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ABSTRACT 
 

To date, the most successful conducting polymer actuators are based on polypyrrole, which 
operates through incorporating and expelling counterions and solvent molecules to balance the 
charges generated by electrochemical stimuli (swelling mechanism). Although significant 
progress has been made, there still exists a need for developing new materials that would 
overcome the intrinsic limitations in the swelling mechanism, such as slow diffusion rate, limited 
expansion volume, etc. Our group has contributed this area with a different approach – molecular 
mechanisms, which utilize a dimensional change of a single polymer chain. We propose two 
types of molecular mechanisms: contracting and expanding. We proposed earlier a calix[4]arene-
based molecular actuator for the contracting mechanism, in which π-dimer formation was 
proposed as a driving force. In this dissertation, we first confirm by model studies that π-dimer 
formation can indeed be a driving force for the calix[4]arene-based system. We propose another 
molecular hinge, binaphthol moiety, for the contracting model. The syntheses of polymers with 
binaphthols and their characterization, including signatures of oligothiophene interactions, are 
described. Due to its chirality, we examined the possibilities of the binaphthol polymer as a 
chiral amine sensor. To create actuators that make use of the expanding model, we propose new 
conjugated seven-membered ring systems with heteroatoms (thiepin with sulfur and azepine with 
nitrogen) and their syntheses and characterization will be described. Inspired by the fact that 
sulfoxide has very low extrusion barrier in the related system, we applied the thiepin molecules 
to create a peroxide sensor. In addition, during the investigation of phenol functional groups in 
conducting polymers, we found interesting properties that strategic positioning of phenol groups 
can render a conjugation-broken meta-linked system just as conductive as a fully conjugated 
para-linked isomeric system. 
 
 
 
 
 
 
 
 
Thesis Supervisor: Timothy M. Swager 
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Molecular Machines: From Biological to Synthetic 

Significant progress in molecular biology has made it possible to understand biological 

phenomena at the molecular level. The molecular structures of proteins or protein assemblies 

have been determined to the point where the operations of some classes of proteins can be 

precisely described.1 Of particular interest are the biological motor proteins, which are 

responsible for various tasks, including moving cargos inside cells and contracting muscles.2 

Similar to machines in everyday use, those nanometer-sized molecular machines (motors) 

convert fuels (chemical energy inputs, for example, ATP) to useful linear or rotary motions. 

Examples of these molecular machines are myosins, kinesins, dyneines, ATPase, and bacterial 

flagella. Much has been revealed about how these molecular machines operate in response to 

biological stimuli at the molecular level.2 For instance, myosins move along the actin filaments 

via the cycle of myosin’s binding to actin, followed by myosin’s stroke and dissociation.  As a 

fuel, ATP plays a key role in the operation cycle. Association of ATP enhances the binding of 

myosin to actin. The stroke of myosin occurs by hydrolyzing ATP and concomitant release of a 

pyrophosphate. Finally, the dissociation upon release of ADP allows the next cycle. 

Revelations from these biological molecular machines have inspired chemists to build 

synthetic systems that mimic the functions of the molecular machines.2b,3 For example, Kelly and 

coworkers reported a molecular ratchet that conducts unidirectional 120° rotation around a single 

bond with phosgene as a fuel (Figure 1a).4 Feringa et al. reported the synthetic rotary motor 

which is reminiscent of ATPase’s unidirectional motion (Figure 1b).5 By using light as a fuel, 

they realized the continuous unidirectional motion (360°). Photochemical cis-trans isomerization 

results in a rotation that places bulky groups in high-energy positions. The molecular rotor then 

undergoes thermal relaxation that accomplishes 180° rotation. Repeating the above steps allows 
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the unidirectional rotation in a continuous way. It is noteworthy that light is a highly desirable 

fuel because it does not produce any waste. For the same reason, electrochemical stimulation is 

also a suitable mechanism. 

OH

NH2

Me

X

X

Me

X

X

Me

Me

X = O, S, (CH)n where n = 0, 1, or 2

(a)

(b)

 

Figure 1. (a) Chemically powered molecular rachet.4 (b) Light-driven unidirectional molecular rotors.5 

Molecular systems of the directed linear motion have been based mainly on the rotaxanes and 

related structures.3 Rotaxanes are supramolecular complexes that consist of a macrocylic ring 

component surrounded by a dumbbell-shaped molecule. The key to linear motion is the presence 

of two recognition sites on the dumbbell-shaped molecule, which makes the rotaxane a bistable 

molecular switch. For example, tetrathiafulvalene (TTF) and naphthalene units can be competing 

recognition sites for the tetracationic cyclophane ring (Figure 2a).6 In the neutral state of TTF, 

the tetracationic ring stays in the TTF moiety due to the greater affinity. However, once TTF is 

oxidized, coulombic repulsion pushes the tetracationic ring immediately to the naphthalene 

moiety. Upon reduction, the tetracationic ring is thermally relaxed to the TTF moiety again. 
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Figure 2. (a) Bistable [2]rotaxane with TTF and naphthalene moieties.6 (b) Artificial molecular muscle driven by 

metal ion bindings.3a 

Sauvage et al. reported a very elegant system that has two interlocked rotaxanes and is driven 

by different metal ion bindings.3a The system mimics the sliding movement of actin and myosin 
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filaments in natural muscles.2 In addition to donor-acceptor and metal-ligand binding 

interactions, other non-covalent interactions, such as hydrogen bonding, π-π stacking, 

coulombic, and hydrophobic-hydrophilic interactions, are exploited in a number of rotaxane and 

related systems. 

 

Molecular Machines at Work: Artificial Muscles 

For practical reasons, much effort is being made to take advantage of such molecular machines 

and create useful functions. In many cases, the synthetic molecular machines act as a switch, 

moving from one state to another state, which can produce useful output signals. However, it is 

not always easy to extract useful mechanical work from molecular machines because in the 

nanoscale world you should “accommodate to the brownian storms.”7 To overcome the brownian 

terbulance, either the size of molecular machines needs to be very large, or they should be 

mounted on surfaces. However, even though the system works in the solution state, 

immobilization often leads to malfunctions due to loss of degrees of freedom in structured 

environments.3e Moreover, bringing nanoscale events to macroscopic (useful) movements is 

always challenging. In this regard, the demonstration that molecular machines can perform work 

is very important, and some have already been achieved. 

The indirect movement of a much larger object by collective change in host matrix was 

reported by Feringa and coworkers.8 They embedded a chiral molecular rotor (Figure 3a) in a 

liquid crystal film. As the rotation of the molecular rotor was performed by photochemical 

isomerization and subsequent thermal relaxation, the liquid-crystal film was reorganized because 

of the induced helicity by the guest molecule. The reorganization of the matrix was harnessed to 

move a micron-sized object (a glass rod) in a rotary fashion (Figure 3b). 
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Rotor

(a)

(b)

 

Figure 3. Rotation of a microscale glass rod (b) in a liquid-crystal film doped with a light-driven molecular rotor 

(a). Scale bars in b are 50 µm. Reproduced with permission from ref 8.  

The macroscopic transport of liquid drops was demonstrated by the surface-energy switching 

that originated from a light-responsive molecular shuttle (rotaxane)9 (Figure 4). The rotaxane, 

which is physisorbed on the surface, has fumaramide and tetrafluorosuccinamide groups, and in 

the unperturbed state the macrocycle resides with the former by hydrogen bonding. However, 

UV irradiation induces the E→Z isomerization of fumaramide to maleamide, which has a low 

affinity to the macrocycle. By masking the fluoroalkyl moiety, the surface energy can be 

changed from “polarophobic” to “polarophilic”, which results in the movement of a liquid drop 

(CH2I2). 

Another approach was the direct bending of microcantilever beams by electrochemically 

switchable [3]rotaxanes directly assembled on the surface. The design elegantly resembles the 

natural muscle’s actin and myosin structure. The rotaxane has four stations and two macrocyclic 

rings, and the rings have disulfide tethers that are attached to the surface of the cantilever beams 

in the self-assembly. The electrochemical switching of two stations from neutral to positively 

charged states results in the contraction of the distance between the rings, which is translated into 

the bending of cantilever beams. 
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Figure 4. Light-driven transport (a) of a liquid drop (CH2I2) on a self-assembled monolayer (SAM) of 11-

mercaptodecanoic acid on gold deposited on mica. The light-switchable rotaxane (b) was physisorbed onto the 

SAM. Reproduced with permission from ref 9.  

 

Figure 5. Design of a molecular muscle based on rotaxanes and its operation (bending of cantilever beams) under 

redox control. Reproduced with permission from ref 10. Copyright (2005) American Chemical Society.  

We are interested in those types of molecular machines that generate useful mechanical 

outputs (artificial muscles). We believe that the incorporation of molecular machines into a 

polymeric form, if aligned properly, can enable us to effectively translate the nanoscopic events 

into macroscopic work. In this dissertation, we propose new molecular systems, which change 

their conformations under external stimuli (molecular machines), and their syntheses and 
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installment into polymers will be described. We seek to exploit dimensional changes of the 

molecular machines to create systems that can be considered as molecular muscles, or artificial 

muscles. To accomplish our goals, we make use of electroactive polymers (EAPs), which are a 

class of polymeric materials that has been spotlighted as artificial muscles.11 However, our 

approach is in sharp contrast to conventional EAP actuators in that we would like to take 

advantage of molecular events, not just bulk phase behavior. 

  

Conducting Polymer Actuators: The Conventional Mechanisms 

EAP actuators exhibit dimensional changes in response to electrical stimulation. EAPs can be 

classified into two basic groups depending on the activation mechanism: electronic and ionic.11 

The electronic EAPs change their dimensions by the attraction force due to the applied electric 

field. Although the electronic EAPs exhibit relatively large force and rapid response time, they 

generally require very high voltages (~100 MV/m) that are close to dielectric breakdowns. On 

the contrary, ionic EAPs only need very low driving voltages (1~5 V); they are driven by 

diffusion of ions. However, they require an electrolyte, which may cause problems in open-air 

conditions, or with long-term use. 

Conducting polymers can be classified as the ionic EAP because the ions’ egress and ingress 

are responsible for the polymers’ deformation.12 As shown in Figure 6, a conducting polymer 

gains positive charge due to oxidation caused by the applied voltage. Then, counter-ions and 

accompanying solvent molecules are incorporated to balance the charge, which causes the 

expansion of volume. This process is reversible, so upon reduction the polymer returns to its 

original volume by expelling the counter-ions. This mechanism is often referred to as a 

“swelling” mechanism. 
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Figure 6. Swelling mechanism represented by polypyrrole. The polymer increases in dimension when oxidized due 

to the ingress of counterions (typically PF6
- in organic solvents).  

Polypyrrole and related systems are the most developed conducting polymers for actuators.12,13 

Polypyrroles are often fabricated into the tri-layer system, in which two polypyrrole films 

sandwich a polymeric electrolyte layer.14 This tri-layer actuator can bend in either direction 

according to the voltage polarities. Polypyrrole can also be easily deposited onto conductive 

substrates via an electrochemical oxidative polymerization method using pyrrole monomers. 

This makes them useful for microfabrication. 

Optimization for the polypyrrole’s performance has been continued to create materials that 

display one or two performance metrics that are equal or exceed that of natural muscle.15 

However, the performance that allows proper comparison with natural muscle has not been 

realized in a single device. Therefore, continuing efforts are still needed and our group has 

contributed to this area with a different approach – molecular mechanisms.  
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Molecular Actuators: Mechanisms and Designs 

In a conventional swelling mechanism, speed is intrinsically limited by the ion’s mobility. In 

addition, strain cannot exceed values imposed by the space that is occupied by the ions and 

associated solvent molecules. It should be noted that the individual polymer chains remain 

chemically unchanged and the reversible oxidation and reduction process in the polymer causes 

the ion flow. The macroscopic polymer object retains its shape and the incorporation of 

counterions causes the swelling-based volume change. 

Throughout this thesis, we will refer to materials having geometrical changes at the molecular 

level to create volume changes as molecular actuators. It should be noted that unlike bulk 

actuators (e.g., polypyrrole), molecular actuators harness the dimensional variation of the single 

strands of the polymer. We envision that if we utilize the conformational changes of single 

polymer chains, we may obtain fast responses and large strains, which are not limited to the ion’s 

mobility. These single molecule actuators have potential applications to the bottom-up 

development of nano-devices and machines. The conformational change of the single strand 

would come from the monomer unit’s response to the external stimulation, namely 

electrochemical. We propose two types of molecular mechanisms: expanding and contracting 

(Figure 7). 
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(a)

(b)

[Ox][Red]

[Ox]
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Figure 7. Expanding (a) and contracting (b) molecular mechanisms for actuation under redox control. Expanding 

model exploits the conformational changes of monomer units, while in the contracting model new chemical bond 

induces the contraction through a molecular hinge.  

In the expanding model, the monomer moiety has a bent geometry in its neutral state. 

However, it becomes planar when it is oxidized, resulting in expansion. We can exploit the 

aromatization of non-aromatic system as the driving force. For example, we proposed 

thianthrene as the candidate, which is bent in its neutral state, and calculations showed about 7% 

increase upon oxidation (Figure 8a).16 Marsella et al. reported a polymer which was based on the 

bent-to-planar transformation of cyclooctatetraene moiety under redox control (Figure 8b).17 

Although not experimentally confirmed, theoretical calculations predicted ~6% increase when 

oxidized. 

In the contracting model, the key in the design is a hinged molecule that connects electroactive 

segments. Upon electrochemical oxidation, new chemical bonds between the oxidized species 

(π-dimer or π-stacks, for example) induce a large conformational change through the molecular 

hinge. We proposed a calix[4]arene moiety as the molecular hinge and oligothiophenes as the 
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electroactive segments (Figure 9).18 The driving force for contraction is the π-dimer formation 

between the radical cations of oligothiophenes. 

(a)

(b)
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Figure 8. Expanding molecular actuators: a thianthrene-based polymer (a) and a cyclooctatetraene-based polymer 

(b). They utilize a bent-to-planar transformation caused by the aromatization from 8 to 6-π electrons.  
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Figure 9. Contracting molecular actuator with a calix[4]arene as a molecular hinge. The new chemical bond (π-

dimer) would be the driving force for the transformation.  

In this dissertation, we first confirm by the model compound study that π-dimer formation can 

indeed be a driving force for the calix[4]arene-based molecular actuator (Chapter 2). We propose 

another molecular hinge, binaphthol moiety, for the contracting model. The syntheses of 

polymers with binaphthols and their characterization, including signatures of oligothiophene 

interactions, are the subject of Chapter 3. Due to its chirality, we examined the possibilities of 
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the binaphthol polymer as a chiral amine sensor in Chapter 4. To create actuators that make use 

of the expanding model, we propose new conjugated seven-membered ring systems with 

heteroatoms (thiepin with sulfur, Chapter 5, and azepine with nitrogen, Chapter 6) and their 

syntheses and characterizations will be described.  Inspired by the fact that sulfoxide has very 

low extrusion barrier in the related system, we applied the thiepin molecules to create a peroxide 

sensor (Chapter 5). In addition, during the investigation of phenol functional groups in 

conducting polymers, we found that strategic positioning of phenol groups can render a 

conjugation-broken meta-linked system just as conductive as a fully conjugated para-linked 

isomeric system, which will be described in Chapter 7. 
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Calix[4]arene-based Molecular Actuator 

Our group designed a calix[4]arene-based molecular actuator (Scheme 1), in which 

electroactive oligothiophenes are connected by the calix[4]arene scaffold.1 We proposed that 

each calix[4]arene moiety acts as a molecular hinge and that new noncovalent interactions 

between oxidized oligothiophenes (i.e., π-dimer or π-stack) can drive the dimensional changes. 

The π-dimer (or π-stack) is a nonconventional interaction that has drawn particular attention as a 

charge transporting entity in conducting polymers.2 π-Dimer formation has been demonstrated in 

solution and in the solid state for oligothiophene derviatives.3,4  

Scheme 1. Model of the Calix[4]arene-based Molecular Actuator. 

 

In order to take advantage of such interactions as a driving force for molecular actuators, we 

considered that a segmented polymer would be more suitable than a fully conjugated one 

because it is able to attain the maximum interaction due to the spatial confinement of the radical 

cation’s wavefunctions. It should be noted, however, that higher degrees of spatial confinement 

would be expected to result in coulombic repulsion of like charges and hence counterion and 

solvent effects are expected.  

The ab initio calculations by Scherlis and Marzari modeling the behavior of one actuating unit 

supported the concept that π-dimer formation (or π-stacking) between oxidized oligothiophenes 

induces conformational changes.5,6 Based on their investigations about the energetics of 
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calix[4]arene hinges and the stacking interactions between oligothiophenes, they demonstrated 

with molecular dynamic simulations that the model molecules can change their shape in response 

to electrochemical oxidation.5b The π-dimers of oxidized oligothiophenes are found unstable in 

gas phase but a polarizable solvent (e.g., acetonitrile) can dramatically stabilize the charged 

dimers with a moderate binding energy (5.2 kcal/mol for therthiophene).5a Herein, we present a 

series of model studies designed to test the hypothesis that π-dimer formation can indeed be a 

driving force for the calix[4]arene-based molecular actuator. 

 

π-Dimers  

Conduction in doped conjugated polymers is understood in terms of the polaron/bipolaron 

model7 which has been widely investigated experimentally and computationally. In simplified 

terms, a polaron is a radical cation delocalized to a few repeating units in a conjugated polymer, 

and a bipolaron is as a dication with no unpaired electrons. Due to the spinless nature of the 

highly doped polythiophenes as revealed by electron paramagnetic resonance (EPR), bipolarons 

(not polarons) were believed to be the charge carriers. However, since Hill and coworkers first 

reported the dimerization of oligothiophene cation radicals, the π-dimer (also a spinless entity) 

has emerged as an alternative model for the bonding in doped polythiophenes.2,3,8,9 This is not to 

say that it is incompatible with the polaron/bipolaron model. Indeed, a diamagnetic π-dimer is 

best considered an inter-chain bipolaron. Nevertheless, the study of this new type of chemical 

bonding (π-dimer or π-stack) is very important for understanding charge transport through 

polymer chains. 

π-Dimer formation has been observed upon oxidation of various substituted oligothiophenes.3 

In most cases, dimer formation has been observed in the solution state, particularly at low 
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temperatures or at high concentration. π-Dimers have also been observed in the solid state; in 

particular, our group reported π-dimer formation in polythiophene hybrids of transition-metal 

bis(salicylidenimine)s.4  

E

P1

P2 D2

D1

D3

B

LUMO

HOMO

POL1

POL2

polaron bipolaron!-dimer  

Figure 1. Schematic representation of electronic structures of three oxidized states. (Adapted from ref 3d) 

When two oligothiphenes are linked with an alkyl chain3c,d or constrained to a cofacial 

arrangement,3e π-dimer formation is greatly enhanced and observed even at room temperature. π-

Dimers can be easily detected by spectroscopic methods; diminished EPR intensities and shifted 

UV-vis-NIR absorptions are considered to be diagnostic indicators of π-dimer formation. 

Electronic structures of these π-electron species have been proposed by several groups (Figure 

1).3a,b,d When one electron is removed from the π-electron system, two new energy levels emerge 

due to the relaxation of the nuclear coordinates (polaron-like structure), allowing two sub-

bandgap transitions (P1 and P2). In the π-dimer state, two singly occupied molecular orbitals 

(SOMOs) mix together and form a new bond, resulting in the disappearance of EPR signals. In 

optical spectroscopy, three allowed transitions (D1–D3) are observed. In addition to the charge 

transfer transition (D3), D1 and D2 are comparable to polaronic transitions P1 and P2, 

respectively, but blue-shifted due to the perturbation of molecular orbitals. 
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Synthesis of Model Compounds 

To conduct model studies of the actuating unit, we synthesized 1–4, which contain a 

calix[4]arene hinge and two oligothiophene derivatives as electroactive segments (Scheme 2). 

Firstly, we sought to examine which, if any, of these compounds would give rise to stable radical 

cations when oxidized, and whether π-dimer formation would take place. Secondly, the effect of 

the calix[4]arene’s conformation (cone vs. 1,3-alternate) was the subject of investigation.  

Oligothiophene derivatives were connected to the upper rim of the calix[4]arene moiety. 

Compound 1 has free hydroxy groups on the benzene ring (lower rim) whereas compounds 2–4 

contain alkoxy groups. Calix[4]arenes 1–3 existed predominantly in the cone conformation as 

determined by 1H-NMR spectroscopy, whereas 4 adopted the 1,3-alternate conformation. We 

postulate that the calix[4]arene moiety of 1 is conformationally more rigid than that of 2, 3, or 4 

due to lower rim hydrogen bonding.10 A long alkyl chain (n-C16H33) was installed to 

oligothiophene moieties in order to increase their solubility.  

Calix[4]arene precursors 6, 7 and 9 were prepared according to literature procedures (see 

Experimental Section). Compound 8 was synthesized from 7 via Stille coupling with 2-

tributylstannylthiophene, followed by electrophilic iodination. The Stille cross-coupling 

reactions between calix[4]arenes 6–9 and tributylstannylated bithiophene derivative 12 furnished 

the desired compounds 1–4 in moderate yields. For the comparison, compound 5 was also 

prepared as a monomeric version of compound 2. 
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aReagents: (i) 2-Tributylstannylthiophene, Pd2(dba)3, (t-Bu3PH)BF4, KF, DMF, 80 °C, 6 h, 93%. (ii) n-BuLi, -40 °C, 
then I2, 36%. (iii) 5-Tributylstannyl-2,2’-bithiophene, Pd2(dba)3, (t-Bu3PH)BF4, KF, DMF, 80 °C, 6 h, 72%. (iv) n-
BuLi, Bu3SnCl, -40 °C to room temperature, 86%. (v) Pd2(dba)3, (t-Bu3PH)BF4, KF, THF/DMF, 70 °C, 6 h, 41% 
(1), 61% (2), 49% (3), 59% (4), 83% (5)  

 

π-Dimers between Oxidized Oligothiophene Derivatives: UV-vis 

We examined several oxidizing agents to produce radical cations of 1–5 and finally chose 

Et3OSbCl6, a Meerwein’s salt, as a 1-electron oxidant11 (not as an alkylating agent) because it is 

relatively easy to handle and more importantly, it does not exhibit a strong absorbance above 300 

nm in the UV-vis spectrum. Therefore, we were able to monitor the diminution of the neutral 

absorption and the concurrent evolution of new absorptions without any interference (Figure 2). 

Upon addition of the oxidant, all oligothiophenes were converted to deep-blue or violet radical 
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cations, which were stable to moisture. However, the color was slowly lost (returned to their 

neutral state) when air was bubbled into the solution. 
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Figure 2. UV-vis spectral changes of 1–5 in CH2Cl2 at room temperature upon the increasing addition of the 

oxidant Et3OSbCl6. Spectra of neutral absorptions of 1–5 are displayed by dashed lines. 

For the oxidation of monomeric 5 in CH2Cl2 under ambient conditions (Figure 2e), the initial 

π-π* absorption (382 nm) decreased and new peaks (645, 1079 nm) developed, which can be 

attributed to the polaronic absorptions (radical cations, Figure 1). These sub-bandgap transitions 

with vibronic structures are in good accord with literature precedent.3 We were not able to 

observe the formation of dications even after adding excess amounts of Et3OSbCl6 under the 

above conditions. 

Remarkably distinct behavior was observed upon oxidation of 2 (Figure 2b). Polaronic peaks, 

similar in shape to those of 5•+, were dominant at the low levels of oxidation (Figure 2e). 

However, as more oxidant was added, blue-shifted absorptions were evident. Such blue-shifts are 

characteristic of π-dimer formation, as discussed above. The same phenomenon was observed 
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upon oxidation of 3, the terthiophene-substituted version (Figure 2c). It is known that longer 

oligothiophene forms stronger dimers, probably due to the reduced coulombic repulsion.7c The 

results of the present study are noteworthy in that a stable π-dimer is generated at room 

temperature in a solvent of low dielectric constant (CH2Cl2) from a framework as short as two 

thiophenes. 

Table 1. Absorption Maximaa and Half-Wave Potentialsb of 1~5 

Absorption Maxima / nm Half-Wave Potentials / V 
Compounds 

Neutral Polaronic π-Dimeric E1/2
1 E1/2

2 

1 384 665, >1100 - 0.33 0.57 

2 382 655, 1084 593, 948 0.33 0.83 

3 409 730, >1100 663, 1062 0.23 0.71 

4 382 658, 1094 598, 955 0.33 0.82 

5 382 645, 1079 - 0.42 0.76 
aAbsorption were measured in CH2Cl2 upon addition of oxidant Et3OSbCl6 at room temperature. bHalf-wave 
potentials (all vs. Fc/Fc+) were measured in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte under ambient 
conditions.  

Interestingly, when we added the oxidant Et3OSbCl6 to 1, only polaronic absorptions were 

observed in the UV-vis spectra (Figure 2a). The only difference is that 1 has free hydroxyl 

groups at the lower rim of the calix[4]arene moiety. We attribute this reluctance to form π-dimer 

formation to the calix[4]arene’s conformational rigidity resulting from lower-rim hydrogen 

bonding. However, it should be noted here that the π-dimer formation is coupled to the 

“motional” flexibility of the calix[4]arene hinge (hydrogen-bonded vs. tetraalkylated). 

There is a possibility that the hydroxyl groups of 1 were alkylated by the Meerwein’s salt. To 

address this, we reduced the oxidized solution of 1 by NH4OH and took the 1H-NMR from the 

recovered compound. Indeed, we found the phenolic protons were no longer evident and 

calix[4]arene’s conformational behavior became complicated. However, it is not clear at which 
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point the alkylation took place. That is, was it during the oxidation, or during the reduction step 

with NH4OH? If the alkylation occurred during oxidation, the absorption of 1 should have 

resembled that of 2. However, the different electronic absorption spectra of oxidized 1 and 2 

suggest that the oxidation of 1 with the Meerwein’s salt was not accompanied by alkylation. 

Moreover, oxidation of 1 with FeCl3 resulted in a similar absorption spectrum to that obtained 

using Et3OSbF6 (Figure 3). 
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Figure 3. UV-vis spectral changes of 1 in CH2Cl2 at room temperature upon the increasing addition of the oxidant 

FeCl3. The dashed line represents the neutral absorption of 1. 

The effect of the calix[4]arene’s conformation on the dimer formation appeared minimal. 

Oxidation profiles of 1,3-alternate 4 are very similar to those of cone 2 (Figure 2d vs. 2b). 

Literature precedent suggests that these conformations should be fixed; when the hydroxyl 

groups on the lower rim of the calix[4]arene are alkylated with propyl groups or larger 

substituents, rotation through the annulus of the macrocycle is not observed at room 

temperature.10 Therefore, there is no possibility of interconversion of 4 to 2, and vice versa. We 

can conclude that the cone and 1,3-alternate conformations of 2 and 4 are sufficiently flexible to 

allow π-dimer formation when oxidized. 
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EPR and DPV 

π-Dimer formation was further confirmed by EPR spectroscopy. EPR spectra were acquired 

for each of the CH2Cl2 solutions (0.2 mM for 1–2, 0.4 mM for 5) at room temperature. As 

expected, bis(radical cation) 12(•+) (Figure 1, blue) was EPR active, showing a rather broad and 

featureless signal, which is very similar to radical cation 5•+ (black). Note that 12(•+) consists of 

two independent radical cations. In contrast, 22(•+) (red) was almost EPR silent, which indicates 

that the two radical cations are bound to form a π-dimer. 
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Figure 4. 9-GHz EPR spectra of radical cations 12(•+) (blue), 22(•+) (red), and 5•+ (black) in CH2Cl2 at room 

temperature.  

The evolution of the EPR signals of oxidized 2 and 5 was monitored as the oxidant (Et3OSbCl6 

in CH2Cl2) was added incrementally (Figure 5). In the case of 5, the signal increased gradually to 

maximum. However, the initially developed signal for 2 decreased as more oxidant was added. 

This is in accord with what was observed by the UV-vis spectroscopy (Figure 2b); in 2, radical 

cations appeared at the initial stages of oxidation, but the π-dimer dominated at higher oxidation 

levels. 
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Figure 5. 9-GHz EPR spectra of 2 (a) and 5 (b) measured in CH2Cl2 at room temperature with increasing addition 

of oxidant Et3OSbCl6. 

Oxidation potentials of dimeric 2 and monomeric 5 were measured in CH2Cl2 solutions with 

0.1 M TBAPF6 as a supporting electrolyte under ambient conditions (Figure 6). In cyclic 

voltammetry, both 2 and 5 showed two 1-electron oxidation peaks, which correspond to radical 

cation(s) and dication(s), respectively. However, the first oxidation of 2 took place at lower 

potential than that of 5 (0.33 and 0.42 V, respectively, vs. Fc/Fc+), and the peak was broader. In 

contrast, the second oxidation of 2 was shifted to the higher potential. Differential pulse 

voltammetry (DPV, Figure 6b) reveals the differences more clearly. The first oxidation of the 

dimeric 2 occurred at a lower potential and the peak was broader, while the second oxidation was 

at higher potential when compared to the monomeric 5. These data also are consistent with the π-

dimer formation because an over-potential would be required to oxidize the π-dimer, which is a 

stabilized species. 
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Figure 6. Cyclic voltammograms (a) and differential pulse voltammograms (b) of 2 (blue) and 5 (red) in CH2Cl2 

solution (~ 0.5 mM) on Pt button electrodes with 0.1 M TBAPF6 as a supporting electrolyte. 

 

Conclusion 

We have demonstrated that a stable π-dimer is formed upon oxidation of compounds 2, 3, and 

4, the model units of the proposed molecular actuator, in the solvent of low dielectric constant 

(CH2Cl2) at room temperature. Evidence from UV-vis, EPR, and DPV are all in agreement with 

the π-dimer formation. In addition, we found that π-dimer formation is dependent upon the 

conformational flexibility of the calix[4]arene hinge. We are currently investigating polymeric 

materials of these compounds. 
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Experimental Section 

General. NMR spectra were recorded on a Varian Mercury-300, Bruker Advance-400, or 

Varian Inova-500 spectrometer.  Chemical shifts were reported in ppm and referenced to residual 

solvent peaks (CDCl3: δ 7.27 ppm for 1H, δ 77.23 ppm for 13C). High-resolution mass spectra 

(HR-MS) were obtained on a Bruker Daltonics APEX II 3 Tesla FT-ICR-MS. UV-vis spectra 

were obtained using a HP 8453 diode array spectrometer. Electrochemical measurements were 

carried out using an Autolab PGSTAT 10 or PGSTAT 20 potentiostat (Eco Chemie) in a three-

electrode cell configuration consisting of a quasi-internal Ag wire reference electrode 

(BioAnalytical Systems) submerged in 0.01 AgNO3 / 0.1 M tetrabutylammonium 

hexafluorophosphate (TBAPF6) in anhydrous CH3CN, a Pt button (1.6 mm in diameter) electrode 

as the working electrode, and a Pt coil as the counter electrode.  The ferrocene/ferrocenium 

(Fc/Fc+) redox couple was used as an external reference.  Half-wave potentials of Fc/Fc+ were 

observed between 210-245 mV vs Ag/Ag+ in CH2Cl2. EPR spectra were obtained using a Bruker 

Model EMX Electron Paramagnetic Resonance Spectrometer operating as the X-band with 100 

kHz modulation at room temperature. All air and water sensitive synthetic manipulations were 

performed under an argon or nitrogen atmosphere using standard Schlenk techniques.   

Materials. Spectroscopic grade CH2Cl2 was purchased from Aldrich for electrochemistry.  

TBAPF6 was recrystallized in ethanol prior to use. Anhydrous DMF was purchased from Aldrich 

as Sure-Seal Bottles and used as received. THF was purified by passage through two alumina 

columns of an Innovative Technologies purification system. All other chemicals were of reagent 

grade and used as received. Compounds 6, 7 and 9 were prepared by literature procedures.12 

Compounds 1013 and 11 were synthesized from commercially available bromophenols by a 
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standard Williamson ether synthesis with alkyl bromides. 5-Tributylstannyl-2,2’-bithiophene was 

synthesized by a known procedure.14 
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11,23-Bis(thiophen-2-yl)-25,26,27,28-tetrapropoxycalix[4]arene (A). In a Schlenk tube 

equipped with a stir bar were combined 6 (0.766 g, 1 mmol), Pd2(dba)3·CHCl3 (31 mg, 3 mol %), 

and t-Bu3PH·BF4 (19 mg, 6.6 mol %). To the mixture, after purging three times with Ar, were 

added 2-tributylstannylthiophene (0.827 mL, 2.5 mmol), KF (0.349 g, 6 mmol), and anhydrous 

DMF (3 mL). The mixture was allowed to stir at 80 °C for 6 h, at which time it was cooled to 

room temperature and methanol was added to precipitate product. The crude product was 

isolated by filtration and thoroughly washed with methanol. It was then passed through a short 

silica gel pad (dichloromethane as eluent). The concentrated product was further purified by 

recrystallization (dichloromethane/methanol), yielding 0.705 g (93%) of white solid. 1H-NMR 

(400 MHz, CDCl3) δ: 7.22 (s, 4H), 7.17 (dd, 2H, J = 5.1, 1.0 Hz), 7.13 (dd, 2H, J = 3.6, 1.0 Hz), 

7.00 (dd, 2H, J = 5.1, 3.6 Hz), 6.39 (s, 6H), 4.48 (d, 4H, J = 13 Hz), 4.00 (t, 4H, J = 8.0 Hz), 3.77 

(t, 4H, J = 7.0 Hz), 3.21 (d, 4H, J = 13 Hz), 1.96 (m, 8H), 1.09 (t, 6H, J = 7.5 Hz), 0.96 (t, 6H, J 

= 7.4 Hz). 13C-NMR (125 MHz, CDCl3) δ: 157.57, 155.81, 145.02, 136.94, 133.70, 128.26, 

128.01, 127.99, 126.36, 123.82, 122.43, 122.16, 77.12, 76.89, 31.22, 23.65, 23.33, 10.89, 10.25.  

HR-MS (ESI): calcd for C48H52O4S2 [M+Na]+, 779.3199; found, 779.3204. 
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11,23-Bis(5-iodothiophen-2-yl)-25,26,27,28-tetrapropoxycalix[4]arene (8). To A (0.250 g, 

0.33 mmol) dissolved in THF (10 mL) was added n-BuLi (0.413 mL, 0.66 mmol) at –40 °C. It 

was then removed from the cooling bath and allowed to stir for 1 h at room temperature. The 

mixture was cooled to –40 °C again and then quenched with iodine (0.168 mg, 0.66 mmol). 

After being diluted with ethyl acetate at room temperaure, the organic layer was washed with a 

saturated aqueous solution of Na2S2O3 and brine, dried over MgSO4, and evaporated under 

reduced pressure. The crude product was purified by column chromatography 

(chloroform:hexane 1:3), yielding 0.120 g (36 %) of a white solid. 1H-NMR (400 MHz, CDCl3) 

δ: 6.98 (d, 2H, J = 3.8 Hz), 6.78 (d, 4H, J = 6.5 Hz), 6.72 (pseudo-t, 2H, J = 6.5 Hz), 6.70 (s, 

4H), 6.42 (d, 2H, J = 3.8 Hz), 4.48 (d, 4H, J = 13 Hz), 3.93 (t, 4H, J = 7.7 Hz), 3.85 (t, 4H, J = 

7.4 Hz), 3.19 (d, 4H, J = 13 Hz), 1.96 (m, 8H), 1.05 (t, 6H, J = 7.4 Hz), 1.02 (t, 6H, J = 7.5 Hz). 

13C-NMR (125 MHz, CDCl3) δ: 156.85, 156.72, 150.79, 137.71, 135.54, 135.21, 128.60, 127.58, 

125.54, 123.14, 122.47, 77.11, 76.92, 31.15, 23.52, 23.39, 10.63, 10.45.  HR-MS (ESI): calcd for 

C48H50I2O4S2 [M+Na]+, 1031.1132; found, 1031.1133. 
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5-(4-Hexadecyloxyphenyl)-2,2’-bithiophene (B). In a Schlenk tube equipped with a stir bar 

were combined 11 (4.06 g, 10 mmol), Pd2(dba)3·CHCl3 (104 mg, 1 mol %), t-Bu3PH·BF4 (58 mg, 
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2 mol %), and 5-tributylstannyl-2,2’-bithiophene (4.89 mL, 13 mmol). After purging three times 

with Ar, KF (1.74 g, 30 mmol) and anhydrous DMF (20 mL) were added. The mixture was then 

allowed to stir at 80 °C for 6 h, at which time it was cooled to room temperature and methanol 

was added. The suspension was filtered and the resulting solid washed thoroughly with 

methanol. It was then passed through a short pad of silica gel, eluting with chloroform. The 

concentrated product was further purified by recrystallization (chloroform/methanol), yielding 

3.46 g (72%) of white solid. 1H-NMR (300 MHz, CDCl3) δ: 7.52 (pseudo-d, 2H, J = 8.7 Hz), 

7.21 (dd, 1H, J = 5.1, 1.2 Hz), 7.19 (dd, 1H, J = 3.6, 1.2 Hz), 7.13 (d, 1H, J = 3.7 Hz), 7.11 (d, 

1H, J = 3.7 Hz), 7.03 (dd, 1H, J = 5.1, 3.6 Hz), 6.92 (pseudo-d, 2H, J = 8.7 Hz) 3.99 (t, 2H, J = 

6.6 Hz), 1.81 (m, 2H), 1.54–1.20 (m, 26H), 0.89 (t, 3H, J = 6.9 Hz). HR-MS (ESI): calcd for 

C30H42OS2 [M+H]+, 483.2750; found, 483.2754. 
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5-Tributylstannyl-5’-(4-Hexadecyloxyphenyl)-2,2’-bithiophene (12). To B (0.950 g, 1.9 

mmol) dissolved in THF (50 mL) was added n-BuLi (1.31 mL, 2.1 mmol) at –40 °C. It was then 

removed from the cooling bath and allowed to stir for 1 h at room temperature. The mixture was 

cooled to –40 °C again and then quenched with tributylstannyl chloride (0.814 mL, 2.2 mmol). 

After being diluted with ethyl acetate at room temperaure, the organic layer was washed with 

water and brine, dried over MgSO4, and evaporated under reduced pressure. The crude product 

was used without further purification. Yield: 1.41 g (86 %, assuming 90% purity) of pale yellow 

solid. 1H-NMR (400 MHz, CDCl3) δ: 7.52 (pseudo-d, 2H, J = 8.9 Hz), 7.30 (d, 1H, J = 3.4 Hz), 

7.13 (d, 1H, J = 3.7 Hz), 7.11 (d, 1H, J = 3.7 Hz), 7.08 (d, 1H, J = 3.4 Hz), 6.91 (pseudo-d, 2H, J 

= 8.9 Hz), 3.99 (t, 2H, J = 6.6 Hz), 1.80 (m, 2H), 1.59 (m, 6H), 1.53–1.21 (m, 38H), 0.92 (t, 9H, 
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J = 7.3 Hz), 0.89 (t, 3H, J = 7.0 Hz). 13C-NMR (125 MHz, CDCl3) δ: 158.97, 143.15, 142.99, 

136.60, 136.33, 136.11, 127.04, 127.00, 124.75, 124.48, 122.74, 115.06, 68.33, 32.16, 

29.91~29.94 (5C), 29.89, 29.83, 29.80, 29.62, 29.60, 29.47, 29.17, 27.49, 26.26, 22.93, 14.37, 

13.91, 11.08.  HR-MS (ESI): calcd for C42H68OS2Sn [M]+, 772.3704; found, 772.3742. 
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11,23-Bis[5’-(4-hexadecyloxyphenyl)-2,2’-bithiophen-5-yl]-25,27-dihydroxy-26,28-

dipropoxycalix[4]arene (1). In a Schlenk tube equipped with a stir bar were combined 6 (0.081 

g, 0.12 mmol), Pd2(dba)3·CHCl3 (6.2 mg, 5 mol %), t-Bu3PH·BF4 (3.8 mg, 11 mol %), 12 (0.198 

g, 0.25 mmol), THF (0.8 mL), and DMF (0.4 mL). To the mixture, which was degassed by free-

pump-thaw (three times), was added KF (0.049 g, 0.72 mmol) under Ar. The mixture was 

allowed to stir at 70 °C for 6 h, at which time it was cooled to room temperature and methanol 

was added. The crude product was isolated by filtration and thoroughly washed with methanol. It 

was then passed through a short pad of silica gel, eluding with dichloromethane. The 

concentrated product was further purified by recrystallization (dichloromethane/methanol, two 

times). Yield: 0.072 g (41%) of yellow solid. 1H-NMR (300 MHz, CDCl3) δ: 8.52 (s, 2H), 7.52 

(pseudo-d, 4H, J = 9.0 Hz), 7.32 (s, 4H), 7.27 (d, 2H, J = 2.1 Hz), 7.14–7.10 (m, 4H), 7.08 (d, 

2H, J = 3.9 Hz), 7.01 (d, 4H, J = 7.5 Hz), 6.92 (pseudo-d, 4H, J = 9.0 Hz), 6.82 (t, 2H, J = 7.5 

Hz), 4.35 (d, 4H, J = 13 Hz), 4.02 (t, 4H, J = 6.0 Hz), 3.99 (t, 4H, J = 6.6 Hz), 3.45 (d, 4H, J = 

13 Hz), 2.09 (m, 4H), 1.80 (m, 4H), 1.53–1.20 (m, 58H), 0.89 (t, 6H, J = 6.9 Hz). 13C-NMR (125 
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MHz, CDCl3) δ: 159.02, 153.73, 152.11, 143.89, 142.92, 136.23, 135.46, 133.27, 129.38, 

128.77, 127.02, 126.98, 126.24, 125.67, 125.47, 124.29, 124.14, 122.79, 122.36, 115.09, 77.23, 

76.97, 68.35, 32.15, 31.68, 29.92–29.89, 29.83, 29.80, 29.62, 29.59, 29.46, 26.25, 23.72, 22.92, 

14.36, 11.15. HR-MS (ESI): calcd for C94H116O6S4 [M+Na]+, 1491.7547; found, 1491.7527. 
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11,23-Bis[5’-(4-hexadecyloxyphenyl)-2,2’-bithiophen-5-yl]-25,26,27,28-

tetrapropoxycalix[4]arene (2). Using the similar procedure for the synthesis of 1, compound 7 

(0.171 g, 0.22 mmol) was treated with Pd2(dba)3·CHCl3 (11 mg, 5 mol %), t-Bu3PH·BF4 (7 mg, 

11 mol %), 12 (0.386 g, 0.51 mmol), THF (1.4 mL), DMF (0.7 mL), and KF (0.077 g, 1.3 

mmol). Yield: 0.207 g (61%) of yellow solid. 1H-NMR (400 MHz, CDCl3) δ: 7.43 (pseudo-d, 

4H, J = 8.8 Hz), 7.00 (d, 2H, J = 3.8 Hz), 6.96 (d, 2H, J = 3.8 Hz), 6.83 (pseudo-d, 4H, J = 8.8 

Hz), 6.82–6.78 (m, 10H), 6.72 (pseudo-t, 2H, J = 7.5 Hz), 6.65 (d, 2H, J = 3.7 Hz), 4.49 (d, 4H, J 

= 13 Hz), 3.96 (t, 4H, J = 6.6 Hz), 3.93 (t, 4H, J = 7.6 Hz), 3.86 (t, 4H, J = 7.4 Hz), 3.20 (d, 4H, 

J = 13 Hz), 1.96 (m, 8H), 1.78 (m, 4H), 1.57–1.28 (m, 52H), 1.04 (t, 6H, J = 7.4 Hz), 1.02 (t, 6H, 

J = 7.4 Hz), 0.90 (t, 6H, J = 7.0 Hz). 13C-NMR (125 MHz, CDCl3) δ: 158.83, 156.85, 156.55, 

143.33, 142.54, 136.42, 135.53, 135.53. 135.47, 135.23, 128.62, 128.12, 127.04, 126.87, 125.48, 

124.21, 123.92, 122.56, 122.46, 114.97, 77.11, 76.97, 68.30, 32.16, 31.22, 29.93–29.94, 29.91, 

29.89, 29.86, 29.84, 29.68, 29.60, 29.54, 26.30, 23.53, 23.43, 22.92, 14.36, 10.64, 10.49.  HR-

MS (ESI): calcd for C100H128O6S4 [M+Na]+, 1575.8486; found, 1575.8439. 
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11,23-Bis[5’-(4-hexadecyloxyphenyl)-2,2’-bithiophen-5-yl]-25,26,27,28-

tetrapropoxycalix[4]arene (3). Using the similar procedure for the synthesis of 1, compound 8 

(0.075 g, 0.073 mmol) was treated with Pd2(dba)3·CHCl3 (3.8 mg, 5 mol %), t-Bu3PH·BF4 (2.3 

mg, 11 mol %), 12 (0.128 g, 0.17 mmol), THF (1 mL), DMF (0.5 mL), and KF (0.025 g, 1.3 

mmol). Yield: 0.062 g (61%) of orange solid. 1H-NMR (400 MHz, CDCl3) δ: 7.41 (pseudo-d, 

4H, J = 8.7 Hz), 6.96 (s, 4H), 6.95 (d, 4H, J = 8.7 Hz), 6.92 (d, 2H, J = 3.7 Hz), 6.85 (m, 4H), 

6.38 (pseudo-d, 4H, J = 8.7 Hz), 6.71 (d, 2H, J = 3.7 Hz), 6.63 (s, 4H), 6.51 (d, 2H, J = 3.7 Hz), 

4.49 (d, 4H, J = 13 Hz), 3.98 (t, 4H, J = 7.9 Hz), 3.96 (t, 4H, J = 6.6 Hz), 3.79 (t, 4H, J = 7.0 

Hz), 3.20 (d, 4H, J = 13 Hz), 1.96 (m, 8H), 1.77 (m, 4H), 1.42–1.27 (m, 52H), 1.07 (t, 6H, J = 

7.4 Hz), 0.98 (t, 6H, J = 7.4 Hz), 0.89 (t, 6H, J = 7.0 Hz). 13C-NMR (125 MHz, CDCl3) δ: 

158.94, 157.30, 156.17, 143.67, 142.93, 136.69, 135.87, 135.81, 135.73, 135.04, 134.96, 128.87, 

128.11, 127.08, 126.92, 125.31, 124.32, 123.81, 123.54, 122.73, 122.48, 122.34, 115.12, 115.00, 

77.21, 76.93, 68.32, 32.17, 31.22, 29.95–29.93, 29.91, 29.88, 29.85, 29.70, 29.61, 29.54, 26.31, 

23.62, 23.35, 22.94, 14.38, 10.81, 10.33. HR-MS (ESI): calcd for C108H132O6S6 [M+Na]+, 

1739.8240; found, 1739.8210. 
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11,23-Bis[5’-(4-hexadecyloxyphenyl)-2,2’-bithiophen-5-yl]-25,26,27,28-

tetrapropoxycalix[4]arene (4). Using the similar procedure for the synthesis of 1, compound 9 

(0.072 g, 0.094 mmol) was treated with Pd2(dba)3·CHCl3 (4.9 mg, 5 mol %), t-Bu3PH·BF4 (3.0 

mg, 11 mol %), 12 (0.155 g, 0.20 mmol), THF (0.8 mL), DMF (0.4 mL), and KF (0.033 g, 0.56 

mmol). Yield: 0.087 g (59%) of yellow solid. 1H-NMR (300 MHz, CDCl3) δ: 7.42 (pseudo-d, 

4H, J = 8.7 Hz), 7.25 (s, 4H), 7.04 (d, 4H, J = 7.5 Hz), 7.00 (d, 2H, J = 3.9 Hz), 6.94 (d, 2H, J = 

3.9 Hz), 6.84 (s, 4H), 6.82 (pseudo-d, 4H, J = 8.7 Hz), 6.69 (t, 2H, J = 7.5 Hz), 4.00 (t, 4H, J = 

6.6 Hz), 3.73 (t, 4H, J = 6.9 Hz), 3.67 (t, 4H, J = 7.2 Hz), 3.59 (s, 8H), 1.97 (m, 4H), 1.83 (m, 

8H), 1.50–1.28 (m, 52H), 1.15 (t, 6H, J = 7.5 Hz), 1.05 (t, 6H, J = 7.5 Hz), 0.90 (t, 6H, J = 6.9 

Hz). 13C-NMR (125 MHz, CDCl3) δ: 158.76, 156.51, 156.43, 143.75, 142.32, 136.76, 135.23, 

133.94, 133.30, 130.22, 127.50, 127.34, 127.14, 126.84, 124.30, 123.68, 122.53, 122.25, 121.69, 

114.95, 74.87, 74.81, 68.30, 35.81, 32.16, 29.95–29.93, 29.90, 29.89, 29.86, 29.72, 29.61, 29.58, 

26.32, 24.30, 24.15, 22.93, 14.37, 11.34, 10.97, 10.90.  HR-MS (ESI): calcd for C100H128O6S4 

[M+Na]+, 1575.8486; found, 1575.8463. 
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11,23-Bis[5’-(4-hexadecyloxyphenyl)-2,2’-bithiophen-5-yl]-25,26,27,28-

tetrapropoxycalix[4]arene (5). Using the similar procedure for the synthesis of 1, compound 10 

(0.016 g, 0.065 mmol) was treated with Pd2(dba)3·CHCl3 (2.0 mg, 3 mol %), t-Bu3PH·BF4 (1.2 

mg, 6.6 mol %), 12 (0.083 g, 0.098 mmol), DMF (0.7 mL), and KF (0.023 g, 0.39 mmol). Yield: 

0.035 g (83%) of yellow solid. 1H-NMR (400 MHz, CDCl3) δ: 7.52 (pseudo-d, 2H, J = 8.8 Hz), 

7.27 (s, 2H), 7.14 (d, 1H, J = 3.7 Hz), 7.12 (pseudo-s, 2H), 7.11 (d, 1H, J = 3.7 Hz), 6.92 

(pseudo-d, 2H, J = 8.8 Hz), 3.99 (t, 2H, J = 6.6 Hz), 3.76 (t, 2H, J = 6.6 Hz), 2.33 (s, 6H), 1.85 

(m, 4H), 1.56–1.27 (m, 26H), 1.10 (t, 3H, J = 7.4 Hz), 0.89 (t, 3H, J = 7.0 Hz). 13C-NMR (125 

MHz, CDCl3) δ: 159.08, 156.09, 143.22, 143.08, 136.40, 136.01, 131.76, 129.65, 127.05, 

126.91, 126.26, 124.40, 124.32, 123.31, 122.81, 115.10, 74.21, 68.35, 32.15, 29.91~29.93 (5C), 

29.89, 29.83, 29.80, 29.62, 29.60, 29.46, 26.25, 23.86, 22.92, 16.61, 14.36, 10.88.  HR-MS 

(ESI): calcd for C41H56O2S2 [M]+, 644.3716; found, 644.3725. 
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Spectrum 1. 1H-NMR spectrum of A (400 MHz, CDCl3). 

 
Spectrum 2. 13C-NMR spectrum of A (125 MHz, CDCl3). 
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Spectrum 3. 1H-NMR spectrum of 8 (400 MHz, CDCl3). 

 
Spectrum 4. 13C-NMR spectrum of 8 (125 MHz, CDCl3). 
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Spectrum 5. 1H-NMR spectrum of B (300 MHz, CDCl3). 
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Spectrum 6. 1H-NMR spectrum of 12 (400 MHz, CDCl3). 

 
Spectrum 7. 13C-NMR spectrum of 12 (125 MHz, CDCl3). 
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Spectrum 8. 1H-NMR spectrum of 1 (300 MHz, CDCl3). 

 
Spectrum 9. 13C-NMR spectrum of 1 (125 MHz, CDCl3). 
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Spectrum 10. 1H-NMR spectrum of 2 (400 MHz, CDCl3). 

 
Spectrum 11. 13C-NMR spectrum of 2 (125 MHz, CDCl3). 

O

O

O

O

S

S

S

S

OC16H33

OC16H33



Chapter 2 Appendix NMR 

 52 

 

 
Spectrum 12. 1H-NMR spectrum of 3 (400 MHz, CDCl3). 

 
Spectrum 13. 13C-NMR spectrum of 3 (125 MHz, CDCl3). 
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Spectrum 14. 1H-NMR spectrum of 4 (400 MHz, CDCl3). 

 
Spectrum 15. 13C-NMR spectrum of 4 (125 MHz, CDCl3). 
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Spectrum 16. 1H-NMR spectrum of 5 (400 MHz, CDCl3). 

 
Spectrum 17. 13C-NMR spectrum of 5 (125 MHz, CDCl3). 
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Binaphthyl – A Molecular Hinge 

We have proposed “molecular actuators” that change their dimensions via a novel molecular 

mechanism in Chapter 1.1 In contrast to conventional conducting polymer actuators, which 

operate through absorption and release of counter-ions and solvents under electrochemical 

oxidation and reduction, our molecular actuator designs utilize the conformational changes of the 

individual polymer chain at the molecular level. Following this concept, we proposed two 

mechanisms for molecular actuators; the expansion and the contraction. In the expanding 

mechanism, the initially bent moieties are forced to be flat under redox control. The driving force 

is the aromatization, gained by oxidizing a non-aromatic system. Cyclooctatetraene2 and 

thianthrene3 have been suggested as possible candidates to produce this behavior. 

To display a contracting mechanism, we have developed a calix[4]arene-based conducting 

polymer.1b In this system, the calix[4]arene scaffold functions as a molecular hinge, through 

which electroactive segments are brought together and apart to form a reversible (intermolecular) 

bond. We utilize π-dimer formation as the driving force for the actuation, which we 

unequivocally proved in model compound studies (see Chapter 2). 

In parallel with the calix[4]arene-based system, a new building block containing binaphthyl 

units was developed as another potential hinge candidate. The binaphthyl has a hinge comprised 

of a 1,1’ C-C bond between two naphthyl units. As described in Figure 1a, our design involves 

the electroactive segments (oligothiophenes, for example) that are connected through a 

binaphthyl hinge. As we oxidize the electroactive segments, radical cations are generated and the 

new chemical bond called π-dimer can potentially drive the dimensional changes. Figure 1b 

illustrates the computer-generated model of how the binaphthyl polymer changes its dimensions 

employing the hinge. 
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We have long pursued development of segmented electroactive polymers that lack extended 

conjugation. We believe that if we confine the wavefunctions into a finite region, we can expect 

a better interaction due to the large coefficients. However, the stability of charged species is 

generally improved when the species have more delocalized structures. It is also important to 

consider that the generated charges will display coulombic repulsion, which can offset any 

effects gained by the wavefunction confinement. 

HO

HO

Electroactive
segmentsMolecular Hinge

(a)

(b)  

 

Figure 1. (a) Design of binaphthyl containing molecular actuators. (b) The computer-generated model of the 

binaphthyl polymer’s conformational change under redox control. 

In this chapter, we describe the synthesis of this new class of materials and their 

electrochemical properties.  We also developed a new binaphthyl monomer with oligothiophenes 

of different connectivity to promote a better interaction. 
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Synthesis of Binaphthyl Polymers: The First Generation 

As a result of the richness in chemistry of binaphthyls,4 dibromobinaphthol 1 is commercially 

available both in racemic and enantiomeric forms (R and S). Thus, we were able to synthesize the 

electropolymerizable monomers 2 and 3 in a single step with a Stille coupling reaction in 

moderate yields (Scheme 1). Compound 2 is stable for storage in the solid state, but we observed 

slow decomposition under air in case of compound 3, perhaps due to oxidation.  

Scheme 1.a 

HO

HO

Br

Br

HO

HO

S

S

S

S

HO

HO

S

S

O

O

O

O

i
or

rac-, (R)-, (S)-1 rac-, (R)-, (S)-2 rac-3  
aReagents: (i) Pd2(dba)3·CHCl3, t-Bu3P, 5-tributylstannyl-2,2’-bithiophene, KF, NMP, 70 °C, 24 h, 61~66%. 

Figure 2 shows the electropolymerization of monomer 2 (racemic) to create electrode-surface 

confined polymer films and the scan-rate dependence of the electroactive polymers in CH2Cl2. 

The electrodeposition was performed under swept potential conditions with 0.1 M TBAPF6 as a 

supporting electrolyte in air. The shift of the onset potential of the second scan (Figure 2a), when 

compared to the first scan, is indicative of generating a more extended conjugated system (i.e., 

thiophene-thiophene coupling).5 As more films were deposited, the peak potentials slightly 

shifted and the increase in current with each scan slightly diminished. These effects are common 

with sluggish diffusion of ions into and out of the film, and the overall resistive loss through the 

thickness of the film results in a reduced potential (IR drop) at the film surface. We observed two 
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oxidation and reduction couples, which is consistent with the generation of polaron (radical 

cation) and bipolaron (dication) types of species.6 
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Figure 2. (a) Electropolymerization of rac-2 (~1.5 mM) on a Pt button electrode. The dotted line represents the 

first scan. (b) CVs of a poly(rac-2) film at different scan rates in a monomer free solution. All measurements were 

carried out in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte. 
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Figure 3. The CV (dotted line) and in situ conductivity measurement (solid line) of a film of poy(rac-2) on 5-µm 

interdigitated Pt microelectrode in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte. 

The in situ conductivity measurement of the poly(rac-2) was shown in Figure 3. The initially 

insulating film became conductive as the oxidation occurred (electrochemical doping), giving the 

maximum conductivity of ~60 S/cm. The conductivity profile of poly(rac-2) was distinguished 
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from that of the related calix[4]arene-based polymer,1b in that it did not have a bell-shape. 

Rather, it represented a plateau before the degradation occurred. In the self-exchange 

mechanism7 where charges are hopping between localized oxidized states, it is known that the 

conductivity reaches maximum when there are equal amounts of the conducting states. As was 

shown in the calix[4]arene-based polymer,1b the maximum conductivity was achieved when 

radical cations and dications existed in roughly equal amounts. Poly(rac-2) are segmented too 

and are expected to conduct charges through the self-exchange mechanism. However, it is 

possible that some other mechanisms exist at high oxidation levels. 

Electropolymerization of rac-3 was very different from that of rac-2 (Figure 4). Firstly, the 

polymer was not stable in the ambient conditions, so the polymerization was performed under 

inert atmosphere (glove box). Secondly, the first and the second oxidation were well separated. 

Thirdly, it showed very interesting electron-injected states (n-doping). It is not usual that the n-

doped states are observed in such an electron-rich system.8 
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Figure 4. (a) Electropolymerization of rac-3 (~1 mM) on a Pt button electrode. The dotted line represents the first 

scan. (b) CVs of a poly(rac-3) film at different scan rates. All measurements were carried out in CH2Cl2 with 0.1 M 

TBAPF6 as a supporting electrolyte under inert atmosphere. 
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We noticed that the redox couples in the cyclic voltammograms (CVs) were asymmetric in 

oxidation and reduction current intensities, especially for the n-doping couple. The current for 

electron injection (reduction, the scanning from 0 V to –1 V) was bigger than that for the 

electron recovery (oxidation, from –1 V to 0 V). The same was true for the hole injection scans; 

the current from 0 V to +1 V was bigger than the backward current. We can postulate that, as we 

scanned the positive potential first, not all of the oxidized states were reduced in the first 

(positive) potential cycle, but they recovered at the negative potential scans together with n-

doping process. 
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Figure 5. (a) CVs of a poly(3) film cycled first at the p-doping (positive potential) region (red dots), and then the n-

doping (negative potential) region (blue dots). (b) CVs of a poly(3) film cycled at the n-doping region (red dots) 

first, then at the p-doping region (blue dots). 

This “charge trapping” hypothesis was tested by scanning different directions (Figure 5). We 

first cycled the positive potential regions with the poly(rac-3) under inert atmosphere (Figure 

5a). The current of the second scan (Figure 5a, gray solid above the red dots) was smaller than 

that of the first (Figure 5a, red dots), while the third (Figure 5a, black solid) was very similar to 

the second. This strongly suggested some of the charges were trapped at the first scan. 

Successively, we cycled the potentials to the negative regions (0 V to –1 V). As clearly shown in 

Figure 5a, the trapped charges appeared to be released at the first scan (blue dots). When we tried 
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to inject the electrons first to the pristine poly(rac-3) (Figure 5b, red dots), we did not observe 

the same feature. Again, when cycled in the positive potentials, a portion of the charges from the 

first scan (Figure 5b, blue dots) were trapped.  
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Figure 6. (top) Electropolymerizations of R-2 (a, ~1.5 mM) and S-2 (b, ~1.5 mM) on Pt button electrodes. The red 

dotted lines represent the first scan. (middle) CVs of films of poly(R-2) (c) and poly(S-2) (d) at different scan rates. 

(bottom) The CV (dotted line) and in situ conductivity measurement (solid line) of films of poly(R-2) film (e) and 

poly(S-2) (f) on 5-µm interdigitated Pt microelectrodes. All measurements were carried out in CH2Cl2 with 0.1 M 

TBAPF6 as a supporting electrolyte. 

Electropolymerization of the enantiometrically pure (R)- or (S)-2 was conducted following the 

same conditions, and we found no significant differences from the results of the racemic 

counterpart. This is not surprising considering that the electronic structures should be the same 

regardless of the chirality. The polymers may have different morphologies according to the 
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stereo-regularity. However, the stereo-regularity, if any, seems to affect the electrochemical 

properties very little. 

 

Preparation of Free-Standing Films and Actuation Testing 

We were able to obtain conductive free-standing films from the electropolymerization of 

monomer 2 employing a waveform that couples a brief mode of constant current to a swept 

current condition.9 This galvanodynamic waveform, developed in our group, promotes more 

mass to be deposited while retaining the swept current conditions. Note that we controlled the 

current here, rather than potential, in order to ensure a sufficient polymerization rate even in the 

thick films. With thick films in a potential-controlling method, the potential at the film surface 

may be reduced due to a resistive drop and hence the polymerization rate is reduced. We 

performed the electropolymerization in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte at 

–20 oC for 12 hours. The thickness of the peeled-off polymer film was measured as 30 µm, and 

the conductivity was 0.05 S/cm by the four-point probe method. The conductivity was very low 

compared to the value we obtained via the in situ method (Figure 3). However, it should be noted 

that the in situ method measures the relative value from the microscopic regions and utilizes only 

two probes.10 
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Figure 7. Dynamic mechanical analyzer for a polymer’s actuation test (developed in Biointrumentation Lab, MIT). 

Figure 7 illustrates the actuation test instrument (dynamic mechanical analyzer) developed in 

the Bioinstrumentation Lab of Professor Ian Hunter at MIT. The polymer film is mounted to two 

conductive clips (the working electrodes). One clip is connected to a force sensor, and the other 

clip is attached to a distance controller. It is then placed into an electrochemical cell including 

the reference and counter electrodes. Despite multiple attempts, however, we were not able to 

detect a correlation between injected charges and a strain (dimensional change) or stress (force 

change) (Figure 8). What we observed was the relaxation of the film in response to the stress 

applied. We suspect that the pristine polymer has highly entangled structures arising from the 

twisted nature of the binaphthyl monomer. 
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Figure 8. Actuation test results of a poly(rac-2) film. Stress (force/length, bottom) was measured in response to the 

applied cyclic potentials (top). No correlation was found between the stress and the injected charges. 

What we have learned from actuation tests is that the alignment of the polymer strands will be 

key to the success of molecular actuators. Rather than the entangled structures, structures with a 

long-range order are needed. We will discuss efforts toward the alignments of the binaphthyl-

incorpoated polymers at the end of this chapter. 

 

Design of New Scaffold: The Second Generation 

After our limited success with initial binaphthyl monomers, we turned our attention to the 

design of other monomer isomers containing a binaphthyl group. By simply changing the 

connectivity of oligothiophenes from 6-position to 7-position to the naphthol unit, we can expect 

a better interaction between the electroactive groups as shown. 
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In contrast to the conventional 6,6’-disubstituted binaphthols, 7,7’-disubstitued binaphthols are 

rare and only recently are they utilized in catalyst development.11 Nevertheless, the synthesis of 

7,7’-dibromobinaphthol 4 was described in the literature11b via oxidative coupling with a copper-

amine catalyst. The desired new monomer 5 was synthesized by a Stille coupling reaction in a 

good yield (Scheme 2). 

Scheme 2.a 

HO

OH

S

S

S

S

HO

OHBr

Br

OHBr

OHHO

i

ii

iii

4 5  
aReagents: (i) PPh3•Br2, 300 °C , 67%. (ii) CuCl(OH)(TMEDA), CH2Cl2, 15 h, 92%. (iii) PdCl2(PPh3)2, 5-
tributylstannyl-2,2’-bithiophene, toluene, 80 °C, 18 h, 81%. 

The electropolymerization of 5 (Figure 9) was performed with swept potential conditions (in 

CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte under air), similar to what was used to 

synthesize poly(2). Compared to the 6,6’-substituted monomers (e.g., 2), 7,7’-susbstituted 

monomer 5 has hydroxyl groups at the non-conjugated position to the oligothiophenes. Thus, the 

monomer oxidation occurred at a slightly higher potential, and the peak potentials of the 

polymer’s oxidation were also higher. Poly(5) showed two one-electron oxidation and reduction 

couples, which were only resolved at slow scan rates.  
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Figure 9. (a) Electropolymerization of 5 (~1.5 mM) on a Pt button electrode. The dotted line represents the first 

scan. (b) CVs of a poly(5) film at different scan rates. All measurements were carried out in CH2Cl2 with 0.1 M 

TBAPF6 as a supporting electrolyte. 

In situ conductivity measurements of a film of poly(5) revealed very interesting properties that 

are different from the isomeric poly(2)’s. We found that scanning to potentials higher than the 

second redox wave (~0.9 V vs Fc/Fc+) resulted in increased conductivity (Figure 10) without 

degradation. When we limited the potential cyclings around the first oxidation (up to ~0.65 V vs 

Fc/Fc+), the CVs were reproducible (Figure 10a, dotted line) and we see a clear correlation 

between the conductivity and the redox activity characteristic of self-exchange redox processes 

that would be expected of a hopping condition (Figure 10b, dotted line). 



Chapter 3 Binaphthyl Actuator 

 68 

-5

0

5

10

15

20

25

0

20

40

60

80

100

120

140

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

C
u

rr
e

n
t 

(µ
A

)
C

o
n
d

u
c
ti
v
it
y
 (

S
/c

m
)

CH2Cl2

10 mV/s

5 mV/s
40 mV offset

Potential (V vs Fc/Fc+)

CH2Cl2

(a)

(b)

 

Figure 10. The CVs (a) and in-situ conductivity measurements (b) of a poly(5) film. Dotted lines represent the 

scans of potentials up to 0.65 V (vs. Fc/Fc+). At higher potentials (>0.7 V), additional irreversible oxidation occurred 

(a, solid line) and conductivity was increased (b, solid line). Measurements were performed on a 5-µm interdigitated 

Pt microelectrode in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte. 

It appears that scanning to the higher potentials resulted in irreversible chemical reactions that 

produced a more conductive and delocalized polymer structure. The irreversible spike of the 

oxidative current in Figure 10a (solid) suggests that the oxidation results in new bonds being 

formed with loss of protons. The onset potential shifted to the lower potential and the 

electroactivity (integration of the current) did not diminish even after oxidation at the higher 

potential, both of which suggest a more delocalized structure is being produced. The 

conductivity profile (Figure 10b, solid) was very different after the high potential oxidation. The 

conductivity onset was shifted to lower potential as in the CV and the maximum conductivity 
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was almost doubled. The conductivity also displayed a plateau, which is usually found in fully-

conjugated polymers.12 Segmented polymers show more structured conductivity profiles due to 

their hopping conduction. 
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Figure 11. (a, b) Electronic absorption spectra of freshly-deposited poly(5) on a ITO-coated glass electrode as a 

function of oxidation potential from 0 V to 0.9 V (a) and 0.9 V to 1.3 V (b, high potential oxidation) vs. Ag/Ag+ 

(0.01 M). (c) Comparison of neutral absorptions of poly(5) before (dotted line) and after (solid line) high potential 

oxidation. (d) Absorption spectra of the poly(5) film after high potential oxidatioin as a function of oxidation 

potential from 0 V to 1.3 V vs. Ag/Ag+ (0.01 M). All measurements were carried out in CH2Cl2 with 0.1 M TBAPF6 

as a supporting electrolyte.  

The spectroelectrochemical measurements provide evidence that the conjugation is increased 

after high potential oxidation. When we measured at the low potential region (Figure 11a), the 

development of the new optical transitions was very similar to that of polaron-like absorptions 

(radical cations, Chapter 2). The vibrational fine structures in the absorptions implied that the 



Chapter 3 Binaphthyl Actuator 

 70 

radical cations were localized to the finite segments.13 With further oxidation as shown in Figure 

11b (over-oxidation), dication species seem to dominate as a peak at around 900 nm. 

After the high potential oxidation, we found that the bandgap, determined by the onset of the 

optical absorption, decreased significantly (Figure 11c, red line). When the polymer was 

oxidized again, the sub-gap transitions lost the vibrational fine structures and became featureless 

(Figure 11d), which is similar to fully-conjugated polythiophenes.5,12,14 Based on the results, it 

seems highly likely that a chemical transformation at the high potentials leads to the increase in 

conjugation. Considering the structure, we postulate that 8- and 8’-positions are prone to 

nucleophilic attacks (Scheme 3). The phenolic oxygens, which do not actively participate in the 

stabilization of the generated charges, may attack those positions, resulting in the extended 

aromatic structures. Although we obtained much more conductive material, it seems likely that 

the hinges we intended to incorporate were removed through the process. Thus, we have 

continued to protect the phenolic oxygens with alkyl groups. 

Scheme 3. Proposed Chemical Transformation of poly(5) at High Oxidation States 
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O-Alkylated Binaphthol Polymers 

We installed the alkyl groups to the binaphthol monomers (Scheme 4) in the hope that O-

alkylation will prevent any further transformation at high oxidation states. In addition, with long 

alkyl chains we may obtain soluble polymers, which is highly desirable for processing. 

Compound 7 was easily prepared from dibromobinaphthol 4 by Williamson etherification and 

Stille coupling. Macrocyclic monomer 9 was synthesized for ring opening metathesis 

polymerization (ROMP), which will be discussed later. 6,6’-Substituted counterparts 10 and 11 

were also synthesized using similar methods. 

Scheme 4.a  
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aReagents: (i) R-Br, K2CO3, acetone, reflux, 15 h, 78~86%. (ii) PdCl2(PPh3)2, 5-tributylstannyl-2,2’-bithiophene, 
toluene, 80 °C, 18 h, 81%. (iii) (Cy3P)2Cl2Ru=C(H)Ph, CH2Cl2, 2 h, 73%. 
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The electropolymerization of 7 or 10 was performed in a 1:1 mixture of CH2Cl2:CH3CN, which 

facilitated the polymer’s deposition on a electrode surface better than using CH2Cl2 alone. This 

result likely reflects the solubility of initially coupled oligomeric products. Interestingly, we were 

able to conduct the electropolymerization of 9 or 11 in CH2Cl2 solution only and hence the 

additional rigidity of these monomers likely decreases the solubility. All other conditions were 

similar to the case of other binaphtyl monomers (2 and 5).  

Figure 12 shows the polymerizations (a–d) and the resulting polymers’ scan-rate dependences 

in CH2Cl2 (e–h), and in CH3CN (i–l). All polymers showed two 1-electron redox waves, although 

their peak potentials were different depending on the structures and the solvent used. In the case 

of poly(7) and poly(10) in CH3CN, we needed to apply higher potentials to achieve the first 

oxidation, which resulted in sharp peaks and substantial peak-separation between the oxidation 

and reduction of the first redox couple. We attributed this to low degrees of solvation to the 

neutral polymers. This “solubility effect” was not apparent in the case of poly(9) and poly(11). 

We suspect that macrocyclic side chains and shape-persistent structures create an additional free 

space inside the polymer, which allows for more facile solvent and electrolyte diffusion into the 

polymer film as compared to the linear counterparts.  
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Figure 12. Electropolymerizations of 7 (a), 9 (b), 10 (c), and 11 (d) (all ~1.2 mM) on Pt button electrodes in the 

solvents indicated with 0.1 M TBAPF6 as a supporting electrolyte. Dotted lines represent the first scan. CVs of 

corresponding polymer films at different scan rates in CH2Cl2 (e–h) and in CH3CN (i–l) were presented in parallel. 

The most striking feature in the CV was found for poly(7) in CH2Cl2 where the first redox 

couple was split. This was not found in CH3CN or for any other polymers. The peak splitting was 

most evident when the film was thin, as shown in the first few scans at the electropolymerization 

(Figure 13a). In this case, we observed for poly(7) split oxidation peaks at 0.36 V and 0.54 V, 
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and reduction peaks at 0.31 V and 0.40 V. In contrast, only one oxidation (0.46 V) and one 

reduction (0.29 V, all vs Fc/Fc+) peak were observed in poly(10). In thicker films of poly(7), 

however, only one peak was observed.  
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Figure 13. First three scans in the electropolymerization of 7 (a) and 10 (b) on Pt button electrodes in the 1:1 

mixture of CH2Cl2 and CH3CN with 0.1 M TBAPF6 as a supporting electrolyte. 

We speculate that in the case of poly(7), a mixed-valence π-complex between the radical 

cation and the neutral species was generated during the first oxidation. The stabilization by the 

mixed-valence complex leads to the shift of the onset potential of the first oxidation in the CVs: 

0.1 V for poly(7) versus 0.2 V for poly(9) (Figure 14, all in CH2Cl2, vs. Fc/Fc+). It is interesting 

that only the new monomer with 7,7’-substituents (7) showed such interaction, and that the side 

chains greatly affected its behavior. However, this mixed-valence complex is destabilized in the 

thick films, which implies that entangled and geometrically constrained structures may prevent 

its formation. We propose that highly-ordered structures are necessary to take advantage of this 

type of interaction. 
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Figure 14. CVs of films of poly(7) (a), poly(9) (b), poly(10) (c), and poly(11) (d) on Pt button electrodes in CH2Cl2 

(red line) and CH3CN (blue line) with 0.1 M TBAPF6 as a supporting electrolyte. 

It should be noted here that upon alkylation we did not observe any signature of degradation or 

chemical transformation even at the very high oxidation levels. Indeed, all of the polymers 

(poly(7), poly(9), poly(10), and poly(11)) were remarkably stable at high oxidation states. This 

observation supports our proposal that reactions take place at the phenolic oxygens. Although 

highly stable redox systems are obtained by protecting the phenolic oxygens, the stability gain in 

these cases is at the expense of the conductivity. We found that the maximum conductivities of 

the alkylated systems were more than an order of magnitude lower than those of the free 

phenolic systems. 
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Figure 15. Electronic absorption spectra in CH2Cl2 of poly(7) (e), poly(9) (f), poly(10) (g), and poly(11) (h) on 

ITO-coated glass electrodes with 0.1 M TBAPF6 as a supporting electrolyte, as a function of oxidation potential vs. 

Ag/Ag+ (0.01 M). Roughly, orange, green, and blue lines represent their neutral, polaronic (radical cation), and 

bipolaronic (dication) states, respectively. CVs of the corresponding polymer films (a–d) were presented in parallel. 

We measured in situ UV-vis absorptions as a function of oxidation levels by varying the 

applied voltages. The polymers were deposited onto the ITO-coated glass electrodes and placed 
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into a quartz cell equipped with a counter electrode and a reference electrode. Figure 15 shows 

the spectroelectrochemical measurements (e–h) in CH2Cl2 under ambient atmosphere with 0.1 M 

TBAPF6 and the CVs (a–d) of the corresponding polymers. We clearly observed two 1-electron 

redox couples for all polymers with the splitting of the first redox couple in the case of poly(7). 

Based upon the optical spectra, we can divide the oxidations into three levels: neutral, radical 

cation (polaron-like), and dication (bipolaron-like). At the neutral state (orange lines), the 

absorptions of the polymers were all very similar with small red-shifted onsets for poly(10) and 

poly(11) as compared to those of poly(7) and poly(9). The spectra of poly(7) and poly(9) were 

almost identical as were poly(10) and poly(11), which indicates that the position of alkoxy 

groups affects the electronic structures more than the conformation of the hinge. Similarly, the 

dication states (blue lines) of poly(7) and poly(9) were very similar, and we see parallel 

similarities for poly(10) and poly(11). The positions of the absorption maxima were slightly 

different, but the shapes were consistent with bipolaron-like absorptions.14 

We were intrigued by the development of sub-gap transitions to the radical cation states (green 

lines). All four polymers showed the typical pattern of polaron-like absorptions with the neutral 

absorptions decreasing while the two sub-gap transitions (~700 nm and >1100 nm) increased. 

However, upon close examination the first polaron-like transitions (~700 nm) contain two kinds 

of absorptions with different ratios according to each polymer. For poly(7) and poly(9), two 

absorptions at around 660 nm and 780 nm were observed in different ratios (Figure 15e and f). 

The 660-nm absorption prevailed in the oxidation of poly(7), while the 780-nm absorption 

developed first for poly(9) but at higher potentials the two absorptions were equalized. 

In the case of poly(10) and poly(11), the polaron-like transitions are approximately at 630 nm 

and 820 nm (Figure 15g and h). The 630-nm absorption was dominant in poly(10). In poly(11), 
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the 820-nm absorption was most noticeable, although it was not dominant. To summarize the 

effects of the substitution patterns (7,7’- vs 6,6’-) and the alkoxy groups (linear vs macrocyclic), 

we note the following; in the two absorptions for radical cations, the shorter-wavelength 

absorption was more prevalent in the polymers with 6,6’-substituted binaphthols than those with 

the 7,7’-susbstitution (poly(10) vs poly(7), and poly(11) vs poly(9)). In addition, linear alkoxy 

chains appeared to promote the shorter-wavelength absorption (poly(7) vs poly(9), and poly(10) 

vs poly(11)).  
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Figure 16. Electronic absorption spectra in CH3CN of poly(7) (e), poly(9) (f), poly(10) (g), and poly(11) (h) on 

ITO-coated glass electrodes with 0.1 M TBAPF6 as a supporting electrolyte, as a function of oxidation potential vs. 

Ag/Ag+ (0.01 M). Roughly, orange, green, and blue lines represent their neutral, polaronic (radical cation), and 

bipolaronic (dication) states, respectively. CVs of the corresponding polymer films (a–d) were presented in parallel. 

When we conducted the same measurements in CH3CN (Figure 16), we were able to observe 

the same patterns for the development of polaron-like absorptions as in CH2Cl2, although the 
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ratios varied slightly. Figure 17 summarizes the polaron-like absorptions of the polymers in both 

CH2Cl2 and CH3CN. We15 and others16 found that in the small molecule systems, the polaron-like 

absorptions are blue-shifted when they form a π-dimer. We therefore assign the short wavelength 

peak as the π-dimer, and such interactions become stronger with linear alkoxy chains and 6,6’-

substituted binaphthyls. However, we suspect that the interactions may rise from the inter-chain 

interactions, because the geometry with 7,7’-substituents should best promote an intra-chain 

interaction (Figure 13 and 14). 
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Figure 17. Electronic absorptions of poly (7) (a, solid lines), poly(9) (a, dotted lines), poly (10) (b, solid lines), and 

poly(11) (b, dotted lines) in CH2Cl2 (red lines) and CH3CN (blue lines) at their radical cation states. Conditions were 

the same as in Figure 15 and 16. 

 

Alignment of Polymers: Ring Opening Metathesis Polymerization 

From our actuation studies, we believe that highly ordered polymer materials are necessary in 

order to translate the molecular dimensional changes into macroscopic movement. One method 

for aligning polymers or small molecules is to disperse them into ordered matrices, such as 

nematic liquid crystals, uniaxially stretched polymer films, etc.17 The binaphthyl and its 

derivatives are known to align in these matrixes due to their aspect ratios and have been used to 

induce cholesteric mesophases in nematic liquid crystals (chirality transfer).18 Thus, it is a 
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reasonable approach that a mixture of a soluble binaphthyl polymer and an aligning matrix can 

be used to produce an aligned material. Incorporation of the binaphthyl moieties directly into the 

aligning matrix is another approach. 

As a preliminary study, we tried to incorporate the binaphthyl moiety into the elastomeric 

matrix by using ring opening metathesis polymerization (ROMP, Scheme 5). ROMP is a well-

controlled living polymerization method19 and has been widely used to prepare a variety of 

materials.20 As described earlier, we prepared macrocyclic binaphthyl monomers (9 and 11), 

however we find that they cannot be homopolymerized by the Ru catalysts developed by Grubbs. 

To create polymers, we employed a cis-cylcooctene (COE) comonomer at various ratios, and 

found that it gave the best results when the ratio of binaphthyl monomer:COE was 1:4. 

Scheme 5.a  
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aReagents: (i) CH2Cl2, 40 °C, 12 h, ~90%. 

The molecular weight of polymer 12 and 14 were satisfactory. The Mn for 12 was 56,300 (PDI 

= 3.5), and Mn for 14 was 165,000 (PDI = 2.2). The polymers were soluble in CHCl3 and high 

quality films could be obtained by drop-casting. Initially prepared films were highly fluorescent 
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(Figure 18a, bottom-right). However, we found that they slowly bleached in air (Figure 18a, 

bottom-left), probably as a result of oxidation. Storing the polymers in solution (CHCl3) for a 

long period of time in air resulted in insoluble gel-like precipitates, which is probably due to 

oxidative cross-linking reactions between the thiophene groups. 

(a) (b)

12

14
13 15

Bleached in air

Freshly
deposited

FeCl3 Crosslinking

 

Figure 18. (a) Drop-cast polymers 12 and 14 (top) and their fluorescence under UV (~340nm) (bottom). Note that 

polymers were slowly bleached in air. (b) Cross-linked polymers 13 and 15 with FeCl3. 

To create conducting polymers from these copolymers, we investigated the oxidative cross-

linking by FeCl3 in CHCl3. Not surprisingly, insoluble materials were obtained for both polymers 

(Figure 18b). We also found that the resulting polymers (13 and 15) lose their elastomeric 

properties and were brittle. To create conducting films, we also investigated solid-state oxidative 

cross-linking method (SOC)21 by applying potentials to the drop-cast polymers on electrodes 

(Figure 19). As we swept the potentials, we observed the increasing current resulting from the 

extended oligothiophenes, but the current was soon saturated. As shown in the insets in Figure 

19, the cross-linked polymers retained a green color even after the application of reducing 

potentials for an extended period of time. This suggests that not all the oxidized species have 

returned to their reduced (neutral) states, probably due to very low conductivity of the polymer 

films. We were not able to detect any conductivity in the in situ measurements. 
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Figure 19. Solid-state oxidative crosslinking (SOC) of polymers 12 (a) and 14 (b) on ITO-coated glass electrodes 

in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte. Insets show the polymer before and after SOC. 

 Because the conductivity seemed to limit the further cross-linking process, we went on to 

perform oxidative cross-linking with a chemical oxidant. Drop-cast films that were dipped into a 

CH2Cl2 solution of SbCl5 turned deep green immediately. After washing with pure CH2Cl2, we 

dipped the films into a CH2Cl2 solution of N2H4 to reduce, which gave orange colors. We were 

able to repeat the above process many times (Figure 20). Although these films were highly 

chemo-chromic, the cross-linked orange films were rather brittle and lack the mechanical 

properties for stretching and actuation properties. 

 

Polyme 15

SbCl5

N2H4

 

Figure 20. Chemo-chromic responses of polymer 15 to oxidant SbCl5 and reductant N2H4. 
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Conclusion 

We designed and synthesized several electropolymerizable monomers containing binaphthyl as 

molecular hinges and oligothiophenes as electroactive segments. The first generation (6,6’-

substituted) polymer resulted in a conductive and thick film, however we were not able to 

observe any correlation between charges and stress or stain. The second generation (7,7’-

substituted) polymer was synthesized and exhibited an interesting chemical transformation to 

other structures occurring at high oxidation states. The O-alkylated second generation polymers 

appeared to be highly stable. Furthermore, we found in these materials what we believe to be a 

mixed-valence interaction. In the spectroelectrochemial measurements of O-alkylated first and 

second generation polymers, we observed evidence for inter-chain π-interactions, which were 

more pronounced in the first generation polymers with linear alkyl chains. In an attempt to align 

polymers, we synthesized ROMP-polymerizable macrocylic monomers and successfully 

incorporated them into an elastomeric polymer matrix. However, thiophene-thiophene cross-

linkings reduced the polymers’ elasticity. Although the resulting polymer showed a very stable 

electrochemical chromicity, the conductivity of these systems is in need of improvements. 
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Experimental Section 

General. NMR spectra were recorded on a Varian Mercury-300, Bruker Advance-400, or 

Varian Inova-500 spectrometer.  Chemical shifts were reported in ppm and referenced to residual 

solvent peaks (CDCl3: δ 7.27 ppm for 1H, δ 77.23 ppm for 13C, CD2Cl2: δ 5.32 ppm for 1H, δ 

54.00 ppm for 13C). High-resolution mass spectra (HR-MS) were obtained on a Bruker Daltonics 

APEX II 3 Tesla FT-ICR-MS. UV-vis spectra were obtained using a HP 8453 diode array 

spectrometer. Electrochemical measurements were carried out using an Autolab PGSTAT 10 or 

PGSTAT 20 potentiostat (Eco Chemie) in a three-electrode cell configuration consisting of a 

quasi-internal Ag wire reference electrode (BioAnalytical Systems) submerged in 0.01 M 

AgNO3 / 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) in anhydrous CH3CN, a Pt 

button (1.6 mm in diameter) electrode, 5-µm interdigitated Pt micro-, or ITO-coated glass 

electrode as the working electrode, and a Pt coil or Pt gauze as the counter electrode.  The 

ferrocene/ferrocenium (Fc/Fc+) redox couple was used as an external reference.  Half-wave 

potentials of Fc/Fc+ were observed between 0.210~0.245 V vs Ag/Ag+ in CH2Cl2 and 

0.080~0.091 V in CH3CN. All air and water sensitive synthetic manipulations were performed 

under an argon or nitrogen atmosphere using standard Schlenk techniques.   

Materials. Spectroscopic grade CH2Cl2 was purchased from Aldrich for electrochemistry.  

TBAPF6 was recrystallized in ethanol prior to use. Anhydrous DMF and NMP were purchased 

from Aldrich as Sure-Seal Bottles and used as received. Anhydrous CH2Cl2, THF, and toluene 

were purified by passing through two alumina columns of an Innovative Technologies 

purification system. R-, S-, and racemic 6,6’-dibromo-1,1’-bi-2,2’-naphthol (1) were purchased 

from TCI America. All other chemicals were of reagent grade and used as received. 5-
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Tributylstannyl-2,2’-bithiophene was synthesized by a known procedure.14 Typical Williamson 

ether synthesis furnished 6,6’-dibromo-2,2’-didecyloxy-1,1’-binaphthalene from 1. 

 

HO

HO

S

S

S

S  

6,6’-Bis(2,2’-bithiophen-5-yl)-1,1’-bi-2,2’-naphthol (2). In a Schlenk tube equipped with a 

stir bar were combined 6,6’-dibromo-1,1’-bi-2,2’-naphthol (racemic-1) (0.133 g, 0.30 mmol), 

Pd2(dba)3·CHCl3 (9.3 mg, 3 mol %), t-Bu3P (4.0 mg, 6.6 mol %), 5-tributylstannyl-2,2’-

bithiophene (0.410 g, 0.90 mmol), KF (0.07 g, 1.2 mmol), and NMP (3 mL) in the glove box. 

The mixture was allowed to stir at 70 °C for 24 h, at which time it was cooled to room 

temperature. The mixture was filtered through a pad of celite and thoroughly washed with ethyl 

acetate. The filtrate was washed with brine (×2), dried over MgSO4, and evaporated under 

reduced pressure. The crude product was purified by column chromatography (ethyl 

acetate:hexane = 1:1), and then recrystallization (dichloromethane/hexane). Yield: 0.112 g (61%) 

of yellow solid. 1H NMR (400 MHz, CDCl3) δ: 8.09 (d, 2H, J = 1.8 Hz), 7.99 (d, 2H, J = 9.0 

Hz), 7.57 (dd, 2H, J = 8.8, 1.8 Hz), 7.43 (d, 2H, J = 9.0 Hz), 7.28 (d, 2H, J = 3.8 Hz), 7.23 (dd, 

2H, J = 5.0, 1.1 Hz), 7.22 (dd, 2H, J = 3.7, 1.1 Hz), 7.18 (d, 2H, J = 8.8 Hz), 7.17 (d, 2H, J = 3.8 

Hz), 7.04 (dd, 2H, J = 5.0, 3.7 Hz), 5.11 (s, 2H). 13C NMR (100 MHz, CDCl3) δ: 153.20, 143.04, 

137.59, 136.92, 132.99, 131.67, 130.04, 129.79, 128.10, 125.72, 125.18, 124.90, 124.74, 124.62, 

124.06, 123.85, 118.87, 111.40. HR-MS (ESI): calcd for C36H22O2S2 [M–H]–, 613.0430; found, 

613.0418. 
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6,6’-Bis(3,4-ethylenedioxythiophen-2-yl)-1,1’-bi-2,2’-naphthol (3). In a Schlenk tube 

equipped with a stir bar were combined racemic-1 (0.227 g, 0.50 mmol), Pd2(dba)3·CHCl3 (16 

mg, 3 mol %), t-Bu3P (6.7 mg, 6.6 mol %), 5-tributylstannyl-2,2’-bithiophene (0.648 g, 1.5 

mmol), KF (0.116 g, 2.0 mmol), and NMP (10 mL) in the glove box. The mixture was allowed to 

stir at 70 °C for 36 h, at which time it was cooled to room temperature. The mixture was filtered 

through a pad of celite and thoroughly washed with ethyl acetate. The filtrate was washed with 

brine (×2), dried over MgSO4, and evaporated under reduced pressure. The crude product was 

purified by column chromatography (ethyl acetate:hexane = 1:1), and then recrystallization 

(dichloromethane/hexane). Yield: 0.184 g (66%) of pale yellow solid. 1H NMR (400 MHz, 

CD2Cl2) δ: 8.24 (d, 2H, J = 1.9 Hz), 7.99 (d, 2H, J = 8.9 Hz), 7.65 (d, 2H, J = 8.9, 1.9 Hz), 7.36 

(d, 2H, J = 8.9 Hz), 7.11 (d, 2H, J = 8.9 Hz), 6.31 (s, 2H), 5.22 (s, 2H), 4.28 (m, 8H). 13C NMR 

(125 MHz, CD2Cl2) δ: 153.26, 143.01, 139.01, 132.70, 131.92, 130.16, 129.53, 126.39, 125.32, 

124.97, 118.76, 117.42, 111.68, 98.04, 65.42, 65.12. HR-MS (ESI): calcd for C32H22O6S2 

[M+Na]+, 589.0750; found, 589.0764. 
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7,7’-Bis(2,2’-bithiophen-5-yl)-1,1’-bi-2,2’-naphthol (5). In a Schlenk tube equipped with a 

stir bar were combined 7,7’-dibromo-1,1’-bi-2,2’-naphthol (4) (0.045 g, 0.10 mmol), 

PdCl2(PPh3)2 (3.6 mg, 5 mol %), and toluene (3 mL) under Ar. To the mixture was added 5-

tributylstannyl-2,2’-bithiophene (0.137 g, 0.30 mmol), and the mixture was allowed to stir at 80 

°C for 18 h. After being cooled to room temperature, the mixture was filtered through a pad of 

silica gel and thoroughly washed with ethyl acetate. The filtrate was evaporated under reduced 

pressure and purified by column chromatography (ethyl acetate:hexane = 1:2). Yield: 0.050 g 

(81%) of yellow solid. 1H NMR (400 MHz, CDCl3) δ: 8.92 (d, 2H, J = 8.9 Hz), 7.94 (d, 2H, J = 

8.5 Hz), 7.64 (dd, 2H, J = 8.5, 1.8 Hz), 7.41 (d, 2H, J = 8.9 Hz), 7.38 (bs, 2H), 7.19 (dd, 2H, J = 

5.1, 1.1 Hz), 7.12 (dd, 2H, J = 3.6, 1.1 Hz), 7.08 (d, 2H, J = 3.8 Hz), 7.04 (d, 2H, J = 3.8 Hz), 

6.98 (dd, 2H, J = 5.1, 3.6 Hz), 5.25 (s, 2H). 13C NMR (125 MHz, CDCl3) δ: 153.69, 143.06, 

137.48, 133.79, 133.47, 131.67, 129.54, 129.04, 128.55, 128.02, 124.80, 124.77, 124.66, 123.97, 

122.78, 120.25, 118.07, 110.83. HR-MS (ESI): calcd for C36H22O2S4 [M+Na]+, 637.0395; found, 

637.0396. 

 

C10H21O

OC10H21Br

Br

 

7,7’-dibromo-2,2’-didecyloxy-1,1’-binaphthalene (6a). In a round-bottom flask equipped 

with a stir bar and a refluxing condensor were combined 4 (1.36 g, 3.0 mmol), K2CO3 (2.90 g, 21 

mmol), and acetone (30 mL). To the mixture was slowly added 1-bromodecane (3.18 mL, 15 

mmol), and the mixture was allowed to reflux overnight. After most of acetone was evaporated 

under reduced pressure, the mixture was diluted with dichloromethane and washed with water 
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and brine (×2). The filtrate was evaporated under reduced pressure and purified by 

recrystallization (dichloromethane/hexane). Yield: 1.87 g (86%) of white solid. 1H NMR (400 

MHz, CDCl3) δ: 7.90 (d, 2H, J = 9.1 Hz), 7.72 (d, 2H, J = 8.6 Hz), 7.41 (d, 2H, J = 9.1 Hz), 7.39 

(dd, 2H, J = 8.6, 1.9 Hz), 7.29 (d, 2H, J = 1.9 Hz), 3.96 (m, 4H), 1.40 (m, 4H), 1.35~1.01 (m, 

28H), 0.90 (t, 6H, J = 6.8 Hz). 13C NMR (100 MHz, CDCl3) δ: 155.31, 135.52, 129.79, 129.59, 

127.70, 127.47, 127.04, 121.06, 118.32, 115.62, 69.52, 53.64, 32.13, 29.67, 29.56, 29.46, 29.37, 

25.82, 22.93, 14.36. HR-MS (ESI): calcd for C40H52Br2O2 [M+Na]+, 745.2226; found, 745.2213. 

 

O

OBr

Br

 

7,7’-dibromo-2,2’-di(3-butenyloxy)-1,1’-binaphthalene (6b). Similar to the preparation of 

6a except using 4-bromo-1-butene (0.305 mL, 3.0 mmol) instead of 1-bromodecane, starting 

with 4 (1.36 g, 3.0 mmol). Yield: 0.258 g (78%) of white solid. 1H NMR (400 MHz, CDCl3) δ: 

7.92 (d, 2H, J = 9.0 Hz), 7.74 (d, 2H, J = 8.7 Hz), 7.44 (dd, 2H, J = 8.7, 1.8 Hz), 7.42 (d, 2H, J = 

9.0 Hz), 7.37 (d, 2H, J = 1.8 Hz), 5.44 (m, 2H), 4.84 (m, 2H), 4.80 (m, 2H), 4.05 (m, 4H), 2.19 

(m, 4H). 13C NMR (100 MHz, CDCl3) δ: 154.98, 135.41, 134.23, 129.82, 129.68, 127.73, 127.41, 

127.11, 121.15, 118.77, 116.80, 115.44, 68.75, 33.88. HR-MS (ESI): calcd for C28H24Br2O2 

[M+Na]+, 573.0035; found, 573.0043. 

 

O

O

S

S

S

S

C10H21

H21C10

 



Chapter 3 Binaphthyl Actuator 

 90 

7,7’-Bis(2,2’-bithiophen-5-yl)-2,2’-didecyloxy-1,1’-binaphthalene (7). In a Schlenk tube 

equipped with a stir bar were combined 6a (0.073 g, 0.099 mmol), PdCl2(PPh3)2 (3.2 mg, 5 mol 

%), and DMF (2 mL) under Ar. To the mixture was added 5-tributylstannyl-2,2’-bithiophene 

(0.112 mL, 0.30 mmol), and the mixture was allowed to stir at 80 °C for 18 h. After being cooled 

to room temperature, the mixture was filtered through a pad of silica gel and thoroughly washed 

with ethyl acetate. The filtrate was washed with water and brine, dried over MgSO4, and 

evaporated under reduced pressure. The crude product was purified by column chromatography 

(dichloromethane:hexane = 1:2). Yield: 0.062 g (70%) of yellow solid. 1H NMR (400 MHz, 

CDCl3) δ: 7.96 (d, 2H, J = 9.0 Hz), 7.89 (d, 2H, J = 8.5 Hz), 7.59 (dd, 2H, J = 8.5, 1.7 Hz), 7.48 

(d, 2H, J = 1.7 Hz), 7.44 (d, 2H, J = 9.0 Hz), 7.17 (dd, 2H, J = 5.1, 1.1 Hz), 7.12 (d, 2H, J = 3.6, 

1.1 Hz), 7.06 (d, 2H, J = 3.7 Hz), 7.04 (d, 2H, J = 3.7 Hz), 6.98 (dd, 2H, J = 5.1, 3.6 Hz), 4.01 

(m, 4H), 1.42 (m, 4H), 1.35~1.09 (m, 28H), 0.91 (t, 6H, J = 7.2 Hz). 13C NMR (125 MHz, 

CDCl3) δ: 155.20, 144.01, 137.66, 136.68, 134.50, 131.73, 129.31, 128.82, 128.76, 127.92, 

124.69, 124.35, 124.03, 123.68, 122.01, 121.92, 120.23, 115.45, 69.60, 32.13, 29.69, 29.68, 

29.58, 29.57, 29.42, 25.83, 22.93, 14.39. HR-MS (ESI): calcd for C56H62O2S4 [M]+, 894.3627; 

found, 894.3607. 
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Br

 

Compound 8. In a Schlenk flask equipped with a stir bar were placed 6b (1.43 g, 2.5 mmol) 

and anhydrous CH2Cl2 (250 mL) was added under Ar. To the mixture was added a solution of 

Grubbs 1st generation catalyst (0.103 g, 5 mol%) in CH2Cl2 (10 mL), and the mixture was 
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allowed to stir at room temperature for 2 h, at which time ~1 mL of ethyl vinyl ether was added. 

After being stirred for 30 min more, the mixture was evaporated under reduced pressure and 

subjected to column chromatography (ethyl acetate:hexane = 1:10). The product was further 

purified by recrystallization (chloroform/hexane). Yield: 0.963 g (73%) of white solid with 

cis:trans = 91:9. 1H NMR (cis, 400 MHz, CD2Cl2) δ: 7.98 (d, 2H, J = 9.0 Hz), 7.80 (d, 2H, J = 

8.7 Hz), 7.50 (d, 2H, J = 9.0 Hz), 7.44 (dd, 2H, J = 8.7, 1.8 Hz), 7.27 (d, 2H, J = 1.8 Hz), 5.07 

(pseudo-t, 2H, J = 3.4 Hz), 4.55 (ddd, 2H, J = 12, 5.2, 3.2 Hz), 4.06 (td, 2H, J = 12, 4.3 Hz), 2.52 

(m, 2H), 2.20 (m, 2H). 13C NMR (cis, 125 MHz, CD2Cl2) δ: 153.43, 136.29, 130.29, 129.67, 

129.08, 127.89, 127.46, 127.32, 121.32, 119.50, 116.04, 66.71, 31.41.  
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Compound 9. Using the same procedure for the synthesis of 7, 6b (0.55 g, 1.03 mmol) was 

treated with PdCl2(PPh3)2 (43 mg, 6 mol %), DMF (10 mL), and 5-tributylstannyl-2,2’-

bithiophene (1.16 mL, 3.09 mmol) under Ar. Yield: 0.484 g (67%) of yellow solid with cis 

>95%. 1H NMR (cis, 400 MHz, CDCl3) δ: 7.93 (d, 2H, J = 9.0 Hz), 7.88 (d, 2H, J = 8.5 Hz), 

7.57 (dd, 2H, J = 8.5, 1.8 Hz), 7.42 (d, 2H, J = 9.0 Hz), 7.41 (d, 2H, J = 1.8 Hz), 7.17 (dd, 2H, J 

= 5.1, 1.1 Hz), 7.11 (dd, 2H, J = 3.6, 1.1 Hz), 7.04 (d, 2H, J = 3.8 Hz), 7.02 (d, 2H, J = 3.8 Hz), 

6.97 (dd, 2H, J = 5.1, 3.6 Hz), 5.05 (pseudo-t, 2H, J = 3.3 Hz), 4.47 (ddd, 2H, J = 12, 4.5, 3.4 

Hz), 4.02 (td, 2H, J = 12, 4.1 Hz), 2.49 (m, 2H), 2.13 (m, 2H). 13C NMR (cis, 125 MHz, CD2Cl2) 

δ: 152.79, 144.07, 137.66, 136.72, 135.09, 131.81, 128.88, 128.82, 128.81, 128.51, 127.94, 
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124.69, 124.35, 124.21, 123.71, 122.05, 122.05, 120.75, 115.20, 66.22, 31.23. HR-MS (ESI): 

calcd for C42H30O2S4 [M+Na]+, 717.1021; found, 717.1003. 
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C10H21O

S

S

S

S  

6,6’-Bis(2,2’-bithiophen-5-yl)-2,2’-didecyloxy-1,1’-binaphthalene (10). Using the same 

procedure for the synthesis of 7, 6,6’-dibromo-2,2’-didecyloxy-1,1’-binaphthalene (0.034 g, 

0.046 mmol) was treated with PdCl2(PPh3)2 (1.6 mg, 5 mol %), DMF (1 mL), and 5-

tributylstannyl-2,2’-bithiophene (0.052 mL, 0.138 mmol) under Ar. Yield: 0.031 g (75%) of 

yellow solid. 1H NMR (400 MHz, CDCl3) δ: 8.07 (d, 2H, J = 1.8 Hz), 7.96 (d, 2H, J = 9.0 Hz), 

7.49 (dd, 2H, J = 8.9, 1.8 Hz), 7.44 (d, 2H, J = 9.0 Hz), 7.27 (d, 2H, J = 3.9 Hz), 7.23~7.21 (m, 

4H), 7.20  (d, 2H, J = 8.9 Hz), 7.16 (d, 2H, J = 3.9 Hz), 7.04 (dd, 2H, J = 4.9, 3.8 Hz), 3.98 (m, 

4H), 1.44 (m, 4H), 1.34–1.10 (m, 28H), 0.87 (t, 6H, J = 6.9 Hz). 13C NMR (125 MHz, CDCl3) δ: 

155.05, 143.75, 137.80, 136.42, 133.73, 129.52, 129.45, 129.29, 128.04, 126.31, 124.82, 124.44, 

124.40, 124.24, 123.65, 123.64, 120.58, 116.48, 69.84, 32.15, 29.78, 29.76, 29.58, 29.42, 25.93, 

22.93, 14.36. HR-MS (ESI): calcd for C56H62O2S4 [M]+, 894.3627; found, 894.3611. 
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6,6’-dibromo-2,2’-di(3-butenyloxy)-1,1’-binaphthalene (A). Using the same procedure as 

for the preparation of 6a, 1 (0.453 g, 1.0 mmol) was treated with K2CO3 (0.967 g, 7 mmol), 

acetone (10 mL), and 4-bromo-1-butene (0.508 mL, 5.0 mmol). Yield: 0.442 g (80%) of white 

solid. 1H NMR (400 MHz, CDCl3) δ: 8.04 (d, 2H, J = 2.0 Hz), 7.86 (d, 2H, J = 9.0 Hz), 7.43 (d, 

2H, J = 9.0 Hz), 7.31 (dd, 2H, J = 9.0, 2.0 Hz), 7.03 (d, 2H, J = 9.0 Hz), 5.45 (m, 1H), 4.84 (m, 

1H), 4.80 (m, 1H), 4.01 (m, 2H), 2.19 (q, 2H, J = 6.8 Hz). 13C NMR (100 MHz, CDCl3) δ: 

154.65, 134.31, 132.70, 130.44, 129.97, 129.72, 128.67, 127.32, 120.14, 117.53, 116.80, 116.48, 

69.01, 33.95. HR-MS (ESI): calcd for C28H24Br2O2 [M+Na]+, 573.0035; found, 573.0050. 

 

O

O

Br
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Compound B. Using the same procedure as for the preparation of 8, A (1.66 g, 3.0 mmol) was 

treated with Grubbs 1st generation catalyst (0.123 g, 5 mol%) in anhydrous CH2Cl2 (300 mL). 

Yield: 1.38 g (88%) of white solid with cis:trans = 81:19. 1H NMR (400 MHz, CDCl3), for cis, 

δ: 8.02 (d, 2H, J = 2.0 Hz), 7.85 (d, 2H, J = 9.0 Hz), 7.42 (d, 2H, J = 9.0 Hz), 7.29 (dd, 2H, J = 

9.0, 2.0 Hz), 7.00 (d, 2H, J = 9.0 Hz), 5.02 (pseudo-t, 2H, J = 4.0 Hz), 4.45 (ddd, 2H, J = 12, 6.0, 

3.7 Hz), 4.03 (td, 2H, J = 11, 4.3 Hz), 2.48 (m, 2H), 2.15 (m, 2H). For trans, δ: 8.02 (d, 2H, J = 

2.0 Hz), 7.85 (d, 2H, J = 9.0 Hz), 7.46 (d, 2H, J = 9.2 Hz), 7.27 (dd, 2H, J = 8.9, 2.0 Hz), 6.94 

(d, 2H, J = 9.0 Hz), 5.28 (t, 2H, J = 5.1 Hz), 4.58 (ddd, 2H, J = 12, 7.2, 2.0 Hz), 3.96 (ddd, 2H, J 

= 12, 7.4, 2.4 Hz), 2.28 (m, 2H), 2.15 (m, 2H). 13C NMR (100 MHz, CDCl3), for cis, δ: 152.40, 

133.20, 130.16, 129.95, 129.71, 128.74, 128.26, 127.40, 120.46, 117.48, 116.14, 66.40, 31.11. 
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For trans, δ: 153.61, 133.12, 130.02, 129.83, 129.38, 128.47, 127.26, 123.66, 120.28, 117.48, 

115.28, 66.98, 28.41. HR-MS (ESI): calcd for C26H20Br2O2 [M+Na]+, 544.9722; found, 544.9739. 
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Compound 11. Using the same procedure for the synthesis of 7, B (1.06 g, 2.0 mmol) was 

treated with PdCl2(PPh3)2 (84 mg, 6 mol %), DMF (20 mL), and 5-tributylstannyl-2,2’-

bithiophene (2.26 mL, 3.0 mmol) under Ar. Yield: 0.805 g (58%) of yellow solid with cis:trans = 

75:25. 1H NMR (300 MHz, CDCl3), for cis, δ: 8.07 (d, 2H, J = 1.8 Hz), 7.97 (d, 2H, J = 9.0 Hz), 

7.50 (dd, 2H, J = 9.0, 1.8 Hz), 7.45 (d, 2H, J = 9.0 Hz), 7.26 (d, 2H, J = 3.9 Hz), 7.23–7.22 (m, 

4H), 7.18 (d, 2H, J = 9.0 Hz), 7.16 (d, 2H, J = 3.9 Hz), 7.04 (dd, 2H, J = 5.1, 3.9 Hz), 5.09 

(pseudo-t, 2H, J = 3.3 Hz), 4.49 (ddd, 2H, J = 11, 4.5, 3.6 Hz), 4.06 (td, 2H, J = 11, 4.2 Hz), 2.51 

(m, 2H), 2.18 (m, 2H). 13C NMR (100 MHz, CDCl3), for cis, δ: 152.57, 143.79, 137.79, 136.44, 

134.19, 129.38, 129.23, 129.20, 128.84, 128.05, 126.29, 124.85, 124.65, 124.43, 124.35, 123.69, 

120.70, 115.91, 66.54, 31.19. HR-MS (ESI): calcd for C42H30O2S4 [M]+, 694.1123; found, 

694.1147. 
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Polymer 12. In a Schlenk flask equipped with a stir bar were combined 9 (0.094 g, 0.13 

mmol), cyclooctene (0.073 mL, 0.52 mmol), and anhydrous CH2Cl2 (1.2 mL) in a glove box. To 

the mixture was added a solution of Grubbs 2nd generation catalyst (0.00056 g, 0.1 mol % wrt 

total monomers) in CH2Cl2 (0.1 mL), and the mixture was allowed to stir at 40 °C for 12 h. To 

the mixture was added MeOH to precipitate out the caramel-like solid. The crude product was 

redissolved with CHCl3 and precipitated again with hexane. The precipitation was repeated once 

more with CHCl3 and acetone. Yield: 0.132 g (86%) of yellowish tacky solid (x:y = 1:6). GPC 

(polystyrene standard): Mn = 56,300, Mw = 196,000, PDI = 3.5. 1H NMR (400 MHz, CDCl3) δ: 

7.94 (aromatic C-H), 7.88 (aromatic C-H), 7.59 (aromatic C-H), 7.46 (aromatic C-H), 7.44 

(aromatic C-H), 7.27–6.97  (aromatic C-H), 5.39 (vinyl C-H), 5.15 (vinyl C-H), 4.98 (vinyl C-

H), 4.04–3.96 (aliphatic C-H), 2.08–1.98 (aliphatic C-H), 1.70 (aliphatic C-H), 1.30–1.07 

(aliphatic C-H). 
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Polymer 14. Using the same procedure as for the synthesis of 12, 11 (0.071 g, 0.1 mmol) was 

treated with cyclooctene (0.0548 mL, 0.4 mmol), Grubbs 2nd generation catalyst (0.00042 g, 0.1 

mol % wrt total monomers), and anhydrous CH2Cl2 (1.0 mL). Yield: 0.132 g (86%) of yellowish 

tacky solid (x:y = 1:7). GPC (polystyrene standard): Mn = 165,000, Mw = 367,000, PDI = 2.23. 

1H NMR (400 MHz, CDCl3) δ: 8.06 (aromatic C-H), 7.93 (aromatic C-H), 7.47 (aromatic C-H), 

7.42 (aromatic C-H), 7.27–7.02  (aromatic C-H), 5.38 (vinyl C-H), 5.18 (vinyl C-H), 5.00 (vinyl 
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C-H), 3.97–3.93 (aliphatic C-H), 2.10–1.95 (aliphatic C-H), 1.72 (aliphatic C-H), 1.28–1.05 

(aliphatic C-H) 
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Spectrum 1. 1H-NMR spectrum of 2 (400 MHz, CDCl3). 

 
Spectrum 2. 13C-NMR spectrum of 2 (100 MHz, CDCl3). 
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Spectrum 3. 1H-NMR spectrum of 3 (400 MHz, CD2Cl2). 

 
Spectrum 4. 13C-NMR spectrum of 3 (125 MHz, CD2Cl2). 
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Spectrum 5. 1H-NMR spectrum of 5 (400 MHz, CDCl3). 

 
Spectrum 6. 13C-NMR spectrum of 5 (125 MHz, CDCl3). 
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Spectrum 7. 1H-NMR spectrum of 6a (400 MHz, CDCl3). 

 
Spectrum 8. 13C-NMR spectrum of 6a (100 MHz, CDCl3). 
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Spectrum 9. 1H-NMR spectrum of 6b (400 MHz, CDCl3). 

 
Spectrum 10. 13C-NMR spectrum of 6b (100 MHz, CDCl3). 
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Spectrum 11. 1H-NMR spectrum of 7 (400 MHz, CDCl3). 

 
Spectrum 12. 13C-NMR spectrum of 7 (125 MHz, CDCl3). 
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Spectrum 13. 1H-NMR spectrum of 8 (400 MHz, CD2Cl2). 

 
Spectrum 14. 13C-NMR spectrum of 8 (100 MHz, CD2Cl2). 
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Spectrum 15. 1H-NMR spectrum of 9 (400 MHz, CDCl3). 

 
Spectrum 16. 13C-NMR spectrum of 9 (125 MHz, CDCl3). 
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Spectrum 17. 1H-NMR spectrum of 10 (400 MHz, CDCl3). 

 
Spectrum 18. 13C-NMR spectrum of 10 (125 MHz, CDCl3). 
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Spectrum 19. 1H-NMR spectrum of A (400 MHz, CDCl3). 

 
Spectrum 20. 13C-NMR spectrum of A (100 MHz, CDCl3). 
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Spectrum 21. 1H-NMR spectrum of B (400 MHz, CDCl3). 

 
Spectrum 22. 13C-NMR spectrum of B (125 MHz, CDCl3). 
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Spectrum 23. 1H-NMR spectrum of 11 (300 MHz, CDCl3). 

 
Spectrum 24. 13C-NMR spectrum of 11 (125 MHz, CDCl3). 
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Spectrum 25. 1H-NMR spectrum of 12 (400 MHz, CDCl3). 

 

 

 
Spectrum 26. 1H-NMR spectrum of 14 (400 MHz, CDCl3). 
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Introduction and Design Principles 

Chiral conjugated (or conducting) polymers (CPs) have attracted interest due to their 

applications in selective gas or liquid permeation,1 enatioselective sensing,2 and 

(chromatographic) separation,3 etc. Furthermore, supramolecular chirality from stimuli-induced 

aggregates of chiral CPs can be exploited for polarized photo- and electroluminescence.4 We 

have been interested in enantioselective sensing utilizing chiral CPs due to the fact that their 

collective responses (e.g., resistivity) are very sensitive to even minor perturbations.5 Generally, 

chiral CPs have been prepared by tethering a chiral moiety to a monomer, or by imprinting with 

a chiral molecule during polymerization. CPs with main-chain chirality, however, are more rare. 

Our aim is to develop highly sensitive chiral sensors by incorporating binaphthol moieties into 

the polymer main-chains. The 1,1’-bi-2,2’-naphthol group has two key features; its atropisomeric 

chirality and phenol functionality. Needless to say, 1,1’-binaphthyl is a privileged structure that 

has been widely used in chiral recognition and enantioselective catalysis.6  

Conducting polymers with phenol groups have shown very interesting properties. For example, 

phenol groups can render conjugation-broken meta-linked polymers, which might be expected to 

be less conductive according to the conventional wisdom, to be as conductive as their para-

linked isomers.7 In other instances, phenols play a vital role in polymerization of calix[4]arene-

based conducting polymers, as well as in the charge transporting mechanism.8 The calix[4]arene-

based system showed an intriguing proton-dopable property, which is reminiscent of polyaniline. 

Deprotonation of p-hydroquinone-like segments even by the weak basicity of the solvent CH3CN 

resulted in a decrease in conductivity. 

The proton-dopable property of the phenol-containing conducting polymers suggests that 

installation of a chiral discriminating factor would result in a new sensory material for chiral 
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bases (e.g., amines). The binaphthyl scaffold, which has been widely used as a ligand for 

asymmetric catalysts and as a platform for chiral recognition, was chosen as the chiral 

discriminator. In fact, binaphthyl-based macrocyclic receptors have been used previously for 

chiral sensing utilizing fluorescent responses.9 

Our design was to affix electroactive segments to a binaphthyl chiral discriminator, which also 

has phenol functional groups. We chose 1,1’-binaphth-2,2’-ol as the starting compound due to 

the availability of both enantiomers. As shown in Chart 1, we targeted polymers with 6,6’-

substituted binaphthol (1) and with 3,3’-substituted binaphthol (2). Although the synthetic route 

to binaphthyl 2 requires additional steps, we hope 3,3’-substitution may increase the chiral 

discrimination when an analyte interacts with the polymer. 

Chart 1. Candidate Polymer Structures for the Chiral Sensor 
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In this chapter, the syntheses of monomers and their electropolymerizations are described, 

followed by attempts to discriminate several chiral amines. To gain insight into the charge 

interaction, we also synthesized a monomer ligated to crown-6-ether (3) and transition metal 
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compounds (4 and 5). Improvements in sensing responses will be discussed briefly at the end of 

this chapter. 

 

Syntheses of Monomers 

The synthesis of compound (R)-1 is described in Chapter 3. Compound 2 was obtained from 

the MOM-protected 3,3’-iodo compound 6 (Scheme 1), which was prepared according to the 

literature procedures.10 Stille cross coupling reaction of 6 with 5-tributylstannyl-2,2’-bithiophene 

furnished the compound 7, which was then deprotected with an acid catalyst to yield the desired 

product 2. Crown-ether precursor 8 was prepared in a good yield by alkylation to the 

dibromobinaphthol with tetraethylene glycol ditosylate. The desired monomer 3 was synthesized 

via a typical Stille cross coupling reaction. 

Scheme 1.a 

OMOM

OMOM

I

I

OMOM

OMOM

S

S

S

S

HO

HO

Br

Br

O

O

O

OO

O

Br

Br

6

7

8

2

3

i ii

iii iv

 
aReagents: (i) PdCl2(PPh3)2, 5-tributylstannyl-2,2’-bithiophene, toluene, 80 °C, 15 h, 74%. (ii) Amberlyst 15, 
THF/MeOH, reflux, 15 h, 96%. (iii) NaH, tetraethylene glycol ditosylate, THF, reflux, 24 h, 53%. (iv) PdCl2(PPh3)2, 
5-tributylstannyl-2,2’-bithiophene, DMF, 80 °C, 15 h, 71%. 
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The transition metal complexes 4 and 5 were synthesized from comound 1 and the respective 

metal precursors in the presence of base (Scheme 2). A relatively weak base, Et3N, was sufficient 

for the preparation of ethylene-bis(tetrahydroindenyl) complexes 4 or 5. 

Scheme 2.a  

M
Cl

Cl

4  (M = Ti)
      or
5  (M = Zr)

1

HO

HO

S

S

S

S

+
i

 
aReagents: (i) Et3N, CH2Cl2, dark, room temperature, 30 min, 85~93%. 
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Figure 1. (a) Electropolymerization of 2 on a Pt button electrode. The dotted line represents the first scan. (b) CVs 

of a poly(2) film at different scan rates. All measurements were carried out in CH2Cl2 with 0.1 M TBAPF6 as a 

supporting electrolyte. 

 

Electropolymerization 

The electropolymerization of 3,3’-substituted monomer 2 was performed to produce electrode-

confined films in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte under ambient 
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conditions (Figure 1). The oxidatively coupled products were continually deposited as the 

potential sweeps were repeated. Similar to poly(1) (Chapter 3), we observed two 1-electron 

redox waves. 

Poly(3) was prepared by electropolymerization in CH3CN under similar conditions as above 

(Figure 2). The CVs of poly(3) were very similar to those of the other related polymers 

(macrocyclic poly(11) of Chapter 3). The peak potentials tended to shift in the thick films at 

higher scan rates (Figure 2c), probably due to the limited diffusion rates of ions in the polymer 

matrix. To test the effect of ion binding, we tried polymerization of 3 in the presence of K+ under 

the same conditions (Figure 2b, red lines). We found that the oxidation onset for monomer 3 was 

slightly shifted to positive potentials (0.60 V from 0.57 V vs. Fc/Fc+), and that the polymer 

growth rate (estimated by the current increase) was retarded. 
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Figure 2. (a) Electropolymerization of 3 on a Pt button electrode. The dotted line represents the first scan. (b) The 

first three scans of electropolymerization of 3 with (red) or without (black) KPF6 (0.01 M). (c) CVs of a poly(2) film 

at different scan rates. All measurements were carried out in CH3CN with 0.1 M TBAPF6 as a supporting electrolyte. 

We believe that this retardation was due to the electrostatic repulsion between the potassium 

ion and the cationic intermediates generated during the electropolymerization. The potential 

shift, however, was not significant and the resulting polymers were almost identical in properties. 
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It appears that the binding of potassium ion was not strong enough to dramatically influence the 

film’s properties, especially in the solid state as a deposited film. 

The electropolymerizations of the metallo-monomers 4 and 5 are presented in Figure 3. In 

contrast to the other monomers, these metallo-monomers showed small redox waves right before 

the onset potential at which the polymerization occurred (Figure 3a and c). We found that 

cycling the potentials only up to these waves gave no polymer deposition. Interestingly, these 

small waves became insignificant compared to the polymers’ electroactivity as the films became 

thicker.  
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Figure 3. (left) Electropolymerization of 4 (a) and 5 (c) on Pt button electrodes. The dotted lines represent the first 

scans. (right) CVs of thin films of poly(4) (b) and poly(5) (d) at different scan rates. All measurements were carried 

out in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte. 

The CVs of the polymer films (Figure 3b and 3d) were very similar to each other, and to the 

CV of poly(1), a metal-free polymer. We consider that the detachment of metals during the 
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polymerization should have resulted in extended p-quinone-like structures when oxidized, which 

is expected to give large differences in behavior. Given the similarities with the earlier polymers, 

we believe that the metal centers remain connected to the polymers. 

 

Attempts for Chiral Sensing 

We first examined if enantiospecific responses of poly(1) could be observed with a chiral 

hydroxy amine (Figure 4). We have tested various analytes including chiral amines shown in 

Chart 2. However, the polymers’ responses were similar regardless of amines. Thus, only 

representative results were presented here.  

Chart 2. Chiral Amines Tested in This Study 

! NH2 ! NH2

OH

! NH2

! N
H

!

NH2

!

NH2  

The polymer film’s CV was measured repeatedly in the presence of the analyte (0.2 mM) in 

CH2Cl2. Upon exposure of the polymer to the analyte, the currents of the initial peaks were 

diminished, accompanying an emergence of a new redox wave. The new wave, which was at 

lower potential, was reminiscent of the behavior of a calix[4]arenecrown system in response to 

cation binding.11 We attribute this base-specific response to the direct participation of naphthols 

in the electronic structures of radical cations, which is similar to the proton-dopable properties 

observed for a previously inverstigated calix[4]arene-based polymer.8 The response to the (R)-

amine, however, was very similar to that of the (S)-amine. 
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Figure 4. CVs of poly(1) films in the presence of (R)- (a) and (S)-2-phenylglycinol (b) (0.2 mM each) in CH2Cl2 

with 0.1 M TBAPF6 as a supporting electrolyte. 

We also investigated potentiometric responses for a film of poly(2) toward 

naphthylethylamines (Figure 5). A freshly prepared film of poly(2) on the ITO-coated glass 

electrode was immersed in an electrolyte solution with a reference electrode (Ag/AgNO3). We 

monitored the potential changes as we added more amine to the solution. As shown in Figure 5, 

the potentials relative to a reference electrode decreased as the concentration of amine increased. 

We attribute this to the development of negative charges on the polymer surface due to the acid-

base interaction. The enantioselective responses, though measurable, were not substantial. 
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Figure 5. Potentiometric measurements (vs. Ag/AgNO3) of a poly(2) film on a ITO-coated glass electrode in the 

presence of (R)- (blue line) and (S)-naphthylethylamine (red line) in CH2Cl2 with 0.1 M TBAPF6 as a supporting 

electrolyte. 
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Interestingly, poly(3), which had no phenolic hydroxy group, showed a decrease in 

conductivity when exposed to the hydroxy amine. It turns out that the amine caused the 

degradation of poly(3), which was probably due to the nucleophilic attack on the radical cation 

species generated when oxidized. 
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Figure 6. In situ drain current profiles (∝ conductivity) of poly(3) films on 5-µm interdigitated microelectrodes in 

the presence of (R)- (a) and (S)-2-phenylglycinol (b) at different concentrations in CH2Cl2 with 0.1 M TBAPF6 as a 

supporting electrolyte. 

Our group previously showed that the conductivity of a calix[4]arene-linked polythiophene 

was dramatically influenced by the presence of sodium ions.12 In this system, the calix[4]arene-

based receptor was directly attached to the fully-conjugated polythiophene. We tested the 

ionoresistivity changes with poly(3) by measuring the in situ conductivity in the presence of ions 

of interest (Figure 7). With sodium (blue line) and lithium ions (green line), the conductivity 

profiles were similar to those obtained in the absence of analyte (dotted line), and displayed the 

same onset potentials. In the presence of lithium ions, the conductivity was slightly increased. In 

the presence of potassium ion (red line), however, the onset shifted to the positive potential and 

the maximum decreased slightly. As shown in the electropolymerization (Figure 2), it seems 
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likely that the charge repulsion from bound potassium ions induces a decrease in conductivity. 

The effects are again small. 
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Figure 7. In situ drain current profiles of poly(3) films on 5-µm interdigitated microelectrodes in the presence 10 

mM of LiClO4 (green line), NaPF6 (blue line), and KPF6 (red line) in CH3CN with 0.1 M TBAPF6 as a supporting 

electrolyte. 

We have also investigated the chiral responses of the metallo-polymers, poly(4) and poly(5). In 

these materials, we considered that the titanium or zirconium with the ethylene-

bis(tetrahydroinden)-yl  ligand would be equivalent to chiral protons and potentially one 

enantiomer of the amine would interact more strongly with the metal center than the other. We 

measured the CVs of a poly(5) film as a function of added chiral amines in CH2Cl2 at room 

temperature. As shown in Figure 8, the orginal peak currents were diminished as new ones 

developed. This same response was observed when we exposed the metallo-polymers to the 

presence of various chiral amines. We suspect that similar to deprotonation of poly(1), the amine 

binding to the metal center causes the dissociation of the metal and the binaphthol moieties 

(probably in the form of naphtoxide). Unfortunately, the poly(5) responded very similarly to both 

enantiomers. 
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Figure 8. CVs of poly(5) films in the presence of (R)- (a) and (S)-N-benzyl-2-phenethylamine (b) (0.5 mM each) in 

CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte. 

 

Discussion 

We found in accordance with our proposal that the polymers with binaphthol moieties respond 

to bases. These results are similar to the proton-dopable properties of calix[4]arene-based 

conducting polymers developed in our group. Based on the fact that low-potential peaks 

developed at the expense of the original peaks,11 we hypothesize (Scheme 3) that upon exposure 

to the base during the oxidation process, the protonated dihydroquinone-like structures (A–C) 

turn to quinone-like structures (D–F). The deprotonation is most facile at the dication state (C) 

where the pKa of the polymer is lowered. We expect the oxidation of the phenoxide-containing 

structure (D or E) would occur at the lower potentials compared to that of the phenol-containing 

structure (A or B). This is likely responsible for the development of the low-potential peaks. The 

counter-cation M+ in Scheme 3 could represent the protonated amine or tetrabutylammonium ion 

exchanged from the supporting electrolyte. 



Chapter 4 Chiral Sensor 

 125 

Scheme 3. Proposed equilibria of poly(1) with electrochemical processes and proton-ion exchanges 
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This effect of protonation/deprotonation is strong relative to their coulombic charge 

interactions. If the phenols are alkylated, the base has a minimal effect on the system. As shown 

in the case of poly(3) with the crown-ether binaphthols, the interaction with ions only slightly 

alters the electronic properties of the polymer. It appears that in the alkylated system, the 

wavefunctions for the radical cation are more localized to the oligothiophene portions. The 

charge-transporting properties are minimally affected by the coulombic interaction at the 

oxygens on the periphery. 

Excess exposure to a base can be detrimental to polymer electrochemistry. Generally, the 

polymers investigated here are air stable and operate in solutions that have not been kept 

anhydrous. In the oxidized states, however, the charge can be prone to attacks by nucleophiles 

such as water, bases, oxygens, etc. This degradation will limit these types of materials as amine 

sensors. 

We tried several methods to differentiate enantiomers using our schemes and the results were 

not satisfactory. To understand the lack of specific responses, we postulate a mechanism detailed 

in Figure 9. The chiral amines are first absorbed into the polymer matrix (kabs). The electroactive 
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segment in the polymer then forms a complex with the amines (complex I, kcx), followed by the 

proton transfer reaction (kp), resulting in the transient complex II. The protonated amine can be 

easily dissociated and diffused away, or displaced with the surrounding cations from the 

supporting electrolyte (kd). 

kabs

kcx

kp

kd

Polymer matrix*

Complex I Complex II

+

base*

proton

 

Figure 9. Schematic representation of equilibria in polymer-amine interactions. 

All the measurements were performed on polymer films immersed in solution, which causes 

swelling and the subsequent softening of the polymer matrices. Therefore, we can expect the kabs 

would be similar for each enantiomer, which may already be solvated. 

Zhang et al. pointed out in their review9a the general principles of chiral recognition; (1) chiral 

receptors should form reasonably stable complexes with one enantiomer, (2) larger chiral 

barriers usually create better chiral recognition, and (3) conformational rigidity of receptors 

results in high degrees of recognition. Their principles suggest that, in order to obtain significant 

differentiation, binaphthyl polymers should form a stable complex (complex I or II) with only 

one of the enantimers. The acid-base reaction (kp), however, is expected to be very fast because 

the polymer’s acidity is significantly increased when oxidized. Hence, it may be hard to obtain 

recognition events that can compete with this lightly exothermal deprotonation event. 

Another possibility is that there is a number of points of interaction between the polymer and 

the analyte, which enables the analyte to approach the polymer from many different directions 
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without forming a stable complex. In order to obtain and strengthen the chiral differentiation a 

more defined chiral pocket should be designed. 

In terms of conformational rigidity of the recptor, binaphthyls are known to exist as cisoid 

(less than 90° of dihedral angle along the 1,1’ C-C bond) and transoid (over 90°) conformations. 

In the solid state, we can imagine that there are a number of conformations with varying dihedral 

angles. Tuning the dihedral angles to gain maximum interactions with an analyte would also lead 

to enhancement of the response of the poymer. 

Lastly, if we can impart “chirality” on the proton, proton transfer (kp) can be exploited as the 

differentiating factor. The (ebthi)Ti or (ebthi)Zr were found to be unsuitable to such end. Other 

types of metals and ligands, however, merit further investigation. 

 

Conclusion 

We proposed binaphthol-containing electroactive polymers for chiral amine sensors utilizing 

the proton-dopable properties and chirality of these materials. We synthesized polymers with 

chiral binaphthol moieties, poly(1)–poly(5), via electropolymerization. However, the 

enantioselective responses toward chiral amines were not substantial. Designs for improving 

enantioselective sensing responses were suggested, including more defined chiral receptors and 

affixed dihedral angles. 
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Experimental Section 

General. NMR spectra were recorded on a Varian Mercury-300, Bruker Advance-400, or 

Varian Inova-500 spectrometer.  Chemical shifts were reported in ppm and referenced to residual 

solvent peaks (CDCl3: δ 7.27 ppm for 1H, δ 77.23 ppm for 13C). High-resolution mass spectra 

(HR-MS) were obtained on a Bruker Daltonics APEX II 3 Tesla FT-ICR-MS. Electrochemical 

measurements were carried out using an Autolab PGSTAT 10 or PGSTAT 20 potentiostat (Eco 

Chemie) in a three-electrode cell configuration consisting of a quasi-internal Ag wire reference 

electrode (BioAnalytical Systems) submerged in 0.01 M AgNO3 / 0.1 M tetrabutylammonium 

hexafluorophosphate (TBAPF6) in anhydrous CH3CN, a Pt button (1.6 mm in diameter) or 5-µm 

interdigitated Pt micro-electrodes as the working electrode, and a Pt coil or Pt gauze as the 

counter electrode.  The ferrocene/ferrocenium (Fc/Fc+) redox couple was used as an external 

reference.  Half-wave potentials of Fc/Fc+ were observed between 0.210-0.245 V vs Ag/Ag+ in 

CH2Cl2, and between 0.080-0.091 V vs Ag/Ag+ in CH3CN. All air and water sensitive synthetic 

manipulations were performed under an argon or nitrogen atmosphere using standard Schlenk 

techniques.   

Materials. Spectroscopic grade CH2Cl2 was purchased from Aldrich for electrochemistry.  

TBAPF6 was recrystallized in ethanol prior to use. Anhydrous DMF was purchased from Aldrich 

as Sure-Seal Bottles and used as received. THF was purified by passage through two alumina 

columns of an Innovative Technologies purification system. All other chemicals were of reagent 

grade and used as received. Synthesis of compound 1 was described in Chapter 2. Compounds 

613 and 814 were prepared by literature methods. 5-Tributylstannyl-2,2’-bithiophene was 

synthesized by a known procedure.15 
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(S)-3,3’-Bis(2,2’-bithiophen-5-yl)-2,2’-bis(methyloxymethoxy)-1,1’-binaphthalene (7). In a 

Schlenk tube equipped with a stir bar were combined MOM-protected diiodobinaphthol 6 (0.063 

g, 0.10 mmol), PdCl2(PPh3)2 (7 mg, 10 mol %), and toluene (2 mL) under Ar. To the mixture was 

added 5-tributylstannyl-2,2’-bithiophene (0.113 mL, 0.30 mmol), and the mixture was allowed to 

stir at 80 °C for 15 h. After being cooled to room temperature, the mixture was filtered through a 

pad of silica gel and thoroughly washed with ethyl acetate. The filtrate was evaporated under 

reduced pressure and purified by column chromatography (dichloromethane:hexane = 1:1). 

Yield: 0.052 g (74%) of bright yellow solid. 1H NMR (300 MHz, CDCl3) δ: 8.20 (s, 2H), 7.92 (d, 

2H, J = 8.4 Hz), 7.60 (d, 2H, J = 3.9 Hz), 7.45 (ddd, 2H, J = 8.1, 6.3, 1.8 Hz), 7.33–7.25 (m, 

8H), 7.24 (d, 2H, J = 3.9 Hz), 7.06 (dd, 2H, J = 5.1, 3.9 Hz), 4.73 (d, 2H, J = 5.4 Hz), 4.55 (d, 

2H, J = 5.4 Hz), 2.52 (s, 6H). 13C NMR (125 MHz, CDCl3) δ: 150.46, 138.81, 138.29, 137.59, 

133.75, 131.00, 129.34, 128.19, 128.12, 128.11, 127.80, 126.93, 126.87, 126.65, 125.81, 124.66, 

124.33, 123.92, 98.79, 56.50. HR-MS (ESI): calcd for C40H30O4S4 [M]+, 702.1021; found, 

702.1004. 

 

OH

OH

S

S

S

S
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(S)-3,3’-Bis(2,2’-bithiophen-5-yl)-1,1’-bi-2-naphthol (2). In a flask equipped with a stir bar 

were combined 8 (0.019 g, 0.027 mmol), Amberlyst 15 resin (0.027 g) in THF/MeOH (1:1). 

After being stirred at reflux for 15 h, the cooled-down mixture was filtered off to remove the 

resin, and the filtrate was evaporated under reduced pressure. The crude mixture was purified by 

column chromatography (ethyl acette:hexane = 1:3). Yield: 0.016 g (96%) of yellow solid. 1H 

NMR (300 MHz, CDCl3) δ: 8.33 (s, 2H), 7.95 (bd, 2H, J = 8.1 Hz), 7.67 (d, 2H, J = 3.9 Hz), 

7.42 (ddd, 2H, J = 8.1, 6.9, 1.2 Hz), 7.32 (ddd, 2H, J = 8.4, 6.9, 1.5 Hz), 7.26–7.25 (m, 4H), 7.24 

(d, 2H, J = 3.9 Hz), 7.16 (bd, 2H, J = 8.1 Hz), 7.06 (dd, 2H, J = 4.5, 4.2 Hz), 5.64 (s, 2H). 13C 

NMR (125 MHz, CDCl3) δ: 149.81, 138.11, 137.93, 137.57, 132.60, 129.61, 129.40, 128.69, 

128.14, 128.10, 127.94, 125.04, 124.77, 124.43, 124.28, 123.96, 123.40, 112.07. HR-MS (ESI): 

calcd for C36H22O2S4 [M+H]+, 615.0575; found, 615.0566. 
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(R)-6,6’-Bis(2,2’-bithiophen-5-yl)-2,2’-(pentaethylene glycol)-1,1’-binaphthalene (3). In a 

Schlenk tube equipped with a stir bar were combined crown-6-type dibromobinaphthyl 8 (0.066 

g, 0.10 mmol), PdCl2(PPh3)2 (3.5 mg, 5 mol %), and DMF (2 mL) under Ar. To the mixture was 

added 5-tributylstannyl-2,2’-bithiophene (0.113 mL, 0.30 mmol), and the mixture was allowed to 

stir at 80 °C for 15 h. After being cooled to room temperature, the mixture was filtered through a 

pad of silica gel and thoroughly washed with ethyl acetate. The filtrate was washed successively 

with saturated NH4Cl (aq), NaF (aq) (×2), and NH4Cl (aq) again. The organic layer was dried 
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over MgSO4 and evaporated under reduced pressure. The crude mixture was purified by column 

chromatography (ethyl acetate only). Yield: 0.058 g (71%) of yellow solid. 1H NMR (400 MHz, 

CDCl3) δ: 8.07 (d, 2H, J = 1.8 Hz), 7.97 (d, 2H, J = 9.0 Hz), 7.50 (d, 2H, J = 9.0 Hz), 7.49 (dd, 

2H, J = 8.9, 1.8 Hz), 7.26 (d, 2H, J = 3.8 Hz), 7.23–7.21 (m, 4H), 7.18 (d, 2H, J = 8.9 Hz), 7.16 

(d, 2H, J = 3.8 Hz), 7.04 (dd, 2H, J = 4.9, 3.8 Hz), 4.26 (m, 2H), 4.10 (m, 2H), 3.64 (m, 4H), 

3.56 (m, 8H), 3.42 (m, 4H). 13C NMR (125 MHz, CDCl3) δ: 154.98, 143.54, 137.72, 136.60, 

133.60, 129.68, 129.65, 129.56, 128.07, 126.29, 124.86, 124.67, 124.50, 124.25, 123.81, 123.74, 

120.46, 116.80, 71.06, 70.85, 70.79, 69.98, 69.97. HR-MS (ESI): calcd for C46H40O6S4 [M+Na]+, 

839.1600; found, 839.1575. 
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(R,R)-Ethylene-1,2-bis(η5-4,5,6,7-tetrahydro-1-indenyl)-titanium (R)- 6,6’-Bis(2,2’-

bithiophen-5-yl)-1,1’-binaphth-2-olate (4). To a mixture of (R,R)-ethylene-1,2-bis(η5-4,5,6,7-

tetrahydro-1-indenyl)-titanium dichloride (0.027 g, 0.07 mmol) and (R)-binaphthol 1 (0.043 g, 

0.07 mmol) in CH2Cl2(1 mL) was added triethylamine (0.030 mL, 0.21 mmol). The reaction 

flask was wrapped in aluminum foil and stirred at room temperature for 30 min. The mixture was 

filtered through a short pad of alumina and evaporated under reduced pressure. The crude 

product was purified by recrystallization (dichloromethane/hexane). Yield: 0.055 g (85%) of 

orange-red solid. 1H NMR (400 MHz, CDCl3) δ: 8.01 (d, 2H, J = 1.9 Hz), 7.84 (d, 2H, J = 8.7 

Hz), 7.33 (dd, 2H, J = 8.9, 1.9 Hz), 7.24 (d, 2H, J = 3.9 Hz), 7.22–7.20 (m, 4H), 7.16 (pseudo-s, 
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2H), 7.14 (d, 2H, J = 3.9 Hz), 7.04 (dd, 2H, J = 4.6, 4.1 Hz), 6.96 (d, 2H, J = 8.9 Hz), 3.38 (m, 

2H), 3.13 (m, 2H), 2.58 (m, 4H), 1.75 (m, 6H), 1.53 (m, 4H), 1.24 (m, 2H). 13C NMR (125 MHz, 

CDCl3) δ: 166.38, 144.14, 138.00, 137.45, 135.89, 134.26, 133.39, 128.85, 128.79, 128.03, 

127.66, 127.62, 125.82, 124.82, 124.23, 124.20, 123.50, 123.44, 123.17, 122.44, 118.12, 116.44, 

106.79, 27.64, 24.10, 23.39, 22.23, 21.96.  

 

O
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S

S

S

S

Zr

 

(R,R)-Ethylene-1,2-bis(η5-4,5,6,7-tetrahydro-1-indenyl)-zirconium (R)- 6,6’-Bis(2,2’-

bithiophen-5-yl)-1,1’-binaphth-2-olate (5). Similar to the prepartion of 5 except using (R,R)-

ethylene-1,2-bis(η5-4,5,6,7-tetrahydro-1-indenyl)-zirconium dichloride (0.030 g, 0.07 mmol). 

Yield: 0.063 g (93%) of orange-brown solid. 1H NMR (300 MHz, CDCl3) δ: 8.01 (d, 2H, J = 2.0 

Hz), 7.87 (d, 2H, J = 8.7 Hz), 7.34 (dd, 2H, J = 9.0, 2.0 Hz), 7.24 (d, 2H, J = 3.9 Hz), 7.22–7.20 

(m, 6H), 7.15 (d, 2H, J = 3.9 Hz), 7.03 (dd, 2H, J = 4.8, 3.9 Hz), 6.91 (d, 2H, J = 9.0 Hz), 5.72 

(d, 2H, J = 3.0 Hz), 5.60 (d, 2H, J = 3.0 Hz), 3.22 (m, 4H), 2.62 (m, 4H), 1.79 (m, 6H), 1.62 (m, 

4H), 1.27 (m, 2H). 13C NMR (125 MHz, CDCl3) δ: 160.72, 144.02, 137.95, 135.99, 134.47, 

132.63, 130.91, 129.43, 128.83, 128.03, 127.92, 127.44, 124.83, 124.26, 124.23, 123.67, 123.59, 

123.54, 123.27, 123.06, 117.36, 114.14, 106.24, 27.82, 23.87, 22.89, 22.56, 22.31.  
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Spectrum 1. 1H-NMR spectrum of 7 (300 MHz, CDCl3). 

 
Spectrum 2. 13C-NMR spectrum of 7 (125 MHz, CDCl3). 
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Spectrum 3. 1H-NMR spectrum of 2 (300 MHz, CDCl3). 

 
Spectrum 4. 13C-NMR spectrum of 2 (125 MHz, CDCl3). 
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Spectrum 5. 1H-NMR spectrum of 3 (400 MHz, CDCl3). 

 
Spectrum 6. 13C-NMR spectrum of 3 (125 MHz, CDCl3). 
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Spectrum 7. 1H-NMR spectrum of 4 (400 MHz, CDCl3). 

 
Spectrum 8. 13C-NMR spectrum of 4 (125 MHz, CDCl3). 
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Spectrum 9. 1H-NMR spectrum of 5 (300 MHz, CDCl3). 

 
Spectrum 10. 13C-NMR spectrum of 5 (125 MHz, CDCl3). 
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Introduction 

Conducting polymer (CP) actuators convert the electrochemical energy input to a mechanical 

output (e.g., volume change) by utilizing the ingress and release of counterions to maintain 

charge neutrality (swelling mechanism).1 In most cases, the polymer is oxidized (positively 

doped) to incorporate counter-anions and associated solvents. When oxidized, the individual 

chains of CPs do not need to undergo large conformational variations. The dimensional change 

represents a bulk swelling process.  

We proposed the new concept of actuation based upon molecular mechanisms as an alternative 

to the swelling mechanism. These new mechanisms utilitze the conformational changes within a 

single polymer chain which can be triggered by electrochemical stimuli. We are interested in 

developing molecular building blocks with such properties and incorporating them into polymer 

materials. 

One of the candidates suitable for realizing molecular actuation is a molecular scaffold that has 

a bent geometry in the neutral state, but is a planarized structure when oxidized or reduced 

(expanding model). One driving force for such a conformational change is the aromatization 

(4n±2 π-electrons) energy gained from molecules with 4n π-electrons, which initially prefer a 

bent geometry due to antiaromatization. Cyclooctatetraene- and thianthrene-based building bocks 

have been proposed for this purpose.2 

Chart 1. Heteroepines 

N
H

O S

1H-Azepine Oxepin Thiepin  
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We are interested in conjugated seven-membered ring systems that have a heteroatom with a 

lone pair of electrons: heteroepines (Chart 1). With the lone pair electrons on the heteroatoms, 

heteroepines can be considered to be 8 π-electron heteroannulenes, which are antiaromatic 

according to Hückel’s rule. Thus, heteroepines are possible candidates for molecular actuators 

using “bent-to-planar” transformations under redox control. The chemistries of azepine and 

oxepin have been well documented,3 but the thiepin’s chemistry is relatively rare due to thermal 

instability of the parent molecule.4 

 

Thermal Stability of Thiepins and Design of the Molecular Scaffold 

Compared to azepine and oxepin, thiepin is notoriously unstable and the parent molecule 

(without any substituent) has not been detected so far. It easily loses the sulfur atom and 

furnishes a benzenoid product. Sulfur extrusion is believed to occur by valence isomerization to 

the corresponding thianorcaradiene, followed by the cheletropic loss of sulfur (Scheme 1).4,5 The 

pronounced instablility is the result of the low activation energy of the sulfur extrusion step. 

Scheme 1. Sulfur Extrusion of Thiepin 

S
S

[S]
 

Stable thiepins have been prepared by adding annulation and steric effects (Chart 2). When 

bulky groups are introduced at the 2- and 7-positions, steric repulsion disfavors the 

thianorcaradiene intermediate, and the molecules are thermally stable. If aromatic rings are 

annulated to thiepin, there should be a substantial resonance energy loss in order to be valence-
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isomerized. Increasing the number of annulated benzene rings results in higher thermal stability 

of thiepins.4 

Chart 2. Thiepins 

S

t-Bu

t-Bu

S S

S

t-Bu
t-Bu

S

S

t1/2 = 365 min / 130 oC

t1/2 = 58 min / 47 oC

unknown

stable  

Our design of the molecular building block for actuating material is to annulate aromatic rings 

to the thiepin system with two thiophenes and one benzene ring (Figure 1a). We chose thiophene 

due to its electrochemical stability and ease of synthetic modification. Solubilizing groups could 

also be easily attached to the benzene moiety. We expect further functionalization through α-

position of the annulated thiophenes (C3 and C10). 

S S

RO OR

S

RO OR

SS S
2+

- 2e-

+ 2e-

(a)

(b)

6.78 Å

7.55 Å
(11% increase)

- 2e-

+ 2e-

3 10

 

Figure 1. (a) Design of a annulated thiepin polymer. (b) Geometry optimized (B3LYP, 3-21g) structures of 

dithieno[b,f]benzo[d]thiepin in its neutral (left) and doubly-oxidized states (right). 
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We calculated the optimal geometry (B3LYP, 3-21G) of the simple 

dithieno[b,f]benzo[d]thiepin (Figure 1b). As expected, the molecule of the neutral state adopts a 

bent geometry. The distance between the outmost carbons (from C3 to C10) is ~6.8 Å. 

Optimized geometry of the doubly oxidized molecule is nearly planar presumably due to the 

energy gain from its aromatic electronic structure. The distance between the outmost carbons in 

the planar conformation is ~7.6 Å which is an 11% increase from the neutral state. 

 

Synthesis of Thiophene-Annulated Thiepins 

Yasuike et al. reported the synthesis of dithieno[b,f]thiepins via dilithium intermediates, but 

did not investigate any applications (Scheme 2).6 Traditionally, annulated thiepins have been 

prepared by condensation, elimination, ring expansion or rearrangement, etc.4 However, 

Yasuike’s approach is modular and they were able to prepare dithienoheteroepines containing 

group 14, 15, and 16 elements, including thiepins. This “dilithio” method has been applied to the 

preparation of other heteroepins,7 annulated thiophenes,8 and various aromatic thioethers.9 The 

typical source of sulfur is sulfur dichloride or bis(phenylsulfonyl) sulfide ((PhSO2)2S). However, 

the drawback is the generally low yields, typically ~30% for cyclic products. 

Scheme 2. Dilithio Route to Dithienoheteroepines6 

S S

BrBr

M SS

t-BuLi MX2

S S

LiLi

-80 oC

MX2 =                   , Se(PhSO2)2, Cl2TeCl2, PhPCl2, PhAsCl2, PhSbCl2, PhBiBr2
            Me2SiCl2, Me2GeCl2, Me2SnCl2

S(PhSO2)2

 

We first followed the same “dilithio” method starting with bis(bromothienyl)benzene 

derivatives 3a–c, which were prepared by bromination of compounds 2a–c (Scheme 3). 
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Compounds 2a–c were synthesized starting from catechol according to known procedures that 

were optimized in our group.10 Bromination of compounds 2a–c with NBS were high yielding 

and highly selective for 2-positions. The dibromides 3a–c were subjected to lithiation, followed 

by substitution with sulfur sources. We were able to isolate the desired thiepin products 4a–c, but 

the yields were less than 30%. Attempts to improve the yield by varying the solvent or 

temperature were not successful. 

Scheme 3.a 

Top view

Side view

RO OR

SS S

4c  R = Me

4a  R = 2-ethylhexyl
4b  R = n-C10H21

RO OR

SS
2a-c

RO OR

SS
Br Br

iv

ORROORRO

BrBr

iii

HO OH
iii

3a-c

25

34

v

vi X-ray Crystal
Structure (4c)

 
aReagents: (i) K2CO3, 1-bromodecane,  acetone, reflux, 1 d, 93%. (ii) Br2, CH2Cl2, room temperature, 2 h, 96%. (iii) 
3-thiophene boronic acid, Na2CO3, Pd(PPh3)4, toluene, EtOH, H2O, reflux, 18 h, 94%. (iv) NBS, CHCl3, acetic acid, 
room temperature, 89%. (v) t-BuLi, Et2O or THF, then (PhSO2)2S or SCl2, –78 ºC → room temperature, <30%. (vi) 
SCl2, CH2Cl2, –40 ºC, 80%. 

Noticing that sulfur dichloride could be a good electrophile in the aromatic electrophilic 

substitution, we tried a direct cyclization with compounds 2a–c. This route was inspired by the 

preparation of 3,3’-dipyrrolyl sulfides using sulfur dichloride starting from substituted pyrroles.11 

In addition, the 2-position of thiophene is highly selective over 5-position in other electrophilic 

reactions (e.g., bromination). Fortunately, we were able to obtain the desired thiepins in good 
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yields. It should be noted that sulfur dichloride needs to be freshly distilled right before use 

because it tends to decompose to sulfur monochloride (S2Cl2) and chlorine. 

Thiepins 4a–c were pale yellow, crystalline powders even with the highly disordering 2-

ethylhexyloxy side chains. The X-ray crystal structure of the methoxy derivative 4c clearly 

shows the bent geometry at its neutral state. The distance between the outmost carbons (6.85 Å) 

is in good agreement with the value from the DFT calculation.  

In order to examine the effect of the substitution pattern, we synthesized dithieno[3,2-b;2’,3’-

f]benzo[d]thiepin 7,  which is isomeric to 4b (Scheme 4). To incorporate bromines into the 3- 

and 3’-positions, 2b’ was first tetrabrominated and then debrominated to compound 6. This route 

was necessary because bromination occurs at the 5-positions first, however lithium-bromine 

exchange also favors the less sterically hindered 5-positions. Following the standard “dilithio” 

procedure, we were able to obtain isomeric thiepin 7, albeit in a low yield. 

Scheme 4.a 

ORRO

SS

BrBr

BrBr

ORRO

SS

BrBr

RO OR

S S

S

i ii iii

5 6 7

ORRO

SS

2b' R = n-C10H21

2

5

3

4

 
aReagents: (i) NBS (4 equiv), CHCl3, acetic acid, room temperature, 97%. (ii) n-BuLi, THF, -78 ºC, 30 min, then 
MeOH, 90%. (iii) t-BuLi, Et2O, (PhSO2)2S, -78 ºC → room temperature, 15 h, 31%.  

 

Cyclic Voltammograms of Annulated Thiepins 

Figure 2 shows the cyclic voltammograms (CVs) of compounds 4c and 7. The CVs were taken 

in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte on a Pt button electrode with a 

standard 3-electrode configuration under ambient conditions. 
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Figure 2. CVs of 4c (a) and 7 (b) in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte. The red dotted lines 

represent the first scans. The blue dotted line (b) is the scan up to the first oxidation. 

Both CVs showed two 1-electron oxidation waves, which could imply the oxidation of the 

thiepin π-systems from 8 to 6 π-electrons. Oxidation of 7 (0.73 V) occurred at a lower potential 

than 4c (0.82 V vs. Fc/Fc+, the first half potentials). Although more experiments are needed, this 

difference can be rationalized by the positions where electrons or charges reside, when drawing 

the stable canonical resonance forms (Scheme 4). 

If we assume that the radical prefers the benzyl position, the radical in 7•+ is then in the α-

position of the thiophene, while the radical in 4c•+ is at the β-position. Note that in 5-membered 

heterocycles (thiophene, pyrrole, and furan), charges prefer being at the α-position, and are 

susceptible to various chemical reactions (e.g., substitutions, radical-radical couplings, etc.). 

Moreover, the charge is more delocalized in 7•+. 
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Scheme 4. Proposed Charge Delocalization of 4c•+ and 7•+. 
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The reduction waves of 4c and 7 are quite different. The reduction from 4c2+ to 4c•+ appears as 

a sharp peak, which is at a lower potential than expected. We attribute this to the aromatic energy 

gained after the second oxidation (8 to 6 π-electrons). In other words, the dication 4c2+ is 

stabilized by planarization and it takes an over-potential to re-reduce the molecule. The reduction 

for 72+ is peculiar and not understood. The reduction was not complete, but an additional 

reduction peak appeared at the lower potential (~ –0.5 V vs. Fc/Fc+). This strange reduction 

occurred only from the 72+, not from 7•+. When we cycled the potentials up to the first oxidation, 

we did not observe this effect (Figure 2b, blue dotted line). 

In short, both thiepin 4c and 7 showed two 1-electron redox events, which are reproducible 

under the above conditions. The annulation pattern influences the molecule’s oxidation 

potentials. The sharp reduction from 4c2+ to 4c•+ supports our proposal of planarization by 

aromatic energy gains. 
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Electropolymerization of Extended Thiepins 

We focused on the 4-types of thiepins ([2,3-b]-annulation). We synthesized 

electropolymerizable thiepins 9 and 10 by bromination of 4a, followed by Stille coupling 

reactions (Scheme 6). 

Scheme 6.a 

RO OR

SS S
Br Br

RO OR

SS S

RO OR

SS S

SS
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O O
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O O
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SS S
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S

SnBu3
S

O O

i ii

R = 2-ethylhexyl

 
aReagents: (i) NBS, CHCl3, acetic acid, room temperature, 76%. (ii) PdCl2(PPh3)2, DMF, 80 º, 15 h, 78-80%.  

Electropolymerizations were attempted with monomer solutions in 1:1 mixture of CH2Cl2 and 

CH3CN with 0.1 M TBAPF6 as a supporting electrolyte under swept potential conditions (Figure 

3a and b). In CH2Cl2 only, we obtained a similar polymer growth, but the resulting polymers 

were not irreversibly deposited onto the electrodes to form good films. 

Both monomers 9 and 10 were electropolymerized and displayed a linear growth of redox 

currents. Both poly(9) and poly(10) have very similar properties as shown in the standard 

characterization measurements. Scan-rate dependences on the thin polymer films in the 

monomer-free solution (CH3CN) are linear, but the shape of the CVs suggests a limited ion 

diffustion as the films grow thicker (Figure 3c and d). In situ conductivity measurements 
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revealed the maximum conductivities were around 60–70 S/cm for both poly(9) and poly(10) 

(Figure 4). Spectroelectrochemical measurements show very delocalized electronic structures, 

especially at high doping levels (Figure 5). 

-100

-50

0

50

100

150

-30

-20

-10

0

10

20

30

40

-1 -0.5 0 0.5 1

-20

-10

0

10

20

30

40

50

-150

-100

-50

0

50

100

150

200

250

-1 -0.5 0 0.5

-100

-50

0

50

100

150

Potential (V vs Fc/Fc+)

C
u
rr

e
n

t 
(µ

A
)

C
u
rr

e
n
t 
(µ

A
)

(c) Poly (9) (d) Poly (10)

(b) 10(a) 9

CH2Cl2:CH3CN = 1:1
100 mV/s

200 mV/s

150

100
50
25

200 mV/s
150

100

50
25

CH2Cl2:CH3CN = 1:1
100 mV/s

CH3CN CH3CN

 

Figure 3. (top) Electropolymerization of 9 (a) and 10 (b) on Pt button electrodes in 1:1 mixture of CH2Cl2 and 

CH3CN with 0.1 M TBAPF6 as a supporting electrolyte. The red dotted lines represent the first scans. (bottom) CVs 

of films of poly(9) (c) and poly(10) (d) at different scan rates. 

We found with repeated electrochemical sweeps that the initially red polymers were getting 

darker, which was more pronounced for electron-rich poly(10). We also noticed in the CVs that 

the redox couple at the low potentials (~0.2 V for poly(9) and ~ –0.1V for poly(10), all vs. 

Fc/Fc+) is very similar to that of poly(dithienonaphthalene)s, which were reported earlier in our 

group by using a tandem cyclization and polymerization mechanism.10,12 The molecular structure 

of dithienonaphthalene is identical to the structure obtained if the sulfur is extruded in the 
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thiepins. Moreover, vibrational fine structure was evident in the absorption of poly(10) at the 

neutral state, which is unusual for this type of (flexible) polymers. This implies that the polymer 

had some rigid molecular frames. The above observations lead to the possibility of sulfur 

extrusion in the polymers. 
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Figure 4. CVs (dotted lines) and in situ conductivity measurements (solid lines) of films of poly(9) (a) and 

poly(10) (b) on 5-µm interdigitated Pt microelectrodes in CH3CN with 0.1 M TBAPF6 as a supporting electrolyte. 
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Figure 5. Electronic absorption spectra of films of poly(9) (a) and poly(10) (b) on ITO-coated glass electrodes in 

CH3CN with 0.1 M TBAPF6 as a supporting electrolyte, as a function of oxidation potential from 0.0 V to 1.0 V vs. 

Ag/Ag+. 

To test this sulfur extrusion hypothesis, we synthesized the thiepin polymers 11 and 12 via 

cross coupling chemistry (Scheme 7). Polymer 11 consists of only thiophene-annelated thiepins 
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while polymer 12 has alternating structure of thiepins and oligothiophenes. For polymer 11, we 

tried an in situ stannylation and Stille coupling polymerization13 to provide the desired polymer 

of a bright red solid. Although we conducted an extensive screening of reaction conditions, we 

were only able to get polymer 11 with low molecular weights (6.2 kDa). Copolymer 12 was 

obtained as an orange-red powder by Stille coupling polymerization with 

bis(trimethylstannyl)bithiophene, giving a low molecular weight of 8.0 kDa. 

Scheme 7. 
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A CH2Cl2 solution of polymer 12 with a supporting electrolyte (0.1 M TBAPF6) was subjected 

to the swept potential conditions (Figure 6). Interestingly, the current gradually increased as the 

crimson polymer was deposited onto the electrode. The scan-rate dependence in the monomer-

free solution shows very good linear proportionality between the peak currents and the scan 

rates. The peak potentials scarcely moved both for the oxidation and reduction currents, implying 

exceptional electrochemical kinetics. However, it should be noted that the CVs are similar to 

those of poly(dithienonaphthalene)s.12 The polymer could grow either by end-group couplings 
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between oxidized species, or by the solubility changes caused by sulfur extrusion. Indeed, there 

should be great a difference in solubility from the bent and flexible thiepin structure to the rigid 

dithienonaphthalenes.    
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Figure 6. (a) Electrodeposition onto a Pt button electrode from a CH2Cl2 solution of polymer 12. (b) CVs of the 

resulting polymer at different scan rates. All measurements were with 0.1 M TBAPF6 as a supporting electrolyte. 

We subsequently measuered the electroactivity of a drop-cast film of polymer 11.  The onset of 

the first scan was ~0.9 V, but it shifted to lower potentials (~0.3 V, all vs. Fc/Fc+) with 

subsequent scans. Furthermore, upon reversing of the high potential in the first scan, the current 

in its return crossed over that of the first positive sweep, which strongly suggests some 

irreversible reactions occurred to create materials with lower oxidation potentials. The profiles of 

successive scans resembled those of poly(dithienonaphthalene)s, which can be produced by the 

sulfur extrusion. 
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Figure 7. CVs of a drop-cast film of polymer 11 on an ITO-coated glass electrode in CH3CN with 0.1 M TBAPF6 

as a supporting electrolyte. The dotted line represents the first scan. 

We conclude that oxidized thiophene-annulated thiepins are unstable and prone to sulfur 

extrusion (Scheme 8). However, as Figure 2 shows, thiophene-annulated thiepins are 

electrochemically stable if there is no substitution at 2,2’-positions. 

Scheme 8. Sulfur Extrusion of Thiepin Polymer 

RO OR

SS S n

RO OR

SS n

"S"

 

 

We demonstrated that the substituted thiepins undergo sulfur extrusion with an oxidation and 

reduction cycle (Scheme 9). Compound 13 was subjected to oxidation by nitrosonium ion in 

CH2Cl2, followed by reduction with methanol. The isolated product was the sulfur-extruded 14, 

which was confirmed by NMR and mass spectroscopies. In contrast, when non-substituted 4c 

was subjected to the same conditions, the starting material was recovered in a 40% yield, along 
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with the thiepin 1-oxide 15 in a 60% yield. One plausible explanation is that oxidation increases 

the quinoid character of the annulating thiophenes, which can substantially decrease the 

activation barrier for the valence isomerization. Note that annulation of aromatic rings 

successfully increases the thermal stability of thiepins. We expect that any substituent capable of 

stabilizing the quinoid structure of the oxidized thiophenes may cause the sulfur extrusion.   

Scheme 9. 
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Properties of Thiepin 1-Oxide (Sulfoxide) 

Contrary to our proposal, the annulated thiepins with substitutions become labile when 

oxidized, which is discouraging for use in electrochemical applications. However, we can take 

advantage of such properties for other applications. Because the sulfur extrusion from the 

annulated thiepins produces dithienonaphthalenes, which are very rigid and robust in structure, 

we can expect the photoluminescence would be greatly increased. Note that the annulated thiepin 

adopts a bent and non-delocalized structure. 
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It has been known that thiepin 1-oxides (sulfoxide) are less thermally stable than thiepins.14 

Even thiepin 1-oxides from the sterically or electronically stabilized thiepins are easily converted 

to the benzenoid compounds, presumably through the same valence isomerization and sulfur 

extrusion mechanism. It should be noted here that unlike thiepin 1-oxides, thiepin 1,1-dioxides 

(sulfones) are known to be thermally very stable. In fact, the parent thiepin 1,1-dioxide has been 

isolated as a stable compound at room temperature.4,15 

The above discussion indicates that if initially non- or weakly-emissive thiepin molecules 

encounter a peroxide, a portion of the thiepins can be converted to thiepin 1-oxide, which will 

then transform to a highly fluorescent benzenoid compound. Organic peroxides have been used 

in explosives (e.g., tricycloacetone peroxides or TCAP) and their detection is of increasing 

importance. Thus, we decided to investigate the potential of the annulated thiepins as peroxide 

sensors. 

We first synthesized the thiepin 1-oxide 15 from thiepin 4c by reaction with m-

chloroperoxybenzoic acid in CH2Cl2 at low temperature (Scheme 10). With 1 equivalent of 

peroxide, thiepin 1,1-dioxide was also formed as a byproduct in a ~15% yield. We were able to 

isolate the thiepin 1-oxide 15 as a crystalline solid, but it slowly decomposed at room 

temperature. However, it was stable enough to be characterized, and fortunately we could obtain 

a single crystal at –20 °C. 

The molecular structure of thiepin 1-oxide 15 is similar to that of thiepin 4c with a slight 

increase of the distance between the outmost carbons (6.897 vs 6.853 Å). In the 1H-NMR 

spectrum, there were two sets of signals in a roughly 3:1 ratio, indicating two isomers are 

present. We obtained the X-ray crystal structure with the oxygen in the endo(axial)-position. 

However, thiepin 1-oxide with the oxygen in the exo(equatorial)-position is another possible 
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structure. X-ray structure of a related benzothiepin 1-oxide with sulfoxide oxygen’s exo-position 

was previously reported.16 

Scheme 10. 
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Figure 8. (a) CVs of thiepin 1-oxide 15 in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte. (b) CVs of the 

material that was deposited on the electrode during the CV measurement of 15 (a). The dotted lines represent the 

first scans. 
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Cyclic voltammograms measured in CH2Cl2 solution revealed the instability of thiepin 1-oxide 

15 (Figure 8). While thiepin 4c showed reproducible and quasi-reversible waves (Figure 2), 

oxidation of thiepin 1-oxide was completely irreversible under the conditions. Interestingly, we 

found a dark brown material deposited on the electrode after the CV measurements. The CV of 

the material measured in acetonitrile solution resembled that of poly(dithienonaphthalene)s, 

suggesting the sulfoxide (SO) was extruded. 

We utilized compounds 9 and 10 as the sensory materials because they could produce well-

extended, highly emissive chromophores. We synthesized thiepin 1-oxide 16 and 

dithienonaphthalene 18 in order to compare the photophysical properties (Scheme 11). Thiepin 

1-oxide 16 was prepared using similar conditions for the preparation of 15. Dithienonaphthalene 

18 was prepared by Stille coupling reaction with compound 17, which was prepared by 

following the literature procedure.10 

Scheme 11.a 

RO OR

SS S

SS

16

i

RO OR

SS
SS

RO OR

SS BrBr

17 18

ii

O

RO OR

SS S

SS

R = 2-ethylhexyl

R = n-C8H17

 
aReagents: (i) m-chloroperoxybenzoic acid,  CH2Cl2, -20 ºC, 1 h, 55%. (ii) 2-Tributylstannylthiophene, PdCl2(PPh3)2, 
DMF, 80 ºC, 15 h, 70%. 
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Figure 9 shows UV-vis absorbance and fluorescence spectra of thiepin 1-oxide 16 and 

dithienonaphthalene 18 measured in CH2Cl2 solution under air. As expected, dithienonaphthalene 

18 was highly fluorescent and gave an emissive band with vibronic structure (Figure 9c). The 

maximum fluorescent intensity of 18 was observed at 433 nm and the UV-vis absorption 

maximum was at 396 nm. The UV-vis spectrum of thiepin 1-oxide 16 contained a tail at around 

400 nm. From the shape of the spectrum, it appears that the dithienonaphthalene 18 was already 

generated in the mixture. 

The fluorescence spectrum of 16 showed the shoulder around 400 nm in addition to a well-

resolved vibronic structure. The latter can be well matched to the spectrum of 

dithienonaphthalene 18, so we can conclude the sample contained a mixture of 16 and 18. 

Excitation spectra clearly demonstrated that there were two emitting chromophores in the sample 

(Figure 9b). The excitation spectrum of the 399-nm emission is well matched with the 16’s 

absorption. On the other hand, the excitation spectra of the 432- and 458-nm emissions resemble 

the absorption spectrum of 18. Furthermore, when the fluorescence was measured again with the 

same sample, we observed the shoulder’s intensity was decreased whereas peaks common with 

16 increased (Figure 9a). The above data confirm that the thiepin 1-oxide 16 was converted to 

dithienonaphthalene 18. 
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Figure 9. (a) Absorption and emission spectra for 16. For emission, red line represents the first measurement, and 

blue line the second. (b) Excitation spectra of 16 for emissions at indicated wavelengths. The absorption spectrum 

from ‘a’ were plotted as a dotted line for comparison. (c) Absorption and emission spectra for 18, with excitation 

spectra in dotted lines. All spectra were acquired at room temperature in CH2Cl2. 

We subsequently examined the fluorescence changes when 9 and 10 were exposed to a 

peroxide. In a cuvette containing a CH2Cl2 solution of 9 or 10, we added one drop of a CH2Cl2 

solution containing m-chloroperoxybenzoic acid (~0.05 M, excess) and monitored the 

fluorescence intensities as time progressed. Thiepin 9 (Figure 10a) displayed emissions that are 

very similar to Figure 9a. Therefore, it is reasonable to conclude that the mixture contained 

thiepin 1-oxide 16 and dithienonaphthalene 18. The fluorescence at 400 nm, which is from the 

thiepin 1-oxide 16, increased, followed by increase of dithienonaphthalene 18’s fluorescence. 

The trend is conserved for EDOT-containing 10, except a ~10-nm red-shift in the fluorescence 
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maxima (Figure 10b). However, in the case of 10, the time evolution was much faster when 

compared to 9, presumably due to the electron-rich character of 10. 

5 10
6

1 10
7

1.5 10
7

2 10
7

2.5 10
7

0 2 4 6 8 10 12

10

2 10
6

4 10
6

6 10
6

8 10
6

1 10
7

1.2 10
7

1.4 10
7

1.6 10
7

1.8 10
7

0 5 10 15 20 25 30 35 40

0

5 10
6

1 10
7

1.5 10
7

0

5 10
6

1 10
7

1.5 10
7

2 10
7

2.5 10
7

3 10
7

3.5 10
7

350 400 450 500 550 600

9

10

9

F
lu

o
re

s
c
e

n
c
e
 (

a
.u

.)

Wavelength (nm)
Time (min)

(a)

(c)

(d)

(b)

Time (min)

F
lu

o
re

s
c
e
n

c
e

 (
a

.u
.)

 

Figure 10. Time evolution of emission spectra for 9 (a) and 10 (c) in the presence of m-chloroperoxybenzoic acid  

(excess) at room temperature in CH2Cl2. Emission maxima were plotted as a function of elapsed time (c and d). 

The fact that the emission from dithienonaphthalenes developed and we also observed the 

emission from thiepin 1-oxides suggests that de-sulfoxidation (k2) (Scheme 12) is the rate-

limiting step. If this thiepin system is to be used for a peroxide sensor, the substituents need to be 

tuned in order to increase the de-sulfoxidation rate. In this way, we can prevent double oxidation 

to sulfone, which is known to be very stable. 
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Scheme 12.  
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Conclusions 

We have designed and synthesized annulated thiepin systems, which would undergo bent-to-

planar transformation driven by aromatization under electrochemical control. In the cyclic 

voltammetry, dithienobenzothiepin 4c showed a very interesting sharp peak for the reduction of 

dication 4c2+, which supports aromatic energy gains in the doubly oxidized thiepin. However, in 

spite of the thermal stability in the neutral state, extended thiepin systems were unstable when 

oxidized, probably due to the non-aromatic character in the oxidized molecules and polymers. 

The effort for developing new heteroepine systems has been continued with azepines (Chapter 

6). Although sulfur extrusion was not suitable for actuating applications, such a property was 

tested as a peroxide sensor, exploiting the fact that sulfoxide has an even lower extrusion barrier 

than sulfur. Preliminary studies exhibited the increased fluorescence originated from the 

extrusion products. Fine-tuning of substituents is needed to accelerate the extrusion reaction.
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Experimental Section 

General. NMR spectra were recorded on a Varian Mercury-300, Bruker Advance-400, or 

Varian Inova-500 spectrometer.  Chemical shifts are reported in ppm and referenced to residual 

solvent peaks (CDCl3: δ 7.27 ppm for 1H, δ 77.23 ppm for 13C). High-resolution mass spectra 

(HR-MS) were obtained on a Bruker Daltonics APEX II 3 Tesla FT-ICR-MS. UV-vis spectra 

were obtained using a HP 8453 diode array spectrometer. Electrochemical measurements were 

carried out using an Autolab PGSTAT 10 or PGSTAT 20 potentiostat (Eco Chemie) in a three-

electrode cell configuration consisting of a quasi-internal Ag wire reference electrode 

(BioAnalytical Systems) submerged in 0.01 AgNO3 / 0.1 M tetrabutylammonium 

hexafluorophosphate (TBAPF6) in anhydrous CH3CN, a Pt button (1.6 mm in diameter) 

electrode, 5-µm interdigitated Pt microelectrode, or ITO-coated glass electrode as the working 

electrode, and a Pt coil or Pt gauze as the counter electrode.  The ferrocene/ferrocenium (Fc/Fc+) 

redox couple was used as an external reference.  Half-wave potentials of Fc/Fc+ were observed 

between 210-245 mV vs Ag/Ag+ in CH2Cl2, and between 80-91 mV vs Ag/Ag+ in CH3CN. EPR 

spectra were obtained using a Bruker Model EMX Electron Paramagnetic Resonance 

Spectrometer operating as the X-band with 100 kHz modulation at room temperature. All air and 

water sensitive synthetic manipulations were performed under an argon or nitrogen atmosphere 

using standard Schlenk techniques.   

Materials. SCl2 was synthesized from S2Cl2 with Cl2 according to the literature method17 and 

freshly distilled with a few drops of PCl3 prior to use. Spectroscopic grade CH2Cl2 was purchased 

from Aldrich for electrochemistry.  TBAPF6 was recrystallized in ethanol prior to use. 

Anhydrous DMF was purchased from Aldrich as Sure-Seal Bottles and used as received. THF, 

anhydrous CH2Cl2, and toluene were purified by passage through two alumina columns of an 
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Innovative Technologies purification system. All other chemicals were of reagent grade and used 

as received.  

Compounds 2a–c, 3a–c, 3b’, and 17 were prepared by literature methods.10,12 5,5’-

Bis(trimethylstannyl)-2,2’-bithiophene was synthesized by reported procedures.18 The structure 

of benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin and its numbering are shown as follow. 

SS S

12

3

4

5

6 7
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11  

 

O O

SS S  

6,7-Di(2-ethylhexyloxy)-benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin (4a). A freshly distilled 

SCl2 (2.1 mL, 16.5 mmol) in CH2Cl2 (100 mL) was added dropwise to a CH2Cl2 (450 mL) 

solution of compound 2a (7.48 g, 15 mmol) at –40 °C under Ar. The mixture was slowly 

warmed to room temperature and stirred for 15 h, at which time the mixture was poured into 

10% aqueous NaHCO3. The organic layer was washed with brine, dried over MgSO4, and 

evaporated under reduced pressure. The crude mixture was subjected to column chromatography 

(dichloromethane:hexane = 1:10). The product was further purified by recrystallization 

(dichloromethane/methanol). Yield: 6.04 g (76%) of lightly yellow solid. 1H NMR (500 MHz, 

CDCl3) δ: 7.25 (d, 2H, J = 5.5 Hz), 7.13 (d, 2H, J = 5.5 Hz), 7.05 (s, 2H), 3.96 (m, 4H), 1.82 (m, 

2H), 1.57–1.34 (m, 16H), 0.94 (m, 12H). 13C NMR (125 MHz, CDCl3) δ: 148.90, 145.33, 
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130.71, 129.44, 127.95, 126.44, 114.13, 71.72, 39.75, 30.82, 29.34, 24.16, 23.31, 14.33, 11.44. 

HR-MS (ESI): calcd for C30H40O2S3 [M+Na]+, 551.2083; found, 551.2077.  

 

n-C10H21O On-C10H21

SS S  

6,7-Di(decyloxy)-benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin (4b). Using the same procedure for 

the preparation of 4a, compound 2b (1.31 g, 2.36 mmol) in CH2Cl2 (100 mL) was treated with 

SCl2 (0.3 mL, 2.36 mmol) in CH2Cl2 (50 mL). Yield: 1.03 g (75%) of lightly yellow solid. 1H 

NMR (400 MHz, CDCl3) δ: 7.24 (d, 2H, J = 5.4 Hz), 7.11 (d, 2H, J = 5.4 Hz), 7.06 (s, 2H), 4.09 

(m, 4H), 1.87 (m, 4H), 1.52–1.28 (m, 28H), 0.90 (t, 6H, J = 7.0 Hz). 13C NMR (125 MHz, 

CDCl3) δ: 148.56, 145.24, 130.76, 129.40, 128.13, 126.47, 114.57, 69.55, 32.13, 29.86, 29.81, 

29.63, 29.58, 29.46, 26.26, 22.91, 14.35. HR-MS (ESI): calcd for C34H48O2S3 [M+Na]+, 

607.2709; found, 607.2722. 

  

MeO OMe

SS S  

6,7-Dimethoxy-benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin (4c). Using the same procedure for 

the preparation of 4a, compound 2c (1.51 g, 5 mmol) in CH2Cl2 (30 mL) was treated with SCl2 

(0.635 mL, 5 mmol) in CH2Cl2 (15 mL). Yield: 1.26 g (76%) of lightly yellow solid. 1H NMR 

(500 MHz, CDCl3) δ: 7.26 (d, 2H, J = 5.4 Hz), 7.13 (d, 2H, J = 5.4 Hz), 7.06 (s, 2H), 3.98 (s, 
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6H). 13C NMR (125 MHz, CDCl3) δ: 148.39, 145.10, 131.08, 129.30, 128.15, 126.65, 112.25, 

56.24. HR-MS (ESI): calcd for C16H12O2S3 [M+Na]+, 354.9892; found, 354.9893. 

  

On-C10H21n-C10H21O

SS

BrBr

Br Br  

1,2-Di(decyloxy)-4,5-bis(3,5-dibromothiophen-2-yl)benzene (5). To the mixture of 

compound 3b’ (2.07 g, 3.7 mmol), CHCl3 (40 mL), and AcOH (40 mL) was added NBS (2.72 g, 

15.2 mmol) in portions. After being stirred at room temperature for 6 h, the mixture was diluted 

with CHCl3. The organic layer was washed with water and brine, dried over MgSO4, and 

evaporated under reduced pressure. The crude mixture was subjected to column chromatography 

(ethyl acetate:hexane = 1:15). Yield: 3.12 g (97%) of white solid. 1H NMR (400 MHz, CDCl3) δ: 

6.97 (s, 2H), 6.94 (s, 2H), 4.07 (m, 4H), 1.87 (m, 4H), 1.51 (m, 4H), 1.39–1.28 (m, 24H), 0.91 (t, 

6H, J = 6.6 Hz). 13C NMR (100 MHz, CDCl3) δ: 149.41, 138.62, 132.45, 124.40, 116.14, 112.87, 

110.01, 69.31, 32.10, 29.81, 29.76, 29.58, 29.54, 29.25, 26.18, 22.89, 14.34. HR-MS (ESI): calcd 

for C34H46Br4O2S2 [M]+, 869.9640; found, 869.9646. 

 

On-C10H21n-C10H21O

SS

BrBr

 

1,2-Di(decyloxy)-4,5-Bis(3-bromothien-2-yl)benzene (6). To a THF (12 mL) solution of 

compound 5 (1.06 g, 1.2 mmol) was added dropwise n-BuLi (1.6 M in hexane, 1.54 mL, 2.46 
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mmol) at –78 °C under Ar. After being stirred for 30 min, methanol (1 mL) was added to quench 

and the mixture was warmed to room temperature. The mixture was diluted with diethyl ether 

and washed with water and brine. The organic layer was dried over MgSO4, evaporated under 

reduced pressure, and subjected to column chromatography (dichloromethane:hexane 1:4). The 

product was further purified by recrystallization (dichloromethane/methanol) at –20 °C. Yield: 

0.773 g (90%) of white solid. 1H NMR (400 MHz, CDCl3) δ: 7.20 (d, 2H, J = 5.3 Hz), 7.00 (s, 

2H), 6.93 (d, 2H, J = 5.3 Hz), 4.08 (m, 4H), 1.88 (m, 4H), 1.64 (m, 4H), 1.50–1.30 (m, 24H), 

0.90 (t, 6H, J = 6.2 Hz). 13C NMR (125 MHz, CDCl3) δ: 149.05, 137.34, 130.15, 126.22, 125.26, 

116.38, 110.73, 69.32, 32.10, 29.82, 29.77, 29.60, 29.55, 29.31, 26.21, 22.88, 14.33. HR-MS 

(ESI): calcd for C34H48Br2O2S2 [M]+, 712.1449; found, 712.1436. 

 

n-C10H21O On-C10H21

S S

S  

6,7-Di(decyloxy)-benzo[d]-dithieno[3,2-b;2’,3’-f]-thiepin (7). To a cooled (–78 °C) Et2O (50 

mL) solution of compound 6 (0.713 g, 1 mmol) was added dropwise t-BuLi (1.7 M in hexane, 

2.41 mL, 4.1 mmol). The initially cloudy mixture became clear as lithiation proceeded. After the 

mixture was stirred at –78 °C for 10 min, (PhSO2)2S was added in portions. The mixture was 

allowed to stir at –78 °C for 3 h, and then at room temperature for another 12 h. After being 

diluted with diethyl ether, the mixture was washed with 10% aqueous NaHCO3 and brine. The 

organic layer was dried over MgSO4, and evaporated under reduced pressure. The crude mixture 

was subjected to column chromatography (chloroform:hexane = 1:7). Yield: 0.181g (31%) of 

light yellow solid. 1H NMR (400 MHz, CDCl3) δ: 7.29 (d, 2H, J = 5.2 Hz), 7.10 (s, 2H), 6.93 (d, 
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2H, J = 5.2 Hz), 4.09 (m, 4H), 1.87 (m, 4H), 1.50 (m, 4H), 1.40–1.28 (m, 24H), 0.89 (t, 6H, J = 

6.8 Hz). 13C NMR (125 MHz, CDCl3) δ: 149.18, 143.17, 131.49, 130.70, 125.86, 125.76, 115.38, 

69.54, 32.14, 29.86, 29.81, 29.62, 29.58, 29.36, 26.23, 22.92, 14.36. HR-MS (ESI): calcd for 

C34H48O2S3 [M+Na]+, 607.2709; found, 607.2711. 

 

O O

SS S
Br Br  

3,10-Dibromo-6,7-di(2-ethylhexyloxy)-benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin (8). To the 

mixture of compound 4a (1.74 g, 3.3 mmol), CHCl3 (20 mL), and AcOH (20 mL) was added 

NBS (1.24 g, 6.9 mmol) in portions. After being stirred at room temperature for 15 h, the mixture 

was diluted with CHCl3. The organic layer was washed with water and brine, dried over MgSO4, 

and evaporated under reduced pressure. The crude mixture was subjected to column 

chromatography (dichloromethane:hexane = 1:10). Yield: 1.73 g (76%) of white solid. 1H NMR 

(400 MHz, CDCl3) δ: 7.11 (s, 2H), 6.97 (s, 2H), 3.95 (m, 4H), 1.82 (m, 2H), 1.57–1.34 (m, 16H), 

0.99–0.91 (m, 12H). 13C NMR (125 MHz, CDCl3) δ: 149.23, 145.69, 132.18, 130.06, 127.12, 

113.57, 112.48, 71.68, 39.75, 30.82, 29.35, 24.17, 23.30, 14.33, 11.45. HR-MS (ESI): calcd for 

C30H38Br2O2S3 [M+Na]+, 707.0293; found, 707.0293. 
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6,7-Di(2-ethylhexyloxy)-3,10-bis(thiophen-2-yl)-benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin 

(9). To a degassed solution of DMF (5 mL) of compound 8 (0.350 g, 0.5 mmol) were added 2-

tributylstannyl thiophene (0.368 mL, 1.1 mmol) and PdCl2(PPh3)2 (18 mg, 5 mol %). The 

mixture was allowed to stir at 80 °C for 15 h, at which time the mixture was cooled to room 

temperature.  Ethyl aceate was added to the mixture, and the organic layer was washed with 

saturated aqueous NH4Cl, KF, and NH4Cl again. After being dried over MgSO4, the organic layer 

was evaporated under reduced pressure and subjected to column chromatography 

(dichloromethane:hexane = 1:3). The product was further purified by recrystallization 

(dichloromethane/methanol).  Yield: 0.270 g (78%) of pale yellow solid. 1H NMR (400 MHz, 

CDCl3) δ: 7.24 (dd, 2H, J = 5.1, 1.0 Hz), 7.18 (s, 2H), 7.16 (dd, 2H, J = 3.6, 1.0 Hz), 7.10 (s, 

2H), 7.12 (dd, 2H, J = 5.1, 3.6 Hz), 3.95 (m, 4H), 1.82 (m, 2H), 1.57–1.34 (m, 16H), 0.99–0.91 

(m, 12H). 13C NMR (125 MHz, CDCl3) δ: 149.11, 145.98, 138.08, 136.86, 128.94, 128.12, 

127.87, 125.69, 125.18, 124.46, 113.94, 71.81, 39.79, 30.84, 29.36, 24.17, 23.32, 14.34, 11.47. 

HR-MS (ESI): calcd for C38H44O2S5 [M+Na]+, 715.1837; found, 715.1869. 

 

O O

SS S

S

O O

S

O O

 

3,10-Bis(3,4-ethylenedioxythiophen-2-yl)-6,7-di(2-ethylhexyloxy)-benzo[d]-dithieno[2,3-

b;3’,2’-f]-thiepin (10). Using the same procedure for the synthesis of 9, compound 8 (0.350 g, 

0.5 mmol) was treated with 2-tributylstannyl-3,4-ethylenedioxythiophene (0.473 mL, 1.25 

mmol) and PdCl2(PPh3)2 (18 mg, 5 mol %) in DMF (5 mL). Yield: 0.330 g (80%) of pale yellow 
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solid. 1H NMR (400 MHz, CDCl3) δ: 7.17 (s, 2H), 7.07 (s, 2H), 6.24 (s, 2H), 4.34 (m, 4H), 4.25 

(m, 4H), 3.97 (m, 4H), 1.83 (m, 2H), 1.57–1.35 (m, 16H), 0.99–0.91 (m, 12H). 13C NMR (125 

MHz, CDCl3) δ: 148.98, 145.17, 141.97, 138.18, 135.41, 128.85, 128.05, 124.48, 114.22, 

111.79, 97.67, 71.89, 65.24, 64.77, 39.78, 30.82, 29.35, 24.15, 23.32, 14.35, 11.46. HR-MS 

(ESI): calcd for C42H48O6S5 [M+Na]+, 831.1941; found, 831.1963. 

 

RO OR

SS S n  

Polymer 11. Compound 8 (0.069 g, 0.1 mmol) and hexabutylditin (0.058 mL, 0.11 mmol) 

were dissolved in toluene (1.5 mL) and DMF (1.5 mL). The mixture was degassed with Ar for 40 

min and Pd(PPh3)4 (2.4 mg, 2 mol %) was added under gentle Ar stream. The mixture was 

allowed to stir at 110 ºC for 2 d, at which time the mixture was cooled to room temperature and 

methanol was added to precipitate. The filtered solid was re-dissolved in CHCl3 and added to 

acetone to precipitate again. The product was filtered and dried under air. Yield: 0.041 g (78%) 

of crimson solid. GPC (polystyrene standard): Mn = 6170, Mw = 7790, PDI = 1.26. 1H NMR (300 

MHz, CDCl3) δ: 7.15 (aromatic C-H), 7.03 (aromatic C-H), 3.95 (aliphatic C-H), 1.84–0.92 

(aliphatic C-H). 

 

RO OR

SS S

S
S

n 
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Polymer 12. Compound 8 (0.035 g, 0.05 mmol) and 5,5’-bis(trimethylstannyl)-2,2’-

bithiophene (0.025 g, 0.05 mmol) were dissolved in toluene (0.5 mL) and DMF (0.5 mL). The 

mixture was degassed with Ar for 40 min and Pd(PPh3)4 (2.4 mg, 2 mol %) was added under 

gentle Ar stream. The mixture was allowed to stir at 110 ºC for 2 d, at which time the mixture 

was cooled to room temperature and methanol was added to precipitate. The filtered solid was 

re-dissolved in CHCl3 and added to methanol to precipitate again. The product was filtered and 

dried under air. Yield: 0.023 g (67%) of crimson solid. GPC (polystyrene standard): Mn = 3560, 

Mw = 7970, PDI = 2.24. 1H NMR (300 MHz, CDCl3) δ: 7.18 (aromatic C-H), 7.08 (aromatic C-

H), 3.98 (aliphatic C-H), 1.82 (aliphatic C-H), 1.57–0.93(aliphatic C-H). 

 

O O

SS S
B B

O

OO

O

 

Compound A. To a THF (40 mL) solution of compound 4a (2.12 g, 4 mmol) was added 

dropwise n-BuLi (1.6 M in hexane, 5.25 mL, 8.4 mmol) at –78 °C (dry ice/acetone). Upon 

completion, the cooling bath was removed and the mixture was allowed to stir at room 

temperature for 1 h. The mixture was cooled to –40 °C and 2-isopropoxy-4,4,5,5-tetramethyl-

1,3,2-dioxaborolane (2.5 mL, 12 mmol) was added dropwise. After being warmed to room 

temperature, the mixture was allowed to stir for 15 h, at which time most THF had evaporated. 

The residue was diluted with dichloromethane and washed with water and brine. The organic 

layer was dried over MgSO4 and evaporated under reduced pressure. The crude product was 

purified by recrystallization (dichloromethane/hexane). Yield: 2.85 g (90%) of pale gray solid. 1H 
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NMR (400 MHz, CDCl3) δ: 7.62 (s, 2H), 7.07 (s, 2H), 3.95 (m, 4H), 1.82 (m, 2H), 1.57–1.35 (m, 

16H), 1.34 (s, 12H), 1.33 (s, 12H), 0.99–0.90 (m, 12H). 13C NMR (125 MHz, CDCl3) δ: 148.91, 

146.64, 138.75, 137.65, 127.50, 113.85, 84.55, 71.70, 39.83, 30.82, 29.37, 25.03, 24.79, 24.20, 

23.32, 14.34, 11.46. HR-MS (ESI): calcd for C42H62B2O6S3 [M+H]+, 781.3994; found, 781.4028. 

 

O O

SS S
CNNC  

3,10-Bis(4-cyanophenyl)-6,7-di(2-ethylhexyloxy)-benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin 

(13). To a THF (1.2 mL) solution of compound A (0.096 g, 0.12 mmol) and 4-bromobenzonitrile 

(0.049 g, 0.264 mmol) were added 1 M K2CO3 (aq) (degassed for 2 h, 0.6 mL) and Pd(PPh3)4 (7 

mg, 5 mol %). The mixture was allowed to stir at reflux for 15 h, at which time the mixture was 

cooled to room temperature and diluted with ethyl aceate. The organic layer was washed with 

water and brine, dried over MgSO4, and evaporated under reduced pressure. The crude product 

was purified by column chromatography (dichloromethane:hexane = 1:1). Yield: 0.061 g (70%) 

of orange solid. 1H NMR (400 MHz, CDCl3) δ: 7.66 (s, 8H), 7.44 (s, 2H), 7.09 (s, 2H), 3.98 (m, 

4H), 1.84 (m, 2H), 1.59–1.35 (m, 16H), 1.00–0.91 (m, 12H). 13C NMR (125 MHz, CDCl3) δ: 

148.38, 146.61, 142.65, 138.13, 133.05, 131.72, 127.61, 126.97, 126.12, 118.84, 113.80, 111.36, 

71.78, 39.80, 30.83, 29.36, 24.17, 23.29, 14.33, 11.47.  
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O O

SS

CNNC  

2,9-Bis(4-cyanophenyl)-5,6-di(2-ethylhexyloxy)-dithieno[3,2-a;2’,3’-c]naphthalene (14) 

(byproduct from crystallization of oxidized 13). In a Schlenk flask were combined compund 13 

(0.014 g, 0.019 mmol) and NOSbF6 (0.005 g, 0.019 mmol). After cooling to –78 °C, CH2Cl2 (1 

mL) was vapor-transferred to the flask via a cannula. The vacuum valve was closed, and the 

cooling bath was removed in order to promote the reaction (NO gas evolution). After 30 min, the 

mixture was cooled in a liquid nitrogen bath, and hexane (3 mL) was vapor-transferred (layered 

on the CH2Cl2). The layered solution was left at room temperature for 7 d. Methanol (2 mL) was 

added to the mixture, which was then diluted with dichloromethane. The organic layer was 

washed with water and brine, dried over MgSO4, and evaporated under reduced pressure. The 

crude product was purified by column chromatography (dichloromethane:hexane = 1:1). Yield: 

0.012 g (90%) of red solid. 1H NMR (400 MHz, CDCl3) δ: 8.18 (s, 2H), 7.44 (pseudo-d, 4H, J = 

8.4 Hz), 7.73 (pseudo-d, 4H, J = 8.4 Hz), 7.65 (s, 2H), 4.12 (m, 4H), 1.92 (m, 2H), 1.68–1.39 (m, 

16H), 1.03 (t, 6H, J = 7.5 Hz), 0.95 (t, 6H, J = 7.2 Hz). 13C NMR (125 MHz, CDCl3) δ: 150.01, 

140.06, 138.53, 135.64, 132.97, 130.42, 126.50, 122.84, 120.60, 118.95, 111.25, 106.06, 71.69, 

39.87, 30.93, 29.48, 24.25, 23.34, 14.39, 11.57.  

 

MeO OMe

SS S

O  
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6,7-Dimethoxy-benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin 1-oxide (15). To a CH2Cl2 (1 mL) 

solution of 4c (0.033 g, 0.1 mmol) was added m-chloroperoxybenzoic acid (assumed as 72% 

purity, 0.024 g,  0.1 mmol) in CH2Cl2 (0.5 mL) at –20 °C, and the mixture was allowed to stir for 

1 h. After being warmed to room temperature, the mixture was diluted with CH2Cl2, and washed 

with saturated NaHCO3 and brine. The organic layer was dried over MgSO4, evaporated under 

reduced pressure, subjected to column chromatography (ethyl acetate:hexane = 1:2 and ethyl 

acetate only). Yield: 0.019 g (55%) of white solid. 1H NMR (300 MHz, CDCl3) for endo (axial), 

δ: 7.51 (d, 2H, J = 6.8 Hz), 7.48 (d, 2H, J = 6.8 Hz), 7.32 (s, 2H), 4.01 (s, 6H). For exo 

(equatorial), δ: 7.53 (d, 2H, J = 6.8 Hz), 7.26 (d, 2H, J = 6.8 Hz), 7.08 (s, 2H), 3.99 (s, 6H). 13C 

NMR (125 MHz, CDCl3) δ: 149.06, 140.94, 138.64, 131.10, 130.06, 127.76, 111.97, 56.26. HR-

MS (ESI): calcd for C16H12O3S3 [M+H]+, 349.0021; found, 349.0018. 

  

O O

SS S

SS

O  

6,7-Di(2-ethylhexyloxy)-3,10-bis(thiophen-2-yl)-benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin 1-

oxide (16). Using the similar procedure to the preparation of 15, 6,7-di(n-octyloxy)-3,10-

bis(thiophen-2-yl)-benzo[d]-dithieno[2,3-b;3’,2’-f]-thiepin (0.029 g, 0.042 mmol) in CH2Cl2 (1 

mL) was treated with m-chloroperoxybenzoic acid (0.010 g, 0.042 mmol) in CH2Cl2 (0.5 mL). 

The crude product was purified by column chromatography (ethyl acetate:hexane:chloroform = 

1:7:1). Yield: 0.015 g (51%) of pale yellow solid. 1H NMR (400 MHz, CDCl3) for endo (axial), 

δ: 7.47 (s, 2H), 7.33 (dd, 2H, J = 5.1, 1.0 Hz), 7.33 (s, 2H), 7.29 (dd, 2H, J = 3.6, 1.0 Hz), 7.08 

(dd, 2H, J = 5.1, 3.6 Hz), 4.16 (m, 4H), 1.90 (m, 4H), 1.53–1.27 (m, 20H), 0.90 (t, 6H, J = 6.8 
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Hz). For exo (equatorial), δ: 7.28 (dd, 2H, J = 5.1, 1.0 Hz), 7.26 (s, 2H), 7.23 (dd, 2H, J = 3.6, 

1.0 Hz), 7.10 (s, 2H), 7.05 (dd, 2H, J = 5.1, 3.6 Hz), 4.16 (m, 4H), 1.90 (m, 4H), 1.53–1.27 (m, 

20H), 0.90 (t, 6H, J = 6.8 Hz). 13C NMR (125 MHz, CDCl3) for endo (axial), δ: 149.44, 141.67, 

139.29, 136.26, 135.66, 128.41, 127.14, 126.53, 125.85, 125.42, 113.95, 69.62, 32.04, 29.58, 

29.51, 29.45, 26.26, 22.89, 14.34. For exo (equatorial), δ: 149.22, 139.71, 139.58, 135.24, 

134.81, 128.26, 126.25, 125.88, 124.82, 118.81, 113.77, 69.62, 32.04, 29.58, 29.51, 29.45, 26.26, 

22.89, 14.34. HR-MS (ESI): calcd for C38H44O3S5 [M+H]+, 709.1967; found, 709.1979. 

 

 

O O
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2,9-Bis(thiophen-2-yl)-5,6-di(2-ethylhexyloxy)-dithieno[3,2-a;2’,3’-c]naphthalene (18). 

Using the same procedure for the synthesis of 9, compound 17 (0.033 g, 0.05 mmol) was treated 

with 2-tributylstannylthiophene (0.037 mL, 0.125 mmol) and PdCl2(PPh3)2 (1.8 mg, 5 mol %) in 

DMF (1 mL). Yield: 0.023 g (70%) of yellow solid. 1H NMR (300 MHz, CDCl3) δ: 7.84 (s, 2H), 

7.56 (s, 2H), 7.34 (dd, 2H, J = 3.6, 1.2 Hz), 7.32 (dd, 2H, J = 5.1, 1.2 Hz), 7.10 (dd, 2H, J = 5.1, 

3.6 Hz), 4.10 (m, 4H), 1.92 (m, 2H), 1.67–1.37 (m, 16H), 1.03 (t, 6H, J = 7.5 Hz), 0.96 (t, 6H, J 

= 6.9 Hz). 13C NMR (125 MHz, CDCl3) δ: 149.60, 137.76, 135.14, 134.82, 128.97, 128.27, 

125.24, 124.80, 122.68, 118.84, 106.23, 71.66, 39.85, 30.95, 29.47, 24.27, 23.35, 14.39, 11.57. 

HR-MS (ESI): calcd for C38H44O2S4 [M+Na]+, 683.2116; found, 683.2139. 
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Spectrum 1. 1H-NMR spectrum of 4a (500 MHz, CDCl3). 

 
Spectrum 2. 13C-NMR spectrum of 4a (125 MHz, CDCl3). 
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Spectrum 3. 1H-NMR spectrum of 4b (300 MHz, CDCl3). 

 
Spectrum 4. 13C-NMR spectrum of 4b (125 MHz, CDCl3). 
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Spectrum 5. 1H-NMR spectrum of 4c (500 MHz, CDCl3). 

 
Spectrum 6. 13C-NMR spectrum of 4c (125 MHz, CDCl3). 
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Spectrum 7. 1H-NMR spectrum of 5 (400 MHz, CDCl3). 

 
Spectrum 8. 13C-NMR spectrum of 5 (125 MHz, CDCl3). 
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Spectrum 9. 1H-NMR spectrum of 6 (400 MHz, CDCl3). 

 
Spectrum 10. 13C-NMR spectrum of 6 (125 MHz, CDCl3). 
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Spectrum 11. 1H-NMR spectrum of 7 (300 MHz, CDCl3). 

 
Spectrum 12. 13C-NMR spectrum of 7 (125 MHz, CDCl3). 
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Spectrum 13. 1H-NMR spectrum of 8 (500 MHz, CDCl3). 

 
Spectrum 14. 13C-NMR spectrum of 8 (125 MHz, CDCl3). 
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Spectrum 15. 1H-NMR spectrum of 9 (400 MHz, CDCl3). 

 
Spectrum 16. 13C-NMR spectrum of 9 (125 MHz, CDCl3). 

O O

SS S

SS



Chapter 5 Appendix NMR 

 185 

 

 
Spectrum 17. 1H-NMR spectrum of 10 (500 MHz, CDCl3). 

 
Spectrum 18. 13C-NMR spectrum of 10 (125 MHz, CDCl3). 
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Spectrum 19. 1H-NMR spectrum of 11 (300 MHz, CDCl3). 

 

 
Spectrum 20. 1H-NMR spectrum of 12 (300 MHz, CDCl3). 
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Spectrum 21. 1H-NMR spectrum of A (400 MHz, CDCl3). 

 
Spectrum 22. 13C-NMR spectrum of A (125 MHz, CDCl3). 
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Spectrum 23. 1H-NMR spectrum of 13 (400 MHz, CDCl3). 

 
Spectrum 24. 13C-NMR spectrum of 13 (125 MHz, CDCl3). 
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Spectrum 25. 1H-NMR spectrum of 14 (300 MHz, CDCl3). 

 
Spectrum 26. 13C-NMR spectrum of 14 (125 MHz, CDCl3). 
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Spectrum 27. 1H-NMR spectrum of 15 (300 MHz, CDCl3). 

 
Spectrum 28. 13C-NMR spectrum of 15 (125 MHz, CDCl3). 
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Spectrum 29. 1H-NMR spectrum of 16 (400 MHz, CDCl3). 

 
Spectrum 30. 13C-NMR spectrum of 16 (125 MHz, CDCl3). 
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Spectrum 31. 1H-NMR spectrum of 18 (300 MHz, CDCl3). 

 
Spectrum 32. 13C-NMR spectrum of 18 (125 MHz, CDCl3). 
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Introduction 

We have developed annulated thiepin systems with the goal of using them as molecular 

actuators that would operate through bent-to-planar transformations driven by redox-induced 

aromatization (Chapter 5). However, due to the instability of the substituted thiepins in their 

oxidized form, we have turned our attention to other heteroepine structures. Of the iso-electronic 

systems, we chose the nitrogen-containing azepine as a target for the following reasons. Firstly, 

heteroepine systems with heavier atoms than sulfur (e.g., Se and Te) are expected to have even 

lower extrusion barriers. Secondly, heteroepines of group 15 (P, As, Bi, except N) are easily 

oxidized to 1-oxides, which are no longer iso-electronic. Lastly, the incorporation of nitrogen is 

synthetically more facile than that of oxygen, and we can prepare materials in a modular fashion, 

thanks to the recent development of palladium-catalyzed amination reactions. 

N
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RO OR
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-2e+2e -2e+2e

-2e+2e
R' = H R' = Me

R' = p-MeC6H4

*PM3

(3.6%) (5.1%) (2.8%) (9.6%)  

Figure 1. DFT optimizations (B3LYP, 6-31g) of dithieno[b,f]benzo[d]azepines in their neutral and oxidized states. 

Percent increases of δ in doubly oxidized states are presented in parentheses. 
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To confirm the potential of dithieno[b,f]benzo[d]azepines for the actuating system, we 

conducted DFT calculations (B3LYP, 6-31g) to see how the conformations change upon 

oxidation. Figure 1 shows the optimized structures in their neutral and doubly oxidized states 

according to the R’ groups. 

All of the azepines adapted a bent form in the neutral state but the degree of bent geometry 

depended on the N-substituents: the more demanding the steric effects, the more bent the 

structures. The distance between the outmost carbons (δ in Figure 1) decreased (more bent) from 

the smallest hydrogen (H) to the largest p-tolyl group (Table 1). The substituent effect was also 

found on the optimized geometries of doubly oxidized azepines. When R’=H, the oxidized 

azepine appears to have a completely flat conformation. If R’ group is more sterically demanding 

than hydrogen (e.g., methyl), the geometry is distorted from the planar conformation. 

Table 1. Distance (δ) and Dihedral Angle (φ) from Optimized Geometries (Figure 1) 

R’ = H R’ = Me R’ = p-Tolyl 
 

Neutral Oxidized 
(2+) Neutral Oxidized 

(2+) Neutral Oxidized 
(2+) 

Distance δ (A) 6.89 7.14 6.73 7.07 6.49 6.67 

Dihedral Angle φ (o) 24.3 0.0 28.7 12.5 32.3 24.3 
 

In case of the p-tolyl group, positioning the tolyl group in the same plane as the azepine ring 

creates large steric repulsions, and B3LYP (6-31g) suggests that it remains in the bent structure 

with a slight tortion of the tolyl group. Interestingly, the PM3 calculation with the same molecule 

produced a different result, wherein the tolyl group rotates and bissects the azepine’s plane in 

such a way that they are perpendicular with each other. In this conformation (the tolyl group in 

normal to azepine), steric demands of the R’ group are less than the methyl group, so that 
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azepine becomes planar. It seems that the steric and electronic effects are competing in the case 

of the oxidized azepines. 

In this chapter, we describe the syntheses of annelated azepines and their electrochemical 

properties. We also synthesized the azepin-incorporated polymers. Initial investigations reveal 

that azepines are very promising candidates for actuators and other related applications. 

 

Synthesis of Annelated Azepines via Buchwald-Hartwig Amination 

We initially tried to synthesize the annulated azepine 2, which is analogous to the thiepins in 

Chapter 5, via a double amination strategy. The palladium-catalyzed C-N bond formation is a 

research area of great interest,1 and since Buchwald and Hartwig independently reported the first 

general procedures for various amination reations,2 the substrate scope and reaction efficiency 

have been greatly increased.3 The “double” amination strategy has been applied to prepare 

dithienopyrrole derivatives,4 but azepine-type compounds have not been prepared previously by 

this method. 
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Starting from dibromide 1, we first applied the recently reported method by Buchwald for the 

amination of a wide range of heteroaryl halides3c (Scheme 1). However, we were not able to 

isolate any of the desired product even when using a bulky electron-rich biaryl phosphine (e.g. 
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SPhos) in the catalysis. Instead, we observed significant amounts of byproducts that gave streaks 

on the TLC plate with almost no desired product. When a BINAP ligand5 was utilized instead of 

the biaryl phosphine, the similar result was obtained. 

We suspected that the ring-closing C-N bond formation (the second amination) between “2-

bromothiophene” and “diarylamine” was problematic. This is consistent with the findings of 

Hartwig and coworkers that indicate (1) diarylamines react slowly when compared to N-

methylaniline (the fastest) and aniline; (2) 3-bromothiophene reacts well with aniline but 2-

bromothiophene does not; and (3) methyl substitution on the 3-position further reduces the 

reactivity of 2-bromothiophene.3a Hence, according to their findings, the second amination in 

Scheme 1 is expected to be challenging. In their subsequent study, they proposed that the 

amination of five-membered heteroaryl halides is dominated by the effectiveness of the reductive 

elimination step, which is unproductive in the case of the thiophen-2-yl-palladium amido 

complex.3b 

Nevertherless, using t-Bu3P as a ligand, we were able to isolate the desired product, albeit in a 

low yield. We suspect the intramolecular reaction condition facilitated the second amination and 

reduced side reactions, thus mitigating some of the above undesirable effects. 

Considering the fact that 3-bromothiophene is a better substrate than 2-bromothiophene, we 

modified our plans and targeted 4, which has [3,2-b;2’,3’-f]annulation of thiophenes rather than 

[2,3-b;3’,2’-f]. The double aminations of 3,3’-dibromide 3a–b with several anilines were now 

very effective, providing the desired products 4a–c in good yields. 
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Scheme 2. 

NH2

ORRO

SS

N

Pd(dba)3  CHCl3
t-Bu3PH BF4

NaOt-Bu

PhMe

100 oC, 24 h 4aR'

R'

RO OR

S S

BrBr

3a

3b

R = n-C10H21
R = Me

R = n-C10H21, R' = H

R = n-C10H21, R' = n-Bu

R = Me, R' = Me

4b

4c

67 ~ 81%

 

With N-aryl azepines at hand, we next tried to synthesize N-alkyl azepines (5, for example). It 

is known that β-hydride elimination is a competing side reaction with alkyl amines and the 

process can lead to dehalogenated products.5a The undesired β-hydride elimination can be 

suppressed by the use of bidentate ligands, such as BINAP, dppf, etc. In fact, we were not able to 

obtain the desired product with a monodentate ligand t-Bu3P, and switching to the BINAP ligand 

furnished the desired N-benzyl azepin 5 (Scheme 3).  In this case, however, the yield was not 

satisfactory, presumably due to reduced reactivity of the first amination product. It appears that 

while the bidentate ligands successfully suppress the undesired β-hydride elimination, the 

catalyst complex is not active enough for cyclization (the second amination). 

Scheme 3. 
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Scheme 4.a 
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aReagents: (i) n-BuLi, THF, -78 ºC; then I2, room temperature, 58-91%. (ii) PdCl2(PPh3)2, 2-
tributylstannylthiophene, DMF, 80 ºC, 55%. (iii) PdCl2(PPh3)2, 5-tributylstannyl-2,2’-bithiophene, DMF, 80 ºC, 
85%. 

Functionalization of Annulated Azepines 

To further functionalize the azepine monomers, we tried to synthesize the dibromide 

employing standard bromination reagents, such as NBS. However, the reaction mixture turned 

dark brown immediately, and the reaction did not proceed. The color change was found to stem 

from the acid generated in the reaction, and the protonated azepins interfered with bromination. 

As an alternative strategy, we attempted a lithiation and electrophile quenching sequence. As 

shown in Scheme 4, diiodides 6b–c were furnished by this approach in good yields. Among 
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them, 6c was characterized by X-ray crystallography (Figure 2), and its structure is in good 

agreement with our calculations (Figure 1). 

Starting from diiodide 6, bis(monothiophene)- and bis(bithiophene)-incorporated azepines, 7 

and 8, respectively, were synthesized via Stille coupling reactions using corresponding 

tributylstannyl thiophenes. 

 

Figure 2. X-ray crystal structure of 6c with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. 

Azepine-incorporated polymers were also synthesized. A Stille coupling polymerization 

reaction between diiodide 6b and distannes 9 resulted in a low molecular weight polymer 10 (Mn 

= 6,530 with PDI = 1.87) with a bright orange-red solid. In addition, Sonogashira polymerization 

of 6b and diacetylene 11 produced a poly(phenyleneethylene)-type azepine polymer 12, with a 

moderate molecular weight (Mn = 16,900 with PDI = 1.57). 
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Scheme 5. 
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Cyclic Voltammetry 

The cyclic voltammograms (CVs) of azepines 2, 4a, and 5 were measured from a standard 3-

electrode apparatus in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte. All measurements 

were carried out under ambient conditions, and they all produced very reproducible CVs (Figure 

3). 
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Figure 3. CVs of azepines 2 (a), 4a (b), and 5 (c) measured on Pt button electrodes in CH2Cl2 with 0.1 M TBAPF6 

as a supporting electrolyte. 

All the CVs showed two quasi-reversible one-electron redox waves but the oxidation 

potentials were slightly different, especially for the first oxidations. The half potential for the 

first redox couple (E1/2
1) of azepin 2 (0.25 V) was slightly higher than that of azepine 4a (0.19 V 

vs. Fc/Fc+). This trend was also observed for related thiepins (Chapter 5) with analogous patterns 

of annulation. We suspect that the 4a-type annulation more stabilizes the oxidized compound. 

Interestingly, however, the second oxidations occurred at very similar potentials (E1/2
2 = 0.53 V 
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vs. Fc/Fc+). In the case of the N-alkyl azepine 5, the first half potential E1/2
1 shifted further to the 

negative potentials (0.03 V), while the second redox couple occurred at very similar potentials as 

other azepines (0.54 V vs. Fc/Fc+). We suspect that this difference is due to the inductive effect 

of the alkyl group relative to the aryl group. More electron-donating N-alkyl groups reduce 

oxidation potentials when compared to the aryl group. Remarkably, however, all the second 

oxidations occur at the same potential, which is not fully understood at this time. 
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Figure 4. CVs of azepines 7 (a) and 8 (b) measured on Pt button electrodes in CH2Cl2 with 0.1 M TBAPF6 as a 

supporting electrolyte. 

Figure 4 shows the CVs of compounds 7 and 8, which have extended thiophenes. Initially, we 

expected that the extended thiophenes on 7 and 8 would help electropolymerization and the 

polymers would be deposited on the electrode surface. However, no polymer was observed from 

either 7 or 8. Instead, fairly reproducible CVs were obtained. The CV measurements were 

performed in similar conditions under air. When compared to the results from azepine 4a, the 
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first and second oxidations/reductions happen at the lower potentials. This is not surprising due 

to the extended conjugations. 

The CVs of compound 8 showed very interesting shapes. In the forward scan, we observed two 

typical 1-electron oxidations similar to the other azepines. However, in the backward scan the 

two reductions combined and happened at the same potential; it appears that the reduction of 

dication 82+ to radical cation 8•+ requires an overpotential. One possible reason for this barrier is 

that the dication 82+ deposits as a stabilized solid on the electrode surface and thus gives 

complicated reduction kinetics. 

 

Electrochemistry of Azepine-Incorporated Polymers 

We measured the electrochemical properties of the films of polymers 10 and 12 on the 

electrodes. The films were prepared by drop-casting CHCl3 solutions and drying in air. Figure 5 

represents the CVs measured on Pt button electrodes in CH3CN, which is a poor solvent for both 

of the polymers. Similar to the CVs of the monomeric compounds (Figure 3 and 4), we observed 

two redox waves. The second redox couple has larger integrated currents, which is most apparent 

for polymer 10. In addition, the first oxidation peak was abnormally sharp, which implies that the 

solvent CH3CN did not swell the neutral polymer and thus impeded the diffusion of ions and 

accompanying solvent molecules. Once charged, the polymer was more solvated by CH3CN and 

ions diffused more readily into and out of the polymer. The electrochemical responses then had a 

more typical shape. 

Interestingly, the first scan was also very different from the successive scans; the onset 

potential was higher and the amount of the integrated current was bigger. One reason might be 

the re-organization of the polymer’s microstructure caused by the solvent uptake and release 
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during the first redox cycle. However, the difference in the amount of the integrated current at 

the forward scan suggests the occurrence of some irreversible reactions. We suspect that 

oxidative couplings between the reactive end groups (or at the other positions) occurred. It is not 

likely that nitrogen extrusion occurs during the oxidation because the scaffold was found stable 

in all of the forms (Figure 3 and 4), and because the CV did not resemble those of 

poly(dithienonaphthalene)s.6 
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Figure 5. CVs of polymers 10 (a) and 12 (b) on Pt button electrodes (drop-cast from CHCl3 solution) in CH3CN 

with 0.1 M TBAPF6 as a supporting electrolyte. The dotted lines represent the first scans. 

To measure spectroelectrochemical properties, we drop-cast the azepine polymers on indium-

tin-oxide (ITO) coated glass electrodes. Figure 6 illustrates the in situ measurements of UV-vis 

spectra following the increased oxidation levels in CH3CN. The top pictures (a and b) show the 

CV profiles of polymers 10 and 12 used in the spectroelectrochemical measurements. Due to the 

greater thickness needed in order to ensure a sufficient amount of optical absorption, the first 

oxidation peak was not as sharp as observed in Figure 5, and this was especially apparent for 
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polymer 10. The bottom pictures (c and d) exhibit the absorption changes; the black line 

represents the absorption at 0 V, the red line at 0.6 V, and the blue line at 1.0 V (all vs. Ag/Ag+). 

There are two regimes in the potential-dependent optical spectra that reveal the development of 

sub-gap absorptions. One is from 0 V to 0.6 V, and the other is from 0.6 V to 1.0 V (all vs. 

Ag/Ag+), and these are roughly matched with the first and second oxidations, respectively. For 

polymer 10, in the first regime, the original bandgap absorption decreased and new absorption 

increased in the sub-gap region. The new absorptions were broad and feature-less, which implies 

that the polymer has a very delocalized electronic structure. However, the absorptions became 

more distinct in the second oxidation regime. It is an interesting feature that the original bandgap 

region retains a considerable amount of absorption while most polythiophene derivatives show 

almost complete depletion of these absorptions with increased oxidation levels.7 
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Figure 6. Electronic absorption spectra of polymers 10 (c) and 12 (d) on ITO-coated glass electrodes in CH3CN 

with 0.1 M TBAPF6 as a supporting electrolyte, as a function of oxidation potential from 0.0 V to 1.0 V vs. Ag/Ag+. 

CVs of the same polymers 10 (a) and 12 (b) were presented for comparison. 

Polymer 12’s UV-vis absorption showed similar characteristics to that of polymer 10. 

However, the electronic structure of polymer 12 appeared more localized (higher energy) as 

compared to polymer 10. 

We attempted to measure in situ conductivities from the azepine-incorporated polymers 10 and 

12 by drop-casting the polymer on interdigitated microelectrodes. However, we were not able to 

detect any drain current signals, probably due to low conductivity and high contact resistance 

with the electrode. Instead, interestingly enough, we could measure the in situ conductivity of 
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poly(8), which was prepared by FeCl3-mediated polymerization. Due to the short alkyl chains, 

poly(8) showed poor solubility in common organic solvents, and was intractable for further 

characterization. Nevertheless, a drop-cast slurry of poly(8) in CHCl3 on an interdigitated 

microelectrode produced a functional device. 
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Figure 7. CVs (dotted lines) and in situ conductivity measurements (drain current, solid lines) of poly(8) on a 5-µm 

interdigitated Pt microelectrode in CH3CN with 0.1 M TBAPF6 as a supporting electrolyte. 

As shown in Figure 7, the CV showed two redox peaks, the second of which was slightly 

larger than the first. The drain current, which is proportional to conductivity, started to increase 

as the second oxidation occurred. It is very intriguing that the drain current profile had a bell-

shape, which was very reversible and reproducible. In general, the bell-shaped profile can be 

found in the segmented (not fully conjugated) polymers.8 Thus, poly(8) performs as though it is a 

segmented polymer when oxidized. We suspect this is due to the charge barriers developed in the 

azepine-moieties, which is reminiscent of a tropone-containing polymer9 reported earlier by our 

group. In the tropone polymer, when the charges are introduced by addition of an acid, they 



Chapter 6 Azepine Actuator 

 209 

appear to reduce the conductivity of the system because the charge carriers’ mobility is 

decreased. Likewise in poly(8), by the first oxidation, charges are developed and localized on the 

azepine moieties. At the second oxidation, the oligothiophene portions start to be oxidized as 

indicated by the larger currents, and the conductivity increases. However, the charge carriers 

cannot move readily along the polymer chain because of the barrier on the azepine moieties. 

They can only transport the charges by hopping between the chains. 

 

Conclusion 

Azepines, which are potential bent-to-planar molecular actuators, were designed and 

successfully synthesized via a Pd-catalyzed double amination strategy. Contrary to thiepins and 

other heteroepine systems, azepines were very stable even in highly oxidized states. The CVs 

displayed two 1-electron redox peaks that were reversible and reproducible, even with extended 

thiophenes. The azepine-incorporated polymers showed two oxidation regimes, involving the 

azepine moiety only at low potentials and the whole polymer at higher potentials. The polymer’s 

conductivity did not increase until oxidized in the second regime. Judging from the bell-shaped 

conductivity profile, it appears that the charge carriers move readily by hopping between the 

polymer chains. Due to their high electrochemical stability, azepines are promising candidates 

for actuators and other related applications. 
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Experimental Section 

General. NMR spectra were recorded on a Varian Mercury-300, Bruker Advance-400, or 

Varian Inova-500 spectrometer.  Chemical shifts were reported in ppm and referenced to residual 

solvent peaks (CDCl3: δ 7.27 ppm for 1H, δ 77.23 ppm for 13C). High-resolution mass spectra 

(HR-MS) were obtained on a Bruker Daltonics APEX II 3 Tesla FT-ICR-MS. UV-vis spectra 

were obtained using a HP 8453 diode array spectrometer. Electrochemical measurements were 

carried out using an Autolab PGSTAT 10 or PGSTAT 20 potentiostat (Eco Chemie) in a three-

electrode cell configuration consisting of a quasi-internal Ag wire reference electrode 

(BioAnalytical Systems) submerged in 0.01 AgNO3 / 0.1 M tetrabutylammonium 

hexafluorophosphate (TBAPF6) in anhydrous CH3CN, a Pt button (1.6 mm in diameter), 5-µm 

interdigitated micro-, or ITO-coated glass electrodes as the working electrode, and a Pt coil or Pt 

gauze as the counter electrode.  The ferrocene/ferrocenium (Fc/Fc+) redox couple was used as an 

external reference.  Half-wave potentials of Fc/Fc+ were observed between 88–95 mV in CH3CN 

and 210-245 mV (all vs. Ag/Ag+) in CH2Cl2. All air and water sensitive synthetic manipulations 

were performed under an argon or nitrogen atmosphere using standard Schlenk techniques.   

Materials. Spectroscopic grade CH2Cl2 was purchased from Aldrich for electrochemistry.  

TBAPF6 was recrystallized in ethanol prior to use. Anhydrous DMF was purchased from Aldrich 

as Sure-Seal Bottles and used as received. THF was purified by passage through two alumina 

columns of an Innovative Technologies purification system. All other chemicals were of reagent 

grade and used as received. Compounds 1 was prepared by literature methods.9 Synthesis of 3a-b 

was described in Chapter 5. 5-Tributylstannyl-2,2’-bithiophene10 and 5,5’-trimethylstannyl-2,2’-

bithiophene (9) 11 were synthesized by known procedures. 
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6,7-Di(decyloxy)-1-phenyl-dithieno[2,3-b;3’,2’-f]-benzo[d]-azepine (2). In a Schlenk 

equipped with a stir bar were combined compound 1 (0.143 g, 0.2 mmol), Pd2(dba)3•CHCl3, (6 

mg, 3 mol %), (t-Bu3PH)BF4 (7 mg, 12 mol %), and the tube was evacuated and backfilled with 

Ar two times. Under a gentle stream of Ar, NaOt-Bu (0.054 g, 5.6 mmol) was added, and the 

tube was evacuated and backfilled with Ar two times more. To the mixture was added aniline 

(0.018 mL, 0.2 mmol) and toluene (2 mL), and the mixture was allowed to stir at 100 °C for 20 

h. After being cooled to room temperature, the mixture was filtered through a pad of celite and 

washed with ethyl acetate. The filtrate was concentrated under reduced pressure and subjected to 

a column chromatography (chloroform:hexane = 1:3). Yield: 0.037 g (29%) of white solid. 1H 

NMR (300 MHz, CDCl3) δ: 7.22 (d, 2H, J = 6.0 Hz), 7.17–7.12 (m, 2H), 7.14 (d, 2H, J = 6.0 

Hz), 7.08 (s, 2H), 7.08–7.04 (m, 2H), 6.83 (tt, 1H, J = 7.2, 1.2 Hz), 4.04 (t, 4H, J = 6.6 Hz), 1.84 

(m, 4H), 1.48–1.28 (m, 28H), 0.89 (t, 6H, J = 6.9 Hz). 13C NMR (125 MHz, CDCl3) δ: 148.50, 

148.30, 142.42, 136.44, 128.86, 126.84, 126.02, 122.69, 120.20, 114.43, 113.31, 69.54, 32.13, 

29.85, 29.80, 29.62, 29.58, 29.48, 26.25, 22.91, 14.35. HR-MS (ESI): calcd for C40H53NO2S2 

[M+H]+, 644.3590; found, 644.3615. 
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6,7-Di(decyloxy)-1-phenyl-dithieno[3,2-b;2’,3’-f]-benzo[d]-azepine (4a). Using the same 

procedure for the preparation of 2, compound 3a (0.028 g, 0.039 mmol) was treated with 

Pd2(dba)3•CHCl3, (2 mg, 5 mol %), (t-Bu3PH)BF4 (1.4 mg, 12 mol %), NaOt-Bu (0.009 g, 0.094 

mmol), aniline (0.0036 mL, 0.039 mmol), and toluene (0.5 mL). The eluent for the column 

chromatography was dichloromethane:hexane = 1:2.  Yield: 0.008 g (32%) of white solid. 1H 

NMR (400 MHz, CDCl3) δ: 7.39 (d, 2H, J = 5.3 Hz), 7.11 (m, 2H), 7.08 (d, 2H, J = 5.3 Hz), 7.06 

(s, 2H), 6.80 (m, 2H), 6.75 (tt, 1H, J = 7.2, 1.2 Hz), 4.05 (t, 4H, J = 6.6 Hz), 1.84 (m, 4H), 1.46–

1.28 (m, 28H), 0.90 (t, 6H, J = 6.6 Hz). 13C NMR (125 MHz, CDCl3) δ: 149.05, 147.79, 141.48, 

136.13, 129.06, 127.93, 125.17, 124.01, 118.64, 113.60, 112.45, 69.54, 32.14, 29.85, 29.80, 

29.61, 29.58, 29.37, 26.22, 22.92, 14.36. HR-MS (ESI): calcd for C40H53NO2S2 [M+H]+, 

644.3590; found, 644.3593. 
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1-(4-Butylphenyl)-6,7-di(decyloxy)-dithieno[3,2-b;2’,3’-f]-benzo[d]-azepine (4b). Using the 

same procedure for the preparation of 2, compound 3a (0.094 g, 0.13 mmol) was treated with 

Pd2(dba)3•CHCl3, (6.7 mg, 5 mol %), (t-Bu3PH)BF4 (4.5 mg, 12 mol %), NaOt-Bu (0.030 g, 0.31 

mmol), 4-butylaniline (0.025 mL, 0.156 mmol), and toluene (1.5 mL). Yield: 0.008 g (32%) of 

white solid. 1H NMR (400 MHz, CDCl3) δ: 7.39 (d, 2H, J = 5.3 Hz), 7.10 (d, 2H, J = 5.3 Hz), 

7.09 (s, 2H), 6.95 (pseudo-d, 2H, J = 8.7 Hz), 6.75 (pseudo-d, 2H, J = 8.7 Hz), 4.07 (t, 4H, J = 

6.6 Hz), 2.49(t, 2H, J = 7.8 Hz), 1.86 (m, 4H), 1.52 (m, 6H), 1.40–1.28 (m, 26H), 0.90 (t, 9H, J = 

7.0 Hz). 13C NMR (100 MHz, CDCl3) δ: 148.98, 145.68, 141.83, 135.96, 133.07, 128.93, 128.02, 

125.07, 124.12, 113.62, 112.36, 69.51, 34.82, 34.17, 32.13, 29.84, 29.79, 29.60, 29.57, 29.36, 

26.21, 22.91, 22.56, 14.35, 14.17. HR-MS (ESI): calcd for C44H61NO2S2 [M+H]+, 700.4216; 

found, 700.4194. 
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6,7-Dimethoxy-1-(4-tolyl)-dithieno[3,2-b;2’,3’-f]-benzo[d]-azepine (4c). Using the same 

procedure for the preparation of 2, compound 3b (0.845 g, 1.8 mmol) was treated with p-

toluidine (0.195 g, 1.8 mmol), Pd2(dba)3•CHCl3, (93 mg, 5 mol %), (t-Bu3PH)BF4 (63 mg, 12 

mol %), NaOt-Bu (0.415 g, 4.32 mmol), and toluene (18 mL). The eluent for the column 

chromatography was ethyl acetate:hexane = 1:5.  Yield: 0.640 g (87%) of white solid. 1H NMR 

(300 MHz, CDCl3) δ: 7.41 (d, 2H, J = 5.4 Hz), 7.10 (d, 2H, J = 5.4 Hz), 7.08 (s, 2H), 6.95 
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(pseudo-d, 2H, J = 8.7 Hz), 6.74 (pseudo-d, 2H, J = 8.7 Hz), 3.95 (s, 6H), 2.24 (s, 3H). 13C NMR 

(125 MHz, CDCl3) δ: 148.79, 145.53, 142.11, 135.81, 129.52, 128.07, 127.91, 125.26, 124.02, 

112.44, 111.35, 56.17, 20.46. HR-MS (ESI): calcd for C23H19NO2S2 [M+H]+, 406.0930; found, 

406.0938. 

 

On-C10H21n-C10H21O
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1-Benzyl-6,7-di(decyloxy)-dithieno[3,2-b;2’,3’-f]-benzo[d]-azepine (5). Using the same 

procedure for the preparation of 2, compound 3a (0.032 g, 0.045 mmol) was treated with 

Pd2(dba)3•CHCl3, (2.3 mg, 5 mol %), BINAP (5.6 mg, 20 mol %), NaOt-Bu (0.010 g, 0.108 

mmol), benzylamine (0.005 mL, 0.045 mmol), and toluene (1 mL). The eluent for the column 

chromatography was dichloromethane:hexane = 1:3.  Yield: 0.007 g (24%) of white solid. 1H 

NMR (300 MHz, CDCl3) δ: 7.39 (pseudo-d, 2H, J = 7.2 Hz), 6.80 (pseudo-t, 2H, J = 7.2 Hz), 

7.19 (tt, 1H, J = 7.2, 1.2 Hz), 7.11 (d, 2H, J = 5.4 Hz), 6.91 (s, 2H), 6.64 (d, 2H, J = 5.4 Hz), 

4.69 (s, 2H), 4.06 (t, 4H, J = 6.6 Hz), 1.86 (m, 4H), 1.56–1.28 (m, 28H), 0.89 (t, 6H, J = 7.2 Hz). 

13C NMR (125 MHz, CDCl3) δ: 149.28, 148.62, 138.23, 128.56, 128.10, 127.77, 127.15, 126.28, 

124.46, 122.06, 113.93, 69.57, 55.95, 32.15, 29.87, 29.82, 29.67, 29.59, 29.48, 26.27, 22.92, 

14.36. HR-MS (ESI): calcd for C41H55NO2S2 [M+H]+, 658.3747; found, 658.3752. 
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1-(4-Butylphenyl)-6,7-di(decyloxy)-3,10-diiodo-dithieno[3,2-b;2’,3’-f]-benzo[d]-azepine 

(6b). To a THF (2 mL) solution of compound 4b (0.157 g, 0.22 mmol) was added n-BuLi (1.6 M 

in hexane, 0.290 mL, 0.462 mmol) at –40 ºC. The mixture was taken out of the cooling bath and 

allowed to stir at room temperature for 1 h, at which time the mixture was cooled to –40 ºC again 

and iodine (0.123 g, 0.462 mmol) was added to the mixture. After being allowed to stir at room 

temperature for 15 h, the mixture was diluted with diethyl ether and washed with saturated 

Na2S2O3 (aq) and brine. The organic layer was dried over MgSO4, evaporated under reduced 

pressure, and subjected to column chromatography (chloroform:hexane = 1:3). Yield: 0.191 g 

(91%) of pale yellow solid. 1H NMR (400 MHz, CDCl3) δ: 7.21 (s, 2H), 6.95 (pseudo-d, 2H, J = 

8.7 Hz), 6.93 (s, 2H), 6.70 (pseudo-d, 2H, J = 8.7 Hz), 4.02 (t, 4H, J = 6.6 Hz), 2.48 (t, 2H, J = 

7.2 Hz), 1.83 (m, 4H), 1.49 (m, 6H), 1.40–1.28 (m, 26H), 0.90 (t, 3H, J = 7.3 Hz), 0.89 (t, 6H, J 

= 6.7 Hz). 13C NMR (125 MHz, CDCl3) δ: 149.35, 144.80, 141.75, 141.52, 136.92, 133.92, 

129.05, 123.21, 113.11, 112.53, 72.96, 69.49, 34.81, 34.13, 32.13, 29.83, 29.79, 29.57, 29.57, 

29.27, 26.17, 22.91, 22.53, 14.36, 14.17. HR-MS (ESI): calcd for C44H59I2NO2S2 [M+H]+, 

952.2149; found, 952.2120. 
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3,10-Diiodo-6,7-dimethoxy-1-(4-tolyl)-dithieno[3,2-b;2’,3’-f]-benzo[d]-azepine (6c). Using 

the same procedure for the preparation of 6b, compound 4c (0.124 g, 0.3 mmol) was treated with 

n-BuLi (1.6 M in hexane, 0.394 mL, 0.63 mmol) and iodine (0.168 g, 0.66 mmol) in THF (3 

mL). The eluent for the column chromatography was ethyl acetate:hexane = 1:4.  Yield: 0.115 g 

(58%) of pale yellow solid. 1H NMR (300 MHz, CDCl3) δ: 7.21 (s, 2H), 6.94 (pseudo-d, 2H, J = 

8.7 Hz), 6.94 (s, 2H), 6.67 (pseudo-d, 2H, J = 8.7 Hz), 3.91 (s, 6H), 2.22 (s, 3H). 13C NMR (125 

MHz, CDCl3) δ: 149.23, 144.70, 142.11, 141.39, 137.01, 129.67, 128.80, 123.23, 112.65, 

111.06, 73.22, 56.25, 20.53. HR-MS (ESI): calcd for C23H17I2NO2S2 [M]+, 656.8785; found, 

656.8785. 
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1-(4-Butylphenyl)-6,7-di(decyloxy)-3,10-bis(thiophen-2-yl)-dithieno[3,2-b;2’,3’-f]-

benzo[d]-azepine (7). To a degassed solution of DMF (0.5 mL) of compound 6b (0.020 g, 0.023 
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mmol) were added 2-tributylstannyl thiophene (0.018 mL, 0.053 mmol) and PdCl2(PPh3)2 (0.8 

mg, 5 mol %). The mixture was allowed to stir at 80 °C for 15 h, at which time the mixture was 

cooled to room temperature.  Ethyl acetate was added to the mixture, and the organic layer was 

washed with saturated aqueous NH4Cl, KF, and NH4Cl again. After being dried over MgSO4, the 

organic layer was evaporated under reduced pressure and subjected to column chromatography 

(chloroform:hexane = 1:4). Yield: 0.011 g (55%) of yellow solid. 1H NMR (300 MHz, CDCl3) δ: 

7.26 (dd, 2H, J = 5.1, 1.2 Hz), 7.22 (dd, 2H, J = 3.6, 1.2 Hz), 7.19 (s, 2H), 7.06 (dd, 2H, J = 5.1, 

3.6 Hz), 7.04 (s, 2H), 6.95 (pseudo-d, 2H, J = 8.7 Hz), 6.82 (pseudo-d, 2H, J = 8.7 Hz), 4.07 (t, 

4H, J = 6.6 Hz), 2.48 (t, 2H, J = 7.5 Hz), 1.86 (m, 4H), 1.51 (m, 6H), 1.38–1.27 (m, 26H), 0.89 

(t, 3H, J = 7.5 Hz), 0.89 (t, 6H, J = 6.6 Hz). 13C NMR (125 MHz, CDCl3) δ: 149.14, 145.29, 

141.26, 137.62, 136.60, 135.06, 133.54, 129.04, 128.16, 125.04, 124.22, 124.01, 123.66, 113.22, 

112.56, 69.53, 34.85, 34.17, 32.15, 29.87, 29.82, 29.62, 29.59, 29.36, 26.23, 22.92, 22.57, 14.36, 

14.19. HR-MS (ESI): calcd for C52H65NO2S4 [M+H]+, 864.3971; found, 864.3994. 
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3,10-bis(2,2’-bithiophen-5-yl)-6,7-dimethoxy-1-(4-tolyl)-dithieno[3,2-b;2’,3’-f]-benzo[d]-

azepine (8). Using the same procedure for the synthesis of 7, compound 6c (0.073 g, 0.11 mmol) 

was treated with 5-tributylstannyl-2,2’-bithiophene (0.109 mL, 0.27 mmol) and PdCl2(PPh3)2 (4 

mg, 5 mol %) in DMF (1 mL). Yield: 0.069 g (85%) of orange solid. 1H NMR (400 MHz, 
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CDCl3) δ: 7.25 (dd, 2H, J = 5.1, 1.2 Hz), 7.20 (dd, 2H, J = 3.6, 1.2 Hz), 7.19 (s, 2H), 7.14 (d, 2H, 

J = 3.8 Hz), 7.12 (d, 2H, J = 3.8 Hz), 7.04 (dd, 2H, J = 5.1, 3.6 Hz), 7.04 (s, 2H), 6.96 (pseudo-d, 

2H, J = 8.7 Hz), 6.80 (pseudo-d, 2H, J = 8.7 Hz), 3.96 (s, 6H), 2.22 (s, 3H). 13C NMR (125 MHz, 

CDCl3) δ: 149.06, 145.15, 141.66, 137.15, 137.00, 136.51, 136.15, 135.02, 129.70, 128.54, 

128.16, 124.92, 124.64, 124.30, 124.14, 124.09, 123.97, 112.74, 111.09, 56.28, 20.55. HR-MS 

(ESI): calcd for C39H27NO2S6 [M+H]+, 734.0439; found, 734.0455. 

 

N

SS

C10H21O OC10H21

n-Bu

S
S

n

 

Polymer 10. Compound 6b (0.077 g, 0.081 mmol), 9 (0.040 g, 0.081 mmol), and 

Pd2(dba)3•CHCl3 (4.2 mg, 5 mol %) were dissolved in THF (1 mL). The mixture was degassed 

by freeze-pump-thaw (3 cycles) and (t-Bu3PH)BF4 (2.6 mg, 11 mol %) and KF (0.028 g, 0.49 

mmol) were added under gentle Ar stream. The mixture was allowed to stir at 60 ºC for 24 h, at 

which time the mixture was cooled to room temperature and methanol was added to precipitate. 

The filtered solid was re-dissolved in CHCl3 and added to methanol to precipitate again. The 

product was filtered out and dried under air. Yield: 0.043 g (62%) of dark red solid. GPC 

(polystyrene standard): Mn = 4980, Mw = 7810, PDI = 1.57. 1H NMR (300 MHz, CDCl3) δ: 7.20 

(aromatic C–H), 7.12 (aromatic C–H), 7.04 (aromatic C–H), 6.96 (aromatic C–H), 6.82 

(aromatic C–H), 4.07 (aliphatic C–H), 2.50 (aliphatic C–H), 1.86 (aliphatic C–H), 1.54 (aliphatic 

C–H), 1.29 (aliphatic C–H), 0.89 (aliphatic C–H). 
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Polymer 12. Compound 6b (0.077 g, 0.081 mmol) and 11 (0.039 g, 0.081 mmol) were 

dissolved in degassed diisopropyamine (0.6 mL) and toluene (1.8 mL). Under gentle Ar stream 

Pd(PPh3)4 (3.7 mg, 4 mol %) and CuI (1.5 g, 10 mol %) were added. The mixture was allowed to 

stir at 60 ºC for 24 h, at which time the mixture was cooled to room temperature and methanol 

was added to precipitate. The filtered solid was re-dissolved in CHCl3 and added to methanol to 

precipitate again. The product was filtered out and dried under air. Yield: 0.069 g (73%) of 

yellow solid. GPC (polystyrene standard): Mn = 16900, Mw = 35700, PDI = 2.11. 1H NMR (300 

MHz, CDCl3) δ: 7.62 (aromatic C–H), 7.46 (aromatic C–H), 7.23 (aromatic C–H), 7.14 

(aromatic C–H), 7.01 (aromatic C–H), 5.89 (aliphatic C–H), 4.19 (aliphatic C–H), 2.58 (aliphatic 

C–H), 1.94 (aliphatic C–H), 1.58–1.28 (aliphatic C–H), 0.94 (aliphatic C–H), 0.88 (aliphatic C–

H). 

 

OMeMeO

SS

N

Me

SS
SS

n

 



Chapter 6 Azepine Actuator 

 220 

Poly(8). FeCl3 (0.049 g, 0.3 mmol) was added to the CHCl3 (1 mL) solution of compound 8 

(0.022 g, 0.03 mmol) and the mixture was allowed to stir at room temperature for 15 h, at which 

time aqueous NH4OH was added. The mixture was sonicated for 10 min, and added dropwise to 

methanol. The precipitates were filtered and suspended in small amount of CHCl3. The mixture 

was then sonicated again for 10 min, and precipitated out in methanol. The product was filtered 

and dried under air. Yield: 0.009 g (41%) of dark red solid. 
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Spectrum 1. 1H-NMR spectrum of 2 (300 MHz, CDCl3). 

 
Spectrum 2. 13C-NMR spectrum of 2 (125 MHz, CDCl3). 
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Spectrum 3. 1H-NMR spectrum of 4a (400 MHz, CDCl3). 

 
Spectrum 4. 13C-NMR spectrum of 4a (125 MHz, CDCl3). 
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Spectrum 5. 1H-NMR spectrum of 4b (400 MHz, CDCl3). 

 
Spectrum 6. 13C-NMR spectrum of 4b (100 MHz, CDCl3). 
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Spectrum 7. 1H-NMR spectrum of 4c (300 MHz, CDCl3). 

 
Spectrum 8. 13C-NMR spectrum of 4c (125 MHz, CDCl3). 
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Spectrum 9. 1H-NMR spectrum of 5 (300 MHz, CDCl3). 

 
Spectrum 10. 13C-NMR spectrum of 5 (125 MHz, CDCl3). 
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Spectrum 11. 1H-NMR spectrum of 6b (400 MHz, CDCl3). 

 
Spectrum 12. 13C-NMR spectrum of 6b (125 MHz, CDCl3). 
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Spectrum 13. 1H-NMR spectrum of 6c (300 MHz, CDCl3). 

 
Spectrum 14. 13C-NMR spectrum of 6c (125 MHz, CDCl3). 

OMeMeO

SS

N

Me

I I



Chapter 6 Appendix NMR 

 229 

 

 
Spectrum 15. 1H-NMR spectrum of 7 (300 MHz, CDCl3). 

 
Spectrum 16. 13C-NMR spectrum of 7 (125 MHz, CDCl3). 
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Spectrum 17. 1H-NMR spectrum of 8 (400 MHz, CDCl3). 

 
Spectrum 18. 13C-NMR spectrum of 8 (125 MHz, CDCl3). 
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Spectrum 19. 1H-NMR spectrum of 10 (400 MHz, CDCl3). 

 

 

 
Spectrum 20. 1H-NMR spectrum of 12 (400 MHz, CDCl3). 
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Highly Conductive Poly(phenylene thienylene)s: 

m-Phenylene Linkages Are Not Always Bad 
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Introduction 

The demand for highly stable, highly conductive, and easily processable conjugated polymers 

in organic electronic and optoelectronic applications has led to extensive studies over the past 

two decades.1  Major advances have been realized through novel design or synthetic 

modifications of conjugated polymers.  For example, soluble and thus processable 

polythiophenes have been achieved by incorporating flexible subtsituents such as alkyl chains at 

3-position.2-4  Polythiophenes also have been electronically tuned by aid of electron-donating 

and/or electron-withdrawing substituents.4,5  Another approach is to modify the backbones by 

hybridizing thienylenes with other conjugated molecules, such as various types of phenylenes.6,7  

However, in the design of new highly electron/hole conductive polymers, meta-linkages between 

conducting segments are generally excluded because they interrupt conjugation.  In fact, meta-

linkages have usually been introduced in order to reduce conjugation in a tunable manner, for 

example, in synthesizing polymers with blue emission.8  It appears to be widely accepted that 

meta-linkages in polymers are something to be avoided if one wishes to produce systems with 

high conductivity that is generally associated with delocalized carriers. 

Our group recently reported a calix[4]arene-based conducting polymer,9 which is not fully 

conjugated but instead contains electroactive segments between insulating bridges.  In such a 

system, phenol groups were found to play a crucial role in the electropolymerization and the 

conduction pathway.  The polymer also demonstrated an intriguing proton-dopable property, in 

which the segments were proposed to fluctuate between p-dihydroquinone-like and p-diquinone-

like states (similar to what is shown for the materials of interest here in Scheme 1).  Considering 

those features, phenol functionalities could be useful for designing conducting polymer sensors. 
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Scheme 1. 
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Our present study was motivated to investigate the potential of phenols as functional moieties 

in non-segmented (i.e. those have a continous interconneted π-system) conducting polymers.  

We proposed that, when strategically located, phenols would endow a non-conjugated meta-

linked polymer with electroactive and conductive properties that are similar to, or even better 

than, those of a related para-isomer.  In this study, two isomeric phenol containing polymers 

were prepared: poly(m-phenylene tetrathienylene)s (PMPTs) and poly(p-phenylene 

tetrathienylene)s (PPPTs) (Scheme 1).  In PMPTs, when they are oxidized, it is plausible that 

the charges are localized on the phenolic oxygens.  Upon oxidation, the initially non-conjugated 

backbone becomes highly delocalized with both aromatic and quinoid structures in the same 

chain, a scheme that has been utilized in the design of small band-gap polymers.10  In this work, a 

series of PMPTs and PPPTs were synthesized and characterized  by several electrochemical 
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methods.  The in-situ conductivities of two isomeric polymers were compared by using 

interdigitated microelectrodes11 and their electronic transitions were also compared by UV-Vis 

spectroelecrochemistry. 

 

Monomer Synthesis  

The syntheses of the monomers are outlined in Scheme 2.  Attempts to synthesize the meta-

linked monomer 2a by Stille-coupling between 4,6-diiodoresorcinol and 5-tri-n-butylstannyl-

2,2’-bithiophene failed.  Subsequently, the phenol groups were protected with acetyl or TBDMS 

groups.  Although protected monomers 2b-c could be obtained by Stille-coupling in good to high 

yields, deprotection to 2a was complicated by its instability to air, giving black intractable 

products.  Therefore, removal of the protecting group was carried out in post-polymerization 

modification.  For comparison, an O-alkyl version 2d, a non-substituted version 3, and para-

linked isomers 4b-c were synthesized under similar conditions. 
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aReagents: (i) Acetic anhydride, pyridine, RT. (1b); TBDMSCl, imidazole, DMF, RT. (1c); MeI, K2CO3, DMF, RT. 
(1d)  (ii) 5-Tri-n-butylstannyl-2,2’-bithiophene, Pd cat., toluene or DMF, 80 °C or RT.  (iii) Electropolymerization 
under swept potential conditions in CH2Cl2 containing ca 2 mM of monomers and 0.1 M TBAPF6 as a supporting 
electrolyte.  (iv) Hydrazine, RT. 

 

Electropolymerization.15   

All monomers were polymerized via oxidative coupling under swept potential conditions.  

Electropolymerizations were performed in CH2Cl2 solutions containing ca 2 mM of monomers 

and 0.1 M of TBAPF6 as a supporting electrolyte.  In most cases, CH2Cl2 proved to be a good 

solvent for electropolymerization.  However, when monomers were too soluble in CH2Cl2 (2c or 
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4c), or when the working electrode had a large surface area (ITO coated glass electrode or gold 

coated PETE), a significant amount of the resulting polymer failed to be deposited onto the 

electrode.  This could be attributed to the solubility of initially coupled oligomers.  This effect 

was especially evident when O-TBDMS versions (2c or 4c) were polymerized in CH2Cl2.  It was 

observed that oxidized oligomers diffused away from the electrode surface.  This problem was 

overcome by adding CH3CN, a poor solvent.  Depending on the solubility of each monomer, a 

1:1 to 1:3 mixture of CH2Cl2:CH3CN was used for electropolymerizations. 
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Figure 1. Electropolymerization  (100 mV/s) of 2b (left) and 4b (right) on Pt button electrodes in CH2Cl2 with 0.1 

M TBAPF6 as a supporting electrolyte.   Dotted lines represent the first scan 

 

Figure 1 shows the cyclic voltammograms (CVs) during the polymerization of 2b and 4b.  The 

initial oxidation of monomer 2b occurred at a potential slightly higher than 4b reflecting the non-

conjugated nature of the meta-linkage.  For both materials, all subsequent scans displayed much 

lower potential oxidation onsets, thereby indicating that electroactive polymer had deposited 

onto the electrode.  The oxidation peak potential of poly(2b) (PMPT-OAc) and poly(4b) 

(PPPT-OAc) were minimally different.  Table 1 summarizes the electrochemical results for 
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monomers (2b-d, 3, 4b-c) and their polymers.  As expected, the electron-donating effect of 

methoxy groups results in a lower oxidation potential for monomer 2d.  The O-TBDMS versions 

2c and 4c also oxidized at low potentials for the same reason. 

 

Table 1.  Electrochemical Results.  Monomer Oxidation Potentials (Ea,m) and Polymer Oxidation / 

Reduction Potentials (Ea,p / Ec,p). 

monomer Ea,m (V)a Ea,p (V) Ec,p (V) 
2bb >0.8  0.41, 0.68 0.05,  0.33 
2cc 0.57  0.12, >1.0  0.14 
2dd 0.47  0.37,  0.61 0.01,  0.41 
3b 0.81  >1.0  -0.10  

4bb 0.69 0.20,  0.36, 0.72 -0.18,  0.18 
4cc 0.48  0.74   0.41 

a All Potentials measured vs Fc/Fc+ at scan rate 100 mV/s.  b Performed in CH2Cl2.  c Performed in a mixed solvent 
of CH2Cl2 and CH3CN.  d Performed in CH3CN. 

 

Deprotection to Give Free –OH Groups 

PMPT-OAc and PPPT-OAc were chosen to generate free –OH versions, PMPT-OH and 

PPPT-OH, respectively, because the acetyl groups can be easily removed by addition of 

hydrazine.  As-grown polymer films on several types of electrodes were exposed to hydrazine 

vapor, under which the films immediately became crimson in color.  After ca 15 min, the films 

were washed with copious amounts of MeOH, then with CH2Cl2.  Figures 2 and 3 show the FT-

IR and UV-Vis spectra, respectively, of films before and after exposure to hydrazine.  It is 

clearly observed that the strong C=O vibration disappeared after exposure to hydrazine.  The 

weaker than expected C-H and O-H stretching vibrations in spectra C and D in Figure 2 are a 

result of the thin nature of the films grown from PPPT-OAc and PPPT-OH, which results in 

broad and weak signals.  The hydrazine reaction did not significantly affect the UV-Vis 
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absorption (Figure 3), hence we conclude the acetyl groups were successfully removed to leave 

free –OH without degradation of the polymer structure. 
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Figure 2. Specular reflectance FT-IR spectra of PMPT-OH (B) and PPPT-OH (D).  The strong C=O stretchings 

(arrows) of PMPT-OAc (A) and PPPT-OAc (C) disappeared when exposed to hydrazine.  The spectra were 

measured from films deposited onto gold-coated PETE. 
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Figure 3. UV-Vis spectra of PMPT-OH (left; solid line) and PPPT-OH (right; solid line).  Dotted lines represent 

UV-Vis absorption of PMPT-OAc (left) and PPPT-OAc (right).  The spectra were measured from films deposited 

onto ITO-coated glass. 

 

Polymer Electrochemistry Comparisons of meta vesus para 

Figure 4 compares the CVs of the PMPTs and the PPPTs.  We observed two broad, poorly 

resolved oxidation and reduction peaks in both PMPT-OAc and PPPT-OAc and their CVs were 

quite similar with the exception of the first oxidation peak.  Interestingly for PPPT-OAc, we 

observed a well-resolved low-potential redox couple, similar to those reported for 

polythiophenes with long alkoxy substituents.5,6  We also observed that this redox couple was 

more pronounced at low scan rates and thin films.  This is most evident for the reduction cycle of 

PPPT-OAc, which suggests that it is more sensitive to ion diffusion or that a structural 

relaxation has occurred in the oxidized state.  However, after the first oxidation, the 

electrochemistry of both O-Ac polymers became similar, which suggests that the lone pairs of the 

acetoxy groups in PMPT-OAc are capable of contributing to the delocalization suggested in 

Scheme 1. 
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Figure 4. (Top) The CVs of PMPT-OAc (left) and PPPT-OAc (right) at different scan rates: (a) 200 mV/s, (b) 100 

mV/s, (c) 50 mV/s, (d) 25 mV/s, (e) 10 mV/s.  (Bottom) The CVs of PMPT-OH (left) and PPPT-OH (right).  

Dotted line represents the CV before exposure to hydrazine.  All measurements were carried out in CH2Cl2 with 0.1 

M TBAPF6 onto Pt button electrodes. 

 

Deprotection of the acetyl groups changed the electrochemistry of the polymers dramatically, 

especially for PMPT-OAc.  For PPPT-OH we observed a broader electroactivity and a loss of 

the low-potential redox-activity shown for PPPT-OAc.  The oxidation onset potential of PPPT-

OH remained approximately the same as that of PPPT-OAc.  In contrast, the oxidation onset 

potential of PMPT-OH shifted to lower potential and the polymer’s CV was much broader than 

the acetate derivative.  This latter feature is attributed to the formation of extended p-diquinone 

states that are more favored in the deprotected form because of the superior ability of the –OH 
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group to stabilize positive charges.  Although the free -OH subsituents seemed to improve the 

polymers’ electroactivity, oxidized PMPT-OH and PPPT-OH were not stable under ambient 

conditions.  All electrochemical measurements of those polymers were performed in a glove box 

under a nitrogen atmosphere. 

 

Meta vesus para In-situ Conductivity Measurement 

It is not surprising, considering the similarity of the CVs, that we find the conductivity of the 

meta-linked PMPT-OAc is of the same order of magnitude as the para-linked PPPT-OAc 

(Figure 5).  In the potential-conductivity profile of PMPT-OAc, the conductivity increased 

rapidly from ca 0 V and reached a plateau above ca 0.3 V (vs Fc/Fc+).  The conductivity profile 

of PPPT-OAc behaved in a similar manner.  This conductivity plateau results from the limit of 

an interchain charge hopping process.16,17  As in the case of polythiophenes, the interchain charge 

transport in PMPTs and PPPTs operates due to the proximity of the polymer backbones, 

providing multi-channel electronic connectivity.  It would appear that the meta-linkages do not 

hamper the conduction pathway in this system. 
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Figure 5. CVs (dotted line) and in-situ conductivity measurements (5 mV/s, offset potential of 40 mV; solid line) 

of PMPT-OAc (top) and PPPT-OAc (bottom) on 5 µm interdigitated Pt microelectrodes in CH2Cl2 with 0.1 M 

TBAPF6 as a supporting electrolyte. 

 

The shapes of potential-conductivity profile of the -OH versions, PMPT-OH and PPPT-OH, 

resembled their acetate versions (Figure 6).  In PPPT-OH, the drain current, which is 

proportional to conductivity, “turns on” at almost the same potential as PPPT-OAc.  In contrast, 

the drain current onset is at a much lower potential for PMPT-OH.  As mentioned above, the 

free -OH appears to facilitate the formation of extended p-diquinone states. 
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Figure 6. Drain-current profiles (5 mV/s, offset potential of 40 mV; solid line) of PMPT-OH and PPPT-OH on 5 

µm interdigitated Pt microelectrodes in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte.  The absolute 

conductivity is proportional to drain current.11  For comparison, drain-current profiles of PMPT-OAc (left, dotted 

line) and PPPT-OAc (right, dotted line) are also plotted. 

 

Meta vesus Para Spectroelectrochemistry 

UV-Vis spectroelectrochemical studies further reveal that meta-linkages produce delocalized 

electronic structures when the polymers are oxidized.  Figure 7 shows in-situ measurements of 

the UV-Vis absorption of polymers deposited onto ITO-coated glass electrodes.  Due to the 

instability of the oxidized PMPT-OH and PPPT-OH, only the acetate versions were measured.  

The UV-Vis spectra of PPPT-OAc show a decrease of the original band-gap transition and the 

buildup of intragap energy states, which appear very similar to those observed for alkoxy 

substituted poly(phenylene bisthienylene)s.6  This matches well to polaron-bipolaron model18 of 

charge-delocalized π-platforms.  It should be noted that even in the non-conjugated PMPT-OAc, 

similar electronic states develop and more delocalized energy states build up at lower applied 

potentials. 
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Figure 7. Electronic absorption spectra of PMPT-OAc (top) and PPPT-OAc (bottom) on ITO-coated glass 

electrodes in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte.  The UV-Vis spectra are plotted as a function 

of oxidation potential from 0.0 V () to 1.0 V () vs Ag / Ag+ (0.01 M). 

 

Substituent Effects in PMPTs 

To further investigate the electronic properties of these systems, an alkoxy-substituted 

derivative, PMPT-OMe, and a non-substituted derivative, PMPT-H, were studied for 

comparison (Figure 8).  As the scan rate increased, the peak potentials of PMPT-OMe shifted 

minimally as shown in Figure 8 (left), while a significant shift of anodic and cathodic peak 

potentials was observed in PMPT-H.  We observed two oxidation and reduction peaks in the CV 

of PMPT-OMe similar to that discussed for PMPT-OAc (Figure 4).  The oxidation in PMPT-H 

occurred at a higher potential than PMPT-OMe due to the absence of charge-stabilizing 

substituents, and peak potentials shifted significantly at fast scan rates.  At higher potentials (> 

1.0 V vs Fc/Fc+), PMPT-H was unstable and hence we were unable to show a peak in the CV.  
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When PMPT-OMe and PMPT-H are compared to PMPT-OH, it is apparent that phenol 

functionalities enhance the electroactivity of the polymer. 
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Figure 8. The CVs of PMPT-OMe (left) and PMPT-H (right) in CH3CN and CH2Cl2, respectively, with 0.1 M 

TBAPF6 as a supporting electrolyte at different scan rates: (a) 200 mV/s, (b) 100 mV/s, (c) 50 mV/s, (d) 25 mV/s, 

(e) 10 mV/s. 

 

Figure 9 shows the in-situ conductivity measurements of the PMPT-OMe and the PMPT-H.  

The conductivity-potential profile of PMPT-OMe resembles that of PMPT-OAc and appears to 

be limited by the interchain charge hopping.  However, in PMPT-H, the onset is shifted to the 

significantly higher potential and the conductivity-potential profile passes a peak at ca 0.55 V 

and then increases again, finally reaching a plateau at above 0.8 V (vs Fc/Fc+).  Although there 

might be a different regime at low potential, or at a low doping level, we suspect that the 

conductivity of PMPT-H is also governed by the interchain charge hopping at a high doping 

level.  The maximum conductivity of PMPT-OMe and PMPT-OAc were consistently 

determined to be approximately two-fold greater than that of PMPT-H. 
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Figure 9. CVs (dotted line) and in-situ conductivity measurements (5 mV/s, offset potential of 40 mV; solid line) 

of PMPT-OMe (top) and PMPT-H (bottom) on 5 µm interdigitated Pt microelectrodes in CH2Cl2 with 0.1 M 

TBAPF6 as a supporting electrolyte. 

 

Spectroelectrochemical studies (Figure 10) reveal approximately the same buildup of energy 

states as the doping level increases.  The UV-Vis absorption spectra of PMPT-OMe and PMPT-

OAc are similar at the similar oxidation level.  Here again, we observed the stabilizing effect of 

alkoxy functionalities on positively doped states.  In PMPT-H, a similar but retarded 

development of intergap transitions was observed.  In addition, the shape of intergap transitions 

of PMPT-H was different from that of PMPT-OMe or PMPT-OAc (Figure 7, top).  We suspect 

that without the alkoxy or phenolic substituents, delocalized energy states would not be observed 

in PMPTs at a moderate doping level.   



Chapter 7 Meta vesus Para 

 248 

0

0.2

0.4

0.6

0.8

1

1.2

300 400 500 600 700 800 900 1000

0

0.5

1

1.5

0.0 V

1.0 V

0.5 V

PMPT-OMe

PMPT-H

0.0 V

1.0 V

0.5 V

Wavelength (nm)

A
b
s
o
rb

a
n
c
e
 (

A
.U

.)

 
Figure 10. Electronic absorption spectra of PMPT-OMe (top) and PMPT-H (bottom) on ITO-coated glass 

electrodes in CH2Cl2 with 0.1 M TBAPF6 as a supporting electrolyte, as a function of oxidation potential from 0.0 V 

() to 1.0 V () vs Ag / Ag+ (0.01 M). 

 

Conclusion 

We have found that meta-linked polymers can be rendered as electroactive as para-linked 

isomers by strategic positioning of phenolic substituents.  The maximum conductivities of both 

meta- and para-linked polymers in in-situ measurements were similar to each other, but appeared 

to be limited by an interchain charge transport.  Spectroelectrochemical studies demonstrated 

that there were very delocalized energy states in both systems when they were oxidized.  Free -

OH substituents showed a marked effect on the meta-linked polymer over that of the acetoxy or 

methoxy substituents, resulting in much lower onset potential in a conductivity-potential profile 

and broad electroactivity of the polymer. 
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Experimental Section 

Instrumentation.  NMR spectra were recorded on a Varian Mercury-300, Bruker Advance-

400, or Varian Inova-500 spectrometer.  Chemical shifts are referenced to residual solvent peaks.  

High-resolution mass spectra (HR-MS) were obtained on a Bruker Daltonics APEX II 3 Tesla 

FT-ICR-MS.  Electrochemical studies were carried out using an Autolab PGSTAT 10 or 

PGSTAT 20 potentiostat (Eco Chemie) in a three-electrode cell configuration consisting of a 

quasi-internal Ag wire reference electrode (BioAnalytical Systems) submerged in 0.01 AgNO3 / 

0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) in anhydrous CH3CN, a Pt button 

(1.6 mm in diameter), 5 µm interdigitated Pt micro, ITO-coated glass (100 Ω sheet resistance), or 

Au-coated poly(ethylene terephthalate) (PETE) electrode as the working electrode, and a Pt coil 

or Pt gauze as the counter electrode.  The ferrocene/ferrocenium (Fc/Fc+) redox couple was used 

as a reference.  Half-wave potentials of Fc/Fc+ were observed between 210-245 mV vs Ag/Ag+ in 

CH2Cl2 and 80 mV in CH3CN. For the in-situ conductivity measurements, polymer films were 

electrochemically deposited on 5 µm interdigitated Pt microelectrodes and placed in a monomer-

free solution.  Drain current measurements were typically carried out at a 5 mV/s scan rate with a 

40 mV offset potential between the two working electrodes.  The conductivity was then 

calculated from the value of the drain current by applying geometrical factors11 and also 

corrected with a known material - poly(3-methylthiophene) as 60 S/cm.  The polymer film 

thickness for the conductivity calculation was measured with a surface profilometer (Veeco 

Dektak 6M Stylus Profiler).  The baseline (A) of a bare interdigitated microelectrode was first 

obtained.  Next, the surface profile (B) of a given polymer film on the electrode was measured.  

Several values of A and B were taken to get averages of each.  The thickness was determined by 

subtracting the averaged value of A from the averaged value of B.  Absorption spectra for 
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spectroelectrochemistry were obtained using a HP 8453 diode array spectrometer.  FT-IR spectra 

of polymer films were taken using Nicolet 8700 FT-IR spectrometer with a fixed 30° specular 

reflectance accessory. 

Materials.  Spectroscopic grade CH2Cl2 and CH3CN were purchased from Aldrich for 

electrochemistry.  TBAPF6 was recrystallized in ethanol prior to use.  4,6-Diiodobenzene-1,3-

diol,12 2,5-diiodobenzene-1,4-diol,13 and 5-tributylstannyl-2,2’-bithiophene14 were prepared by 

literature methods.  Anhydrous DMF was purchased from Aldrich as Sure-Seal Bottles and used 

as received.  All other chemicals were of reagent grade and used as received. 

 

I

OAcAcO

I  

1,5-Diacetoxy-2,4-diiodobenzene (1b).  In a 100 mL round-bottom flask equipped with a stir 

bar were combined 4,6-diiodobenzene-1,3-diol (1.08 g, 3 mmol), acetic anhydride (1.42 mL, 15 

mmol), and 5 mL of pyridine.  After being stirred overnight at room temperature, the mixture 

was poured into water and extracted with diethyl ether.  The organic layer was washed with 

brine, dried over MgSO4, and evaporated under reduced pressure.  The resulting crude product 

was purified by column chromatography (ethyl acetate:hexane 1:1).  Yield: 1.30 g of white solid 

(97 %).  1H NMR (300 MHz, CDCl3) δ: 8.26 (s, 1H), 6.97 (s, 1H), 2.36 (s, 6H).  13C NMR (100 

MHz, CDCl3) δ: 168.1, 152.2, 147.7, 118.1, 88.1, 21.4.  HR-MS (ESI): calcd for C10H8I2O4 

[M+Na]+, 468.8404; found, 468.8383. 

 

I

OAcI

AcO  
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1,4-Diacetoxy-2,5-diiodobenzene.  Similar to the synthesis of 1b except using 2,5-

diiodobenzene-1,4-diol.  Yield: 1.09 g of white solid (82 %).  1H NMR (400 MHz, CDCl3) δ: 

7.53 (s, 2H), 2.36 (s, 6H).  13C NMR (100 MHz, CDCl3) δ: 168.4, 149.6, 132.7, 90.2, 21.3.  HR-

MS (ESI): calcd for C10H8I2O4 [M+Na]+, 468.8404; found, 468.8416. 

 

I

OTBDMSTBDMSO

I  

1,5-Bis(tert-butyldimethylsilanyloxy)-2,4-diiodobenzene (1c).  In a 100 mL round-bottom 

flask equipped with a stir bar were combined 4,6-diiodobenzene-1,3-diol (1.45 g, 4 mmol), 

TBDMSCl (1.8 g, 12 mmol), and 20 mL of anhydrous DMF under Ar.  After being stirred for 10 

min, imidazole (1.38 g, 20 mmol) was added to the mixture and it was stirred overnight at room 

temperature.  The mixture was poured into water and extracted with diethyl ether.  The organic 

layer was then washed with brine, dried over MgSO4, and evaporated under reduced pressure.  

The resulting crude product was purified by column chromatography (dichloromethane:hexane 

1:15).  Yield: 2.30 g of white solid (97 %).  1H NMR (400 MHz, CDCl3) δ: 8.04 (s, 1H), 6.40 (s, 

1H), 1.07 (s, 18H), 0.28 (s, 12H).  13C NMR (100 MHz, CDCl3) δ: 156.4, 147.1, 109.5, 81.3, 

26.0, 18.6, -3.8.  HR-MS (ESI): calcd for C18H32I2O2Si2 [M+Na]+, 612.9922; found, 612.9895. 

 

I

OTBDMSI

TBDMSO  

1,4-Bis(tert-butyldimethylsilanyloxy)-2,5-diiodobenzene.  Similar to the synthesis of 1c 

except using 2,5-diiodobenzene-1,4-diol.  Yield: 2.34 g of white solid (99 %).  1H NMR (400 

MHz, CDCl3) δ: 7.18 (s, 2H), 1.05 (s, 18H), 0.26 (s, 12H).  13C NMR (100 MHz, CDCl3) δ: 



Chapter 7 Meta vesus Para 

 252 

150.4, 128.0, 89.7, 26.1, 18.5, -3.9.  HR-MS (ESI): calcd for C18H32I2O2Si2 [M+Na]+, 612.9922; 

found, 612.9904. 

 

I

OMeMeO

I  

1,5-Dimethoxy-2,4-diiodobenzene (1d).  In a 100 mL round-bottom flask equipped with a stir 

bar were combined 4,6-diiodobenzene-1,3-diol (1.09 g, 3 mmol), K2CO3 (4.15 g, 30 mmol), and 

30 mL of DMF under Ar.  Iodomethane (0.936 mL, 15 mmol) was slowly added to the mixture 

and it was stirred for 6h at room temperature.  The mixture was diluted with ethyl acetate and the 

organic layer was washed with water and brine, dried over MgSO4, and evaporated under 

reduced pressure.  The resulting crude product was filtered through a pad of silica gel, eluding 

with dichloromethane.  The solvent was evaporated under reduced pressure, and the resulting 

solid was further purified by recrystallization (dichloromethane, hexane).  Yield: 1.07 g of white 

solid (91 %).  1H NMR (400 MHz, CD2Cl2) δ: 8.03 (s, 1H), 6.40 (s, 1H), 3.88 (s, 6H).  13C NMR 

(100 MHz, CD2Cl2) δ: 160.3, 147.3, 96.4, 75.5, 57.0.  HR-MS (ESI): calcd for C8H8I2O2 

[M+Na]+, 412.8506; found, 412.8522. 

 

OAcAcO

S

S

S

S  

1,5-Diacetoxy-2,4-bis([2,2’]bithiophen-5-yl)benzene (2b).  In a Schlenk tube equipped with a 

stir bar were combined 1b (0.446 g, 1 mmol), Pd2(dba)3 (31 mg, 3 mol %), P(t-Bu3) (24 mg, 6.6 

mol %), and 10 mL of toluene under Ar.  To the mixture was added 5-tributylstannyl-2,2’-

bithiophene (1.37 g, 3 mmol) and stirred for 48 h at 80 °C.  The reaction mixture was then 
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cooled to room temperature, diluted with ethyl acetate, and filtered through a pad of silica gel.  

The silica gel was thoroughly washed with ethyl acetate, and the solvent was evaporated under 

reduced pressure.  The crude solid was washed with diethyl ether, and then further purified by 

recrystallization (dichloromethane, hexane).  Yield: 0.262 g of pale yellow solid (50 %).  1H 

NMR (300 MHz, CD2Cl2) δ: 7.91 (s, 1H), 7.32 (d, 2H, J = 3.8 Hz), 7.29 (dd, 2H, J = 5.3, 1.1 

Hz), 7.25 (dd, 2H, J = 3.6, 1.1 Hz), 7.21 (d, 2H, J = 3.8 Hz), 7.07 (s, 1H), 7.06 (dd, 2H, J = 5.3, 

3.6 Hz), 2.36 (s, 6H).  13C NMR (100 MHz, CD2Cl2) δ: 169.3, 146.6, 139.0, 137.4, 136.4, 129.5, 

128.5, 127.7, 126.0, 125.4, 124.55, 124.52, 119.4, 21.8.  HR-MS (ESI): calcd for C26H18O4S4 

[M+Na]+, 544.9980; found, 544.9999. 

 

OTBDMSTBDMSO

S

S

S

S  

1,5-Bis(tert-butyldimethylsilanyloxy)-2,4-bis([2,2’]bithiophen-5-yl)benzene (2c).  In a 

Schlenk tube equipped with a stir bar were combined 1c (1.18 g, 2 mmol), Pd2(dba)3 (104 mg, 5 

mol %), P(t-Bu3) (81 mg, 0.4 mmol), and 15 mL of toluene under Ar.  To the mixture was added 

5-tributylstannyl-2,2’-bithiophene (2.73 g, 6 mmol) and stirred for 48 h at 80 °C.  The reaction 

mixture was then cooled to room temperature, diluted with ethyl acetate, and filtered through a 

pad of silica gel.  The silica gel was thoroughly washed with ethyl acetate, and the solvent was 

evaporated under reduced pressure.  The crude solid was washed with cold hexane, and then 

further purified by recrystallization (dichloromethane, hexane).  Yield: 0.872 g of yellow solid 

(65 %).  1H NMR (400 MHz, CDCl3) δ: 7.72 (s, 1H), 7.25 (d, 2H, J = 3.6 Hz), 7.21 (dd, 2H, J = 

5.2, 1.2 Hz), 7.18 (dd, 2H, J = 3.6, 1.2 Hz), 7.15 (d, 2H, J = 3.6 Hz), 7.04 (dd, 2H, J = 5.2, 3.6 

Hz), 6.53 (s, 1H), 1.00 (s, 18H), 0.27 (s, 12H).  13C NMR (100 MHz, CDCl3) δ: 152.4, 138.7, 
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138.2, 136.4, 129.4, 128.0, 125.8, 124.1, 123.6, 123.2, 119.6, 111.5, 26.2, 18.8, -3.6.  HR-MS 

(ESI): calcd for C34H42O2S4Si2 [M+H]+, 667.1679; found, 667.1683. 

 

OMeMeO

S

S

S

S  

1,5-Dimethoxy-2,4-bis([2,2’]bithiophen-5-yl)benzene (2d).  In a Schlenk tube equipped with 

a stir bar were combined 1d (0.390 g, 1 mmol), Pd2(dba)3 (31 mg, 3 mol %), P(t-Bu3) (13 mg, 6.6 

mol %), LiCl (170 mg, 4 mmol), and 10 mL of DMF under Ar.  To the mixture was added 5-

tributylstannyl-2,2’-bithiophene (1.37 g, 3 mmol) and stirred overnight at room temperature.  

The reaction mixture was diluted with dichloromethane, and filtered through a pad of silica gel.  

Most of the solvent was evaporated under reduced pressure.  The residue was diluted with ethyl 

acetate, washed with brine (×2), dried over MgSO4, and evaporated under reduced pressure.  The 

resulting residue was precipitated with hexane, and the crude solid was washed with copious 

amounts of hexane.  The product was further purified by recrystallization (dichloromethane, 

hexane).  Yield: 0.347 g of yellow solid (74 %).  1H NMR (400 MHz, CD2Cl2) δ: 7.89 (s, 1H), 

7.38 (d, 2H, J = 3.8 Hz), 7.23-7.25 (m, 4H), 7.18 (d, 2H, J = 3.8 Hz), 7.05 (dd, 2H, J = 5.1, 3.7 

Hz), 6.64 (s, 1H), 4.00 (s, 6H).  13C NMR (100 MHz, CD2Cl2) δ: 156.7, 138.6, 138.2, 136.7, 

128.4, 127.7, 125.6, 124.6, 124.0, 123.7, 116.4, 96.7, 56.4.  HR-MS (ESI): calcd for C24H18O2S4 

[M]+, 466.0184; found, 466.0176. 

 

S

S

S

S  
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1,3-Bis([2,2’]bithiophen-5-yl)benzene (3).  In a Schlenk tube equipped with a stir bar were 

combined 1,3-diiodobenzene (0.337 g, 1 mmol), PdCl2(PPh3)2 (37 mg, 5 mol %), and 10 mL of 

toluene under Ar.  To the mixture was added 5-tributylstannyl-2,2’-bithiophene (1.37 g, 3 mmol) 

and stirred overnight at 80 °C.  The reaction mixture was then cooled to room temperature, 

diluted with dichloromethane, and filtered through a pad of silica gel.  The solvent was 

evaporated under reduced pressure, and the resulting residue was precipitated with hexane.  The 

crude solid was washed with hexane, and further purified by recrystallization (dichloromethane, 

hexane).  Yield: 0.350 g of bright yellow solid (86 %).  1H NMR (400 MHz, CD2Cl2) δ: 7.83 

(pseudo-t, 1H, J = 1.7 Hz), 7.54 (dd, 2H, J = 7.7, 1.7 Hz), 7.41 (t, 1H, J = 7.7 Hz), 7.33 (d, 2H, J 

= 3.8 Hz), 7.27 (dd, 2H, J = 5.1, 1.1 Hz), 7.25 (dd, 2H, J = 3.7, 1.1 Hz), 7.20 (d, 2H, J = 3.8 Hz), 

7.06 (dd, 2H, J = 5.1, 3.7 Hz).  13C NMR (100 MHz, CD2Cl2) δ: 142.9, 137.7, 137.6, 135.2, 

130.1, 128.5, 125.2, 125.1, 124.8, 124.3, 123.0.  HR-MS (ESI): calcd for C22H14S4 [M+H]+, 

407.0051; found, 407.0042. 

 

OAc

AcO
S

S

S

S

 

1,4-Diacetoxy-2,5-bis([2,2’]bithiophen-5-yl)benzene (4b).  In a Schlenk tube equipped with a 

stir bar were combined 1,4-diacetoxy-2,5-diiodobenzene (0.446 g, 1 mmol), PdCl2(PPh3)2 (37 

mg, 5 mol %), and 10 mL of toluene under Ar.  To the mixture was added 5-tributylstannyl-2,2’-

bithiophene (1.37 g, 3 mmol) and stirred overnight at 80 °C.  The product precipitated as the 

reaction progressed.  The reaction mixture was then cooled to room temperature.  The product 

was filtered out, and washed thoroughly with diethyl ether.  The crude product was then 
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redissolved with dichloromethane, and passed through a pad of silica gel.  The silica gel was 

thoroughly washed with dichloromethane, and the solvent was evaporated under reduced 

pressure.  The resulting solid was then further purified by recrystallization (dichloromethane, 

hexane).  Yield: 0.429 g of pale yellow solid (82 %).  1H NMR (500 MHz, THF-d8) δ: 7.60 (s, 

2H), 7.43 (d, 2H, J = 3.8 Hz), 7.37 (m, 2H), 7.29 (m, 2H), 7.23 (d, 2H, J = 3.8 Hz), 7.04 (dd, 2H, 

J = 5.0, 3.5 Hz), 2.38 (s, 6H).  13C NMR (125 MHz, THF-d8) δ: 169.0, 145.5, 139.7, 138.0, 

136.9, 128.9, 128.2, 127.6, 126.0, 124.92, 124.86, 124.1, 21.5.  HR-MS (ESI): calcd for 

C26H18O4S4 [M+Na]+, 544.9980; found, 544.9992. 

 

OTBDMS

TBDMSO
S

S

S

S

 

1,4-Bis(tert-butyldimethylsilanyloxy)-2,5-bis([2,2’]bithiophen-5-yl)benzene (4c).  In a 

Schlenk tube equipped with a stir bar were combined 1,4-bis(tert-butyldimethylsilanyloxy)-2,5-

diiodobenzene (0.177 g, 0.3 mmol), PdCl2(PPh3)2 (11 mg, 5 mol %), and 3 mL of toluene under 

Ar.  To the mixture was added 5-tributylstannyl-2,2’-bithiophene (0.341 g, 0.75 mmol) and 

stirred for 20 h at 80 °C.  The product precipitated as the reaction progressed.  The reaction 

mixture was then cooled to room temperature.  The product was filtered out, and washed 

thoroughly with ethyl acetate.  The crude product was then redissolved with dichloromethane 

and passed through a pad of silica gel.  The silica gel was thoroughly washed with 

dichloromethane, and the solvent was evaporated under reduced pressure.  The resulting solid 

was then further purified by recrystallization (dichloromethane, hexane).  Yield: 0.194 g of pale 

yellow solid (97 %).  1H NMR (400 MHz, CDCl3) δ: 7.32 (d, 2H, J = 3.8 Hz), 7.23 (dd, 2H, J = 
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5.2, 1.0 Hz), 7.21 (dd, 2H, J = 3.6, 1.0 Hz), 7.16 (d, 2H, J = 3.8 Hz), 7.15 (s, 2H), 7.05 (dd, 2H, J 

= 5.2, 3.6 Hz), 1.03 (s, 18H), 0.27 (s, 12H).  13C NMR (100 MHz, CDCl3) δ: 146.4, 138.6, 138.0, 

137.2. 128.1, 126.4, 124.8, 124.4, 123.8, 123.5, 119.6, 26.3, 18.8, -3.5.  HR-MS (ESI): calcd for 

C34H42O2S4Si2 [M+H]+, 667.1679; found, 667.1706. 
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Spectrum 1. 1H-NMR spectrum of 1b (500 MHz, CDCl3). 

 
Spectrum 2. 13C-NMR spectrum of 1b (100 MHz, CDCl3). 
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Spectrum 3. 1H-NMR spectrum of 1,4-diacetoxy-2,5-diiodobenzene (400 MHz, CDCl3). 

 
Spectrum 4. 13C-NMR spectrum of 1,4-diacetoxy-2,5-diiodobenzene (100 MHz, CDCl3). 
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Spectrum 5. 1H-NMR spectrum of 1c (400 MHz, CDCl3). 

 
Spectrum 6. 13C-NMR spectrum of 1c (100 MHz, CDCl3). 
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Spectrum 7. 1H-NMR spectrum of 1,4-bis(t-butyldimethylsilanyloxy)-2,5-diiodobenzene (400 MHz, CDCl3). 

 
Spectrum 8. 13C-NMR spectrum of 1,4-bis(t-butyldimethylsilanyloxy)-2,5-diiodobenzene (100 MHz, CDCl3). 
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Spectrum 9. 1H-NMR spectrum of 1d (400 MHz, CD2Cl2). 

 
Spectrum 10. 13C-NMR spectrum of 1d (100 MHz, CD2Cl2). 
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Spectrum 11. 1H-NMR spectrum of 2b (500 MHz, CD2Cl2). 

 
Spectrum 12. 13C-NMR spectrum of 2b (100 MHz, CD2Cl2). 
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Spectrum 13. 1H-NMR spectrum of 2c (400 MHz, CDCl3). 

 
Spectrum 14. 13C-NMR spectrum of 2c (100 MHz, CDCl3). 
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Spectrum 15. 1H-NMR spectrum of 2d (400 MHz, CD2Cl2). 

 
Spectrum 16. 13C-NMR spectrum of 2d (100 MHz, CD2Cl2). 
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Spectrum 17. 1H-NMR spectrum of 3 (400 MHz, CD2Cl2). 

 
Spectrum 18. 13C-NMR spectrum of 3 (100 MHz, CD2Cl2). 
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Spectrum 19. 1H-NMR spectrum of 4b (500 MHz, THF-d8). 

 
Spectrum 20. 13C-NMR spectrum of 4b (125 MHz, THF-d8). 
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Spectrum 21. 1H-NMR spectrum of 4c (400 MHz, CDCl3). 

 
Spectrum 22. 13C-NMR spectrum of 4c (100 MHz, CDCl3). 
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First Korean Church in Cambridge has been an important part of my life since I came to MIT. 

The non-English speaking, “foreign” student felt much loneliness, homesick, and depression, but 
the church was where my soul and spirit gained comforts from above. I would like to give my 
true appreciation to Pastor Taewhan Kim and all brothers and sisters there, especially to 7GY 
and CJN2. Without their prayers and love through Christ, I would have not even sustained the 
graduate life. 

 
I am mostly grateful to my parents and my two younger brothers. There is nothing to compare 

with their unconditional love and support. [절 낳아주시고 길러주시고 늘 기도와 격려를 아끼지 
않으시는 부모님께 뭐라고 감사의 말씀을 드려야 할까요. 부모님의 수고와 인내와 헌신과 교육에 대한 

열정이 아니었던들, 어떻게 제주도 촌구석에서 이곳 미국까지 올 생각이나 했을까 싶습니다. 지금까지 

고생하신 두분에게 이 작은 결실이 위로가 되길 바라고, 위로부터 오는 참 안식과 평화를 얻게 되시길 늘 

기도합니다. 늘 기도로 사랑으로 응원해 주시는 장모님께 같은 감사의 말씀을 전합니다. 하시는 사역에 

늘 하나님의 도우심이 함께 하시길, 그리고 언젠가 저희가 같이 동역할 수 있게 되길 빕니다.] I have to 
thank my dear Yunmi, but the words in this world are not enough to express my heart. She is just 
perfect for me, and I am always sorry not to love her enough that she deserves. May God 
continually bless on her research and keep her health. 

 
I realized it is God who chose and called me to this place. He first loved me and visited me 

even though I did not know Him. He is so good and faithful. He made this fruit possible, through 
the help of every single person around me, and He deserves all the credits. I always pray that my 
life will be worthy of Him. Glory be to Him, always. 

 
 

Everything comes from him; Everything happens through him; Everything ends up in him. 
(Romans 11:36) 


