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Abstract

This thesis focuses on the numerical solution of a kinetic description of small scale
dilute gas flows when the Navier-Stokes description breaks down. In particular, it in-
vestigates alternative solution techniques for the Boltzmann equation typically used
when the Knudsen number (ratio of molecular mean free path to characteristic length
scale of flow) exceeds (approximately) 0.1. Alternative solution methods are required
because the prevalent Boltzmann solution technique, Direct Simulation Monte Carlo
(DSMC), experiences a sharp rise in computational cost as the deviation from equi-
librium decreases, such as in low signal flows. To address this limitation, L. L. Baker
and N. G. Hadjiconstantinou recently developed a variance reduction technique [5]
in which one only simulates the deviation from equilibrium. This thesis presents the
implementation of this variance reduction approach to a Runge-Kutta Discontinuous
Galerkin finite element formulation in multiple spatial dimensions. Emphasis is given
to alternative algorithms for evaluating the advection operator terms, boundary fluxes
and hydrodynamic quantities accurately and efficiently without the use of quadrature
schemes. The collision integral is treated as a source term and evaluated using the
variance-reduced Monte Carlo technique presented in [10, 9].

For piecewise linear (p = 1) and quadratic (p = 2) solutions to the Boltzmann
equation in 5 spatial dimensions, the developed algorithms are able to compute the
advection operator terms by a factor of 2.35 and 2.73 times faster than an algorithm
based on quadrature, respectively; with the computation of hydrodynamic quantities,
the overall performance improvement is a factor of 8.5 and 10, respectively. Although
the collision integral takes up to 90% or more of the total computation cost, these
improvements still provide tangible efficiency advantages in steady-flow calculations in
which less expensive transient collision-operator calculation routines are used during
a substantial part of the flow development.

High order convergence in physical space has been verified by applying the imple-
mented RKDG method on a test problem with a continuous solution. Furthermore,
when applied to pressure driven Poiseuille flow through a rectangular channel, the
steady state mass flux in the collisionless limit (where exact results exist) agrees within
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0.5%, 0.8% and 1.2% of that obtained by Sone and Hasegawa [14] for aspect ratios of
1, 2 and 4 respectively under a spatial resolution of 52 × 103 . For Kn = 0.2, 1 and
10, our results agree with those obtained by Sone and Hasegawa [14] from solutions
of the linearized Boltzmann-Krook-Welander(BKW) equation by comparing them at
an “equivalent” Knudsen number of 1.27Kn [21]. These results validate the imple-
mentation and demonstrate the feasibility of the variance-reduced RKDG method for
solving the full Boltzmann equation in multiple spatial dimensions.

To pursue higher accuracy for this pressure driven flow problem, a p = 1 scheme
was found to be more efficient than a p = 2 scheme at a coarser spatial discretization.
This can be achieved by using finer spatial discretization and non-uniform spacing
to generate more elements near regions of discontinuities or large variations in the
molecular distribution function.

Thesis Supervisor: Nicolas G. Hadjiconstantinou
Title: Associate Professor
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Chapter 1

Introduction

As the functional parts of micro- and nano-engineered devices become smaller, their

mechanical and thermal responses are expected to deviate from well studied con-

tinuum behavior. For small scale, dilute gas flows, the validity of the continuum

assumption can be quantified by the Knudsen number (Kn), a dimensionless ratio

of the molecular mean free path to the characteristic length scale of the flow [1].

At Knudsen numbers Kn & 0.1, the Navier-Stokes equations of continuum fluid

mechanics break down. In such flow regimes, an accurate description of gaseous hy-

drodynamics requires a kinetic approach such as the Boltzmann equation. The range

0.1 . Kn . 10 corresponds to a flow regime where the full Boltzmann equation must

be solved for an accurate description of dilute gas flow. At Kn & 10, collisions are so

infrequent that one can obtain reasonably accurate solutions by neglecting collisions

and solving the collisionless Boltzmann equation.

Currently, the prevalent method for solving the Boltzmann equation is Direct

Simulation Monte Carlo (DSMC) [2, 3], a stochastic particle simulation technique.

Unfortunately, the computational cost of DSMC increases sharply as the deviation

from equilibrium decreases, which makes the method computationally inefficient for

providing low statistical uncertainty [4] solutions to low speed (or in general, low-

signal1) flows. To address this limitation, L. L. Baker and N. G. Hadjiconstantinou

1Here, low signal flows include flows with low Mach number and/or temperature gradients where
the deviation of the distribution function from its initial equilibrium state is small.
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recently developed a variance reduction technique [5] in which one only simulates the

deviation from equilibrium. The variance reduction technique can be combined with

a Runge Kutta Discontinuous Galerkin (RKDG) [6] formulation of the full Boltz-

mann equation to accurately simulate dilute gas flows at a computational cost that

is independent of the deviation from equilibrium.

The discontinuous Galerkin (DG) method is a finite element method capable of

providing high order spatial (both physical and velocity space) discretization while

allowing for solutions with discontinuities across elements [6, 7]. High order dis-

cretization in time for hyperbolic equations can be achieved by combining the DG

method with a strong stability preserving Runge-Kutta (RK) time integration scheme

[8]. Hence, when implemented with variance reduction, the RKDG [6] method has

the potential to efficiently and accurately solve the Boltzmann equation for problems

which involve propagating discontinuities while exhibiting arbitrarily small deviations

from equilibrium.

The objective of this project is to implement and demonstrate the feasibility of

a variance-reduced RKDG solver for the full Boltzmann equation in multiple spatial

dimensions. This work follows the development of an efficient variance reduction ap-

proach [9, 10] which treats the weak form of the collision integral as a source term at a

cost that is comparable to evaluating the advection operator of the Boltzmann equa-

tion. This thesis also presents efficient algorithms developed to evaluate, in higher

spatial dimensions, the advection operator and hydrodynamic quantities of interest

from the discretized molecular distribution function. The effectiveness of these al-

gorithms will be assessed in particular, together with the accuracy and efficiency of

the overall method for solving the full Boltzmann equation for small scale, low speed

flows in multiple spatial dimensions.

1.1 Overview

The next chapter introduces the kinetic description of gas flow and the Boltzmann

equation. A non-dimensional problem formulation is presented and the procedure for
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obtaining hydrodynamic fields from the kinetic description is discussed. We also intro-

duce the physical test problem used for validating our results, namely 2-dimensional

pressure driven flow through a rectangular channel.

Chapter 3 presents the formulation and implementation details of the RKDG

method with variance reduction. Emphasis is given to the alternative algorithms de-

veloped to evaluate the advection operator terms, boundary fluxes and hydrodynamic

quantities accurately and efficiently without the use of quadrature schemes. A com-

parison of the computational cost of the new algorithms with standard algorithms

based on quadrature is also provided.

Chapter 4 provides validation of our 2-dimensional (in physical space) RKDG im-

plementation using a simple test problem with a continuous solution. The RKDG

implementation is validated by comparing the obtained spatial convergence rates with

theoretically predicted values. Convergence tests are also performed for disturbances

propagating along 1 and 2 spatial dimensions to investigate the effects of dimension-

ality on the spatial convergence rates.

In chapter 5, the RKDG method is applied, with variance reduction, to the pres-

sure driven flow problem. Convergence in both physical and velocity space is investi-

gated in the collisionless limit using the collisionless Boltzmann equation. Tests are

also performed using the full Boltzmann equation to obtain the steady state results

for Kn = 0.2, 1 and 10.

Finally, conclusions drawn from this thesis and recommendations for future re-

search are given in chapter 6.
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Chapter 2

Background

2.1 Kinetic Theory and the Boltzmann Equation

In kinetic theory, the state of a dilute gas can be described [1, 2, 11] by the molecular

distribution function f ∗ = f ∗(x∗,v∗, t∗), defined such that f ∗d3x∗d3c∗ corresponds to

the expected number of molecules located in the region d3x∗ about x∗ with velocities

in the range d3c∗ about c∗ at time t∗. (A * sign indicates that the quantity is

dimensional.) The evolution of the distribution function in time is governed by the

Boltzmann equation [1, 2, 11]

∂f ∗

∂t∗
+ c∗ · ∂f

∗

∂x∗
+ a∗ · ∂f

∗

∂c∗
=

[
df∗

dt∗

]
coll

(2.1)

where a∗ = F∗/m∗ is the acceleration due to a body force F∗ acting on a molecule

with mass m∗.

The Boltzmann equation is essentially a conservation equation for the distribu-

tion function f ∗ in 6-dimensional phase space (3 dimensional physical space and 3

dimensional velocity space) and remains valid across all flow regimes under general

flow conditions1. On the left of the equation, the advection operator accounts for

changes in f ∗ (in time) due to changes in molecule positions by virtue of their veloci-

ties
(
c∗ · ∂f∗

∂x∗

)
and due to changes in molecule velocities by virtue of their accelerations

1See [1, 2, 11, 12] for the assumptions inherent in the derivation of the Boltzmann equation
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under body forces
(
a∗ · ∂f∗

∂c∗

)
. The collision integral

[
df∗

dt∗

]
coll

accounts for changes in

f ∗ due to impulsive changes in molecule velocities from intermolecular collisions and,

for the hard sphere gas studied in this thesis, can be expressed as

[
df∗

dt∗

]
coll

=

∫ ∫
(f ∗′1 f

∗′ − f ∗1 f
∗) g∗σ∗d2Θ d3c∗1 (2.2)

where

f ∗ ≡ f ∗ (x∗, c∗, t∗) (2.3)

f ∗1 ≡ f ∗ (x∗, c∗1, t
∗) (2.4)

f ∗′ ≡ f ∗ (x∗, c∗′, t∗) (2.5)

f ∗′1 ≡ f ∗ (x∗, c∗′1 , t
∗) (2.6)

Post collision quantities in equations 2.2, 2.5 and 2.6 are superscripted with a prime.

The pre- and post-collision velocities are related through the scattering angle Θ,

which extends over the entire unit sphere in equation 2.2 to account for scattering in

all possible directions. Integration over c∗1 extends over the entire space to account for

molecules with all possible velocities c∗1 colliding with the molecule of interest with

velocity c∗. Collisions are assumed to be elastic so the relative speed g∗ ≡ ‖c∗1−c∗‖ =

‖c∗′1 −c∗′‖. For hard spheres of diameter d∗, the (differential) collision cross-section is

given by σ∗ = d∗2/4. Details on the interpretation as well as alternative formulations

of the collision integral can be obtained from [1, 2, 9, 10].
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2.1.1 Non-dimensional Boltzmann Equation

This thesis uses the same set of dimensionless variables defined in [9, 10] and given

again here:

t = t∗/t̄∗ (2.7)

x = x∗/λ∗ (2.8)

c = c∗/c̄∗ (2.9)

f =
(
c̄∗3/n̄∗

)
f ∗ (2.10)

a = (t̄∗/c̄∗) a∗ (2.11)

σ = n̄∗λ∗σ∗ (2.12)

In other words, the characteristic length scale is chosen as the molecular mean free

path λ∗ which, in the case of hard sphere gas molecules of diameter d∗, is given by

λ∗ =
1√

2πd∗2n̄∗
(2.13)

where n̄∗ is a reference number density. The characteristic velocity is chosen as the

most probable molecular speed

c̄∗ =

√
2k∗T̄ ∗

m∗ (2.14)

where k∗ is the Boltzmann’s constant and T̄ ∗ is a reference temperature. The char-

acteristic timescale is chosen to be

t̄∗ =

√
2

π

λ∗

c̄∗
(2.15)

which is also the mean time between collisions for hard sphere gas molecules.

Using the set of dimensionless variables defined from equations 2.7 to 2.12, the
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Boltzmann equation can be written as [9, 10]

∂f

∂t
+

√
π

2
c · ∂f

∂x
+ a · ∂f

∂c
=

[
df

dt

]
coll

(2.16)

where the dimensionless form of the collision integral is given by

[
df

dt

]
coll

=

√
π

2

∫ ∫
(f ′1f

′ − f1f) g σ d2Θ d3c1 (2.17)

2.1.2 Maxwell Boltzmann Distribution

The Maxwell-Boltzmann distribution is the equilibrium distribution for the Boltz-

mann equation [1, 11]. Its dimensionless form is given by [1]

fMB (c) ≡ nMB
(
π TMB

)−3/2
exp

(
−
∥∥c− uMB

∥∥2

TMB

)
(2.18)

and is completely characterized by the non-dimensional number density nMB =

nMB∗/ n̄∗, temperature TMB = TMB∗/ T̄ ∗, and mean velocity uMB = uMB∗/ c̄∗.

2.1.3 Collisionless Boltzmann Equation

As the Knudsen number (Kn) increases, collisions become less frequent and their

corresponding effect on the distribution function f decreases. In the limit ofKn→∞,

the contribution from the collision integral in equation 2.16 goes to zero and dilute gas

flows can be approximated by the collisionless Boltzmann equation, which is given,

in dimensionless form, by

∂f

∂t
+

√
π

2
c · ∂f

∂x
+ a · ∂f

∂c
= 0 (2.19)

A simplified form of the collisionless Boltzmann equation 2.19 is used in the test prob-

lems presented in chapters 4 and 5 to investigate the convergence of the Runge-Kutta

Discontinuous Galerkin (RKDG) method in physical and velocity space. In conver-

gence tests, collisions are not desired because they introduce statistical uncertainty
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(“noise”) into the distribution function f , which could saturate the steady-state error

and corrupt the spatial convergence rates. In addition, the collisionless Boltzmann

equation can be useful in test problems for investigating the accuracy of the RKDG

method in capturing propagating discontinuities, since the absence of collisions means

that the latter are not smoothed out.

2.1.4 Hydrodynamic Fields

Macroscopic properties of interest, such as the number density n, bulk fluid velocity

u, stress tensor P, temperature T and heat flux q, can be obtained from moments of

the distribution function f as follows [9]

n =

∫
fd3c (2.20)

ui =
1

n

∫
cifd

3c (2.21)

Pij =

∫
(ci − ui) (cj − uj) fd

3c (2.22)

T =
2

3n

∫
‖c− u‖fd3c (2.23)

qi =
1

2

∫
(ci − ui) ‖c− u‖fd3c (2.24)

The fluid static pressure p can be computed from the trace of the stress tensor as

follows

p =
Pii
3

(2.25)

The dimensional values for these properties can be obtained as follows [9]

n∗ = n̄∗n (2.26)

u∗ = c̄∗u (2.27)

P∗ ( or p∗) = n̄∗m∗c̄∗2P ( or p) (2.28)

T ∗ = T̄ ∗T (2.29)

q∗ = m∗n∗c̄∗3q (2.30)

17



2.2 Pressure Driven Flow Problem

The test problem for this thesis is 2-dimensional flow through a rectangular chan-

nel with diffuse walls, driven by a constant pressure gradient ∂p
∂x3

= ∆p
∆x3

along the

channel length (x3-axis). The computational domain is the channel cross-section of

dimensionless length L and width H centered at the origin of the x1-x2 plane. The

Knudsen number for this problem is defined as

Kn =
1

min (L, H)
=

1

H
(2.31)

since the aspect ratio, defined as

AR =
L

H
, (2.32)

is chosen to be larger than 1 for all test cases considered.

We will use the symmetry of the flow about the x1 and x2 axes to reduce the

computational cost of our calculation. In particular, the computational domain can

be reduced to the positive quadrant of the x1-x2 plane with dimensionless length L/2

and width H/2. This gives a factor of 4 reduction in the number of elements required

to mesh the spatial domain with the same resolution.

The distribution function f in the domain will be initialized as the equilibrium

Maxwell Boltzmann distribution fMB with zero mean velocity. Similarly, the bound-

ary condition for f at the walls x1 = L/2 and x2 = H/2 is fMB with zero mean

velocity (the walls are stationary). The boundary conditions at the two symmetry

boundaries x1 = 0 and x2 = 0 are imposed as follows,

x1 = 0: f(x1, x2, c1, c2, c3, t) = f(x1, x2,−c1, c2, c3, t) (2.33)

x2 = 0: f(x1, x2, c1, c2, c3, t) = f(x1, x2, c1,−c2, c3, t) (2.34)

Both implementations capture symmetry in the c3 component of molecular velocity

about the x1- and x2-axis. However, they also capture anti-symmetry in c1 and c2

about the boundaries x1 = 0 and x2 = 0, respectively. The boundary conditions 2.33
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and 2.34 are valid for both stationary walls, as well as walls that are moving towards

or away from each other at equal speeds.

The RKDG solutions to this test problem for the collisionless case (Kn = ∞) and

0.1 . Kn . 10 will be presented in chapter 5. Results will be compared to those

obtained by Sone and Hasegawa [14] to validate the accuracy of our implementation.
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Chapter 3

Variance Reduced Discontinuous

Galerkin Method

This chapter presents the application of the discontinuous Galerkin (DG) [6] frame-

work with variance reduction to the Boltzmann equation. A strong stability pre-

serving Runge-Kutta time integration scheme [8] is used to provide high order time

discretization. This combination, which is known as Runge-Kutta discontinuous

Galerkin (RKDG) [6], is very suitable for solving strongly hyperbolic equations, such

as the Boltzmann equation. The DG formulation to be presented is similar to that

in [9]. Variance reduction is introduced using the technique developed in [5, 9, 10]

for evaluating the collision integral term efficiently. However, unlike [9] which focuses

on the collision integral implementation, this chapter will focus on an alternative

implementation of the advection operator terms to limit the increase in the RKDG

computational cost with higher spatial dimensions.
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3.1 Formulation

3.1.1 Variance Reduction

As in [5], variance reduction is introduced by separating the distribution function into

a deviational and an equilibrium part

f = fd + fMB (3.1)

where fMB is an arbitrary equilibrium distribution. For simplicity, fMB will be chosen

as a Maxwell-Boltzmann distribution that is independent of space and time, which

then allows the Boltzmann equation to be written as

∂fd

∂t
+

√
π

2
c · ∂f

d

∂x
+ a · ∂f

d

∂c
=

[
dfd

dt

]
coll

− a · ∂f
MB

∂c
(3.2)

Detailed expressions of the variance-reduced collision integral
[
dfd

dt

]
coll

and its weak

form can be obtained from [9, 10].

Although the distribution function f = fd + fMB is defined over a velocity space

of infinite span in all dimensions, a truncated velocity space −4 ≤ ci ≤ 4 (i = 1 to

3) is used in the interest of computational efficiency. This is justified in low speed

flow problems where the distribution function decays very quickly to zero for large

molecular velocities c.

3.1.2 Discontinuous Galerkin(DG) Discretization

The 6 dimensional computational domain D of physical and velocity space can be

discretized into finite elements Ω, which together, make up the discretized domain Dh.

The DG formulation aims to find a discretized approximation fdh to the deviational

distribution fd within a finite dimensional solution space of functions χph that are

piecewise polynomial up to order p in each dimension within every element Ω but not

necessarily continuous across the element boundaries. A more precise definition for
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the solution space is given by

χph =
[
v ∈ L2 (D) ; v|Ω ∈ ℘p (Ω) ∀ Ω ∈ Dh

]
(3.3)

The relaxation of continuity across elements allows fdh , as well as any member

of χph, to be defined independently within each element as continuous polynomial

functions. The projection of fdh in any element Ω ∈ Dh can be solved independently

by enforcing the variance-reduced Boltzmann equation 3.2 weakly over the element

Ω by requiring

∫
Ω

v

(
∂fdh
∂t

+

√
π

2
c · ∂f

d
h

∂x
+ a · ∂f

d
h

∂c

)
d6Ω =

∫
Ω

v

([
dfdh
dt

]
coll

− a · ∂f
MB

∂c

)
d6Ω (3.4)

for all test functions v ∈ χph. The test functions v are chosen to be non-zero only

across the element Ω, so equation 3.4 also holds when the integrals extend over the

entire spatial domain. From this point onwards, to simplify the notation, fd will be

taken to mean the finite element approximation fdh .

Within each element Ω, fd ≡ fd (x, c, t) ∈ χph and v ≡ v (x, c) can be expanded

in terms of a set of basis functions spanning the local polynomial space ℘p (Ω) as

follows

fd|Ω =
Ns∑
i=1

f̂dΩ,i (t) φi (x, c) (3.5)

v|Ω =
Ns∑
j=1

v̂Ω,j φj (x, c) (3.6)

where Ns is the number of basis functions per element and f̂dΩ,i is the modal coef-

ficient of the ith basis function for fd in element Ω. A coordinate transformation

(x, c) →
(
~ξ
)

can be used to map each element to a reference element where the basis

functions φj (x, c) = φj

(
~ξ
)

are defined. The basis functions are also defined to be

non-zero only over the element Ω for consistency with the definition of v.
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Applying integration by parts, equation 3.41 can be expanded into

∫
Ω

v
∂fd

∂t
d6Ω +

∫
Γ

v fd
(√

π

2
c · nx + a · nc

)
d5Γ −∫

Ω

fd
(√

π

2
c · ∂v

∂x
− a · ∂v

∂c

)
d6Ω =

∫
Ω

v

([
dfd

dt

]
coll

− a · ∂f
MB

∂c

)
d6Ω (3.7)

where nx and nc are the outward-normal vectors of the element Ω in physical and

velocity space respectively, and |nx|2 + |nc|2 = 1; Γ denotes the 5 dimensional surface

of the element Ω. In the present work, body forces are negligible so we can set a = 0.

Next, to apply the pressure gradient κ = ∂p
∂x3

in our test problem, an extra source

term [13] is included to the right of equation 3.7, which becomes

mass matrix term︷ ︸︸ ︷∫
Ω

v
∂fd

∂t
d6Ω +

surface residual︷ ︸︸ ︷∫
Γ

vh d5Γ −

volume residual︷ ︸︸ ︷∫
Ω

fd
√
π

2
c · ∂v

∂x
d6Ω

=

∫
Ω

v

[
dfd

dt

]
coll

d6Ω︸ ︷︷ ︸
collision integral term

+

∫
Ω

v κfMB d6Ω︸ ︷︷ ︸
pressure gradient term

(3.8)

where fMB is the equilibrium distribution and h is the Riemann solution to

fd
(√

π
2

c · nx + a · nc

)
= fd

(√
π

2
c · nx

)
since a = 0. As the convective terms in the

Boltzmann equation are linear, h is exactly the upwind numerical flux.

Substituting the basis expansions 3.5 and 3.6 into equation 3.8 and requiring the

resulting equation to hold for any set of coefficients v̂Ω,j (i.e. ∀ v|Ω ∈ ℘p (Ω) ≡

∀ v ∈ χph), we obtain

Ns∑
i=1

∂f̂dΩ,i
∂t

∫
Ω

φjφi d
6Ω =

residual︷ ︸︸ ︷
−
∫

Γ

φjh d
5Γ +

√
π

2

Ns∑
i=1

f̂dΩ,i

∫
Ω

φic ·
∂φj
∂x

d6Ω

+

∫
Ω

φj

[
dfd

dt

]
coll

d6Ω +

∫
Ω

φj κf
MB d6Ω (3.9)

which must hold for all j = 1 to Ns. Equation 3.9 defines an Ns×Ns linear system of

1Note that fd
h has been replaced with fd in 3.4 for simplicity in notation
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equations which can be solved independently in each element Ω for
∂f̂d

Ω,i

∂t
. The latter

can then be integrated in time using a (strong stability preserving [6]) Runge Kutta

method to give the time evolution of f̂dΩ,i, and thus fd|Ω.

3.1.3 Boundary Conditions

In the DG formulation, boundary conditions are imposed weakly by specifying the

numerical fluxes (the upwind flux in our problem) at the element boundaries. For

elements that are adjacent to the channel walls, the diffuse wall boundary condition

[11, 15] is imposed at element edges coincident with the wall. Currently, this is the

most popular model [15, 16] for capturing the behavior of engineering surfaces of

practical interest. This model requires no net mass flux through the wall, which

implies that gas molecules cannot penetrate but are reflected back after hitting the

wall; particles reflected back from the wall follow a distribution function nwallfwall (c)

where

fwall (c) =
(
π Twall

)−3/2
exp

(
−
∥∥c− uwall

∥∥2

Twall

)
(3.10)

is a normalized2 distribution at equilibrium with the wall, uwall is the wall velocity

and Twall is the wall temperature. The variable nwall can be “thought of” as the

number density of an infinite expanse of gas in equilibrium with the wall. The mass

conservation requirement can be implemented as follows

(Incoming mass flux)

∫
(c−uwall) · ñ < 0

[(
c− uwall

)
· ñ
] (
fMB + fd

)
d3c =

(Outgoing mass flux) −
∫
(c−uwall) · ñ > 0

[(
c− uwall

)
· ñ
] (
nwallfwall

)
d3c (3.11)

where ñ is the unit normal to the wall pointing into the gas. Equations 3.11 and

3.10 allow nwall to be determined, which completely determines the distribution

nwallfwall (c) of outgoing particles. This formulation is sufficiently robust to be ap-

plied to problems with stationary or moving walls in all spatial directions.

2Normalized here refers to a distribution with unit number density
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3.2 Implementation Details

The following sections provide a description of the implementation details of the

variance-reduced RKDG method for solving the Boltzmann equation in 6-dimensional

phase space. However, in this thesis, our actual implementation is limited to a 5-

dimensional space (x1, x2, c1, c2, c3).

3.2.1 Spatial Discretization

In this thesis, a rectangular grid is used to mesh the discretized computational domain

Dh in 6-dimensional phase space. For a general rectangular element Ω bounded

between ri,min and ri,max (i = 1 to 6), each dimension ri in phase space can be

mapped linearly to a reference element coordinate −1 ≤ ξi ≤ 1 using

ri = riΩ +
ξi
2

∆riΩ (3.12)

where

ri =

 xi for i = 1 to 3

ci−3 for i = 4 to 6
(3.13)

and

riΩ = (ri,min + ri,max) /2 (3.14)

∆riΩ = ri,max − ri,min (3.15)

3.2.2 Time Discretization

Time discretization is performed using a third order, strong stability preserving

Runge-Kutta (RK3ssp) [8] method. The RK3ssp algorithm to advance one time-step
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∆tk from time tk to tk+1 is accurate up to O (∆t3k) and is given by

f̂
d (1)
Ω = f̂dΩ (tk) + ∆tk L̃

(
f̂dΩ (tk)

)
(3.16)

f̂
d (2)
Ω =

3

4
f̂dΩ (tk) +

1

4

[
f̂
d (1)
Ω + ∆tk L̃

(
f̂
d (1)
Ω

)]
(3.17)

f̂dΩ (tk+1) =
1

3
f̂dΩ (tk) +

2

3

[
f̂
d (2)
Ω + ∆tk L̃

(
f̂
d (2)
Ω

)]
(3.18)

where f̂dΩ is the vector of basis function coefficients for fd|Ω and L̃
(
f̂dΩ

)
represents the

linear system solution of
∂ f̂d

Ω

∂t
in equation 3.9. The maximum stable time-step ∆t is

determined from the Courant-Friederichs-Levy (CFL) condition

∆t ≤ CFLL2

2√
πvmax

min (∆xi , i = 1 to 3) (3.19)

where CFLL2 is the CFL number required for L2 stability of the overall RKDG

method. In this thesis, the CFL number is computed as

CFLL2 =
1

2p+ 1
(3.20)

which is a practical but conservative estimate3 of the numerically determined stability

limits for p ≤ 2 for RK schemes of order 3 [6].

3.2.3 Basis Functions

The basis functions used in this thesis are tensor products of Legendre polynomials,

which are defined on the 6-dimensional reference element as

φs(~ξ) =
6∏

k=1

ψnk
(ξk) (3.21)

where ψnk
(ξk) (nk = 0 to p) is the Legendre polynomial of order nk evaluated at

coordinate ξk in the kth spatial dimension of the reference element. The basis function

3For DG discretizations where polynomials of degree p are used together with a p + 1 stage RK
scheme that is accurate up to order p + 1, equation 3.20 is exact for 0 ≤ p ≤ 1 and underestimates
the numerically determined stability limits of CFLL2 by less than 5% for p ≥ 2.
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index s, which ranges from 1 to Ns = (p+ 1)6, is given by

s =
6∑

k=1

nk (p+ 1)6−k (3.22)

A tensor product basis is known to produce a well-conditioned mass matrix for all

orders p of the local polynomial space ℘p (Ω), thus enhancing stability to the linear

system solution for ∂ f̂d
Ω

∂t
. In addition, the following sections will show that when

this basis is used with rectangular elements, a combination of sum factorization and

analytical expressions for the inner products and moments of Legendre polynomials

can be used to compute the volume residual, surface residual, pressure gradient term,

boundary fluxes and hydrodynamic fields accurately without the use of quadrature

schemes.

3.2.4 Mass Matrix

The mass matrix is given by the tensor

Mji =

∫
Ω

φj(r)φi(r) d
6Ω = J

∫
Ω̂

φj(~ξ)φi(~ξ) d
6~ξ (3.23)

where Ω̂ is the 6-dimensional reference element, the Jacobian J is given by

J =

∣∣∣∣∂r
∂~ξ

∣∣∣∣ =
6∏
i=1

(
∆riΩ

2

)
(3.24)

and ∆riΩ is the element size as defined in equation 3.15.

By expanding the basis functions φi and φj into a tensor product form using

equation 3.21, sum factorization can be applied to express Mji as

Mji = J
6∏

k=1

Ψn′k nk
(3.25)
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where 0 ≤ nk ( or n′k) ≤ p and

Ψn′k nk
=

∫ 1

−1

ψnk
(ξk)ψn′k (ξk) dξk =

2

2nk + 1
δnk n

′
k

(3.26)

by applying the orthogonality of Legendre polynomials (see Appendix A). The symbol

δnk n
′
k

represents the 2nd order identity tensor. The mass matrix (or basis function)

indices j and i can be computed from n′k and nk respectively using equation 3.22 for

k = 1 to 6.

The resultant mass matrix is a Ns ×Ns diagonal matrix and remains constant in

all elements Ω. A diagonal mass matrix decouples the linear system 3.9 and reduces

the sensitivity of the solution to perturbations in the residual, which is expected to

come mainly from the statistical “noise” of evaluating the collision integral term using

a particle-based variance reduction approach [9, 10].

3.2.5 Volume Residual

The volume residual for each element Ω is given by the vector

V Rj =

√
π

2

Ns∑
i=1

f̂dΩ,i

∫
Ω

φi c ·
∂φj
∂x

d6Ω =

√
π

2
J

3∑
m=1

(
2

∆xmΩ

Ns∑
i=1

f̂dΩ,iV
m
ji

)
(3.27)

where

V m
ji =

∫
Ω̂

φi cm
∂φj
∂ξm

d6~ξ, (3.28)

J is the Jacobian defined in equation 3.24, ∆xmΩ
is the element size in dimension

xm as defined in equation 3.15 and Ω̂ is the 6-dimensional reference element. The

basis indices i and j range from 1 to Ns = (p+ 1)6, where p is the degree of the local

polynomial space in each spatial dimension.

The basis functions φi and φj can be expanded into tensor products of Legendre

polynomials using equation 3.21. Sum factorization can then be used to express the
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integral V m
ji as

V m
ji =

(∫ 1

−1

ψnm

dψn′m
dξm

dξm

)
︸ ︷︷ ︸

Ψ′
n′mnm

(∫ 1

−1

cmψn
(3+m)

ψn′
(3+m)

dξ(3+m)

)
︸ ︷︷ ︸

[cΨ]n′
(3+m)

n
(3+m)

∏
k=[1,6]\{m,3+m}

Ψn′k nk

(3.29)

where Ψn′k nk
is as defined in equation 3.26 and 0 ≤ nk (or n′k) ≤ p. The basis indices

j and i can be computed from n′k and nk respectively using equation 3.22 for k = 1

to 6.

The derivatives
dψn′m
dξm

can be expressed in terms of Legendre polynomials and

derivatives of order less than n′m (see Appendix A). Then, by using the orthogonality

property in equation 3.26, the second order tensor Ψ′
n′mnm

can be reduced to a sparse,

lower triangular, Toeplitz matrix with diagonals alternating between 0 and 2, starting

with 0’s on the leading diagonal (see Appendix A). This can be expressed concisely

as

Ψ′
n′mnm

=

 2 if n′m > 0 and nm = n′m − 1− 2q

0 otherwise
(3.30)

where q is an integer in the range 0 ≤ q ≤
⌊
n′m−1

2

⌋
.

Next, by expressing the velocity component cm (in element Ω) in terms of the

reference coordinate ξ(3+m) using equation 3.12, [cΨ]n′
(3+m)

n
(3+m)

can be expressed as

[cΨ]n′
(3+m)

n
(3+m)

=

∫ 1

−1

cmψn
(3+m)

ψn′
(3+m)

dξ(3+m)

= cmΩ
Ψn′

(3+m)
n

(3+m)
+

∆cmΩ

2

∫ 1

−1

ξ(3+m)ψn
(3+m)

ψn′
(3+m)

dξ(3+m) (3.31)

Using equation 3.26 for Ψn′
(3+m)

n
(3+m)

and a closed form expression for the 1st moment

inner product represented by the second term (see Appendix A), [cΨ]n′
(3+m)

n
(3+m)

can
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be reduced to a tridiagonal matrix, which can be expressed concisely as

[cΨ]d′d =



cmΩ

2
2d′+1

if d = d′

∆cmΩ

2
2d′

(2d′−1)(2d′+1)
if d = d′ − 1

∆cmΩ

2
2(d′+1)

(2d′+1)(2d′+3)
if d = d′ + 1

0 otherwise

(3.32)

where cmΩ
is the center value of cm in element Ω and ∆cmΩ

is the element size in

dimension cm as defined in equations 3.14 and 3.15 respectively. The tensorial indices

d′ and d represent the Legendre polynomial orders n′(3+m) and n(3+m) respectively.

If V Rj is computed using sum factorization where V m
ji in equation 3.29 is evalu-

ated using standard Gaussian quadrature, the complexity would be of O(p+ 1)8 per

element. Using the analytical expressions derived for the integrals Ψn′k nk
, Ψ′

n′mnm
and

[cΨ]n′
(3+m)

n
(3+m)

, the complexity of evaluating V Rj can be reduced to O(p+ 1)6.

3.2.6 Surface Residual

The surface residual for each element Ω is given by the vector

SRj = −
√
π

2

∑
s

∫
Γs

φj hs d
5Γs (3.33)

where

hs =

 fd− (c · nx) if c · nx ≥ 0

fd+ (c · nx) if c · nx < 0
(3.34)

represents the upwind flux fd (c · nx) through the 5-dimensional surface Γs. Each

surface Γs lies between two adjacent elements Ω+ and Ω− and is characterized by a

6-dimensional surface normal n = [nx nc] which points in the direction of Ω+. In

this thesis, body force accelerations are neglected, which means that there is zero flux

through the surfaces with normals “pointing in” (or having a non-zero component)

in the velocity space dimensions. Hence, Γs only corresponds to the 5-dimensional

surfaces with normals n = [nx 0] pointing in the physical space dimensions. The

superscript + or − denotes if the value of fd at the surface Γs is evaluated within the
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adjacent element Ω+ or Ω− respectively.

In the case of rectangular elements, nx corresponds to standard unit vectors point-

ing along the principal axes in physical space. Hence,

c · nx =

 cm if nx = em

− cm if nx = −em

(3.35)

where em is the standard unit vector in physical space with a ’1’ in component m

(m = 1, 2 or 3). Furthermore, the surface Γs can be treated as a 5-dimensional

rectangle Γ+
m at xm = xm,max or Γ−

m at xm = xm,min. This can be mapped to a 5

dimensional reference surface Γ̂+
m at ξm = 1 or Γ̂−

m at ξm = −1.

In the remainder of this section, the algorithm to evaluate the surface integral

Is =
∫

Γs
φj hs d

5Γs will be described for the case of nx = em at the surface Γs = Γ+
m

for simplicity in notation. Using the above simplification for rectangular elements

and the tensor product basis expansion for φj, Is can be expressed as

Is =

∫
Γ+

m

φjf
d± cm d

5Γ+
m

= Jm
[
ψn′m (ξm)

∣∣
(ξm=1)

] ∫
Γ̂+

m

 ∏
k=[1,6]\{m}

ψn′k (ξk)

 fd± cm d5Γ̂+
m (3.36)

where fd± denotes the appropriate upwind value for fd, 1 ≤ j ≤ Ns = (p + 1)6 and

0 ≤ n′k ≤ p (k = 1 to 6). The surface Jacobian Jm is given by

Jm =
∏

k=[1,6]\{m}

(
∆rkΓs

2

)
(3.37)

where ∆rkΓs
and rk are as defined in equations 3.15 and 3.13 respectively. For surfaces

Γs that coincide with the domain boundaries, fd is evaluated based on the boundary

conditions described in section 3.1.3 and Is is then evaluated using standard Gaussian

quadrature. For surfaces that coincide with internal element boundaries, fd can be

expanded in terms of its tensor product basis functions using equations 3.5 and 3.21,
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which allows Is to be reduced, using sum factorization, to

Is = Jm

Ns∑
i=1

f̂dΩ±,i

[
ψnm

ψn′m
∣∣
(ξm=1)

]
[cΨ]n′

(3+m)
n

(3+m)

∏
k=[1,6]\{m,3+m}

Ψn′k nk
(3.38)

where f̂dΩ±,i denotes the value for f̂dΩ,i evaluated in the appropriate element Ω+ or

Ω− based on upwinding. The tensors [cΨ]n′
(3+m)

n
(3+m)

and Ψn′k nk
are as defined in

equations 3.31 and 3.26 respectively. The basis indices j and i can be computed

from n′k and nk respectively using equation 3.22 for k = 1 to 6. In the case of

Γs = Γ−
m, the Legendre polynomials ψnm

and ψn′m are evaluated at ξm = −1 instead

of ξm = 1. For nx = −em, a negative sign should be added to cm in equation 3.36

and to [cΨ]n′
(3+m)

n
(3+m)

in equation 3.38.

The complexity of evaluating SRj would scale with O(p + 1)8 per element if

Gaussian quadrature is used with sum factorization. With the analytical expressions

derived for Ψn′k nk
and [cΨ]n′

(3+m)
n

(3+m)
, the complexity can be reduced to O(p+ 1)6.

3.2.7 Pressure Gradient Term

The pressure gradient term for each element Ω is given by the vector

PRj = J κ

∫
Ω̂

φj f
MB d6Ω̂ (3.39)

where J is the Jacobian as defined in equation 3.24, κ = ∂p
∂x3

is the applied pressure

gradient, fMB is the equilibrium distribution and Ω̂ is the 6-dimensional reference

element.

By expanding φj in a tensor product form using equation 3.21 and using the

definition of fMB in equation 2.18, sum factorization can be used to express PRj as

PRj = J κnMB
(
πTMB

)−3/2
3∏

m=1

(
Ψnm

[
Ψ exp(c2)

]
n(3+m)

)
(3.40)
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where

Ψnm =

∫ 1

−1

ψnmdξm =

 2 for nm = 0

0 otherwise
(3.41)

using the orthogonality of Legendre polynomials and

[
Ψ exp(c2)

]
n(3+m)

=

∫ 1

−1

ψn(3+m)
exp

((
cm − uMB

m

)2
TMB

)
dξ(3+m) (3.42)

, which can be evaluated using standard Gaussian quadrature.

The vector(or basis) index j can be computed from nk using equation 3.22 for

k = 1 to 6. The Legendre polynomial order nk ranges from 0 to p , where p is

the degree of the local polynomial space in each dimension. The fact that Ψnm is

non-zero only for nm = 0 implies that out of the (p + 1)6 components in PRj, only

the first (p + 1)3 components are non-zero and need to be computed. Furthermore,

the tensors [Ψ exp(c2)]n(3+m)
(m = 1 to 3) can be pre-computed at a complexity of

O(p + 1)2 using Gaussian quadrature. Hence, the overall complexity of computing

PRj for each element only scales with O(p+ 1)3.

3.2.8 Boundary Flux

The diffuse wall boundary condition in equation 3.11 can be expressed as

F d + FMB = nwallFwall (3.43)

which requires the evaluation of the following boundary fluxes.

F d =

∫
(c−uwall) · ñ < 0

[(
c− uwall

)
· ñ
]
fdd3c (3.44)

FMB =

∫
(c−uwall) · ñ < 0

[(
c− uwall

)
· ñ
]
fMBd3c (3.45)

Fwall =

∫
(c−uwall) · ñ > 0

[(
c− uwall

)
· ñ
]
fwalld3c (3.46)
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where the symbols are as defined in section 3.1.3. In the case of rectangular el-

ements, the normal components of the gas molecule and wall velocity to the wall

xm = constant (m = 1, 2 or 3) can be expressed respectively as

c · ñ =

 cm if xm = xm,min

−cm if xm = xm,max
(3.47)

and

uwall · ñ =

 uwm if xm = xm,min

−uwm if xm = xm,max
(3.48)

This allows the boundary fluxes to be written, for the wall xm = xm,max, as

F d =

∫
cm >uw

m

(cm − uwm) fdd3c (3.49)

FMB =

∫
cm >uw

m

(cm − uwm) fMBd3c (3.50)

Fwall =

∫
cm <uw

m

(cm − uwm) fwalld3c (3.51)

If the wall xm = xm,min is considered, the condition on the integration limits for F d

and FMB are changed to cm < uwm while that for Fwall is changed to cm > uwm.

Using equations 3.5 and 3.21, fd can be expanded in its tensor product basis,

which allows F d to be written as

F d =
∑
∀Ωv

Ns∑
i=1

f̂dΩv ,i

(
3∏

k=1

ψnk

)∫
Ωv

(
(cm − uwm)ψn(3+m)

) ∏
k=[4,6]\{3+m}

ψnk

 d3Ωv

(3.52)

where Ωv refers to a 3-dimensional element in velocity space which satisfy the ap-

propriate condition imposed on the integration limits for F d. The index i can be

computed from nk using equation 3.22 for k = 1 to 6. At this point, it would be con-

venient to express
∑Ns

i=1 =
∑p

n1=0

∑p
n2=0

∑p
n3=0

∑p
n4=0

∑p
n5=0

∑p
n6=0 and the vector

f̂dΩv ,i
as a 7-dimensional tensor f̂dΩv ,n1,n2,n3,n4,n5,n6

. Next, by expressing the integrals

over a 3-dimensional cubic reference element Ω̂v and using sum factorization, F d, for
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the case of m = 1, can be written as

F d = Jv
∑
∀Ωv

p∑
n1,n2,n3=0

ψn1ψn2ψn3

p∑
n4=0

[(c− uw)Ψ]n4

p∑
n5=0

Ψn5

p∑
n6=0

Ψn6 f̂
d
Ωv ,n1,n2,n3,n4,n5,n6

(3.53)

where Ψnk
is as defined in equation 3.41 for k = 1 to 6 and the symbol

∑p
n1,n2,n3=0 ≡∑p

n1=0

∑p
n2=0

∑p
n3=0. The term

[(c− uw)Ψ]n(3+m)
=

∫ 1

−1

(cm − uwm)ψn(3+m)
dξ(3+m) =


2
(
cmΩv

− uwm
)

if n(3+m) = 0
∆cmΩv

3
if n(3+m) = 1

0 otherwise

(3.54)

by expressing cm (in element Ωv) in terms of the reference coordinate ξ(3+m) using

equation 3.12 and using analytical expressions for the 0th and 1st moment of Legendre

polynomials (see Appendix A). The velocity space Jacobian Jv for an element Ω is

given by

Jv =
3∏

m=1

∆cmΩ

2
(3.55)

Using the derived expressions for Ψnk
and [(c− uw)Ψ]n(3+m)

in equations 3.41 and

3.54, equation 3.53 can be simplified to

F d = 4Jv
∑
∀Ωv

p∑
n1,n2,n3=0

ψn1ψn2ψn3

(
2
(
cmΩv

− uwm
)
f̂dΩv ,n1,n2,n3,0,0,0

+
∆cmΩv

3
f̂dΩv ,n1,n2,n3,1,0,0

)
(3.56)

where m = 1. For m = 2 or 3, the expression for F d in equation 3.56 still holds by

replacing the last 3 tensorial indices of the second f̂d term from (1, 0, 0) to (0, 1, 0) or

(0, 0, 1) respectively.

The boundary flux FMB can be expressed analytically as (see Appendix B)

FMB = nMB

[
∓1

2

√
TMB

π
exp

(
− u2

rel

TMB

)
− urel

2

(
1 + sgn(uwall · ñ) erf

(
urel√
TMB

))]
(3.57)

35



where

erf

(
urel√
TMB

)
=

2√
π

∫ urel√
TMB

0

exp
(
−y2

)
dy (3.58)

is the error function evaluated at urel√
TMB

, urel = uwm − uMB
m and uMB

m is the mean ve-

locity corresponding to the equilibrium distribution fMB. The dimensionless number

density and temperature characterizing the chosen equilibrium distribution fMB are

nMB and TMB respectively, which are both set to 1 in this thesis. The signs ∓ in FMB

correspond, respectively, to boundary fluxes evaluated at the walls xm = xm,min or

xm = xm,max (m = 1, 2 or 3). The expression “sgn(uwall · ñ)” takes on a value of +1 or

−1 when the walls are moving towards or apart from each other respectively. In this

thesis, urel = 0 as both uwm and uMB are chosen to be zero. Hence, erf
(

urel√
TMB

)
= 0,

which allows FMB to be evaluated analytically without reference to tabulated results

of the error function.

The boundary flux Fwall can also be evaluated analytically as (see Appendix B)

Fwall = ±1

2

√
Twall

π
(3.59)

where Twall represents the dimensionless wall temperature and is set to 1 for all the

walls in this thesis. The signs ± in Fwall, correspond, respectively, to boundary fluxes

evaluated at the walls xm = xm,min or xm = xm,max (m = 1, 2 or 3).

3.2.9 Moments of the Distribution Function

The hydrodynamic quantities are computed from moments of the distribution func-

tion f = fMB + fd in velocity space. This section focuses on efficient algorithms

developed to evaluate the 0th, 1st and 2nd moments of fMB and fd in velocity space.

The moments of the equilibrium distribution fMB defined in equation 2.18 are
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given by (see Appendix B for derivation details)

F 0,MB =

∫
fMBd3c = nMB (3.60)

F 1,MB
m =

∫
cmf

MBd3c = nMB uMB
m (3.61)

F 2,MB
m =

∫
c2mf

MBd3c = nMB

((
uMB
m

)2
+
TMB

2

)
(3.62)

F cross,MB
mj =

∫
cmcjf

MBd3c = nMB uMB
m uMB

j (3.63)

The 0th moment of the deviational distribution fd can be evaluated as follows

F 0 =

∫
fdd3c (3.64)

=
∑
∀Ωc

Ns∑
i=1

f̂dΩ,i

∫
Ωc

φid
3c

= Jv
∑
∀Ωc

p∑
nk=0,k=[1,6]

f̂dΩv ,n1,n2,n3,n4,n5,n6

(
3∏

k=1

ψnk

)(
6∏

k=4

Ψnk

)
(3.65)

The symbol
∑p

nk=0,k=[1,6] ≡
∑p

n1=0

∑p
n2=0

∑p
n3=0

∑p
n4=0

∑p
n5=0

∑p
n6=0. Jv is the veloc-

ity space Jacobian defined in equation 3.55 and Ωc refers to a 3-dimensional velocity

space element at the point (x1, x2, x3) in physical space where F 0 is evaluated. The

0th moment Ψnk
of a Legendre polynomial ψnk

is as defined in equation 3.41 based

on Legendre orthogonality, which allows equation 3.65 to be simplified to

∫
fdd3c =

∑
∀Ωc

p∑
n1,n2,n3=0

(
3∏

k=1

ψnk

)
f̂dΩv ,n1,n2,n3,0,0,0

(3.66)

The Legendre polynomials ψnk
are evaluated at the reference element coordinate ξk

corresponding to the physical space coordinate xk (k = 1 to 3) where the moment F 0

is evaluated. This applies to the rest of the moments defined below as well.
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The 1st moment of fd is given by

F 1
m =

∫
cmf

dd3c =
∑
∀Ωc

Ns∑
i=1

f̂dΩ,i

∫
Ωc

cmφid
3c

For the case of m=1, F 1
m can be expressed as

F 1
m = Jv

∑
∀Ωc

p∑
nk=0,k=[1,6]

f̂dΩv ,n1,n2,n3,n4,n5,n6

(
3∏

k=1

ψnk

)
[cΨ]n4

Ψn5Ψn6 (3.67)

where

[cΨ]n(3+m)
=

∫ 1

−1

cmψn(3+m)
dξ(3+m) =


2cmΩc

if n(3+m) = 0
∆cmΩc

3
if n(3+m) = 1

0 otherwise

(3.68)

by expanding cm using equation 3.12 and applying the analytical expressions for the

0th and 1st moments of Legendre polynomials (see Appendix A). Using the derived

expressions for Ψnk
and [cΨ]n(3+m)

in equations 3.41 and 3.68, equation 3.67 can be

simplified to

F 1
m = 4Jv

∑
∀Ωc

p∑
n1,n2,n3=0

(
3∏

k=1

ψnk

)(
2cmΩc

f̂dΩv ,n1,n2,n3,0,0,0
+

∆cmΩc

3
f̂dΩv ,n1,n2,n3,1,0,0

)
(3.69)

where m = 1. For m = 2 or 3, equation 3.69 should be modified by replacing the last 3

tensorial indices of the second f̂d term from (1, 0, 0) to (0, 1, 0) or (0, 0, 1) respectively.

The 2nd principal moment of fd is given by

F 2
m =

∫
c2mf

dd3c =
∑
∀Ωc

Ns∑
i=1

f̂dΩ,i

∫
Ωc

c2mφid
3c

For the case of m=1, F 2
m can be expressed as

F 2
m = Jv

∑
∀Ωc

p∑
nk=0,k=[1,6]

f̂dΩv ,n1,n2,n3,n4,n5,n6

(
3∏

k=1

ψnk

)[
c2Ψ
]
n4

Ψn5Ψn6 (3.70)
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where

[
c2Ψ
]
n(3+m)

=

∫ 1

−1

c2mψn(3+m)
dξ(3+m) =



2cmΩc
+

∆cmΩc

6
if n(3+m) = 0

2cmΩc
∆cmΩc

3
if n(3+m) = 1

∆c2mΩc

15
if n(3+m) = 2

0 otherwise

(3.71)

by expanding cm using equation 3.12 and applying the analytical expressions for the

0th, 1st and 2nd moments of Legendre polynomials (see Appendix A). Using the

derived expressions for Ψnk
and [c2Ψ]n(3+m)

in equations 3.41 and 3.71, equation 3.70

can be simplified to

F 2
m = 4Jv

∑
∀Ωc

p∑
n1,n2,n3=0

(
3∏

k=1

ψnk

)
(
2cmΩc

+
∆cmΩc

6

)
f̂dΩv ,n1,n2,n3,0,0,0

+
2cmΩc

∆cmΩc

3
f̂dΩv ,n1,n2,n3,1,0,0

+
∆c2mΩc

15
f̂dΩv ,n1,n2,n3,2,0,0

 (3.72)

where m = 1. For m = 2, equation 3.72 should be modified by replacing the last 3

tensorial indices of the second and third f̂d term to (0, 1, 0) and (0, 2, 0) respectively.

For m = 3, the corresponding tensorial indices should be changed to (0, 0, 1) and

(0, 0, 2) respectively.

The 2nd cross moment of fd is given by

F cross
mj =

∫
cmcjf

dd3c =
∑
∀Ωc

Ns∑
i=1

f̂dΩ,i

∫
Ωc

cmcjφid
3c

For the case of m=1 and j=2, F cross
mj can be expressed as

F cross
mj = Jv

∑
∀Ωc

p∑
nk=0,k=[1,6]

f̂dΩv ,n1,n2,n3,n4,n5,n6

(
3∏

k=1

ψnk

)
[cΨ]n4

[cΨ]n5
Ψn6 (3.73)

Using the derived expressions for Ψnk
and [cΨ]n(3+m)

in equations 3.41 and 3.68,
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equation 3.73 can be simplified to

F cross
mj = 2Jv

∑
∀Ωc

p∑
n1,n2,n3=0

(
3∏

k=1

ψnk

)


4cmΩc
cjΩc

f̂dΩv ,n1,n2,n3,0,0,0

+
2cmΩc

∆cjΩc

3
f̂dΩv ,n1,n2,n3,0,1,0

+
2∆cmΩc

cjΩc

3
f̂dΩv ,n1,n2,n3,1,0,0

+
∆cmΩc

∆cjΩc

9
f̂dΩv ,n1,n2,n3,1,1,0

 (3.74)

where m = 1 and j = 2. For other combinations of m and j, equation 3.74 can

be modified by changing the tensorial indices of the last 3 f̂d terms as follows: the

tensorial index n(3+k) of the f̂d term is a 1 only if the f̂d term has a coefficient that

contains ∆ckΩc
where k = 1, 2 or 3. Otherwise, n(3+k) = 0.

From the computed moments above, the following hydrodynamic quantities can

be evaluated at any point (x1, x2, x3) in physical space follows:

n = F 0 + F 0,MB (3.75)

um =
F 1
m + F 1,MB

m

n
(3.76)

Pm,m =

∫
(cm − um)2 fd3c = F cross

m + F cross,MB
m − nu2

m (3.77)

Pm,j =

∫
(cm − um) (cj − uj) fd

3c = F cross
mj + F cross,MB

mj − numuj (3.78)

The proposed algorithms reduced the complexity of evaluating the moments of the

distribution function to O(p+1)3 per element in velocity space, which is a significant

improvement when compared to O(p+1)8 per element if the moments were evaluated

using sum factorization and Gaussian quadrature.

3.3 Performance Evaluation

The variance-reduced RKDG method described in this chapter has been implemented

for the Boltzmann equation in 2 physical space dimensions and 3 velocity space di-

mensions. This section will compare the performance of the proposed algorithms

in computing the advection operator terms and hydrodynamic quantities with an
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algorithm that utilizes Gaussian quadrature with sum factorization.

The collisionless Boltzmann equation 2.19 is used to compare the computational

cost for the volume and surface residual, which come directly from the discretization

of the advection operator. The collision integral and pressure gradient terms are not

considered here because they are treated as source terms in the RKDG framework

and the latter is specific only to problems with an applied pressure gradient. The

performance metric is the average running time per RKDG timestep, which includes

3 Runge-Kutta stages of evaluating the volume and surface residuals, solving for
∂f̂d

Ω,i

∂t

and integrating it in time. A total of 105 elements is used, with 10 elements for each

dimension. The algorithms in comparison deviate only in the evaluation of the sum-

factorized integrals for the volume and surface residual in equations 3.29 and 3.38

respectively, where one uses the analytical forms derived and the other uses Gaussian

quadrature. The results in Table 3.1 show that the proposed algorithms perform

better than that based on quadrature. Higher performance improvements are also

observed at higher polynomial order p.

Next, the tests described above are repeated including the evaluation of five hy-

drodynamic quantities, namely the number density n, bulk flow velocities u1 and u2

and stresses P11 and P22, at (p+ 3)× (p+ 3) points within every physical space ele-

ment. To evaluate the hydrodynamic quantities, the proposed algorithm utilizes the

derived analytical moments of Legendre polynomials and the equilibrium Maxwell-

Boltzmann distribution fMB described in section 3.2.9 while the control algorithm

applies Gaussian quadrature and sum factorization directly on integrals of fMB and

the discretized deviational distribution fd. The results in table 3.2 reveal that the

proposed algorithm added less than 10% to the original run times shown in table 3.1

while that based on quadrature increased its original run-time by about a factor of 4.

Although the hydrodynamic quantities need not be generated at every time-step, it

would be useful to generate all required quantities sufficiently frequently at minimal

cost so that a running average could be performed over one unit of dimensionless time

to reduce statistical “noise” from the collision integral. The proposed algorithm is

able to accomplish this with both speed and accuracy as the moments of Legendre
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polynomials and fMB are evaluated exactly, which reduces the error of the algorithm

down to discretization errors of fd in time and space.

Polynomial Run Time (s) Factor of
Order p Quadrature Analytical Improvement

1 22.14 9.420 2.35
2 187.5 68.55 2.74
3 877.9 291.3 3.01

Table 3.1: Running time per RKDG timestep for 105 elements – collisionless, no
hydrodynamic quantities computed.

Polynomial Run Time (s) Factor of
Order p Quadrature Analytical Improvement

1 88.76 10.35 8.58
2 745.1 73.76 10.1

Table 3.2: Running time per RKDG timestep for 105 elements – collisionless, hydro-
dynamic quantities computed.

Polynomial Run Time (s) Factor of
Order p Quadrature Analytical Improvement

1 121.5 106.3 1.14
2 2413 2314 1.04

Table 3.3: Running time per RKDG timestep for 105 elements – with collisions using
103 particles, no hydrodynamic quantities computed.

Finally, a test is performed on the full Boltzmann equation with the collision in-

tegral term, but without evaluating the pressure gradient term and hydrodynamic

quantities. The results in table 3.3 indicate that the collision integral is about 10

times more expensive to compute than the advection operator terms under the pro-

posed algorithm for p = 1. Although the performance improvements achieved for the

advection operator terms might seem futile when the collision integral is evaluated in

full, they will come in useful during steady-state applications where “fast collisions”

can be performed until the solution is sufficiently near steady state before evaluating

the collision integral in full. The “fast collisions” are implemented by evaluating the
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Polynomial Run Time (s) Factor of
Order p Quadrature Analytical Improvement

1 31.38 18.55 1.69
2 241.7 122.3 1.98

Table 3.4: Running time per RKDG timestep for 105 elements – with fast collisions
using 103 particles, no hydrodynamic quantities computed.

collision integral using a piece-wise constant approximation, which is comparable in

cost to computing the advection operator terms, as shown in table 3.4. It should be

noted that the running times per RKDG time-step presented in tables 3.3 and 3.4

correspond to evaluating the collision integral with 103 particles, using the variance-

reduced, statistical sampling method developed in [9, 10]. The running times would

increase further when more particles are necessary to reduce the statistical “noise” in

the solution and ensure the stability of the RKDG method.

The results in this section demonstrate the effectiveness of the proposed algorithms

in evaluating the advection operator terms and the hydrodynamic fields over those

based on quadrature. Although the algorithms developed rely on a rectangular grid

and a tensor product basis, this choice of spatial discretization is the most natural

for the velocity space. If necessary, the physical space can be discretized using a

nodal basis on an unstructured mesh to handle complex geometries while the velocity

space can be discretized separately using a tensor product basis on a rectangular grid.

This allows the algorithms developed for evaluating the hydrodynamic quantities to

remain applicable as they only involve integration in velocity space. Furthermore,

by expressing the basis function for fd as φi(x, c) = g(x)
∏3

i=1 ψ(ci) where g(x) is a

general polynomial involving all the spatial dimensions, sum factorization can still be

applied to factor out the integrals over the velocity space dimensions in the evaluation

of the volume and surface residuals. These integrals can be evaluated using the derived

analytical expressions in sections 3.2.5 and 3.2.6 to minimize computation cost. Only

the integrals involving g(x) over the physical space dimensions require evaluation via

Gaussian quadrature.
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Chapter 4

Convergence Test on a Problem

with a Continuous Solution

This chapter investigates the physical space convergence properties of the RKDG

method when implemented in 2 spatial dimensions for a simple test problem with a

continuous solution. The choice of a test problem with a continuous solution allows a

meaningful comparison of the spatial convergence rates with known theoretical predic-

tions to validate our RKDG implementation. The following two sections present the

implementation and convergence results for sinusoidal waves propagating separately

in each of the spatial dimensions, as well as simultaneously in 2 spatial dimensions.

4.1 Propagation of Sinusoidal Wave in 1 Spatial

Dimension

4.1.1 Formulation and Implementation

Consider a single sinusoidal wave propagating along the xi direction from xi,min to

xi = xi,max with dimensionless speed |ci| = 2√
π
. This wave can be described by

a simplified “collisionless Boltzmann” equation (see equation 2.19 for the complete
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equation)

∂f
∂t

+
√
π

2
c · ∂f

∂x
= 0

⇒ ∂f
∂t

+ ∂f
∂xi

= 0 (4.1)

and a time-dependent boundary condition

f(x1, x2, t)|xi=xi,min
= 0.1 sin (2π (t− xi,min)) (4.2)

Using the method of characteristics, the analytical solution to the above problem is

found to be

f(x1, x2, t) = 0.1 sin (2π (t− xi)) (4.3)

where the index i depends on the direction of wave propagation xi. Note that the

function f is independent of the other spatial dimensions, except xi. Furthermore,

boundary conditions need not be specified at the other domain boundaries, except

xi = xi,min, since boundary fluxes are only propagated into the domain through that

boundary.

This test problem is implemented for disturbances propagating along the x1 and x2

directions separately. Spatial discretization is performed as described in section 3.2.1

only on the 2 physical space dimensions. The velocity space only consists of a single

node centered at c = [ 2√
π

0 0] if i = 1, or c = [0 2√
π

0] if i = 2. Time discretization is

performed using the 3rd order Runge-Kutta (RK3) method described in section 3.2.2

except that the time-step is determined, based on the CFL condition in equation 3.19,

using 0.5CFLL2 instead of CFLL2 to minimize the effect of time-discretization errors

corrupting the spatial convergence rates.

Only the volume and surface residuals are evaluated, as described in sections 3.2.5

and 3.2.6 respectively. The dynamic boundary conditions are evaluated at the correct
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times during each intermediate Runge-Kutta stage as follows [18]

f(x1, x2, tk)|xi=xi,min
= 0.1 sin (2π (tk − xi,min)) (4.4)

f (1)
∣∣
xi=xi,min

= 0.1 sin (2π ((tk + ∆tk)− xi,min)) (4.5)

f (2)
∣∣
xi=xi,min

= 0.1 sin

(
2π

((
tk +

∆tk
2

)
− xi,min

))
(4.6)

The output of interest is the discretized approximation fh of the function f , which

can be reconstructed from the evaluated modal coefficients f̂hΩ,i and basis functions

φi using the same method described in equations 3.5 and 3.21. The error associated

with the RKDG discretization is measured as the functional L2 norm of the steady

state difference between the analytical solution f and its discretized approximation

fh, which is given by

‖f − fh‖L2 =

√∫ x1,max

x1,min

∫ x2,max

x2,min

(f − fh)2dx1dx2 (4.7)

and evaluated using Gaussian quadrature with p + 2 quadrature points per spatial

dimension in each element.

4.1.2 Convergence Results for 1D Wave Propagation

Table 4.1 presents the L2 errors for different polynomial orders p of the DG approxi-

mation and different levels of spatial discretization. Only one set of results for waves

propagating in the x1 direction is presented as the other test case yields similar results.

The convergence rates presented in table 4.1 for each level of spatial discretization

are determined based on the error corresponding to the previous spatial discretization

level.

Since the analytical solution f to this problem is a continuous sinusoid, the optimal

rate of spatial convergence for the L2 error can be shown to be p + 1 [19]. Hence,

under an RK3 time integration scheme, the L2 error of the RKDG solution for this
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Polynomial ] Elements Error Order of
Order p 1

∆xi
‖f − fh‖L2 Convergence

10 4.3173e-02 -
20 2.9408e-02 0.5539

0 40 1.7502e-02 0.7487
80 9.5844e-03 0.8687
160 5.0174e-03 0.9338
10 2.6934e-02 -
20 7.0136e-03 1.9412

1 40 1.7537e-03 1.9997
80 4.3728e-04 2.0038
160 1.0912e-04 2.0027
10 8.6103e-05 -
20 1.0734e-05 3.0039

2 40 1.3421e-06 2.9996
80 1.6808e-07 2.9973
160 2.1099e-08 2.9939
10 4.2504e-03 -
20 2.6172e-04 4.0215

3 40 1.6220e-05 4.0122
80 1.0113e-06 4.0035
160 6.3225e-08 3.9996

Table 4.1: Spatial convergence results for 1D disturbance propagation
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Figure 4-1: Spatial convergence plot for 1D wave propagation

problem can be given, asymptotically, by [19, 8, 18]

‖f − fh‖L2 = K1∆x
p+1
i +K2∆t

3 = K1∆x
p+1
i +K ′

2∆x
3 (4.8)

since ∆t is determined in proportion to ∆x based on the CFL condition. Hence,

with parameters chosen such that the first term dominates, the convergence rate is

expected to be close to p + 1. This agrees with the convergence rates obtained for

the test problem up to p = 3, as shown in table 4.1. Although the convergence

rates observed for p = 0 deviate significantly from p + 1 at low levels of spatial

discretization, this could be due to significant time-discretization errors from the large

time-steps used, which are in proportion to the element size. The convergence rate

is clearly observed to approach the theoretical value of p+ 1 for p = 1 as the spatial

discretization becomes finer. For p ≥ 2, the convergence rates are very close to p+ 1

but exhibit a slight decrease with decreasing element sizes. This could be attributed

to the spatial discretization error term in equation 4.8 becoming smaller and losing

dominance over the time discretization error term at finer spatial discretizations.
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4.2 Propagation of Sinusoidal Waves in 2 Spatial

Dimensions

4.2.1 Formulation and Implementation

The phenomenon of 2 sinusoidal waves propagating simultaneously in the x1 and x2

directions with speeds |c1| = |c2| = 2√
π

can be described by the following simplified

form of the collisionless Boltzmann equation

∂f

∂t
+

2∑
i=1

∂f

∂xi
= 0 (4.9)

and the time-dependent boundary conditions

f(x1, x2, t)|xi=xi,min
= 0.1 sin (2π (t− xi,min)) (i = 1, 2) (4.10)

Using the method of characteristics and the principle of superposition, the analytical

solution to the above problem is derived as

f(x1, x2, t) =
2∑
i=1

0.1 sin (2π (t− xi)) (4.11)

Spatial discretization is performed as described in section 3.2.1 but the velocity space

only consists of a single node centered at c = [ 2√
π

2√
π

0]. Time discretization, bound-

ary condition evaluation and error measurement are the same as that described in

the previous section, 4.1.

4.2.2 Convergence Results for 2D Wave Propagation

The results obtained in table 4.2 show that the convergence rates for p = 0 and p = 1

in this problem approach the theoretical value of p+1 with finer spatial discretization.

Similar to the 1D wave propagation problem, the convergence rate for p = 2 is very

close to its theoretical value but decreases slightly with decreasing element sizes due
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Polynomial ] Elements Error Order of
Order p 1

∆xi
‖f − fh‖L2 Convergence

10 5.2096e-02 -
20 3.2923e-02 0.6621

0 40 1.9014e-02 0.7920
80 1.0305e-02 0.8838
160 5.3902e-03 0.9349
10 2.3060e-02 -
20 6.1551e-03 1.9056

1 40 1.5589e-03 1.9812
80 3.9015e-04 1.9984
160 9.7436e-05 2.0015
10 1.2141e-04 -
20 1.5180e-05 2.9996

2 40 1.9013e-06 2.9972
80 2.3868e-07 2.9938
160 3.0095e-08 2.9875

Table 4.2: Spatial convergence results for 2D disturbance propagation
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Figure 4-2: Spatial convergence plot for 2D wave propagation
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to the same reason described in section 4.1.2.

The convergence results in this and the previous section verify the high-order con-

vergence of the RKDG method, which also confirms that our RKDG implementation

is correct, at least in the physical space dimension.
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Chapter 5

Pressure Driven Flow Problem

This chapter presents the RKDG solutions of the pressure driven flow problem de-

scribed in section 2.2 for various Knudsen numbers (Kn) and aspect ratios (AR). The

first section presents specific implementation details of the variance-reduced RKDG

method for this test problem. Next, results from a convergence test in the colli-

sionless limit (Kn = ∞) for an aspect ratio AR = 2 are presented to reveal the

effects of spatial discretization, velocity space truncation and polynomial order on

the steady state error. The last section presents the steady state velocity profiles and

non-dimensional mass flux Qp obtained for Kn = 0.2, 1 and 10 for AR = 1, 2 and 4.

The non-dimensional mass flux obtained in the convergence test and the last section

are validated against results obtained by Sone and Hasegawa [14].

5.1 Implementation

The variance-reduced RKDG method is implemented as described in chapter 3, except

that only 2 physical space dimensions (x1 and x2) and 3 velocity space dimensions are

involved. The symmetry boundary conditions described in section 2.2 are specified

directly on the deviational distribution fd as required by equations 2.33 and 2.34

x1 = 0: fd(x1, x2, c1, c2, c3, t) = fd(x1, x2,−c1, c2, c3, t) (5.1)

x2 = 0: fd(x1, x2, c1, c2, c3, t) = fd(x1, x2, c1,−c2, c3, t) (5.2)
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to reduce the physical space computational domain to the positive quadrant 0 ≤ xi ≤

xi,max (i = 1, 2). A truncated velocity space −4 ≤ ci ≤ 4 (i = 1 to 3) is used in

the interest of computational efficiency, as justified in section 3.1.1. In addition, the

velocity space is meshed non-uniformly such that element sizes are smallest around

c = 0, with a ratio of 8 between the largest and smallest element edge.

One of the test metrics used for this problem is the non-dimensional mass flux,

which is defined as

Qp =
2Kn

√
π

κ
ū (5.3)

where the Knudsen number (Kn) is as defined in equation 2.31, κ = 10−4 is the

applied pressure gradient and ū = ū3 is the average flow velocity across the channel

cross-section along the x3 direction, which can be computed as

ū =

∫
c3 f d

3c d2x

A

=
16J

A

∑
Ω

(
2c3Ω

f̂dΩ,0,0,0,0,0 +
∆c3Ωc

3
f̂dΩ,0,0,0,0,1

)
(5.4)

by extending the algorithm for evaluating the bulk flow velocity in section 3.2.9. The

area A corresponds to the area of the computational domain, which is 1/4 of the

channel cross-sectional area. To compute the volume Jacobian J in this problem,

equation 3.24 should be modified for the case of a 5 dimensional phase space. Fur-

thermore, the modal coefficient tensor f̂d is now a 6-dimensional tensor for the case

of a 5-dimensional phase space.

5.2 Convergence Test in Collisionless Limit

This section investigates the convergence of the variance-reduced RKDG method in

the collisionless limit (Kn = ∞) by solving the collisionless Boltzmann equation

for Kn = 1, AR = 2. The mass flux Qp computed by Sone and Hasegawa [14]

in the collisionless limit will be used as a reference for computing the error in our

RKDG solution. Although the solutions of Sone and Hasegawa are based on the
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linearized Boltzmann-Krook-Welander (BKW) equation, the steady state results in

the collisionless limit are expected to be the same as that from solving our collisionless

Boltzmann equation. Table 5.1 shows the steady state RKDG solution Qp and the

corresponding percentage error under different discretization levels of the physical and

velocity space, different ranges of the truncated velocity space, as well as different

polynomial orders p of the RKDG solution. Figures 5-1 and 5-2 show the temporal

convergence of the RKDG solution Qp while table 5.2 shows the dimensionless time

(τ = t̄∗ in equation 2.15) and running time required to reach steady state under the

different conditions mentioned above.

Polynomial Spatial Discretization Velocity Dimensionless Error
Order p nx1 × nx2 × nc1 × nc2 × nc3 Space Mass Flux Qp (%)

1 5× 5× 10× 10× 10 [−4, 4] 2.249155 -2.423
1 10× 10× 10× 10× 10 [−4, 4] 2.249240 -2.419
1 5× 5× 20× 20× 20 [−4, 4] 2.280538 -1.061
1 5× 5× 20× 20× 20 [−3, 3] 2.285597 -0.842
2 5× 5× 10× 10× 10 [−3, 3] 2.286118 -0.819

Sone and Hasegawa [14] 2.305 0

Table 5.1: Steady state solution and error for Qp in pressure driven flow problem at
Kn = ∞

Order Spatial Velocity Time to Steps Running Total
p Discretization Space Steady Needed Time (s) Running

State(τ) per Step Time (hr)
1 52 × 103 [−4, 4] ∼ 30 3190 3.2 2.8
1 102 × 103 [−4, 4] ∼ 30 6380 11.5 20.4
1 52 × 203 [−4, 4] ∼ 60 6380 25.7 45.5
1 52 × 203 [−3, 3] ∼ 80 6380 25.7 45.5
2 52 × 103 [−3, 3] ∼ 75 9970 30.8 85.3

Table 5.2: Time to steady state in pressure driven flow problem at Kn = ∞

The results in the first three rows of table 5.1 show that a factor of 2 refinement

in every dimension of the velocity space achieved a significantly greater reduction

(56% compared to 0.2%) in the steady state error compared to a similar refinement

in the physical space. This is consistent with the distribution function f having a
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discontinuity and large gradients near c = 0, as well as having very little variation

over the physical space in the collisionless limit [20]. By truncating the velocity space

further from [−4, 4] to [−3, 3] while retaining the discretization level, the elements

will be smaller and a piecewise linear (p = 1) RKDG solution will be able to describe

the large variations in f near c = 0 more accurately over each element. This is

evidenced in the 3rd and 4th rows of table 5.1 where the steady state error is reduced

from 1.061% to 0.842%. Furthermore, there is no increase in the computational time

as shown in the corresponding rows of table 5.2.

A similar (slightly lower) steady state error can also be achieved using a piecewise

quadratic (p = 2) RKDG approximation over a velocity space mesh that is a factor

of 2 coarser in every dimension as shown in the last row of table 5.1. Although the

dimensionless time to steady state, expressed in terms of the characteristic timescale

τ = t̄∗ defined in equation 2.15, for the p = 2, 52 × 103 test case is slightly less than

that for the p = 1, 52 × 203 test case, the total running time is almost twice as long

due to a 40% smaller timestep imposed by the CFLL2 used, as defined in equation

3.20. Hence, for the same level of accuracy, using a p = 1 approximation with a

finer discretization near regions of discontinuities or large variations in f is still more

practical than going to a higher order p = 2 approximation.

The steady state non-dimensional mass flux Qp in the collisionless limit (Kn = ∞)

is also obtained for aspect ratios AR = 1 and 4, and are presented in table 5.3 together

with that for AR = 2. The results presented for all three aspect ratios correspond to

using a p = 1 polynomial approximation and a truncated velocity space ci ε [−3, 3]

(i = 1 to 3) since this is optimal in terms of both speed and accuracy.
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5.3 Steady State Pressure Driven Flow with Col-

lisions

In this section, we discuss our results in the presence of collisions. To our knowledge,

no simulation data for the full Boltzmann equation based on the hard sphere model

exists. Hence, we will use the Boltzmann-Krook-Welander(BKW) results of Sone and

Hasegawa as a rough guide, as explained in section 5.3.2.

5.3.1 Velocity Profiles

Figures 5-3, 5-4 and 5-5 show the steady state bulk flow velocity (u3) profile across

the positive quadrant of the channel cross-section for aspect ratios of 1, 2 and 4

respectively. Results are shown for Knudsen numbers Kn = 10, 1 and 0.2 under each

aspect ratio. The parabolic profiles observed across the x1 and x2 axes are consistent

with the Poiseuille nature of the expected solution and qualitatively validates our

implemented variance-reduced RKDG method.

5.3.2 Steady State Results of Non-dimensional Mass Flux

In this section, the non-dimensional mass flux Qp obtained from solving the full

Boltzmann equation based on the hard sphere model for Kn = 0.2, 1 and 10 under

AR = 1, 2 and 4 is presented and validated against results by Sone and Hasegawa [14],

as shown in table 5.3. Note that in the paper by Sone and Hasegawa [14], the Knudsen

number is defined to be twice of that defined in this thesis. Furthermore, their

results correspond to solutions of the linearized Boltzmann-Krook-Welander(BKW)

equation, which is different from solutions of the full Boltzmann equation for finite

Knudsen numbers. Hence, a comparison between solutions of the 2 models may be

performed by comparing the hard sphere results we obtain for Knudsen number Kn

to the BKW results at a Knudsen number of 1.27Kn [21]. The BKW results were

obtained by linearly interpolating the results of Sone and Hasegawa [14].

For all the test cases involving collisions (Kn 6= ∞), the number of collision
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Figure 5-3: Non-dimensional flow velocity u3 (AR = 1)
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samples Nc used to evaluate the collision integral are chosen primarily for numerical

stability and are as shown in table 5.3. Furthermore, the variance-reduced RKDG

method is implemented to perform “fast” collisions until the solution is observed to be

reasonably close to steady state before switching to evaluating the weak form collision

integral term in full. The “fast” collision algorithm evaluates the weak form collision

integral term in equation 3.9 using a piecewise constant (p = 0) approximation,

which allows a significant reduction in the computational cost. Details of evaluating

the collision integral can be found in [9, 10].

The velocity space discretization chosen for Kn = 1 is coarser than that for

Kn = 10 because at lower Kn, the distribution function has a weaker discontinuity

at c = 0 and will be a smoother function of velocity [20]. Next, the physical space

discretization chosen for Kn = 0.2 is finer than that for Kn = 1 and 10 because

at low Kn, the distribution function will have significantly more spatial variation

[20]. The time-steps used for all the test cases are determined based on the CFL

condition shown in equations 3.19 and 3.20. The only exception is the test case of

Kn = 0.2, AR = 1 which uses 0.5CFLL
2 instead of CFLL2 to determine the time-

step because the latter results in numerical instability if used with Nc = 105 collision

samples.

The results in table 5.3 indicate a good match between the obtained dimensionless

mass flux Qp and that reported by Sone and Hasegawa, which validates the imple-

mented variance-reduced RKDG method for solving the full Boltzmann equation.

Furthermore, the mass flux Qp that we obtained are lower than that reported by

Sone and Hasegawa for all test cases, which is consistent with the behavior of solu-

tions obtained from the full Boltzmann equation based on the hard sphere model and

that from the linearized BKW equation [21]. Although the test cases at all Kn exhibit

an increasing error with the aspect ratio (AR), this can be attributed to increasing

spatial discretization errors from meshing the increasing x1 dimension with the same

number of elements for each Kn.
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Order p, Dimensionless
Collision Samples Nc, Mass Flux Qp

Kn Spatial Discretization, AR Sone and Error
Velocity Space RKDG Hasegawa [14] (%)
p = 1, Collisionless 1 1.67 1.677 -0.51

∞ 52 × 203 2 2.29 2.305 -0.84
ci ε [−3, 3] 4 2.96 3.002 -1.28

p = 1, Nc = 103 1 1.59 1.589 -0.25
10 52 × 203 2 2.14 2.151 -0.33

ci ε [−4, 4] 4 2.70 2.715 -0.41
p = 1, Nc = 103 1 1.52 1.537 -0.87

1 52 × 103 2 2.06 2.087 -1.30
ci ε [−4, 4] 4 2.49 2.533 -1.62

p = 1, Nc = 105 1 1.88 1.898 -0.83
0.2 102 × 103 2 2.68 2.709 -0.93

ci ε [−4, 4] 4 3.21 3.249 -1.28
p = 1, Nc = 105

0.1 102 × 103 2 3.64 3.739 -2.76
ci ε [−4, 4]

Table 5.3: Steady state solution and error for Qp in pressure driven flow problem at
various Knudsen numbers (Kn)
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Chapter 6

Conclusions

The variance-reduced RKDG method has been implemented to solve the Boltzmann

equation in 2 physical space and 3 velocity space dimensions using an alternative

algorithm for evaluating the advection operator terms and hydrodynamic quantities

of interest. Compared to a standard sum factorization algorithm based on Gaussian

quadrature, the alternative algorithms are able reduce the RKDG computational cost

for the advection operator terms by a factor of 2.3 to 3 by making use of analytical

expressions for the inner products and moments of Legendre polynomials. When the

output hydrodynamic quantities are computed, a overall factor of 8.5 to 10 reduction

in the computational cost can be achieved. Although the collision integral term takes

about 10 times longer to evaluate than the advection operator terms, a piecewise

constant approximation can be used to significantly reduce the collision integral com-

putational cost while the solution is not yet close to steady state. This would allow

the performance benefits of the proposed algorithms to be reaped while not affecting

the accuracy of the steady state solution.

The high order convergence in physical space of the present RKDG implemen-

tation has been verified using a simple test problem with a continuous analytical

solution.

When the variance-reduced RKDG method is applied to the pressure driven flow

test problem, the computed dimensionless mass flux Qp shows good agreement (un-

derestimation of 0.5% to 1.2%) with that reported by Sone and Hasegawa [14] in the
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collisionless limit (Kn = ∞) for aspect ratios AR = 1, 2 and 4. For Kn = 10, 1

and 0.2, the results show good agreement with those obtained by Sone and Hasegawa

from solutions of the linearized Boltzmann-Krook-Welander(BKW) equation, pro-

vided they are compared at the “equivalent” Knudsen number of 1.27Kn. These

results verify the accuracy of the implemented variance-reduced RKDG method in

solving the full Boltzmann equation under multiple spatial dimensions.

Although it has been found that using a piecewise quadratic (p = 2) discretization

for the RKDG solution yields slightly more accurate results than a piecewise linear

(p = 1) discretization at twice the spatial resolution in each velocity space dimension

for Kn = ∞, the computation time for the latter is still about 2 times shorter than

the former. The main reason is a smaller CFL, and thus time-step, required for the

p = 2 calculation. Hence, for this specific test problem and implementation of the

variance-reduced RKDG method, it would be more efficient to pursue better accuracy

by using a p = 1 scheme with a finer spatial discretization than to utilize a higher

order p = 2 scheme with a coarser spatial discretization. This can be achieved using a

combination of finer spatial discretization and non-uniform spacing to generate more

elements near regions of discontinuities or large variations in the distribution function.

6.1 Recommendations for Future Work

6.1.1 Unique Discretization in Physical and Velocity Space

The algorithms developed in this thesis for evaluating the advection operator terms

and hydrodynamic quantities require rectangular spatial elements and a tensor prod-

uct basis for the distribution function f . This choice of spatial meshing and basis is

most natural for the velocity space and is extremely efficient in computing moments

of the distribution function in velocity space to evaluate the spatially dependent hy-

drodynamic quantities. However, it is not necessary to impose the same meshing

and basis on every spatial dimension. One possible area of future work is to perform

physical space discretization using an unstructured mesh to handle complex physical
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geometries, and a nodal basis for f to reduce the number of basis functions from

(p + 1)2 × (p + 1)3 to 2(p + 1) × (p + 1)3 in the case of 2 physical and 3 velocity

space dimensions with an order p discretization. The velocity space can still be dis-

cretized with rectangular elements and a tensor product basis to retain the use of

sum factorization of integrals over the velocity space and the computational advan-

tage of the developed algorithms in evaluating the hydrodynamic quantities and part

of the advection operator terms. However, modifications would have to be made to

compute the integrals over physical space using Gaussian quadrature. It would also

be of interest to note if the reduction in computational cost for the collision integral

and advection operator terms due to a smaller number of basis functions would be

sufficient to offset to increase in cost from Gaussian quadrature.

6.1.2 Reduction in Computational Cost to Reach Steady State

Although this thesis has clearly demonstrated the feasibility of the RKDG approach

for two physical space dimensions without the need for supercomputing facilities,

further reducing the computational cost of the present approach is highly desirable.

One aspect where significant potential for improvement exists is the solution of steady

state problems, where explicit time-integration, especially for low Knudsen numbers,

is very costly due to the long time required to reach steady state coupled to the (rel-

atively) short timestep imposed by the CFL condition. To reduce the computational

cost associated with reaching steady state, one could investigate the possibility of

using a time stepping scheme that allows larger timesteps while maintaining stability.

Alternatively, implicit steady state solution methods may need to be developed.
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Appendix A

Legendre Polynomial Functions

A.1 Definition and Derivatives

The following are the Legendre polynomials of order up to p = 6.

ψ0 (ξ) = 1 (A.1)

ψ1 (ξ) = ξ (A.2)

ψ2 (ξ) =
1

2

(
3ξ2 − 1

)
(A.3)

ψ3 (ξ) =
1

2

(
5ξ3 − 3ξ

)
(A.4)

ψ4 (ξ) =
1

8

(
35ξ4 − 30ξ2 + 3

)
(A.5)

ψ5 (ξ) =
1

8

(
63ξ5 − 70ξ3 + 15ξ

)
(A.6)

ψ6 (ξ) =
1

16

(
231ξ6 − 315ξ4 + 105ξ2 − 5

)
(A.7)
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The derivatives of Legendre polynomials can also be expressed in terms of lower order

Legendre polynomials and derivatives as follows:

dψ0

dξ
= 0 (A.8)

dψ1

dξ
= 1 = ψ0 (ξ) (A.9)

dψ2

dξ
= 3ξ = 3ψ1 (ξ) (A.10)

dψ3

dξ
=

1

2

(
15ξ2 − 3

)
= 5ψ2 (ξ) + 1 (A.11)

dψ4

dξ
=

1

8

(
140ξ3 − 60ξ

)
= 7ψ3 (ξ) + 3ψ1 (ξ) (A.12)

dψ5

dξ
=

1

8

(
315ξ4 − 210ξ2 + 15

)
= 9ψ4 (ξ) +

dψ3

dξ
(A.13)

dψ6

dξ
=

1

16

(
1386ξ5 − 1260ξ3 + 210ξ

)
= 11ψ5 (ξ) +

dψ4

dξ
(A.14)

A.2 Inner Products

The Legendre polynomials are orthogonal, which means that their inner products are

given by

Ψa b =

∫ 1

−1

ψb (ξ)ψa (ξ) dξ =
2

2a+ 1
δab (A.15)

where

δab =

 1 if a = b

0 otherwise
(A.16)

and a,b are the orders (or degrees) of the Legendre polynomials ψa and ψb respectively.

Using the Legendre derivative expressions and orthogonality property defined

above, it can be shown that the tensor Ψ′
ab of inner products involving Legendre

polynomials and their derivatives possess a sparse, lower triangular, Toeplitz struc-

ture. The following shows the tensor Ψ′
ab for the case of Legendre polynomials and
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derivatives up to order p = 6.

Ψ′
ab =

∫ 1

−1

ψb
dψa
dξm

dξm =



0 0 · · · · · · · · · 0 0

2 0
. . . . . . . . . . . . 0

0 2
. . . . . . . . . . . .

...

2 0
. . . . . . . . . . . .

...

0 2
. . . . . . . . . . . .

...

2 0 2 0 2 0 0

0 2 0 2 0 2 0


(A.17)

for a, b = 0 to 6

The first moment of the inner product of Legendre polynomials is given by [17]

∫ 1

−1

ξ ψb ψa dξ =


2b

(2b−1)(2b+1)
if a = b− 1

2(b+1)
(2b+1)(2b+3)

if a = b+ 1

0 otherwise

(A.18)

A.3 Moments in Space

The 0th moment of the Legendre polynomials is given by

∫ 1

−1

ψk (ξ) dξ =

 2 if k = 0

0 otherwise
(A.19)

The 1st moment of the Legendre polynomials is given by

∫ 1

−1

ξ ψk (ξ) dξ =

 2
3

if k = 1

0 otherwise
(A.20)
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The 2nd moment of the Legendre polynomials is given by

∫ 1

−1

ξ2 ψk (ξ) dξ =


2
3

if k = 0

4
15

if k = 2

0 otherwise

(A.21)

The above expressions for the 0th, 1st and 2nd moments have been verified for

polynomial orders k = 0 to 6.
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Appendix B

Analyical Integrals involving the

Maxwell-Boltzmann Distribution

The dimensionless form of the Maxwell-Boltzmann distribution is given by [1]

fMB (c) ≡ nMB
(
π TMB

)−3/2
exp

(
−
∥∥c− uMB

∥∥2

TMB

)

where nMB, TMB and uMB are the dimensionless number density, temperature and

mean velocity characterizing to the distribution fMB.

B.1 Moments in Velocity Space

The moments of the Maxwell-Boltzmann distribution fMB can be derived by making

use of the following definite integrals [1].

I0 ≡
∫ ∞

−∞
exp

(
−c

2

T

)
dc =

√
π T (B.1)

I1 ≡
∫ ∞

−∞
c

[
exp

(
−c

2

T

)]
dc = 0 (B.2)

I2 ≡
∫ ∞

−∞
c2
[
exp

(
−c

2

T

)]
dc =

√
π T 3 (B.3)
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For simplicity in notation, let

H0
k ≡

∫ ∞

−∞
exp

(
−
[
ck − uMB

k

]2
TMB

)
dck (B.4)

H1
k ≡

∫ ∞

−∞
ck

[
exp

(
−
[
ck − uMB

k

]2
TMB

)]
dck (B.5)

H2
k ≡

∫ ∞

−∞
c2k

[
exp

(
−
[
ck − uMB

k

]2
TMB

)]
dck (B.6)

(B.7)

The 0th moment of fMB is given by

F 0,MB =

∫
fMBd3c

= nMB
(
π TMB

)−3/2
3∏

k=1

H0
k

= nMB (B.8)

by making a substitution c′k = ck − uMB
k and applying the definite integral I0 in

equation B.1.

The 1st moment of fMB is given by

F 1,MB
m =

∫
cmf

MBd3c

= nMB
(
π TMB

)−3/2
H1
m

∏
k=[1,3]\{m}

H0
k

= nMB uMB
m (B.9)

by making a substitution c′k = ck − uMB
k , followed by applying the definite integrals

I1 and I0 in equations B.2 and B.1 respectively.
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The 2nd principal moment of fMB is given by

F 2,MB
m =

∫
c2mf

MBd3c

= nMB
(
π TMB

)−3/2
H2
m

∏
k=[1,3]\{m}

H0
k

= nMB

(
uMB
m

2
+
TMB

2

)
(B.10)

by making a substitution c′k = ck − uMB
k , followed by applying the definite integrals

I2, I1 and I0 in equations B.3, B.2 and B.1 respectively.

The 2nd cross moment of fMB is given by

F cross,MB
mj =

∫
cm cjf

MBd3c

= nMB
(
π TMB

)−3/2
H1
mH

1
j

∏
k=[1,3]\{m,j}

H0
k

= nMB uMB
m uMB

j (B.11)

by making a substitution c′k = ck − uMB
k , followed by applying the definite integrals

I1 and I0 in equations B.2 and B.1 respectively.

B.2 Maxwell-Boltzmann Boundary Fluxes

The interested boundary fluxes in this thesis are essentially 1st moments of a Maxwell-

Boltzmann distribution over part of the velocity space. The Maxwell-Boltzmann

distributions considered are the chosen equilibrium distribution fMB and the wall

distribution fwall.
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For simplicity in notation, let

PMB,1
k ≡

∫ ∞

uw
k

(ck − uw
k ) exp

(
−
[
ck − uMB

k

]2
TMB

)
dck (B.12)

Pwall,1
k ≡

∫ ∞

uw
k

(ck − uw
k ) exp

(
− [ck − uw

k ]2

Twall

)
dck (B.13)

LMB,1
k ≡

∫ uw
k

−∞
(ck − uw

k ) exp

(
−
[
ck − uMB

k

]2
TMB

)
dc (B.14)

Lwall,1
k ≡

∫ uw
k

−∞
(ck − uw

k ) exp

(
− [ck − uw

k ]2

Twall

)
dck (B.15)

HMB,0
k ≡

∫ ∞

−∞
exp

(
−
[
ck − uMB

k

]2
TMB

)
dc (B.16)

Hwall,0
k ≡

∫ ∞

−∞
exp

(
− [ck − uw

k ]2

Twall

)
dc (B.17)

where ck and uwk are, respectively, the normal component of the gas molecule velocity

and wall velocity to the wall xk = xk,max or xk = xk,min (k = 1, 2 or 3). The

dimensionless temperature of the wall is denoted by Twall.

The boundary fluxes to be evaluated at the wall xm = xm,max are

FMB =

∫
cm >uw

m

(cm − uwm) fMBd3c

= nMB
(
π TMB

)−3/2
PMB,1
m

∏
k=[1,3]\{m}

HMB,0
k (B.18)

and

Fwall =

∫
cm <uw

m

(cm − uwm)
(
fwall

)
d3c

=
(
π Twall

)−3/2
Lwall,1
m

∏
k=[1,3]\{m}

Hwall,0
k (B.19)
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while that to be evaluated at the wall xm = xm,min are

FMB =

∫
cm <uw

m

(cm − uwm) fMBd3c

= nMB
(
π TMB

)−3/2
LMB,1
m

∏
k=[1,3]\{m}

HMB,0
k (B.20)

and

Fwall =

∫
cm >uw

m

(cm − uwm)
(
fwall

)
d3c

=
(
π Twall

)−3/2
Pwall,1
m

∏
k=[1,3]\{m}

Hwall,0
k (B.21)

By making a substitution c′k = ck − uMB
k and applying the definite integral I0 in

equation B.1,

HMB,0
k =

√
π TMB (B.22)

Hwall,0
k =

√
π Twall (B.23)

for all k = [1, 3]. Similarly, by making a substitution c′m = cm − uwm and applying

standard integration techniques,

Pwall,1
m =

Twall

2
(B.24)

Lwall,1
m = −T

wall

2
(B.25)

for all m = [1, 3].

To evaluate PMB,1
m at the wall xm = xm,max, a substitution c′m = cm−uMB

m is used

together with standard integration techniques to obtain

PMB,1
m =

∫ ∞

urel

(c′m − urel) exp

(
− c′m

2

TMB

)
dc′m

=
TMB

2
exp

(
− u2

rel

TMB

)
− urelE

right(urel) (B.26)
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where urel = uwm − uMB
m and the function Eright(urel) is given by

Eright(urel) =

∫ ∞

urel

exp

(
− c′m

2

TMB

)
dc′m

=

∫ ∞

0

exp

(
− c′m

2

TMB

)
dc′m ±

∫ urel

0

exp

(
− c′m

2

TMB

)
dc′m

=

√
π TMB

2
±
√
TMB

∫ urel√
TMB

0

exp

(
−
(

c′m√
TMB

)2
)
d

(
c′m√
TMB

)
=

√
π TMB

2

(
1± erf

(
urel√
TMB

))
(B.27)

Similarly, LMB,1
m can be evaluated at the wall xm = xm,min as

LMB,1
m =

∫ urel

−∞
(c′m − urel) exp

(
− c′m

2

TMB

)
dc′m

= −T
MB

2
exp

(
− urel

2

TMB

)
− urelE

left(urel) (B.28)

where

Eleft(urel) =

∫ urel

−∞
exp

(
− c′m

2

TMB

)
dc′m

=

∫ 0

−∞
exp

(
− c′m

2

TMB

)
dc′m ±

∫ urel

0

exp

(
− c′m

2

TMB

)
dc′m

=

√
π TMB

2

(
1± erf

(
urel√
TMB

))
(B.29)

The + sign corresponds to walls moving towards each other (urel < 0 for the wall

xm = xm,max and urel > 0 for the wall xm = xm,min) while the − sign corresponds

to walls moving apart (urel > 0 for the wall xm = xm,max and urel < 0 for the wall

xm = xm,min). The last step in the derivation of Eright(urel) and Eleft(urel) make use

of the error function definition

erf (b) =
2√
π

∫ b

0

exp
(
−y2

)
dy (B.30)
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Using the above results, the boundary fluxes at the wall are given by

FMB = nMB

[
∓1

2

√
TMB

π
exp

(
− u2

rel

TMB

)
− urel

2

(
1 + sgn(uwall · ñ) erf

(
urel√
TMB

))]
(B.31)

and

Fwall = ±1

2

√
Twall

π
(B.32)

The symbol ñ denotes the unit normal to the wall pointing into the gas and uwall

represents the wall velocity. Hence, the expression “sgn(uwall · ñ)” takes on a value of

+1 or −1 when the walls are moving towards or apart from each other respectively.

The signs ∓ in FMB, as well as ± in Fwall, correspond, respectively, to boundary

fluxes evaluated at the walls xm = xm,min or xm = xm,max (m = 1, 2 or 3).
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