - c 1;
missed2 = (config->num_trials)/2 - c2;
fprintf(fp, "Mass 1 was correctly detected %d times\n", cl);
fprintf(fp, "Mass 1 was missed %d times\n", missedl);
fprintf(fp, "Mass 2 was correctly detected %d times\n", c2);
fprintf(fp, "Mass 2 was missed %d times\n", missed2);
fprintf(fp,"\n");
fclose(fp);

cursor_on();
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Velocity/Acceleration Discrimination Software

/***************************************

* File: vel.c

* Copyright 1995 MIT Research Laboratory for Electronics

* Contents: Velocity Discrimination Experiments
* Created: 04/10/95
* Author: Lee Beauregard
* Revision: 1.1

* Remarks: presents 11 2AFC velocity stimuli at I KHZ with a
* fixed displacement of 25mm & logs position, velocity, accel
* and force at a 200 hz sampling rate into MAT-file format.
* Velocity is controlled thru a proportional gain feedback loop
* with friction compensation. For safety, program will terminate
* if a subject applies a resisting force > 2.5N.
*** ***********************************

/* INCLUDE FILES
#include "stdio.h" * * * * * *

#include "stdio.h"
#include "stdlib.h"
#include "dos.h"
#include "alloc.h"
#include "time.h"
#include "math.h"
#include "/ASO I 600/C/userprot.h"

/* LOCAL VARIABLES
***** :** **: **::************************************

DDH DAS1600;
char NumOfBoards;
int Err;
int da_value;
long ad_value;

/* Device Handle */
/* Number of boards in DAS I 600.cfg */
/* Function return error flag */
/* Storage for D/A value */
/* Storage for A/D value */

/* CONSTANTS
******:*********************************/

#define DEFAULT_FILE
#define BASE 0x300
#define COUNT1 OxOd
#define COUNT_2 OxOe
#define CONTROL OxOf

"vel.cfg"
I base address of das 1600 board
l counter I address
I[ counter 2 address
I timer control byte address

/* TYPES
************ ***************************************

typedef struct configinfo {
int num_trials;
int *trial;
double stiff_l;
double stiff_2;
int feedback;
char subject_name[40];
char test_date[40];

/* Number of trials */
/* Trial */
/* Velocity Stimulus I */
/* Velocity Stimulus 2 */
/* Feedback status flag */

/* Subject's name */
/* Date of Experiment */

I
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char hand[40];
char age[20];
char test_type[40];
char experimenter[40];

} CONFIG_INFO;

typedef struct {
long
long
long
long
long

} Fmatrix;

type;
mrows;
ncols;
imagf;
namlen;

/* Hand evaluated */
/* Subject's age */
/* Type of experiment */
l* Experiementer's name */

/* type */
/* row dimension */
/* column dimension */
/* flag indicating imag part */
/* name length (including NULL) */

/* LOCAL FUNCTIONS

void initialize_hardware();
void initialize_timer();
void cursor_off();
void cursor_on();
void motor_output();
void print_config();
void print_labels();
void read_config();
double read_velocity();
double read_force();
double read_position();
double read_accel();
double actual_mm( double xdc );
double actual_velocity( double v_dc );
double actual_newtons( double fvdc );
double actual_accl( double a_dc );
int rnd_stim(int n, int *s);
int rnd_position();

CONFIG_INFO *create_config(;

/* LOCAL VARIABLES
***************************************************l

CONFIG_INFO *config; /* Configuration information */

/* MAIN
*********************************************l

void main(argc, argv)
int argc;
char *argv[];

FILE
double
double
double
double
double
double
double
double

*fp,*ptr;
v_vdc;
a_vdc;
x_vdc;
fvdc;
position;
velocity;
force;
acceleration;

/* number of command line arguments */
/* command line arguments */

/* data and reponse file pointers */
/* velocity measured in volts dc */
/* aceeleration in volts */
/* position in volts dc */
/* force in volts dc */
/* position (mm) */
/* velocity in mm/s */
/* force in newtons */
/* acceleration in mm/s/s */

__ _� I__ Ill I 1_ ------- 14__1_^11_·-
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double
double
double
double
double
double
double
double
double
double
double
double

int
mnt
int
int
Int
int
int
int
int
int
int
int

f_offset,a_offset;
drive;
drive_force;
vel_stim;
position_data[ 1500];
velocity_data[ 1500];
force_data[ 1500];
accel_data[1500];
select=0;
stim_real[2];
gain_v;
gain_c;

value;
i,j,l, ntrial;
index;

stim[256];
x_data[256];
response[256];
x_max;
cl=0, c2=0;
missedl,missed2;
flag.wait,rate=0;
delta_count;
delta=0,error=0;

int old_count,new_count,dun

char filename[40];
char datafile[40];
char matfile[40];
char c;
char xmat[4];
char fmat[4];
char vmat[4];
char amat[4];
char string[3];
char *posx="x";
char *forf="f';
char *velv="v";
char *acca="a";
double trial[64];
double resp[64];

/* Configuration information */
if (argc >= 3) 
strcpy(filename, argv[ 1]);
strcpy(datafile, argv[2]);
strcpy(matfile, argv[3]);

else {
strcpy(filename, DEFAULT_FILE);
strcpy(datafile, "vel.dat");
strcpy(matfile, "vel.mat");

config = create_config();
read_config(filename);

/* force offset */
/* linear motor drive (v) */
/* driving force to be generated */
/* damping coefficient (Ns/mm) */
/* position data array */
/* velocity data array */
/* force data array */
/* acceleration data array */
/* data logger selector */

/* feedback gain for velocity control */
/* control gain to minimize disturbance effects */

/* random number */
/* trial number */
/* index */
/* array holding stim presentation order */
/* array holding roving distance values */
/* array holding subject response order */
/* maximum position to apply force */
/* counters for correct stimuli detection */
/* counters for missed detections */
/* flags for data logging */
/* count difference in timer routine */
/* sampling rate error values */

n; /* Isb,msb timer counter values */

/* filename */
/* data file name */
/* mat file name */
/* subject's response */
/*MAT file variables */
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n_trial = config->num_trials;
rnd_stim(n_trial, stim);
clrscr();
strcpy(xmat, posx);
strcpy(fmat, forf);
strcpy(vmat, velv);
strcpy(amat, acca);

// generate random stim array

initialize_hardware();
drive=0.0;
motor_output(drive);
printf("Hit the space bar for force sensor calibration\n");
while( !kbhit());
c = getch();
force = read_force();
f_offset = -22.863*force;
a_vdc = read_accel();
a_offset = 3310.4*a_vdc;

for (n_trial = 0; n_trial < config->num_trials; n_trial++) (
initialize_timer();

ll RESET GRASPER TO HOME POSITION
drive = -0.10;
motor_output(drive);
x_vdc = read_position();
position = actual_mm( x_vdc );
while( (!kbhit()) & (position > 1.5))(

x_vdc = read_position();
position = actual_mm( x_vdc );

drive = -0.02;
motor_output(drive);
printf("Hit the space bar to continue\n");
while( !kbhit());

c = getch();
cursor_off();
print_labels(n_trial);

/* RANDOMIZE BETWEEN 2 VELOCITY STIUMULI */
if (stim[n_trial] == 1)

vel_stim = config->stiff_l;
else

vel_stim = config->stiff_2;

x_max = 25.0;
x_data[n_trial] = x_max;
x_vdc = read_position();
position = actual_mm( x_vdc );
select = 0.0;
wait= 1;

= 0;

flag = 1;

/* CONTROL LOOP
while( position < x_max) (

I fixed displacement of 35mm
II record distance
/II measure initial position

II data log every trial
II wait used to store data at 200hz
// reset data array subscript

*/
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if( flag == 1 )(
outportb( BASE + CONTROL, 0x80 );
old_count = inportb( BASE + COUNT_2 );
dum = inportb( BASE + COUNT_2 );
flag = 0;
)

do{ // wait loop for 1 msec
outportb( BASE + CONTROL, 0x80 );
new_count = inportb( BASE + COUNT_2 );
dum = inportb( BASE + COUNT_2 );
delta_count = old_count - new_count;
) while ( delta_count == 0 );

/* READ SENSOR DATA
v_vdc = read_velocity();
velocity = actual_velocity( v_vdc );
x_vdc = read_position();
position = actual_mm( x_vdc );
f_vdc = read_force();
force = actual_newtons( Lvdc ) - foffset;
a_vdc = read_accel();
acceleration = actual_accl( a_vdc ) - a_offset;

// control byte to read C2 status
// read Isb
// dummy msb read

// control byte for C2
// read lsb
// dummy read msb

*/

/* CHECK COUNT VALUE FOR ONE DECREMENT
if (( delta_count != I ) && (delta_count != -255 ) && (select == 0)){

drive=0.0;
motor_output(drive);

printf("Sampling rate error. Delta Count = %d\n",delta_count);
error = n_trial + I;
delta = delta_count;
cursor_on();
exit(0);

}
/* GENERATE DRIVE FORCE

drive = 0.0;
gain_v = 0.05;
gainc = 7.0;

*/

if ( position > 0.0 ) 
driveforce = gain_c*(gain_v*velocity - vel_stim - 0.5);
if (( abs(drive_force) < 50.0 ) && ( abs(force) < 2.5 ))

drive = -0.0670*drive_force;
else {

//CONTROL LAW

drive=0.0;
motor_output(drive);
printf(" Program terminated\n");
printf(" Applied Force = %5.21f\t Drive Force = %5.21f\n", force, drive_force);
cursor_on();
exit(0);

/* convert force to volts */
motor_output(drive);

/* LOG DATA EVERY TRIAL
if (( I < 1500 ) && (rate == 0) && (select == 0.0)){

velocity_data[l] = velocity;

*/

*/

)
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position_data[l] = position;
force_data[l] = force;

accel_data[l] = acceleration;

wait++; /* sample at 200 hz */
rate = wait% 10;
old_count = new_count;

/* End of while loop */
drive = 0.0; /* Shut drive off run */
motor_output(drive);

/* RECORD SUBJECTS RESPONSE */
printf("Type '1' for the greater velocity, Type '2' for the lesser velocity\n");
c = getch();
while(( c != 'I') & (c != '2'))(

printf("Type '1' for the greater velocity, Type '2' for the lesser velocity\n");
c=getch();

switch( c ){
case '1':

response[n_trial] = 1;
resp[n_trial] = 1.0;
break;

case '2':
response[n_trial] = 2;

resp[n_trial] = 2.0;
break;

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FEEDBACK PRESENTATION */

if (config->feedback == 1){
if (response[n_trial] == stim[n_trial])

printf("Correct Response\n");
else printf("Incorrect Response\n");

/* WRITE VELOCITY, ACCEL, FORCE AND POSITION DATA TO MAT-FILE

if ((ptr=fopen(matfile, "a+b")) == NULL){
printf("can not open file\n");
return;

j=n_trial+l;
if (stim[n_trial] == 1) trial[n_trial]=l.0;
else trial[n_trial]=2.0;
itoa(j, string, 10);
strcat(xmat, string);
strcat(fmat, string);
strcat(vmat, string);
strcat(amat, string);
savemat(ptr, 0, xmat, , 1, 0, position_data, (double *)0);
savemat(ptr, 0, fmat, 1, 1, 0, force_data, (double *)0);
savemat(ptr, 0, vmat, 1, 1, 0, velocity_data, (double *)0);
savemat(ptr, 0, amat, 1, 1, 0, accel_data, (double *)0);
savemat(ptr, 0, "trmat", 64, 1, 0, trial, (double *)0);
savemat(ptr, 0, "rspmat", 64, 1, 0, resp, (double *)0);
fclose(ptr);

l/array holding stim order
llarray holding response order

/*
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strcpy(xmat, posx);
strcpy(fmat, forf);
strcpy(vmat, velv);
strcpy(amat, acca);

cursor_on();
} /* End of for loop */
drive = 0.0; /* Shut off drive after all trials are run */
motor_output(drive); /* END OF ALL TRIALS */

/* WRITE TO RESPONSE DATA FILE */
if ((fp=fopen(datafile,"a")) == NULL)(

printf("can not open file\n");
return;

if ( error > 0 ) fprintf(fp, "sample rate error at trial %d\t delta = %d\n",error,delta);
fprintf(fp, "%s\n", config->subject_name);
fprintf(fp, "%s\n", config->age);
fprintf(fp, "%s\n", config->hand);
fprintf(fp, "%s\n", config->test_date);
fprintf(fp, "%s\n", config->test_type);
fprintf(fp, "%s\n", config->experimenter);
fprintf(fp,"Feedback Status (=on 0=off): %d\n", config->feedback);
fprintf(fp,"Reference Velocity:\t %4.3f\n", config->stiffl);
fprintf(fp,"Velocity #2:\t %4.3f\n", config->stiff_2);
fprintf(fp,"TRIAL#\t STIMULUS\t RESPONSE\t ROVING DISPLACEMENT\n");
for ( i=O; i < config->num_trials; i++) {

j=i+l;
fprintf(fp,"%3. I d\t %5. 1 d\t % 12.1 d\t %1c8.1 d\n",j,stim[i],response[i],x_data[i]);

fprintf(fp,"\n");
/* CALCULATE CONFUSION MATRIX AND WRITE TO DATA FILE */

for (n_trial = 0; n_trial < config->num_trials; n_trial++) {
if (stim[n_trial] == 1)(

if (stim[n_trial] == response[n_trial]) cl=cl+l;

if (stim[n_trial] == 2){
if (stim[n_trial] == response[n_trial]) c2=c2+1;

missed I = (config->num_trials)/2 - c 1;
missed2 = (config->num_trials)/2 - c2;
fprintf(fp, "Velocity I was correctly detected %d times\n", cl);
fprintf(fp, "Velocity I was missed %d times\n", missedl);
fprintf(fp, "Velocity 2 was correctly detected %d times\n", c2);
fprintf(fp, "Velocity 2 was missed %d times\n", missed2);
fprintf(fp,"\n");
fclose(fp);
cursor_on();

The Remaining Software Code consists of the same subroutine functions listed in the
Viscosity Discrimination Software Section.
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