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Abstract

This paper investigates the use of visible or near infrared light for breast
cancer imaging. The use of light at this frequency avoids the potential danger of
ionizing radiation from frequent mammographic screening. This method is
inexpensive and harmless and is potentially attractive since it could be used
more frequently than X-ray mammography, increasing the chances of early
detection and successful treatment.

The hardware required consists of a movable light source, or multiple
sources, and many detectors. The light is incident upon one side of the tissue
and is measured at the opposite side. In addition, mathematical computations
are required for the discrimination of cancerous tissue from normal tissue.
Tumors are known to both scatter and absorb light more than average, and
tissue immediately surrounding the tumor scatters and absorbs light slightly less
than average, making the distinction possible [1,2].

Because tissue is dense with particles, photons which travel through it
experience many collisions which scatter them [3, Chapter 7]. Although the
material in a tumor is more highly scattering and absorbing than regular tissue,
this research will focus on detection of changes in absorption only. In the circuit
model, the absorption component is simpler to resolve than the scattering
component, and when choosing a single parameter to begin reconstructing, its
predictable increase is a simpler goal [14]. I may also be able to tag cancerous
tissue with a highly absorbing material which would make the absorption
extremely distinct in that area.

If there is a significant change in scattering or absorption, the measured
light intensity is barely altered. This is the insensitive forward problem.
Similarly, if the measurement of light intensity is slightly noisy and I attempt to
solve for the unknown absorption or scattering, this computed perturbation may
be mistakenly large, since there may have been no change at all.

Also, from a single source at the input and all the corresponding output
measurements, we cannot assemble as many equations as there are unknowns.
Even if the number of sources and resulting measurements is increased so that
we have the same number of equations as unknowns, all of the equations will
not be independent, and there is still not enough information to solve for all the
unknowns. We therefore try to assemble many more equations than there are
unknowns. This is done by increasing the number of unique input sources, each
with their own set of output measurements, by as many as possible. The hope is
that in making many measurements under different illuminations and
accumulating more equations, some of the equations will be independent of the
others that we already have, and it will help to resolve information about the
problem out of noise.

Beginning with a nominal solution of uniform scattering and absorption,
we can linearize the given, nonlinear, problem and iteratively update our guess
at its solution. Since we assemble more equations than we have unknowns, we
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search for the least squares solution to the nonlinear problem by iteratively
solving a linearized perturbation equation.

This study will examine the underdetermined nature of the problem, and
how that can be remedied. The result is that the accuracy of least squares
solutions and performance of numerical algorithms are improved by adding
regularization [8]. Other results include the success of the correspondence
between the simulated circuit model and experimental data, and how much an
increase in the number of illumination sites improves the resolution of the
solution. The conclusion addresses what we can hope to resolve with this type
of experimental system, and how much device noise can be tolerated in the
apparatus.
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1. Light Transport Theory and Dense Media

The nature of light propagation is dependent upon the optical properties

of the medium which it is traversing. When a medium has a refractive index of

about one, particles are sparse within the medium and propagating photons

follow an approximately straight line. In this case, light is usually not scattered

or it experiences only one collision with a particle. If the medium has a slightly

higher particle density, light is scattered just a few times and the multiple

scattering can be approximated by a single scattering with an attenuation of both

the incident wave and the scattered wave [3, Chapter 4].

Neither of these assumptions holds in the problem under study since it

involves tissue. Because tissue is a dense medium, the majority of propagating

photons will be scattered several times. We have a notion of the average

distance light travels before colliding with another particle in the medium, and for

dense media, there are many collisions between the incidence and exitance of

photons [4]. We enter the world of multiple scattering events and blurry images.

The inadequacy of the two simpler models motivates a more rigorous

investigation of photon propagation. The following paragraphs illustrate the

fundamental concepts of light transport theory and its mathematical transition to

the diffusion approximation, as presented by Ishimaru [3, Chapters 4, 7, and 9].

1.1 Diffusion Approximation

When a medium is appropriately dense, we can use the diffusion

approximation and are exempted from solving the complete transfer equation of

transport theory, Equation 1.2 below. In order to make this simplified

approximation and have it produce accurate results, photon transport within the

tissue must be dominated by scattering (a particle density issue), the medium

must be several scattering lengths across in order to allow for multiple collisions,
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the source must be at a distinct point in space and time, and the medium must

be infinite'. This last constraint can be bypassed for our purposes by assuming

that the source which is incident along the surface of a medium is actually a

point source, and it originates at least one scattering length within the surface

[10, 11].

Intensity refers to brightness or radiance of light. It may be measured

radiating outward from a point or inward toward one. Two components of

intensity are relevant here, and we begin with their definitions.

The reduced incident intensity is the component due to the original source

of photons. It decreases exponentially due to the optical parameters known as

scattering and absorption, and is governed by the following differential equation:

A

ds = -pat(r,s) , (1.1)

A

where r is the vector which defines the location of intensity and s is its direction

of propagation. If we define the space constant to be the distance over which

there is a decay in intensity by a factor of l/e, where e is the exponential

function, then we can further define the total cross section to be the inverse of

the space constant in Equation 1.1, where the space constant is 1/pat. The

total cross section, pa t , is the absorption coefficient per volume concentration

plus the scattering coefficient per concentration: at = aa + as, multiplied by the

volume density, p.

The diffuse intensity originates within the medium due to scattering. It is a

sort of equivalent source. In the process of deriving the diffusion approximation,

we will solve for the average diffuse intensity, from which we can substitute into a

related equation to solve for the diffuse flux.

The total intensity within a random medium is equal to the sum of the

reduced incident intensity (I) plus the diffuse intensity (Id). The total intensity

satisfies the following well-known transfer equation:

1 Scattering length will be defined in Section 1.2.
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A

dl(r,s) A A
ds patl(r,s) + 4 J4 p(s,s')l(r,s')do' + E(r,s). (1.2)

Since we define total intensity as the sum of reduced incident intensity plus

diffuse intensity, we can substitute this sum into Equation 1.2 to get the following

differential transfer equation of diffuse transfer:

A

dld(r,s) A ArA A

ds P 'ptld + 4 r4Jp( ss)ld(r,s')dw' + Ee(r,s) + E(r,s), (1.3)

where:

E (r, s) = f p( S )l (r,s')do' (1.4)

is referred to as the equivalent source function due to the reduced incident
A

intensity, E(r,s) is the original source function [3, Chapter 7], and we eliminate

equivalent components of reduced incident intensity according to Equation 1.1.

There is also a related boundary condition since diffuse intensity is generated

only within the medium: along a surface of solid angle, no diffuse intensity
A

enters the medium; for s pointing inward through the surface,

A

Id(r,s) = 0. (1.5)

We assume that the diffuse intensity is approximately equal to a sum of

the average diffuse intensity, which is radially symmetric, plus a fraction of the

diffuse power flux. This bias toward the diffuse power flux allows for net power

propagation in the forward direction; there would be no net propagation if the

diffuse intensity were constant over all directions.2 The following calculation

uses established relations to solve for the constant c, the approximate bias of

diffuse intensity in the direction of diffuse power flux.
A

The diffuse flux is the vector of net power flux in the direction sf:

2 Later we will introduce a separate constant which deals with the anisotropy of the scattering
events.
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A A A

Fd(r) = Fd(r)sf = Id(r,s)sd . (1.6)

The average diffuse intensity over the entire solid angle is defined as:

Ud(r) = . 4 Id(r,s)doo. (1.7)

As suggested, we assume that the diffuse intensity is a sum of the average

diffuse intensity, Ud(r), plus a fraction of the diffuse flux vector, Fd(r), giving the
A

diffuse intensity a bias along sf which is felt in its dot product with the direction
A

of intensity propagation, s, as we take its projection in that direction:

A A

Id(r,s) Ud(r) + cFd(r) s. (1.8)

We will express this equation in terms of the diffuse flux only, and thereby solve

for c. This is done by substituting the right hand side of Equation 1.8 into

Equation 1.6 to get:

Fd(r) = IUd(r)sdo + c (Fd(r).s)sdo). (1.9)

We then use the following integral relation: for any vector A,

4 s(s A)d3o - 4 . (1.10)

This relation helps us to integrate the second term on the right hand side of

Equation 1.9. The first term on the right hand side goes to zero since it is a

constant multiplied by sin(qp): (p is the angle between the direction of intensity,
A

s, and each point of integration on the sphere; and over all (p the integral of a

constant times sine is zero. This gives:

47Fd (r)Fd(r) = c 3(r

The result is that c = 3/4n, and the diffuse intensity is approximated as:

A 3 A

Id(r,s) Ud(r) + 4-Fd(r) s. (1.11)
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We will assume equality in this approximation for the rest of the derivation. It will

be used in an approximation to the diffuse transfer equation.

The diffuse transfer equation is next integrated over 4n, the entire solid

angle. This is a logical step considering Equation 1.7 and our motivation to

express the transfer equation solely in terms of the average diffuse intensity. To

do this we first take the gradient relation for Id(r,s):

A

dld(r,s) A A A A

ds =- s-gradld(r,s) = div[ld(r,s)s], (1.12)

and integrate the first and last terms above to get the first two terms of the next

line:

A

J dld(rs) 
LJr ds do)=iv4 ds sd] = divFd(r). (1.13)

The last term above is due to Equation 1.6 and it becomes the left hand side of

the integrated diffuse transfer equation, Equation 1.3. The right hand side is

assembled in the next few steps.

Using Equation 1.7, the first term is - 4 rpatUd. For the next term we use

the relation:
a s 1 AA

~at - 4= p(s, s')dc) (1.14)

with Equation 1.7 to get 4 P(saUd. The third term on the right is 4paU,, due to

Equations 1.4, 1.7, and 1.14 (but 1.7 for reduced incident intensity instead of

diffuse intensity). The last term is the power generated per unit volume per unit

frequency interval:
A

E(r) = (r,s)dw. (1.15)

Summing the terms which belong to the right hand side, the first two become one

term and the integrated diffuse transfer equation is:

divFd(r) = -4rpaaUd(r) + 4pasU + E(r). (1.16)

9
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We can substitute the approximate diffuse intensity given in Equation

1.11 into the differential diffuse transfer equation, Equation 1.3. Instead of the

derivative on the left hand side of Equation 1.3, we use the gradient term, the

second term in Equation 1.12, along with Equation 1.14 and Equation 1.18,

below, to get:

sgrad Ud + d(Fs) = -/U-p,oqFs + +UdE (1.17)

A ^

The integral of the phase function, p(s,s'), is the amount of net forward

scattering (the scattering can have a forward bias, just as the power flux did):

1 A AA

P = 44 p(ss)S.s'dw' . (1.18)

Now we multiply Equation 1.17 by s and integrate over the solid angle

do. The first and third terms on the right hand side go to zero because of the

multiplication by sin(p), as before. The second and fourth terms on the right

hand side combine into one. Use the following relation to get rid of the second

term on the left hand side: for any vector A,

4s(s. grad(As))d( = 0. (1.19)

Use Equation 1.10 to integrate the rest of the equation. The result is:

-3 grad Ud = - pt(1-p,)Fd +Je,(r,s)sdo + fc(r,s)sdo). (1.20)

Eliminate Fd(r) from Equation 1.20 by taking the divergence of the rest of

Equation 1.20, dividing through by the coefficient of Fd(r), and setting the

resultant expression for div(Fd(r)) equal to the right hand side of Equation 1.16.

We also use a few other substitutions. The transport cross section is the scaled

total cross section:

C(tr = ct(1-p) = 's(1-J) + aa, (1.21)
A A

and # = s s' is the anisotropy factor, the mean cosine of the scattering angle.

Biological tissue is highly forward scattering and /i is typically between 0.945
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and 0.985 for breast tissue [45, p. 1328]. If we use the transport cross section in

lieu of the total cross section, we can assume that the medium is isotropic in

scattering since this term compensates for the anisotropy. Another helpful

constant is:

Kd2 = 3P20a'tr (1.22)

The resultant equation is:

Vtd(r)- Kd(r) =3p2oU (r) 4 :-Ep(r)+ V. ssd4 + .'(rs)s d -(1.23)

The simplification of this equation which is relevant to our research

problem involves the assumption of a point source incident upon a slab of
A

particles. In this case the actual input source, E(r,s), is the original source

reduced over one scattering length and incident at one scattering length within

the boundary. We neglect the reduced incident intensity terms. The diffuse

transfer equation is then:

V2 (r) )- dUd(r) = -3patre(r,s). (1.24)

Equation 1.24 is the time-independent diffusion approximation in its most

familiar form. It is easily converted to a discrete matrix relation by using an

approximation to the discrete second spatial derivative. It also is translated to a

time-dependent diffusion equation by subtracting a time derivative of Ud(r) from

the term which is linear in Ud(r), on the left hand side of Equation 1.24 [25]. A

higher-order approximation, the diffusive wave approximation, can be

investigated elsewhere [12], but the validity of the diffusion approximation in the

range of coefficients which are characteristic of biological media has been

established using Monte Carlo methods [11].

1.2 Scattering Length
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A prominent measure in this study is the scattering length, the space

constant for the problem when we assume it is isotropic, and the inverse of the

transport cross section. This parameter is composed of the scattering and

absorption coefficients, and the average scattering angle. In tissue, the

coefficient of absorption is typically much less than the coefficient of scattering

for frequencies of light in the near infrared range [10].

Just as the heat flux in heat flow problems, in order for diffusion to occur,

particles (photons in our case) must travel beyond the distance in which

collisions, solely, dominate their motion. That assumes migration across a

distance of many scattering lengths. This photon behavior is governed by nearly

the same equation that is used for the kinetic theory of gases, Boltzmann's

equation or the Maxwell-Boltzmann collision equation. There is an added loss

term which may account for photons which fall out of the problem for our

purposes.

We can physically relate this problem to one based on the second-order

equations for heat flow if the absorbers within the tissue are seen as cold plates

inserted within the field of thermodynamic heat flow [14]. This is an analog of

the diffusion approximation since it relies on transport theory for its particle

relationships and since the diffusion approximation resembles the second-order

time-dependent differential equation of heat transfer:

V.KoVu - cp a = -Q.

With the loss term we have the time-dependent diffusion approximation [15].

The form of the equation above is therefore analogous to the lossless diffusion

equation, whereas we are concerned with the ossy diffusion equation [32].

1.3 Measurement models

Different measurement methods are being researched for this application

of optical tomography. We address the continuous wave model, in which the
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input signal is of constant intensity and the output is measured in terms of

steady state photon flux. In time-resolved measurements, the input is a short

pulse which simulates a delta function and the measured output is a time-

dependent photon flux. In a third type of measurement model, the photon fluxes

are time-gated at the output in order to count only the earliest arriving photons.

A fourth measurement model requires a periodic source function whose

measured output varies from the input wave in phase and amplitude, depending

on the internal structure of the medium. This last measurement model is related

to the time-dependent results by a Fourier transform.

The continuous-wave data is easy to simulate, but studies show that it

may be easier to resolve images at greater depth with higher-order data [25,

Section 9]. The idea of time-gated data suggests a more coherent passage from

source to detector, which might offer a clearer reconstruction of the model's

interior parameters. But these more coherent photons are difficult to measure

since they have the fastest arrival times at the output and require the use of

superfast imaging processes such as streak cameras. Also note that because of

their early arrival times and probable short propagation paths, these photons

have not traveled far enough through the medium to be considered in the

diffusion approximation.

13

... I,---- __ - _ -_-~11___1____^1_ 11_ __111111 _ 



2. Two-Dimensional Circuit Models for Diffusive Light Transfer

This chapter translates the light intensity input from Chapter 1 to a current

injection. The intensity measured at the output is now a voltage potential. The

medium between them is modeled as a resistive sheet. Although it is not

intuitive to model photons, which propagate in waves, as electrons within

circuitry, their diffuse behavior allows us to make the conceptual step to the

elliptic partial differential equation. This differential equation, derived in Chapter

1, is approximated well by the resistive sheet.

Our simplest model of the problem is this two-dimensional, rectangular

cross section of tissue. The discretized version of the resistive sheet models the

rectangular cross section and is shown in Figure 3.1. Throughout this research,

the edges of the grid are open-circuited; wrapping the 'top' edge around to the

'bottom' edge introduces additional, unwanted, symmetry into the problem.

There is a line of input current along one edge of the rectangle. Voltage decays

spatially across the sheet and a line of output potentials forms the opposite edge

of the rectangle.

2.1 Continuous Model

We begin to define the continuous version of the resistive circuit model by

describing its properties over one dimension, and then progressing to two

dimensions later in this section. Both treatments originate in the text by Mead

[17]. In the first treatment, We isolate a one-dimensional line of the two-

dimensional sheet, from one input node to one output node. The second

treatment takes the resistive line to the two-dimensional resistive sheet.

Consider the case when a potential V is applied at the left side of the

sheet, where x = 0. The resistance along a line approaching x = oo is equal to R

Ohms per unit length. The conductance to ground is G mho per unit length [17].

14
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The current at location x+dx is directed to the right; it is multiplied by the

resistance seen between x and x+dx (which is R times the length dx) and a

negative sign to specify that charge is traveling away from x to x+dx. The result

is the potential difference between x and x+dx:

-I(x+dx)Rdx = V(x+dx) - V(x).

Dividing both sides by dx gives:

V(x+ dx) - V(x) I(x+ dx)Rdx
dx dx

V attains a differential relationship as dx approaches 0, and we get:

dV -IR. (2.1)
dx

Differentiating Equation 2.1 once more with respect to x gives:

d 2v dl
dx2 dx- d

and after rearranging terms this becomes:

dl 1 d 2V (2.2).
dx R dx2

Similarly, the current to the right at location x+dx is equal to the current at

location x minus the loss of current to ground over dx, which is V(x)Gdx:

I(x+dx) = I(x) - V(x)Gdx.

As dx approaches zero and:

I(x+dx) - I(x) V(x)Gdx
dx dx

we have that:

dl
d - VG (2.4)dx

Setting Equations 2.2 and 2.4 equal gives:

d2V
= RGV.The known solution to this second order differential equation is:X2

The known solution to this second order differential equation is:
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V= Voe ' ,

where 1/a is the resistive space constant and

a = R,

the inverse of the resistive scattering length [17]. There would be an increasing

exponential term as well, but we know that the potential must converge toward a

nonnegative value with increasing distance along the resistive line, so we

include only the decreasing exponential term.

When we progress to two dimensions, the differential equation governing

the potential along the sheet is:

d2V 1 dV
dr2+ 2V = 0,dr2 r dr

where once again a, the inverse of the space constant, is ±+- G [17]. The

radial () dependency is neglected because we assume uniform optical

parameters for this two-dimensional continuous sheet of tissue material, so that

the propagation is radially symmetric. Now, R is the sheet resistance in Ohms

per square and G is the conductance to ground in mho per unit area [17].

The well-known modified Bessel function solution to this differential

equation on an infinite sheet of material is:

V = VOKO(ar).

The modified Bessel function can be approximated as:

K 0(ar) -In(ar), ar << 1 (2.5)

K 0(ar) - -e , ar >> 1 (2.6)

on a ring of radius r. If we assume that our resistive sheet is infinite, which is

approximately true if we are a few scattering lengths inside the surface, an

elegant formulation for the attenuation of potential can be derived, as shown

below. This attenuation result is a key conceptual ingredient in this research,

and we will be referring back to it as it becomes needed.

Assume we are in the region where the distance r between the node and

16
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a source or detector is much greater than a space constant, 1/a. Identify three

points on the resistive sheet, r r, and r 2 , where each r represents a different

set of coordinates (x,y). These are shown in Figure 2.1 below. Let r be a point

r 2

Figure 2.1: An Ellipse of Constant Influence

at which we inject a current source onto the resistive sheet. The point r 2 is a

location at which we are interested in measuring the change in potential due to

an increase in the conductance to ground at the point r . Using the fact that:

SV= R
- I-, (2.7)

along with the assumption that, when r is very small, we can differentiate

Equation 2.5 to get that the change in potential which we inject is:

17
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6V V0V- V (2.8)

Substituting Equation 2.7 into Equation 2.8 and solving for I, the 1o which will

induce the source term V, gives:

lopV°- 20

Driving with a current equal to Io at the source location r results in a potential

value at r which is approximately equal to the modified Bessel function

evaluated at ar = a 1r, - ro times the input potential Vo which is: VK(xalr1 -ro) ).

The final output potential measured at r2 can also be approximated by the

modified Bessel function. We assume that a 'source' VK(axlr1 -rol0 ) is incident

at r and decays to a potential which we measure at r2 . We can thus

represent the current output at r2 by a two-dimensional convolution [14, 20]:

(r2) = f 3G(r1 )Ko(alr2 -r 1)VOK (allr, - ro )dr. (2.9)

Using the approximation to the modified Bessel function in Equation 2.6, the

equation above can be rewritten as:

I(r2) = JJSG(r1 ) exp(-ar 2 - r 11)VO p(-ar -r)dr,
2aj: 2 rll jj 2aJ r 0- r)dr

assuming that we are far inside any boundaries, so that the assumption of an

infinite medium still holds, and ar >> 1. If the relative contributions of the terms

proportional to are assumed to be approximately the same for different sets

of r's, then we can isolate the dependence of the output current on the

exponential terms:

I(r2) I SG(r1)exp(-ar 2 - r1 )Voexp(-aI ll - ro )dr,

18
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which means that the potential will be proportional to the sum of the distances

lIrl -roll and 1k2 - rII:

V(r2) o JJSG(r,)Voexp[-a(l, 1 -ro l+lr2- rll)]dr. (2.10)

At each point, r, within the medium which we are isolating to analyze the extent

to which the measured potential at r2 depends on G(r ), there are ellipses

along a collection of r, 's which produce a sum, Ir -roll + Ir2 -rll, which is

equal everywhere along the ellipse, as in Figure 2.1 [14, 20, 48]. According to

Equation 2.10, those r 's have a constant influence on V(r2 ). We'll refer back

to the integral product in Equation 2.10 later in the text as the source of a

Jacobian of the output potentials with respect to the change in vertical

conductances at every node along the grid, and as a rationalization for near-

zero changes in the output potential due to perturbations along these ellipses of

constant influence.

2.2 Discrete Model

The discrete model consists of a grid of node voltages which are

connected by resistors between each node and its four nearest neighbors, and

by resistors from each node to ground. The discretization is necessary in order

to make computer modeling possible, and coarser discretizations are more

computationally optimal since they facilitate a more efficient usage of memory

and leave us with less unknown parameters for which to solve.3

The resistor values depend on the area of the grid belonging to each

node, and on the mean scattering angle and the absorption and scattering

coefficients. The spacing between nodes is the same in both directions, in order

to preserve isotropic behavior in the model. If we compare the electric potential

3 This is, of course, assuming that the discretization is fine enough to provide an adequate
quantity and localization of information.
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at a discrete node, u, with the average diffuse intensity, Ud(r), at the

corresponding value of r, then the homogeneous part of the time-independent

diffusion approximation is:

V2U,j_ K:d2UI = 0. (2.11)

Discretizing the Laplacian operator in Equation 2.11 and using the definition of

Kd2 from Chapter 1 along with the generalized definition: u, axp, Equation

2.11 has the finite difference formulation:

(4uij uj+ - Ui.,j - Ui,j+ 1 -Uj - U+,j)(2.12)

- 3P~tru, = 0. (2.12)

Expanding Equation 2.12 according to the definition of Patr, it becomes:

(4ui,j - ui,j1 - Ui,j+1 - u.1, - ui+l,j) 3 [(1 -) + ]ui = (2.13)
-3 ) 8[(1-P) +#a]uij = 0. (2.13)

Now, if we assume that = 0.95, the second term in Equation 2.13 becomes:

-3/ [05* + ]ui,. (2.14)

If we move the expression in brackets in Equation 2.13 into the

denominator of the first term of that equation, then the second term depends

only on absorption and not on scattering. We would like to model this 'loss term'

of the diffusion approximation with resistors to ground, since in both cases

particles (photons or electrons) are absorbed and lost from the model. The first

term of Equation 2.13 then looks a lot like a circuit's node equation, we would

like to attribute it solely to scattering. This first term, however, depends on both

scattering and absorption, due to the expression within brackets in Equation

2.14.

We can also move one of the d's from the denominator of the first term in
Equation 2.13 to the numerator of the second term, so that both terms have a
dependence upon the node spacing, d. We then have:

(4ui,j - Ui,j1 - ui,j+1 - ui.1,j - Ui+l, j) -3 du = 0. (2.15)
d(.05 = . (2.15)d(.05*/~ + ,) i 
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This operation is fairly arbitrary, but it leaves the coefficients of the u's

dimensionless. The resultant form can be compared with Kirchoff's current law

for the discrete resistive grid:

Gh( 4u,j - i,j- - Ui,j+1 - U1,j - Ui+1,j) + Gvui,j = ijj . (2.16)

The current, i, is zero at all grid nodes which are not along the input. The

conductance Gh at a particular node is that due to resistors located 'horizontally'

(in the plane of the node and its neighbors) adjacent to node [i,j] (the 'scattering'

resistors), and Gv is the conductance due to resistors between each node and

ground (the 'absorption' resistors), which take on a 'vertical' spatial relationship

orthogonal to the plane of the node and its neighbors. As addressed in the

preceding paragraph, these correspondences (of scattering to Gh and

absorption to Gv) are not preserved when we solve for the Gh and Gv which

make the coefficients in Equation 2.15 agree with those in Equation 2.16.

2.3 Validity of the Model

Simulations which are described in this section compare the experimental

results of an undergraduate researcher, Jooyoun Park, with the results of our

simulated model of the problem, based on the relationship between optical

parameters and resistor values which is described above [7]. Jooyoun's

experiments use a tank which is filled with 3-4% Intralipid-100/oTM solution. The

approximate scattering and absorption coefficients have been found

experimentally for a 0.1% concentration of Intralipid-10%TM solution at a

wavelength of 633 nm [43]. We used a linear interpolation to project the

scattering and absorption coefficients from what they would be at the lower

concentration to their values at the concentration she used in her experiments,

since the literature indicates that the coefficients scale linearly with

concentration [43].
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We assume that there is a 3.5% concentration of Intralipid-10%TM solution

(which means that the values for the 0.1% concentration will have to be scaled

by a factor of thirty-five), and that the coefficients based on this wavelength will

resemble Jooyoun's DC experiments. The parameters for both concentrations

are given in Table 2.1, below. Values with a '=' symbol next to them are ones

which we calculated.

Concentration of Scattering Absorption Transport Cross Anisotropy
Intralipid-1 0%M Coefficient(mm 1) Coefficient(mm'l) Section(mm ) Constant

0.1% 38.6±4 x 10 3 5.71.5 .011251 0.710.03

3.5% =1.351 2.0 =x 0- 0.392 0.71+0.03

Table 2.1: Optical Parameters for two concentrations of Intralipid-1 0%TM

To model the absorbers, Jooyoun uses glass rods which are 4mm in

exterior diameter and 2mm in interior diameter. The rods are filled with methyl

green dye. My simulations model the glass part of the rod with the same optical

parameters as for the Intralipid-10%TM. This is an approximation, but modeling

the entire rod as an absorber would truly simulate an absorber of four times the

actual area of absorbing material [49].

The absorption of the dye is unknown, but an estimate of 1000 mm-'

gives results which are fairly consistent with the experimental results. Increasing

the absorption coefficient from this value has a negligible effect on the measured

output potential: the corresponding conductance is so high that it is nearly a

perfect short to ground. This figure is much higher than we would expect of

cancerous tissue, but we also expect to be able to use biologically safe markers

which attach themselves to cancerous tissue and have a highly absorbing effect.

The scattering coefficient of the green dye is assumed to be the same as

that of the Intralipid-10/%TM solution, and the detected output potential is only

altered by a negligible amount when this scattering coefficient is further

increased in the computer simulation. We did not experiment with decreasing it.

The physical details of the experiments are described in the next few
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paragraphs. We compare a slice of Jooyun's three-dimensional solutions with

our two-dimensional resistive grid. A more precise description of the computer

model is found in Chapter 3.

The experiments described below are all performed within a Plexiglas

tank which is either one or two inches deep, twelve inches wide, and three

inches high, and is filled with the Intralipid-10%TM solution. Each experiment

addresses different configurations of two 'absorbers' which are also in the tank,

and which distinguish themselves from experiment to experiment by being

separated by different distances or by varying in their distance from the detector.

Their separation is always symmetric about the center of the tank, and the two

absorbers are always at equal distances from the detector. A two-dimensional

picture, as if taken from above the tank, of a generic configuration is shown in

Figure 2.2.

4 Detector edge

T
d
e
P
t
h

I
4 Input edge, 12"

Figure 2.2: Arial view of a Plexiglas tank filled with Intralipid-10%TM solution and
two glass rods filled with absorbing green dye.

Rods filled with absorbing green dye are inserted in four distinct

experimental configurations in Jooyoun's study, and are illuminated with a .5

mW He laser light source along the edge in Figure 2.2 which is marked 'Input

edge'. The output potential is measured with a photodiode amplifier along the

'Detector edge'.
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Measurement noise should be due mostly to quantization, and our

simulation therefore includes 8-bit quantization noise, to correspond to the

equipment which was used in these experiments, assuming that the gain was set

to optimally detect over the varying dynamic ranges at the output [35]. This can

be done with knowledge of the expected nominal output potential - the

measured output potential without any added absorption.

The first two experiments are performed on a tank which is one inch thick ,

and filled with Intralipid-10%TM solution. Figure 2.3 shows the result of a

simulation of two absorbers separated by 2 cm, and which are 1.2 cm from the

detector edge. The experimental result, indicated by plusses, consisted of two

dips in percent change in magnitude which were approximately 2 cm apart and

at fifty-six and fifty-eight percent difference.4 The relative peak between the dips

was at thirty-eight percent difference in magnitude. The experimental results are

closely approximated by the computer simulation, which is shown by the solid

line.

Figure 2.4 is the experimental result of two absorbers which are 3 cm

apart and 2 cm from the detector edge. Experiments produced two dips which

are approximately 3 cm apart. The absorbers create dips in percent differences

at sixty-eight and sixty-five percent, with a relative peak between them at about

zero percent difference. Again, with the same symbolic plotting conventions, the

computer simulation result is very similar.

The next two experiments are performed on a slab which is two inches

deep. Figure 2.5 is a measurement taken from two absorbers which are 2 cm

apart and 1.5 cm from the detector edge. Experiments produced one wide dip at

fifty-eight percent difference in magnitude. The simulation even duplicates this

single dip! Figure 2.6 is an output measurement resulting from two absorbers

which are 3 cm apart and 1.5 cm from the detector side. Experiments produced

two dips at a distance of 3 cm apart, with dips in percent differences at forty-

4 The experimental results were described as having dips which had the same separation as the
absorber locations, so we assume that they coincide with the actual absorber locations, and only
plot one marker representing experimental results.
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Figure 2.3: Two absorbers placed 2 cm apart and 1.2 cm away from the detector
edge: computer simulation result (_) and experimental peak and dip locations
(+); output potential due to nominal absorption (a), output potential with
perturbation in absorption (b), and percent change in magnitude from the
nominal to the perturbed case (c).
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Figure 2.4: Two absorbers placed 3 cm apart and 2.0 cm away from the detector
edge: computer simulation result (_) and experimental peak and dip locations
(+); output potential due to nominal absorption (a), output potential with
perturbation in absorption (b), and percent change in magnitude from the
nominal to the perturbed case (c).
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Figure 2.5: Two absorbers placed 2 cm apart and 1.5 cm away from the detector
edge: computer simulation result (_) and experimental peak and dip locations
(+); output potential due to nominal absorption (a), output potential with
perturbation in absorption (b), and percent change in magnitude from the
nominal to the perturbed case (c).
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edge: computer simulation result (_) and experimental peak and dip locations
(+); output potential due to nominal absorption (a), output potential with
perturbation in absorption (b), and percent change in magnitude from the
nominal to the perturbed case (c).
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seven and forty-nine percent and a relative maximum peak between them at

about thirty percent. Again, the simulation duplicated the experimental results

well.

One problem with these simulations is that the outputs are not as strongly

attenuated as we would expect, according to the number of scattering lengths

which are traversed in the two depths of simulated tissue [20].

We would expect the nominal output potentials in the center of the width

of the simulated tank to differ for the two different tank depths by

e(numberf space constants in one inch) Since the transport cross section for the Intralipid-

10%TM is 0.392 mm- ' , the scattering length is about 2.5 mm, and there are about

ten scattering lengths in an inch. Then, the difference between the two

measurements should be by a factor of e ' ° or about 1/22,000. Instead, there is

only a factor of five difference between the two nominal output potentials. The

model does not decay exponentially with a space constant equal to the inverse

of the transport cross section.

We attribute this problem to the fact that the absorption of Intralipid-1 0%TM

is negligible [43, p. 2293]. We tried the same simulations with parameters which

correspond to breast tissue, and this case involves an absorption coefficient

which is high enough to produce nearly the expected attenuation. With these

values, the transport cross section is 0.2578 mm ' , and the scattering length is

about 4 mm, and so there are about 6.55 scattering lengths in an inch. The

attenuation should be about e 55, or about 1/700. The results of this

investigative simulation are shown in Figures 2.7, 2.8, 2.9, and 2.10. Their

experimental configurations correspond to those of Figures 2.3, 2.4, 2.5, and

2.6, respectively. The nominal output potential in the middle of the 1" tank is

about 2.39e-4 Volts, and in the middle of the 2" tank it is about 4.23e-7 Volts.

The difference between the two is a factor of 565. This is much closer to 700

than five is to 22,000. When the absorption coefficient is nearly zero (as in the

case of the simulations which model Intralipid-10%TM), the conductances to

ground are also nearly zero. We expect that this is the reason for the low
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Figure 2.7: Two absorbers placed 2 cm apart and 1.2 cm away from the detector
edge: computer simulation result (_) and experimental peak and dip locations
(+); output potential due to nominal absorption (a), output potential with
perturbation in absorption (b), and percent change in magnitude from the
nominal to the perturbed case (c). Parameters correspond to breast tissue.
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Figure 2.8: Two absorbers placed 3 cm apart and 2.0 cm away from the detector
edge: computer simulation result (_) and experimental peak and dip locations
(+); output potential due to nominal absorption (a), output potential with
perturbation in absorption (b), and percent change in magnitude from the
nominal to the perturbed case (c). Parameters correspond to breast tissue.
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Figure 2.9: Two absorbers placed 2 cm apart and 1.5 cm away from the detector
edge: computer simulation result (_) and experimental peak and dip locations
(+); output potential due to nominal absorption (a), output potential with
perturbation in absorption (b), and percent change in magnitude from the
nominal to the perturbed case (c). Parameters correspond to breast tissue.
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Figure 2.10: Two absorbers placed 3 cm apart and 1.5 cm away from the
detector edge: computer simulation result (_) and experimental peak and dip
locations (+); output potential due to nominal absorption (a), output potential with
perturbation in absorption (b), and percent change in magnitude from the
nominal to the perturbed case (c). Parameters correspond to breast tissue.
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attenuation in the first set of simulations.

This series of experiments gives a good amount of initial confidence in

this resistive grid model of the diffusion approximation. The experimental data

was only communicated by means of peaks and dips in magnitude, so that a

very precise comparison is not possible.
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3. The Discretized Forward and Inverse Problems in Two Dimensions

First let us get a solid picture of the discrete network topology which was

introduced informally in Section 2.2. The result is a simple, two-dimensional

resistive grid upon which the problem can be generally defined. Recall that the

model consists of a two-dimensional lattice of nodes which are connected by

resistors, and each node is connected to ground through an additional resistor.

A slightly more comprehensive model would extend this grid into three

dimensions, and may move into the time-dependent regime.

If we let H be the number of nodes in the height of the two-dimensional

grid, and let W be the number of nodes in the width of the grid, then we can

implement a node-numbering sequence as depicted in Figure 3.1 below.

WHI +

*|* v *+

Figure 3.1: Resistive Grid

We will refer to nodes 1 through H as the input nodes, those on the left

edge of the grid, and to nodes (W-1)*H+1 through W*H as the output nodes,

which are located on the right edge of the grid. The light input which is incident
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upon the left side of the grid is modeled as current; the nodes on the right side of

the grid are analogous to the light output intensities which we would measure

experimentally, and in the simulation we compute the voltage potential at those

locations.

3.1 General Mathematical Formulation of the Forward Problem

We consider the conductance matrix, G, to be a sum, G = Gh + Gv, the

conductance due to the horizontal resistors (those between neighboring nodes)

plus the conductance due to the vertical resistors (those from each node to

ground). We have a good understanding of what G is for normal, healthy tissue,

and we refer to this general case as Gnom, the nominal conductance matrix. It is

related to the potential, v, and the current, i, by the following equation:

Gv= i. (3.1)
In cancerous tissue, we say that there is a non-negatively-valued

perturbation, G, from the nominal conductance matrix, so that we now have a

conductance matrix which is equal to:

G = Gnom +6G.

We can define a forward problem which consists of determining a vector vnom of

node voltages, given the conductance matrix, G nom, and the current input to

each node, i, such that:

G mvnom = i, (3.2)

or, with the perturbation, such that:

(Gnom+ SG)(Vnom+ v) = i. (3.3)

In the experimental forward problem, we are unable to measure the

potential on the interior of the model. In the simulated forward problem, we may

determine all of v computationally, for arbitrary geometries. Also, in the

experimental forward problem, we may only inject current along the boundary;
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and specifically, only on regions of the boundary which are considered part of

the input. The current everywhere else is equal to zero.

In our numbering scheme, this means that we can only measure the

output potentials at the last H nodes, and that we can only inject current at the

first H nodes. Since we can only measure output potentials from node [(W-

1)*H+1] to node [W*H], we have only H measurements and thus H equations for

each single-node current injection experiment. If we could measure all of the

potential values along the grid, we would have W*H equations for each single-

node current injection experiment. Since there are H injection nodes, we have

H 2 equations overall.

What kind of a matrix are we dealing with here? Because G is the

conductance matrix in a resistive circuit equation, it exhibits reciprocity and is

therefore symmetric.5 Another result of its being the conductance matrix in a

resistive circuit equation is that G is an M-matrix. 6 As long as there is a nonzero

conductance to ground at every node, G is strictly diagonally dominant;

otherwise, it is weakly diagonally dominant. G has a sparse, Toeplitz-like

structure due to the second spatial derivative in the corresponding diffusion

equation: grid neighbors which are symmetric about a node, and adjacent to it,

are represented at equal distances to the right and left of an element on the

main diagonal in G. The physical cause of this banded structure is the isotropic

scattering.

As an example of the numerical structure of the conductance matrix,

consider a single node, k, of a resistive grid, such as one of the nodes in Figure

3.1. Isotropic scattering dictates that photons propagate radially outward from

their point of incidence, which we take to be grid node k. The four nearest

5 If we have any two unique electrical events on the grid and the corresponding current and
potential vectors for each, reciprocity implies that the inner product of one current vector and the
other potential vector is equal to the inner product of the remaining two vectors. The network is
reciprocal since it is constructed from linear 2-terminal resistors, and reciprocity implies
symmetry of the conductance matrix [22, pp. 102-103].

By definition, G then has non-positive off-diagonal entries, and its inverse is nonnegative.
Because we know that it is symmetric, the fact that it is an M-matrix also implies that it is positive
definite, and all the entries in its inverse are positive [29, pp. 44, 93].
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neighbors are at nodes k-1, k+1, k-H, and k+H. For each k, the node

relationships between node k and these neighboring locations are represented

in the conductance matrix by entries one band to the right and left of the main

diagonal, and H bands to the right and left of the main diagonal. For a grid like

the one in Figure 3.1 which is four nodes tall and three nodes wide, if each

resistor has a resistance of 1 Ohm, then a sample conductance matrix (in mho)

is:

3 -1 0 0 -1 0 0
-1 4 -1 0 0 -1 0
0 -1 4 -1 0 0 -1

0 0 -1 3 0 0 0

-1 0 0 0 4 -1 0

0 -1 0 0 -1 5 -1

0 0 -1 0 0 -1 5

0 0 0 -1 0 0 -1

O O O O -1 0 0

O O O O O -1 0

0 0 0 0 0 0 -1

O 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

-1 0 0 0 0

0 -1 0 0 0

0 0 -1 0 0

-1 0 0 -1 0

4 0 0 0 -1

0 3 -1 0 0
0 -1 4 -1 0

0 0 -1 4 -1

-1 0 0 -1 3

The matrix is nearly Toeplitz along its off-diagonals, but there are notches

(zeros instead of nonzero values) at some locations in the band which is one

diagonal away from the main diagonal. This results from the spatial

discontinuities at the top and bottom edges of the grid, where numerically-

sequential nodes (as they are indexed in Figure 3.1) are not neighbors, as a

single-valued band in G would have to imply.

3.2 General Mathematical Formulation of the Nonlinear Inverse Problem

We have defined a generalized forward problem; we can similarly define

an inverse problem in which we would like to find the perturbation 6G for which a

set of measured output vectors (vdom+ SVd) (the subscript 'm' represents the(nompm ' {
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nodes which we are able to measure, and the superscript 'd' represents the

nodes at which we can drive with current) agree most closely with their

corresponding entries in the computed set of vector expressions:

[Gnom + G;]1 i.

This expression comes from rearranging terms to isolate (v+ Sv) in Equation 3.2.

The inverse problem is a nonlinear one because the matrix inverse is a

nonlinear expression in Gom + (G.

3.3 The Forward Problem Specific to this Research

This research effort focuses on the two-dimensional slice of resistive grid

elements which is H nodes high and W nodes wide, as in Figure 3.1. We further

simplify the problem by assuming that only the vertical conductances, those we

attribute to the absorption coefficient, are perturbed in the conductance matrix

for cancerous tissue, where G = Gnom+ G.7 The elements of G are solely

along the diagonal of G, so that we may write the perturbed conductance matrix

G as:

G = [Gnom+ diag(x)], (3.4)

where x is the vector of perturbations in conductance for which we would like to

solve, and the 'diag' function maps a vector into a diagonal matrix. We define:

R(x) = G-'(x). (3.5)

The forward problem is then defined by solving for v due to each of the many

current vectors, i, such that:

v = R(x) i. (3.6)

7 This assumption does not agree with the derivation in Chapter 1, but we will assume for now
that it is a close approximation to the actual perturbation.
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3.4 The Nonlinear Inverse Problem Specific to this Research

In this research problem, we are more directly concerned with the inverse

problem of finding G given many potential vectors, v, which are the results of

many different current injections, i. To measure the agreement between the

output potentials which we can measure and the corresponding potentials

calculated from our guess at the perturbation in conductance, we use the

squared Euclidean norm, which in this case is:
H HW 2

¢(x)= = ; A [(R(x)i)d Veas] (3-7)
d = 1 m= H(W-1)+1

The purpose of the inverse problem is to find the global minimum of this squared

norm. This is difficult to do, because it is a nonlinear function. My approach at

the inverse problem consists of finding a local stationary point of (x) which may

or may not be its global minimum.

Note that the first term in the brackets of Equation 3.7 is actually the

bottom left HxH block of the inverse of the conductance matrix. R(x) is the entire

inverse of G, but the subscripts 'd' and 'm' pick out its first H columns and last H

rows, respectively. Being able to inject current only at the first H nodes means

that only the first H entries of i can ever be nonzero, so only the first H columns

of R(x) will be preserved in the product. Also, the subscript 'm' implies that we

are only considering the nodes along the output in v, so we neglect all but the

last H rows of R(x)id. And thus, we are left with the bottom HxH block of R(x) in

Equation 3.7.

The forward problem is known to be very insensitive since a large

perturbation in absorption will result in a very small change in measured output

potential. Therefore, when we observe a very small change in output potential

(such as that due to measurement noise), we tend to expect that it was caused

by a large perturbation in absorption. The inverse problem is therefore

challenging and misleading and is referred to as being highly sensitive due to

the insensitive forward problem.

40



The forward problem is also complicated because the G matrix, although

nonsingular, is computationally prohibitive to invert due to its large size. Even if

we could easily invert G, the amount of information we can learn about the

problem due to a single current injection and the corresponding set of output

potentials is very low.

We approach the solution to the inverse problem by assembling a set of

equations due to many injection sites and their corresponding output potentials,

in an effort to compensate for both the lack of information in solving the forward

problem for the result of a single current injection system and the sensitivity to

measurement noise. We hope that taking many measurements will make it more

clear what is noise and what is a perturbation-induced change in output

potential.

It has been suggested that increasing the number of injection sites, and

therefore different i's for which we solve the forward problem, may make the

inverse problem more well-determined in the continuous regime; in the discrete

context of this problem, we can analogously expect an improvement in the

conditioning of the problem [24, 41].8

8 A continuous partial differential equation may be characterized as 'well-determined', but in our
discrete version of the problem, this characteristic depends on the fineness of the discretization
and can be measured with the condition number of the problem [41]. What happens is that each
entry of the solution to a linear equation is proportional to the inverse of its corresponding
singular value [44, p. 55]. As the grid spacing becomes finer and therefore the number of
unknowns becomes very large, the number of singular values exceeds the number of
independent equationsin the problem so that some of the singular values go to zero, so that
thecorresponding solutions blow up [44, p. 55]. The condition number is the ratio of largest to
smallest singular values, so that when the smallest singular value is near zero, the condition
number will be very large and we then say that the linear operator is ill-conditioned [8, Section
2.7.2].
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It should be much easier to solve the forward problem several times than

to invert the conductance matrix in solving the nonlinear problem. We therefore

look for ways to use the forward problem to solve the inverse problem, such as

by using a modified version of Newton's Method with a quadratic cost function, a

variation on a suggestion of Dr. Arridge. This topic and related issues will be

discussed with references in Chapter 5.
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4. Linear Formulation of the Inverse Problem

A popular approach to simplifying the nonlinear inverse problem involves

linearizing about the nominal conductance, Gnom, so that a system of equations

can be analyzed in terms of a perturbation of the conductance from the nominal

values [24]. As stated in Section 3.3, we assume that only the vertical

conductances, those along the diagonal of G, are perturbed.

We have defined vd as the solution to the forward problem when i is zero

for all entries except the dth, which is equal to 1 Ampere. Similarly, em is

defined as the solution to the forward problem when i is zero for all entries

except the ((W-1)*H + m) ,h one of the nodes along the output, which is also

equal to 1 Ampere. Given the forward problem, if we perturb G by SG such that:

(G + G)(v d +8vd) = i d ,

resulting in:

GVd + GV + GVd +G + GVd = id (4.1)

we can subtract the equality GVd = id from this product. We can further

subtract the nonlinear term 868vd, because the perturbation SG (and therefore

the change in output potential it induces, Svd) are small enough when compared

with the other terms in the equation that their second-order product is practically

negligible. These subtractions reduce the expression to:

GSVd + GVd = 0. (4.2)

How can we solve for SG ? We know all of G, the nominal conductance matrix,

and all of vd, the response to the nominal G when the circuit is injected with 1

Ampere of current at node d. The fact that we can only measure the last H

values of Svd suggests that we should eliminate the unknowns from the system

in Equation 4.2 [20]. In the paragraphs below we do just that, and the result is a

linear expression for SG which relies on the Jacobian matrix.
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We first begin by separating the components of the first term in Equation

4.2 into two parts. Let Ginteror be the first (W-1)*H columns of G (corresponding

to the input nodes and interior nodes of the resistive grid model), while G eas is

the last H columns of G (corresponding to the output nodes). Similarly, let

Vdnt be the first (W-1)*H entries of 8vd and let vdmeas be the last H entries.

The new form of Equation 4.2 is then:
G V d + G mVd + GVd =0. (4.3)

interior interior meas meas

To follow the suggestion from the paragraph above and eliminate unknowns

from Equation 4.3, we multiply the entire system by em T , which is defined at the

beginning of Chapter 4. This gives:

emT (Ginterr iV tenor + Gmeas 8Veas+ SG V d) 0. (4.4)

Now, em is orthogonal to all rows of G (and therefore all of the columns,

since G is symmetric), except for the ((W-1)*H+m) a, since Gem = i m where all of

i is zero except for the ((W-1)*H+m) element.9 This eliminates the first term in

Equation 4.4 due to the definition of Ginteror. This also reduces the second term

in Equation 4.4 to 1 Ampere times 6vdeas, the change in measured output

potential which is observed at node ((W-1)*H+m) due to a current injection at

node d. Because SG is a diagonal matrix, with appropriate multiplying of terms,

we can use its vector definition, x, from Section 3.3, and rearrange what remains

of Equation 4.4 to:

(em.*Vd)T X =8 - V s, m < H and 1 < d < H. (4.5)

The '.*' represents term-by-term multiplication, so that the '.*' product of two

vectors remains a vector. Assembling this equation for all m's and all d's will

result in the coefficient of x being equal to the Jacobian of the output potentials
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with respect to the vertical conductances.'0 This constitutes our linearization of

the nonlinear inverse problem.

We are able to solve for x in Equation 4.5 in a region where the linear

approximation is appropriate. In order to avoid overshooting the solution, this

may require a scaling of the linear result before considering it to be an update to

the previous guess at the nonlinear solution. For example, we can calculate an

initial guess, x, and scale it by half until it shows an improvement from the result

of the last iteration. This procedure is discussed in more detail in Sections 5.2

and 5.3.

4.1 Limitations of the Linear Formulation

The most obvious problem with linearization is the loss of valuable

information due to the removal of the second-order term. From the part of the

equation which states:

Gv d + 8Gvd + G6vd = 0

in the forward problem, we have linearized to arrive at Equation 4.5. This

equation neglects the SGvd term, which is small compared with the other terms

in the problem. The change in conductance, SG, is a positive one since a tumor

has a higher absorption than normal tissue. The resultant higher conductance

decreases the output potential by bringing more current down to ground on the

interior of the tissue model, and leaving less to be measured at the output, so

that Svd is negative for nonzero SG. A linear approximation to this nonlinear

problem predicts a decreasing measured output potential with increasing SG.

The decrease in output potential extends through zero into negative potentials,

which is physically impossible. The exact model of changing output potential

10 The [i,j] entry of the Jacobian matrix of the vector function, g, at a point x, where g:

9 N 9 M, is defined as: [J(g(X))],, =- (X), 1<i<M and 1<j<N.
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with respect to increasing G asymptotically approaches some non-negative

value, and is made more positive and less linear by the S6Gv d term.

We can verify this asymptotic behavior by taking the derivative twice with

respect to G, in a matrix-vector version of the circuit equation [20]. The first

derivative of Equation 3.1 is:

(Gv - i) = v+G g- = 0,
8gk kk kk

where gk,k is the kth entry of G. Rearranging terms, and using the fact that:

0t = ,k6j,k 

the result is:

0k~c =0.Vk + G ~ -o.

The derivative of v with respect to gk,k is then:

where R is the inverse of G. This derivative is entirely non-positive since

voltage potentials must always be positive or zero, and every entry of R is non-

negative, by definition, since G is an M-matrix [29, p. 93]."

The second derivative of the circuit equations is:

ftkJ + 6 +G =.

Rearranging terms we get:

11 In addition, this definition implies that G is nonsingular, square, and that each off-diagonal
element is negative or zero [20].
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S2v R V( ° 

v =-R- (oR~, ) (4.6)

where the notation R., represents all the entries in column k of the R matrix.

Because there are entirely negative terms (the -R's) multiplying the first

derivatives in the right hand side of Equation 4.6 and because the first derivative

is entirely negative or zero, this second derivative of v with respect to G is non-

negative. This analysis demonstrates that, although v decreases with increasing

G (the first derivative of v with respect to G is negative), it is not linear since the

rate of change of v with respect to gk,k is increasing (the second derivative of v

with respect to G is non-negative and the potentials therefore approach either a

minimum or a saddle point). Since we know the potential has to be non-

negative, and because of this increasing rate of change indicated by the second

derivative, we know that v must asymptotically approach zero or some positive

value as the gk,k's approach infinity. A linear approximation overlooks this

asymptotic behavior, but is a good first-order estimate along small sections of

the nonlinear cost function, ¢(x), in Equation 3.7.

Another problem with the linear approximation is that some changes in

output potential are so small that they go unnoticed. Furthermore, perturbations

from the nominal conductance may produce a change in potential which is

exactly equal to zero if SG is in the nullspace of (em.*vd)T. This may allow small

errors to grow in an iterative, incrementally linear, guess at the solution. We

discuss this circumstance further below.

To demonstrate the case where a change in conductance might not

produce a change in the output potential, consider again the elliptical source

and detector dependence (recall Figure 2.1 and Equation 2.10). If a collection of

grid locations each have the same [distance to source plus distance to detector],

they will have an equal influence on the output potential they induce. Therefore,

if we have a set of perturbations in conductance along one of these ellipses, and
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the accumulated perturbation along the ellipse is equal to zero, then together

they have a zero contribution to the overall output potential. We hypothesize

that perturbations in conductance along ellipses of constant influence which

together sum to zero will yield a change in output potential which is very close to

zero, so that these perturbations are very close to being in the nullspace of the

Jacobian. This should be the case with a perturbation in absorption which is

symmetric across the width of the grid, as in Figure 4.1 (a). Its induced output

intensity is on the order of 10-18, as in Figure 4.1 (d), whereas the output

intensity due to the perturbations in absorption which are not symmetric about

the center of the width of the grid, as in Figure 4.1 (b) and (c), produce output

intensities on the order of 10' 3 , as in Figures 4.1 (e) and (f).

There are limitations involved with the linear formulation of the problem,

but it is generally helpful in stepping toward a possible solution to the nonlinear

problem. This is especially true since Equation 4.5 contains the Jacobian of the

output potentials with respect to the conductance to ground at each node. This

Jacobian is much easier than the analytical one to compute.

4.2 Rank Deficiency and Least Squares

In Section 3.4 we introduce the idea of bringing more information to the

problem by assembling many more equations than there are unknowns. This

type of formulation historically suggests a solution based on the least squares

minimization of some cost function. In our case, the cost function is 4D(x).

Because this is a nonlinear least squares problem, we attempt to solve it

iteratively, solving a linear least squares problem at each iteration. Starting with

the initial guess that x = 0 (corresponding to the nominal conductance), our

solution algorithm steps linearly in x toward a stationary point of .D(x). The

algorithm is developed in more detail in Section 5.2.
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Even though we assemble many more equations than there are unknowns

to provide more information about the problem, the fineness of the discretization

may cause many of the equations to be nearly dependent. This was mentioned

in Section 3.4, and is referred to as 'rank deficiency.' Having fewer independent

equations than unknowns is a tractability problem which is reflected in the

condition number. When a matrix is singular (at least one of its columns is not

independent of the others), it is assigned a condition number near infinity. An

orthogonal matrix has a condition number equal to one.

4.3 Sensitivity Analysis

The Jacobian which was introduced as a result of Equation 4.5 describes

the sensitivity of the resistive sheet to small perturbations in conductance. In

this study, we are interested in the variation in sensitivity due to an increased

number of current injection sites, within a constant grid discretization. Sensitivity

can be measured with the condition number.

We perform simulations which are designed to demonstrate an

improvement in the conditioning, and hence the sensitivity, of the problem as

more injection sites are added. The motivation for this increase in the number of

injection sites is developed in Section 3.4. Similar experiments have also been

conducted by Dr. Arridge. He examines the singular value decomposition of a

Jacobian matrix (derived from a perturbation approach, as ours is) for different

depths of tissue [24, Section 7]. In this research, we are concerned with a matrix

A, which we define to be the Jacobian of R(x)i with respect to the conductance

to ground at each node, for the nominal conductance matrix, with no noise. The

condition number can be found only for square matrices, so our computer

simulations demonstrate an improvement in the condition number of AT A from

2.2x10 13 to 2.0x10 10 to 4.6x10 9 when the spacing between the injection

currents is decreased from every three input nodes to every two nodes to every
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node. Thus, we expect an improvement in condition number with a decrease in
the current injection spacing, although it is likely to approach some value
asymptotically [20].
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5. Signal Processing and Numerical Algorithms

In Section 4.2 we suggest circumventing a difficult matrix inversion, in

solving the nonlinear inverse problem of finding a stationary point of (I(x), by

implementing a linear, iterative method. In this approach, each new update to

the solution is computed by solving a linear least squares problem. This linear

problem is constructed as a result of a perturbed version of the nonlinear

problem and an assembly of all the possible combinations of linear equations we

can bring together, according to the number of injection and measurement sites

in the model.

This can be loosely referred to as signal processing due to the relevant

issue of spatial sampling. This chapter describes an additional signal

processing issue -- that of regularization, which addresses the rank deficiency

problem -- along with specific details about the numerical algorithm we use to

solve the nonlinear inverse problem iteratively.

The following sections begin with a description of the current progress of

comparable research in reconstruction methods, first in the work of Dr. Simon

Arridge of University College London, and then in our own study. In Section 5.2,

we discuss an approach which we implement using the Gauss-Newton method.

In Section 5.1 we discuss popular regularization methods used by Dr. Arridge,

and, in Section 5.3, the leverage that regularization gives to both researchers in

improving the conditioning of our respective, similar, iterative methods. This

form of intelligent signal processing is expected to help a great deal in terms of

extracting useful information from experimental measurements.

Some other possible approaches to the reconstruction are also

discussed. These include a solution derived through an explicit formulation for

the inverse of the conductance matrix, in Section 5.4, and a possible

implementation of the popular GMRES algorithm to speed up each iteration of

the linearized inverse problem, in Section 5.2.2. The chapter ends with an

explicit comparison between the tolerable amount of noise predicted by this
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study, along with a required photon count predicted by Dr. Arridge for adequate

reconstruction.

5.1 Related Research

One of the earlier motivations behind Dr. Arridge's work is to validate the

use of the diffusion approximation as a model for light transport and noise in this

problem by comparing its results with those of the Monte Carlo method [13, 26,

34, 37].12 This discrete stochastic formulation produces a probabilistic spatial

allocation of photons at every iteration within a discretized medium, based on

their initial distribution which is incident upon the medium. The stochastic model

is based on the scattering and absorption coefficients and a random but forward-

biased scattering angle.

The actual discrete process is a random walk: at each point, it defines

the next scattering or absorption event for each photon in the model; the

direction of those photons which are scattered and stay in the game (as opposed

to being absorbed and gone forever from the model) is projected onto their next

evaluation of the renewal process [37, Section 3.1]. The diffusion approximation

does not follow individual photon histories as this intricate stochastic model does

[24]. Arridge's results which are based on the finite element method and the

diffusion approximation are shown to agree with the analytical formulation of the

photon distribution in the limit of high mesh resolution [26].

Although the Monte Carlo method offers an excellent model for the actual

scattering and absorption events, it is computationally unfeasible to use it in

real-time applications [24, Section 3.1]. In addition, it can be applied only to an

integrated intensity measurement model, due to the fact that it is concerned with

counting photons.

12 Dr. Arridge used a finite element method for solving this problem, with additive noise which
was also predicted according to the diffusion approximation [37, Section 5.1].
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Arridge also introduces the application of a perturbation approach toward

a solution for the inverse problem and for finding the Jacobian matrix [24]. To

solve for the perturbation in absorption, Arridge suggests either direct methods

such as the Moore-Penrose inverse or iterative methods, such as gradient

descent, coupled with a stochastic model of the problem [10].13 An example of

this second case is his use of the Newton-Raphson approach with regularization

to minimize a cost function based on the maximum likelihood estimate of the

measured output. He also suggests using the Gauss-Seidel method; it may be

more desirable since it does not require storage of the entire Jacobian matrix

and therefore costs much less space in memory [13, Section 4.2].

Arridge also suggests that it is possible to get an idea of the resolution

limit for reconstruction of perturbations by examining the singular value

decomposition of the perturbation operator, the Jacobian matrix [24]. We

conduct two similar experiments, one of which is discussed in Section 4.3, and

the other at the end of Chapter 3. His experiment examines Jacobian matrices

which are defined by tissue slabs of different depths. He finds that the

conditioning of the problem improves for thinner depths of tissue [24]. He further

suggests that a coarser grid discretization may improve the conditioning of the

inner product of the Jacobian with itself, since the Jacobian matrix is typically

underdetermined [13, 25]. This sacrifices the accuracy which would be achieved

with a finer grid, however, as we have already mentioned [26].

In future work, Arridge sees a high potential for reconstructions which rely

on nonlinear methods [25]. He believes that measuring photon flux instead of

photon density may improve the convergence of iterative methods from linear to

quadratic speeds [26]. He also suggests that a higher-order model, such as one

which seeks to determine the anisotropicity of scattering or the refractive index,

could be implemented with the use of higher-order data [10, 25]. In addition, he

expects that a more extensive use of a priori information should be helpful [13].

13 For a formal definition please see Golub and Van Loan, p. 243.
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Arridge further suggests that measurement methods which are not time-

dependent will not be able to distinguish between changes in absorption and

scattering [13]. This issue will become increasingly relevant as we understand

more about their dynamics within tissue. Right now, the distinct contributions of

each are difficult to differentiate [30].

As an example of a time-dependent measurement method, n th-order

moments of the time of flight of photons could be calculated. They would

produce numerical results over a smaller dynamic range than would be required

by the integrated intensity measurement model [32]. A couple of Dr. Arridge's

articles show both theoretically and experimentally that a greater penetration

depth can be achieved when trying to detect absorption in a scattering medium

by using the mean time of flight rather than integrated intensity as a

measurement model [30, 31, 32]. He also derives a precise theoretical

relationship between mean time of flight of photons (which is relevant to the

optical pathlength of the medium) and the phase shift measured at the tissue

output from a frequency modulated input signal [32].

Another possible approach to the inverse problem is referred to as the

'double constraint' method in Electrical Impedance Tomography. It involves the

use of output measurements as boundary conditions and solves for the interior

optical parameters of the medium. Arridge doesn't think that it has been done

yet for this type of problem [13].

Arridge's work is extensive in this field, but this research problem is much

richer in its complexity which has yet to be well-understood. The understanding

and refining of the best reconstruction algorithms and CPU speed should

proceed steadily, accompanied by increased knowledge about the related

optical parameters and their relative contributions. Soon this detection method

should reach a better operational level with the necessarily strong knowledge

base and computational means. The labor between here and there is in

searching for signal processing solutions which will enable medical

professionals to use this technology to distinguish necessary information from
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the only affordable measurements (which contain little apparent data), and in the

precision of detection methods which directly affect the level of accuracy in

measurements.

5.2 The Gauss-Newton Iterative Method

But how did we get here already? We have stated that we approach the

solution to this nonlinear least squares problem using an iterative method. The

iterative solution will update our guess at a nearby stationary point of the

nonlinear least squares cost function, where the new guess is referred to as

Xk+l. We could choose a gradient-based method, for example, in order to solve

the linear least squares problem at each iteration. This general class of

algorithms for iterative descent represents an important conceptual idea in

unconstrained minimization [5, Section 1.2]. The simplest of these is the

steepest descent method [5, Section 1.2].'4 Given a scalar cost function at the

kth iteration, I(xk), the steepest descent iterate is updated according to:

Xk+1 = Xk _ ak (V-)(Xk)), (5.1)

where ak is a scaling stepsize. In addition, we can simplify Equation 3.7 so that

it is now:

¢(Xk)= Ilf(X ) yll2

where f(xk) is equal to R(xk) i, for all of the possible i's, and y is the measured

value of output potential at every output node due to injection at every input

node. Equation 5.1 is easy to solve since we know that the gradient of the cost

function at xk is equal to:

V((xk) = 2[J(f(xk))]T(f(xk)- y). (5.2)
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But this method is problematic since the Jacobian of f(xk), which we

defined in Section 4.1, is poorly conditioned.15 Poor conditioning implies that

elliptic level curves, which represent sets of values for xk for which (ID(xk) is

constant, will be very elongated. Then the steepest descent search direction is

nearly orthogonal to the direction which leads to the minimum [5, Section 1.2].

The search path could follow far along the direction of steepest local gradients

before approaching the local stationary point of the nonlinear cost function. This

is referred to as zigzagging, and takes place when local gradients are steeper

than the path toward the stationary point, so that the iteration zigzags along

locally as it makes its way to the stationary point. The result is very slow

convergence.' 6 In a well-conditioned problem, the descent search directions are

more direct, and the elliptical level curves are more circular.

An alternative to steepest descent, which is more complex but less

problematic, is Newton's method. Its goal is to set the gradient of the cost

function equal to zero. To do so, consider the first-order Taylor expansion of the

gradient of the cost function about an estimate, xk:

VD(Xk + Ax) V(Xk) + [J(VD(Xk))](Axk ) , (5.3)

where Axk -xk+-x k . Newton's method is realized by setting Equation 5.3 equal

to zero to get:

-Ve(x k ) = [J(V(Xk))](AXk) (5.4)

where the gradient at xk, VD(xk), is given by Equation 5.2. Rearranging terms

and using the definition of Axk gives:

14 We define the ith entry of the gradient of a scalar function, g(x): 9 tN - , as:

[Vg(x)]1 - Sg(x)

15 Recall the definition of conditioning from the end of Section 3.4.
16 We should mention that we are not guaranteed to be following the path to a global minimum
here. The gradient-based solutions we discuss may converge to a local minimum, maximum, or
saddle point.
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X' = x" - (H((D(Xk)))-(VI((Xk)).17 (5.5)

This approach gets more directly to the point of what we are looking to

find, a location x at which the cost function, (D(x), is stationary. The

convergence of Newton's method is generally asymptotically fast, since the

steepest descent path is avoided in pursuit of the actual minimum to which it

would have eventually taken you [5, Section 1.2]. Newton's method is desirable

because of this knack for avoiding the zigzagging problem [5, Section 1.2]. The

method of conjugate gradients also avoids this and was investigated in Dr.

Arridge's research, but he found it to have slow convergence, as did, obviously,

the method of steepest descent [13, 38].

Unfortunately, Newton's method requires the calculation of the Hessian of

()(xk), which is computationally difficult. A simplification which imitates the

performance of Newton's method would be helpful at this juncture and the

Gauss-Newton method is just that [5, Section 1.2]. Gauss-Newton relies on the

assumption that:

D(Xk + Ak)= jy(xk)+[J(f(xk))]Ax -_ll12

so that the minimization of I((xk+Axk) will find the closest approach to equality

in the following equation:

[J(f(Xk))]QXk = y-f(xk). (5.6)

With this step, we have an expression which is linear in Axk [20]. If we refer to

the Jacobian in the brackets in Equation 5.6 as simply J k,' then the Gauss-

Newton method is:

17 We define the [i,j] entry of the Hessian matrix of the scalar function, g(x k ), as:

H ))] 2g(xk) 9NxN
[H(g(xk ))],J XksXk , 1<i,j<N and H(g) E

io i
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Xk+ =Xk - ak(JkTJk)JkT(y f(xk)) .

It is similar to Newton's method except that it does not require the calculation of

a Hessian.

The Gauss-Newton method will find a local stationary point for any

arbitrary cost function, even in poor conditions such as when the perturbation is

large or the cost function is not smoothly varying. In this problem, it should be

taking advantage of the fact that we expect the solution x to be a small

perturbation, and that the cost function may be locally smooth so that the

linearity assumption is a good one. In section 5.3 we explain the use of a scale

factor, ak, for when these two characteristics are absent.

Under the right circumstances, Newton's method is possibly the fastest of

the gradient descent methods, although it is also the most complicated; and

steepest descent is typically the slowest [5, Section 1.2]. The 'circumstances

being right' typically means that the initial guess is chosen to be within a

neighborhood of the local minimum, so that there is superlinear convergence. In

the case where the iteration begins within a neighborhood of the solution,

Newton's method should take only a handful of iterations to converge; otherwise,

convergence is superlinear once the solution gets within this neighborhood [5, p.

83]. We may be steered toward an undesired stationary point by a Newton-like

method. But the hope is that our initial guess, the nominal conductance, quickly

brings us into the neighborhood of the minimum we seek.

5.2.1 Gauss-Newton Simulation Results

Our reconstruction algorithm uses a Gauss-Newton iterative method for

the least squares problem, with Marquardt regularization, which is introduced in

Section 5.3. The resistor values in our circuit model correspond to optical

parameters for healthy breast tissue, and simulate a perturbation in the vertical
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and horizontal conductances due to a stronger absorbing material where a tumor

is located [46, Section IV, 42]. This should reflect the high absorption of a

material we can use to tag tumors and make them more apparent. Using an

anisotropy constant within the known range for breast tissue, we can calculate

the corresponding scattering coefficient as well. 8 The optical parameters are

given in Table 5.1, below, where the '=' indicates that we have calculated the

Transport Cross Section Absorption Coefficient Scattering Coefficient
0.2578 mm-' 0.0668 mm'1 =3.82 mm' 1

Table 5.1: Optical parameters for healthy breast tissue

approximate scattering coefficient ourselves. The actual horizontal and vertical

conductance values for individual resistors, nominal and perturbed, are given in

Table 5.2. When the absorption coefficient is perturbed at grid node k, the

Horizontal Conductance Vertical Conductance
(mho) (mho)

Nominal 0.97 0.8
Perturbed 0.82 1.4

Table 5.2: Horizontal and Vertical Conductances

corresponding diagonal of the conductance matrix becomes:

(# adjoining horizontal neighbors)*(horizontal conductance) + vertical

conductance.

Nodes of the conductance matrix which represent the connection between node

k and a horizontal neighbor, according to their coordinates within the matrix (as

defined in Chapter 1) take on the value:

18 The transport cross section is given by Utr = Ls (1- g) + ALa, where g is the anisotropy
constant [45, p. 1328].
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-(horizontal conductance)

in the appropriate entry of the matrix. Using a perturbation approach for the

construction of the Jacobian, we attempt to use it to reconstruct a perturbation in

only the vertical conductances. This is not precisely correct since the horizontal

conductances actually change, too, according to Chapter 2. However, adding

terms in the Jacobian to account for the derivative with respect to the horizontal

conductances makes the problem much larger, computationally.

The reconstruction is sensitive to the absorption coefficient's not being

too large; when the perturbation in absorption is too large, the algorithm

mistakenly detects two peaks when there is really just one. We think it's

possible that if the perturbation is much too large, it detracts from the amount of

exiting output potential, making the problem more difficult.

When the absorption coefficient is equal to 0.1 mm ' (about twice its

nominal value), two distinct nodes of absorption can be resolved when located

near the center of the grid. Assuming that the limiting noise in the experimental

model is due to quantization, we vary the additive white Gaussian noise

(independent values are added at each simulated output measurement)

according to the simulated number of bits of quantization [35]. There is also

noise due to pixel mismatch, which is difficult to model but important to account

for by calibrating the devices beforehand. The variance of the noise in a (B+1)-

bit quantizer can be computed according to:

2- 2 B x2
2 m

12

Xm is the full-scale potential of what is being quantized, and in our case this is

the nominal potential at a particular output node due to injection of current at the

input node in question [49]. The lowest number of bits of quantization noise

which can be resolved by the reconstruction algorithm is about fifteen, assuming

that all emitted electrons are collected at the output. The diagonal of the
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conductance matrix is made into a matrix of the same size as the grid so that the

plot easily readable. The indexing is as in Figure 3.1. The actual diagonal of a

perturbed conductance matrix is shown in Figure 5.1. The perturbation is due to

a change in the absorption coefficient. Sample reconstructions for quantization

noise due to fourteen-, fifteen-, and sixteen-bit A/D converters are shown in

Figures 5.2, 5.3, and 5.4, respectively.

We also conducted simulations in which only the vertical conductances

were perturbed, and, as in the previous simulation, only the vertical

conductances are reconstructed. When compared to the previous example, this

proves to be a more difficult problem with the same perturbation in absorption,

since the perturbation in this case is accurately resolved with the quantization

noise corresponding to a seventeen-bit A/D converter. The actual vertical

conductance is perturbed in the same location as in Figure 5.1, but it is now

more apparent. The diagonal of the conductance matrix is shown in Figure 5.5,

with the same indexing as in Figure 3.1. Results, the constructions for sixteen,

seventeen, and eighteen bits of quantization noise, are shown in Figures 5.6,

5.7, and 5.8, respectively.

Why is the perturbation in vertical conductance so much more difficult to

reconstruct when it is realized by perturbations in only the vertical conductance?

It certainly appears to be a less difficult problem, visually, when one compares

Figures 5.1 and 5.5. It is possible that our less accurate description of the actual

physical process which takes place (a perturbation of both the horizontal and

vertical conductances) makes it more difficult to resolve the conductances along

the diagonal.

5.2.2 Gauss-Newton and the GMRES Algorithm

The Gauss-Newton algorithm, although a simplification from the nonlinear

least squares version of the problem, still faces the task of solving many

equations in many unknowns. One way to get around this computational
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Input Edge (Inches) ° ° Depth (Inches)

Figure 5.1: At most nodes, actual conductance along the diagonal of the
conductance matrix due to nominal absorption = 3.96 mho (it varies at the grid
boundaries), perturbed absorption = 5.36 mho; perturbed absorption coefficient
= .1195 mm ' , perturbed transport cross section = .3039 mm 1'. Only the vertical
conductances are perturbed. Values are given according to Table 5.2 and the
formulae beneath it.
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Input Edge (Inches) ° ° Depth (Inches)

Figure 5.2: Reconstructed conductance along the diagonal of the conductance
matrix due to 14-bit A/D converter quantization noise and actual conductances
given in Figure 5.1.
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Figure 5.3: Reconstructed conductance along the diagonal of the conductance
matrix due to 15-bit A/D converter quantization noise and actual conductances
given in Figure 5.1.
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Figure 5.4: Reconstructed conductance along the diagonal of the conductance
matrix due to 16-bit A/D converter quantization noise and actual conductances
given in Figure 5.1.
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Input Edge (Inches) 0 0 Depth (Inches)

Figure 5.5: At most nodes, actual conductance along the diagonal of the
conductance matrix due to nominal absorption = 3.96 mho (it varies at the grid
boundaries), perturbed absorption = 4.68 mho; perturbed absorption coefficient
= .1195 mm 1' , perturbed transport cross section = .3039 mm1. Vertical and
horizontal conductances are perturbed so that horizontal conductances
neighboring a perturbed node change from 0.97 mho to 0.8 mho (not shown).
Values are given according to Table 5.2 and the formulae beneath it.
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Figure 5.6: Reconstructed conductance along the diagonal of the conductance
matrix due to 16-bit A/D converter quantization noise and actual conductances
given in Figure 5.5.
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Figure 5.7: Reconstructed conductance along the diagonal of the conductance
matrix due to 17-bit A/D converter quantization noise and actual conductances
given in Figure 5.5.
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Figure 5.8: Reconstructed conductance along the diagonal of the conductance
matrix due to 18-bit A/D converter quantization noise and actual conductances
given in Figure 5.5.
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computational bottleneck is to use the GMRES algorithm to solve the system of

linear equations. GMRES has the advantage of being able to solve a linear

system Ax = b for a nonsingular, nonsymmetric, nxn matrix, A, in at most n

iterations [6, Section 3.1], so that the slightly less than n 2 operations required by

MATLAB to solve n equations in n unknowns can be replaced with many less

than n2 operations. This makes each Gauss-Newton step that much faster,

speeding up every iteration toward the nonlinear solution.

The GMRES algorithm solves a linear least squares problem over a

series of basis vectors. The first basis vector is the first residual error vector.

This is the residual of Equation 5.6. Each successive basis vector is determined

by multiplying the A matrix onto the previous basis vector, orthogonalizing with

respect to the previous basis vectors, and normalizing the resultant vector. We

were able to implement GMRES in the later portion of our research. We found

that the more influential computational bottleneck is due to the formation of the

Jacobian matrix, and further performance improvements are recommended in

Chapter 6.

5.3 Establishing the Fundamental Limits of Resolution Using
Regularization

The nonlinear inverse problem is highly sensitive, and this sensitivity

carries into the linear least squares problem as well. The Gauss-Newton

method does not give a solution set unless it is modified so that the inner

product of the Jacobian matrix with itself is nonsingular. We first attempted to

make this inner product nonsingular by taking the singular value decomposition

of the inner product, removing the singular values which were very close to zero,

and inserting the remaining singular values back into the triple product to

reconstruct the inner product. This procedure accomplishes the goal of

nonsingularity and hence makes the iterations possible, but valuable high

frequency information is lost when the very small singular values (and hence
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their corresponding singular vectors when reassembling the triple product) are

removed. This difficulty brings us to look at regularization as a signal

processing improvement to the problem, since it offers help in making a poorly-

posed problem into a well-posed one, as reflected in the condition number of the

discretized problem [27, p. 8].

In this instance, regularization makes the problem more well-posed by

decreasing the number of possible solutions. Whereas before regularization we

were concerned with the minimization of (b(xk), we are now concerned with the

minimization of the quantity:

g(Axk) = If(xk) +JkAxk -yl 2 + E&xk 112 (5.7)

over Ax k . Differentiating Equation 5.7 with respect to Ax k , setting the result

equal to zero, and solving for Axk, the minimization of g(Axk) will result in:

AXk = (Jk TJk + d)1JkT(y-f(Xk)). (5.8)

We'll refer to the quantity which is inverted as Ck:

Ck = JkTJk + d.

Now the problem is more well-posed, since we narrow down the search

for possible solution vectors by using a weighted tradeoff in preference between

those solutions which are small in length and those which minimize .((xk). The

regularization constant, , controls the relative influence of these two

components in the revised cost function, g(Axk).

The secondary effect of regularization is to improve the conditioning of

Jk T Jk for better performance of numerical methods in solving the linear least

squares problem (we use regularization only in the linear least squares

problem). We explain below just how this happens.

Since regularization is used in reconstruction methods, it is sensible to
compare the resolution of different models of grid spacings and injection current
patterns after they have been regularized. That is, we would like to examine the
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condition number of Ck when solving g(Axk), where the regularization constant

is effectively being added in all along the diagonal of Jk T Jk.

The matrix Ck is symmetric positive definite since the inner product

Jk T Jk is symmetric positive semidefinite and el is nonzero. This means that the

singular values of Ck are the eigenvalues of Ck, which is the same as [l plus

the eigenvalues of Jk T Jk] The condition number, the ratio of largest to

1
smallest singular values, of Jk T Jk is 1-1 (where 1 is the largest singular value

of Ck and 10-16is the smallest), or 1016. With regularization the condition

E+1
number becomes 1 0.16, and if is much larger than 10 16, the condition

number has improved and is now approximately equal to 1/e!

We have mentioned that the regularization constant can be chosen

according to a statistical model of the problem. In this instance, the

regularization constant acts as a prior condition on the variance of the solution.

By comparing the solution Axk due to minimizing the cost function g(Axk) with

the Axk we would get by minimizing a stochastic model of the problem which

has knowledge of the noise variance, we can relate the regularization constant

to a prior condition on Axk.

We can estimate the variance of the noise due to a single input source

based on existing data. The model can then be expanded to account for noise

variance due to our multiple sources and we can let this variance contribute to

the choice of regularization constant in the Miller criterion, the ratio of the norm

of the standard deviation of the data to that of the current estimate of the

solution [13, Section 4.3].

Alternatively, the regularization constant can be chosen according to the

Marquardt method. We used this method and added a scaling within the

Marquardt algorithm, so that Axk's (solutions to the linear least squares problem

which we solve at each iteration of the nonlinear least squares problem) which
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are good but too large to reduce g(Axk) aren't simply thrown away. We make

ten attempts at scaling the Axk down by a factor of 0.5 (this is actually the ak of

the Gauss-Newton algorithm). If none of these scale factors (ak being equal to

(0.5) , for n=1 to 10), is successful at producing a Axk which will decrease the

residual, the first 'Else' in number 2 in the algorithm below ends, with n = 11, and

we compute another Axk from a larger regularization constant. For the kth

linear least squares solution, we choose the regularization constant (i.e., in

Equation 5.8) according to the following modified Marquardt algorithm:

1. el = 0.01; AxO = 0; k=1; The first (k = 1) residual in Equation 5.6 is

therefore the difference between the measured output potential and the output

potential due to the nominal conductance matrix;

2. While the reconstructed solution does not look satisfactory:

Use Equation 5.8 to solve for Axk

Compute the residual in Equation 5.6

If it's less than the previous residual then k = k + 1 and Ek = Ek-1/10

Else

n=l

While n<11 and the current residual is bigger than the previous

one,

AXk = (0.5)*AXk

Compute the new residual in Equation 5.6 with this new Axk

End

End
If n == 11 then the scaling by ak wasn't successful in reducing the

residual from the last iterate, so recompute Axk with a larger e:

Ek = k * 1 0 ; Go back to 2

Else k = k + 1; k /= k-/10; GO back to 2

End
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End [20].

This approach improves the effect of numerical methods on the problem

by adding a somewhat arbitrary regularization constant to help with the

nonlinearity of the problem, but successfully so [13, 40]. We follow this

procedure in our reconstruction algorithm, although alternatively we could have

incorporated the manipulation of the scale factor and regularization constant in

different preferential order. This convention was chosen over other possibilities

since the linear least squares solution is exact and the scale factor is a sort of

backup to ensure that a good search direction is not overlooked (i.e., possibly

due to local inappropriateness of the linear approximation made by Gauss-

Newton).

Dr. Arridge also uses regularization in his research, on both the nonlinear

problem and on each iteration of the linearized version. He uses Marquardt

regularization on his linearized problem, and a few other methods for

regularizing the nonlinear cost function. A preliminary method regularizes by

limiting the number of iteration steps; another is referred to as the 'truncated

SVD,' and only includes the components of Ck which correspond to singular

values above the signal to noise ratio. Since this truncation may neglect

important information, a more advanced method is employed which includes his

choice of error norm (this is referred to as the x 2 norm: the residual vector-

transposed times the inverse of the covariance of the measured output

potentials times the residual vector again).

To regularize he adds the norm of the solution vector times a

regularization constant and an exponential weight called a 'profiling function'

which penalizes an entry's distance from the center of the tissue medium. When

this profiling function is equal to one, this term is referred to as the Tikhonov part

of the regularization. Arridge uses another regularization constant which is

multiplied by a penalty on the second derivative of the tissue parameters, to

control the smoothness of the solution. This is referred to as Phillips-Twomey
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regularization. Arridge finds the profiling function and Tikhonov regularization to

exhibit the best image clarity [13, Section 6].

Our experimental simulations which relate to regularization expand on the

sampling results from Chapter 4 and further use of regularization to observe the

resulting improvement in the conditioning of Jk T Jk. For current injections every

one, two, and three nodes, the condition numbers of the regularized Jacobian

matrices are all approximately equal to one, to two decimal places. Interestingly,

they actually decrease slightly with fewer current injections. From one node to

three nodes between each current injection, the condition numbers are 1.0057,

1.0036, and 1.0017. We think this small decrease may be due to the fact that

the regularization constant stays the same for all three sampling rates, while the

smallest singular value may not be shrinking as quickly as the largest one does

from one node to three between each current injection.

We also measure the relationship between the matrices Jk T Jk due to

different current injection intervals more extensively. We project the actual

perturbation in conductance onto the column space of the right singular vector in

the singular value decomposition of Jk T Jk. If we define the right singular vector

as wk, then the projection is:

Pk = Wk T *G

This projection places a metric on the distance between the actual

solution and the solution space according to the matrix Jk T Jk [44]. By

comparing the distance between this projection and the actual perturbation in

conductance for the three possible sampling intervals, we can arrive at a relative

measure of resolution, and can compare this resolution with the relative size of

the condition numbers of Ck. Unfortunately, this number is the same for all the

matrices Jk T Jk, with or without regularization or a change in the number of

injection current sites. This metric might be reexamined in future experiments.

77



5.4 The Generalized Inverse Problem: an Explicit Solution?

This section reconsiders the possibility of solving the nonlinear inverse

problem directly. In particular, the prospect of creating a generalized partial

inverse of G is addressed [14]. We know many of the resistor values which

depend upon both scattering and absorption, but we also have some unknown

conductances which depend on the absorption alone. If we keep the unknown,

vertical resistors as variables, we can construct a generalized form for the

inverse. We can then solve for the exact values of the vertical resistors by using

equations which are assembled from experimental measurements due to all the

possible combinations of injection and measurement sites [14]. The idea is to

compute and use only a portion of the complete inverse because we are only

really interested in its bottom left HxH block. Focusing on this smaller section

narrows the scope of the problem, and eliminates a great deal of unnecessary

calculation. When we substitute these vertical conductance variables and the

actual values of the horizontal conductances into the explicit inverse, we are left

with the same number of equations as unknowns. This leaves a much smaller

problem to solve, except for the very first time that the conductance matrix is

inverted, than that with which we began.

To compare with existing methods for solving the forward problem, we

wrote a program which calculates the section of the explicit inverse in which we

are interested, given all the horizontal and vertical conductances. When

optimally coded, its number of computations is slightly less than that which

MATLAB takes to solve the forward problem using Gaussian elimination. But

less information is extracted in this explicit inverse formulation of the problem,

since it only gives the output potentials; when instead using MATLAB to solve n

equations in n unknowns, we would find all the potentials on the grid. We need

them all in the form this study uses for the Jacobian.

This concept would be a useful approach to the problem if we were able

to calculate, in variable form, the small section of the inverse in which we are
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interested. But for the size of matrices we consider in this problem, that is

unfeasible. It would involve the recursive computation of the inverses of many

HxH matrices, and would become an extremely complicated expression.

However, the benefit of using this formulation is that it directly addresses the

nonlinearity of the problem in a single step, instead of searching for the solution

over many iterations, where improperly settling on a local stationary point is a

possibility.

5.5 Comparing the Performance of our Algorithm for the Inverse Problem
with that of Dr. Arridge

An important measure of the success of the reconstruction algorithms

which solve the inverse problem is the comparison offered by the more extensive

research which has already been done in this area. We refer to the work of Dr.

Simon Arridge of University College London, which is described in detail in

Section 5.1.

Arridge places a large emphasis upon the choice of error norm. Whereas

the cost function we minimize is the Euclidean norm of the error, Arridge prefers

the X 2-norm. In attempting to reconstruct data which he has generated using

the Monte Carlo method, Arridge has a scattering coefficient of about 20 mm'

and an absorption coefficient of .025 mm-' for 'healthy' tissue. For

perturbations, he increases the absorption coefficient to .25 mm ' . In order to

detect perturbations of less than 3mm in diameter within a 50 mm diameter circle

which is discretized to 16x16, he must use 10'0 or 1012 photons [13, Section 6].

This assumes perfect detection so adjustments should be made depending on

the efficiency of the measurement apparatus. His measurement models are the

log of integrated intensity and the average time of flight, and they require this

same number of injected photons in the article we cite, but an exact size for the

added absorbers is not given, which makes a performance comparison between

our two studies difficult [13].
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6. Conclusions and Future Explorations

Chapter 2 has demonstrated that the resistive grid model closely

resembles measurements which were made experimentally. Although the

experimental data are vague, the reproduction of the single dip in Figure 2.5,

where there were double dips in the other three experiments, instills some

confidence in the resistive grid model. This is especially so, considering that the

double-dip simulations closely resemble the experimental data as well.

However, in some other simulations, approximations almost as good as

those shown in Chapter 2 were produced using an absorption coefficient which

was two orders of magnitude largerthan the one used in those simulations. This

suggests that a mapping of resistor values to optical parameters, which

produces results similar to experimental percent changes in magnitude, may not

provide the true correspondence we seek. Certainly, it is the product of the

horizontal and vertical conductances which determines the space constant for

the problem, so there may be an ambiguity in the scaling of these parameters

[20, 48].

Some discrepancy in the performance of the circuit model may be

attributed to the fact that, according to the diffusion approximation, the point

source is supposed to be located at least one scattering length within the

boundary. In our circuit model, the point source is right along the boundary,

where it would be experimentally.

The improvement of the condition number with a decrease in the injection

current-spacing, as discussed in Chapter 3, should also encourage optimism

toward what future experiments might be able to resolve. It would be interesting

to determine the asymptotic limit of this beneficial effect through further

computer simulation.

It is difficult to directly compare our reconstruction experiments with those

of Dr. Arridge. His biological anisotropy constant is much smaller, and it yields a

scattering length which is of a different order of magnitude than is predicted by
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the breast tissue data we have been using (Arridge's scattering length is the

inverse of the transport cross section, which is (Ms'+U)'1 mm = (2+0.025)1 mm,

or about 0.5 mm [10]). Experiments conducted by Ertefai on breast tissue

predict a scattering length of (.2578)-' mm, or about 4 mm [46]. This means that

Arridge expects less attenuation from the tissue than is predicted for breast

tissue in the source cited by Ertefai. The comparison is discussed further in the

next section.

The 15-bit noise figure found in Chapter 5 is also encouraging. In fact, it

may even be a pessimistic estimate since our reconstruction algorithm is not

attempting to solve for the horizontal conductances, and therefore does not

include the extra information which could be used by taking the Jacobian with

respect to those conductances. This 15-bit measurement precision is possible

in the A/D converter, as well as in the digital computation. However, this result

relies on ideal collection of measurement data. It will probably require a slight

improvement in the abilities of the reconstruction algorithm, possibly by

enhancing the regularization technique, in order to compensate for unanticipated

measurement noise and the use of a 16-bit A/D converter. This handicap should

also be investigated quantitatively in order to have a full understanding of the

problem's limitations.

Even when using the GMRES algorithm to solve the linear least squares

problem, the reconstruction is slowed by the formation of the Jacobian.

Performing the computational 'current injections' in parallel might speed up the

process [48]. Even finite-difference formulations of the Jacobian require that

many output measurements are made and are multiplied together, creating a

bottleneck. But even for its difficulty in construction, the Jacobian matrix reveals

a great deal of information about the problem, and is required of many iterative

approaches. We think the choice of an iterative method is less relevant than a

faster route to the Jacobian might be. The Gauss-Newton method seems to be

adequately efficient and information-intensive for the reconstruction.
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Without the computational means which enable the progression to finer

discretizations, and eventually to three dimensions, it is difficult to envision that

integrated intensity alone might reveal information on the required order of a few

millimeters which is necessary to make the inexpensive, optical detector

worthwhile. However, our success with reconstructing small perturbations with a

realistically large amount of quantization noise suggests that it is

computationally possible to reconstruct perturbations using actual experimental

data: the model appears promising, but needs to be enlarged.

6.1 Further Explorations

Since Arridge's work is extensive, improvements on our research might

consist of developing a better comparison between the two studies. It would be

good to compare Arridge's minimum photon count result (at which he could

successfully reconstruct added absorption) with our corresponding tolerable

quantization noise result. The precise size of absorbers Arridge used should

also be investigated so that a corresponding simulation can be conducted and

compared with his result.

The issue of the absorption coefficient's altering the value of the

horizontal resistors, as we describe in the derivation of the horizontal and

vertical conductances, should be better understood and physically explained.

Currently we rely on the mathematical correspondence between the finite

difference formulation of the Laplacian and the node equations in defining the

resistor values.

In further improvements, the Jacobian should be expanded to include the

aforementioned change in horizontal resistor values. Further attempts may be

made to speed up the formation of the Jacobian, especially if the Jacobian

matrix is to be increased in size. The GMRES algorithm for solving linear

systems might be used for this. In addition, the noise model should be improved
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to correspond more closely to the noise we expect from the experimental

apparatus.

The increased difficulty in reconstructing a vertical perturbation in

conductance when only the vertical conductances are actually perturbed (as

opposed to when both horizontal and vertical conductances are actually

perturbed and only vertical conductances are reconstructed) should be

investigated more thoroughly. If the Jacobian is expanded to include that of the

potentials with respect to the change in horizontal conductances, it could be

used to see that the same result (that of increased difficulty) still holds. The

expanded Jacobian may help to show why it does or does not still hold.

When the reconstruction can be sped up, finer discretizations, deeper

slabs of simulated tissue, and even three dimensions may be considered. It will

be important to consider the tradeoff between the benefits of finer discretizations

versus having too many unknowns in the problem.

Finally, the cylindrical tissue model, as proposed by Professor Horn, may

allow for the investigation of a more appropriate geometry for breast cancer

detection, and a full circle of injection and measurement sites would then be

possible.
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Appendix-MATLAB Code
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% genl.m
% Generates measured data for nominal experiment
% This version incorporates sparse matrix procedures
% 1 mm between each grid node
% This algorithm creates a specified conductance matrix which is dependent on
% the grid spacing, tank depth, scattering, and absorption.
% Output measurements are taken directly across from the input
% 1" tank

clear all;
format long e;

b=8; % 8 bits quantization noise in the measurement

% Set the following parameters for each different experiment

d= 1; % Grid node spacing
x= 120/.3937007874; % Length on the input and output sides: 3"
y= 10/.3937007874; % Length from input to output: 1"
xx= round(x/d)+l; % Length in # nodes
yy= round(y/d); % ditto
sz= xx*yy; % Size of conductance matrix

% Absorption coefficients:

al= .002; % Nominal
a2= 1000; % Perturbed

% Transport cross section:

trl= .39+al; % The inverse of the effective space constant

% Horizontal conductance:

rl= l/(trl*d); % Conductance between neighboring nodes

% Vertical conductance:

gl= 3*al*d; % Conductance from each node to ground
g2= 3*a2*d; % Perturbed conductance to ground

% First create the nominal conductance matrix: see MATLAB sparse matrix info.

dl= zeros(l,sz)'; % dl= one band above the diagaonal
dl(2:sz)= -rl*ones(l,sz-l)'; % Conductance to neighbors 1 row above on grid
d_l= zeros(l,sz)'; % d_l= one band below the diagonal
d_l(l:sz-l)= -rl*ones(l,sz-l)'; % Conductance to neighbors 1 row below on grid
dO= zeros(l,sz)'; % Along the diagonal
dO(l:xx)= (3*rl)*ones(1,xx)'; % Input boundary has neighbors on three sides
dO(sz-xx+l:sz)= (3*rl)*ones(1,xx)'; % Interior has neighbors on four
dO(xx+l:sz-xx)= (4*rl)*ones(l,sz-2*xx)'; % Output boundary has neighbors on 3

% Create a boundary condition along the top and bottom of the grid: there
% are only three neighbors there, too

for i= l:yy
d0((i-l)*xx+l)= d0((i-l)*xx+l)-rl; % Take one away from the top edge
d0(i*xx)= d0(i*xx)-rl; % and from the bottom edge

end

dxx= zeros(l,sz)'; % dxx= xx bands above the diagonal
dxx(xx+l:sz)= -rl*ones(l,sz-xx)'; % Cond. to neighbors 1 node to right on grid

d_xx= zeros(l,sz)'; % d_xx= xx bands below the diagonal
d_xx(l:sz-xx)= -rl*ones(l,sz-xx)'; % Cond. to neighbors 1 node to left on grid
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for i= l:yy-1
dl(xx*i+l)= 0;
d_l (xx*i)= 0;

end

dO= dO+gl;
B= [d_xx d_l dO dl dxx];
clear d_xx d_1 dO dl dxx;
d= [-xx -1 0 1 xx]';
G= spdiags(B, d, sz, sz);
clear B;

% Bottom edge does not connect to 1 row below
% Top edge does not connect to 1 row above it

% Add in conductance to ground at each node
% Create nonzero part of sparse matrix
% Clear out unused variables
% Declare where these numbers go in the matrix
% Assemble sparse matrix based on those rules
% Now clear out B; don't need it anymore

% Conduct 'measurements' on this nominal conductance matrix

vm= [];
for i= l:xx

inp= zeros(l,sz)';
inp(i)= 1;
v= G\inp;
vm= [vm' v(sz-xx+i)]';

end
ns= vm./((sqrt(3))*2^(b+1));
vm= vm+ns.*randn(size(vm));

save vml vm;

% Initialize vector of measurements
% Prepare to inject at each input site
% Create a zero vector for inp
% Make the site of injection equal to one
% MATLAB 'slash' for n equations in n unknowns
% Add the ith output potential to the meas.

% The actual noise stdev, according to # bits
% Add it in, scaled by the nominal potential

% Store this vector in a .mat file
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% This code produces the first
format long e;

b=8;
ns= 1/((sqrt(3))*2A(b+l));

experiment of the tank simulations

% 8-bit quantization noise
% The actual noise stdev, according to # bits

% Absorption coefficients:

al= .002;
a2= 1000;

% Nominal
% Perturbed

% Transport cross section:

trl= .39+al;
tr2= .39+a2;

% The inverse of the effective space constant

% Set the following parameters for each different experiment
d= 1;
x= 120/.3937007874;
y= 10/.3937007874;
xx= round(x/d)+l;
yy= round(y/d);
sz= xx*yy;

% Length on the input and output sides (mm)
% Length from input to output
% Number of nodes on input side
% Number of nodes from input to output
% Height/Width of the conductance matrix

absloc= [12*xx+142 12*xx+143 12*xx+163 12*xx+164 11*xx+142 ll*xx+143 ...
11*xx+163 11*xx+164]; % Absorber locations (node numbers)

% Horizontal conductance:

rl= 1/(trl*d);
r2= 1/(tr2*d);

% Vertical conductance:

gl= 3*al*d;
g2= 3*a2*d;

% First create the nominal conductance matrix: uses MATLAB's sparse matrix

dl= zeros(l,sz)'; % dl= one band above the diagaonal
dl(2:sz)= -rl*ones(l,sz-l)'; % Conductance to neighbors 1 row above on grid
d_l= zeros(l,sz)'; % d_l= one band below the diagonal
d_l(l:sz-l)= -rl*ones(l,sz-l)'; % Conductance to neighbors 1 row below on grid
dO= zeros(l,sz)'; % Along the diagonal
dO(l:xx)= (3*rl)*ones(1,xx)'; % Input boundary has neighbors on three sides
dO(sz-xx+l:sz)= (3*rl)*ones(1,xx)'; % Interior has neighbors on four
d0(xx+l:sz-xx)= (4*rl)*ones(1,sz-2*xx)'; % Output boundary has neighbors on 3

% Create a boundary condition along the top and bottom of the grid: there
% are only three neighbors there

for i= l:yy
d0((i-l)*xx+l)= d0((i-l)*xx+l)-rl; % Take one away from the top edge
dO(i*xx)= d0(i*xx)-rl; % and from the bottom edge

end

dxx= zeros(l,sz)'; % dxx= xx bands above the diagonal
dxx(xx+l:sz)= -rl*ones(l,sz-xx)'; % Cond. to neighbors 1 node to right on grid

d_xx= zeros(l,sz)'; % d_xx= xx bands below the diagonal
d_xx(l:sz-xx)= -rl*ones(l,sz-xx)';% Cond. to neighbors 1 node to left on grid

for i= l:yy-l
dl(xx*i+l)= 0;
d_l(xx*i)= 0;

% Bottom edge does not connect to 1 row below
% Top edge does not connect to 1 row above it
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end

dO= dO+gl; % Add in conductance to ground
B= [d_xx d_l dO dl dxx]; % Create nonzero part of sparse matrix
clear d_xx d_l dO dl dxx; % Clear out unused variables
d= [-xx -1 0 1 xx]'; % Declare where these numbers go in the matrix

% Now increase the absorption at the proper site(s)

B(absloc-xx,l)= B(absloc-xx,l) + rl - r2;
B(absloc-1,2)= B(absloc-1,2) + rl - r2;
B(absloc,3)= B(absloc,3) - gl - 4*rl + g2 + 4*r2;
B(absloc+l,4)= B(absloc+1,4) + rl - r2;
B(absloc+xx,5)= B(absloc+xx,5) + rl - r2;
G= spdiags(B, d, sz, sz);
clear B;

% Conduct measurements with added absorption

vn= [];
load vml; % The nominal output potentials (see genl.m)
for i= l:xx % Source location

inp= zeros(l,sz)'; % Initialize
inp(i)= 1; % 1 A at that location
v= G\inp; % Solve sz equations in sz unknowns
vn= [vn' v(sz-xx+i)+(ns*randn(l,l))*vm(i)]';

end % Take output potential at node exactly opposite from source and add
min(100*(vn-vm)./vm); % measurement noise depending on # bits
save fl vn; % Store the result
figure(l); % Plot %change in magnitude against length (")
hold off;
stepsz= 12/(xx-1);
nchs= O:xx-1;
nchs= nchs*stepsz;
subplot(311),plot(nchs,vm);
ylabel('(Volts)');
xlabel('(a) (Inches)');
subplot(312),plot(nchs,vn);
ylabel('(Volts)');
xlabel('(b) (Inches)');
subplot(313),plot(nchs,100*(vn-vm)./vm);
hold on;
xlabel('(c) (Inches)');
plot(nchs(142),-56,'+'); % Also plot experimental results
plot(nchs(143),-56,'+');
plot(nchs(163),-58,'+');
plot(nchs(164),-58,'+');
plot(nchs(153),-38,'+');
ylabel('(% change in magnitude)');
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% Generates measured data for nominal experiment
% This version incorporates sparse matrix procedures
% 4 mm between each grid node
% This algorithm creates a specified conductance matrix which is dependent on
% the grid spacing, tank depth, scattering, and absorption.
% Output measurements are taken directly across from the input

clear all;
format long e;

% Set the following parameters for each different experiment

d= 4;
x= 30/.3937007874; % Length on the input and output sides: 3"

y= 10/.3937007874; % Length from input to output: 1"
xx= round(x/d)+l;
yy= round(y/d);
sz= xx*yy;

% Absorption coefficients:
al= .0668;
a2= .1195;

% Transport cross section:

trl= .2578;
tr2= .3039;

% Horizontal conductance:

rl= 1/(trl*d);
r2= 1/(tr2*d);

% Vertical conductance:

gl= 3*al*d;
g2= 3*a2*d;

% Vertical conductance:

gl= 3*al*d; % Conductance from each node to ground
g2= 3*a2*d; % Perturbed conductance to ground

% First create the nominal conductance matrix: see MATLAB sparse matrix info.

dl= zeros(l,sz)'; % dl= one band above the diagaonal
dl(2:sz)= -rl*ones(l,sz-l)'; % Conductance to neighbors 1 row above on grid

d_l= zeros(l,sz)'; % d_l= one band below the diagonal
d_l(l:sz-l)= -rl*ones(l,sz-l)'; % Conductance to neighbors 1 row below on grid
dO= zeros(l,sz)'; % Along the diagonal
dO(l:xx)= (3*rl)*ones(1,xx)'; % Input boundary has neighbors on three sides
dO(sz-xx+l:sz)= (3*rl)*ones(1,xx)'; % Interior has neighbors on four
dO(xx+l:sz-xx)= (4*rl)*ones(1,sz-2*xx)'; % Output boundary has neighbors on 3

% Create a boundary condition along the top and bottom of the grid: there
% are only three neighbors there, too

for i= l:yy
d0((i-l)*xx+l)= d0((i-l)*xx+l)-rl; % Take one away from the top edge
dO(i*xx)= d0(i*xx)-rl; % and from the bottom edge

end

dxx= zeros(l,sz)'; % dxx= xx bands above the diagonal
dxx(xx+l:sz)= -rl*ones(l,sz-xx)'; % Cond. to neighbors 1 col. to right on grid

d_xx= zeros(l,sz)'; % d_xx= xx bands below the diagonal
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d_xx(l:sz-xx)= -rl*ones(l,sz-xx)'; % Cond. to neighbors 1 col. to left on grid

for i= l:yy-l
dl(xx*i+l)= 0;
d_l(xx*i)= 0;

end

dO= dO+gl;
B= [d_xx d_l dO dl dxx];
clear d_xx d_l dO dl dxx;
d= [-xx -1 0 1 xx]';
G= spdiags(B, d, sz, sz);
clear B;

% Bottom edge does not connect to 1 row below
% Top edge does not connect to 1 row above it

% Add in conductance to ground
% Create nonzero part of sparse matrix
% Clear out unused variables
% Declare where these numbers go in the matrix
% Assemble sparse matrix based on those rules
% Now clear out B; don't need it anymore

% Conduct 'measurements'

vm= []; % Initialize vector of measurements
vnom= [];
for i= l:xx % Prepare to inject at each input site

inp= zeros(l,sz)'; % Create a zero vector for inp
inp(i)= 1; % Make the site of injection equal to one
v= G\inp; % MATLAB 'slash' for n equations in n unknowns
vm= [vm v(sz-xx+i)]; % Add the ith output potential to the meas.
vnom= [vnom' v(sz-xx+l:sz)]';

end

save vm4 vm vnom; % Store this vector in a .mat file
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% gn4dynamic.m
% This algorithm performs gauss-newton reconstruction with d= 4mm spacing,

% and a noise figure based on a nominal potential which sets the dynamic gain

% on an A/D converter with b bits.
% There is also a Marquardt method for finding the best regularization

% constant, starting with 0.01 and moving

% it up and down as it improves the size of the residual.

%b= 7; % # of bits, which determines the measurement noise

epsilon= 0.01; % Regularization constant

absloc= [2*xx+7 2*xx+12];
% Location of perturbations in absorption

% Stage 1: Begin w/ Nominal Absorption
% This is the first estimate of the linearly incremented conductance, so pot.

% is vguess, the potential with the perturbation we have so far.

% Conduct several current injections:

[v_all, e_all, vguess]= inject(l,xx,yy,sz,G); % inject.m is another function

vnom= vguess; % Exact nominal potential

ns= vnom./((sqrt(3))*2^(b+l)); % The actual noise stdev, according to # bits

vnom= vnom+ns.*randn(size(vnom)); % Noisy measurement of nominal potential
% This is the 'dynamic gain' part. It

% optimizes the performance of A/D converter

ddg= []; % Initialize vector of updates to conductance G

error= []; % Initialize error vector to accumulate at each iter.

Guni= G; % Store the uniform conductance matrix

% Now perturb the conductance matrix, according to new optical parameters

[B,d]= spdiags(G); % Take apart the sparse matrix

B(absloc,3)= B(absloc,3) - gl + g2; % This line is for only perturbing the
% vertical conductance

G= spdiags(B, d, sz, sz); % Put sparse matrix back together

fG= full(G); % Loses sparseness here for plotting;

dg= diag(fG); % could improve by re-sparsifying after

dmat= []; % plot.
for i= l:yy

dmat= [dmat dg((i-l)*xx+l:i*xx)];
end
figure(l);
mesh(dmat);
clear B; % Done with this; clear it out to save space

clear fG;
vmeas= []; % Initialize measurement vector

for num= l:xx % Have to inject at every input node and record output

input= [zeros(l,sz)]'; % Initialize current vector

input(num)= 1; % vmeas is a vector of length xx*xx; same throughout

v=G\input; % Measurement; note noise added two lines down

% For each injection k, there are xx observations j

vmeas= [vmeas' v(sz-xx+l:sz)'+ns((num-l)*xx+l:num*xx)'.*randn(l,xx)]';
end % append xx observed output nodes for each injection

vmeasavg= (sum(abs(vmeas)))/(xx*xx); % Take an average of measured value

dv2jk= vmeas-vguess; % The experimental potential minus that with uni. abs.

error= (sum(abs(dv2jk)))/(xx*xx);

% Now back to nominal G:

G= Guni;

% This section takes the v calculated from the nominal G and forms the

% products ejvkT which will be used to make the first guess at dG.
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ejvkT= []; % Initialize estimated Jacobian
for k= l:xx

vk= []; % Reinitialize new vk for this set of ej's
vk= v_all(:,k); % Take the potentials due to input injections
for j= l:xx % 30 observations for each injection

ej= []; % Reinitialize this ej
ej= e_all(:,j);
tmpv= ej.*vk; % Add this row to the estimated Jac.
ejvkT= [ejvkT' tmpv]'; % Assemble xx*xx rows of eqns

end
end
ejvkTl= ejvkT; % In some cases, we would like to know what the

% first Jacobian was, and not what it was at the end
% after many iterations.

% Now, the first dG, the dG which is linearized from uniform absorption:

prodJ= ejvkT'*ejvkT; % Form the inner product of Jacobian...
dG= -diag((prodJ+epsilon*eye(min(size(ejvkT))))\(ejvkT'*dv2jk)); %Least squares
oldG= G; % Save the old G in case this dG is too big and has to

% be scaled down
G= dG+G; % Create the first update to G
ddg= [ddg sqrt(sum((diag(dG)).^2))]; % Store the magnitude of update

% Stage 2: Successive iterations of the linearization
% Let's try the dG we just got, and subsequent ones, and add them in if
% small enough to decrase the residual; otherwise we scale epsilon down by a
% factor of 1/10 until they are small enough to improve the error

iter= 0; % Counts number of iterations of the second stage
lvec= [1]; % Initialize the vector of lambdas which scale dG
lambda= 1;
while iter < 470 % Stop after a certain number of iterations

improving= 0; % Set this constant to 0 until error improves, then 1
try= 1; % Scaling trial # is also reset
lambda= lvec(length(lvec)); % The last lambda; scales epsilon
while improving == 0

[v_all, e_all, vguess]= inject(1,xx,yy,sz,G);
dv2jk= vmeas-vguess; % Calculate new difference between meas&guess
error= [error (sum(abs(dv2jk)))/(xx*xx)]; % Also accumulate errors
if (error(length(error)) < error((length(error))-1)) I ...

(error(length(error)) == error((length(error))-1))
improving= 1; % If the error is lower or same, done
figure(2); % Plot this G since it's a good one
dg= diag(G);
dmat= [];
for i= l:yy

dmat= [dmat dg((i-l)*xx+l:i*xx)];
end
mesh(dmat);
lvec= [lvec lambda/10];% Keep track of lambda

else % Otherwise scale down the guess; try
if try<10 % this ten times before new reg. const.

G= oldG+(. 5^try)*dG;
try= try+l;
error= error(l:((length(error))-1));

else
lambda= lambda*10;
% If it didn't go down, increase lambda
lvec(length(lvec))= lambda;
error= error(l:((length(error))-1));
% Take away old error term
dG= -diag((prodJ+lambda*epsilon*...
eye(min(size(ejvkT))))\(ejvkT'*dv2jk));
G= oldG + dG; % Go back to nominal G and halve the dG
try= 1;
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end
end

end % Coming out of that last loop means now have a good, new G
ejvkT= []; % We have all injection sites from last part,so
for k= l:xx % Make a new guess from that nominal

vk= []; % Reinitialize new vk for this set of ej's
vk= v_all(:,k); % Take the first set of potentials
for j= l:xx % 30 observations for each injection

ej= []; % Reinitialize new ej
ej= eall(:,j);
tmpv= ej.*vk;
ejvkT= [ejvkT' tmpv]'; % Assemble xx*xx rows of eqns

end
end
prodJ= ejvkT'*ejvkT;
dG= -diag((prodJ+lambda*epsilon*eye(min(size(ejvkT))))\(ejvkT'*dv2jk));
ddg= [ddg sqrt(sum((diag(dG)).^2))];
oldG= G; % Save nominal G
G= G+dG; % Update G with new dG (for trial)
iter= iter+l; % Update number of improvements
figure(3);
subplot(311),plot(loglO(ddg));
ylabel('loglO1|dGI I');
subplot(312),plot(loglO(error));
ylabel('loglO(error)');
subplot(313),plot(logl0(lvec));
ylabel('loglO(lambda)');

end

stepsz= 3/(xx-1);
nchs= O:xx-1;
nchsy= nchs*stepsz;
stepsz= l/(yy-l);
nchs= O:yy-1;
nchsx= nchs*stepsz;
dg= diag(G);

dmat= [];
for i= l:yy

dmat= [dmat dg((i-l)*xx+l:i*xx)];
end
mesh(nchsx, nchsy, dmat);

ylabel('Input Edge (Inches)');
xlabel('Depth (Inches)');
zlabel('Reconstructed Diagonal of the Conductance Matrix (mho)');
%zlabel('Actual Diagonal of the Conductance Matrix (mho)');
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% inject.m
% This function finds the potentials everywhere along the grid for injections
% along the input side, and for injections along the output side .
% When assembled properly, these values compute the Jacobian matrix
% We also get vguess out of it, from which we can compute the change
% in output potential

function [v_all, e_all, vguess]= inject(numlayers,xx,yy,sz,G)
vguess= [];
v_all= [];
for layer= l:numlayers

for row= l:xx % Perform xx current injections to test dG
vacc= [];
input= zeros(l,numlayers*sz)';
input((layer-l)*xx+row)= 1;
% At each test, only the kth inputut current is 1
v= G\input;
% Where v is the new guess potential according to new G
for layer= l:numlayers

vguess= [vguess' v(layer*sz-xx+l:layer*sz)']';
vacc= [vacc' v((layer-l)*sz+l:layer*sz)']';

end
v_all= [v_all vacc]; % Use this later for the est. Jacobian

end
end
e_all= [];
for layer= l:numlayers

for row= sz-xx+l:sz % Perform xx current injections to test dG
input= [zeros(1,numlayers*sz)]';
input((layer-l)*xx+row)= 1;
% At each test, only the kth inputut current is 1
v= G\input;
% Where v is the new guess potential according to new G
vacc= [];
for layer= l:numlayers

vacc= [vacc' v((layer-l)*sz+l:layer*sz)']';
end

end
end

eall= [e_all vacc]; % Use later for estimate of Jacobian
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