
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

WORKING PAPER 276 AUGUST 1985

IDEME: A DBMS OF METHODS

Jintae Lee

Abstract.In this paper, an intelligent database management system (DBMS)
called IDEME is presented. IDEME is a program that takes as input a task
specification and finds a set of methods potentially relevant to solving that
task. It does so by matching the task specification to the methods in its
database at multiple levels of abstraction. After isolating potentially useful
methods, IDEME ranks them by how relevant they might be to the task.
From the most relevant method, it checks if its operational demands, i.e.
those conditions that have to be satisfied for the method to be applicable, are
satisfied by the present task. If so, it presents the algorithm of the method
relativized to the present task; otherwise, it goes on to the next method. In
this paper, the focus will be on the representation scheme that is used by
IDEME to represent methods as well as tasks.

Artificial Intelligence Laboratory Working Papers are produced for internal
circulation, and may ontain information that is, for example, too preliminary
or too detailed. for formal publication. It is not intended that they should be
considered papers to which reference can be made in the literature.
OCOPYRIGHT. MASSACHUSSETTS INSTITUTE OF TECHNOLOGY

Table of Contents

1. Introduction 1
1.1. IDEME 1
1.2. Motivation 2
1.3. Overview 3

2. Scenario 3
3. Organization 9

3.1. Philosophy 9
3.2. System Objects 13

3.2.1. Principles 13
3.2.2. Initial Objects 14
3.2.3. Examples of User-Defined Object 19

3.3. Task Specification 20
3.4. Method Representation 21

4. Matching Algorithm 23
5. Discussion 25
6. Further Research 27

6.1. To be done 27
6.2. Implementation 28
6.3. Extensions 29

1. Introduction

1.1. I DEME

In this paper, an intelligent database program called IDEME' is presented. IDEME takes as

input from the user a task specification and provides as output a set of methods that might be relevant

to solving the task. It does so by matching the task specification at multiple levels of abstraction to

the methods in its database. After finding such methods, IDEME orders them according to how

relevant they might be to the given task. Then for each method, starting from the one judged most

relevant until the user finds one he wants or it runs out of the methods to test, the program verifies its

operational demands-- i.e. the conditions that have to be satisfied for that method to be applicable by

asking the user if those conditions can be satisfied by the task in hand. If so, its algorithm is

presented in the context of the present task together with some concrete examples of how that

algorithm is actually used.

If the method thus selected is only a reference frame, i.e. one that does not give you an actual

algorithm but only gives pointers to other potentially applicable methods, then the user would follow

the path that it provides. Otherwise, the user would have several choices at this point:

1. He can look at the algorithm and decide to try it. In that case, IDEME will remember the
point at which he leaves so that in case he does not find the method acceptable he can
come back and pick up where he left off.

2. He can look at the algorithm but decide that he wants to look at the other methods that
have been selected, in which case he will just remember the name of the present method
(in case he wants to come back to that method later) and just tells IDEME to proceed with
the next method.

3. Or he may decide to modify the task specification on the basis of suggestions the present
method makes, in which case he will go back and edit the original task specification and
start over at an appropriate point.

1The term 'ideme' is philosophers' name for the unit of Ideas as gene is for the unit of genetic combination.

1.2. Motivation

A couple of motivations led to this work. First, there is the appreciation that ideas are not

utilized as much as they could be. People come up with ideas-- many of them powerful ideas-- but

often they are buried in the original context in which they first appear and not used again. When

other people need the ideas, they don't know where to find them. They have to go through the

primitive search process using keywords and even then have to go through a lot of filtering processes

before actually finding something that they can use. In artificial intelligence, the situation is slightly

better because the value of modularity has been widely recognized in the field. There is a tendency

among the researchers to isolate ideas when they can in a form that is easily transportable and

modifiable. Also some have made clear the concepts such as methods, task space, operational

demands, and so on. which are useful in defining units of ideas.2 However, I believe we can go

further and create a database of methods and its management system that will help us find and adapt

ideas when we need them. IDEME is such an attempt. It can also be viewed as a step toward

establishing the science of design that Simon envisages in [Simon 81].

Another motivation is the desire for a database management system where the units are much

larger and less structured than those in the conventional database management systems. There are

many instances in Al research where the retrieval problem comes up. For example, in Winston's

analogy program [Winston 80, Winston 82] there are many precedents from which we want to select

one that matches most closely the description in hand. Here the database consists of precedents

which cannot be characterized in terms of a fixed number of fields. Furthermore, we would like to

represent precedents not at any one level of abstraction but at multiple levels so that precedents, eg.

stories, can be matched gradually from top down or bottom up as the case may require. In IDEME, we

present a scheme for a database management system whose database consists of structural units,

namely methods, which can be represented at multiple levels of abstraction.

2 In particular, Newell and his associates have made a large contribution in this matter by not only formulating the concepts

such as those mentioned above, but also by actually identifying a set of 'weak' methods and the conditions under which they
are applicable. [Laird&Newell 831, [Laird 84]

1.3. Overview

in the following section (Section 2), we give a scenario that illustrates a possible user interface

with IDEME. It should give some idea of what IDEME is supposed to do and what the user can gain

from it. The next two sections give more detailed description of the organization and the algorithm of

IDEME, respectively. The section on the organization (Section 3) is divided into five subsections. The

first (3.1) discusses the philosophy and the motivation behind the three main structures used in

IDEME, namely System Objects, Task Specification, and Method Representation. The next three

sections describe them respectively. In the section on algorithm (Section 4), we give a semi-formal

algorithm for the retrieval of relevant methods for a given task specification. In the next section

(Section 5), we discuss the present state of the research as well as the reasons for our choice of the

domain and the performance of IDEME at this stage. In the last section (Section 6), we conclude by

discussing the things that need be done, possible extensions of IDEME, and other potential

applications of the concepts introduced here.

2. Scenario

Suppose you are interested in the Programmer's Assistant project -- especially the analysis

aspect, i.e. recognizing a given code as an instance of some higher level plan or algorithmic cliche3

[Rich&Shrobe 78, Rich 81, Waters 82]. You decide to consult IDEME for finding useful methods; so

you walk up to a terminal and start talking to it.

[Notation: * is the prompt for user input; @ marks the beginning
of the system response; also the actual texts that the user types
are underlined.]

* Helo. IDE.
;;;IDEME recognizes who you are and sees if there
;;;are any files containing previous interactions. If there :s, it
;;;starts from there. In this example, there wasn't any previous interaction. So it
;;;starts from the beginning.

@ Hello, Jin.
I am here to help you find potential methods for the task you

3 Programmer's Assistant is an automatic programming assistant program at MIT that helps the programmer to document,
analyze, implement, verify, and debug programs.

want to solve. There are two modes available. You could type in
as much information as you want in the template for the task that
will be provided and let me find a set of possibly useful methods;
or you could specify a method and work with that method.
Type T if you want the first mode; type the name of the method if
you want the second. You could start with the first, and then
change to the second later when you get some idea of which method
you want to try.

*T
@ Below, you will be asked to characterize the task in hand in
terms of input, output, and constraints. Output is what you want
to achieve, Input is what you have available, and Constraints are
the relations that should hold between the input and the output.
Think about what is the type of the object that is given as input,
what you want as output, and what the relations are that should
hold between the input and the output objects; and write them down
in appropriate places.
Unless stated otherwise, you are expected to answer with one of

the objects whose types are recognized by the system (the list can
be seen by typing the key, LIST; if you do not find an object
type that you want, you can define your own type. See the manual
for the procedure.) Whenever you specify one of these objects, you
will be asked a series of questions. In specifying an object,
use the following convention: Name Of the Object: Object Type
(eg. problem space:SYSTEM). But feel free not to answer if you
find the question irrelevant in specifying the task in hand. In
that case, just press carriage return.

I INPUT: ProgramDescriotion: DESCRIPTION
I;;Input is a description of the program (eg.
;;sentences such as "It has a loop").

) ProgramDescription: DESCRIPTION

I @ What does it describe?
S;;The answer fills in OF slot of DESCRIPTION.
* Program: STRUCTURE

I @ What language is the language used to describe it?
I;;The answer enters In slot of DESCRIPTION.

J;;The user need not fill in a slot if he thinks it is
S;;not relevant.

I Program: STRUCTURE

1 @ What are the objects that make up the

I structure?
I * ProaramConstructs: LIST
I ;;LIST is a system object to be used when there
I ;;are more than one type of object.

I ProgramConstructs: LIST

@ How many different type of elements are there
in the list? (Type a number, 'Finite', 'Infinite',

Ior 'Unknown')
I* Finite
;;This value enters the Cardinality slot of LIST and

i;;used in determining which questions to ask further.

@ What are some of the element types in the list?
1*
1;;Again the user feels it is not important. Since
I ;;there was no information supplied at this level,
1;;;IDEME stops nesting and goes back to the higher
1;;;level that still has any unfilled slot.

I @ What are the important relations that exist
I among the objects? Use your own terms to
I describe them.
i Ordered, Nested
I;; cf. Section 3.2 for how this
I;; information is used.

I OUTPUT: PlanDescription: DESCRIPTION

OUTPUT: PlanlDescrition : DESCRIPTION

PlanDescription: DESCRIPTION

| @ What does it describe?
I * Program ;;; Program here refers to the same program

which appeared as an answer for ProgramDescription.

I @ What is the language that is used to describe it?
* PlanCalculus: LANGUAGE

I PlanCalculus: LANGUAGE.

I @ What type of Alphabet does the language have?

I @ What type of Formation Rules does the language have?

I CONSTRAINTS: Describe (PlanDescriotions. Structures-Of(Program))

;;;IDEME searches the database and finds a set of potentially
;;;useful methods. The selection algorithm will be described in
;;;detail in Section 4 (Algorithm).
;;;Now we assume that IDEME has found WSFD as the method judged
;;;most relevant to the specified task.

@ Given the task specification you provided, WSFD4

seems the most relevant method. If you want a description of the
method, type DESCRIBE; otherwise type GO, then I'll start
checking if the method can in fact be applicable to the present
task.

* DESCRIBE

WSF is a method which, given an object or its structural
description, can produce its functional description, identify
what kind of entity it is, learn from precedents rules to be used
for such descriptions or identifications in the future. WSFD is
the submethod which takes as input structural description of
object (eg. "The object X has a handle, a broad base, and empty
concave space.") and produces its functional description (eg. "It
is stable, liftable, and can contain something inside." Or
combining these properties, WSF can assert that the object is a
cup.)

WSFD works the following way. When structural description
is given, it checks to see if there are rules in its database
whose precondition match some of the descriptions. If so, it asserts
the functional descriptions which are in the action part of those
rules. For example, a rule might be "If X has a broad base, it

41t stands for the Description submethod of Winston's Structure/Function method. [Winston 83]

is stable." Then given the description, "It has a broad base.",
it asserts "It is stable." It does so for all the rules whose
preconditions are satisfied.

If there are no such rules, then it looks for precedents that
contain some of the structural descriptions given in the input,
If not found, WSF fails. If found, it checks if these precedents
relate some structural description that appear in the input to a
functional description (for eg. a precedent involving a suitcase
might have a sentence such as "The suitcase is liftable because
it has a handle", which relates a structural description "X has a
handle" to a functional description "X is liftable".) Assert the
functional descriptions thus related.

Given the functional descriptions thus asserted, WSFD looks
up its database containing rules relating functional descriptions
to other functional descriptions to see if further or more
concise descriptions are available. For example, there might be
a rule such that "If X is stable, liftable, and can contain
things, then it is a cup." If so, one function of the object can
be 'being a cup'. Collect all the final functional descriptions
and produce them as the output.

If you want more information, see Winston,P.H., T.O.Binford,
B.Katz, and M.Lowry. "Learning Physical Descriptions from
Functional Definitions, Examples, and Precedents." National
Conference on Artificial Intelligence, Washington,DC. 1983.

*GO

@ Matching at the top level for: INPUT.

Programmer's Assistant: WSFD
analysis

DESCRIPTION: DESCRIPTION:
ProgramDescription ObjectDescription

@ Matching at the second level for: INPUT[DESCRIPTION],
ProgramDescription::ObjectDescription

Of: STRUCTURE STRUCTURE
Program Object

In: PROGRAMMING LANGUAGE

@ Matching at the third level for:
INPUT[DESCRIPTION.OF], Program::Object

Objects: LIST
Relations: Ordered, Nested

@ Matching at the top level for: OUTPUT

OUTPUT DESCRIPTION DESCRIPTION
PlanDescription FunctionalDescription

@ Matching at the second level for: OUTPUT[DESCRIPTION]
PlanDescription::FunctionalDescription

OF. Program - Object

;;IDEME knows that these two objects, Program and Objects,
;;have been matched before. So it simply prints the names
;;without their type. Also if the match here is inconsistent
;;with the existing bindings, then IDEME prints the message
;;to that effect.

IN. LANGUAGE
Plan Calculus.

@ Matching at the third level for:
OUTPUT[DESCRIPTION.OF] Program::Object
;;IDEME knows from the previous match that there
;;are no further matches at this level. So it
;;stops here.

@ The binding so far produced is the following:
(ProgramDescription::ObjectDesription
Program::Object

PlanDescription::FunctionalDescription)
Now I will check if the operational demands of WSFD can be
satisfied.

@ Can you have Rules relating ProgramDescription and
PlanDescription? If so, give me an example.
* "If it has a kw in which there iS COND clause, iti
Iterative Filtering."
;;;The user does not have to come up with examples immediately.
He can quit and think about it When he comes back, IDEME will
remember where he left off.

@ Can you have 'Functional Definitions' which relate a set of
Plan Descriptions to a Plan Descriptions? If so, give me an
example.
* "if it h. trailing-search and iterative-generation, then

assert "it has trailing-generation + search."

@ Can you have 'Precedents' which include sentences relating
program description and plan description? If so, give me an
example.
* the case of iterative generation:
"... It does iteration because it has the loon structure and the
variable is being modified inside the gooo...."

@: It seems that the method WSFD can be useful to the present
task. Try the following algorithm.

1. Given ProgramDescription, first search for Rules whose
condition part satisfies the descriptions.
2. If there isn't any, go to 4.
3. If there are some, assert the PlanDescriptions associated
with the result part of the Rules.
4. See if there are any Precedents which include sentences that
relate some of the ProgramDescription and a PlanDescription. If
so, assert the PlanDescription. Repeat until there aren't any
more Precedents with such sentences.
5. See if there are Functional Definitions whose conditions are
satisfied by the PlanDescriptions so far asserted. If there
aren't any, the set of PlanDescriptions so far collected will be
FunctionalDescriptions of the Program. If there are some,
assert PlanDescription in the result part of the rules.
Repeat until there are no more Functional Definition whose
conditions are satisfied.

Eventually, we would like IDEME to interface with problem solvers in such a way that the

problem solver can take over and tackle the task from this point on. But for now we concentrate on

developing a representation and an organizational structure that will accomplish the above task.

3. Organization

3.1. Philosophy

There are three main structures in the organization of IDEME: system objects, task

specification, method representation. Each of them will be described in detail in the following

sections. Here, we give a picture of the overall organization by discussing the motivations and

assumptions underlying these structures and how they interact. The overall structure of IDEME is

based on a few basic assumptions. The first is what we might call the philosophy of frame-- namely

the assumption that describing an object means filling in the slots that is associated with the object.

The slot association may be explicit or implicit.

Slots for a given object may be numerous and hierarchical (eg. for an expert) or sparse (eg. for

novices) and unorganized. Slots for the same object may be different depending on the contexts in

which they are looked at. Nevertheless, what one tries to do in describing an object is to identify the

slots associated with the object and fill them in with appropriate values as much as possible in that

context. This frame assumption, in one form or another, underlies many of the work in artificial

intelligence. For example, it is the basis for many representation languages in Al such as KRL, FRL,

and KLONE. In IDEME, it pervades the entire organization. The following are the examples:

* A task specification consists of filling in the following slots:

- Input, which describes what is given.

- Output, which describes what you want to accomplish

-Constraints, which describes constraints that should hold between Input and
Output.

- Context, which describes the context that the task is situated in. If the context
value is specified by the user, then only the methods with that context value will be
retrieved.

* The representation of a method consists of filling in the following slots:

- Application Conditions, which describes the conditions which are likely to call for
the present method. This slot in turn consists of the same three slots as those of
task specification : Input, Output, Constraints.

- Context, which describes the context that the method is presupposing.

- Operational Demands, which describes the conditions which must be satisfied for
the method to be applied.

- Strengths, which describes the strengths of the method.

- Limitations, which describes the weaknesses of the method.

- Algorithm:

* Each of the system object, which together form a vocabulary to be used in representing
tasks and methods, has associated with it a supertype slot and a number of other slots.
For example, the type SYSTEM has a supertype slot, whose value is OBJECT, and two

additional slots, STATES and OPERATORS, indicating that describing a system consists
of describing what the states of the system are and what operators are available to
manipulate them. Each of the slot has a restriction on what type of objects can fill in the
slot. For example, State slot of the object above, SYSTEM, can have as its value only an
object of type STATE or its supertype. The object STATE has in turn, of course, has its
own slots-- namely, Supertype, Objects, and Relations, indicating that describing a state
consists of describing what objects there are in the state and what relations hold among
them. Also the user defines a new object by specifying its slots and relating them to the
slots of its supertype object.

Another principle that plays an important role in IDEME is abstraction. Abstraction technique is

used in at least two major ways in IDEME. First, the structure of task as well as method is

characterized in terms of a few limited number of abstract concepts which is known to the system.

For example, a possible structure of generic search task, (i.e. a task structure one might specify if

what one is interested in is search) is: INPUT: SYSTEM(Problem Space), STATE(Initial State),

STATE(Final State) and OUTPUT: SEQUENCE[OF:OPERATOR (Legal Operators)]. This abstraction

eliminates a lot of arbitrariness in the task specification and the method representation, thereby

facilitating matching. For example, if we are given a task whose type is search, then there would be

only a few possible specifications of that task, one of which will be the above. Then the methods

which can help searching can be retrieved by matching the above structure to their application

condition. If there were no abstraction, there would be so many possible ways to specify a task that

the match would become impossible. The list of the system objects so far defined are given in the

following section. We are aware that any fixed set of concepts would eventually prove inadequate for

representing the various tasks and methods that we might want IDEME to accommodate in the future.

Thus, we provide a means for the user of extending them so that the list can be modified with respect

to the individual users.

The other way that abstraction is used in IDEME is through allowing multiple levels of

description via what we call slot expansion. As described above, each system object has slots

associated with it. Each of these slots takes as its value a system object, which has its own slots,

which can then have as its value a system object, and so on. As we saw in the scenario, this

expansion allows us to describe the structure of a task or a method at multiple levels of abstraction

without giving way to arbitrariness. Through this multiple abstraction, not only matching is facilitated

but also a task can be described in as much detail as one thinks relevant.

Given these structures, the overall picture of IDEME will be the following. The user comes in

and types the specification of the task he wants to solve. As we discussed above, the specification

consists of the values for the three slots, Input, Output, Constraints; and the objects that will appear

as values of the slots will be one of the system objects, which in turn will have their own slots. Each of

these slots will then be filled by a system object as its value, and so on until to the level that the user

judges to be relevant. In the database, each method is represented in terms of the following slots:

Input, Output, Constraints, Context, Operational Demands, Strengths, Limitations, Algorithm. When a

task is specified, the first three slots comprising the application condition are matched hierarchically

with those of the task5 Given a task specification, IDEME starts matching from top down-- i.e. first

looks for those methods with the application condition that matches the task specification at the most

abstract level and then continue, among the methods thus selected, matching down as far as it can

go to look for methods which match the task specification at as detailed level as possible. The

selected methods, once found, will be ranked and, from the one judged most relevant, the operational

demands of each method will be verified by interfacing with the user. If the operational demands of a

method is satisfied, IDEME presents the algorithm relativized to the present task, i.e. the algorithm

whose objects have been changed to the appropriate objects in the task domain. If there are many

methods whose conditions are satisfied, then the Strengths and Limitations slots will be presented to

the user so that he can select which one to try first. If no method is found or if none of the methods

found is applicable, then IDEME searches for those methods whose application conditions match with

a task description that is generalized from the original task specification by ignoring the most detailed

level in the slot expansion hierarchy, and so on. A fuller description of the algorithm is given in

Section 4.

Sunless the context slot was specified, in which case the methods selected are restricted to those with the same value in the
context slot.

3.2. System Objects

3.2.1. Principles

System objects are those that the system knows about.6 Their purpose is to reduce

arbitrariness by providing a vocabulary for specifying tasks and methods, to facilitate matching, and

to allow slot expansion, which in turn allows multiple level representation and matching. An object is

a system object if it is in the initial set of the objects that the system knows about or it is an object

defined by the user in the manner described below. There is intrinsically no distinction between the

initial objects and the user-defined objects. Once an object is defined, it becomes a system object.

However, any object being defined is related to the objects initially known to the system via supertype

relation. The initial objects have been chosen because they are the most general object types that

are frequently used to characterize the Al tasks and methods at non-trivial levels of abstraction.

Each of the system objects has associated with it a number of slots. For example, the type

SYSTEM has as its slots Supertype, States, Operators, meaning that describing a system consists of

describing what its states are and what operators are possible to manipulate them. When a user finds

that there are no system object with which he can adequately characterize a task or a method, he can

create new objects on top of the system environment or one of the environments that may have been

built so far and kept in the library [Goldstein&Bobrow 81]. The user creates a new object in the

following way.

1. The user specifies the name and the supertype of the object being defined. The
supertype has to be one of the objects that the system already knows about.

2. The user then proposes a set of new slots for the object being defined. Each of the new
slots is either an additional slot in addition to the slots of its supertype or it has to be
related to the slots of its supertype (eg. by means of restriction, transformation, etc.). In
any case, all the slots of its supertype has to be accounted for. That is, every one of the
supertype slots should be either associated with a slot of the object being defined or it
should be filled with the constant NR (Not Relevant), meaning that it is not important to
know the value of that slot in the context of the new object.

There is a partial ordering among the system objects imposed by Supertype relation. If A is a

6•_•_ obiects should be really called system obiect yeGs because it is really the types not the actual objects that
instantiate them that we are talking about in this section. But we omit that distinction for brevity in what follows.

supertype of B, then A dominates B. And for any slot for which A can enter as a value, so can B. The

list of the initial objects as well as some examples of user-defined objects are given below together

with the slots associated with each.

The list is not complete and subject to modification. It will be finalized after we try representing

an extensive number of methods and tasks.

3.2.2. Initial Objects

The format for describing a system object will be as follows:
Name of the Object
Supertype Slot: Supertype Object ;;which is the supertype of Object.

Slot 1 (of Supertype Object): X
;;where X is the name of the slot of Object
;;to which this slot is related to or the
;;constant NR (standing for Not Relevant).

Slot n (of Supertype Object): X'

Slot 1 (of Object): [Y],
;;where Y is the type of objects that can fill this slot.

Slot m (of Object): [Y']

Note: Below it is assumed that if Y is the type of
object that can enter as a value for the slot S, then a set of Y, SET(Y) also can
as well as any one of its supertype object. If it is necessary to
specify that only a singular object of type Y, as opposed to a
set of Y, can be the value of S, then it will be prefixed by "I" in front like IY.

1. OBJECT

Supertype: OBJECT

2. SYMBOL

Supertype: OBJECT

3. BOOLEAN PREDICATE

Values:[0,1];;VALUE slot is used when one wants to specify

;;fixed set of subtypes of this type.
Supertype: SYMBOL

4. NUMBER

Supertype: SYMBOL

5. NAME

Supertype: SYMBOL
Of: [OBJECT] ;what it is a name of.

6. STATE

Supertype: OBJECT
Objects: [OBJECT]
Relations: [RELATION]

7. PROCEDURE

Supertype: OBJECT
Before: [OBJECT]
After: [OBJECT]

8. SYSTEM

Supertype: OBJECT
States: [STATE]
Operators: [PROCEDURE]

9. SET

;;;SET is a structure in the context of set theory.

Supertype: STRUCTURE
Objects:: Elements
Relations: NR
System: ;Set-Theory (cf.Section 3.2.3).

Elements: [OBJECT]
Cardinality: [NUMBER]

10. CONSTRAINTS

Supertype: RELATION
On: [SET]
In: [LANGUAGE]

11. STRUCTURE

Supertype: OBJECT
Objects: [OBJECT]
Relations: [RELATION]
Systems: [SYSTEM] ;System is the framework in which Objects and Relations

;are identified or interpreted.

12. LIST

;;;LIST is different from SET in allowing its members to be
;;;of different types.

Supertype: STRUCTURE
Objects: Elements
Relations: Ordered
Systems:

Cardinality: [NUMBER]
Element1: [OBJECT]
Element2: [OBJECT]

ElementN: [OBJECT]
;;where N is the cardinality specified.

13. SEQUENCE

Supertype: STRUCTURE
Objects: Elements
Relations: Sequenced
Systems:

Elements: [OBJECT]

14. GRAMMAR

Supertype: RULE
Condition: LeftSide
Result: RightSide

LeftSide: [OBJECT]
RightSide: [OBJECT]

15. LANGUAGE

Supertype: SYSTEM
Objects: Alphabet
Relations:
Operators: FormationRules

Alphabet: [SYMBOL]
FormationRules: [RULE]

16. LOGIC

Supertype: LANGUAGE
Alphabet: Alphabet
FormationRules: FormationRules

Alphabet: [SYMBOL]
FormationRules: [RULE]
Derivation Rules: [RULE]
Axioms: [SEQUENCE(Elements:SYMBOL)]

17. TREE

Supertype: STRUCTURE
Objects: Nodes
Relations: Parent-Of, Child-Of
Systems: [SYSTEM]

Nodes: [OBJECT]

18. GRAPH or NET

Supertype: STRUCTURE
OBJECT: Nodes
RELATIONS: Links
SYSTEM: ;Graph Theory

Nodes: [OBJECT]
Links: [RELATION]

19. MAP

Supertype: PROCEDURE
Before: Domain
After: Range

Domain: [SET]
Range: [SET]

20. RULE

Supertype: PROCEDURE
Before: LeftSide (or Condition)
After: RightSide (or Result)

LeftSide: [OBJECT]
RightSide: [OBJECT]

;;;When the leftside type and rightside type are fixed, RULE
;;;is interchangeable with MAP by treating PRECONDITION TYPE as
;;;DOMAIN and ACTION TYPE as RANGE.

21. OPERATOR

Supertype: PROCEDURE
Before: Domain
After: Domain

Domain: [SET]
Arity: [NUMBER]

22. FUNCTION

Supertype: MAP
Domain: Domain
Range: Range

Domain: [SET]
Range: [SET]

;;;FUNCTION is a MAP where one to many mapping is
;;;prohibited.

23. RELATIONS

Supertype: OBJECT

We find it more difficult to come up with the initial set of relations. One possibility is the list of

very basic and syntactic relations such as: Equality, Symmetry, Transitivity, Reflexivity, etc. But they

seem too low level relations to capture the level we want to deal with. Another possibility is to look

into linguistics for help. People have identified a list of "primitive" cases that can be construed as

relations. For example, [Green ?] lists thirteen categories of relations (such as: Actants, Spatial

Localization, Temporal Localization, Belonging, etc.) that are purported to express all the other

relations. Or [Langacker 83] claims that all the relations reduce to four basic ones (Inclusion,

Separation, Identity, Association). Leaving aside the legitimacy of their claims, they seem still not at

the right level of abstraction. Yet another possibility is an empirical list, i.e. a list of relations that

come up often in the domain of Al-- eg. Membership, Inclusion, Satisfaction, Derivation, Equality,

Relation, Identification, Match, Interpretation, Inheritance, etc. This probably is the most useful way,

but we need some way of systematically selecting them.

At the moment, we use thesaurus approach. We let the user to describe the relations in his own

terms, provided that only a single term is used for a relation. Then in matching we consider as match

any other terms which are synonymous to the term chosen by the user and has the same types as well

as the same number of arguments. For example, CHARACTERIZE(X,Y) would be considered as

matching DESCRIBE(W,Z) if the types of X and W, Y and Z are compatible. We also use the

thesaurus approach for matching the values for Constraints slot. That is, in describing the relation

between input and output, we allow the user to use any phrase he wants and then we determine the

matches by referring to a thesaurus.

3.2.3. Examples of User-Defined Object

1. MATHEMATICAL SYMBOL

Supertype: SYMBOL

2. PROGRAMMING LANGUAGE

Supertype: LANGUAGE
Alphabet: Alphabet
Grammar: Grammar

Alphabet: [SYMBOL]
Grammar: [GRAMMAR]

3. DESCRIPTION

Supertype: STRUCTURE
Objects: NR
Relations: NR
System: IN

Of:[OBJECT]

In: [LANGUAGE]

4. TASK

Supertype: STRUCTURE
Objects: Objects
Relations: Relations
Systems:

Objects: [OBJECT]
Relations: [RELATION]
Input: [OBJECT]
Output: [OBJECT]
Operators: [PROCEDURE]
Constraints: [OBJECT]

5. THEORY

Supertype: SYSTEM
Objects: In.Alphabet
Relations: NR
Operators: In.FormationRules

Of: [OBJECT]
In: [LANGUAGE]

6. SET THEORY

Supertype: THEORY
Of: [SET]
In: In

In: [LANGUAGE]

3.3. Task Specification

A task specification consists of filling in the following slots:

* Input, which describes what is given.

* Output, which describes what you want to accomplish

* Constraints, which describes constraints that should hold between Input and Output.

* Context, which describes the context that the task is presupposing. This slot is used to
filter only those methods that are specifically used in the specified context.

Some examples are shown below, but we should note that there is no one way to represent a

task. The same task can be represented in several different ways depending on perspectives. The

implication of non-canonicity in representation will be discussed in the discussion section.

PA Analysis:

Input-- ProgramDescriptions:DESCRIPTION
Of: Program:STRUCTURE

Objects: ProgramConstructs:LIST
Relations: Ordered, Nested
System: -

In: PL:PROGRAMMING LANGUAGE
Alphabet: -
FormationRules: -

Output-- PlanCalculusDescriptions: DESCRIPTION
Of: Program
In: PlanCalculus: LANGUAGE

Alphabet: -
FormationRules: -

Learning a conceDt from training instances:

Input-- Traininglnstances:SEQUENCE
Element: Anlnstance:LIST

Cardinality: 2
Elementi: Sample:PATTERN
Element2: TF:BOOLEAN

Output-- Concept:DESCRIPTION
Of: X:OBJECT

Constraints-- IF TF = T in Anlnstance, THEN Instantiate(Sample,X);
IF TF = F, THEN Not(Instantiate(Sample,X)).

;;; IF, THEN, and a few other constructs are available for
;;; expressing constraints.

3.4. Method Representation

The representation of a method consists of filling in the following slots:

* Application Conditions, which describes the conditions which are likely to call for the
present method. This slot consists of the following same three slots as those of task
specification : Input, Output, Constraints.

* Operational Demands, which describes the conditions which must be satisfied for the
method to be applied.

* Context, which describes the context that the method presupposes.

* Strengths, which describe the strong points of the method compared to the other
methods with the same application condition.7

* Limitations, which describe the weak points of the method.

* Algorithm:

The following are a few examples of method representation. Please note that there are usually more

than one way to represent the same method and the examples below illustrate only some ways the

methods can be represented.

WSFD: Winston's Structure/Function Description:

Application Condition::
Input-- ObjectDescriptions: DESCRIPTION

Of: X:OBJECT
Output-- FunctionalDescriptions: DESCRIPTION

Of: X ;i.e. X specified above.
Constraints--

Operational Demands::
* Can you have RULE's relating Objectdescription
and FunctionalDescriptions?
* Can you have 'Functional Definitions' which
relate a set of FunctionalDescriptions to a FunctionalDescriptions?
* Can you have 'Precedents' which include
information relating Objectdescription and FunctionalDescriptions?

Strengths:
Limitations:
Algorithm: ;;The algorithm is given in the scenario, so

;;omitted here.

MEA: Means Ends Analysis:

Application Condition::
Input-- Given:LIST

Cardinality: 2,
Elementi: InitialState:STATE,
Element2: GoalState:STATE

Output-- Solution:SEQUENCE
Elements: Ops:OPERATOR

Constraints-- Solution (InitialState)- GoalState
;;i.e. SEQUENCE of OPERATORS that represent Solution when applied
;;to the initial state should yield the goal state.

Operational Demands::
* Can you identify the types of differences between

7 This slot, as well as the next-- Limitations, is used to help the user choose among the methods that seem equally applicable.

InitialState and GoalState?
* Can you identify operators that will reduce the
differences?

Algorithm::
1. Make a table that associates with each type of
difference all the operators that reduce it.
2. Let SOLUTION be initially a null list and let CurrentState be
InitialState.
3. Find the difference between CurrentState and GoalState.
4. If there is no difference, then we are done because
the current state is the goal state. Return SOLUTION.
5. If there is a difference, look up in the table all the
operators which reduce the difference identified and let OQ be a queue
containing all the operators found.
6. Until OpQ is empty,

6.1 Let CurrentOperator be the first element in OpQ.
6.2 If CurrentOperator is not applicable to CurrenState, then try to
satisfy the preconditions of Current Operator by using
Means Ends Analysis (with InitialState bound to
CurrentState and FinalState bound to the precondition
state of CurrentOperator) so that CurrentOperator will
become applicable.

6.3.1 If we succeed, then append the result to SOLUTION.
6.3.2 If we fail, then pop OpQ.

6.3 If CurrentOperator is applicable to CurrentState, apply it.
Append CurrentOperator to SOLUTION and let CurrentState be the
new resulting state. Go to 3.

7. If we get to this stage, then we fail.

4. Matching Algorithm

We assume in the following algorithm that the database is organized and indexed hierarchically

by the object types of the subslots of the application condition slot of the methods. That is, at the top

level, the database is partitioned by the equivalence relation "having the same object type for the slot

INPUT". Then each equivalence class is further partitioned by the relation "having the same object

type for the slot OUTPUT". Each of the resulting equivalence classes is further partitioned by the

relation "having the same object types related by the same types of relations for the slot

CONSTRAINTS". Then the same process is repeated with the slots next level down. Depending on

the subslots of ObjectType for INPUT slot, the database is partitioned by the relation "having the

same object type for the first subslot of INPUT slot", and so on. This relation is well-defined because

the methods in the database in consideration by now should all have the same object type, thus the

same subslots, for INPUT slot. This organization is useful for narrowing down the search space of

methods as the matching proceeds, as we will see below.s

Let LIST be null.
;;LIST is the list of methods that have been
;;successfully matched to TaskSpecification

Find-Methods (TaskSpecification, Database, 1)

Procedure Find-Methods (TS, Db, Level #)
;;;Find-Methods takes as arguments a task specification, a database
;;;of methods, and a level number, which indicates the level (in methods
;;;representations) at which the matching should be done
;;;and returns a list of methods that matches the task
;;;specification ordered by how well they match, the best match the first.

Let the object types for the slots of TaskSpecification at
level L be S1, ..., Sn.
Let Q be the queue (S1, ..., Sn)
Let Slot# be 1.
Let RD be Restrict-Database (Pop(Q), Db, Level #, Slot#)
;;RD is the list of methods that match the task up to the slot#
;;at level Level #.
If RD is NIL, ;if no match
Then Return LIST. ;then stop matching and return what you have.
Else If Empty (Q), ;if all the slots at the level have been

;matched,
Then append RD to the front of LIST

;then include the methods so far survived in
;LIST

Until there is no Si which has further subslots,
L # <- Level # + 1 ;and go on to the next level
Find-Methods (TS, RD, L #);and do the same.

Else S # <- Slot# + 1 ;if slots are still left at this level,
Restrict-Database (pop(Q), RD, Level #, S #)

Procedure Restrict-Methods (ObjectType, DB, Level #, Slot#)
;;;Restrict-Methods takes as arguments an object type, a database
;;;of methods, a level number, and a slot number which indicates
;;;the position of the slot with which ObjectType should be
;;;matched, and returns the class of methods whose
;;;representations match that of the task up to that level.

Let RD be the subclass of DB which is defined by ObjectType for the
slot # slot at level # level.

8The algorithm below Is very tentative. It is presented to give an idea in a semi-formal way. I would appreciate bug reports
and suggestions.

If RD is Null, ; If there is no match with the given object type,
Then Let Supertype (ObjectType) be ST.

;; try its supertype.
If ST is NIL, ;If there is no further supertype,
Then Return NIL ;let them know the match failed.
Else Relate-to-Supertype (ObjectType, ST)

;; Procedure Relate-to-Supertype, omitted here,
;; does the necessary bookkeeping in using the
;; supertype in place of ObjectType-- such as
;; transforming the slots of ObjectType into
;; those of its supertype, and adjusting the
;; slot # accordingly.

Restrict-Database (ST, DB, Level #, Slot #)
;; then do the same with its supertype.

Else Return RD.

5. Discussion

At the present, only some twenty methods have been encoded into the database. Some

methods like Means-Ends Analysis are very general but others like Zeroing Coefficient are specialized

in the sense that for it to be applicable to a task, that task has to satisfy many conditions such as

having to be a description in mathematical symbols including variables with coefficients. Many

methods have been extracted from the Al research on learning.9 There are Winston's methods for

structural learning, Michalski's AQ11 [Michalski&Ryszard 80], Lenat's AM [Davis&Lenat 82] , and

Langley and Simon's BACON [Langley 83], and Mitchell's version space [Mitchell 77], and others.

Also there are some methods like the search methods whose type is not strictly learning. They are

there because they are general methods which appear as components in learning methods.

So far, the experiment with IDEME has been done only manually and it has been limited due to

the few number of methods in the database as well as the limited collection of system objects. But

what IDEME does show with the tested cases so far is promising. For example, we tested IDEME the

following way. When representing methods into the database, we also kept a list of the original tasks

for which the methods were used. Then we had some other people specify those tasks to see if the

9We chose the domain of learning as the initial experimental ground because I have been interested in learning and also
because there are several tasktypes in the domain (such as rote learning, learning from examples, analogical learning, learning
by being told, and learning multiple concepts).so that I can test the capacity of IDEME to differentiate and/or relate the
different but similar tasks and methods.

list of potential methods returned by IDEME would at least include the original methods used for the

task. In most cases, which include tasks like "learning the concept 'arch"' (for Winston), "learning to

classify soybean diseases" (for Michalski), "learning the concept of 'flush' in poker" (for Mitchell),

"learning new concepts" (for Lenat, and for Langley), it did provide the method that was originally

used for as well as others.

However, there were a few cases where the methods have not been selected for the task for

which they should have been. For example, the weak methods such as means-ends analysis or the

various search methods should have been selected for most tasks because they are very general

methods, but often they were not chosen by IDEME. The reason is that for those methods to be

applicable a particular perspective is needed in interpreting the task structure. In the case of the

above examples, the perspective needed is what Newell calls Problem Space perspective. However

general that perspective may be, it does require that one adopt that perspective instead of others.

Although the use of system objects and multiple level description help reducing the arbitrariness in

representing tasks and methods, it cannot force a perspective on the user. It cannot guarantee

unique description because usually there are inherently more than one way of looking at things. We

can look at the same task or method from many perspectives and characterize it in several different

ways involving different system objects. For example, we may characterize the task of learning

various soybean diseases as taking a sequence of training instances (TrainingInstances: SEQUENCE

[Elements: Traininglnstance:LIST [Cardinality: 2, Element1: Symptom:PATTERN, Element2:

Teacher:BOOLEAN-PREDICATE]])' 1 as input and producing, as output, rules relating the symptoms

and the disease names (Rules: RULE [DOMAIN: Symptom, RANGE: DiseaseName:NAME]). But we

may also characterize it as a means-ends analysis task which takes as input the initial and the desired

states of the system that we want to teach (Givens:LIST [Cardinality: 3, Element1:SYSTEM, Element2:

InitialState:STATE, Element3: FinalState:STATE]) and produce as output a sequence of operation

(Solution: SEQUENCE[Elements: Op:OPERATOR]) that will transform the initial state to the final state.

10The notation used to specify an object is: (ObjectName:ItsType [Name-of-Slot1: { the specification of the object that

enters this slot}, ...]).

Often which perspective or which system objects to use for representing a given task is

determined by the slots associated with the system objects. A sentence could be a PATTERN or a

DESCRIPTION, but if we are treating it as a semantic object then we may want to specify what it refers

to. If we want to do so, we better characterize it as a DESCRIPTION because it is the one that has the

slot OF that will allow the specification of the reference. Nevertheless, it remains that these guides

are not enough to make the representation unique. And if the same task or method can be

represented in several ways, then there is the problem of possibly missing out potential methods just

because the perspective in which the method was represented differs from that for the task. At the

present, we deal with this problem by representing tasks and methods in all the possible perspectives

we can think of, thereby making them robust. Furthermore, we let the system know how to transform

certain representations into other alternative representations. For example, IDEME can have the

knowledge that when everything fails, it can try to transform the present task specification into the

problem space formulation and then retrieve the weak methods whose application conditions match

with the resulting task specification. However, we can go further by having IDEME learn the possible

relations among the perspectives through precedents and use that knowledge to attempt the

transformation. But at the moment, it is only a plan among many that need be given more thoughts. I

discuss others in the next section.

6. Further Research

6.1. To be done

There is much to be done before IDEME gets actually implemented. First of all, the system

objects have to be given more thoughts. We have to think about whether there can be some

principled way of choosing the initial set of objects, whether we can come up with a better way to deal

with relations as well as continue testing with the objects we already have to see if they are adequate

to represent what we want to represent."1 Also, I would test IDEME by continuing to build the

We are exploring the use of DL, an object and procedure description language designed by Winograd [Winograd 83]
and/or of KANDOR, a representation language by (Patel-Schneider et. al. 84, Patel-Schneider 84], for our purpose.

database and trying out tasks against it. The tasks will be selected so that they will test the different

facets of IDEME. For example, those tasks which are known to be analogous or solvable by the same

method can be used to see if the methods retrieved by one are retrieved by another. While I will

continue to focus on the domain of learning as the source of methods, I will test the generalizability of

IDEME by trying to characterize the tasks and methods in other domains as they come across. Since

none of IDEME's structures except the actual list of system objects should depend on the domain

chosen, I believe generalization should present no problem. The system objects even as they are now

seem very general that they can encompass a pretty wide range of domains.

6.2. Implementation

We are thinking of implementing IDEME within the paradigm of message passing semantics

such as Hewitt's ACTOR system. The scheme might take something like the following form. Each

method would be represented as an actor residing in the database. The user would specify the task

as a set of messages. These messages would go to an actor, say Referral Specialist, which knows to

whom, i.e. to which methods, to forward these messages. Then, those methods who think they can

handle the specified task report themselves with some sort of matching score. Then another actor,

Selector, would choose a few methods most likely to succeed and allocate resource. The chosen

actors would then try to satisfy the operational demands associated with them and in doing so

generate questions. The questions would be forwarded to Question Handler who will classify and

organize them in an order that is best to be presented to the user. The answers will be received in an

interactive session with the user, and returned to the actors which originated them. Using the actor

scheme would provide the advantages that are inherent in object oriented, message passing systems

such as modularity, distributedness, extendability, and parallelism [Hewitt&deJong 82].

6.3. Extensions

There are many ways that IDEME can be extended. A fully automatized version might be

something like this. IDEME takes a task description in natural language, abstract what is relevant,

and translate the description into a formal specification. Given the task specification, IDEME would

check and see whether it would be better to divide the task into several subtasks. It may do so by

looking up a library which contains suggestions for doing that or by having an expert rule system. For

each task or subtask specification, IDEME would check and see if that specification can be re-

presented from alternate perspectives. If so, the search is made with the alternative specifications as

well. For each specification, it looks for the methods in the manner described in this paper. After

finding a method for each subtask, it would synthesize them so that they can be combined to produce

the original output from the original input. Eventual automatization may even hope for automatic

interface with actual problem solving programs; what is needed as input for those programs may be

supplied by IDEME on the basis of the information obtained from the user and once it is obtained, the

actual program that implements a method can take over and produce the desired result without the

need for human intervention. But that is a story not easily to come in the immediate future.

There are many places where learning can enter. Analogy can be used to find methods for a

task when the normal search through the database turns out to be not successful. That is, if no useful

method is found for a given task, that task can be matched with precedents, i.e. the tasks that have

been solved before. If there is a task that matches closely, then the methods that have been used to

solve that task may be adapted to the present task. Doing so opens many learning possibilities in

other areas as well. Once matched tasks are found, their task specifications can also be matched to

learn from them how to formulate alternative task specifications, how one system object or a group of

system objects may be viewed as another system object, or how one task might be profitably divided

into several tasks. IDEME can store this knowledge for use in the manner described above.

Not only can IDEME be helped by analogy but it can also facilitate analogical reasoning itself. It

does so by virtue of using the similar representations for tasks and methods. Note that the slots for a

task specification is a subset of the slots for a method representation. In that sense, the method

representation is just an extension of the task specification. That is, it consists of a few additional

slots (OPERATIONAL DEMANDS, CONTEXT, STRENGTHS, LIMITATIONS, ALGORITHM) on top of

those of the task specification (INPUT, OUTPUT, CONSTRAINTS, CONTEXT). It means that when a

task is solved, we could turn it into a method by adding an algorithm slot among others and filling it

with the algorithm that was used to solve the task. It facilitates analogy because when we later face

another task with similar structure, it will have a similar task specification. So it will be matched with

the task-turned method, and the associated algorithm will be available for the present task. Note that

matching, which is the hardest problem in analogy, is tamed here much via our use of system objects

and multiple level abstraction.

Acknowledgment:

This research was motivated by the following work:

* Winston's work on analogy, on structure and function, and on learning.

* Newell's weak methods, functional reasoning; Laird and Newell's universal weak
methods, universal subgoaling as well as other work of Newell's on the foundation of Al.

* Simon's proposal on the science of design.

In addition, the following ideas have influenced this research:

* Semantic primitives in Schank, Rieger, and others.

* Abstractions in GPS and in Kling's ZORBA.

* Hewitt's ACTOR system.

Finally,l thank the following people for saving us a lot of
trouble by providing the necessary material in readily available
form:

* Edward Feigenbaum, Avron Barr, Paul Cohen, and others for the Handbooks of Al, v.1-3.

* Winston for Artificial Intelligence, 2nd ed.

* Newell and Laird for the catalogue of the weak methods.

References

[Davis&Lenat 82]
Davis, Randall & D. B. Lenat, editors.
Knowledge-Based Systems in Artificial Intelligence.
McGraw-Hill Book Company, New York, 1982.

[Goldstein&Bobrow 81]
Goldstein, Ira P. & D. Bobrow.
Layered Networks as a Tool for Software Development.
In Proceedings of the Seventh IJCAI. August, 1981.

[Green ?]
Green ?
Essays in Lexical Semantics.
In?. ?, ?

[Hewitt&deJong 82]
Hewitt, Carl & P. deJong.
Open Systems.
AIM 691, MIT, 1982.

[Kling 71]
Kling, Robert.
A Paradigm for Reasoning by Analogy.
Artificial Intelligence , 1971.

[Laird 84]
Laird, John.
Universal Subgoaling.
CMU-CS-84 129, Carnegie Mellon University, 1984.

[Laird&Newelt 83]
Laird, John & A. Newell.
A Universal Weak Method.
CMU-CS-83 141, Carnegie Mellon University, 1983.

[Langacker 83]
Langacker, Ronald W.
Foundations of Cognitive Grammar.
Indiana University Linguistics Club, Bloomington, Indiana, 1983.

[Langley 83]
Langley, Pat, G. L. Bradshaw, & H. A. Simon.
Rediscovering Chemistry with the BACON System.
Tioga Publishing Company, Palo Alto, CA, 1983,.

[Michalski&Ryszard 80]
Michalski, Ryszard S. & R. L. Chilausky.
Learning by Being Told and Learning from Examples: An Experimental Comparison of the

Two Methods of Knowledge Acquisition in the Context of Developing an Expert System for
Soybean Disease Diagnosis.

International Journal of Policy Analysis and Information Systems 4(2), 1980.

[Mitchell 77]
Mitchell, Tom M.
Version Spaces: A Candidate Elimination Approach to Rule Learning.
In Fifth International Joint Conference on Artifical Intelligence, pages pp.305-310. Cambridge,

MA, 1977.

[Patel-Schneider 84]
Patel-Schneider, Peter F.
Small can be Beautiful in Knowledge Representation.
FLAIR Technical Report 37., Fairchild Artificial Intelligence Laboratory, 1984.

[Patel-Schneider et. al. 84]
Patel-Schneider, Peter F., H.J. Levesque, and R.J.Brachman.
ARGON: Knowledge Representation meeets Information Retrieval.
In First Conference on Artificial Intelligence Applications. IEEE Computer Society, Denver,

Colorado, 1984.

[Rich 81]
Rich, Charles.
A Formal Representation for Plans in the Programmer's Apprentice.
In IJCAI-85. August, 1981.

[Rich&Shrobe 78]
Rich, Charles & H. Shrobe.
Initial Report on A Lisp Programmer's Apprentice.
IEEE Transaction on Software Engineering 4(5), November, 1978.

[Rieger 76]
Rieger, Chuck.
On Organization of Knowledge for Problem Solving and Language Comprehension.
Artificial Intelligence (2), 1976.

[Schank 72]
Schank, Roger C.
Conceptual Dependency: A Theory of Natural Language Understanding.
Cognitive Psychology (4), 1972.

[Simon 81]
Simon, Herbert A.
The Sciences of the Artificial, 2nd ed..
MIT Press, Cambridge, MA, 1981.

[Theriault82 82]
Theriault, D. G.
A Primer for the Act-1 Language.
AIMemo 672, MIT, 1982.

[Waters 82]
Waters, Richard C.
Programmer's Apprentice: Knowledge Based Program Editing.
IEEE Transaction on Software Engineering 8(1), January, 1982.

[Winograd 83]
Winograd, Terry.
Language as a Cognitive Process: Syntax.
Addison-Wesley Publishing Company, Reading, MA, 1983.

[Winston 80]
Winston, Patrick H.
Learning and Reasoning by Analogy.
Communication of the Association for Computing Machinery 23(12), 1980.

[Winston 82]
Winston, Patrick H.
Learning New Principles from Precedents and Exercises.
Articial Intelligence (3), 1982.

[Winston 83]
Winston, Patrick H., T. O. Binford, B. Katz, & M. R. Lowry.
Learning Physical Descriptions from Functional Definitions, Examples, and Precedents.
In National Conference on Artificial Intelligence. 1983.
Washington, D.C.

