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Abstract

In some multi-agent scenarios, identifying observations that an agent
can safely ignore reduces exponentially the size of the agent’s strategy
space and hence the time required to find a Nash equilibrium. We con-
sider games represented using the multi-agent influence diagram (MAID)
framework of (Koller and Milch 2001), and analyze the extent to which
information edges can be eliminated. We define a notion of a safe edge
removal transformation, where all equilibria in the reduced model are also
equilibria in the original model. We show that existing edge removal al-
gorithms for influence diagrams are safe, but limited, in that they do not
detect certain cases where edges can be removed safely. We describe an
algorithm that produces the “minimal” safe reduction, which removes as
many edges as possible while still preserving safety. Finally, we note that
both the existing edge removal algorithms and our new one can eliminate
equilibria where agents coordinate their actions by conditioning on irrele-
vant information. Surprisingly, in some games these “lost” equilibria can
be preferred by all agents in the game.

1 Introduction

Consider a scenario where agents make observations and decisions over time.
At each decision point, the agent’s strategy can depend on everything he has

∗This manuscript was written in 2002 when the first author was at the University of
California, Berkeley.
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observed up to that point. Specifically, a strategy specifies a probability distribu-
tion over actions for each possible instantiation of all of the variables observed.
Thus, the size of the strategy space for an agent grows exponentially with the
number of observations the agent makes. Most algorithms for finding good
strategies have running time that depends at least linearly on the size of the
strategy space, and hence exponentially on the number of observations.

Graphical models, such as Bayesian networks and influence diagrams, ex-
plicitly represent conditional independence relations between variables. This
information may allow us to conclude efficiently that an agent can safely ignore
some observed variables when making a particular decision. For the single-agent
case, there are well-known algorithms that identify ignorable information in in-
fluence diagrams (IDs) (Shachter, 1990; Zhang and Poole, 1992; Shachter, 1999;
Nielsen and Jensen, 1999; Lauritzen and Nilsson, 2001). These algorithms re-
move ignorable information edges, and are safe in the sense that an optimal
strategy for the reduced ID is optimal in the original ID as well.

In this paper, we extend this analysis of ignorable information to the multi-
agent case. We use the framework of multi-agent influence diagrams (MAIDs)
of (Koller and Milch, 2001). Our definition of a safe reduction in the multi-agent
case is based on the concept of a Nash equilibrium (Nash, 1950): an assignment
of strategies to agents in which no agent has an incentive to deviate to another
strategy, assuming the other agents adhere to their assigned strategies. We say
that a reduced version of a given MAID is safe if every Nash equilibrium of the
reduced MAID is also an equilibrium of the original MAID.

Star's
Utility

Robot’s
Choice

Robot’s
Utility

Prettier
Sign

Star's
Choice

Figure 1: The Robot-Phobic Movie Star example.

Example 1.1 (The Robot-Phobic Movie Star). A movie star and a robot
groupie are both deciding which of two restaurants to dine at tonight. The robot’s
goal is to eat at the same restaurant as the movie star, but the movie star wants
to avoid the robot, whom he finds disconcerting. The agents make their choice
simultaneously, but before choosing, they can both observe which restaurant has
a prettier sign — a variable that affects neither of their utilities. A MAID for
this example is shown in Figure 1. Each agent might choose a strategy that
depends on Prettier-Sign (e.g., go to the restaurant with the less pretty sign).
However, the unique equilibrium in this example is one where each agent sim-
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ply selects one of the two restaurants at random, with equal probability. Thus,
the reduced MAID where we remove the edge from Prettier-Sign to both agents’
decisions is safe.

The standard edge removal algorithm for single-agent IDs iteratively removes
ignorable edges. We show that this algorithm also yields a safe reduction in
multi-agent scenarios, but may not simplify the scenario as much as possible. In
Example 1.1, the movie star cannot safely ignore Prettier-Sign because the robot
might condition on it, and vice versa. Thus, neither of the information edges is
ignorable. But removing both edges yields a safe reduction: if one agent ignores
Prettier-Sign, the other can never gain by conditioning on it. We provide a new
algorithm that finds such safe reductions by removing all information edges from
the given MAID, and then adding back the ones necessary for safety.

Finally, although both edge removal and edge addition algorithms yield safe
reductions of a given MAID, there may be equilibria in the original MAID that
are not possible in the reduced MAID. Somewhat surprisingly, we show that
both algorithms sometimes eliminate the equilibrium that provides the highest
expected utilities to all the agents. Thus, removing ignorable information in a
MAID may involve a tradeoff between computational efficiency and quality of
the resulting equilibrium.

2 Multi-Agent Influence Diagrams

A multi-agent influence diagram (MAID) (Koller and Milch, 2001) consists of a
MAID skeleton G and a parameterization Pr. The skeleton is a directed acyclic
graph whose nodes are partitioned into three sets: a set X of chance nodes
(drawn as ovals), a set D of decision nodes (drawn as rectangles), and a set U
of utility nodes (drawn as diamonds). We write PaG(X) to denote the parents
of a node X in G. Utility nodes must be leaf nodes in this graph. Each chance
or decision node X ∈ X ∪ D has a finite domain dom(X). Associated with G
is a set A of agents. The decision nodes are partitioned into subsets {Da}a∈A
that are controlled by the various agents, and the utility nodes are partitioned
into subsets {Ua}a∈A that define the various agents’ utility functions.

A parameterization Pr for G assigns to each chance node X ∈ X a conditional
probability distribution (CPD) Pr(X | PaG(X)). The parameterization also
assigns a CPD Pr(U | PaG(U)) to each utility node U ∈ U , but this CPD is
deterministic: for each instantiation pa of PaG(U), it assigns probability 1 to a
single real number.

A MAID does not define CPDs for decision nodes, because the agents get
to choose the values of these nodes. Before making a decision D, an agent
gets to observe the values of D’s parents, so the value of D depends (perhaps
stochastically) on some subset of these observations. For this reason, edges into
a decision node are called information edges; they are drawn as dotted lines.
A decision rule δ for a decision node D in G consists of a consideration set
S ⊂ PaG(D) and a table f that maps each instantiation s of S to a probability
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distribution f(D | s) over dom(D). We say that δ = (S, f) considers the nodes
in S, and ignores all subsets of PaG(D) that do not intersect S.

A strategy σa for agent a assigns a decision rule σa(D) to each D ∈ Da,
and a strategy profile σ assigns a decision rule σ(D) to every decision node D.
A decision rule δ = (S, f) for a node D in G defines a CPD for D given its
parents. For any instantiations s of S and r of PaG(D) \ S, the distribution is
δ(D | s, r) = f(D | s). Thus, specifying a decision rule for a decision node D
allows us to convert D into a chance node.

Given a MAID M and a partial strategy profile σ that assigns decision rules
to a set D of decision nodes, we can define the induced MAID M [σ] that is
the same as M, except that each node D ∈ D has been converted to a chance
node with its CPD given by σ(D). If σ assigns a decision rule to every decision
node, then M [σ] has no decision nodes left, and is simply a Bayesian network
(BN). Thus, a MAID defines a set of possible strategy profiles, and maps each
strategy profile to a BN.

The expected utility of a strategy profile σ for an agent a in M is: EUa
M (σ) =

EPM[σ]

[∑
U∈Ua

U
]
. A decision rule δ for D is optimal for the strategy profile

σ in M = (G,Pr) if for every alternative decision rule δ′ at D, EUa
M (σ) ≥

EUa
M ((σ−D, δ′)), where (σ−D, δ′) is the same as σ except that it assigns the de-

cision rule δ′ to D. A strategy σa for agent a is a best response to an assignment
σ−a of strategies to the other agents if EUa

M ((σ−a, σa)) ≥ EUa
M ((σ−a, σ′a)) for

every alternative strategy σ′a for agent a. Finally, a strategy profile σ is a Nash
equilibrium in M if for every agent a, the strategy σa that it assigns to a is
a best response to the partial strategy profile σ−a that it assigns to the other
agents.

3 Reductions and Safety

As we discussed in the introduction, the set of possible decision rules at a de-
cision node grows exponentially with the number of its parents. This blowup
is very problematic in domains where agents have access to a large number of
observations. In particular, the complexity of most algorithms for finding Nash
equilibria, or even for verifying that a given strategy profile σ is an equilibrium,
grow exponentially with the dimension of the strategy space. We can there-
fore gain significant computational savings if we remove “irrelevant” parents of
decision nodes, and then find an equilibrium in the resulting reduced MAID.

Definition 3.1. A MAID skeleton G′ is a reduction of a MAID skeleton G if
G′ can be constructed from G by removing some set of information edges.

If G′ is a reduction of G, then both G and G′ allow the same set of possible
parameterizations. We say that a MAID M′ = (G′,Pr) is a reduction of M =
(G,Pr) if G′ is a reduction of G. By removing information edges into a node D,
we restrict the set of possible decision rules at D. Therefore the set of possible
strategy profiles in a reduction M′ is a subset of the strategy profiles available in
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the original MAID M. However, the mapping from strategy profiles to expected
utilities is unchanged: any strategy profile that is available in both M and M′

yields the same expected utility for a given agent in both M and M′.
Let M′ be some reduction of a MAID M. Suppose that a strategy profile

σ is a Nash equilibrium in M. If σ is a legal strategy in M′, it must also be a
Nash equilibrium in M′, since the set of alternative strategies for each agent is
smaller. On the other hand, suppose σ is a Nash equilibrium in M′. Then no
agent has an incentive to deviate to an alternative strategy that is available in
M′, but some strategy available in M might be more attractive. So σ is not
necessarily an equilibrium in M. Thus, if we want to find an equilibrium for
M by finding an equilibrium in a reduction, we must choose the reduction with
care. Specifically, we need a reduction that is safe in the following sense:

Definition 3.2. A reduction M′ of a MAID M is a safe reduction of M if
every strategy profile that is a Nash equilibrium in M′ is also a Nash equilibrium
in M. A MAID skeleton G′ is a safe reduction of G if for every parameterization
Pr of G, (G′,Pr) is a safe reduction of (G,Pr).

In this paper, we concentrate on safe reductions of MAID skeletons, rather
than safe reductions of particular MAIDs. As we show, at the skeleton level, we
can construct safe reductions that consider only graphical criteria, which can
be checked in polynomial time.

In the single agent case, Definition 3.2 reduces to a requirement that any
optimal strategy in the reduced ID is also an optimal strategy in the original
ID. Several papers have proposed graph-based algorithms for finding safe reduc-
tions for skeletons of single-agent IDs (Shachter, 1990; Zhang and Poole, 1992;
Shachter, 1999; Nielsen and Jensen, 1999). These algorithms are based on the
insight that some parents of a decision node may be ignorable: the agent has no
incentive to consider them, because he has an optimal decision rule that ignores
them.

Definition 3.3. A set X ⊂ PaG(D) is ignorable at D in a MAID skeleton G
if, for any parameterization Pr of G and any strategy profile σ for G, there is a
decision rule for D that ignores X and is optimal for σ in (G,Pr).

This definition of ignorable information is local in that it only considers the
usefulness of information for making a single decision, and does not make any
assumptions about the decision rules adopted at other nodes—even nodes con-
trolled by the same agent. It is easy to test for ignorability using d-separation.
If D ∈ Da, then RelUtilsG(D) denotes the utility nodes that matter to a when
making decision D: that is, the elements of Ua that are descendants of D in G.

Theorem 3.4. A set X ⊂ PaG(D) is ignorable at D in G if and only if
d-sepG (X, RelUtilsG(D) | (Pa(D) ∪ {D}) \X). Furthermore, there is a unique
subset of PaG(D), which we will call IgnorableG(D), such that X is ignorable
at D in G if and only if X ⊂ IgnorableG(D).

This d-separation criterion allows us to determine efficiently which parents
are ignorable at D. We make a single pass over G with a breadth-first search
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algorithm that follows active paths (Geiger et al., 1990; Shachter, 1998). We
start the breadth-first traversal at RelUtilsG(D); if it does not find an active
path to a node X ∈ PaG(D) given Pa(D) ∪ {D}, then X is ignorable at D.

4 Algorithms

In this section, we describe algorithms that use the d-separation criterion of
Theorem 3.4 to find safe reductions of MAIDs. We begin with the edge removal
algorithm, proposed for the single-agent case; we show in Section 5 that it also
applies to the multi-agent case. We then discuss why this algorithm can be
overly conservative, and introduce a new algorithm based on the notion of an
edge addition fixpoint.

4.1 Stepwise Edge Removal

The most obvious approach to removing edges from a MAID skeleton G is to
simply remove all the ignorable parents from some decision node D. More
precisely, we define Remove-Edges(G, D) to be the skeleton resulting from
removing the edges between IgnorableG(D) and D. If we apply this operator
enough times to all the decision nodes in a MAID, we eventually reach an edge
removal fixpoint :

Definition 4.1. A MAID skeleton G is an edge removal fixpoint if, for every
D ∈ D, Remove-Edges(G, D) = G.

In an edge removal fixpoint, no information edges are ignorable. We define
the algorithm Remove-Until-Fixpoint to be the algorithm that iterates over
the nodes in some order until no more edges can be removed. The order in
which we examine the decision nodes does not matter for correctness, but does
matter for efficiency; we address this issue in Section 4.3.

Example 4.2 (The Food-Loving Movie Star). Consider again our robot and
movie star scenario, but now suppose the movie star has overcome his discomfort
with robots, and just wants to eat at the restaurant with the best food. The robot
knows which restaurant has better food, but its only goal is to end up in the same
restaurant as the star. The movie star does not know which restaurant’s food is
better, but he can observe where the robot goes before making his decision. The
MAID for this example is shown in Figure 2.

Remove-Until-Fixpoint iterates over the decision nodes in some order;
suppose it processes Robot’s-Choice before Star’s-Choice. Better-Food is ig-
norable at Robot’s-Choice: conditioning on Better-Food cannot help the robot
catch the movie star, because the movie star cannot observe it. So the edge
Better-Food → Robot’s-Choice is removed. However, Prettier-Sign is not ignor-
able at this point because the movie star might condition on it. Moving on to
Star’s-Choice, the algorithm finds that both Robot’s-Choice and Prettier-Sign
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Figure 2: The Food-Loving Movie Star example.

are ignorable, because Robot’s-Choice is no longer an indicator of Better-Food.
So the two edges into Star’s-Choice are removed. Then in the second iteration,
the algorithm returns to Robot’s-Choice and finds that Prettier-Sign is now
ignorable.

However, there are other scenarios where Remove-Until-Fixpoint is un-
able to remove any edges, even though a smaller safe reduction exists. One
example is our scenario of the robot-phobic movie star, where neither of the
edges from Prettier-Sign to the two decision nodes can be removed.

4.2 Finding an Edge Addition Fixpoint

Consider the process by which we convince ourselves that removing both infor-
mation edges in Example 1.1 is safe. The argument is that in the reduction
where these information edges are removed, if we offered one agent the oppor-
tunity to condition on Prettier-Sign, there would be no incentive to take it. In
other words, if we added one information edge without the other, that edge
would be ignorable in the resulting MAID.

We can define an operator, which we call Add-Edges, which starts out from
an already reduced MAID G′, and considers reintroducing to a decision D the
parents X = PaG(D) \PaG′(D) that existed in the original MAID G. However,
it then eliminates those parents that are now ignorable. More precisely, we
define X ignore = IgnorableG(X→D)(D), and only add the parents in X \X ignore.

An edge addition fixpoint is defined as follows:

Definition 4.3. If G′ is a reduction of G, then G′ is a G-edge addition fixpoint
if for every D ∈ D, Add-Edges(G,G′, D) = G′.

Our argument above leads to the intuition that, if G′ is a G-edge addition
fixpoint, then G′ is a safe reduction of G. We prove this property in Section 5.1.

We can define a function Add-Until-Fixpoint(G,G′) that starts with any
reduction G′ of G, and applies Add-Edges until it reaches a fixpoint. To get
the smallest possible fixpoint, we can run this algorithm on G∅, which is the
reduction of G that has no information edges.
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Figure 3: The extended Road example with n = 6.

It is easy to see that Add-Until-Fixpoint(G,G∅) gives the desired result
in Example 1.1. To provide a more complex scenario, we consider an extension
of the Road example presented in (Koller and Milch, 2001).

Example 4.4. Suppose a road is being built from north to south through un-
developed land, and n agents have purchased plots of land along the road. As
the road reaches each agent’s plot, the agent needs to choose what to build on
his land: a factory, a shopping mall, or some houses. His utility depends on
what he builds, on some private information about which type of building his
land is suitable for, and on what is built north, south, and across the road from
his land. The agent can observe what has already been built on all plots north
of his land (on both sides of the road), but he cannot observe what will be built
across from his land or south of it. A MAID for this example with n = 6 is
shown in Figure 3.

In the version of the Road example used by (Koller and Milch, 2001), agents
cannot observe what was built more than one plot north of them. That restric-
tion is necessary to keep the strategy spaces from growing exponentially: in our
new version, an agent in row k can observe 2(k− 1) buildings to the north, plus
a suitability node, yielding 3(2k−1) parent instantiations. The resulting strategy
space grows exponentially in the number of agents, and finding equilibria for
this scenario is therefore infeasible in any but the smaller scenarios.

Remove-Until-Fixpoint does not remove any edges: each agent can ob-
serve the same buildings as his neighbor across the road, and he wants to predict
his neighbor’s decision, so he cannot ignore those buildings unless his neighbor
ignores them as well. Fortunately, Add-Until-Fixpoint(G,G∅) yields a safe
reduction where information edges between non-adjacent rows are removed.

Suppose the procedure iterates over the decision nodes from north to south
and from west to east. At every decision node, it adds an edge from the cor-
responding suitability node. At Building-2W, it also adds an edge from the
northern neighbor Building-1W. However, it does not yet add an edge from

8



Building-1E, because in the absence of an edge from Building-1E to Building-
2E, Building-1E does not affect anything agent 2W cares about. Moving on
to Building-2E, the algorithm adds an edge from Building-1W (as well as from
Building-1E ) because Building-1W may be useful to agent 2E in predicting
agent 2W ’s action. At Building-3W, the algorithm adds an edge from Building-
2W. It does not add an edge from Building-1W, because once agent 3W knows
what was built immediately north of him, knowing what was built two rows
north is not helpful. This situation illustrates why Add-Edges does not con-
sider adding each element of PaG(D) individually: indeed, Building-1W would
be not be ignorable if it were the only information agent 3W had.

Add-Until-Fixpoint continues in this way until it completes one iteration.
In the second iteration, it adds an edge Building-kE → Building-(k+1)W for
each k, since Building-kE may now be useful for predicting agent (k + 1)E’s
decision. The third iteration adds no edges, and the algorithm terminates.
Edges between non-consecutive rows are never added.

In the resulting reduced MAID, each decision has at most three parents: its
two neighbors to the north, and its own suitability node. The resulting strategy
space is significantly smaller (only 33 = 27 information sets). As shown in
(Koller and Milch, 2001), the resulting game can be decomposed and solved in
time linear in the number of agents.

4.3 Finding Fixpoints Efficiently

Both Remove-Until-Fixpoint and Add-Until-Fixpoint are guaranteed to
terminate, because they can only remove or add as many information edges as
exist in the original MAID, and they terminate if they make an iteration over
D without removing or adding edges. However, in the worst case, they will
only remove or add one edge per iteration. Thus, the total number of calls to
Remove-Edges or Add-Edges may be |PaG(D)| · |D|, where PaG(D) is the
sum of |PaG(D)| for all D ∈ D.

It is well known that for edge removal in single-agent IDs, it suffices to iterate
over the decision nodes in reverse chronological order, and process each decision
node only once (Nielsen and Jensen, 1999). Can we do something similar in
MAIDs, for both edge removal and edge addition? It turns out that we can, by
exploiting the relevance graph introduced by (Koller and Milch, 2001).

A decision node D′ is strategically relevant to a decision node D if the choice
of decision rule at D′ can affect the optimality of a decision rule at D; see (Koller
and Milch, 2003) for a precise definition. Intuitively, D′ is relevant to D if the
CPD of D′ can affect the utility nodes that are relevant to D. Using the criterion
of (Geiger et al., 1990), Koller and Milch define a node D′ to be s-reachable from
D in G if there is an active path from a new parent D̂′ of D′ to RelUtilsG(D)
given PaG(D) ∪ {D}. They show that s-reachability is a sound and complete
criterion for determining strategic relevance at the skeleton level.

As strategic relevance is a binary relation, it an be represented as a directed

9



graph.

Definition 4.5. The relevance graph for a MAID skeleton G, denoted Rel(G),
is the directed graph whose nodes are the decision nodes of G, and which contains
an edge from D′ to D if and only if D strategically relies on D.1

The relevance graph for the Road example is shown in Figure 4.

1W 1E

2W 2E

3W 3E

Figure 4: The relevance graph for the Road MAID (n = 6), with strongly
connected components outlined.

Koller and Milch showed that if two fully mixed strategy profiles2 σ and
σ′ differ only at nodes that D does not rely on, then the set of decision rules
for D that are optimal for σ is the same as the set optimal for σ′. We can
derive a similar result relating strategic relevance and ignorability. Roughly,
if two skeletons G and G′ differ (i.e., assign different parents) only at nodes
that D does not rely on, then IgnorableG(D) = IgnorableG′(D). The following
lemma (which generalizes Lemma 10 in (Lauritzen and Nilsson, 2001)) makes
this statement more precise:

Lemma 4.6. Let G′ be a reduction of G. If PaG(D) = PaG′(D), and PaG(D′) =
PaG′(D′) for all D′ that D relies on in G, then IgnorableG(D) = IgnorableG′(D).

Note that, in order to apply this lemma, we must check strategic relevance
in the original skeleton G. It is not sufficient to consider strategic relevance in
G′.

Given Lemma 4.6, it is fairly obvious that if Rel(G) is acyclic, we can obtain
an edge removal fixpoint by taking a topological ordering of Rel(G) and process-
ing each decision node once in this order. Removing a parent from a node D′

cannot make something ignorable at a node D earlier in the ordering, because
D does not rely on D′. We can obtain an edge addition fixpoint using this same
ordering as well.

When Rel(G) is cyclic, we cannot just find a topological ordering. However,
we can use an algorithm similar to the divide-and-conquer algorithm of (Koller

1The edges in this definition are the reverse of those in (Koller and Milch, 2001); the
definition was changed in (Koller and Milch, 2003) to make the parent relationship more
analogous to the parent relationship in BNs.

2A strategy profile is fully mixed if all actions have non-zero probability at all information
sets.
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and Milch, 2003), which breaks the relevance graph into strongly connected
components.

Definition 4.7. A set C of nodes in a directed graph is a strongly connected
component (SCC) if for every pair of nodes D 6= D′ ∈ C, there exists a directed
path from D to D′. An SCC is a maximal SCC if it is not a strict subset of
any other SCC.

Note that if Rel(G) is acyclic, then each SCC of Rel(G) consists of a single
node.

We can thus break our relevance graph up into maximal SCCs, which can
in turn be sorted in some topological ordering. Within an SCC, removing or
adding parents at one node may change the ignorable set at another, so we
may need to loop over the nodes in the SCC several times. However, if we
process SCCs in toplogical order, the removal or addition of edges for one SCC
cannot affect the ignorable sets in the preceding SCCs. We can use this ordering
for our algorithms Remove-Until-Fixpoint and Add-Until-Fixpoint For
example, on the Road MAID, if we apply Add-Until-Fixpoint in order of the
SCCs, the procedure first loops over {Building-3W,Building-3E} until it cannot
add any more edges; then it loops over {Building-2W,Building-2E}, and finally
over {Building-1W,Building-1E}.

This ordering is considerably more efficient than an arbitrary ordering. In
the worst case, a call to these algorithms loops over the elements of Cj once
for each information edge into decision nodes in Cj , removing one edge each
time, and then terminates after one more cycle. Hence, the maximum number of
times any decision node is processed is maxj(|PaG(Cj)|+ 1), which we will call
K. The total number of calls to Remove-Edges or Add-Edges is therefore
bounded by K ·|D|, as compared to (|PaG(D)|+1)·|D| for an arbitrary ordering.

5 Properties of the Algorithms

5.1 Safety

We would like to prove that if G′ is a G-edge addition fixpoint, then G′ is a safe
reduction of G. However, we need to include a caveat related to imperfect recall.

Example 5.1 (Forgetful Movie Star). Consider Example 1.1, but where the
robot-phobic movie star must choose a restaurant again a week later. His main
goal is still to avoid the robot the first night, but he also receives some utility
for choosing the same restaurant both times. The difficulty is that on the second
night, he does not remember where he went the first night. However, he has some
information that the robot does not have: he knows which restaurant sponsored
the winning youth baseball team this year. Assume both restaurants are equally
likely to sponsor the winning team. A MAID for this scenario is shown in
Figure 5.
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Figure 5: The Forgetful Movie Star example.

The reduction where both of the edges from Sponsorship to the movie star’s
decisions are removed is an edge addition fixpoint: the movie star cannot gain
by conditioning on Sponsorship at one decision and not the other. The only
equilibrium in this reduction is where the movie star picks a restaurant uniformly
at random each night, and the robot picks uniformly at random too. However,
this is not an equilibrium in the original MAID: the movie star can gain by
deviating at both his decision nodes, and (for example) always going to the
restaurant that sponsored the winning team. Then the robot still cannot predict
the star’s decision, and the star’s restaurant choices are always consistent.

Such phenomena cannot arise if all agents have perfect recall in the original
MAID. In fact, we can define a weaker criterion of sufficient recall. Let Rela(G)
denote the graph whose nodes are the decision nodes of agent a in G, with an
edge from D′ to D if and only if D strategically relies on D.

Definition 5.2. A MAID skeleton G has sufficient recall if for every agent a,
the graph Rela(G) is acyclic.

In Example 5.1, the movie star’s two decisions rely on each other, so the
MAID does not have sufficient recall. Under the assumption of sufficient recall,
we can now state the desired theorem: for any MAID skeleton G with sufficient
recall, Add-Until-Fixpoint(G,G∅) returns a safe reduction of G.

Theorem 5.3. If G has sufficient recall and G′ is a G-edge addition fixpoint,
then G′ is a safe reduction of G.

Proof. Assume for contradiction that a strategy profile σ is an equilibrium in
M′ = (G′,Pr), but that in M = (G,Pr), some agent a wants to deviate to
a strategy σ′a. Because Rela(G) is acyclic, we can use a backward induction
algorithm to construct a strategy σ∗a that is a best response to σ−a in M. In
particular, σ∗a is at least as good for a as σ′a. Furthermore, by the definition
of an edge addition fixpoint, at each node D ∈ Da we can choose an optimal
decision rule that ignores PaG(D) \ PaG′(D). So we can construct σ∗a so it is a
possible strategy in M′. But then a must want to deviate to σ∗a in M′ as well,
contradicting the assumption that σ is an equilibrium in M′.
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We can use the safety result for edge addition to prove safety for the edge
removal algorithm. We first show that edge removal is conservative relative to
edge addition: if we remove edges using edge removal, we will not want to add
any edges back.

Lemma 5.4. If G′ is a G-edge addition fixpoint and D is any decision node in
G′, then the output of Remove-Edges(G′, D) is a G-edge addition fixpoint.

Since G is trivially a G-edge addition fixpoint, it follows from Theorem 5.3
that Remove-Until-Fixpoint(G) returns a safe reduction of G. This result
generalizes a known result for the single-agent case (Shachter, 1990).

Another important property of stepwise edge removal in the single-agent case
is that it does not add edges to the relevance graph (Lauritzen and Nilsson,
2001). We can generalize this result to all edge addition fixpoints, and hence to
the output of our two multi-agent algorithms:

Theorem 5.5. If G′ is a G-edge addition fixpoint, then every edge in Rel(G′) is
also an edge in Rel(G).

This theorem is useful for two reasons. First, the complexity of finding an
equilibrium in a MAID using an algorithm like the divide-and-conquer algo-
rithm of (Koller and Milch, 2001) depends on the size of the largest SCC in the
relevance graph. Theorem 5.5 implies that the SCCs in the reduction generated
by Add-Until-Fixpoint(G,G∅) are no larger than those in the original MAID.

Also, although every game has a Nash equilibrium (Nash, 1950), it may be
that all the equilibria require an agent’s moves at different decision nodes to
be correlated. In a MAID with imperfect recall, there may not be a behavior
strategy profile — an assignment of decision rules to individual decision nodes
— that corresponds to such an equilibrium (Kuhn, 1953). However, we can
show that in a MAID with sufficient recall, there is always a behavior strategy
equilibrium. Theorem 5.5 guarantees that when we move from G to a G-edge
addition fixoint, we maintain sufficient recall, and so there is still a behavior
strategy equilibrium.

5.2 Maximality and minimality

By definition, Remove-Until-Fixpoint(G) yields an edge removal fixpoint,
and we have seen that its output is also a G-edge addition fixpoint. We will
refer to such a double fixpoint as an edge-stable reduction of G. It turns out
that Add-Until-Fixpoint(G,G∅) also yields an edge-stable reduction, as we
can show using the following lemma:

Lemma 5.6. If G′ is an edge removal fixpoint and D is any decision node in
G′, then Add-Edges(G,G′, D) returns an edge removal fixpoint.

G may have many other edge-stable reductions besides the ones our algo-
rithms return. For example, in the Road MAID, there is an edge-stable reduc-
tion where the agents in row 3 ignore Building-1W, but not Building-1E. We
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can define a partial order over edge-stable reductions, where we write G′ @ G if
G′ is a reduction of G. Then we can prove the following:

Proposition 5.7. For any skeleton G, the reduction G′ returned by Remove-
Until-Fixpoint(G) is the maximum edge-stable reduction of G, in the sense
that G′′ @ G′ for every edge-stable reduction G′′ of G.

Proposition 5.8. For any skeleton G, the reduction G′ returned by Add-
Until-Fixpoint(G,G∅) is the minimum edge-stable reduction of G, in the
sense that G′ @ G′′ for every edge-stable reduction G′′ of G.

Thus, we see that Remove-Until-Fixpoint(G) and Add-Until-Fixpoint(G,G∅)
provide two extremes on a spectrum of possible edge-stable reductions, the first
resulting in the largest number of remaining information edges, and the second
in the smallest number. Interestingly, when G has an acyclic relevance graph,
the two algorithms yield the same output, so G has exactly one edge-stable re-
duction. This implies that in single-agent IDs (with sufficient recall), the edge
addition fixpoint algorithm provides no benefit over stepwise edge removal.

6 Discussion and Conclusions

Detecting ignorable information allows us to reduce the dimensionality of the
strategy space in a decision problem, sometimes exponentially, allowing us to
find strategies in scenarios that would otherwise be intractable. In single-agent
scenarios, we can obtain a safe reduction of an influence diagram by stepwise
removal of ignorable edges. We show that this reduction is still safe in the
multi-agent case, but does not obtain the minimal safe reduction in many cases.
We show that it is sufficient for a reduction G′ to be a G-edge addition fixpoint,
and, based on this result, provide an algorithm that removes all information
edges from G and then adds them back as necessary. Our addition fixpoint
algorithm can reduce the strategy space exponentially in scenarios such as the
Road example, where stepwise edge removal is not helpful.

Both the stepwise edge removal and the edge addition fixpoint algorithm are
safe, in that they guarantee that we can find an equilibrium in the reduced MAID
which is also an equilibrium in the original MAID. However, there may be other
equilibria in M that are lost in the transformation to M′. Surprisingly, even
the conservative stepwise edge removal algorithm can eliminate the equilibrium
that provides the highest expected utilities to all the agents. Recall that in
Example 4.2, the robot knows which restaurant has better food, but its only
goal is to end up at the same restaurant as the movie star. The movie star’s
only goal is to get the best meal. The equilibrium preferred by both agents
is where the robot always chooses the restaurant with the best food, and the
movie star always follows the robot. However, we saw that a single application
of Remove-Edges to Robot’s-Choice removes the incoming edge from Better-
Food. This eliminates the preferred equilibrium.
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How do such results arise from our apparently conservative criterion for re-
moving edges? Recall that X is ignorable at a decision node D ∈ Da if for any
strategy profile σ, there is a decision rule δ for D that ignores X and is optimal
(in terms of a’s utility) for σ. Suppose σ is the preferred equilibrium that we
just described for Example 4.2, and D is Robot’s-Choice. Given that the movie
star will follow the robot, the robot is indifferent between always choosing the
better restaurant and choosing a restaurant uniformly at random. So indeed
there is a decision rule δ that ignores Better-Food and is still (weakly) optimal
for σ. But the definition does not consider the fact that deviating to δ would
disturb the equilibrium.

Thus, removing ignorable information in a MAID may involve a tradeoff
between computational resources and quality of the solution. Removing edges
can make the solution of a game computationally tractable, but may result in a
suboptimal equilibrium. To avoid removing “good” equilibria, one might want
to define an ignorability criterion that effectively asked, “Would anyone care if
agent a ignored X at D?” Providing a formal definition for such a criterion,
and for the notion of safety to which it corresponds, is a topic for future work.
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