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Abstract

We introduce new and general complexity theoretic hardness assumptions. These assumptions ab-
stract out concrete properties of a random oracle and are significantly stronger than traditional cryp-
tographic hardness assumptions; however, assuming their validity we can resolve a number of long-
standing open problems in cryptography.
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1 Introduction

The state-of-the-art in complexity theory forces cryptographers to base their schemes on unproven hardness
assumptions. Such assumptions can be general (e.g., the existence of one-way functions) or specific (e.g.,
the hardness of RSA or the Discrete logarithm problem). Specific hardness assumptions are usually stronger
than their general counterparts; however, as such assumptions consider primitives with more structure, they
lend themselves to constructions of more efficient protocols, and sometimes even to the constructions of
objects that are not known to exist when this extra structure is not present. Indeed, in recent years, several
new and more exotic specific hardness assumptions have been introduced (e.g., [11, 4, 10]) leading to, among
other things, signatures schemes with improved efficiency, but also the first provably secure construction of
identity-based encryption.

In this paper, we introduce a new class of strongdarteralhardness assumptions, and show how these
assumptions can be used to resolve certain long-standing open problems in cryptography. Our assumptions
are all abstractions of concrete properties of a random oracle. As such, our results show that for the prob-
lems we consider, random oracles are not necessary; rather, provably secure constructions can be based on
concrete hardness assumptions.

1.1 New-Age Assumptions

We consideradaptivestrengthenings of standard general hardness assumptions, such as the existence of
one-way functions and pseudorandom generators. More specifically, we introduce the notion of collections
of adaptive 1-1 one-way functions and collections of adaptive pseudorandom generators. Intuitively,

¢ A collection of adaptively 1-1 one-way functigssa family of 1-1 functions?,, = { fiqq : {0,1}" —
{0,1}"} such that for everyag, it is hard to invertf;,, () for a randony, even for an adversary that
is granted access to an “inversion oracle” fay,s for everytag # tag’. In other words, the function
ftag 1S ONE-way, even with access to an oracle that invert all the other functions in the family.

¢ A collection ofadaptive pseudo-random generatsa family of functionsj,, = Gy, : {0,1}" —
{0, 1} such that for everyag, G4,4 is a pseudorandom even if given access to an oracle that decides
whether givery is in the range of-.

Both the above assumptions are strong, but arguably not “unrealistically” strong. Indeed, both these as-
sumptions are satisfied by a (sufficiently) length-extending random orakdesuch, they provide concrete
mathematical assumptions that can be used to instantiate random oracles in certain applications.

We also present some concrete candidate instantiations of these assumptions. For the case of adaptive
1-1 one-way functions, we provide construction based on the the “adaptive security” of Factoring, or the
Discrete Log problem.

For the case of adaptive PRGs, we provide a candidate construction based on a generalization of the
advanced encryption standard (AES).

Related Assumptions in the Literature. Assumptions of a related flavor have appeared in a number of
works. The class of “one-more” assumptions introduced by Bellare, Namprempre, Pointcheval and Se-
manko [4] are similar in flavor. Informally, the setting of the one-more RSA-inversion problem is the
following: The adversary is given values, 2o, . .., 2, € Z} (for a compositeV = pgq, a product of two

'Note that a random function over, sd, 1} — {0, 1}*™ is 1-1 except with exponentially small probability.



primes) and is given access to an oracle that computes RSA inverses. The adversary wins if the number of
values that it computes an RSA inverse of, exceeds the number of calls it makes to the oracle. They prove
the security of Chaum’s blind-signature scheme under this assumption. This flavor of assumptions has been
used in numerous other subsequent works [5, 6].

Prabhakaran and Sahai [28] use an assumption of the form that there are collision-resistant hash func-
tions that are secure even if the adversary has access to a “collision-sampler”. In a related work, Malkin,
Moriarty and Yakovenko [21] assume that the discrete logarithm problefi iwherep is a k-bit prime)
is hard even for an adversary that has access to an oracle that computes discrete logafithfos amy
k-bit prime ¢ # p. Both these works use the assumption to achieve secure computation in a relaxation of
the universal composability framework.

1.2 New-Age Results

Non-Interactive Concurrently Non-Malleable Commitment Schemes. Non-malleable commitment schemes
were first defined and constructed in the seminal paper of Dolev, Dwork and Naor [16]. Informally, a com-
mitment scheme is non-malleable if no adversary can, upon seeing a commitment to a, yahauce a
commitment to a related value (say- 1). Indeed, non-malleability is crucial to applications which rely on
theindependencef the committed values. A much stronger property — called concurrent non-malleability —
requires that no adversary, after receiving commitments of. . , v,,,, can produce commitments to related
valuesiy, . .., Up.

The first non-malleable commitment scheme of [16] was interactive, and reditegn) rounds of
interaction, where: is a security parameter. Barak [1] and subsequently, Pass and Rosen [26] presented
constant-round non-malleable commitment schemes. The only known construction of a concurrent non-
malleable commitment scheme is due to Pass and Rosen [25], and rd@uinesds of interaction between
the committer and the receiver.

We note that of the above commitment schemes, [16] is the only one with a black-box proof of security,
whereas the schemes of [1, 26, 25] rely on the novel non-black-box proof technique introduced by [1]. In
particular, there is no known concurrently non-malleable commitment schemes with a black-box proof of
security.

Ouir first result is a construction of r@on-interactive, concurrently non-malleald&ring commitment
scheme, from a family of adaptive one-way permutations. Additionally, our construction is the first concur-
rently non-malleable commitment scheme with a black-box proof of security.

Theorem 1 (Informal) Assume the existence of collections of adaptive 1-1 permutations. Then, there exists
a non-interactive concurrently non-malleable string commitment scheme with a black-box proof of security.

If instead assuming the existence of adaptive PRGs, we show the existence of 2-round concurrent non-
malleable commitment with a black-box proof of security.

Theorem 2 (Informal) Assume the existence of collections of adaptive PRGS. Then, there exists a 2-round
concurrently non-malleable string commitment scheme with a black-box proof of security.

Round-optimal Black-box Non-malleable Zero-knowledge. Dolev, Dwork and Naor [16] defined non-
malleable zero-knowledge (ZK) and presented’Hibg n)-round ZK proof system. Barak [1] and subse-
quently, Pass and Rosen [26] presented constant-round non-malleable zero-knowledge argument system. Of



the above protocols, [16] is the only one with a black-box proof of security, whereas the schemes of [1, 26]
rely on the non-black-box proof technique of [1].

We construct d-round non-malleable zero-knowledge argumsyrgtem with a black-box proof of secu-
rity (that is, a black-box simulator). Four rounds is known to be optimal for black-box zero-knowledge [18]
(even if the protocol is not required to be non-malleable) and for non-malleable protocols (even if they are
not required to be zero-knowledge) [20].

Theorem 3 (Informal) Assume the existence of collections of adaptive 1-1 one-way function. Then, there
exists ad-round non-malleable zero-knowledge argument system with a black-box proof of security. Assume,
instead, the existence of collections of adaptive one-way permutations. Then, there &xistsxd non-
malleable zero-knowledge argument system with a black-box proof of security.

It is interesting to note that the (seemingly) related notion of concurrent zero-knowledge cannot be
achieved ino(logn) rounds with a black-box proof of security. Thus, our result shows that (under our
new-age assumptions), the notion of non-malleability and concurrency in the context of zero-knowledge are
quantitatively different.

Efficient Chosen-Ciphertext Secure Encryption. Chosen ciphertext (CCA) security was introduced in

the works of [23, 29] and has since been recognizedsaseaqua-norior secure encryption. Dolev, Dwork

and Naor [16] gave the first construction of CCA-secure encryption schemes based on general assumptions.
Their construction, as well as the construction of Sahai [30], uses the machinery of non-interactive zero-
knowledge proofs, which renders them less efficient than one would like. In contrast, the construction of
Cramer and Shoup [14, 15] are efficent, but are based on specific number-theoretic assumptions.

Bellare and Rogaway [7] proposed an encryption scheme that is CCA-secure in the random oracle model
(see below for more details about the random oracle model). We show complexity-theoretic assumptions that
are sufficient to replace the random oracle in this construction. We mention that, previously, Canetti [12]
showed how to replace random oracles in a related construction to get a semantically secure encryption
scheme (but without CCA security). Our construction of CCA-secure encryption is in Appendix D.

Interactive Arguments for which Parallel-repetition does not reduce the soundness error. A basic
question regarding interactive proof is whether parallel repetition of such protocols reduces the soundness
error. Bellare, Impagliazzo and Naor [3] show that there are interaatiyementgi.e., computationally-

sound) proofs in the Common Reference String (CRS) model, for which parallel-repetition does not reduce
the soundness error. Their construction relies on non-malleable encryption, and makes use of the CRS to
select the public-key for this encryption scheme. However, if instead relying on a non-interactive concurrent
non-malleable commitment schemes in their construction, we can dispense of the CRS altogether. Thus, by
Theorem 1, assuming the existence of collections of adaptive 1-1 one-way functions, we show that there
exists an interactive argument for which parallel repetition does not reduce the soundness error. We also
mention that the same technique can be applied also to the strengthened construction of [27].

Our Techniques. All our constructions are simple and efficient. In particular, for the case of non-malleable
commitment schemes, we show that appropriate instantiations of the Blum-Micali [9] or Naor [22] commit-
ment schemes in fact are non-malleable. The proof of these schemes are also “relatively straight-forward”
and follow nicely from the adaptive property of the underlying primitives.

Next, we show that by appropriately using our non-malleable commitment protocols in the Feige-Shamir
[17] zero-knowledge argument faf P, we can also get a round-optimal black-box non-malle&ii{eproof
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for N'P. Although the construction here is straight-forward, its proof of correctness is less so. In particular,
to show that our protocol is non-malleable, we rely on a techniques that are quite different from traditional
proofs of non-malleability: in particular, the power of the “adaptive” oracle will only be used inside hybrid
experiments; the simulation, on the other hand, will proceed by traditional rewinding. Interestingly, to get
a round-optimal solution, our proof inherently relies on the actual Feige-Shamir protocol and high-lights
some novel features of this protocol.

Interpreting Our Results. We offer two interpretations of our results:

e Theoptimisticinterpretation: Although our assumptions are strong, they nonetheless do not (a priori)
seem infeasible. Thus, if we believe that e.g., AES behaves as an adaptively secure PRG, we show
practical solutions to important open questions.

e The conservativanterpretation: As mentioned, our constructions are black-box; namely, both the
construction of the cryptographic objects and the associated security proof utilize the underlying
primitive—adaptive one-way permutations or adaptive PRGs—as a black-box, and in particular, do
not refer to a specific implementation of these primitives. Thus, a conservative way to view our results
is that to show even black-box lower-bounds and impossibility results for non-interactive concurrent
non-malleable commitments and non-malleable zero-knowledge proofs, one first needs to to refute our
assumptions. Analogously, it means that breaking our CCA-secure encryptions scheme, or proving a
general parallel-repetition theorem for interactive arguments, first requires refuting our assumptions.

1.3 New-Age Perspective

A cryptographer could choose to make “mild” assumptions suéh g\ P, “relatively mild” ones such as

the existence of one-way functions, secure encryption schemes or trapdoor permutations, or “preposterous”
ones such as “this scheme is secure”. Whereas preposterous assumptions clearly are undesirable, mild
assumptions are—given the state-of-the-art in complexity theory—too weak for cryptographic constructions
of non-trivial tasks. Relatively mild assumptions, on the other hand, are sufficient for showing the feasibility

of essentially all known cryptographic primitives.

Yet, to obtain practical constructions, such assumptions are—given the current-state-of-art—not suffi-
cient. In fact, it is a priori not even clear that although feasibility of a cryptographic task can be based
on a relatively mild assumptions, that a “practical” construction of the primitive is possible (at all'). One
approach to overcome this gap is the random oracle paradigm, introduced in the current form by Bellare
and Rogaway [7]: the proposed paradigm is to prove the security of a cryptographic scheme in the random-
oracle model—where all parties have access to a truly random function—and next instantiate the random
oracle with a concrete function “with appropriate properties”. Nevertheless, as pointed out in [13] (see also
[19, 2]) there are (pathological) schemes that can be proven secure in the random oracle model, but are
rendered insecure when the random oracle is replaced by any concrete function (or family of functions).

In this work we, instead, investigate a different avenue for overcoming this gap between theory and
practice, by introducing strong, but general, hardness assumption. When doing so, we, of course, need to be
careful to make sure that our assumptions (although potentially “funky”) are not preposterous. One criterion
in determining the acceptability of a cryptographic assumptids to consider (1) what the assumption is
used for (for instance, to construct a primitii® say) and (2) how much more “complex” the primitiye
is, compared tad. For example, a construction of a pseudorandom generator assuming a one-way func-
tion is non-trivial, whereas the reverse direction is not nearly as interesting. Unfortunately, the notion of



“complexity” of an assumption is hard to define. We here offer a simple interpretation: view complexity

as “succinctness”. General assumption are usually more succinct than specific assumptions, one-way func-
tions are “easier” to define than, say, pseudorandom functions. Given this point of view, it seems that our
assumptions are not significantly more complex than traditional hardness assumption; yet they allow us to
construct considerably more complex objects (e.g., non-malleable zero-knowledge proofs).

On Falsifiability/Refutability of Our Assumptions  Note that the notions of non-malleable commitment

and non-malleable zero-knowledge both are defined using simulation-based definitions. As such, simply
assuming that a practical scheme is, say, non-malleable zero-knowledge, seems like a very strong assump-
tion, which is hard to falsify—in fact, to falsify it one needs to show (using a mathematical proof) that no
Turning machine is a good simulator. In contrast, to falsify our assumptions it is sufficient to exhibit an
attacker (just as with the traditional cryptographic hardness assumptions).

To make such “qualitative” differences more precise, Naor [24] introduced a framework for classifying
assumptions, based on how “practically” an assumption can refuted. Whereas non-malleability, a priori,
seems impossible to falsify (as there a-priori is not a simple way to showing that no simulator exists). In
contrast, traditional assumptions such as “factoring is hard” can be easily refuted simply by publishing
challenges that a “falsifier” is required to solve. Our assumptions cannot be as easily refuted, as even if
a falsifier exhibits an attack against a candidate adaptive OWF, it is unclear how to check that this attack
works. However, the same can be said also for relatively mild (and commonly used) assumptions, such as
“factoring is hard for subexponential-timé”.

Additionally, we would like to argue that our assumptions enjoy a similar “win/win” situation as tra-
ditional cryptographic hardness assumptions. The adaptive security of the factoring or discrete logarithm
problems seem like natural computational number theoretic questions. A refutation of our assumptions (and
its implication to factoring and discrete logarithm problem) would thus be interesting in its own right. Taken
to its extreme, this approach suggest that we might even consider assumptions that most prokalby are
such as e.g., assuming that AES is an (adaptive one{eautation as long as we believe that it might be
hard to prove that the assumption is false.

2 New Assumptions and Definitions

The following sections introduce our definitions of adaptively secure objects—one-way functions, pseudo-
random generators and commitment schemes—and posit candidate constructions for adaptively secure one-
way functions and pseudorandom generators. Standard cryptographic definitions (non-malleable commit-
ments and zero-knowledge) are delegated to Appendix A.

2.1 Adaptive One-Way Functions

In this paper, we define family of adaptively secure injective one-way functions, where each function in
the family is specified by an indexeg. The adaptive security requirement says the following: consider an
adversary that picks an indexg* and is giveny* = fi.g+(2*) for a randomz* in the domain off;,g-,

2Recall that falsifiability is Popper’s classical criterion for distinguishing scientific and “pseudo-scientific” statements.

3Note that the assumption that factoring is hard for subexponential-time can be falsified by considering a publishing a very
“short” challenge (or lengtipolylogn). However, in the same vein, our assumption can be falsified by considering challenges of
lengthlog n; then it is easy to check if someone can exhibit an efficient attack on the adaptive security of an assumed one-way
function, since the inverting oracle can also be efficiently implemented.



and the adversary is supposed to comptite The adversary, in addition, has access to a “magic oracle”
that on input(tag,y) wheretag # tag*, and get baclg"t‘aé(y). In other words, the magic oracle helps
invert all functions f,, different from the “target function’f.g<. The security requirement is that the
adversary have at most a negligible chance of computingeven with this added ability. Note that the
magic oracle is just a fictitious entity, which possibly does not have an efficient implementation (as opposed
to the decryption oracle in the definition of CCA-security for encryption schemes which can be implemented
efficiently given the secret-key). Inability to invert even with access to such an oracle is indeed a strong
security requirement on the functigih More formally,

Definition 1 (Family of Adaptive One-to-one One-way Functions)A family of injective one-way func-
tionsF = { frag : Drag — {0, 1}" }1ageqo,1}~ is called adaptively secure ff,

e (EASY TO SAMPLE AND COMPUTE) There is an efficient randomizedmain-sampleP, which on
inputtag € I, outputs a random element i,,. There is a deterministic polynomial algorithid
such that for alltag < I and for allz € Dy,g, M (tag, ) = frag(z).

e (ADAPTIVE ONE-WAYNESS.) Let O(tag,-,-) denote an oracle that, on inpubg’ and y outputs
feag(v) if tag’ # tag and 1 otherwise!

The familyF is adaptively secure if, for any probabilistic polynomial-time adverséryhere exists
a negligible functionu: such that for all sufficiently largé, and for all tagstag < I,

Prfe — D(tag, 1¥) : A8 (tag, fusg(2)) = 2] < u(n)

where the probability is over the random choitgg output byI, the random choice aof and the
coin-tosses ofl.

A potentially incomparable assumption is that of an adaptively secure injective one-way function (as
opposed to a family of functions). However, it is easy to see that an adaptively secure one-way function
with subexponential security and a dense domain implies a family of adaptively secure one-way functions,
as defined above. In fact, our construction of a family of adaptively secure one-way functions based on
factoring goes through this construction.

Hardness Amplification. A strong adaptively secure one-way function is one where no adversary can in-
vert the function with probability better than some negligible functioh {(gven with access to the inversion
oracle). A weak one, on the other hand, only requires that the adversary not be able to invert the function
with a probability better thath — 1 /poly (k) (even with access to the inversion oracle).

We remark that we can construct a strong adaptively secure one-way function from a weak adaptively
secure one-way function. The construction is the same as Yao’s hardness amplification lemma. We defer
the details to the full version.

2.1.1 Candidates

We present candidates for adaptively secure one-way functions, based on assumptions related to discrete-log
and factoring.

“If tag’ is not a valid tag, namely, fag’ is not in the range of (1*), then agair© outputs..



Factoring. First, we show how to build an adaptively secure one-way function (not a family of functions)
from the factoring assumption. Then, we show how to turn it into a family of functions, assuming, in
addition, that factoring is subexponentially-hard.

The domain of the functiorf is {(p,q) | p,q € Pn,p < q}, whereP,, is the set of alln-bit primes.
Given this notation f(p, q) is defined to beyg. Assuming that it is hard to factor a numb#&rthat is a
product of primes, even with access to an oracle that factors all other products of two primes, this function
is adaptively secure.

We now show how to turn this into a family of adaptively secure one-way functions. The index is simply
ann/ = n!/¢-bit string (for some: > 0) i = (i1,42). The domain is the set of all string;, j») such that
p = i1 0 j1 andq = is o jo are bothn-bit primes. The function then outputg. Since we reveal the first
n' = n'/¢ bits of the factors ofV = pg, we need to assume that factoring is subexponentially hard (even
with access to an oracle that factors other products of two primes). The function is clearly injective since
factoring forms an injective function.

In the full version, we additionally provide candidates for adaptive one-way functions based on the RSA
and Rabin functions.

Discrete Logarithms. The family of adaptive OWFp; is defined as follows: The index sét =
{0,1}™. The domain of the function is a tup(e, g, ) such that is a2n-bit prime p whose firstn bits
equal the index, g is a generator foZ.,, andx is a2n — 1-bit number. The domain is easy to sample-the
sampler picks a “long-enough” random stringnd a2n — 1-bit numberz. The functionf; uses- to sample

a 2n-bit prime p whose firstn bits equali (this can be done by repeated sampling, and runs in polynomial
time assuming a uniformness conjecture on the density of primes in large intervals) and a ggnerafor
The output of the function on inpup, g, x) is (p, g, g* modp). f; is injective since the output determines
andg; givenp andg, ¢g* modp next determines uniquely sincer < 227~! andp, being a2n-bit prime, is
larger tharg?"—1,

We also mention that the adaptive security of this family can be based on the subexponential adaptive
security of the one-way function (as opposed to family) obtained by simply sampling ramdom (or
even randonp being a safe prime) and outputtipgg, g*. Note that this assumption is different from the
assumption of [21] in that we require security to hold only w.r.t to a random primaigereas [21] requires it
to holds also w.r.t to adversarially choggnn contrast we require security w.r.t sub-exponential adversaries.

2.2 Adaptive Pseudorandom Generator

A family of adaptively secure pseudorandom generafoss { Gag }tage 0,1}~ iS defined in a similar way to

an adaptive one-way function. We require that the output of the gene&ratmm a random input and an
adversarially chosetag be indistinguishable from uniform, even for an adversary that can query a magic
oracle with a valuétag’, y) (wheretag’ # tag) and get back or 1 depending on whetheris in the range

of G't,g OF NOt.

Definition 2 (Adaptive PRG) A family of functionsf = {Grag : {0,1}" — {0,135} 15 (0,13n is an
adaptively secure pseudorandom generator (PRGyzif;(x)| = s(|x|) for some functiors such that
s(n) > n for all n and,

e (EFFICIENT COMPUTABILITY.) There is a deterministic polynomial-time algorithid, such that
Mc(z,tag) = Giag().



e (ADAPTIVE PSEUDORANDOMNESS) Let O(tag, -, -) denote an oracle that, on inpgtag’, y) such
thattag’ # tag, outputsl if y is in the range of7,, and0 otherwise.

The PRGG is adaptively secure if, for any probabilistic polynomial-time adverséyyhere exists a
negligible functiory: such that for all sufficiently large and for all tagstag € {0,1}",

| Prly  Grag(Un) : A%8)(y) = 1] — Paly Uy, : A% (y) = 1]| < ()

where the probability is over the random choiceyaind the coin-tosses of.

2.2.1 Candidates

For the case of adaptive PRGs, we provide a candidate construction based on the advanced encryption
standard (AES). AES is a permutation 8 bits; that is, for al 28-bit seeds, AES; is a permutation defined

on {0, 1}!28, However, due to the algebraic nature of the construction of AES, it can easily be generalized
to longer input length. LeAES,, denote this generalized version of AESqtebit inputs. Our candidate
adaptive pseudorandom generai@SG,, is Simply AESGyq4(s) = AESs(tag o 0) o AES,(tag o 1).

2.3 Adaptively Secure Commitment Schemes

In this subsection, we define adaptively secure commitment schemesCa®tag = (Stag, Rtag) }rage 0,13+

denote a family of commitment protocols, indexed by a sttipgg We require that the commitment scheme

be secure, even against an adversary that can query a magic oracle on the transcript of a commitment interac-
tion and get back a message that was committed to in the transcript. More precisely, the adversary picks an
indextag and two equal-length strings) andz; and gets a valug, = COMag(x; 1), Whereb is a random

bit andr is random. The adversary can, in addition, query a magic oraclg'otag’) wheretag’ # tag

and get back the somé such that)/ € COM (2/;7') (if ' is a legal commitment) and otherwise ®

The security requirement is that the adversary cannot distinguish whgtivais a commitment teg or x1,

even with this extra power.

Definition 3 (Adaptively-Secure Commitment) A family of function COMag }1age 0,13+ iS called an adap-
tively secure commitment schemg&iif; and R,z are polynomial-time and

e STATISTICAL BINDING: For anytag, over the coin-tosses of the receivey the probability that a
transcript (S*, Reag) has two valid openings is negligible.

e ADAPTIVE SECURITY: LetO(tag,-,-) denote the oracle that, on inptdg’ # tag andc, returns
anz € {0,1} such that for some random strings and g, c is the transcript of the interaction
betweenS with inputz and random coingg and R with random coing .

For any probabilistic polynomial-time oracle TM, there exists a negligible functign(-) such that
for all sufficiently largen, for all tag € {0,1}* and for all 2,y € {0,1}¢,

| Prlc — (Stag (), Reag); A%1#8) (¢, tag) = 1]~Prlc  (Stag(y), Reag); A7) (¢, tag) = 1] < pu(n)

5In case the transcript corresponds to the commitment of multiple messages, the oracle returns a canonical one of them. In fact,
one of our commitment schemes is perfectly binding and thus, does not encounter this problem.



3 Non-Malleable Commitment Schemes

In this section, we construct non-malleable string-commitment schemes. We first construct adaptively-
secure bit-commitment schemes based on an adaptively secure injective OWF and an adaptively secure PRG
— the first of these constructions is non-interactive and the second-reand commitment scheme. We

then show a simple “concatenation lemma”, that constructs an adaptively secure string commitment scheme
from an adaptively-secure bit-commitment scheme. Finally, we show that an adaptively secure commitment
scheme is also non-malleable. For full proofs, see Appendix B.

Lemma 4 Assume that there exists a family of adaptively secure injective one-way functions. Then, there ex-
ists an adaptively secure bit-commitment scheme. Furthermore, the commitment scheme is non-interactive.

Further, assuming the existence of a family of adaptively secure pseudorandom generators, there exists
a 2-round adaptively secure bit-commitment scheme.

The first of these constructions follows by replacing the injective one-way function in the Blum-Micali [9]
commitment scheme, with an adaptively secure one, and the second follows from the Naor commitment
scheme [22] in an analogous way.

Lemma 5 (Concatenation Lemma)If there is an adaptively secure family of bit-commitment schemes,
then there is an adaptively secure family of string-commitment schemes.

The concatenation lemma follows by simply committing to each bit of the message independently using
a single-bit commitment schemeo®;,.
Lemma 6 Let {COMyag }rageqo,11» DE @ tag-based adaptively secure commitment scheme Then, there is a
non-malleable commitment sche@ewm’.

This is a standard proof using signature schemes to compile an adaptively secure commitment scheme
to a plain non-malleable commitment scheme. Putting together, these lemmas prove theorems 1 and 2.

4 Four-Round Non-Malleable Zero-Knowledge

In this section, we presentaround non-malleable zero-knowledge argument system. The argument system
is exactly the Feige-Shamir protocol [17], compiled with an adaptively secure commitment scheme. In our
analysis we rely on the following properties of the Feige-Shamir protocol:

e The first property is that the first prover message is (perfectly) independent of the witness used by
the prover (and even the statement!). This property has previously been used to simplify analysis, but
here we inherently rely on this propertyeéaableour analysis.

e The second property is that given a random accepting transcript, arapémengsof the commit-
ments in the first message, it is possible to “extract a witness”. In other words, any transcript implic-
itly defines a witness; additionally, given a random transcript, this witness will be valid with a high
probability (if the transcript is accepting).

In what follows, we present a sketch of the protocol and the proof and refer the reader to Appendix C
for the full text of the protocol description and the proof.

4.1 An Adaptively Secure Witness Indistinguishable Proof of Knowledge

The main component in the NMZK protocol is a three-round witness-indistinguishable proof of knowledge
(WIPOK) II. The protocol is simply a parallelization of tBeround zero-knowledge prodf for the A"P-
complete language of Hamiltonicity [8, 17], with the only change that the commitment scheme used in the
proof is adaptively secure.



In fact, we construct a family of protocol$:.g, indexed bytag. The protocoll,; — which is a parallel
repetition off[tag — has an adaptive WI property which, roughly stated, means that the transcripts of the
protocol when the prover uses two different withesseandw, are computationally indistinguishable, even
if the distinguisher has access to a magic oracle that inverts all commitmentg &, wheretag’ # tag.

Lemma 7 Letr, denote a random transcript of the protod®,; between the provef and the verifie”
on common input and where the prover has auxiliary inputand the verifier has auxiliary input. Then,
for everyz, z andw, w’ such thatR; (w) = Rz (w') = 1, and for every PPT machin® with oracle access
to O(tag, -, -), the following quantity is negligible ik:

|Pr[DO(tag"")(:L‘, zyw,w Ty) = 1] — Pr[DO(tag"")(:E, zyw,w Ty ) = 1H

The messages in the three rounds of the protﬁ@ggl will be denotedA, C andZ respectively. It turns
out that with probability% over the choice of randomness in the protocol, a transcriﬂﬁtgg uniquely
defines a witness (even though not it is not computable in polynomial-time). We define this todintes
implicit in the transcriptin an instance ofl;,;. Furthermore, we show that the implicit witnesslIq,g is
computable given access@(tag’, -, -) for anytag’ # tag. For more precise definitions, see Appendix C.

Lemma 8 Given oracle access to the commitment-inversion oré2leag’,-,-) for an tag’ # tag, the
witness implicit in any accepting transcript O ,; can be computed in polynomial time.

4.2 The Non-Malleable Zero-Knowledge Argument System

The non-malleable ZK protocol consists of two instances of the profdgglrunning in conjunction, one of
them initiated by the verifier and the other initiated by the prover. We will denote the cdpypoinitiated
by the verifier aﬂgg and the one initiated by the prover]ﬁég. We will use the notation from the previous
subsection to describe the messages in these protocols — the messages in the ]ﬂ@c{oed;p. k)

tag
appear with a superscript of (resp. P).

Theorem 9 Assume tha€CoM is a non-interactive adaptively secure commitment scheme. Then, the proto-
col in Figure 1 is a4-round non-malleable zero-knowledge argument system.

Proof: Completeness, soundness and zero-knowledge properties of the protocol follow directly from the
corresponding properties of the Feige-Shamir protocol. In Lemma 10, we show that the protocol non-
malleable.

In other words, for every man-in-the-middle adversdryhat interacts with the prover,,; on a state-
mentx and convinces the verifidr,, (for atag’ # tag) in a right-interaction on a statemerit(possibly
the same as), we construct a stand-alone prover that convinces the verifief with the same probability
as A, butwithout access to the left-interactiomhe construction of the stand-alone prover in the proof of
non-malleability (see Lemma 10) relies on the adaptive security of the commitment sclemg, Cit is
important to note that the stand-alone prover itself runs in classical polynomial-time, and in particular does
not use any oracles. Access to the commitment-inversion oracle is used only to show that the stand-alone
prover works as expected (and in particular, that it convinces the verifier with the same probability as does
the MIM adversary). O

Lemma 10 The protocolNM,, in Figure 1 is non-malleable.

Proof: For every man-in-the-middle adversafly we construct a stand-alone provethat convinces the
verifier with essentially the same probability thiadoes. Very roughly, the construction of the stand-alone
proverS proceeds in two steps.
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Non-Malleable Zero-Knowledge ArgumentNM;,g

CoMMON INPUT: An instancer € {0,1}", presumably in the languade
PROVER INPUT: A witnessw such thaf{z, w) € Ry.

ROUND 1: (Verifier) Pickw; andw, at random and compute = f(w;) fori € {1,2}.
Let theNP-relationRy = {((z1,x2),w’) | eitherf(w’) =z or f(w') = z2}.
Initiate the WI protoco[lgg with the statementzy, z2) € Ly. In particular,

V — P Send(xy,75) to P. SendAY, AY ... AY to P.

ROUND 2: (Prover) Let the N'P-relationRp be
{((z,z1,x2),w) | €ither(z,w) € Ry, or f(w) =z or f(w) = x5}

Initiate a WI protoco[l'[{jg with common input(z, z1, z2). Also, send the second-round messages

of the protocoll'[ﬁgg. In particular,
(2a)P — V:SendA? AL ... AP toV.
(2b)P — V: SendCy,Cy,...,CYV to V.
ROUND 3: (Verifier) Send round challenges of the protocdﬂf;g and round3 responses dﬂgg.
(3a)V — P: SendC?,...,CFPto P.
(Bb)V — P: Sendz}),...,ZY to P.
ROUND 4: (Prover) P verifies that the transcrigt(A), CY, Zi")},;e[n] is accepting for the subprotoco
ITY,. If not, abort and send nothing 16. Else,
P—V:Sendzf,....ZPtoV.
V accepts iff the transcrigt(A]”, C/, Z[")};cpn) is accepting for the subprotochl., .

Figure 1: NON-MALLEABLE ZERO-KNOWLEDGE F’ROTOCOLNI\/ltag FOR A LANGUAGE L

1. Run the adversaryl with “honestly generated” verifier-messages on the right interaction, and extract
the witness for the WIPOlK[tVag that the adversary initiates on the left interaction.

2. Use the witness thus obtained to simulate the left-interaction of the advedsamng rewind the WI
proof of knowledgeﬂgg, it initiates on the right interaction to extract the witness for the statendent

Carrying out this agenda involves a number of difficulties. We first describe how to accomplish. Step
This is done by invoking the simulator for the Feige-Shamir protocol, and is described below. Infosnally,
extracts the witness’ that the MIM A uses in the subprotoctlilgg in the left-interaction. Then§ acts as
the honest prover using the witnassin the protocolﬂgg.

We now describe how to carry out St2pf the agenda, and show that at the end of Qtep extracts a
witness for the statemeiitthat the MIM adversanA uses in the right-interaction with essentially the same
probability thatA convinces the verifier on the right-interactiof. starts by running the protocol in the
left-interaction using the witness’ it extracted using the strategy in StepConsider the moment whet
outputs the first message on the left (that is, the first message in the subpfb@@to[:onsider two cases.
First Case: At this time, A has not yet received the roudnessages in the right interaction (that is, the
challenges in the subprotocﬂf;g,) (See Figure 2(i)). In this case, the Rouhdiessage that sends on the
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Figure 2: Two scheduling strategies (i) on the left and (ii) on the right

left interaction is independent of the RouBanessage in the right interaction. Nasvproceeds as follows:
S runs the left-interaction as a normal proveg, would with the fake-witness/’, and rewinds the protocol
Hf‘;g, on the right-interaction to extracta witness for the statenzer@ince the rewinding process does not
change the messages in the right-interaction before rdufidan usew’ to produce the left-interaction just
as an honest prover with witneas$ would.

Second Case:A has already received the challenges in the subpromﬁgl in the right interaction (See

Figure 4(ii)). In this case, trying to rewind in the WIP(IH{Zg, on the right is problematic, sincé could
change the first message on the left, every time it is fed with a different challenge in 3amthe right-
interaction. In this case$ proceeds as follows: Every time the extractor for the WIPDE,, in the
right-interaction rewindsS repeats the entire procedure in Stepf the agenda to extract a witnegs$
corresponding to the (potentially new) Rouhdnessage in the left interactiors then simulates the left-
interaction with the witness thus extracted. The extraction procedure on the right-interaction is unaffected
by the rewinding on the left.

Correctness. First, we show that the view generated.$yollowing Stepl of the agenda is indistinguish-

able from the view of4 in a real interaction, even to a distinguisher that has access to the &raelg -, -)

that inverts @M,y for anytag’ # tag (Claim 1) Then, we use this to show that tingplicit witnessin

the transcript of the subprotocﬁlﬁzg/ in the right-interaction is indistinguishable between the simulated and
the real execution (Claim 2). This means that (1) the extraction on the right succeeds with essentially the
same probability thatt manages to convince the verififg,g in the right-interaction, and moreover, (2) the
witness thaiS extracts from the right interaction of is computationally indistinguishable from the witness
that A uses in the real interaction. Together, these claims imply the correctness of the stand-along.prover
Note that the simulator is entirely classical, with no oracle access; the adaptive security of the commitment
scheme is used only in Claitn

Running Time. Let X; be the random variable representing the number of tif\éms to rewind the
protocoll‘[t‘gg in the left-interaction to extract a fake witness. Similarly, ¥t be the random variable
representing the number of times the extraction procedure on the subplﬂ@é;abn the right interaction
has to rewind to extract a witness.

The problematic case is the second one (Figure 2(ii)) where the total expected running Ame is
X1X5, since every time the extraction procedure on the right rewifidgs to extract a new fake witness
in the left-interaction. ThusE[X1Xs] = >, aPr[X1 = a]E[X3|X; = a]. However, noting that
the number of times the extractor needs to rewind on the riginidispendent ofhe number of times the
simulator rewinds on the left-interaction, we get that this is sindgy(1] £[X2], which is polynomial. O
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A Preliminaries and Standard Definitions

Concurrent Non-Malleable Commitment. Our definition of concurrent non-malleable commitment is
almost identical to that of [26]; the main difference is that we use a definition of non-malleability w.r.t tags.
Let COMiag = (Ctag, Riag) be a family of commitment schemes. Consider man-in-the-middle adversaries
that are participating in left and right interactions in whiech= poly(n) commitments take place. We
compare betweenman-in-the-middl@and asimulatedexecution. In the man-in-the-middle execution, the
adversaryA is simultaneously participating im left and right commitmentsA receives commitments to
valuesuvy, .. ., v, using identitiestaG, . . ., TAG,, Of its choice and attempts to commit to a sequence of
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related value$, . .., 0, using identitiesTAGy, . . ., TAG,,. If any of the right commitments generated by
the adversary are invalid, or undefined, its value is set td~or any: such thattAG; = TAG; for some
j, sety; = L. That is, any commitment where the adversary uses the same identity as one of the honest
committers is considered invalid.

Let mimfam(vl, ...,Um,2) denote a random variable that describes the valyes. ., v,, and the
view of A in the above experiment. In the simulated execution, the values. , v,, are chosen prior to the
interaction but the simulata¥ gets nothing. We Ieettascm(l", z) denote a random variable that describes
the values committed to in the output®{which consists of a sequence of valdgs. . . , 7,,,) together with
the view of S; as before, whenever the view contains a right interaction where the identity is the same as
any of the left interactiongj; is set tol.

Definition 4 (Concurrent Non-Malleable Commitment [25]) A commitment schem@oM is said to be

concurrent non-malleable with respect to commitment if for every polynomiap(-), and every PPTA

that participates in at most. = p(n) commitments, there exists a PPT simulaisuch that the ensembles
mim‘(‘m_-i> (U1, Um, 2) and {Stafo,m (a, Z)}m . are computationally indistinguishable.

V1,..Um,2 ’

Non-Malleable Zero-Knowledge. We consider a family of interactive proofs, where each member of the
family is labeled with a tag stringac € {0,1}™, andm = m(n) is a parameter that potentially depends
on the length of the common input (security parameteg N. We consider a MIM adversary that is
simultaneously participating in a left and a right interaction. In the left interactios verifying the validity

of a statement by interacting with a provePrag while using a protocol that is labeled with a strings.

In the right interactionA proves the validity of a statememtto the honest verifieb 55 while using a
protocol that is labeled with a strimpG. Let mim{ (TAG, TAG, z, &, w, z) be a random variable describing
the the output o¥” in the man-in-the-middle experiment.

In the stand-alone execution only one interaction takes place. The stand-alone adYeduamtly
interacts with the honest verifiéf. As in the man-in-the-middle executiol, receives as input a tatpc
and an instancé. S receives instances TAG, Z, TAG and auxiliary input. Letsta; (TAG, TAG, z, &, z) be
a random variable describing the the outpul/oin the above experiment when the random tape$ ahd
V' are uniformly and independently chosen.

The formal definition of non-malleability is as follows.

Definition 5 (Tag-based non-malleable interactive proofs)A family of interactive proof$Prag, VraG)

for a languageL is said to benon-malleable with respect to tags of length m if for every probabilis-
tic polynomial time man-in-the-middle adversatfy there exists a probabilistic expected polynomial time
stand-alone provef and a negligible functiow : N — N, such that for everyz, w) € Lx R (x), every
#€{0,1}*l, everytac, TAG € {0, 1}™ so thatTAG # TAG, and every: € {0,1}*:

Pr[mim{j(TAG,TAG,w,:i,w,z) = 1] < Pr {staﬁ(TAG,TAG,x,:Z’,z) = 1] + v(|z|)

Non-malleable Zero-Knowledge. Non-malleableZK proofs are non-malleable interactive proofs that
additionally satisfy theZ XC property.

B Non-Malleable Commitment Schemes

First, we present two constructions of adaptively secure bit-commitment schemes — the first construction
assumes adaptively secure injective one-way functions (subsection B.1) and the second assumes adaptively
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secure PRGs (subsection B.2). The first constructioisinteractiveand the second is 2zround com-
mitment scheme. Next, we show a simple “concatenation lemma”, that constructs an adaptively secure
string-commitment scheme from an adaptively-secure bit-commitment scheme(subsection B.3). Finally, we
show that an adaptively secure commitment scheme is also non-malleable (subsection B.4).

B.1 Construction from Adaptively Secure Injective One-Way Functions

In this subsection, we present a construction of an adaptively secure bit-commitment scheme, given a family
of adaptively secure injective one-way functions. The construction is the same as Blum commitment, with a
slight twist: instead of xor-ing the hardcore bit with the input bit, we make sure (by the choice of randomness
to the Goldreich-Levin predicate) that the hardcore bit is the same as the bit to be committed. This is to
prevent an obvious malleability attack.

Lemma 11 Assume that there exists a family of adaptively secure injective one-way functions. Then,
there exists an adaptively secure bit-commitment scheme. Furthermore, the commitment scheme is non-
interactive.

Proof: Let F,, = { frag : {0,1}" + {0,1}™™) | tag € {0,1},} be a family of injective one-way functions.
The commitment scheme ., is constructed as follows. To commit a bit Com picks a random
x € {0,1}" and a random < {0, 1}" subject to the condition thdt, ) = b. Computey = fiag(z). The
commitment iy, ).

Since eacly,g is injective, the commitment is perfectly binding.

Assume, for contradiction, that there is an adversatihat breaks the adaptive security ob&@. Then,
we construct a PPT adversaBythat breaks the adaptive security/®f B will use an intermediate adversary
B’, which on input(tag, y, ) computes the Goldreich-Levin hardcore {ofgé (y),r) with non-negligible
probability, with access to the oraal®(tag, -, -) that on input(tag’, v') returnsft;;, (v') if tag’ # tag and
1 otherwise.

B’ works as follows: On inpufttag, y, s), B’ runs A with input (tag, y, s). Note that(tag,y, s) is a
commitment to a random bit. Whet asks a querytag’, v/, s’) (wheretag’ # tag) B’ uses the inversion
oracle for the one-way function to compute= ft;é, (v') and returns the inner produgt’, s’) to A. Finally,

B’ outputs whatever outputs.

It is easy to see thaB’ perfectly simulates the view of the adversatywhere the challenge td is a
random commitment to the bit= <ft;é(y), s). B’ predicts the Goldreich-Levin hardcore bit with the same
probability thatA predicts the committed bit.

The construction of3 from B’ is exactly the same as the Goldreich-Levin construction of a one-way
function inverter from a hardcore-bit predictor: one only needs to observe that the Goldreich-Levin con-
struction is black-box and uses only queries to the hardcore-bit predictor on the sameagdexinvert
the functionfi.g. 0

B.2 Construction from Adaptively Secure Pseudorandom Generators

We will construct a two-round statistically binding, adaptively secure bit-commitment scheme from adap-
tively secure pseudorandom generators (PRG). The construction is exactly the same as Naor commitment,
except that we use a family of adaptively secure PRGs.

Lemma 12 Assume that there exists a family of adaptively secure pseudorandom generators. Then, there
exists a2-round adaptively secure bit-commitment scheme.
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Proof: LetG,, = {Ghag : {0,1}" — {0,1}™™) | tag € {0,1},,} be a family of adaptively secure pseudo-
random generators, where(n) > 3n. The commitment schemedBi.,, is constructed as follows. To
commit to a bith, the sendef and receiveR run the following protocol.

1. R picks a random string € {0,1}"(") and sends it tc.

2. S picks arandom string € {0, 1}" and sends té the valuey = Giag(s) if b = 0 andy = r®Giag(s)
if b=1.

The statistical binding of this commitment scheme follows by the same argument as that for the Naor
commitment.

Assume, for contradiction, that there is an adversatiat breaks the adaptive security ob&. Then,
we construct a PPT adversaBythat breaks the adaptive security of the PRG

On input (tag, y), B runs A until it returns the first-round messageor a commitment. B picks a
random bith: If b = 0, it returns(tag,y) to A. If b = 1, it returns(tag,y @ r) to A. When A asksB for
a decommitment on a transcrifthg’, 7', y') (wheretag # tag’), B does the following: Use the adaptive
PRG-oracle to determine which ¢f or ¢/ @ ' is in the range o7y, If 3/ is in the range, returf, else
if 4 @ " is in the range, returi. If both are in the range, return a random bit and if neither is in the range,
return_L. Finally, A returns a bit/. B outputs0 if b = ¢/ and1 otherwise.

It is easy to see thdk simulates the answers to the decommitment queries peffetitlyis pseudoran-
dom, then the commitment returned Byis distributed exactly like a commitment to the bitOn the other
hand, ify is random, then the commitment returned Bys independent of the bit, which means thatl
cannot guess the bitwith probability better thar%. From this fact, it follows by a standard argument that
B distinguishes between the case whgitie random and when it is pseudorandomAipredicts correctly.

O

B.3 Concatenation Lemma

In this section, we show a “concatenation lemma”, which gives a way to construct an adaptively secure
string-commitment scheme from an adaptively-secure bit-commitment scheme.

Lemma 13 If there is an adaptively secure family of bit-commitment schemes, then there is an adaptively
secure family of string-commitment schemes.

Proof: Given an adaptively secure bit commitment sche{memgag}tage{m}n, we construct an adaptively
secure string-commitment SChefi0Mtag }age (0,13~ @s follows: To commit to a stringy = m; ... my,
COM¢ag runs many instances ofc@n@ag, in parallel. More precisely, G does the following: Run
COMyag(m1), . .., COMeag(my) and output the concatenation of theommitments.

Assume, for contradiction, that there is a PPT advershtiiat breaks the adaptive security obG.
Then, we construct a PPT adversdtyhat breaks the adaptive security ob&@’. The proof will essentially
follow by a hybrid argument.B runs A until it produces two messages, = mj .. .mg andm; =
mi...m¥%. B picks arandoni € [¢], internally simulates the commitment interactions @iV using the
tagtag and on input bitm?, for j < i and for input bitmjl for j > i. Forj = i, B runs a commitment
instance of @M’ on tagtag with input bit m; interacting with the outside and forwarding the messages to
and from the adversary.

®In the case that the commitment transcript is ambiguous, namely it is a valid commitment toasath, B returns a random
bit, which is the expected behavior (See the definition of the commitment-inversion oracle)
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To answer the commitment-inversion queriesdpiote that the legal such queries contain attag #
tag and thus B can obtain their decommitments from the commitment inversion oracledar CThe proof
now follows by a simple hybrid argument, and is omitted herél]

B.4 Non-Interactive Concurrently Non-Malleable Commitment

In this section, we show that adaptively secure commitment schemes are also non-malleable. Furthermore,
the first of our commitment schemes (based on adaptive injective one-way functions) actually yields a non-
interactive concurrently non-malleable commitment scheme. This proves Theorems 1 and 2.

Lemma 14 Let{COMtag }tageo,11» b€ a tag-based adaptively secure commitment scheme Then, there is a
non-malleable commitment sche@em’.

Proof:(Sketch.) The commitment schemeof&’ works as follows: to commit to a message it first
picks a pair(vK, sK) for a one-time signature scheme. Then, it rur@Myg (m) and signs the resulting
commitment using the signature key.

We will first show that @M™’ is a one-manynon-malleable commitment scheme. That is, the man-
in-the-middle adversary only gets one commitment from the left interaction (and he can produce many
commitments on the right to “related messages”). Then, we will use a proposition of Pass and Rosen [26]
that shows that any commitment scheme that is one-many non-malleable is also fully (many-many) non-
malleable.

To show the first part: for every that receives one commitment on the left and produces many commit-
ments, we construct a simulatSithat, without receiving the commitment on the left, commits to values that
are indistinguishable from what committed to.S computes a key-paivK, sK) for the one-time signature
scheme and feed$ a commitment: = ComMyk (0¢) and outputs whatevet outputs.

Suppose there is a distinguishBrthat distinguishes between the values tHaand .S committed to.

Then, we produce an algorithid’ that breaks the adaptive security of the commitment scheiegets

a commitment on the indexk, either to a random valug or to 0™ from the outside. It runsA with

this commitment, and obtains the sequence of commitments,, . . ., ¢,) that A outputs. Each of these
commitments:; usestag; # VK since otherwise, it is possible to break the security of the signature scheme.
On the other hand, whenever a commitment useagn# vk, D’ can use the commitment-inversion oracle
ontag; to compute the message underlyiggand useD to distinguish between the messages.]

Proposition 15 ([26]) Any commitment scheme that is one-many non-malleable is also concurrently non-
malleable.

C Four-Round Non-Malleable Zero-Knowledge

In this section, we presentaround non-malleable zero-knowledge argument system. The argument system
is exactly the Feige-Shamir protocol [17], compiled with an adaptively secure commitment scheme. In our
analysis we rely on the following properties of the Feige-Shamir protocol:

e The first property is that the first prover message is (perfectly) independent of the witness used by
the prover (and even the statement!). This property has previously been used to simplify analysis, but
here we inherently rely on this property¢oableour analysis.
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e The second property is that given a random accepting transcript, arapémengsof the commit-
ments in the first message, it is possible to “extract a witness”. In other words, any transcript implic-
itly defines a witness; additionally, given a random transcript, this witness will be valid with a high
probability (if the transcript is accepting).

In what follows, we present a sketch of the protocol and the proof and refer the reader to Appendix C
for the full text of the protocol description and the proof.

C.1 An Adaptively Secure Witness Indistinguishable Proof of Knowledge

In this section, we describe a three-round witness-hiding proof of knowledge (WIPQOWhich is used

as a building block in the non-malleable ZK protocol, and state or prove some facts about the WIPOK.
The protocol is a parallelization of ttieround zero-knowledge progf for the NP-complete language of
Hamiltonicity [8, 17], with the only change that the commitment scheme used in the proof is adaptively
secure.

In fact, we construct a family of protocol$:.,, indexed bytag. The protocoldl;.; has an adaptive WI
property which, roughly stated, means that the transcripts of the protocol when the prover uses two different
witnessesv; andws are computationally indistinguishable, even if the distinguisher has access to a magic
oracle that inverts all commitmentso®i,,s/, wheretag’ # tag.

The protocolly,g is simply a basid-round WI protoco[l:[tag repeated: times in parallel (wheré is a
security parameter), where the prover and the verifier choose independent random bits for each instance of
f[tag. We now describe hoWNItag works. The common input is a graghon n vertices and the strintpg.

The auxiliary input to the prover is a Hamiltonian cycledin The protocol uses an adaptively secure family
of commitment schemefCOM:ag }1age (0,135~ The messages in the three rounds of the protﬁ[@gg will

be denotedd, C and Z respectively. The messages in tife copy ofﬁtag will be denotedA4;, C; and Z;.
Thus, the transcript of the protoctl.g consists off (4;, Ci, Z;) }ic[) -

1. (Round1) P — V: P chooses arandom-cycleV. LetV; ; denote théi, 7)™ entry in the adjacency
matrix of ¥. Computen? commitments using GMy,g, one for each entry of the adjacency matrix
v, ;. Send the commitments to the verifiér(this message is denoted.

2. (Round 2) V — P: Sends a random bit, denotét to the proverP.

3. (Round 3) P — V: If C = 0, P opens all the commitments it sent in the first roundC'l&= 1, P
sends a random permutatian [n] — [n] that maps the cycl& to the Hamiltonian cycle i, and
the decommitment of all the entrids; ; of M such that(w (i), 7(j)) is not an edge of the graph.
Denote the third-round message By

4. (Verifier's Local Computation) If C' = 0, V checks thatZ contains valid decommitments of all the
commitments in4, and that the resulting decommitments formranode cycle. IfC = 1, V' checks
that the decommitments correspond to all the non-edges tfG).

Let O(tag, -, -) denote an oracle that on inpufg’ and a commitment, inverts the commitmentag’ #
tag, and outputsL otherwise. The lemma below shows that the protda€g} is witness-indistinguishable
even if the distinguisher has access to the oré@leg, -, -).

Lemma 16 Letr, denote a random transcript of the protodd|,, between the provef and the verifiel”
on common input and where the prover has auxiliary inputand the verifier has auxiliary input. Then,
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for everyz, z andw, w’ such thatR; (w) = Ry (w’) = 1, and for every PPT machine with oracle access
to O(tag, -, -), the following quantity is negligible ik:

| Pr[DOe ) (2, 2, w, 0, 7,y) = 1] = Pr[DO8 ) (2, 2, w0, 0, 7pr) = 1]]

Proof: We first show that the basic subprotocft;l;,g is zero-knowledge, even if the distinguisher has access
to O(tag, -, ). Witness-indistinguishability follows by a straightforward hybrid argument. The simulator
for zero-knowledge is exactly the classical GMW zero-knowledge simulatcﬁttgr The adaptive security
of Com immediately implies that the output distribution of the simulator is indistinguishable from the real
interaction even if the distinguisher has acces®9temg,-,-). O

Now, we define the notion of witness implicit in the transcripof an instance oﬁtag, and show that
the implicit witness iant;,,g is computable given access ¥(tag’, -, -) for anytag’ # tag. Consider an
accepting transcrigtd, C, Z) of the protoco[l:[tag. Note that the decommitment of thé commitments in
A uniquely defines an-node graph (even though not it is not computable in polynomial-time). We observe
that if (4, C, Z) is an accepting transcript, thet has to be a commitment to one of the following two
graphs: either (1§-(, ann-cycle, or (2)G1, a (permuted) subgraph 6f. Moreover, an accepting transcript
where the first message is a commitmenG@f(resp. G1) and the challenge-bi is 1 (resp.0) uniquely
defines a a Hamiltonian cycle @; call this the witness implicit in the transcript. When the first message is
a commitment taZ, (resp.G1) and the challenge-bit & (resp. 1), the witness implicit in the transcript is
L. Furthermore, we can recover the implicit witness, given oracle accé3gg’, -, -).

Lemma 17 Given oracle access to the commitment-inversion oré¥eag’, -, -) for an tag’ # tag, the
witness implicit in any accepting transcript bf,, can be computed in polynomial time

C.2 The Non-Malleable Zero-Knowledge Argument System

The non-malleable ZK protocol consists of two instances of the profdgglrunning in conjunction, one of
them initiated by the verifier and the other initiated by the prover. We will denote the cdpyoinitiated
by the verifier aﬂgg and the one initiated by the proverﬁég. We will use the notation from the previous
subsection to describe the messages in these protocols — the messages in the ]ﬂ@c(oed;p. k- )

tag
appear with a superscript of (resp. P).

Theorem 18 Assume thaCowm is a non-interactive adaptively secure commitment scheme. Then, the pro-
tocol in Figure 3 is a4-round non-malleable zero-knowledge argument system.

Proof: Completeness, soundness and zero-knowledge properties of the protocol follow directly from the
corresponding properties of the Feige-Shamir protocol. In Lemma 19, we show that the protocol non-
malleable.

In other words, for every man-in-the-middle adversdryhat interacts with the prover;,; on a state-
mentz and convinces the verifidr,, (for atag’ # tag) in a right-interaction on a statemerit(possibly
the same as), we construct a stand-alone prover that convinces the verifiet with the same probability
as A, butwithout access to the left-interactiohe construction of the stand-alone prover (see Lemma 19)
relies on the adaptive security of the commitment schero&£,. It is important to note that the stand-
alone prover itself runs in classical polynomial-time, and in particular does not use any oracles. Access to
the commitment-inversion oracle is used only to show that the stand-alone prover works as expected (and in
particular, that it convinces the verifier with the same probability as does the man-in-the-middle adversary).
O
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Non-Malleable Zero-Knowledge ArgumentNM;,g

CoMMON INPUT: An instancer € {0,1}", presumably in the languade
PROVER INPUT: A witnessw such thaf{z, w) € Ry.

ROUND 1: (Verifier) Pickw; andw, at random and compute = f(w;) fori € {1,2}.
Let theNP-relationRy = {((z1,x2),w’) | eitherf(w’) =z or f(w') = z2}.
Initiate the WI protoco[lgg with the statementzy, z2) € Ly. In particular,

V — P Send(xy,75) to P. SendAY, AY ... AY to P.

ROUND 2: (Prover) Let the N'P-relationRp be
{((z,z1,x2),w) | €ither(z,w) € Ry, or f(w) =z or f(w) = x5}

Initiate a WI protoco[l'[{jg with common input(z, z1, z2). Also, send the second-round messages

of the protocoll'[ﬁgg. In particular,
(2a)P — V:SendA? AL ... AP toV.
(2b)P — V: SendCy,Cy,...,CYV to V.
ROUND 3: (Verifier) Send round challenges of the protocdﬂf;g and round3 responses dﬂgg.
(3a)V — P: SendC?,...,CFPto P.
(Bb)V — P: Sendz}),...,ZY to P.
ROUND 4: (Prover) P verifies that the transcrigt(A), CY, Zi")},;e[n] is accepting for the subprotoco
ITY,. If not, abort and send nothing 16. Else,
P—V:Sendzf,....ZPtoV.
V accepts iff the transcrigt(A]”, C/, Z[")};cpn) is accepting for the subprotochl., .

7

Figure 3: NON-MALLEABLE ZERO-KNOWLEDGE F’ROTOCOLNI\/ltag FOR A LANGUAGE L

Lemma 19 The protocolNM,, in Figure 3 is non-malleable.

Proof: For every man-in-the-middle adversafly we construct a stand-alone provethat convinces the
verifier with essentially the same probability thiadoes. Very roughly, the construction of the stand-alone
proverS proceeds in two steps.

1. Run the adversaryl with “honestly generated” verifier-messages on the right interaction, and extract

the witness for the WIPOI{[X;g that the adversary initiates on the left interaction.

2. Use the witness thus obtained to simulate the left-interaction of the advedsang rewind the WI

proof of knowledgd‘[f;g, it initiates on the right interaction to extract the witness for the statemient

Carrying out this agenda involves a number of difficulties. We first describe how to accomplish. Step
This is done by invoking the simulator for the Feige-Shamir protocol, and is described below. Infosnally,
extracts the witness’ that the MIM A uses in the subprotoctlilgg in the left-interaction. Then$ acts as
the honest prover using the witnassin the protocolﬂgg. More precisely,
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1. S runs the MIM adversar until the end of round in the left-interaction (namely, until the sub-
protocolﬂgg finishes). In doing sa$ feedsA with the messages of an honest verifier on the right-
interaction.

2. S rewinds A to the beginning of Round, that is immediately afted sends the Roundl message
in the subprotocoﬂgg. It continues runningd until it produces another accepting transcript with a
different sequence of challenges Iﬂi}‘;g in round2b.

At this point, S can extract a witness’ for the statemen# uses inHt‘gg. Note that during the
extraction processS sends the messages in rourddsand 3a as an honest prover would, and this

does not require knowledge of the witnes$or the statement.

3. S now rewindsA to the beginning of Round, and usesy’ as the witness in the subprotodtb,{‘;g
starting from Roun@, while sending the messages in the subprotﬁk@ as an honest prover would.

In particular,S runs the WI protocon?ag with w’ as the witness.

We now describe how to carry out Stepf the agenda, and show that at the end of Qtep extracts a
witness for the statement that the MIM adversaryl uses in the right-interaction with essentially the same
probability thatA convinces the verifier on the right-interaction.

S starts by running the protocol in the left-interaction using the witm€ssextracted using the strategy
in Step1 of the agenda. Consider the moment whtnutputs the first message on the left (that is, the first
message in the subprotod’cblgg). Now, consider two cases.

(4) (i)

Ptag z A 7 Vvtag/ Ptag T A z Wag’
— —
1) /
— 3)
_
(1)
(3" —
— —
— —
—_ _
—_— —

Figure 4: Two scheduling strategies.

1. Atthistime, A has not yet received the roudnessages in the right interaction (that is, the challenges
inthe subprotocdllgg,). This situation is illustrated in Figure 4(i). In this case, the Rolmdessage
that A sends on the left interaction is independent of the Rolintessage in the right interaction.

Now, S proceeds as follows:S runs the left-interaction as a normal prover, would with the
fake-witnessw’, and rewinds the protocd[gg, on the right-interaction to extract a witness for the
statemeng. Since the rewinding process does not change the messages in the right-interaction before
round3, S can useav’ to produce the left-interaction just as an honest prover with witnésgould.

2. A has already received the challenges in the subproﬂﬁé@l in the right interaction. Such a situ-
ation is illustrated in Figure 4(ii). In this case, trying to rewind in the WIPDgg, on the right is
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problematic, sinced could change the first message on the left, every time it is fed with a different
challenge in round-on the right-interaction.

In this case,S proceeds as follows: Every time the extractor for the WIPDgg, in the right-
interaction rewindsS repeats the entire procedure in Stepf the agenda to extract a witnegs$
corresponding to the (potentially new) Rouhdressage in the left interactio. then simulates the
left-interaction with the witness thus extracted.

Note that the round-message ofl in the WIPOKTI{, , on the right-interaction is fixed, and inde-
pendent of the rewindings. Thus, the extraction procedure on the right-interaction is unaffected by
the rewinding on the left. The views generated in the left-interaction in this process are identically
distributed and thus, the probability thit,. () accepts on any two such views is the same. Thus,
sampling sufficiently many times ensures that extraction succeeds.

Correctness. First, we show that the view generated.$yollowing Stepl of the agenda is indistinguish-

able from the view of4 in a real interaction, even to a distinguisher that has access to the &raelg -, -)

that inverts @M,y for anytag’ # tag (Claim 1) Then, we use this to show that tingplicit witnessin

the transcript of the subprotocngg/ in the right-interaction is indistinguishable between the simulated and
the real execution (Claim 2). This means that (1) the extraction on the right succeeds with essentially the
same probability thatt manages to convince the verififg,g in the right-interaction, and moreover, (2) the
witness thaiS extracts from the right interaction of is computationally indistinguishable from the witness
that A uses in the real interaction. Together, these claims imply the correctness of the stand-along.prover

Claim 1 The views generated by in the left-interaction following the strategy in Stepof the agenda
is indistinguishable from a real left-interaction, even to a distinguisher that has access to a commitment-
inversion oracleO(tag, -, -).

Proof: The view generated by is identical to the view ofd in the real interaction, except th8tuses the
fake witness it extracted from the subprotoﬁ[ﬂg, instead of the a witness for the statemerg L. Thus
the transcript of the left-interaction corresponds to the interaction with a prover with wiinigsthe real
left-interaction, whereas it corresponds to a prover with witn€ss the simulated left-interaction. These
two ensembles are indistinguishable, even to an adversary with acc@gsatn -, ), by the adaptive WI
property ofll;,, (Lemma 16). [

The protocolﬂgg, consists ofn copies of a smaller subprotocﬁ]f;g,, running in parallel. Define the
witness-tuplemplicit a transcript othPag, to be then-tuple (w1, ..., w,) wherew; is the witness implicit
in the i** copy of the smaller subprotoctﬁlgg,. We now show that the witness-tuple is computationally
indistinguishable between the real and the simulated interactions. This means that the witness extracted
by S in the right-interaction is computationally indistinguishable from the one that the Mlies in the
real-interaction. By the soundness of the protocol, this has to be the witness for the statement

Claim 2 The witness-tuple implicit in the transcript of the subprotd&@lg, (in the right-interaction) of the
real and simulated executions are computationally indistinguishable.

Proof: Suppose, for contradiction, that the two witness-tuples are distinguishable. Then, we show that
the real and simulated interactions are distinguishable, given access to a commitment-inversion oracle
O(tag, -, ), which is impossible by Claim 1. By Lemma 17, it is easy to compute the implicit witness
given a transcript of the subprotocﬁﬁg,. Thus, it is easy to compute the witness-tuple impliciﬁﬁg,,
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given oracle-access O(tag, -, -). Thus, if the witness-tuples in the real and simulated executions are dis-
tinguishable, then the transcripts of the real and simulated executions themselves are distinguishable given
oracle access t6(tag,-,-). O

Running Time. Let X; be the random variable representing the number of tifhéms to rewind the
protocoll‘[tag in the left-interaction to extract a fake witness. Similarly, Mt be the random variable
representing the number of times the extraction procedure on the subpm@é;abn the right interaction
has to rewind to extract a witness.

Consider two cases. In the first case, corresponding to Figure 4(i), the rewinding on the left interaction
is done once (until a fake witness is extracted) and the rewinding on the right interaction is done once. Thus,
the total expected running time is proportionald0X; + Xs] = E[X] + E[X>5], which is polynomial.

In the second case, corresponding to Figure 4(ii), the total expected running tkne-is{; X, since
every time the extraction procedure on the right rewingifias to extract a new fake witness in the left-
interaction. Thus,

E[X1Xa] = ) aPr[X E[X5]| X, = a]
acZt

However, the number of times the extractor needs to rewind on the rigidépendent othe number
of times the simulator rewinds on the left-interaction and thii&,| X, = a] = E[X3]. Thus,E[X; X,] =
> acz+ aPr[X1 = a] E[X2] = E[X1]E[X5], which is polynomial. [

D CCA-Secure Encryption Scheme

D.1 Security Against Chosen-Ciphertext Attacks

Definition 6 (IND-CCA2 Security) LetIl = (Gen, Enc,Dec) be an encryption scheme and let the ran-
dom variableiND(I1, A, k) whereb € {0,1}, A = (A;, Ay) andk € N denote the result of the following
probabilistic experiment:
INDy(IT, A, k) :

(PK, SK) « Gen(1F)

(mo, m1,s) — A9 (PK) s.t. [mo| = |m]

y «— Encpk(ms)

Z — Agz (y,s)

Outputz.

whereO; and O, denote the decryption oracles, atld decrypts all ciphertexts except

(Gen, Enc, Dec) is IND-CCA2-secure if/ p.p.t. algorithmsA = (A, As), the following two ensembles
are computationally indistinguishable:

{INDO(H,A, k:)}kEN ~ {INDl(H,A, k)}keN (1)

D.2 Assumptions

In this section, we exhibit a construction of an IND-CCA2-secure encryption scheme, assuming an adap-
tively secure variant of perfectly one-way hash functions (defined by Canetti [12]), and a family of trapdoor
permutations that are uninvertible even with access to an oracle that inverts the perfectly one-way hash
function. We make the assumptions more precise below.
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The construction is a modification of an encryption scheme of Bellare and Rogaway [7], which they
proved to be IND-CCA2-secure in the random oracle. We show that the construction is IND-CCA2-secure
under well-defined complexity-theoretic assumptions, and in particular, without assuming random oracles.
Our construction is essentially as efficient as the original construction of [7]. In particular, the secret and
public keys are of size, the security parameter. The ciphertext-siz&#g)(n) to encrypt a message of size
n bits. First, we state the complexity assumption, and then present the scheme that is IND-CCA2-secure
under the assumption.

We define the notion of perfectly one-way hashing, in the presence of auxiliary information and oracle
access. The auxiliary information is an uninvertible functipavaluated on the input. Informally, we
require thath = H (r; s) be indistinguishable from random for an adversary that is gifen as auxiliary
input, and gets access to an oracle that inverts evegy h. Namely, the oracle, givell' # h, computes”’
ands’ such thatt’ = H(r’;s'). Let O(h, -) denote such an oracle.

We note that Canetti [12] (define and) use perfectly one-way hashing with auxiliary input to prove the
IND-CPAsecurity (semantic security) of the [7] construction.

Definition 7 (Adaptively Secure Perfectly One-way Hashing with Auxiliary Information) A functionPHGen
is called a perfectly one-way hash function if for a rand&in— PHGen(1%),

1. H is public-coin; namely, for any input, H (z;r) contains the randomness
2. {H(x;7)}reqo,1y» and{H (y; ) }ref0,1y~ are disjoint for allz, y, and

3. For every well-spread ensembig for all uninvertibleg and for all PPT distinguisher®, there is a
negligible functiory such that
| Pr  [DOWEN (g(a), H(wsr) =1~ Pr [DO)(g(x),u) =1]| < p(n)

z—x;rUn r—x;u—Uy,

D.3 The Construction

Theorem 20 Assume thaT DPGen is a family of trapdoor permutations that are uninvertible with access
to the H-inverting oracle, and thaPHGen is an adaptively secure perfectly one-way hash with auxiliary
information. Then, there exists a IND-CCA2-secure encryption scheme.

Proof: The encryption scheme I$ = (Gen, Enc, Dec) as in Figure 5.

Let us fix some notations. A ciphertextonsists of componenig, ci, c2, s1, s2]. ¢ implicitly defines
the quantities = f~(co) andm = H(r;s1) @ c1.

Assume, for contradiction, that there is a PPT advershtiat wins in the IND-CCA2 game. Then,
we construct a PPT adversaBythat breaks the adaptive perfectly one-way hash fundid@en. Let c*
denote the challenge ciphertext, which defines quantifjes, c3, s7, s5,7* andm* as above.B works as
follows.

ANSWERING THE DECRYPTION QUERIES Let the query be. Now, there are two cases:
1. (c2,52) = (c3, s5): Then, the probability that' # ¢* and H (c¢*; s2) = H(c*; s2) is negligible over
the choice off € PHGen(1%). Thus,(r,c1,51) = (r*, ¢}, s7), except with negligible probability. If
this is the case, thetv= c¢*, and thus, the query oA is invalid. B returns.L in this case.

2. (ca,82) # (¢4, s%): Then,B can use thé1-inversion oracle to comput@ such thatt (¢; s2) = ¢2).
Letd = (', ¢}, s]). Check that(c¢|,s}) = (c1,s1) and f(r') = ¢o. If both checks pass, return
H(r';s1) @ c; to A. Otherwise, return._.
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Gen(1™) : RunTDPGen(1") and get a pai( f, f~'). RunPHGen(1¥) to get a perfectly one-way
hash function. LetPk = (f, H) andsk = f~L.

Enc(Pk,m) :

1. Pick randomr « {0,1}". Computecy = f(r) andc; = m & H(r; s1) for randoms; .
2. Letd = (r, s1,c¢1). Computecy = H(d'; s2) for randomss.

Output the Ciphertext = (Co, c1,C2, 81, 82).
Dec(sk,c) : Parsec as(cy, c1, c2, 51, S2).

1. Computer’ = f~Y(cp), andm/ = ¢; © H(r'; s1).
2. Letd = (v/, s1,¢1). Outputm/ if H(c; s3) = c¢o. Otherwise output..

Figure 5: AN IND-CCA2-SECURE ENCRYPTION SCHEME

GIVING THE CHALLENGE CIPHERTEXT TOA. Consider the following three experiments.

1. Experiment |ND,§1): The challenge ciphertext is computedcas= [f(r), u & my, u', s1, s2], where

r, s1, s2,u,u’ are randomly chosen from the appropriate domains.

2. Experiment INDI()Q): The challenge ciphertext is computedcas= [f(r), H(r; s1) & mp, v, s1, $2],

wherer, s1, s2, u" are randomly chosen from the appropriate domains.

3. Experiment IND,()B): The challenge ciphertext is computed-as= [f(r), H(r; s1), H(c; s2), $1, s2],

wherer, s, so are randomly chosen from the appropriate domains.

The decryption queries in each of the experiments are answered as above. Nmaﬁia’s the same as
INDp. We will show that

1. no{Y = vV,

2. INDl()l) ~ |ND§2), and

3. np{? < inp ¥

. . C C
The claim follows, sincenD, = IND(O3) ~ IND[()l) = INDgl) ~ |ND§3) = IND;.
O

IND(()l) = INDgl), since in both cases, the ciphertext is a randetuple, independent of,. IND,
INDI()Q) since otherwise, we could distinguish betwé¢itr), H(r; s), s) and(f(r), s, s) wherer, s, s’ are
chosen at random. This contradicts either (1) the adaptively perfect one-wayriéssgithf the uninvertible
auxiliary information functionf, or (2) the uninvertibility off with access to théf-inversion oracle. A

similar argument shows thEHtlDl()z) ~ INDZ()S), if the composite functiory(r,s) = f(r) o h(r;s) o s is
uninvertible, which follows from Claim 3.
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Claim 3 The functiorg(r,s) = f(r) o h(r; s) o s is uninvertible, even with oracle access to an inverting
algorithm for h on inputs of lengtt3n.

Proof. Suppose there is a PPT adversaryhat invertsg. Then, we show a PPT adversaBythat dis-
tinguishes between the tuplég(r), h(r; s),s) and (f(r), s, s) for randomly chosem, s, s’. B works as
follows: B is given a tuplga, b, ¢), and it simply invokesA on (a, b, ¢). B answers the POWHF inversion
queries of4 using its own POWHF inversion oracle. Since all the queried afe to inverth(7) wherer is
of length3n, B never has to invoke the inversion oracleton

Finally, A computes a purported invergeand returns’ to B. It checks iff(r’) = a andh(r’;c) = b.
If both checks pass, retum else return a random bit. If the input tuple is of the foffi(r), h(r; s), s),
then A will succeed with non-negligible probability in inverting it, otherwidecannot produce an inverse.
Thus, B will distinguish between the tuples with non-negligible probability] [

27






