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Abstract

Chemists often use hand-drawn structural diagrams to capture and communicate
ideas about organic compounds. However, the software available today for specifying
these structures to a computer relies on a traditional mouse and keyboard interface,
and as a result lacks the ease of use, naturalness, and speed of drawing on paper.
In response, we have developed a novel sketch-based system capable of interpreting
hand-drawn organic chemistry diagrams, allowing users to draw molecules with a pen-
based input device in much the same way that they would on paper. The system’s
ability to interpret a sketch is based on knowledge about both chemistry and chemical
drawing conventions. The system employs a trainable symbol recognizer incorporat-
ing both feature-based and image-based methods to locate and identify symbols in
the sketch. Analysis of the spatial context around each symbol allows the system to
choose among competing interpretations and determine an initial structure for the
molecule. Finally, knowledge of chemistry (in particular atomic valence) enables the
system to check the validity of its interpretation and, when necessary, refine it to
recover from inconsistencies. We demonstrate that the system is capable of recogniz-
ing diagrams of common organic molecules and show that using domain knowledge
produces a noticeable improvement in recognition accuracy.

Thesis Supervisor: Randall Davis
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Visual diagrams are a means of capturing and communicating information in a va-

riety of scientific domains, and are an important aspect of the design and problem

solving process. Chemists, in particular, regularly use molecular diagrams to convey

information about chemical compounds. These diagrams express a molecule’s three

dimensional spatial structure more directly than textual formulas, which by them-

selves do not readily communicate the visual properties of a compound. Structure

diagrams are, as a result, often considerably more informative than the formula alone,

conveying meaning about a molecule’s chemical properties and potential interactions.

When chemists describe the structure of a compound to a colleague, they typically

do so by sketching the diagram on paper or on a whiteboard. However, when they

need to convey the same structure to a computer, they must re-create the diagram

using programs that rely on traditional point-click-and-drag styles of interaction.

With the growing popularity of pen based interfaces such as Tablet PCs and digital

Smartboards, it is now possible to capture these types of diagrams in digital ink.

This thesis presents our work on an intelligent sketch understanding system that

provides a more natural way to specify chemical structures to a computer. To preserve

the familiar experience of drawing on paper, the interface supports the same set of

standard chemical notations and drawing conventions. However, unlike real pen and

paper, sketches created and interpreted using our system can be readily converted to

structured formats that are compatible with other computer programs. This allows

11



Figure 1-1: Left: A chemical structure drawn on a Tablet PC and interpreted using our
system. Bonds are colored blue, elements are colored turquoise with their interpretation
in red, and turquoise boxes represent implicit carbons atoms from bond-bond connections.
Right: The same chemical structure created using ChemDraw, a popular compound au-
thoring tool.

these sketched diagrams to be exported to third party software tools for tasks such

as structure analysis, visualization, and database search.

1.1 Comparison to Existing Chemistry Drawing

Tools

Existing software systems for specifying chemical structures rely on traditional CAD-

like interfaces such as the one shown in Figure 1-1. These programs typically require

that users first select a chemical component (e.g., a wedge or hash bond) from a

toolbar before it can be added to the diagram. Textual information (e.g., representing

elements and functional groups) is specified using the keyboard, either by typing the

notation directly or by pressing a designated shortcut key.

These structure drawing programs offer many benefits over sketching on paper.

They allow users to easily export their diagrams to other chemical software tools,

for example in order to search for all publications or patents that mention the com-

pound in question. They can also generate neat, typewritten diagrams that are ideal

for publication. However, despite these advantages, existing systems for specifying

12



molecular diagrams do not provide the ease of use, naturalness, and speed of simply

drawing on paper. The work we present here attempts to bridge this gap between

how people naturally express chemical drawings and how computers interpret them.

1.2 Approach Overview

Our approach to this problem is inspired by how people interpret sketches of chemical

structures. When we examine a sketch, we use a wide range of information: we

consider the low level geometry (e.g., individual strokes) and the high level structure

(e.g., the relationships between objects), and use our understanding of the semantics

of the domain (e.g., what constitutes a valid configuration of atoms in a molecular

compound).

While there has been a great deal of work on shape recognition in hand drawn di-

agrams, relatively little effort has been devoted to using knowledge about the domain

to better understand and interpret a sketch. To explore this last idea, we have de-

veloped a sketch interpretation system that is aware of the rules and knowledge that

govern how atoms combine to form compounds. While our implementation currently

focuses on hand-drawn chemical diagrams, we believe that the approach presented

here is more general and could be extended to other domains as well.

1.3 Contributions

This thesis makes three significant contributions to the field of sketch understanding

and intelligent user interface design.

• First, it presents a method for recognizing sketches that contain a wide range

of notations, including intermixed text, drawing, and fill-in shapes. The sys-

tem uses knowledge about both chemistry and chemical drawing conventions

to interpret these freehand diagrams, allowing users to draw molecules with a

pen-based digital input device in much the same way that they would on paper.

13



• Second, it demonstrates how domain knowledge, in this case of knowledge of

chemistry, can guide the sketch interpretation process, improving recognition

accuracy by allowing the system to recover from low level recognition errors.

• Third, it reports the evaluation of our system on real-world examples of chemical

diagrams. We collected sketches from users familiar with organic chemistry

using a Table PC, and report the accuracy and performance of our system on

these examples. There are few, if any, reported results for sketch recognition

systems in our domain.

1.4 Outline

In the following chapter we will more closely examine the challenges in understanding

hand drawn chemical diagrams. In Chapter 3 we describe our approach to segment-

ing strokes into groups that represent intended symbols, using visual and geometric

features to distinguish between different shapes in the domain. In Chapter 4 we look

at how the system examines the spatial context around each symbol to construct a

complete chemical structure, and how it uses chemistry domain knowledge to refine

its interpretation and recover from recognition errors. We present the experimental

evaluation of the effectiveness of our system in Chapter 5, an overview of related work

in Chapter 6, and conclude with a discussion of future work in Chapter 7.

14



Chapter 2

Making Sense of Chemical

Drawings

This chapter begins by describing the notations and drawing conventions used in

chemical diagrams, such as those shown in Figure 2-1. Next, we examine some of the

difficulties in interpreting freehand sketches due to signal level noise and conceptual

variations in sketched symbols. Finally, we look at the challenges in making sense of

chemical diagrams, such as dealing with intermixed text and drawn shapes.

2.1 Chemical Notations

Chemical diagrams convey the shape or configuration of a molecule. This configura-

tion is specified by atoms (indicated by their element symbols) and covalent bonds

between atoms. To capture the three dimensional structure, hash bonds represent

bonds which angle down beneath the plane and wedge bonds represent bonds which

angle up above the plane. The vocabulary of chemical symbols that the system cur-

rently supports is outlined in Figure 2-2. Unlike gesture based approaches to sketch

recognition [13, 10] which impose many constraints on how symbols can be drawn,

our interface is designed to allow users to draw in much the same way as they would

on paper.

In addition to the notations described above, our system accommodates two other

15



(A) (B)

(C)

Figure 2-1: Three examples of hand drawn chemistry diagrams: (A) Penicillin, (B) Aspirin,
and (C) Sildenafil.

Elements

Aromatic RingStraight Bonds Wedge Bond Hash Bond

SubscriptsGroup Abbrev Superscripts

Figure 2-2: Notations used in chemical diagrams. Wedge and hash bonds show the three
dimensional structure of a molecule: hash bonds angle down beneath the plane, wedge
bonds angle up.
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common chemical drawing conventions. First, chemists frequently employ what are

termed implicit elements, omitting carbon and hydrogen atoms wherever their pres-

ence can be inferred by a knowledgeable viewer. A carbon atom is implied whenever

two or more bonds attached together without a connecting element, or when a bond

is drawn without an attachment at one end. For each implicit carbon, enough implicit

hydrogen atoms are assumed to be present to fill any vacancies in its valence shell, so

that it will have the requisite four connections. In Figure 2-2, for example, the four

bonds in the lower left box are all attached to one implicit carbon atom in the center.

The second special notation involves indicating an aromatic ring by drawing a

circle inside a hexagonal configuration of bonds, as shown in the lower right box in

Figure 2-2. These rings represent hydrocarbons with six carbon atoms connected by

alternating single and double bonds. To handle this notation, the system recognizes

a circle inside a 6-carbon cycle as part of an aromatic ring symbol, rather than as an

oxygen atom.

2.2 Variations in Hand Drawn Symbols

Hydrogen Hash BondsNitrogen

(A)          (B)         (C) (A)          (B)         (C) (A)          (B)         (C)

Figure 2-3: Examples of three nitrogen, hydrogen, and hash bond symbols that demon-
strate common sources of variation in how freehand shapes are drawn

One of the main challenges in interpreting freehand sketches is dealing with vari-

ations in how shapes are drawn. While the task of identifying simple symbols such as

straight bonds seems fairly straightforward, hand drawn sketches are often messy and

imprecise. Lines that were intended to be straight may in fact be curved or jagged.

Two drawings of the same symbol, even if they are from the same user, are never

17



perfectly uniform.

Figure 2-3 shows three examples of hydrogen, nitrogen, and hash bond symbols,

each of which displays a great deal of variation compared to the other symbols of the

same type. The first nitrogen symbol, for instance, is more curved than the others,

and is noticeably skewed to the right. The third nitrogen, drawn with three strokes,

contains a gap between the first and second stroke.

All of the symbols in each set were drawn with different numbers of strokes; for

example, the first hydrogen was drawn with a single stroke, the second with two

strokes, and the third with three strokes. In the middle hydrogen symbol, the user

did not lift up the pen between the first and second stroke, causing an unintended

ink segment connecting the vertical and horizontal segments of the H. We will refer

to these types of differences as signal-level variations.

In addition to these kinds of unintended differences, the three hash bonds in Figure

2-3 were each drawn with different numbers of vertical dashes. These conceptual

variations differ from those mentioned above since they represent multiple acceptable

ways of drawing a hash bond. Signal and conceptual variations are a problem since the

recognizer must be able to identify the correct class for shapes despite the differences

in how they are drawn. In Chapter 3 we show how our system uses an ensemble

of three symbol recognizers and general geometric features to handle these types of

variations.

2.3 Challenges in the Chemistry Domain

There is a growing body of work on graphical sketch interpretation. However, there

has been relatively little work that deals with the types of unconstrained diagrams

found in chemical drawings. Molecular sketches similar to those shown in Figure 2-4

present a number of interesting challenges.

First, diagrams such as the one in Figure 2-4(A) contain extensively intermixed

drawing and handwriting. This requires a recognition system that is not only able

to determine the correct interpretation for text regions, but also distinguish between

18



(A) (B) (C) (D)

Figure 2-4: Four examples that illustrate some of the challenges (circled) in interpreting
hand-drawn chemical diagrams.

text and drawn shapes.

Second, segmentation and parsing is difficult because multiple plausible interpre-

tations may exist for different groupings of the strokes in a sketch. For example, in

isolation the two vertical lines in the H (Hydrogen) symbol in Figure 2-4(B) might

also be interpreted as either a double bond or as part of the neighboring hash bond.

Third, freehand drawings of chemical diagrams are frequently ambiguous due to

inherent similarities between symbols. For example, the circled symbol in Figure

2-4(C) can reasonably be interpreted as either an H or an N . The only conceptual

difference between these two symbols is the angle of the middle stroke, a distinction

that may not be apparent in messy sketches such as this one.

Fourth, the structure intended by the sketch (i.e., which atoms are linked) may

not be obvious. In Figure 2-4(D), the system would need to determine that the N

and the H symbols should be connected while the F (Fluorine) and the O (Oxygen)

should be kept separate, something not obvious from the spatial arrangement of the

letters alone.

Many of these difficulties can be resolved by using a combination of spatial context

(i.e., how a symbol interacts with its surrounding components) and domain knowledge

(i.e., rules and constraints that specify what constitutes a valid chemical structure).

For example, in Figure 2-4(C), we can use our knowledge about atomic valence to

19



correctly identify the circled group of strokes as a hydrogen atom, recognizing that

the alternative interpretation of N2N is not a valid chemical structure. We show in

Chapter 4 how our system uses domain knowledge to resolve recognition ambiguities

such as this one.

20



Chapter 3

Stroke Segmentation and Symbol

Recognition

The previous chapter outlined the set of notations used in chemical drawings and

discussed some of the challenges in identifying sketched symbols. In this chapter we

begin with a broad overview of the interpretation process, followed by a description

of the segmentation process and the recognition engine. Finally, we look at the how

the system is trained to distinguish between the different symbols in the domain.

3.1 Implementation Overview

Figure 3-1 shows the overall sketch interpretation process in our system. The first

stage involves two related subproblems: ink parsing (i.e., clustering strokes into groups

that represent individual symbols), and symbol recognition (i.e., determining what

symbol a given group of strokes represents). Rather than perform parsing and recogni-

tion as separate steps, our system examines combinations sequentially drawn strokes

up to a certain size, using the symbol recognizer to evaluate each group. In the

structure interpretation stage, the system combines the resulting hypotheses about

individual symbols to form a complete chemical structure, guided by domain knowl-

edge about how chemical symbols fit together (e.g., two strokes meeting at a “T”

junction cannot be bonds). Finally, during domain verification, it checks whether

21



Alternative
Hypotheses

Output 
Interpretation

Domain 
Verification

Input Strokes

Parsing & 
Recognition

Structure
Interpretation

Figure 3-1: Overview of the system architecture.

this structure conforms to its knowledge of chemistry and attempts to correct any

inconsistencies by reconsidering the set of alternative hypotheses.

The system carries out this process as the user draws, providing real-time feedback

and updating its interpretation with each new stroke1. Once the sketch has been

interpreted, the resulting structure, expressed in a standard chemical specification

format, can be passed to a variety of different programs such as ChemDraw (for

rendering) or SciFinder (for querying databases of chemical properties, reactions,

etc).

3.2 Stroke Segmentation

The first challenge in interpreting free-hand diagrams is stroke segmentation: divid-

ing strokes into conceptually separate substrokes that represent independent symbols.

As described in Section 2.1, chemists often draw sequences of straight bonds (con-

necting implicit carbons) using a single stroke. In order to accurately discern the

intended structure of the diagram, the system needs to divide these multi-symbol

1Performance is real time on a 1.5GHz Tablet PC with 1.5GB of memory
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strokes into their individual components. Figure 3-2 shows two examples where the

system correctly segmented a stoke into its intended subparts.

(A)                                                             (B)

Figure 3-2: An example of the stroke segmentation process: dividing a stroke into con-
ceptually separate substrokes which represent individual symbols. Not that the multi-scale
approach allows the system to correctly classify the circled two regions in (A) as corners
and the similar region in (B) as noise.

Our segmentation algorithm models such bond sequences as poly-lines, with the

corner points separating the stroke into independent components. Our approach to

poly-line approximation is similar to the one proposed in [14], which identifies these

points by searching for regions of low pen speed and high curvature. One difference

is that our method uses only curvature to identify corners. This is because we found

that, for our task, including pen speed did not improve performance over using only

the curvature information alone.

Another difficulty in stroke segmentation comes from the fact that the system

does not know a priori the scale of the segments it needs to identify. If it considers

any region of high curvature as a corner, it risks generating false positives, classifying

variations due to signal noise as intended corners. Conversely, if the system considers

only changes in orientation that persist over large regions of the stroke, it may miss

corners that separate short segments. To deal with this issue we employ a multi-scale

method [14] that computes the poly-line approximation at different scales, choosing

the one that provides the best tradeoff between quality of fit (measured by the mean

square error) and the complexity (measured by the number of predicted corners).

This approach allowed the system to correctly classify the curved regions circled in

Figure 3-2(A) as corners and the similar curved region in (B) as noise.
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3.3 Stroke Parsing

The next task in interpreting a sketch is to parse the individual pen strokes into

groups that represent valid symbols. Rather than consider all possible combinations,

our system examines the strokes in the order in which they were drawn. It enumerates

all possible sequence of up to n consecutively drawn strokes2 and evaluates how well

each group matches the symbols in the domain (described in Section 3.4 and 3.5).

Figure 3-3 shows some of the candidate stroke groups generated by this process.

3
4

5

1

2

Stroke 1 Strokes 1-2 Strokes 3-5Stroke 1-3

… …

Figure 3-3: Examples of candidate stroke groups generated by stroke parser. The leftmost
group corresponds to a bond in the ground truth label while the rightmost group corresponds
to a nitrogen symbol. The rest of the candidates represent invalid groupings of strokes. All
of these candidates will be evaluated by the symbol recognizer.

While this sliding window approach assumes that symbols are drawn with tempo-

rally contiguous strokes, we have found in our user observations that this was not a

significant limitation. People rarely interspersed symbols when drawing, and in many

of the cases where they did, the author was making a correction or a touch-up of

a previously drawn symbol. As a result, we expect this kind of interspersing to be

even less common in an interactive system where the recognizer provides real-time

feedback on its interpretation.

2The current limit of n = 7 strokes is easily changed based on the user and the domain.
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3.4 Symbol Recognition

Our approach to symbol classification is based around an ensemble of three individual

symbol recognizers. In taking this multi-recognizer approach we want to allow the

system to benefit from different ways of representing the information in a sketch. For

example, while a time-series representation of a stroke may be suitable for distin-

guishing between text symbols, it may not be as appropriate for recognizing shaded

shapes such as wedge bonds.

The output interpretations and confidence values from these recognizers, along

with a set of geometric features, are used to train a classifier that distinguishes be-

tween the different shape classes. We will begin by describing each of these recognizers

in turn, followed by an overview of the training and classification process in Section

3.5.

3.4.1 Microsoft Handwriting Recognizer

The first recognizer is the handwriting recognition system provided by the Microsoft

Tablet PC SDK [6], which is used for identifying text symbols such as elements and

digit subscripts. The output consists of a ranked list of recognition possibilities, each

of which is assigned one of three confidence levels. Since there is information contained

in both the confidence level and the rank, we combine these two measures into a single

confidence score by converting the confidence level to a numerical value (Strong =

1.0, Intermediate = 0.9, Poor = 0.8) and dividing it by the rank. The label and

confidence score of the best interpretation that corresponds to a valid chemical text

symbol (i.e., element, group abbreviation, or number) is included in the classification

feature vector.

3.4.2 Sequence-based Symbol Recognizer

While the Microsoft handwriting system works well for neatly printed symbols, it

is less reliable on messier sketches. The confidence level and rank returned by the

system provide only a coarse estimate of the match quality. It also often returns high

25



confidence interpretations (false positives) when evaluating non-text strokes (e.g.,

strokes that represent bonds or only parts of symbols). This is likely a result of its

training set: it was designed for use on words and sentences, rather than individual

letters and digits.

To alleviate some of the limitations of the Microsoft system, and to handle non-text

chemical notations such as hash bonds, we use a second, template-based recognizer

that compares the candidate input symbol or target to a set of hand drawn refer-

ence templates. This recognizer calculates the similarity between two shapes using a

dynamic time warping (DTW) distance metric [5, 2, 12] based on the best possible

point-to-point alignment between two sequences.

In computing the DTW distance, the target symbol (T ) and reference template

(R) are both normalized so that the longest dimension (width or height) of each is

between [0, 1]. An alignment between the two shapes consists of a set of mappings

Mi = (ti, ri), where ti and ri represent the indices in T and R respectively. The cost

of an alignment is then defined as the mean distance between each pairing of points,

defined as:

d(ti, ri) = α(dθ(ti, ri)/π)2 + (1− α)(dxy(ti, ri)) (3.1)

dθ(ti, ri) = Min(|θT
ti − θR

ri|, |2π − (θT
ti − θR

ri)|) (3.2)

dxy(ti, ri) = (xT
ti − xR

ri)
2 + (yT

ti − yR
ri)

2 (3.3)

where θ represents the orientation angle at a given point in the sequence, x and y

represent the position of the point relative to the upper left corner of the bounding

box of the symbol, and α is a weight3 on dθ and dxy.

We impose the restriction that the mappings in the alignment must be monotoni-

cally increasing: ri ≥ ri−1 if ti ≥ ti−1. Therefore, alternative alignments are generated

by skipping points in either sequence if it is determined that the corresponding point

in the other sequence is missing. In these cases, we add a skip penalty that also serves

as an upper bound on the match distance for each pairing. The alignment with the

3α = 0.5 in our implementation
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(A) (B)

Figure 3-4: Examples of partial symbol alignments used to reorder the strokes in a symbol.

lowest distance, determined using a dynamic programming approach, is used as the

match distance.

To deal with symbols drawn with more than one stroke, we take the standard

approach of concatenating the individual strokes into a single sequence of points.

However, one limitation of this method is its sensitivity to the manner in which

symbols are drawn. For example, this algorithm can return a high match distance

between two visually identical symbols if they were drawn with different stroke orders.

This sensitivity also applies to the direction of the pen movement when strokes were

created. According to this measure a horizontal line drawn left-to-right is different

from the same line drawn right-to-left.

In order to reduce the sensitivity of the recognizer to these types of variations, our

modified approach attempts to reorder the strokes in the target to better match those

in the template (alternatively, if the template contains more strokes than the target,

the process described below is reversed and the strokes in the template are reordered

instead). It starts by computing a set of partial alignments, shown in Figure 3-4, by

matching each stroke in the target in isolation. The system then reorders the strokes

based on their corresponding alignment positions in the template. A stroke that

matches the start of the template sequence will be placed first in the new ordering,

while one that best matches the end of the sequence will be placed last. The system

then performs the complete match between the reordered target and the template. To

account for strokes drawn in opposite directions, the reordering process outlined above

also matches the reverse sequence of each stroke against the template sequence. If the

reverse sequence results in a lower match distance, it is used in the final alignment in
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place of the original stroke.

The label and match distance of the best text (e.g., elements) and non-text (e.g.,

hash bonds) matches are included in the set of classification features. This distinction

between text and non-text symbols is made the help the classifier distinguish between

these two classes of notations, which we describe in more detail in Section 3.5.

3.4.3 Image-based Symbol Recognizer

Finally, we employ a third, image-based recognizer to identify shaded symbols such

as wedge bonds, which are more easily characterized as an image (i.e., an area of ink)

than as a sequence of points. This recognizer is based to the Tanimoto coefficient

proposed in [8], which measures the degree of pixel overlap between two binary images.

Since this metric compares images rather than point sequences, the two symbols

are both normalized so that their longest dimension is between [1, 24] and rendered

as 24x24 binary bitmaps. The Tanimoto coefficient T (T, R) is then computed as:

T (T,R) =
ntr

nt + nr − ntr

(3.4)

where nr is the total number of black pixels in the reference R, nt is the total number

of black pixels in the target T , and ntr is the number of overlapping black pixels. This

value measures the number of overlapping pixels between the two images normalized

by the total number of black pixels in the union of the two images. The label and

overlap score of the best match are included in the set of classification features.

3.4.4 Template Selection

The two template matching algorithms both require a great deal of computation,

making it impractical to include every training symbol in the set of match templates.

This is especially true if the recognizer is used in an interactive system, which must

continually update its interpretation of the sketch as the user draws.

In order to reduce the number of templates without significantly degrading recog-

nition accuracy, our system selects a subset of representative training examples for
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(A)                   (B)                  (C)                  

Figure 3-5: Normalizing symbol orientation: The polygon approximation of the wedge bond
is outlined in (A) and the principal axis of the symbol is shown in (B). The normalized shape
is shown in (C).

each of the symbols in the domain. It does this by merging similar (and therefore

potentially redundant) templates using complete-link hierarchical clustering, a greedy

method that iteratively combines the two clusters whose merger produces the smallest

diameter. From each of these clusters, the system selects the template that is closest

to the cluster center: the one with the lowest average distance to all other examples

in that cluster.

3.4.5 Rotational Invariant Templates

In chemical diagrams, non-text symbols such as hash and wedge bonds can be drawn

in any orientation. In order to make the template recognition process invariant to ro-

tational differences, the system normalizes all templates for hash and wedge bond to a

common orientation: with the principle axis of the symbol (representing its direction)

aligned with the x-axis. We determine the principal axis of a shape by averaging the

two longest edges in its polygon approximation, as shown in Figure 3-5. By normal-

izing the candidate group and the reference template to the same orientation before

performing the match, the sequence and image based symbol recognizers are made

rotationally invariant.

3.4.6 Geometric Features

We augment the confidence scores and labels produced by the three recognizers with

a set of geometric features derived from the strokes in each candidate group. The

purpose of these features is to help the system distinguish between similar symbols

and between valid and invalid stroke groupings:
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• Number of strokes: This feature takes advantage of common drawing conven-

tions: an O (for oxygen), for instance, is usually drawn with a single stroke,

while hash bonds typically contain at least three strokes.

• Bounding-box dimensions (a vector containing the width, height, and diago-

nal length of the smallest axis aligned bounding box for the candidate group):

Bounding boxes of connectors (e.g., different types of bonds) are typically larger

and can have a wider range of aspect ratios than bounding boxes for element

symbols.

• Ink density (the ratio of the amount of ink in the candidate group to the diagonal

length of its bounding box): Ink density can help indicate the type of symbol:

text symbols and wedge bonds often correspond to regions of high ink density.

• Inter-stroke distance (the maximum distance between individual strokes in the

group): This feature can help distinguish letters like “H” and “N” from hash

bonds and double bonds.

• Poly-line approximation (average mean squared error (MSE) and average seg-

ment length of the poly-line approximations for the strokes in the group): This

feature is useful for identifying straight bonds and hash bonds.

• Line-segment orientation (a vector of values that summarizes the relative ori-

entations of line-segments in the candidate group): This feature, based on the

poly-line fit, includes the number of parallel lines, perpendicular lines, and in-

tersections between line segments. It is useful for identifying symbols made

up of many line segments (e.g., hash bonds, drawn using a sequence of short

parallel lines).

3.5 Support Vector Machine Classification

Once the final feature vector has been generated our recognizer trains a support

vector machine (SVM) [18] to distinguish between the symbols in the domain. Our
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implementation is based on a Java version of SMO [11]. Since the symbol classifier

needs to distinguish between more than two classes, we use the common one-vs-one

strategy for combining binary classifiers. This approach constructs a classifier for

each possible pairing of the n classes. A new candidate is then classified using all

n(n+1)
2

binary classifiers, and the final decision is determined by the number of votes

received for each class.

We found that when training the SVM, it was useful to combine the individual

textual notations (e.g., N , H, R) into an abstract Text class; this generalization led to

a noticeable higher classification accuracy. One possible reason for this improvement

is that there were insufficient examples to properly train the SVM classifier to distin-

guish between the full range of chemical notations. Instead, the SVM evaluates how

likely a candidate group matches the general Text class while the exact textual labels

(e.g., N , H) are determined by averaging the output from the individual recognizers

in Section 3.4.

In addition to returning the most likely class label for each candidate symbol, the

system also calculates a set of probability estimates for each of the classes. These

probability estimates are used to rank the set of alternative interpretations for each

candidate group. The process for selecting among these alternatives is described in

Chapter 4.

As we discussed earlier, many of the candidate stroke groups generated by the

parsing process in Section 3.3 do not correspond to intended symbols. To avoid

incorrectly classifying these groups as symbols, the recognizer is also trained on invalid

stroke groups that contain strokes from multiple symbols or contain only a subset of

the strokes in a symbol.

3.5.1 Scale Invariance and Feature Normalization

Variations in drawing styles arise across both different users and different input de-

vices, such as Tablet PC’s and digital whiteboards (e.g., SmartBoards). As a result,

the scale of the chemical diagram can vary greatly depending on the user and the

sketching environment. To account for these differences, our system employs a pre-
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processing step to determine the scale of the molecule by approximating the length

of straight bonds in the sketch. Even though the size and shape these bonds can

vary greatly, we have found that long straight line segments in the sketch typically

correspond to long straight bonds in the chemical structure.

Based on this approach, the system searches for strokes with accurate poly-line

approximations (low MSE) and correspond to long line segments. After removing the

top 5% of these lengths as outliers, the system takes the longest remaining line as

its maximum-bond-length estimate. This value is then used to normalize the scale-

sensitive geometric features (e.g., bounding box dimension) listed in the previous

section, making the recognizer more robust to differences in scale.
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Chapter 4

Structure Interpretation

After our system has generated the set of potential candidates, it needs to choose a

final set of symbols and determine the spatial structure of the resulting compound.

In this chapter we describe the structure interpretation process, how the system

determines relationships between neighboring components, and how these components

are combined to form a complete structure.

4.1 Spatial Connectivity

The system first examines the local spatial context around each candidate symbol,

evaluating three kinds of potential connections and using them to guide hypothesis

selection and structure generation.

• Bond-element connection: A bond is considered to be connected to an element if

the endpoint of the bond is near the element symbol and the bond points towards

the element, as shown in Figure 4-1. In our implementation, the threshold on

the distance d between the two components is 80% of the length of the bond,

and the threshold on angle θ is 90 degrees.

• Element-element connection: An element may also combine with other elements

to form compound symbols (e.g., N and H form NH). The system identifies

possible element-element connections based on spatial proximity. Two elements
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d                    
θ

bond
N symbol

Figure 4-1: Diagram showing the distance and angle measures used to identify connections
between bonds and elements.

are considered connected if the minimum distance between the two symbols is

less than the diagonal length of the larger symbol.

• Bond-bond Connection: A bond may be connected to another bond through an

implicit carbon atom. This connection is hypothesized if the distance between

the endpoint of one bond is within a threshold of the endpoint of a neighboring

bond, and is less than the endpoint-to-midpoint distance between the two bonds

(i.e., the bonds cannot form a T junction). In our implementation, the distance

threshold is 80% of the length of the longer bond.

4.2 Hypothesis Selection

The output of the parsing and recognition process often contains overlapping candi-

date symbols (i.e., symbols that share one or more strokes). Our system ranks these

mutually exclusive candidates using the recognition certainties returned by the sym-

bol classifier, comparing each one against all of its competing interpretations. Next,

it iteratively selects candidates that offer the greatest improvement in score over their

next best alternatives. The final set of predicted symbols is then passed on to the

next stage of the interpretation. The system also records any alternative symbols

not selected by this process, for use later in case any part of the sketch requires

reinterpretation.

4.2.1 Local Constraints

While this process is running, the system also prunes candidates that are inconsis-

tent with their local spatial context according to the following set of domain-specific
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constraints:

• No dangling bonds: A candidate interpreted as a bond should be connect to at

least one bond or element. The system allows the other end of the bond to be

attached to an implicit carbon.

• No dangling atoms: A candidate interpreted as a chemical element should be

attached to at least one bond or element.

• Subscript constraint: Numbers should appear as subscripts to an adjacent ele-

ment symbol, e.g., NH2. A subscript should be both to the right of and below

the attached symbol.

• Superscript Constraint: A charge symbol (+ or -) should appear as a superscript

to an adjacent element symbol, e.g., H+. A superscript is both to the right of

and above the attached symbol.

4.3 Structure Generation

After choosing the final set of predicted symbols, the next step is to build a con-

nectedness graph representing the spatial structure of the compound. This process

relies on the set of local relationships outlined in Section 4.1, iteratively connect-

ing the two nearest components as long as their distance is within the appropriate

threshold. Since it is relatively rare for more than three components to be mutually

connected, the system uses a more conservative limit of 1/2 the original threshold

when connecting components that are both already attached to other elements or

bonds.

4.4 Domain Verification

The final step is to verify that the structure is chemically sound. One indication

of a problem is the presence of an element with an incorrect number of bonds. For
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example, a hydrogen atom can have only one bond, while a nitrogen atom has three.

An inconsistency in the current interpretation can arise from three possible problems:

a misinterpreted symbol (e.g., mistaking an “H” for an “N”), an error in the parsing

(e.g., failing to combine strokes that belong to the same symbol), or a mistake in the

connectivity (e.g., failing to connect a bond to the proper element).

4.4.1 Automatic Error Correction

Whenever an element is found with an incorrect final valence number, the system at-

tempts to correct the inconsistency by considering each of the possible causes in turn.

Since it stores alternative hypotheses from the previous stages of the interpretation

process, this task involves searching the space of relevant alternatives.

If an element (including implicit carbons) is found with an incorrect final va-

lence number, the system reconsiders the element itself (perhaps interpreting it as

a different element symbol that does match the valence information) as well as any

bonds or elements that are connected to it. During this process the system revives

all alternative symbol candidates that meet the any of the following conditions:

• The alternative overlaps the element: selecting any of these alternatives would

modify the original symbol, potentially resolving the inconsistency.

• The alternative overlaps any bond connected to the element: selecting any

of these alternatives could modify the connectivity of the element, potentially

resolving the inconsistency.

• The alternative is potentially connected to the element: selecting any of these

alternatives could again modify the connectivity of the element, potentially

resolving the inconsistency.

The refinement process starts by removing from its interpretation any symbols

that overlap the set of possible alternatives described above. It then repeats the hy-

pothesis selection process described in Section 4.2 on the affect region of the sketch.
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However, instead of selecting only the best candidates and discarding any overlap-

ping alternatives, the system searches the space of alternative interpretations as it

incrementally recreates the structure.

Our system evaluates these alternatives based on the recognition cost and the

chemical consistency of the resulting compound. The recognition cost is measured

as the cumulative classification uncertainty for each stroke according to the SVM

output. The chemical consistency cost is calculated by adding an additional penalty

for each domain inconsistency discovered in the structure. If the best alternative

interpretation has a lower overall cost than the original, implying that it was able to

correct the inconsistency without significantly reducing the recognition quality, it is

accepted and the system repeats the process for any remaining problems.

This refinement search is based on the A* algorithm, which uses a heuristic un-

derestimate of the interpretation cost to limit the search space. Since it is difficult

to determine the consistency of an incomplete chemical structure (i.e., problems dis-

covered in the partial interpretation may be resolved by later strokes), the estimate

is simply the recognition cost of the symbols selected so far best plus the recognition

cost of the best interpretation for any remaining strokes. This is an underestimate of

the true cost since it does not contain the added cost of chemical inconsistencies in

the structure.

4.4.2 Balancing Structure Consistency and Interpretation Con-

fidence

Based on the above description, there are cases where the system may choose not

to correct a domain inconsistency if the confidence of its original interpretation is

much higher than that of the chemically consistent alternative. This is done for three

reasons. First, the user may still be modifying the sketch, so any inconsistencies

in the structure may be only temporary. Second, the recognition process may not

have generated the true candidate hypothesis, making it impossible for the system to

correct the error. The system, then, should not choose a reinterpretation of the struc-
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ture that is chemically consistent but unlikely to be correct according to the symbol

recognizer. Third, the user may have intentionally left the structures incomplete,

and hence inconsistent. It would be tiresome to use a system that always insisted on

complete structures; hence we allow inconsistent structures if they are a much better

description for the low level ink.
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Chapter 5

Evaluation

This chapter presents the evaluation of our system on a set of chemical sketches

collected from six users. It starts by describing the setup of the user study and the

evaluation methodology. Next, we compare the results of our system with a simplified

baseline version that does not attempt to correct inconsistencies in its interpretation.

We also present examples of sketches which were interpreted correctly and discuss

some of the common errors made by the system. Finally, we show examples of the

system using domain knowledge to recover from previous errors in its interpretation.

5.1 Data Collection

Our goal for the evaluation was to test the performance of our system on sketches that

were as unconstrained as those people produce when drawing on paper. To collect

these sketches, we recruited six participants who were familiar with organic chemistry

and asked each of them to draw 12 pre-specified compounds on a Tablet PC after a

brief warm-up. The data collection interface was designed to behave like a piece of

paper, i.e., capturing the sketch but providing no recognition or feedback. During the

study, a reference diagram of the molecule was presented at the upper right corner

of the tablet display. This was done to indicate the structure to be drawn without

requiring that the user knew the compound from memory. To prevent participants

from simply copying the structure, the reference image disappeared whenever the
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user’s stylus came near the drawing surface.

We believe this provided a stringent, real-world test, inhibiting the tendency of

users to draw more carefully when they know their strokes are being interpreted. It

also avoids the tendency for users to adapt their drawing style to the recognizer when

they see their strokes being misinterpreted.

5.2 Methodology

We performed a set of user-independent performance evaluations for our system. In

these tests, we ran our system on each of the sketches, treating the examples from the

other five users as training data for the symbol classifier and as the source of templates

for the sequence-based and image-based recognizers. By leaving out sketches from

the same user, these tests indicate how our system would perform for a new user who

has not provided any training data to the system.

To calculate recognition accuracy we compared final set of symbols identified by

our system with those in the hand-labeled ground truth. To be considered a true

positive, a retrieved symbol needs to match both the location (stroke grouping) and

the classification of the ground truth. Performance of the system is measured by the

number of symbols identified correctly in each sketch.

5.3 Experimental Results

Method Precision Recall F-measure
Domain 93.1% 94.1% 93.6%
Baseline 91.7% 93.1% 92.4%

Table 5.1: Overall recognition accuracy of the domain-enabled and baseline systems for
the six users in the study.

We report the precision, recall, and F-measure in Table 5.1. Figure 5-2 shows

three examples of sketches that the system interpreted correctly. We also compare

our system’s performance against a simplified baseline version that has no knowledge
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of atomic valence and hence does not attempt to correct chemical inconsistencies.

The results show an overall improvement in accuracy when the system uses chemistry

domain knowledge to improve its interpretation. The system reduced the number of

missed symbols by 14% over the baseline. Using paired t-tests, we find that domain

knowledge enabled system significantly outperforms the baseline version (p < .05).

Figure 5-3 shows two examples where domain knowledge allowed the system to

recover from low level recognition errors. In the example on the left, the system

mistakenly interpreted the N symbols as groups of 3 bonds. This misinterpretation

resulted in 3 bonds being connected to an H2 compound, which is inconsistent with

the chemical rules regarding valence. The chemistry verification step noted this error

and correctly reinterpreted the strokes as an N instead. In the second example on

the right, the system made two mistakes: it misinterpreted the N on the left as an H

and mis-parsed the N on the right, classifying the rightmost vertical stroke as a bond.

The first mistake caused a chemical inconsistency where 3 bonds were connected to

a hydrogen atom, while the second mistake resulted in four bonds connected to a

nitrogen atom. The system again recognized and corrected these errors using its

knowledge of chemistry.

(A) (B)

Figure 5-1: Irregularities in drawing style not currently handled.

An inspection of the output revealed that a number of recognition errors were

caused by symbols that the system was unable to parse correctly. For example,

in Figure 5-1(A) on two separate occasions the author drew a single bond using
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two strokes (highlighted by the dashed circles). Our system currently assumes that

straight bonds are drawn with at most one stroke, and as a result classified the two

strokes as two individual, connected bonds. In Figure 5-1(B), the user over-traced

one of the bonds (in the dashed circle), causing the system to incorrectly interpret

the stroke as two connected bonds.
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Figure 5-2: Three examples of sketches that the system interpreted correctly.
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Figure 5-3: Two examples where chemistry knowledge allowed the system to recover from
initial errors in recognition.
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Chapter 6

Related Work

Some of the early work in sketch recognition [13] focused on recognizing single stroke

gestures, or glyphs. Symbols are recognized based on simple features such as the angle

of the stroke or the area of its bounding box. Long et al. [10] developed a system that

analyzes the similarity between symbols to help developers design gestures that will

not be easily confused by the computer. One limitation of gesture based systems is

that they place strict restrictions on how symbols can be drawn, often using a single

stroke or a pre-defined sequence of stroke.

Another approach to sketch recognition is based on hierarchical shape descrip-

tions, with the lowest level composed of geometric primitives such as lines, ellipses,

and arcs. Graph based techniques [3] model these primitives and the relationships

between them as graphs, with recognition posed as a graph isomorphism problem.

Shilman et al. [15] presented an approach that uses a hand coded visual grammar

to describe shapes in the domain. Recognition is then treated as a statistical vi-

sual language parsing problem. Alvarado and Davis [1] proposed an approach that

uses dynamically constructed Bayesian networks to parse a sketch, employing both

top-down and bottom-up interpretation.

Shilman and Viola [16] presented a system for recognizing and grouping text and

graphics in diagrams and equations. Their approach links individual strokes into

a proximity graph and searches for symbols among spatially connected subgraphs.

In contrast to our system, their approach was evaluated on synthetically generated
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geometric shapes, flowcharts, and equations, and does not use domain knowledge to

refine its interpretation.

6.1 Recognition Systems that use Domain Knowl-

edge

Gennari, Kara, and Stahovich [7] developed a sketch based interface that uses geome-

try and domain knowledge to interpret hand drawn electronic circuit diagrams. They

employ a set of geometric heuristics (e.g., density, bounding box size, presence of arcs,

etc.) and domain constraints (e.g., number of connections) to guide hypotheses selec-

tion and error correction. Kurtoglu and Stahovich [9] presented a similar approach

that relies on physical reasoning to resolve ambiguities in sketches of mechanical de-

vices and electronic circuits. In addition to enforcing consistency between pairs of

connected components (e.g., a wire cannot connect to a bearing because one is an

electrical device while the other is a mechanical one), it uses qualitative simulation to

choose between multiple possible interpretations of the sketch. Their system avoids

the parsing problem by requiring users to press a button to indicate that a symbol

has been completed.

While these systems have demonstrated that domain knowledge can be used to

overcome ambiguities, our approach differs in both the recognition process and the

types of sketches considered. In order to interpret the intermixed drawing and hand-

writing found in molecular diagrams, our system employs both geometric features and

template matching to parse and recognize symbols in the sketch. It also uses contex-

tual hypothesis evaluation and automatic error correction to deal with the additional

challenges in interpreting the spatial structure of chemical diagrams (e.g., aromatic

rings, implicit chemical notations, sources of ambiguity shown in Figure 2-4).
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6.2 Recognition Systems for Chemical Diagrams

There have also been efforts to recognize chemical sketches and diagrams. Tenneson

and Becker [17] developed a sketch-based system that helps students visualize the

three dimensional structure of an organic molecule. It avoids the ink parsing problem

by requiring that all symbols be drawn using a single stroke, similar to the gesture

based system described earlier. It also does not handle implicit structure such as omit-

ted carbon and hydrogen atoms. Casey et al. [4] developed a system for extracting

chemical graphics from scanned documents, but that work focused on printed chem-

ical diagrams rather than freehand drawings. Also, unlike our system their approach

did not handle non-planar chemical notations such as wedge and hash bonds.
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Chapter 7

Discussion

7.1 Future Work

For our future work, we would like improve the performance of the system when

dealing with messy sketches that contain over-traced symbols by expanding the image-

based component of the symbol recognizer. We also plan to extend the system to

recognize sketches of chemical reactions like the one in Figure 7-1.

While the system is currently aimed primarily at chemists and other researchers,

we believe that it could also be used in chemistry education, for example as a learning

aid in a high school chemistry classroom. As a student draws on a smart whiteboard,

the system would provide real time feedback about improper bond structures, present

a three dimensional visualization of the molecule, or animate a reaction. We are also

currently working provide more real time feedback about the chemical compound as

the user sketches, such as providing a continuously updated list of properties like

atomic weight and automatically identifying parts of the molecule that may be toxic

or dangerous.

7.2 Contributions

In this thesis we presented a sketch recognition system designed to interpret hand

drawn chemical diagrams. We have shown that the system is capable of recognizing
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Figure 7-1: An example of an organic reaction.

common organic chemistry notations and is able to use domain knowledge to improve

its interpretation of the sketch. Our system uses a trainable symbol recognizer to

locate and identify symbols in the sketch. The recognizer incorporates both feature-

based and image-based methods, allowing it to more reliably interpret messy sketches

that contain a wide range of symbols, including intermixed text, drawing, and fill-in

shapes. Analysis of the region surrounding each symbol allows the system to choose

among competing interpretations and determine an initial structure for the molecule.

Knowledge of chemistry, in particular atomic valence, then enables the system to

check the validity of its interpretation and, if necessary, revise it to recover from

errors.
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