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1 Introduction

The state-of-the-art in complexity theory forces cryptographers to base their schemes on unproven hardness
assumptions. Such assumptions can be general (e.g., the existence of one-way functions) or specific (e.g.,
the hardness of RSA or the Discrete logarithm problem). Specific hardness assumptions are usually stronger
than their general counterparts; however, as such assumptions consider primitives with more structure, they
lend themselves to constructions of more efficient protocols, and sometimes even to the constructions of
objects that are not known to exist when this extra structure is not present. Indeed, in recent years, several
new and more exotic specific hardness assumptions have been introduced (e.g., [11, 4, 10]) leading to, among
other things, signatures schemes with improved efficiency, but also the first provably secure construction of
identity-based encryption.

In this paper, we introduce a new class of strong butgeneralhardness assumptions, and show how these
assumptions can be used to resolve certain long-standing open problems in cryptography. Our assumptions
are all abstractions of concrete properties of a random oracle. As such, our results show that for the prob-
lems we consider, random oracles are not necessary; rather, provably secure constructions can be based on
concrete hardness assumptions.

1.1 New-Age Assumptions

We consideradaptivestrengthenings of standard general hardness assumptions, such as the existence of
one-way functions and pseudorandom generators. More specifically, we introduce the notion of collections
of adaptive 1-1 one-way functions and collections of adaptive pseudorandom generators. Intuitively,

• A collection of adaptively 1-1 one-way functionsis a family of 1-1 functionsFn = {ftag : {0, 1}n 7→
{0, 1}n} such that for everytag, it is hard to invertftag(r) for a randomr, even for an adversary that
is granted access to an “inversion oracle” forftag′ for everytag 6= tag′. In other words, the function
ftag is one-way, even with access to an oracle that invert all the other functions in the family.

• A collection ofadaptive pseudo-random generatorsis a family of functionsGn = Gtag : {0, 1}n 7→
{0, 1}m such that for everytag, Gtag is a pseudorandom even if given access to an oracle that decides
whether giveny is in the range ofG.

Both the above assumptions are strong, but arguably not “unrealistically” strong. Indeed, both these as-
sumptions are satisfied by a (sufficiently) length-extending random oracle.1 As such, they provide concrete
mathematical assumptions that can be used to instantiate random oracles in certain applications.

We also present some concrete candidate instantiations of these assumptions. For the case of adaptive
1-1 one-way functions, we provide construction based on the the “adaptive security” of Factoring, or the
Discrete Log problem.

For the case of adaptive PRGs, we provide a candidate construction based on a generalization of the
advanced encryption standard (AES).

Related Assumptions in the Literature. Assumptions of a related flavor have appeared in a number of
works. The class of “one-more” assumptions introduced by Bellare, Namprempre, Pointcheval and Se-
manko [4] are similar in flavor. Informally, the setting of the one-more RSA-inversion problem is the
following: The adversary is given valuesz1, z2, . . . , zk ∈ Z∗N (for a compositeN = pq, a product of two

1Note that a random function over, say,{0, 1}n → {0, 1}4n is 1-1 except with exponentially small probability.
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primes) and is given access to an oracle that computes RSA inverses. The adversary wins if the number of
values that it computes an RSA inverse of, exceeds the number of calls it makes to the oracle. They prove
the security of Chaum’s blind-signature scheme under this assumption. This flavor of assumptions has been
used in numerous other subsequent works [5, 6].

Prabhakaran and Sahai [28] use an assumption of the form that there are collision-resistant hash func-
tions that are secure even if the adversary has access to a “collision-sampler”. In a related work, Malkin,
Moriarty and Yakovenko [21] assume that the discrete logarithm problem inZ∗p (wherep is ak-bit prime)
is hard even for an adversary that has access to an oracle that computes discrete logarithms inZ∗q for any
k-bit primeq 6= p. Both these works use the assumption to achieve secure computation in a relaxation of
the universal composability framework.

1.2 New-Age Results

Non-Interactive Concurrently Non-Malleable Commitment Schemes. Non-malleable commitment schemes
were first defined and constructed in the seminal paper of Dolev, Dwork and Naor [16]. Informally, a com-
mitment scheme is non-malleable if no adversary can, upon seeing a commitment to a valuev, produce a
commitment to a related value (sayv − 1). Indeed, non-malleability is crucial to applications which rely on
theindependenceof the committed values. A much stronger property – called concurrent non-malleability –
requires that no adversary, after receiving commitments ofv1, . . . , vm, can produce commitments to related
valuesṽ1, . . . , ṽm.

The first non-malleable commitment scheme of [16] was interactive, and requiredO(log n) rounds of
interaction, wheren is a security parameter. Barak [1] and subsequently, Pass and Rosen [26] presented
constant-round non-malleable commitment schemes. The only known construction of a concurrent non-
malleable commitment scheme is due to Pass and Rosen [25], and requires12 rounds of interaction between
the committer and the receiver.

We note that of the above commitment schemes, [16] is the only one with a black-box proof of security,
whereas the schemes of [1, 26, 25] rely on the novel non-black-box proof technique introduced by [1]. In
particular, there is no known concurrently non-malleable commitment schemes with a black-box proof of
security.

Our first result is a construction of anon-interactive, concurrently non-malleablestring commitment
scheme, from a family of adaptive one-way permutations. Additionally, our construction is the first concur-
rently non-malleable commitment scheme with a black-box proof of security.

Theorem 1 (Informal) Assume the existence of collections of adaptive 1-1 permutations. Then, there exists
a non-interactive concurrently non-malleable string commitment scheme with a black-box proof of security.

If instead assuming the existence of adaptive PRGs, we show the existence of 2-round concurrent non-
malleable commitment with a black-box proof of security.

Theorem 2 (Informal) Assume the existence of collections of adaptive PRGS. Then, there exists a 2-round
concurrently non-malleable string commitment scheme with a black-box proof of security.

Round-optimal Black-box Non-malleable Zero-knowledge. Dolev, Dwork and Naor [16] defined non-
malleable zero-knowledge (ZK) and presented anO(log n)-round ZK proof system. Barak [1] and subse-
quently, Pass and Rosen [26] presented constant-round non-malleable zero-knowledge argument system. Of
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the above protocols, [16] is the only one with a black-box proof of security, whereas the schemes of [1, 26]
rely on the non-black-box proof technique of [1].

We construct a4-round non-malleable zero-knowledge argumentsystem with a black-box proof of secu-
rity (that is, a black-box simulator). Four rounds is known to be optimal for black-box zero-knowledge [18]
(even if the protocol is not required to be non-malleable) and for non-malleable protocols (even if they are
not required to be zero-knowledge) [20].

Theorem 3 (Informal) Assume the existence of collections of adaptive 1-1 one-way function. Then, there
exists a4-round non-malleable zero-knowledge argument system with a black-box proof of security. Assume,
instead, the existence of collections of adaptive one-way permutations. Then, there exists a5-round non-
malleable zero-knowledge argument system with a black-box proof of security.

It is interesting to note that the (seemingly) related notion of concurrent zero-knowledge cannot be
achieved ino(log n) rounds with a black-box proof of security. Thus, our result shows that (under our
new-age assumptions), the notion of non-malleability and concurrency in the context of zero-knowledge are
quantitatively different.

Efficient Chosen-Ciphertext Secure Encryption. Chosen ciphertext (CCA) security was introduced in
the works of [23, 29] and has since been recognized as asine-qua-nonfor secure encryption. Dolev, Dwork
and Naor [16] gave the first construction of CCA-secure encryption schemes based on general assumptions.
Their construction, as well as the construction of Sahai [30], uses the machinery of non-interactive zero-
knowledge proofs, which renders them less efficient than one would like. In contrast, the construction of
Cramer and Shoup [14, 15] are efficent, but are based on specific number-theoretic assumptions.

Bellare and Rogaway [7] proposed an encryption scheme that is CCA-secure in the random oracle model
(see below for more details about the random oracle model). We show complexity-theoretic assumptions that
are sufficient to replace the random oracle in this construction. We mention that, previously, Canetti [12]
showed how to replace random oracles in a related construction to get a semantically secure encryption
scheme (but without CCA security). Our construction of CCA-secure encryption is in Appendix D.

Interactive Arguments for which Parallel-repetition does not reduce the soundness error. A basic
question regarding interactive proof is whether parallel repetition of such protocols reduces the soundness
error. Bellare, Impagliazzo and Naor [3] show that there are interactivearguments(i.e., computationally-
sound) proofs in the Common Reference String (CRS) model, for which parallel-repetition does not reduce
the soundness error. Their construction relies on non-malleable encryption, and makes use of the CRS to
select the public-key for this encryption scheme. However, if instead relying on a non-interactive concurrent
non-malleable commitment schemes in their construction, we can dispense of the CRS altogether. Thus, by
Theorem 1, assuming the existence of collections of adaptive 1-1 one-way functions, we show that there
exists an interactive argument for which parallel repetition does not reduce the soundness error. We also
mention that the same technique can be applied also to the strengthened construction of [27].

Our Techniques. All our constructions are simple and efficient. In particular, for the case of non-malleable
commitment schemes, we show that appropriate instantiations of the Blum-Micali [9] or Naor [22] commit-
ment schemes in fact are non-malleable. The proof of these schemes are also “relatively straight-forward”
and follow nicely from the adaptive property of the underlying primitives.

Next, we show that by appropriately using our non-malleable commitment protocols in the Feige-Shamir
[17] zero-knowledge argument forNP, we can also get a round-optimal black-box non-malleableZK proof
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forNP. Although the construction here is straight-forward, its proof of correctness is less so. In particular,
to show that our protocol is non-malleable, we rely on a techniques that are quite different from traditional
proofs of non-malleability: in particular, the power of the “adaptive” oracle will only be used inside hybrid
experiments; the simulation, on the other hand, will proceed by traditional rewinding. Interestingly, to get
a round-optimal solution, our proof inherently relies on the actual Feige-Shamir protocol and high-lights
some novel features of this protocol.

Interpreting Our Results. We offer two interpretations of our results:

• Theoptimisticinterpretation: Although our assumptions are strong, they nonetheless do not (a priori)
seem infeasible. Thus, if we believe that e.g., AES behaves as an adaptively secure PRG, we show
practicalsolutions to important open questions.

• The conservativeinterpretation: As mentioned, our constructions are black-box; namely, both the
construction of the cryptographic objects and the associated security proof utilize the underlying
primitive—adaptive one-way permutations or adaptive PRGs—as a black-box, and in particular, do
not refer to a specific implementation of these primitives. Thus, a conservative way to view our results
is that to show even black-box lower-bounds and impossibility results for non-interactive concurrent
non-malleable commitments and non-malleable zero-knowledge proofs, one first needs to to refute our
assumptions. Analogously, it means that breaking our CCA-secure encryptions scheme, or proving a
general parallel-repetition theorem for interactive arguments, first requires refuting our assumptions.

1.3 New-Age Perspective

A cryptographer could choose to make “mild” assumptions such asP 6= NP, “relatively mild” ones such as
the existence of one-way functions, secure encryption schemes or trapdoor permutations, or “preposterous”
ones such as “this scheme is secure”. Whereas preposterous assumptions clearly are undesirable, mild
assumptions are—given the state-of-the-art in complexity theory—too weak for cryptographic constructions
of non-trivial tasks. Relatively mild assumptions, on the other hand, are sufficient for showing the feasibility
of essentially all known cryptographic primitives.

Yet, to obtain practical constructions, such assumptions are—given the current-state-of-art—not suffi-
cient. In fact, it is a priori not even clear that although feasibility of a cryptographic task can be based
on a relatively mild assumptions, that a “practical” construction of the primitive is possible (at all!). One
approach to overcome this gap is the random oracle paradigm, introduced in the current form by Bellare
and Rogaway [7]: the proposed paradigm is to prove the security of a cryptographic scheme in the random-
oracle model—where all parties have access to a truly random function—and next instantiate the random
oracle with a concrete function “with appropriate properties”. Nevertheless, as pointed out in [13] (see also
[19, 2]) there are (pathological) schemes that can be proven secure in the random oracle model, but are
rendered insecure when the random oracle is replaced by any concrete function (or family of functions).

In this work we, instead, investigate a different avenue for overcoming this gap between theory and
practice, by introducing strong, but general, hardness assumption. When doing so, we, of course, need to be
careful to make sure that our assumptions (although potentially “funky”) are not preposterous. One criterion
in determining the acceptability of a cryptographic assumptionA is to consider (1) what the assumption is
used for (for instance, to construct a primitiveP , say) and (2) how much more “complex” the primitiveP
is, compared toA. For example, a construction of a pseudorandom generator assuming a one-way func-
tion is non-trivial, whereas the reverse direction is not nearly as interesting. Unfortunately, the notion of
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“complexity” of an assumption is hard to define. We here offer a simple interpretation: view complexity
as “succinctness”. General assumption are usually more succinct than specific assumptions, one-way func-
tions are “easier” to define than, say, pseudorandom functions. Given this point of view, it seems that our
assumptions are not significantly more complex than traditional hardness assumption; yet they allow us to
construct considerably more complex objects (e.g., non-malleable zero-knowledge proofs).

On Falsifiability/Refutability of Our Assumptions Note that the notions of non-malleable commitment
and non-malleable zero-knowledge both are defined using simulation-based definitions. As such, simply
assuming that a practical scheme is, say, non-malleable zero-knowledge, seems like a very strong assump-
tion, which is hard to falsify2—in fact, to falsify it one needs to show (using a mathematical proof) that no
Turning machine is a good simulator. In contrast, to falsify our assumptions it is sufficient to exhibit an
attacker (just as with the traditional cryptographic hardness assumptions).

To make such “qualitative” differences more precise, Naor [24] introduced a framework for classifying
assumptions, based on how “practically” an assumption can refuted. Whereas non-malleability, a priori,
seems impossible to falsify (as there a-priori is not a simple way to showing that no simulator exists). In
contrast, traditional assumptions such as “factoring is hard” can be easily refuted simply by publishing
challenges that a “falsifier” is required to solve. Our assumptions cannot be as easily refuted, as even if
a falsifier exhibits an attack against a candidate adaptive OWF, it is unclear how to check that this attack
works. However, the same can be said also for relatively mild (and commonly used) assumptions, such as
“factoring is hard for subexponential-time”.3

Additionally, we would like to argue that our assumptions enjoy a similar “win/win” situation as tra-
ditional cryptographic hardness assumptions. The adaptive security of the factoring or discrete logarithm
problems seem like natural computational number theoretic questions. A refutation of our assumptions (and
its implication to factoring and discrete logarithm problem) would thus be interesting in its own right. Taken
to its extreme, this approach suggest that we might even consider assumptions that most probably arefalse,
such as e.g., assuming that AES is an (adaptive one-way)permutation, as long as we believe that it might be
hard to prove that the assumption is false.

2 New Assumptions and Definitions

The following sections introduce our definitions of adaptively secure objects—one-way functions, pseudo-
random generators and commitment schemes—and posit candidate constructions for adaptively secure one-
way functions and pseudorandom generators. Standard cryptographic definitions (non-malleable commit-
ments and zero-knowledge) are delegated to Appendix A.

2.1 Adaptive One-Way Functions

In this paper, we define afamily of adaptively secure injective one-way functions, where each function in
the family is specified by an indextag. The adaptive security requirement says the following: consider an
adversary that picks an indextag∗ and is giveny∗ = ftag∗(x∗) for a randomx∗ in the domain offtag∗ ,

2Recall that falsifiability is Popper’s classical criterion for distinguishing scientific and “pseudo-scientific” statements.
3Note that the assumption that factoring is hard for subexponential-time can be falsified by considering a publishing a very

“short” challenge (or lengthpolylogn). However, in the same vein, our assumption can be falsified by considering challenges of
length log n; then it is easy to check if someone can exhibit an efficient attack on the adaptive security of an assumed one-way
function, since the inverting oracle can also be efficiently implemented.
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and the adversary is supposed to computex∗. The adversary, in addition, has access to a “magic oracle”
that on input(tag, y) wheretag 6= tag∗, and get backf−1

tag(y). In other words, the magic oracle helps
invert all functionsftag different from the “target function”ftag∗ . The security requirement is that the
adversary have at most a negligible chance of computingx∗, even with this added ability. Note that the
magic oracle is just a fictitious entity, which possibly does not have an efficient implementation (as opposed
to the decryption oracle in the definition of CCA-security for encryption schemes which can be implemented
efficiently given the secret-key). Inability to inverty∗ even with access to such an oracle is indeed a strong
security requirement on the functionf ! More formally,

Definition 1 (Family of Adaptive One-to-one One-way Functions)A family of injective one-way func-
tionsF = {ftag : Dtag 7→ {0, 1}∗}tag∈{0,1}n is called adaptively secure if,

• (EASY TO SAMPLE AND COMPUTE.) There is an efficient randomizeddomain-samplerD, which on
input tag ∈ Ī, outputs a random element inDtag. There is a deterministic polynomial algorithmM
such that for alltag← I and for allx ∈ Dtag, M(tag, x) = ftag(x).

• (ADAPTIVE ONE-WAYNESS.) Let O(tag, ·, ·) denote an oracle that, on inputtag′ and y outputs
f−1
tag′(y) if tag′ 6= tag and⊥ otherwise.4

The familyF is adaptively secure if, for any probabilistic polynomial-time adversaryA, there exists
a negligible functionµ such that for all sufficiently largek, and for all tagstag ∈ Īk,

Pr[x← D(tag, 1k) : AO(tag,·,·)(tag, ftag(x)) = x] ≤ µ(n)

where the probability is over the random choicetag output byI, the random choice ofx and the
coin-tosses ofA.

A potentially incomparable assumption is that of an adaptively secure injective one-way function (as
opposed to a family of functions). However, it is easy to see that an adaptively secure one-way function
with subexponential security and a dense domain implies a family of adaptively secure one-way functions,
as defined above. In fact, our construction of a family of adaptively secure one-way functions based on
factoring goes through this construction.

Hardness Amplification. A strong adaptively secure one-way function is one where no adversary can in-
vert the function with probability better than some negligible function ink (even with access to the inversion
oracle). A weak one, on the other hand, only requires that the adversary not be able to invert the function
with a probability better than1− 1/poly(k) (even with access to the inversion oracle).

We remark that we can construct a strong adaptively secure one-way function from a weak adaptively
secure one-way function. The construction is the same as Yao’s hardness amplification lemma. We defer
the details to the full version.

2.1.1 Candidates

We present candidates for adaptively secure one-way functions, based on assumptions related to discrete-log
and factoring.

4If tag′ is not a valid tag, namely, iftag′ is not in the range ofI(1k), then againO outputs⊥.
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Factoring. First, we show how to build an adaptively secure one-way function (not a family of functions)
from the factoring assumption. Then, we show how to turn it into a family of functions, assuming, in
addition, that factoring is subexponentially-hard.

The domain of the functionf is {(p, q) | p, q ∈ Pn, p < q}, wherePn is the set of alln-bit primes.
Given this notation,f(p, q) is defined to bepq. Assuming that it is hard to factor a numberN that is a
product of primes, even with access to an oracle that factors all other products of two primes, this function
is adaptively secure.

We now show how to turn this into a family of adaptively secure one-way functions. The index is simply
ann′ = n1/ε-bit string (for someε > 0) i = (i1, i2). The domain is the set of all strings(j1, j2) such that
p = i1 ◦ j1 andq = i2 ◦ j2 are bothn-bit primes. The function then outputspq. Since we reveal the first
n′ = n1/ε bits of the factors ofN = pq, we need to assume that factoring is subexponentially hard (even
with access to an oracle that factors other products of two primes). The function is clearly injective since
factoring forms an injective function.

In the full version, we additionally provide candidates for adaptive one-way functions based on the RSA
and Rabin functions.

Discrete Logarithms. The family of adaptive OWFsFDL is defined as follows: The index set̄In =
{0, 1}n. The domain of the function is a tuple(p, g, x) such thatp is a 2n-bit prime p whose firstn bits
equal the indexi, g is a generator forZ∗p andx is a2n − 1-bit number. The domain is easy to sample–the
sampler picks a “long-enough” random stringr and a2n−1-bit numberx. The functionfi usesr to sample
a 2n-bit primep whose firstn bits equali (this can be done by repeated sampling, and runs in polynomial
time assuming a uniformness conjecture on the density of primes in large intervals) and a generatorg ∈ Z∗p.
The output of the function on input(p, g, x) is (p, g, gx modp). fi is injective since the output determinesp
andg; givenp andg, gx modp next determinesx uniquely sincex < 22n−1 andp, being a2n-bit prime, is
larger than22n−1.

We also mention that the adaptive security of this family can be based on the subexponential adaptive
security of the one-way function (as opposed to family) obtained by simply sampling randomp, g, x (or
even randomp being a safe prime) and outputtingp, g, gx. Note that this assumption is different from the
assumption of [21] in that we require security to hold only w.r.t to a random primep whereas [21] requires it
to holds also w.r.t to adversarially chosenp; in contrast we require security w.r.t sub-exponential adversaries.

2.2 Adaptive Pseudorandom Generator

A family of adaptively secure pseudorandom generatorsG = {Gtag}tag∈{0,1}∗ is defined in a similar way to
an adaptive one-way function. We require that the output of the generatorG, on a random inputx and an
adversarially chosentag be indistinguishable from uniform, even for an adversary that can query a magic
oracle with a value(tag′, y) (wheretag′ 6= tag) and get back0 or 1 depending on whethery is in the range
of Gtag′ or not.

Definition 2 (Adaptive PRG) A family of functionsG = {Gtag : {0, 1}n 7→ {0, 1}s(n)}tag∈{0,1}n is an
adaptively secure pseudorandom generator (PRG) if|Gtag(x)| = s(|x|) for some functions such that
s(n) ≥ n for all n and,

• (EFFICIENT COMPUTABILITY.) There is a deterministic polynomial-time algorithmMG such that
MG(x, tag) = Gtag(x).
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• (ADAPTIVE PSEUDORANDOMNESS.) LetO(tag, ·, ·) denote an oracle that, on input(tag′, y) such
that tag′ 6= tag, outputs1 if y is in the range ofGtag′ and0 otherwise.

The PRGG is adaptively secure if, for any probabilistic polynomial-time adversaryA, there exists a
negligible functionµ such that for all sufficiently largen and for all tagstag ∈ {0, 1}n,∣∣ Pr[y ← Gtag(Un) : AO(tag,·,·)(y) = 1]− Pr[y ← Um : AO(tag,·,·)(y) = 1]

∣∣ ≤ µ(n)

where the probability is over the random choice ofy and the coin-tosses ofA.

2.2.1 Candidates

For the case of adaptive PRGs, we provide a candidate construction based on the advanced encryption
standard (AES). AES is a permutation on128 bits; that is, for a128-bit seeds, AESs is a permutation defined
on {0, 1}128. However, due to the algebraic nature of the construction of AES, it can easily be generalized
to longer input length. LetAESn denote this generalized version of AES ton-bit inputs. Our candidate
adaptive pseudorandom generatorAESGtag is simplyAESGtag(s) = AESs(tag ◦ 0) ◦ AESs(tag ◦ 1).

2.3 Adaptively Secure Commitment Schemes

In this subsection, we define adaptively secure commitment schemes. Let{COMtag = 〈Stag, Rtag〉}tag∈{0,1}∗
denote a family of commitment protocols, indexed by a stringtag. We require that the commitment scheme
be secure, even against an adversary that can query a magic oracle on the transcript of a commitment interac-
tion and get back a message that was committed to in the transcript. More precisely, the adversary picks an
indextag and two equal-length stringsx0 andx1 and gets a valueyb = COMtag(xb; r), whereb is a random
bit andr is random. The adversary can, in addition, query a magic oracle on(y′, tag′) wheretag′ 6= tag
and get back the somex′ such thaty′ ∈ COMtag′(x′; r′) (if y′ is a legal commitment) and⊥ otherwise.5

The security requirement is that the adversary cannot distinguish whetheryb was a commitment tox0 or x1,
even with this extra power.

Definition 3 (Adaptively-Secure Commitment) A family of functions{COMtag}tag∈{0,1}∗ is called an adap-
tively secure commitment scheme ifStag andRtag are polynomial-time and

• STATISTICAL BINDING : For any tag, over the coin-tosses of the receiverR, the probability that a
transcript〈S∗, Rtag〉 has two valid openings is negligible.

• ADAPTIVE SECURITY: LetO(tag, ·, ·) denote the oracle that, on inputtag′ 6= tag and c, returns
an x ∈ {0, 1}` such that for some random stringsrS and rR, c is the transcript of the interaction
betweenS with inputx and random coinsrS andR with random coinsrR.

For any probabilistic polynomial-time oracle TMA, there exists a negligible functionµ(·) such that
for all sufficiently largen, for all tag ∈ {0, 1}∗ and for allx, y ∈ {0, 1}`,∣∣ Pr[c← 〈Stag(x), Rtag〉;AO(tag,·,·)(c, tag) = 1]−Pr[c← 〈Stag(y), Rtag〉;AO(tag,·)(c, tag) = 1]

∣∣ ≤ µ(n)

5In case the transcript corresponds to the commitment of multiple messages, the oracle returns a canonical one of them. In fact,
one of our commitment schemes is perfectly binding and thus, does not encounter this problem.
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3 Non-Malleable Commitment Schemes
In this section, we construct non-malleable string-commitment schemes. We first construct adaptively-
secure bit-commitment schemes based on an adaptively secure injective OWF and an adaptively secure PRG
– the first of these constructions is non-interactive and the second is a2-round commitment scheme. We
then show a simple “concatenation lemma”, that constructs an adaptively secure string commitment scheme
from an adaptively-secure bit-commitment scheme. Finally, we show that an adaptively secure commitment
scheme is also non-malleable. For full proofs, see Appendix B.

Lemma 4 Assume that there exists a family of adaptively secure injective one-way functions. Then, there ex-
ists an adaptively secure bit-commitment scheme. Furthermore, the commitment scheme is non-interactive.

Further, assuming the existence of a family of adaptively secure pseudorandom generators, there exists
a 2-round adaptively secure bit-commitment scheme.

The first of these constructions follows by replacing the injective one-way function in the Blum-Micali [9]
commitment scheme, with an adaptively secure one, and the second follows from the Naor commitment
scheme [22] in an analogous way.

Lemma 5 (Concatenation Lemma) If there is an adaptively secure family of bit-commitment schemes,
then there is an adaptively secure family of string-commitment schemes.

The concatenation lemma follows by simply committing to each bit of the message independently using
a single-bit commitment scheme COMtag.
Lemma 6 Let {COMtag}tag∈{0,1}n be a tag-based adaptively secure commitment scheme Then, there is a
non-malleable commitment schemeCOM′.

This is a standard proof using signature schemes to compile an adaptively secure commitment scheme
to a plain non-malleable commitment scheme. Putting together, these lemmas prove theorems 1 and 2.

4 Four-Round Non-Malleable Zero-Knowledge

In this section, we present a4-round non-malleable zero-knowledge argument system. The argument system
is exactly the Feige-Shamir protocol [17], compiled with an adaptively secure commitment scheme. In our
analysis we rely on the following properties of the Feige-Shamir protocol:
• The first property is that the first prover message is (perfectly) independent of the witness used by

the prover (and even the statement!). This property has previously been used to simplify analysis, but
here we inherently rely on this property toenableour analysis.

• The second property is that given a random accepting transcript, and theopeningsof the commit-
ments in the first message, it is possible to “extract a witness”. In other words, any transcript implic-
itly defines a witness; additionally, given a random transcript, this witness will be valid with a high
probability (if the transcript is accepting).

In what follows, we present a sketch of the protocol and the proof and refer the reader to Appendix C
for the full text of the protocol description and the proof.

4.1 An Adaptively Secure Witness Indistinguishable Proof of Knowledge

The main component in the NMZK protocol is a three-round witness-indistinguishable proof of knowledge
(WIPOK) Π. The protocol is simply a parallelization of the3-round zero-knowledge proof̃Π for theNP-
complete language of Hamiltonicity [8, 17], with the only change that the commitment scheme used in the
proof is adaptively secure.
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In fact, we construct a family of protocolsΠtag, indexed bytag. The protocolΠtag – which is a parallel
repetition ofΠ̃tag – has an adaptive WI property which, roughly stated, means that the transcripts of the
protocol when the prover uses two different witnessesw1 andw2 are computationally indistinguishable, even
if the distinguisher has access to a magic oracle that inverts all commitments COMtag′ , wheretag′ 6= tag.

Lemma 7 Let τw denote a random transcript of the protocolΠtag between the proverP and the verifierV
on common inputx and where the prover has auxiliary inputw and the verifier has auxiliary inputz. Then,
for everyx, z andw,w′ such thatRL(w) = RL(w′) = 1, and for every PPT machineD with oracle access
toO(tag, ·, ·), the following quantity is negligible ink:∣∣ Pr[DO(tag,·,·)(x, z, w, w′, τw) = 1]− Pr[DO(tag,·,·)(x, z, w, w′, τw′) = 1]

∣∣
The messages in the three rounds of the protocolΠ̃tag will be denotedA,C andZ respectively. It turns

out that with probability1
2 over the choice of randomness in the protocol, a transcript ofΠ̃tag uniquely

defines a witness (even though not it is not computable in polynomial-time). We define this to be thewitness
implicit in the transcriptin an instance ofΠtag. Furthermore, we show that the implicit witness inΠtag is
computable given access toO(tag′, ·, ·) for anytag′ 6= tag. For more precise definitions, see Appendix C.

Lemma 8 Given oracle access to the commitment-inversion oracleO(tag′, ·, ·) for an tag′ 6= tag, the
witness implicit in any accepting transcript ofΠ̃tag can be computed in polynomial time.

4.2 The Non-Malleable Zero-Knowledge Argument System

The non-malleable ZK protocol consists of two instances of the protocolΠtag running in conjunction, one of
them initiated by the verifier and the other initiated by the prover. We will denote the copy ofΠtag initiated
by the verifier asΠV

tag and the one initiated by the prover asΠP
tag. We will use the notation from the previous

subsection to describe the messages in these protocols – the messages in the protocolΠV
tag (resp. ΠP

tag)
appear with a superscript ofV (resp.P ).

Theorem 9 Assume thatCOM is a non-interactive adaptively secure commitment scheme. Then, the proto-
col in Figure 1 is a4-round non-malleable zero-knowledge argument system.

Proof: Completeness, soundness and zero-knowledge properties of the protocol follow directly from the
corresponding properties of the Feige-Shamir protocol. In Lemma 10, we show that the protocol non-
malleable.

In other words, for every man-in-the-middle adversaryA that interacts with the proverPtag on a state-
mentx and convinces the verifierVtag′ (for a tag′ 6= tag) in a right-interaction on a statementx′ (possibly
the same asx), we construct a stand-alone prover that convinces the verifier onx′ with the same probability
asA, but without access to the left-interaction. The construction of the stand-alone prover in the proof of
non-malleability (see Lemma 10) relies on the adaptive security of the commitment scheme COMtag. It is
important to note that the stand-alone prover itself runs in classical polynomial-time, and in particular does
not use any oracles. Access to the commitment-inversion oracle is used only to show that the stand-alone
prover works as expected (and in particular, that it convinces the verifier with the same probability as does
the MIM adversary). �

Lemma 10 The protocolNMtag in Figure 1 is non-malleable.

Proof: For every man-in-the-middle adversaryA, we construct a stand-alone proverS that convinces the
verifier with essentially the same probability thatA does. Very roughly, the construction of the stand-alone
proverS proceeds in two steps.
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Non-Malleable Zero-Knowledge ArgumentNM tag

COMMON INPUT: An instancex ∈ {0, 1}n, presumably in the languageL.

PROVER INPUT: A witnessw such that(x,w) ∈ RL.

ROUND 1: (Verifier) Pickw1 andw2 at random and computexi = f(wi) for i ∈ {1, 2}.
Let theNP-relationRV = {((x1, x2), w′) | eitherf(w′) = x1 or f(w′) = x2}.
Initiate the WI protocolΠV

tag with the statement(x1, x2) ∈ LV . In particular,

V→ P : Send(x1, x2) to P . SendAV
1 , AV

2 , . . . , AV
n to P .

ROUND 2: (Prover) Let theNP-relationRP be

{((x, x1, x2), w) | either(x, w) ∈ RL or f(w) = x1 or f(w) = x2}

Initiate a WI protocolΠP
tag with common input(x, x1, x2). Also, send the second-round messages

of the protocolΠV
tag. In particular,

(2a)P→ V: SendAP
1 , AP

2 , . . . , AP
n to V .

(2b)P→ V: SendCV
1 , CV

2 , . . . , CV
n to V .

ROUND 3: (Verifier) Send round-2 challenges of the protocolΠP
tag and round-3 responses ofΠV

tag.

(3a)V→ P: SendCP
1 , . . . , CP

n to P .

(3b)V→ P: SendZV
1 , . . . , ZV

n to P .

ROUND 4: (Prover) P verifies that the transcript{(AV
i , CV

i , ZV
i )}i∈[n] is accepting for the subprotocol

ΠV
tag. If not, abort and send nothing toV . Else,

P→ V: SendZP
1 , . . . , ZP

n to V .

V accepts iff the transcript{(AP
i , CP

i , ZP
i )}i∈[n] is accepting for the subprotocolΠP

tag.

Figure 1: NON-MALLEABLE ZERO-KNOWLEDGE PROTOCOLNM tag FOR A LANGUAGE L

1. Run the adversaryA with “honestly generated” verifier-messages on the right interaction, and extract
the witness for the WIPOKΠV

tag that the adversary initiates on the left interaction.
2. Use the witness thus obtained to simulate the left-interaction of the adversaryA and rewind the WI

proof of knowledgeΠP
tag′ it initiates on the right interaction to extract the witness for the statementx′.

Carrying out this agenda involves a number of difficulties. We first describe how to accomplish Step1.
This is done by invoking the simulator for the Feige-Shamir protocol, and is described below. Informally,S
extracts the witnessw′ that the MIMA uses in the subprotocolΠV

tag in the left-interaction. Then,S acts as
the honest prover using the witnessw′ in the protocolΠP

tag.
We now describe how to carry out Step2 of the agenda, and show that at the end of Step2, S extracts a

witness for the statementx̃ that the MIM adversaryA uses in the right-interaction with essentially the same
probability thatA convinces the verifier on the right-interaction.S starts by running the protocol in the
left-interaction using the witnessw′ it extracted using the strategy in Step1. Consider the moment whenA
outputs the first message on the left (that is, the first message in the subprotocolΠV

tag). Consider two cases.
First Case: At this time,A has not yet received the round-3 messages in the right interaction (that is, the
challenges in the subprotocolΠP

tag′) (See Figure 2(i)). In this case, the Round-1 message thatA sends on the
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Ptag x A x̃ Vtag′

←−−−−
(1)←−−−−−−−−→ −−−−→

(3′)←−−−−←−−−−−−−−→ −−−−→

Ptag x A x̃ Vtag′

←−−−−−−−−→
(3′)←−−−−

(1)←−−−−−−−−→←−−−−−−−−→ −−−−→

Figure 2: Two scheduling strategies (i) on the left and (ii) on the right

left interaction is independent of the Round-3 message in the right interaction. Now,S proceeds as follows:
S runs the left-interaction as a normal proverPtag would with the fake-witnessw′, and rewinds the protocol
ΠP

tag′ on the right-interaction to extracta witness for the statementx̃. Since the rewinding process does not
change the messages in the right-interaction before round3, S can usew′ to produce the left-interaction just
as an honest prover with witnessw′ would.
Second Case:A has already received the challenges in the subprotocolΠP

tag′ in the right interaction (See

Figure 4(ii)). In this case, trying to rewind in the WIPOKΠP
tag′ on the right is problematic, sinceA could

change the first message on the left, every time it is fed with a different challenge in round-3 on the right-
interaction. In this case,S proceeds as follows: Every time the extractor for the WIPOKΠP

tag′ in the
right-interaction rewinds,S repeats the entire procedure in Step1 of the agenda to extract a witnessw′

corresponding to the (potentially new) Round-1 message in the left interaction.S then simulates the left-
interaction with the witness thus extracted. The extraction procedure on the right-interaction is unaffected
by the rewinding on the left.

Correctness. First, we show that the view generated byS following Step1 of the agenda is indistinguish-
able from the view ofA in a real interaction, even to a distinguisher that has access to the oracleO(tag, ·, ·)
that inverts COMtag′ for any tag′ 6= tag (Claim 1) Then, we use this to show that theimplicit witnessin
the transcript of the subprotocolΠP

tag′ in the right-interaction is indistinguishable between the simulated and
the real execution (Claim 2). This means that (1) the extraction on the right succeeds with essentially the
same probability thatA manages to convince the verififerVtag′ in the right-interaction, and moreover, (2) the
witness thatS extracts from the right interaction ofA is computationally indistinguishable from the witness
thatA uses in the real interaction. Together, these claims imply the correctness of the stand-alone proverS.
Note that the simulator is entirely classical, with no oracle access; the adaptive security of the commitment
scheme is used only in Claim2.

Running Time. Let X1 be the random variable representing the number of timesS has to rewind the
protocolΠV

tag in the left-interaction to extract a fake witness. Similarly, letX2 be the random variable
representing the number of times the extraction procedure on the subprotocolΠP

tag′ on the right interaction
has to rewind to extract a witness.

The problematic case is the second one (Figure 2(ii)) where the total expected running time isX =
X1X2, since every time the extraction procedure on the right rewinds,S has to extract a new fake witness
in the left-interaction. Thus,E[X1X2] =

∑
a∈Z+ aPr[X1 = a]E[X2|X1 = a]. However, noting that

the number of times the extractor needs to rewind on the right isindependent ofthe number of times the
simulator rewinds on the left-interaction, we get that this is simplyE[X1]E[X2], which is polynomial. �
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A Preliminaries and Standard Definitions

Concurrent Non-Malleable Commitment. Our definition of concurrent non-malleable commitment is
almost identical to that of [26]; the main difference is that we use a definition of non-malleability w.r.t tags.
Let COMtag = 〈Ctag, Rtag〉 be a family of commitment schemes. Consider man-in-the-middle adversaries
that are participating in left and right interactions in whichm = poly(n) commitments take place. We
compare between aman-in-the-middleand asimulatedexecution. In the man-in-the-middle execution, the
adversaryA is simultaneously participating inm left and right commitments.A receives commitments to
valuesv1, . . . , vm using identitiesTAG1, . . . , TAGm of its choice and attempts to commit to a sequence of
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related values̃v1, . . . , ṽm using identities ˜TAG1, . . . , ˜TAGm. If any of the right commitments generated by
the adversary are invalid, or undefined, its value is set to⊥. For anyi such that ˜TAGi = TAGj for some
j, setṽi = ⊥. That is, any commitment where the adversary uses the same identity as one of the honest
committers is considered invalid.

Let mimA
〈C,R〉(v1, . . . , vm, z) denote a random variable that describes the valuesṽ1, . . . , ṽm and the

view of A in the above experiment. In the simulated execution, the valuesv1, . . . , vm are chosen prior to the
interaction but the simulatorS gets nothing. We letstaS

〈C,R〉(1
n, z) denote a random variable that describes

the values committed to in the output ofS (which consists of a sequence of valuesṽ1, . . . , ṽm) together with
the view ofS; as before, whenever the view contains a right interaction where the identity is the same as
any of the left interactions,̃vi is set to⊥.

Definition 4 (Concurrent Non-Malleable Commitment [25]) A commitment schemeCOM is said to be
concurrent non-malleable with respect to commitment if for every polynomialp(·), and every PPTA
that participates in at mostm = p(n) commitments, there exists a PPT simulatorS such that the ensembles{

mimA
〈C,R〉(v1, . . . , vm, z)

}
v1,...,vm,z

and
{

staS
〈C,R〉(1

n, z)
}

1n,z
are computationally indistinguishable.

Non-Malleable Zero-Knowledge. We consider a family of interactive proofs, where each member of the
family is labeled with a tag stringTAG ∈ {0, 1}m, andm = m(n) is a parameter that potentially depends
on the length of the common input (security parameter)n ∈ N . We consider a MIM adversaryA that is
simultaneously participating in a left and a right interaction. In the left interaction,A is verifying the validity
of a statementx by interacting with a proverPTAG while using a protocol that is labeled with a stringTAG.
In the right interactionA proves the validity of a statementx̃ to the honest verifierV ˜TAG while using a
protocol that is labeled with a string̃TAG. Let mimA

V (TAG, ˜TAG, x, x̃, w, z) be a random variable describing
the the output ofV in the man-in-the-middle experiment.

In the stand-alone execution only one interaction takes place. The stand-alone adversaryS directly
interacts with the honest verifierV . As in the man-in-the-middle execution,V receives as input a tag̃TAG

and an instancẽx. S receives instancesx, TAG, x̃, ˜TAG and auxiliary inputz. Let staS
V (TAG, ˜TAG, x, x̃, z) be

a random variable describing the the output ofV in the above experiment when the random tapes ofS and
V are uniformly and independently chosen.

The formal definition of non-malleability is as follows.

Definition 5 (Tag-based non-malleable interactive proofs)A family of interactive proofs〈PTAG, VTAG〉
for a languageL is said to benon-malleable with respect to tags of length m if for every probabilis-
tic polynomial time man-in-the-middle adversaryA, there exists a probabilistic expected polynomial time
stand-alone proverS and a negligible functionν : N → N , such that for every(x,w) ∈ L×RL(x), every
x̃∈{0, 1}|x|, everyTAG, ˜TAG∈{0, 1}m so thatTAG 6= ˜TAG, and everyz ∈ {0, 1}∗:

Pr
[
mimA

V (TAG, ˜TAG, x, x̃, w, z) = 1
]

< Pr
[
staS

V (TAG, ˜TAG, x, x̃, z) = 1
]

+ ν(|x|)

Non-malleable Zero-Knowledge. Non-malleableZK proofs are non-malleable interactive proofs that
additionally satisfy theZK property.

B Non-Malleable Commitment Schemes

First, we present two constructions of adaptively secure bit-commitment schemes – the first construction
assumes adaptively secure injective one-way functions (subsection B.1) and the second assumes adaptively
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secure PRGs (subsection B.2). The first construction isnon-interactiveand the second is a2-round com-
mitment scheme. Next, we show a simple “concatenation lemma”, that constructs an adaptively secure
string-commitment scheme from an adaptively-secure bit-commitment scheme(subsection B.3). Finally, we
show that an adaptively secure commitment scheme is also non-malleable (subsection B.4).

B.1 Construction from Adaptively Secure Injective One-Way Functions

In this subsection, we present a construction of an adaptively secure bit-commitment scheme, given a family
of adaptively secure injective one-way functions. The construction is the same as Blum commitment, with a
slight twist: instead of xor-ing the hardcore bit with the input bit, we make sure (by the choice of randomness
to the Goldreich-Levin predicate) that the hardcore bit is the same as the bit to be committed. This is to
prevent an obvious malleability attack.

Lemma 11 Assume that there exists a family of adaptively secure injective one-way functions. Then,
there exists an adaptively secure bit-commitment scheme. Furthermore, the commitment scheme is non-
interactive.

Proof: LetFn = {ftag : {0, 1}n 7→ {0, 1}m(n) | tag ∈ {0, 1}n} be a family of injective one-way functions.
The commitment scheme COMtag is constructed as follows. To commit a bitb, COM picks a random
x ∈ {0, 1}n and a randomr ∈ {0, 1}n subject to the condition that〈r, x〉 = b. Computey = ftag(x). The
commitment is(y, r).

Since eachftag is injective, the commitment is perfectly binding.
Assume, for contradiction, that there is an adversaryA that breaks the adaptive security of COM. Then,

we construct a PPT adversaryB that breaks the adaptive security ofF . B will use an intermediate adversary
B′, which on input(tag, y, r) computes the Goldreich-Levin hardcore bit〈f−1

tag(y), r〉 with non-negligible
probability, with access to the oracleO(tag, ·, ·) that on input(tag′, y′) returnsf−1

tag′(y
′) if tag′ 6= tag and

⊥ otherwise.
B′ works as follows: On input(tag, y, s), B′ runsA with input (tag, y, s). Note that(tag, y, s) is a

commitment to a random bit. WhenA asks a query(tag′, y′, s′) (wheretag′ 6= tag) B′ uses the inversion
oracle for the one-way function to computex′ = f−1

tag′(y
′) and returns the inner product〈x′, s′〉 toA. Finally,

B′ outputs whateverA outputs.
It is easy to see thatB′ perfectly simulates the view of the adversaryA where the challenge toA is a

random commitment to the bitb = 〈f−1
tag(y), s〉. B′ predicts the Goldreich-Levin hardcore bit with the same

probability thatA predicts the committed bit.
The construction ofB from B′ is exactly the same as the Goldreich-Levin construction of a one-way

function inverter from a hardcore-bit predictor: one only needs to observe that the Goldreich-Levin con-
struction is black-box and uses only queries to the hardcore-bit predictor on the same indextag, to invert
the functionftag. �

B.2 Construction from Adaptively Secure Pseudorandom Generators

We will construct a two-round statistically binding, adaptively secure bit-commitment scheme from adap-
tively secure pseudorandom generators (PRG). The construction is exactly the same as Naor commitment,
except that we use a family of adaptively secure PRGs.

Lemma 12 Assume that there exists a family of adaptively secure pseudorandom generators. Then, there
exists a2-round adaptively secure bit-commitment scheme.
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Proof: Let Gn = {Gtag : {0, 1}n 7→ {0, 1}m(n) | tag ∈ {0, 1}n} be a family of adaptively secure pseudo-
random generators, wherem(n) ≥ 3n. The commitment scheme COMtag is constructed as follows. To
commit to a bitb, the senderS and receiverR run the following protocol.

1. R picks a random stringr ∈ {0, 1}m(n) and sends it toS.

2. S picks a random strings ∈ {0, 1}n and sends toR the valuey = Gtag(s) if b = 0 andy = r⊕Gtag(s)
if b = 1.

The statistical binding of this commitment scheme follows by the same argument as that for the Naor
commitment.

Assume, for contradiction, that there is an adversaryA that breaks the adaptive security of COM. Then,
we construct a PPT adversaryB that breaks the adaptive security of the PRGG.

On input (tag, y), B runsA until it returns the first-round messager for a commitment.B picks a
random bitb: If b = 0, it returns(tag, y) to A. If b = 1, it returns(tag, y ⊕ r) to A. WhenA asksB for
a decommitment on a transcript(tag′, r′, y′) (wheretag 6= tag′), B does the following: Use the adaptive
PRG-oracle to determine which ofy′ or y′ ⊕ r′ is in the range ofGtag′ . If y′ is in the range, return0, else
if y′ ⊕ r′ is in the range, return1. If both are in the range, return a random bit and if neither is in the range,
return⊥. Finally,A returns a bitb′. B outputs0 if b = b′ and1 otherwise.

It is easy to see thatB simulates the answers to the decommitment queries perfectly6. If y is pseudoran-
dom, then the commitment returned byB is distributed exactly like a commitment to the bitb. On the other
hand, ify is random, then the commitment returned byB is independent of the bitb, which means thatA
cannot guess the bitb with probability better than12 . From this fact, it follows by a standard argument that
B distinguishes between the case wherey is random and when it is pseudorandom, ifA predicts correctly.
�

B.3 Concatenation Lemma

In this section, we show a “concatenation lemma”, which gives a way to construct an adaptively secure
string-commitment scheme from an adaptively-secure bit-commitment scheme.

Lemma 13 If there is an adaptively secure family of bit-commitment schemes, then there is an adaptively
secure family of string-commitment schemes.

Proof: Given an adaptively secure bit commitment scheme{COM′tag}tag∈{0,1}n , we construct an adaptively
secure string-commitment scheme{COMtag}tag∈{0,1}n as follows: To commit to a stringm = m1 . . .m`,
COMtag runs many instances of COM′tag, in parallel. More precisely, COM does the following: Run
COMtag(m1), . . . , COMtag(m`) and output the concatenation of the` commitments.

Assume, for contradiction, that there is a PPT adversaryA that breaks the adaptive security of COM.
Then, we construct a PPT adversaryB that breaks the adaptive security of COM′. The proof will essentially
follow by a hybrid argument.B runs A until it produces two messages̄m0 = m1

0 . . .m`
0 and m̄1 =

m1
1 . . .m`

1. B picks a randomi ∈ [`], internally simulates the commitment interactions of COM′ using the
tag tag and on input bitm0

j , for j < i and for input bitm1
j for j > i. For j = i, B runs a commitment

instance of COM′ on tagtag with input bit mi interacting with the outside and forwarding the messages to
and from the adversaryA.

6In the case that the commitment transcript is ambiguous, namely it is a valid commitment to both0 and1, B returns a random
bit, which is the expected behavior (See the definition of the commitment-inversion oracle)
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To answer the commitment-inversion queries ofA, note that the legal such queries contain a tagtag′ 6=
tag and thus,B can obtain their decommitments from the commitment inversion oracle for COM′. The proof
now follows by a simple hybrid argument, and is omitted here.�

B.4 Non-Interactive Concurrently Non-Malleable Commitment

In this section, we show that adaptively secure commitment schemes are also non-malleable. Furthermore,
the first of our commitment schemes (based on adaptive injective one-way functions) actually yields a non-
interactive concurrently non-malleable commitment scheme. This proves Theorems 1 and 2.

Lemma 14 Let {COMtag}tag∈{0,1}n be a tag-based adaptively secure commitment scheme Then, there is a
non-malleable commitment schemeCOM′.

Proof:(Sketch.) The commitment scheme COM′ works as follows: to commit to a messagem, it first
picks a pair(VK , SK) for a one-time signature scheme. Then, it runs COMVK (m) and signs the resulting
commitment using the signature keySK.

We will first show that COM′ is a one-manynon-malleable commitment scheme. That is, the man-
in-the-middle adversary only gets one commitment from the left interaction (and he can produce many
commitments on the right to “related messages”). Then, we will use a proposition of Pass and Rosen [26]
that shows that any commitment scheme that is one-many non-malleable is also fully (many-many) non-
malleable.

To show the first part: for everyA that receives one commitment on the left and produces many commit-
ments, we construct a simulatorS that, without receiving the commitment on the left, commits to values that
are indistinguishable from whatA committed to.S computes a key-pair(VK , SK) for the one-time signature
scheme and feedsA a commitmentc = COMVK (0`) and outputs whateverA outputs.

Suppose there is a distinguisherD that distinguishes between the values thatA andS committed to.
Then, we produce an algorithmD′ that breaks the adaptive security of the commitment scheme.D′ gets
a commitment on the indexVK , either to a random valuex or to 0n from the outside. It runsA with
this commitment, and obtains the sequence of commitments(c1, c2, . . . , cn) thatA outputs. Each of these
commitmentsci usestagi 6= VK since otherwise, it is possible to break the security of the signature scheme.
On the other hand, whenever a commitment uses antagi 6= VK , D′ can use the commitment-inversion oracle
on tagi to compute the message underlyingci, and useD to distinguish between the messages.�

Proposition 15 ([26]) Any commitment scheme that is one-many non-malleable is also concurrently non-
malleable.

C Four-Round Non-Malleable Zero-Knowledge

In this section, we present a4-round non-malleable zero-knowledge argument system. The argument system
is exactly the Feige-Shamir protocol [17], compiled with an adaptively secure commitment scheme. In our
analysis we rely on the following properties of the Feige-Shamir protocol:

• The first property is that the first prover message is (perfectly) independent of the witness used by
the prover (and even the statement!). This property has previously been used to simplify analysis, but
here we inherently rely on this property toenableour analysis.
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• The second property is that given a random accepting transcript, and theopeningsof the commit-
ments in the first message, it is possible to “extract a witness”. In other words, any transcript implic-
itly defines a witness; additionally, given a random transcript, this witness will be valid with a high
probability (if the transcript is accepting).

In what follows, we present a sketch of the protocol and the proof and refer the reader to Appendix C
for the full text of the protocol description and the proof.

C.1 An Adaptively Secure Witness Indistinguishable Proof of Knowledge

In this section, we describe a three-round witness-hiding proof of knowledge (WIPOK)Π, which is used
as a building block in the non-malleable ZK protocol, and state or prove some facts about the WIPOK.
The protocol is a parallelization of the3-round zero-knowledge proofρ for theNP-complete language of
Hamiltonicity [8, 17], with the only change that the commitment scheme used in the proof is adaptively
secure.

In fact, we construct a family of protocolsΠtag, indexed bytag. The protocolsΠtag has an adaptive WI
property which, roughly stated, means that the transcripts of the protocol when the prover uses two different
witnessesw1 andw2 are computationally indistinguishable, even if the distinguisher has access to a magic
oracle that inverts all commitments COMtag′ , wheretag′ 6= tag.

The protocolΠtag is simply a basic3-round WI protocolΠ̃tag repeatedk times in parallel (wherek is a
security parameter), where the prover and the verifier choose independent random bits for each instance of
Π̃tag. We now describe how̃Πtag works. The common input is a graphG on n vertices and the stringtag.
The auxiliary input to the prover is a Hamiltonian cycle inG. The protocol uses an adaptively secure family
of commitment schemes{COMtag}tag∈{0,1}k . The messages in the three rounds of the protocolΠ̃tag will

be denotedA,C andZ respectively. The messages in theith copy of Π̃tag will be denotedAi, Ci andZi.
Thus, the transcript of the protocolΠtag consists of{(Ai, Ci, Zi)}i∈[k].

1. (Round 1) P → V : P chooses a randomn-cycleΨ. LetΨi,j denote the(i, j)th entry in the adjacency
matrix of Ψ. Computen2 commitments using COMtag, one for each entry of the adjacency matrix
Ψi,j . Send the commitments to the verifierV (this message is denotedA).

2. (Round 2) V → P : Sends a random bit, denotedC, to the proverP .

3. (Round 3) P → V : If C = 0, P opens all the commitments it sent in the first round. IfC = 1, P
sends a random permutationπ : [n] 7→ [n] that maps the cycleΨ to the Hamiltonian cycle inG, and
the decommitment of all the entriesΨi,j of M such that(π(i), π(j)) is not an edge of the graphG.
Denote the third-round message byZ.

4. (Verifier’s Local Computation) If C = 0, V checks thatZ contains valid decommitments of all the
commitments inA, and that the resulting decommitments form ann-node cycle. IfC = 1, V checks
that the decommitments correspond to all the non-edges ofπ−1(G).

LetO(tag, ·, ·) denote an oracle that on inputtag′ and a commitment, inverts the commitment iftag′ 6=
tag, and outputs⊥ otherwise. The lemma below shows that the protocolΠtag is witness-indistinguishable
even if the distinguisher has access to the oracleO(tag, ·, ·).

Lemma 16 Letτw denote a random transcript of the protocolΠtag between the proverP and the verifierV
on common inputx and where the prover has auxiliary inputw and the verifier has auxiliary inputz. Then,
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for everyx, z andw,w′ such thatRL(w) = RL(w′) = 1, and for every PPT machineD with oracle access
toO(tag, ·, ·), the following quantity is negligible ink:∣∣ Pr[DO(tag,·,·)(x, z, w, w′, τw) = 1]− Pr[DO(tag,·,·)(x, z, w, w′, τw′) = 1]

∣∣
Proof: We first show that the basic subprotocolΠ̃tag is zero-knowledge, even if the distinguisher has access
to O(tag, ·, ·). Witness-indistinguishability follows by a straightforward hybrid argument. The simulator
for zero-knowledge is exactly the classical GMW zero-knowledge simulator forΠ̃tag. The adaptive security
of COM immediately implies that the output distribution of the simulator is indistinguishable from the real
interaction even if the distinguisher has access toO(tag, ·, ·). �

Now, we define the notion of awitness implicit in the transcriptof an instance of̃Πtag, and show that
the implicit witness inΠ̃tag is computable given access toO(tag′, ·, ·) for any tag′ 6= tag. Consider an
accepting transcript(A,C, Z) of the protocolΠ̃tag. Note that the decommitment of then2 commitments in
A uniquely defines ann-node graph (even though not it is not computable in polynomial-time). We observe
that if (A,C, Z) is an accepting transcript, thenA has to be a commitment to one of the following two
graphs: either (1)G0, ann-cycle, or (2)G1, a (permuted) subgraph ofG. Moreover, an accepting transcript
where the first message is a commitment ofG0 (resp.G1) and the challenge-bitC is 1 (resp.0) uniquely
defines a a Hamiltonian cycle inG; call this the witness implicit in the transcript. When the first message is
a commitment toG0 (resp.G1) and the challenge-bit is0 (resp.1), the witness implicit in the transcript is
⊥. Furthermore, we can recover the implicit witness, given oracle access toO(tag′, ·, ·).

Lemma 17 Given oracle access to the commitment-inversion oracleO(tag′, ·, ·) for an tag′ 6= tag, the
witness implicit in any accepting transcript ofΠ̃tag can be computed in polynomial time

C.2 The Non-Malleable Zero-Knowledge Argument System

The non-malleable ZK protocol consists of two instances of the protocolΠtag running in conjunction, one of
them initiated by the verifier and the other initiated by the prover. We will denote the copy ofΠtag initiated
by the verifier asΠV

tag and the one initiated by the prover asΠP
tag. We will use the notation from the previous

subsection to describe the messages in these protocols – the messages in the protocolΠV
tag (resp. ΠP

tag)
appear with a superscript ofV (resp.P ).

Theorem 18 Assume thatCOM is a non-interactive adaptively secure commitment scheme. Then, the pro-
tocol in Figure 3 is a4-round non-malleable zero-knowledge argument system.

Proof: Completeness, soundness and zero-knowledge properties of the protocol follow directly from the
corresponding properties of the Feige-Shamir protocol. In Lemma 19, we show that the protocol non-
malleable.

In other words, for every man-in-the-middle adversaryA that interacts with the proverPtag on a state-
mentx and convinces the verifierVtag′ (for a tag′ 6= tag) in a right-interaction on a statementx′ (possibly
the same asx), we construct a stand-alone prover that convinces the verifier onx′ with the same probability
asA, butwithout access to the left-interaction. The construction of the stand-alone prover (see Lemma 19)
relies on the adaptive security of the commitment scheme COMtag. It is important to note that the stand-
alone prover itself runs in classical polynomial-time, and in particular does not use any oracles. Access to
the commitment-inversion oracle is used only to show that the stand-alone prover works as expected (and in
particular, that it convinces the verifier with the same probability as does the man-in-the-middle adversary).
�
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Non-Malleable Zero-Knowledge ArgumentNM tag

COMMON INPUT: An instancex ∈ {0, 1}n, presumably in the languageL.

PROVER INPUT: A witnessw such that(x,w) ∈ RL.

ROUND 1: (Verifier) Pickw1 andw2 at random and computexi = f(wi) for i ∈ {1, 2}.
Let theNP-relationRV = {((x1, x2), w′) | eitherf(w′) = x1 or f(w′) = x2}.
Initiate the WI protocolΠV

tag with the statement(x1, x2) ∈ LV . In particular,

V→ P : Send(x1, x2) to P . SendAV
1 , AV

2 , . . . , AV
n to P .

ROUND 2: (Prover) Let theNP-relationRP be

{((x, x1, x2), w) | either(x, w) ∈ RL or f(w) = x1 or f(w) = x2}

Initiate a WI protocolΠP
tag with common input(x, x1, x2). Also, send the second-round messages

of the protocolΠV
tag. In particular,

(2a)P→ V: SendAP
1 , AP

2 , . . . , AP
n to V .

(2b)P→ V: SendCV
1 , CV

2 , . . . , CV
n to V .

ROUND 3: (Verifier) Send round-2 challenges of the protocolΠP
tag and round-3 responses ofΠV

tag.

(3a)V→ P: SendCP
1 , . . . , CP

n to P .

(3b)V→ P: SendZV
1 , . . . , ZV

n to P .

ROUND 4: (Prover) P verifies that the transcript{(AV
i , CV

i , ZV
i )}i∈[n] is accepting for the subprotocol

ΠV
tag. If not, abort and send nothing toV . Else,

P→ V: SendZP
1 , . . . , ZP

n to V .

V accepts iff the transcript{(AP
i , CP

i , ZP
i )}i∈[n] is accepting for the subprotocolΠP

tag.

Figure 3: NON-MALLEABLE ZERO-KNOWLEDGE PROTOCOLNM tag FOR A LANGUAGE L

Lemma 19 The protocolNMtag in Figure 3 is non-malleable.

Proof: For every man-in-the-middle adversaryA, we construct a stand-alone proverS that convinces the
verifier with essentially the same probability thatA does. Very roughly, the construction of the stand-alone
proverS proceeds in two steps.

1. Run the adversaryA with “honestly generated” verifier-messages on the right interaction, and extract
the witness for the WIPOKΠV

tag that the adversary initiates on the left interaction.

2. Use the witness thus obtained to simulate the left-interaction of the adversaryA and rewind the WI
proof of knowledgeΠP

tag′ it initiates on the right interaction to extract the witness for the statementx′.

Carrying out this agenda involves a number of difficulties. We first describe how to accomplish Step1.
This is done by invoking the simulator for the Feige-Shamir protocol, and is described below. Informally,S
extracts the witnessw′ that the MIMA uses in the subprotocolΠV

tag in the left-interaction. Then,S acts as
the honest prover using the witnessw′ in the protocolΠP

tag. More precisely,
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1. S runs the MIM adversaryA until the end of round3 in the left-interaction (namely, until the sub-
protocolΠV

tag finishes). In doing so,S feedsA with the messages of an honest verifier on the right-
interaction.

2. S rewindsA to the beginning of Round2, that is immediately afterA sends the Round1 message
in the subprotocolΠV

tag. It continues runningA until it produces another accepting transcript with a
different sequence of challenges forΠV

tag in round2b.

At this point, S can extract a witnessw′ for the statementA uses inΠV
tag. Note that during the

extraction process,S sends the messages in rounds2a and3a as an honest prover would, and this
does not require knowledge of the witnessw for the statementx.

3. S now rewindsA to the beginning of Round2, and usesw′ as the witness in the subprotocolΠP
tag

starting from Round2, while sending the messages in the subprotocolΠV
tag as an honest prover would.

In particular,S runs the WI protocolΠP
tag with w′ as the witness.

We now describe how to carry out Step2 of the agenda, and show that at the end of Step2, S extracts a
witness for the statementx′ that the MIM adversaryA uses in the right-interaction with essentially the same
probability thatA convinces the verifier on the right-interaction.

S starts by running the protocol in the left-interaction using the witnessw′ it extracted using the strategy
in Step1 of the agenda. Consider the moment whenA outputs the first message on the left (that is, the first
message in the subprotocolΠV

tag). Now, consider two cases.

(i) (ii)

Ptag x A x̃ Vtag′

←−−−−
(1)←−−−−−−−−→ −−−−→

(3′)←−−−−←−−−−−−−−→ −−−−→

Ptag x A x̃ Vtag′

←−−−−−−−−→
(3′)←−−−−

(1)←−−−−−−−−→←−−−−−−−−→ −−−−→

Figure 4: Two scheduling strategies.

1. At this time,A has not yet received the round-3 messages in the right interaction (that is, the challenges
in the subprotocolΠP

tag′). This situation is illustrated in Figure 4(i). In this case, the Round-1 message
thatA sends on the left interaction is independent of the Round-3 message in the right interaction.

Now, S proceeds as follows:S runs the left-interaction as a normal proverPtag would with the
fake-witnessw′, and rewinds the protocolΠP

tag′ on the right-interaction to extract a witness for the
statement̃x. Since the rewinding process does not change the messages in the right-interaction before
round3, S can usew′ to produce the left-interaction just as an honest prover with witnessw′ would.

2. A has already received the challenges in the subprotocolΠP
tag′ in the right interaction. Such a situ-

ation is illustrated in Figure 4(ii). In this case, trying to rewind in the WIPOKΠP
tag′ on the right is
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problematic, sinceA could change the first message on the left, every time it is fed with a different
challenge in round-3 on the right-interaction.

In this case,S proceeds as follows: Every time the extractor for the WIPOKΠP
tag′ in the right-

interaction rewinds,S repeats the entire procedure in Step1 of the agenda to extract a witnessw′

corresponding to the (potentially new) Round-1 message in the left interaction.S then simulates the
left-interaction with the witness thus extracted.

Note that the round-2 message ofA in the WIPOKΠP
tag′ on the right-interaction is fixed, and inde-

pendent of the rewindings. Thus, the extraction procedure on the right-interaction is unaffected by
the rewinding on the left. The views generated in the left-interaction in this process are identically
distributed and thus, the probability thatVtag′(x̃) accepts on any two such views is the same. Thus,
sampling sufficiently many times ensures that extraction succeeds.

Correctness. First, we show that the view generated byS following Step1 of the agenda is indistinguish-
able from the view ofA in a real interaction, even to a distinguisher that has access to the oracleO(tag, ·, ·)
that inverts COMtag′ for any tag′ 6= tag (Claim 1) Then, we use this to show that theimplicit witnessin
the transcript of the subprotocolΠP

tag′ in the right-interaction is indistinguishable between the simulated and
the real execution (Claim 2). This means that (1) the extraction on the right succeeds with essentially the
same probability thatA manages to convince the verififerVtag′ in the right-interaction, and moreover, (2) the
witness thatS extracts from the right interaction ofA is computationally indistinguishable from the witness
thatA uses in the real interaction. Together, these claims imply the correctness of the stand-alone proverS.

Claim 1 The views generated byS in the left-interaction following the strategy in Step1 of the agenda
is indistinguishable from a real left-interaction, even to a distinguisher that has access to a commitment-
inversion oracleO(tag, ·, ·).

Proof: The view generated byS is identical to the view ofA in the real interaction, except thatS uses the
fake witness it extracted from the subprotocolΠV

tag, instead of the a witness for the statementx ∈ L. Thus
the transcript of the left-interaction corresponds to the interaction with a prover with witnessw in the real
left-interaction, whereas it corresponds to a prover with witnessw′ in the simulated left-interaction. These
two ensembles are indistinguishable, even to an adversary with access toO(tag, ·, ·), by the adaptive WI
property ofΠtag (Lemma 16). �

The protocolΠP
tag′ consists ofn copies of a smaller subprotocolΠ̃P

tag′ , running in parallel. Define the

witness-tupleimplicit a transcript ofΠP
tag′ to be then-tuple (w1, . . . , wn) wherewi is the witness implicit

in the ith copy of the smaller subprotocol̃ΠP
tag′ . We now show that the witness-tuple is computationally

indistinguishable between the real and the simulated interactions. This means that the witness extracted
by S in the right-interaction is computationally indistinguishable from the one that the MIMA uses in the
real-interaction. By the soundness of the protocol, this has to be the witness for the statementx̃.

Claim 2 The witness-tuple implicit in the transcript of the subprotocolΠP
tag′ (in the right-interaction) of the

real and simulated executions are computationally indistinguishable.

Proof: Suppose, for contradiction, that the two witness-tuples are distinguishable. Then, we show that
the real and simulated interactions are distinguishable, given access to a commitment-inversion oracle
O(tag, ·, ·), which is impossible by Claim 1. By Lemma 17, it is easy to compute the implicit witness
given a transcript of the subprotocolΠ̃P

tag′ . Thus, it is easy to compute the witness-tuple implicit inΠ̃P
tag′ ,
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given oracle-access toO(tag, ·, ·). Thus, if the witness-tuples in the real and simulated executions are dis-
tinguishable, then the transcripts of the real and simulated executions themselves are distinguishable given
oracle access toO(tag, ·, ·). �

Running Time. Let X1 be the random variable representing the number of timesS has to rewind the
protocolΠV

tag in the left-interaction to extract a fake witness. Similarly, letX2 be the random variable
representing the number of times the extraction procedure on the subprotocolΠP

tag′ on the right interaction
has to rewind to extract a witness.

Consider two cases. In the first case, corresponding to Figure 4(i), the rewinding on the left interaction
is done once (until a fake witness is extracted) and the rewinding on the right interaction is done once. Thus,
the total expected running time is proportional toE[X1 + X2] = E[X1] + E[X2], which is polynomial.

In the second case, corresponding to Figure 4(ii), the total expected running time isX = X1X2, since
every time the extraction procedure on the right rewinds,S has to extract a new fake witness in the left-
interaction. Thus,

E[X1X2] =
∑

a∈Z+

aPr[X1 = a]E[X2|X1 = a]

However, the number of times the extractor needs to rewind on the right isindependent ofthe number
of times the simulator rewinds on the left-interaction and thusE[X2|X1 = a] = E[X2]. Thus,E[X1X2] =∑

a∈Z+ aPr[X1 = a]E[X2] = E[X1]E[X2], which is polynomial. �

D CCA-Secure Encryption Scheme

D.1 Security Against Chosen-Ciphertext Attacks

Definition 6 (IND-CCA2 Security) Let Π = (Gen, Enc, Dec) be an encryption scheme and let the ran-
dom variableINDb(Π, A, k) whereb ∈ {0, 1}, A = (A1, A2) andk ∈ N denote the result of the following
probabilistic experiment:

INDb(Π, A, k) :
(PK, SK)← Gen(1k)
(m0,m1, s)← AO1

1 (PK) s.t. |m0| = |m1|
y ← EncPK(mb)
z ← AO2

2 (y, s)
Outputz.

whereO1 andO2 denote the decryption oracles, andO2 decrypts all ciphertexts excepty.
(Gen, Enc, Dec) is IND-CCA2-secure if∀ p.p.t. algorithmsA = (A1, A2), the following two ensembles
are computationally indistinguishable:{

IND0(Π, A, k)
}

k∈N

c
≈

{
IND1(Π, A, k)

}
k∈N

(1)

D.2 Assumptions

In this section, we exhibit a construction of an IND-CCA2-secure encryption scheme, assuming an adap-
tively secure variant of perfectly one-way hash functions (defined by Canetti [12]), and a family of trapdoor
permutations that are uninvertible even with access to an oracle that inverts the perfectly one-way hash
function. We make the assumptions more precise below.
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The construction is a modification of an encryption scheme of Bellare and Rogaway [7], which they
proved to be IND-CCA2-secure in the random oracle. We show that the construction is IND-CCA2-secure
under well-defined complexity-theoretic assumptions, and in particular, without assuming random oracles.
Our construction is essentially as efficient as the original construction of [7]. In particular, the secret and
public keys are of sizen, the security parameter. The ciphertext-size is`+O(n) to encrypt a message of size
n bits. First, we state the complexity assumption, and then present the scheme that is IND-CCA2-secure
under the assumption.

We define the notion of perfectly one-way hashing, in the presence of auxiliary information and oracle
access. The auxiliary information is an uninvertible functiong evaluated on the inputr. Informally, we
require thath = H(r; s) be indistinguishable from random for an adversary that is giveng(r) as auxiliary
input, and gets access to an oracle that inverts everyh′ 6= h. Namely, the oracle, givenh′ 6= h, computesr′

ands′ such thath′ = H(r′; s′). LetO(h, ·) denote such an oracle.
We note that Canetti [12] (define and) use perfectly one-way hashing with auxiliary input to prove the

IND-CPAsecurity (semantic security) of the [7] construction.

Definition 7 (Adaptively Secure Perfectly One-way Hashing with Auxiliary Information) A functionPHGen
is called a perfectly one-way hash function if for a randomH ← PHGen(1k),

1. H is public-coin; namely, for any inputx, H(x; r) contains the randomnessr.

2. {H(x; r)}r∈{0,1}n and{H(y; r)}r∈{0,1}n are disjoint for allx, y, and

3. For every well-spread ensembleχ, for all uninvertibleg and for all PPT distinguishersD, there is a
negligible functionµ such that∣∣ Pr

x←χ;r←Un

[DO(H(x;r),·)(g(x),H(x; r)) = 1]− Pr
x←χ;u←Un

[DO(u,·)(g(x), u) = 1]
∣∣ ≤ µ(n)

D.3 The Construction

Theorem 20 Assume thatTDPGen is a family of trapdoor permutations that are uninvertible with access
to theH-inverting oracle, and thatPHGen is an adaptively secure perfectly one-way hash with auxiliary
information. Then, there exists a IND-CCA2-secure encryption scheme.

Proof: The encryption scheme isΠ = (Gen, Enc, Dec) as in Figure 5.
Let us fix some notations. A ciphertextc consists of components[c0, c1, c2, s1, s2]. c implicitly defines

the quantitiesr = f−1(c0) andm = H(r; s1)⊕ c1.
Assume, for contradiction, that there is a PPT adversaryA that wins in the IND-CCA2 game. Then,

we construct a PPT adversaryB that breaks the adaptive perfectly one-way hash functionPHGen. Let c∗

denote the challenge ciphertext, which defines quantitiesc∗0, c
∗
1, c
∗
2, s
∗
1, s
∗
2, r
∗ andm∗ as above.B works as

follows.

ANSWERING THE DECRYPTION QUERIES. Let the query bec. Now, there are two cases:

1. (c2, s2) = (c∗2, s
∗
2): Then, the probability thatc′ 6= c′∗ andH(c′∗; s2) = H(c∗; s2) is negligible over

the choice ofH ∈ PHGen(1k). Thus,(r, c1, s1) = (r∗, c∗1, s
∗
1), except with negligible probability. If

this is the case, thenc = c∗, and thus, the query ofA is invalid. B returns⊥ in this case.

2. (c2, s2) 6= (c∗2, s
∗
2): Then,B can use theH-inversion oracle to computec′ such thatH(c′; s2) = c2).

Let c′ = (r′, c′1, s
′
1). Check that(c′1, s

′
1) = (c1, s1) andf(r′) = c0. If both checks pass, return

H(r′; s1)⊕ c1 to A. Otherwise, return⊥.
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Gen(1n) : RunTDPGen(1n) and get a pair(f, f−1). RunPHGen(1k) to get a perfectly one-way
hash functionH. Let PK = (f,H) andSK = f−1.

Enc(PK,m) :

1. Pick randomr ← {0, 1}n. Computec0 = f(r) andc1 = m⊕H(r; s1) for randoms1.

2. Let c′ = (r, s1, c1). Computec2 = H(c′; s2) for randoms2.

Output the ciphertextc = (c0, c1, c2, s1, s2).

Dec(SK, c) : Parsec as(c0, c1, c2, s1, s2).

1. Computer′ = f−1(c0), andm′ = c1 ⊕H(r′; s1).

2. Let c′ = (r′, s1, c1). Outputm′ if H(c′; s2) = c2. Otherwise output⊥.

Figure 5: AN IND-CCA2-SECURE ENCRYPTION SCHEME.

GIVING THE CHALLENGE CIPHERTEXT TOA. Consider the following three experiments.

1. Experiment IND
(1)
b : The challenge ciphertext is computed asc∗ = [f(r), u⊕mb, u

′, s1, s2], where
r, s1, s2, u, u′ are randomly chosen from the appropriate domains.

2. Experiment IND
(2)
b : The challenge ciphertext is computed asc∗ = [f(r),H(r; s1)⊕mb, u

′, s1, s2],
wherer, s1, s2, u

′ are randomly chosen from the appropriate domains.

3. Experiment IND
(3)
b : The challenge ciphertext is computed asc∗ = [f(r),H(r; s1),H(c′; s2), s1, s2],

wherer, s1, s2 are randomly chosen from the appropriate domains.

The decryption queries in each of the experiments are answered as above. Note thatIND
(3)
b is the same as

INDb. We will show that

1. IND
(1)
0 ≡ IND

(1)
1 ,

2. IND
(1)
b

c
≈ IND

(2)
b , and

3. IND
(2)
b

c
≈ IND

(3)
b

The claim follows, sinceIND0 ≡ IND
(3)
0

c
≈ IND

(1)
0 ≡ IND

(1)
1

c
≈ IND

(3)
1 ≡ IND1.

IND
(1)
0 ≡ IND

(1)
1 , since in both cases, the ciphertext is a random5-tuple, independent ofmb. IND

(1)
b

c
≈

IND
(2)
b since otherwise, we could distinguish between(f(r),H(r; s), s) and(f(r), s′, s) wherer, s, s′ are

chosen at random. This contradicts either (1) the adaptively perfect one-wayness ofH with the uninvertible
auxiliary information functionf , or (2) the uninvertibility off with access to theH-inversion oracle. A

similar argument shows thatIND
(2)
b

c
≈ IND

(3)
b , if the composite functiong(r, s) = f(r) ◦ h(r; s) ◦ s is

uninvertible, which follows from Claim 3.

26



Claim 3 The functiong(r, s) = f(r) ◦ h(r; s) ◦ s is uninvertible, even with oracle access to an inverting
algorithm forh on inputs of length3n.

Proof: Suppose there is a PPT adversaryA that invertsg. Then, we show a PPT adversaryB that dis-
tinguishes between the tuples(f(r), h(r; s), s) and(f(r), s′, s) for randomly chosenr, s, s′. B works as
follows: B is given a tuple(a, b, c), and it simply invokesA on (a, b, c). B answers the POWHF inversion
queries ofA using its own POWHF inversion oracle. Since all the queries ofA are to inverth(r̃) wherer̃ is
of length3n, B never has to invoke the inversion oracle onb.

Finally, A computes a purported inverser′ and returnsr′ to B. It checks iff(r′) = a andh(r′; c) = b.
If both checks pass, return1, else return a random bit. If the input tuple is of the form(f(r), h(r; s), s),
thenA will succeed with non-negligible probability in inverting it, otherwiseA cannot produce an inverse.
Thus,B will distinguish between the tuples with non-negligible probability.� �
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