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ABSTRACT

Overlayers of crystalline materials on smooth amorphous substrates
tend to be more or less random polycrystalline. The absence of long-
range order in the amorphous substrate is reflected in the absence
of long-range order in the overlayer. The new concept investigated in
this work is that a single crystal film can be produced on an amorphous
substrate by introducing an artificial surface relief structure having
long range order. A simple thermodynamic argument indicates that these
surface relief structures need not have dimensions of the order of the
lattice parameter of the crystalline overlayer but rather structures
can be used whose dimensions are comparable to the size of the naturally
occuring single crystal grains of polycrystalline films. It is argued
that at equilibrium an overlayer material which exhibits an anisotropic
interfacial tension (this includes the liquid crystal mesophases as well
as solid crystals) will adopt a unique single-crystal orientation with
respect to a suitable surface relief structure on an amorphous substrate.
For example, it is shown that at equilibrium a cubic material whose {100}
planes have minimum interfacial tension will be oriented with {100}
parallel to a substrate, and a <100> direction parallel to the
groove direction of a square-wave grating on the substrate.

It was found that the major problem in experimentally demonstrating
the predicted orientation effects was the fabrication of the required
surface relief structure. New very soft X-ray lithographic and reactive-
ion-etching fabrication techniques were developed. With these techniques
160 nm linewidth square-wave gratings having smooth vertical sidewalls
and sharp corners with less than 5 nm curvature were fabricated in
amorphous silicon dioxide.

A model of nematic and smectic A liquid crystals indicates that
simple square-wave structures should induce uniform "single crystal"
orientation of these materials. Experiments were performed using the
liquid crystals MBBA and M-24. As expected, uniform orientation was
induced in MBBA in the nematic phase and in M-24 in the nematic and



smectic A phases.
A detailed model of the (nonequilibrium) thin film growth process

showed that under certain deposition conditions a surface relief
structure could induce a solid crystalline deposit to acquire the
single crystal orientation predicted by the equilibrium interfacial
tension model. Experiments were performed using square-wave grating
structures on amorphous SiO substrates. Depositions of potassium
chloride from aqueous solution and tin by vacuum evaporation were done
on these structures. Potassium chloride crystallites were oriented with
{1001 parallel to the substrate and <100> parallel to the groove
direction as predicted by the thin film growth model. The orientation
effect was not observed on structures whose square profile had been
rounded. This is explained qualitatively by the model of thin film
growth. A series of tin depositions on square-wave gratings yielded
results consistent with the model of thin film growth, but a strong
orientation effect was not observed. Only weakly preferred orientation
seems to have been induced by the surface relief structure. It is
concluded that smaller periodicity grating structures with sharper
edges and corners will be required to induce a strong orientation effect
with tin.

A new method of orienting crystalline (anisotropic) overlayers on an
amorphous substrate by surface relief structures on the substrate has
been analyzed and demonstrated. New submicrometer fabrication tech-
niques had to be developed in order to demonstrate the orientation
effect. These techniques may have broad application in the fields of
microelectronics and integrated optics as well as in the work presented
here. It is believed that the models and demonstrations of overlayer
orientation presented here are but a first step in what will be an
exciting new field of investigation. In essence, a new degree of
freedom has been introduced in the science and technology of surfaces
and thin film growth.

Thesis Supervisor: Dr. Henry I. Smith

Title: Adjunct Professor of Electrical Engineering and Computer
Science and Assistant Group Leader at M.I.T. Lincoln Laboratory.
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I. INTRODUCTION

Single crystal thin films are of great importance in both basic

research and for device applications. It is widely known that some single

crystal films can be grown on smooth crystalline substrates. When a

single crystal film of a material is grown on a substrate of the same

material the process is known as homoepitaxy. If the film and substrate

materials are different the phenomenon of single crystal film growth is

known as heteroepitaxy. Homoepitaxy and heteroepitaxy are known to

1 9occur only on single crystal substrates1,2. Such substrates often

tend to be relatively expensive and difficult to obtain in large sizes.

Amorphous materials are much less expensive and large substrates are

easily prepared. Therefore, the ability to produce single crystal films

on amorphous substrates would be of great importance. However, deposition

of crystalline materials on smooth amorphous substrates yields more or

1 ,293less randomly oriented polycrystalline films 1 '2 . The failure to

obtain single crystal films on smooth amorphous substrates is not surprising

if one views the phenomenon of epitaxy as an ordering of the deposited

overlayer induced by the "template" of the substrate. The local and

long-range order of a crystalline substrate is reflected in the order

of the overlayer. In the case of overlayers on smooth amorphous substrates

the absence of long-range order in the substrate is reflected in the

absence of long-range order in the overlayer.

The new concept demonstrated in this work is that a single crystal

film can be grown on an amorphous substrate by introducing an



artificially produced surface relief structure on the amorphous substrate.

Furthermore, these surface relief structures need not have dimensions of

the order of the size of the lattice parameter of the crystalline overlayer.

Structures can be used whose dimensions are comparable to the size of

the naturally occuring single crystal grains which usually constitute the

polycrystalline films grown on smooth amorphous substrates. The

possibility of orienting crystalline overlayers with such structures can be

seen if the characteristics of overlayers deposited on amorphous substrates

are considered.

Overlayers of crystalline material deposited on smooth amorphous

substrates tend to form polycrystalline films 1'2'3. These overlayers are

thus composed of small regions or grains of single crystal separated by

grain boundaries. Depending upon the overlayer material, the substrate,

and the deposition conditions the size of the single crystal grains can

vary from a few tenths of a nanometer to several micrometers (i.e., from

nearly amorphous to large grain polycrystalline). Relative to one

another the grains tend to be more or less randomly oriented. Under

certain deposition conditions and sometimes following annealing of over-

layers a single crystallographic direction may become highly preferred1'3

Such polycrystalline films which are not entirely random are said to

have a fiber texture, (from a term which originated in work with poly-

crystalline natural fibers that exhibit preferred orientations). The

orientations of the preferred direction in these fiber textures is usually

associated with the only unique direction on the smooth amorphous substrate,

namely, the substrate normal. (In some cases where the mobility of the



deposit is very low the orientation can be determined by the deposition

direction3). Thus, some particular crystallographic plane of each of

the single crystal grains making up the overlayer tends to be parallel

to the substrate surface while the crystallographic orientations of the

grains in the plane of the substrate surface is random. This phenomenon

has been explained using a simple thermodynamic argument 3. The preferred

plane simply corresponds to the plane at which the minimum interfacial

tension occurs between the overlayer material and the substrate. For a

smooth featureless substrate this interfacial tension is obviously in-

dependent of the orientation of the overlayer material in the plane of

the substrate, thus there is no preferred "azimuthal" orientation in the

substrate plane (i.e., the surface is isotropic in the substrate plane).

However, if the substrate surface is not featureless but is instead

characterized by some coherent surface relief structure, the surface will

have certain unique directions (i.e., it will be anisotropic). For

example, assume that this surface-relief structure is composed of a

periodic array of planar facets such that the angles between the facets

correspond to the angles between the planes of minimum interfacial tension.

There can then be unique orientations of the overlayer with respect

to the surface relief structure on the substrate which minimize the total

interfacial tension. This point is illustrated in Fig. 1-1 for a cubic

crystalline overlayer material and an amorphous substrate material where

the {100} planes of the cubic material parallel to the smooth amorphous

surface correspond to the planes of minimum interfacial tension. The

square-wave and saw-tooth surface relief structures as illustrated would
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Fig. 1-1. A schematic illustration of the equilibrium orientations of
a cubic material on an amorphous substrate with a surface structure,
where the interfacial tension is a minimum for the {I00} family of
planes parallel to a smooth surface of the amorphous substrate. a). On
a smooth substrate, {100} parallel to the substrate plane, random orien-
tation in the plane. b). On a square wave orating, {100} parallel to
substrate plane, <001> parallel to grooves. c). On a sawtooth grating
with facets at 90 degrees, {110} parallel to substrate plane, <010>
oarallel to the grooves,



be defined on the amorphous substrate such that the surface

is composed of a periodic array of facets which meet at 90 degree

angles. A deposit of the cubic material would see two unique directions

at 90 degrees defined by the normals to the facets. The single crystal

grains ordinarily comprising a polycrystalline film on an amorphous

substrate would now tend to be constrained to lie in a unique orientation

with respect to the grating. For the square wave grating of Fig. 1-1

{100} planes would be parallel to both the substrate normal and the

grating groove direction. For the sawtooth grating the {110} plane would

lie parallel to the substrate plane. One would expect that such an

orientation effect should occur as long as the spacing between the facets

of the surface relief structure is smaller than the natural grain size of

the film. Since the periodic-surface-relief structures shown in Fig.

1-1 are coherent over a large area and the orientations of the single

crystal grains are constrained locally with respect to the grating

structures large area single crystal films should result. Obviously

geometries other than those shown in Fig. 1-1 are possible for other

sets of crystal planes and for other crystal classes.

The plausibility argument given above for orientation of crystalline

overlayers by su"rface relief structures on amorphous substrates is further

elaborated in Chapter II. The argument is also generalized to include

the orientation of the anisotropic mesophases commonly known as liquid

crystals. It is shown that under equilibrium conditions that an

overlayer which exhibits an anisotropic interfacial tension can be made

to assume a uniform "single crystal" orientation relative to an amorphous



substrate by the influence of a surface relief structure on the substrate.

The applicability of this argument for a real substrate and overlayer

combination is determined by the ability of the specific system to

approach equilibrium. This issue is discussed in Chapter II as it relates

to the choice of overlayer and substrate combinations and the determination

of the required characteristics of the surface relief structure for an

experimental demonstration of the orientation effect.

It is found in general that the limiting factor in an experimental

demonstration of the predicted orientation effects for most overlayers is

the type and quality of surface relief structure which can be

fabricated. As indicated earlier, the spacing of the facets of structures

like those shown in Fig. 1-1 should be smaller than the natural grain

size of the overlayer, this usually implies spacings less than one micro-

meter. The facets of the structure should be smooth and flat on a scale

much smaller than their spacing and the edges and corners where the facets

meet should be as sharp as possible so that a maximum percentage of the

overlayer substrate interface will correspond to minimum interfacial

tension planes at the desired orientation. Furthermore, important growth

and nucleation effects during deposition of crystalline overlayers can be

dramatically affected by sharp edges and corners. This important point,

discussed in Chapter V, indicates that it would be highly desirable if the

radii of curvature at the corners between facets were less than one

nanometer. For purposes of discussion, the spacing or period of structures

on a surface is termed linewidth. The issues of control of facet flatness

and corner and edge curvatures are grouped under the term profile control.



Thus, for this work, linewidths must be smaller than one micrometer and

profile control should be such as to provide well defined planar facets

oriented at the desired angles with minimum radii of curvature at edges.

Before this research began several techniques using the planar

process capable of defining submicrometer linewidths had been developed,

including; scanning electron beam lithography, holographic lithography,

optical projection and contact photolithography, and soft X-ray lithography4

However, few researchers had considered the issue of profile control at

the dimensions required here. Research for this thesis revealed that the

existing technology could not provide adequate profile control and new

techniques had to be developed. Because successful surface relief

structure fabrication is a prerequisite for all further experiments this

technology development has constituted a major part of the thesis research.

Several new techniques were developed during this work which made

possible the fabrication of 160 nm linewidth square-wave grating structures

in amorphous Si02 with smooth faces and radii of curvature at the edges

and corners less than 5 nm. The development of these techniques and the

details of the new processes are presented in Chapter III. Of great

importance in this work is the ability to observe and characterize the

structures which have been fabricated. The techniques employed to do this

and the results obtained are also given in Chapter III.

The plausibility arguments given for orientation effects in Chapter

II indicate that even the simple square-wave-grating surface-relief

structures in SiO2 which can be fabricated using the techniques described in

Chapter III could be used to induce orientation of many different anisotropic



overlayer materials. However, a particularly convenient class of overlayer

materials for a first test of the concept are liquid crystals. The mole-

cules of these ordered mesophases are highly mobile and thin overlayers

5can easily approach a near equilibrium configuration . A model of surface

relief orientation effects for liquid crystals is given in Chapter IV and

an experimental demonstration of orientation of nematic and smectic A

liquid crystals by square-wave gratings in Si0 2 is described.

In Chapter V a model of the growth of overlayers of solid crystalline

materials by thin film deposition on square-wave gratings is presented.

Also presented are the results of an experimental investigation of the

growth of potassium chloride, tin, and gold on square-wave gratings in SiO2 .

The model applies to a large number of deposition processes where growth

proceeds by nucleation, growth, and coalescence of discrete deposit islands.

The model predicts that under certain deposition conditions a solid

crystalline overlayer should assume the single crystal equilibrium

orientation with respect to a surface relief structure predicted by the

arguments given in this introduction and in Chapter II. The orientation

effect is demonstrated by the deposition of KC1 from aqueous solution

onto a 320 nm period square-wave grating in SiO 2 . As predicted the KC1

crystallites grow with their {100} planes parallel to the substrate plane

and with a < 100> direction parallel to the groove direction of the

surface relief grating. Depositions by sputtering and vacuum evaporation

of gold and tin on square-wave gratings in Si0 2 are described in Chapter V.

The results are explained in light of the model of the growth process for



these materials.

The Conclusion, Chapter VI, summarizes the work and presents some

further speculation about the use of surface-relief structures on substrates

for the manipulation of nucleation, growth, and orientation of overlayers.



II. OVERLAYER ORIENTATION EFFECTS INDUCED BY SURFACE
RELIEF STRUCTURES ON AMORPHOUS SUBSTRATES.

2.1. INTRODUCTION

The objective of this chapter is to give some plausibility arguments

for orientation effects of surface relief structures on amorphous sub-

strates, the basic idea being that a uniformly aligned overlayer of an

anisotropic material can be produced on an amorphous substrate via the

influence of a surface relief structure on the substrate.

Some background information about the interfacial tensions of

anisotropic materials is given in section 2.2. In section 2.3 a general-

ized interfacial tension is defined for nonplanar interfaces and it is

shown that the orientation at which the minimum of the generalized

interfacial tension occurs between an amorphous substrate and an aniso-

tropic overlayer can be specified by properly chosing the shape of the

interface. In section 2.4 the equilibrium orientation of a semi-infinite

overlayer is found to correspond to the orientation of minimum generalized

interfacial tension. Thus, it is concluded that under equilibrium conditions

the orientation of an overlayer can be chosen by defining the appropriate

surface relief structure on the substrate.

Considerations in the choice of overlayer-substrate combinations

and substrate-surface-relief structure for an experimental demonstration

of the orientation effect are discussed in section 2.5.



2.2 ANISOTROPIC INTERFACIAL TENSIONS

The effects described in this chapter involve the interaction of an

amorphous surface and an overlayer with anisotropic properties. It is

assumed that the interface between these two materials has a finite thick-

ness. Outside of this interfacial region the materials can be completely

characterized by their bulk properties. The thickness and structure of

the interface will depend upon the materials and configuration within that

region. A very useful thermodynamical quality which can be used to charac-

terize the interface is the interfacial tension, y (i) which is defined as

the reversible work involved in creating unit area of new surface at constant

temperature, volume, and total number of moles.

y (r) = lim dw
dA - 0 dA (2.1)

where dw is the amount of work required to increase the surface area by

dA and n is a unit vector which specifies the orientation at the interface.

At constant temperature and volume the work done in creating new

surface is equal to the change in Helmholtz free energy, F, of the whole

system6. (F = E-TS, where E is the internal energy, T is the temperature, and

S is the entropy.) From this one finds that the interfacial tension is

related to the Helmholtz free energy per unit area or the specific surface

free energy, fs, by

Y = fs- i si i (2.2)



th
where Fi is the interfacial excess of the i component of the system,

6and pi is the corresponding chemical potential . The relationship

between fs and yhas only been included for completeness and to emphasize

that these quantities are not in general equal for multicomponent systems.

For all the discussions which follow the distinction between the

interfacial tension and the specific surface free energy is not important.

Under equilibrium conditions both y and fs would be minimized. Neither

y or fs is known completely for any of the material combinations considered

in this research. However, the general form of both quantities can be

deduced from symmetry, crystal structure and crystal habit 6 ' 7 ' 8 . Of the

two quantities the interfacial tension can be directly measured 6. Thus,

in all of the following discussions the interfacial tension will be used.

The form of the function y (i) is of course determined by the

details of the interface. For instance, the interfacial tension between

liquid-liquid, amorphous solid-liquid, amorphous solid-vapor, and liquid-

vapor is simply a constant with the units of energy per area, i.e., the

surface tension is completely isotropic. On the other hand, interfacial

tensions which involve an ordered phase, (where the term ordered phase

includes anisotropic mesophases such as liquid crystals as well as

solid crystals) are in general functions of the orientation of the ordered

phase with respect to the interface. As an example, the interfacial

tension, y (i), between an ordered phase and a non-ordered phase such as

a vapor, liquid, or amorphous solid would be a function of the interface

orientation specified by the unit vector n. The variation of y (i) can,



in these cases, be conveniently displayed on a polar plot,called a Wulff

plot 6 , where the direction of the radius vector, r, specifies the crystalline

orientation of the surface, and the magnitude of the vector is equal to the

magnitude of the interfacial tension. i.e.

S (+• (2.3)r Y (n) n

Possible forms of the y plot are listed in the first two columns of

table 2-1 and examples are shown in Fig. 2-1.

TABLE 2-1 Possible Forms of the y- Plot of the Interfacial Tension

8Between a Given Material and Non-ordered Phase. (The equilibrium

shape of a particle is discussed in Chapter V.)

Material

Normal Liquid...

Liquid Crystal...

Solid Crystal

y Plot

See Figure 2-1

Sphere

Smooth but anisotropic

Finite number of cusps

Equilibrium Shape

See Figure 5-4

Sphere

a) b)

c) d) e)

An important point to notice here is that for the interfaces

specified in Table 2-1, which are between an ordered phase and a non-

ordered phase, the interfacial tension depends only upon the orientation

of the ordered phase. If the interface is between two ordered phases the

interfacial tension will depend upon the orientation of both of the phases
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Fig. 2-1. Cross-sections of representative interfacial tension plots are
shown for a conventional isotropic liquid, a liquid crystal, and a cubic
crystalline solid where the cross-section is a {100} plane.
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relative to one another. Obviously, the interfacial tension can not be

represented in general on a polar plot in three dimensions when both

phases are ordered. In this case the interfacial tension is most con-

veniently represented by the function y (-t) where n uniquely specifies

the relative orientation of the phases. Polar plots of various sections

of the function y (n) can obviously be made and are very useful.



2.3 GENERALIZED INTERFACIAL TENSIONS FOR SURFACE RELIEF STRUCTURES

All of the interfaces discussed so far have been assumed to be planar.

However, the concept of interfacial tension can be generalized to include

nonplanar surfaces as well. As an example, assume that the interface is

specified by some periodic function I (x,y). The average surface or

substrate plane will simply be the x-y plane. The generalized interfacial

tension, a (i), is then defined as the energy required to create a unit

area of new interface in the x-y plane.

S() =n y (I (x,y)) dxdy

unit area x-y plane (2.4)

where y (I (x,y)) is the interfacial tension at the interface z = I (x,y)

for the crystalline overlayer orientation specified by n. (In order that

the concept of a generalized interfacial tension be useful, the unit area

must encompass an integral number of "unit cells" of the interface.)

If the periodic boundary z = I (x,y) separates an amorphous sub-

strate and a crystalline overlayer, the interfacial tension will now depend

on both the orientation of the overlayer with respect to the interfacial

x-y plane and a plane perpendicular to this plane, say the y-z plane. This

orientation information can be specified uniquely by three coordinates.

However, for purposes of description, a more convenient notation uses two

sets of Miller indicies, the first specifying the crystalline direction

parallel to the z axis, and the second specifying the direction parallel

to the y axis. For instance, a (<100>z  <110> ), specifies the generalized

interfacial tension of a surface with a {100} plane parallel to the surface



where the <110> direction is parallel to the y direction in the plane

of the interface.

By the introduction of a periodic nonplanar boundary (i.e., a surface

relief structure on the substrate), the interfacial tension of an

amorphous substrate and a crystalline overlayer has been made anisotropic

with respect to orientation of the overlayer in the plane of the substrate.

More explicitly, the non-ordered isotropic surface of a planar amorphous

substrate has been made "ordered" and "anisotropic" by periodically mod-

ulating the surface.

To illustrate the form of an interfacial tension of an anisotropic

surface and also to show how a surface-relief structure on an amorphous

substrate can introduce an anisotropy such that a well defined minimum

in a (-) occurs at a desired orientation, the hypothetical interfaces

illustrated in Fig. 2-2 are considered.

The interface between an amorphous material (SiO 2 for instance) and

a cubic material (such as an alkali halide) is described by a square-wave

function or sawtooth function of period, s, and height, h, in the x

direction. Assume for simplicity that there is no variation in the y

direction. The interfacial tension for the interfaces of Fig. 2-2

can be constructed as a weighted sum of the interfacial tensions for plane

interfaces, assuming the line tensions associated with the edges and

corners can be ignored. A polar plot is shown in Fig. 2-3 of the

generalized interfacial tension, aq (in), calculated in this way, for the

square-wave structure of Fig. 2-2(a) where the interfacial tension of a

plane interface of these materials varies with orientation in the manner
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Fig. 2-2. Schematic cross-sections are shown of a square-wave interface
and a sawtooth interface between an amorphous and a crystalline material.
There is no variation in the y direction.
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Fig. 2-3. A polar plot is shown of the generalized interfacial tension,
aq, of the square wave interface depicted in Fig. 2-2(a) where y(it) of
the crystalline material is given in Fig. 2-1(c). The portion of the
function a (qi) shown is for {lO0} parallel to the substrate where 6
measures the deviation of <010> from the y direction. Also shown is a
plot versus 0 of the "orientation force" - da

de



illustrated by the plot in Fig. 2-1(c). The plot is shown for a {100}

plane of the cubic material fixed parallel to the x-y plane as a function

of 0, the angle of deviation of the <010> direction from the y direction.

Several plots are shown, each corresponding to a different value of the

parameter h/s. Note that there will be four identical minima which occur

at 0 equals 0, Z, rr, 3 TrI and {l00} parallel to the x-y plane. (i.e.,
2 2

0q (<100> z <0 10> y) is minimum.)

Also plotted in Fig. 2-3 is the in-plane "orientation force",

- do
dO

Obviously the magnitude of do increases as the parameter h/s

dO
increases.

Given that y (i) of the crystalline material corresponds to Fig.

2-1(c) where y (<100>) is minimum, it is clear that the minimum of the

generalized interfacial tension, as, for the sawtooth structure of

Fig. 2-2(b) will occur for a <100> direction parallel to the y or groove

direction and another <100> direction at an angle 0m with respect to the

substrate normal. Thus 0m can be chosen such that aS (<hko>z <100> )

is minimum for any h and k. By modulating the surface in the y direction

in a similar sawtooth manner the minimum of as can be chosen to occur at

any crystal plane parallel to the substrate.

It is evident that for a given y (i) between a crystalline material

and an amorphous substrate a periodic surface relief structure could be

found such that the minimum of a (-)occured at a unique orientation in

the substrate plane.



2.4 ORIENTATION EFFECTS AT EQUILIBRIUM

Given the interfacial tensions y (n) for a specific system the

equilibrium configuration can be found. At a fixed temperature and

total volume the condition of equilibrium is one of minimum Helmholtz

free energy6, or y (A) dA is minimum (2.5)
f Interface

Where y (r) is the ordinary interfacial tension of an interface orient-
4--

ation specified by the vector n and the integral is taken over the entire

interfacial region.

To illustrate the application of equation (2.5) consider a system

made up of a semi-infinite amorphous substrate, an overlayer of anisotropic

material of finite thickness and a semi-infinite "superstrate" region

above the overlayer. The integral of equation (2.5) would be taken

over the upper and lower overlayer interfaces. If the substrate and

superstrate interfaces are identical,equation (2.5) lends simply to

the requirement at equilibrium that

a (i) is minimum (2.6)

If the interfaces are different the requirement becomes

( a ( ) + a (A) ) is minimum (2.7)
upper lower

For most solid overlayers deposited on substrates the upper surface of the

overlayer would be unconfined and would be in contact with the non-ordered

parent phase of the deposit. If the minimum interfacial tension of the



overlayer and its parent phase occur for the same plane parallel to the

superstrate as the substrate the equilibrium requirement reduces once

again to equation (2.6). This will be the case for all solid crystalline

overlayers considered in this thesis. (In general it would be necessary

to minimize equation 2.5 for all variations of overlayer orientation.)

The consequences of equation (2.5) can be seen by considering some

specific material combination. For the case y is isotropic (such as in

amorphous solid-liquid etc.) all orientations are of course equivalent.

In the instance where the interfacial tension, y (i), is a function

solely of the orientation of the overlayer material with respect to the

substrate normal, all directions in the plane of the interface are

equivalent. An example is the case of a crystalline material deposited

on a smooth amorphous substrate where equation (2.5) requires that the

minimum interfacial tension plane be parallel to the amorphous surface,

but there is no preferred orientation in the plane. In real systems one

could expect that locally the overlayer will assume the equilibrium

single crystal orientation with the minimum interfacial tension plane

parallel to the substrate while over longer distances on the substrate,

the in-plane orientation of the overlayer will tend to wander. This

leads to the fiber textures observed in crystalline deposits on amorphous

substrates discussed in the introduction and Chapter V.

If the interfacial tension has a minimum at some unique orientations

of overlayer and substrate then the equilibrium orientation will be unique.

(In addition to the true minima of a (_) there may also be relative minima

such that the system can exist in a metastable equilibrium.) In nature



it appears that there exist some interfaces between two crystals which

have strong and unique minima in their interfacial tensions. This

may manifest itself in the phenomenon of heteroepitaxy where oriented

single crystal overgrowth of a material occurs on a specific crystal

plane of another materiall ' 2 . As an example, a system which has been widely

studied is gold on rocksalt (NaCl) where a {100} plane of the gold

grows parallel to a {100} plane of the rocksalt and a <100> direction

of gold is parallel to a <100> direction of NaCl in the plane of the inter-

face. Of course heteroepitaxy does not occur smooth amorphous substrates,

but as shown in section 2.3 an interface between an amorphous substrate

and a crystalline overlayer can be made anisotropic which characteristics

analogous to a single crystal surface by the introduction of a periodic

surface relief structure on the substrate such that the generalized

interfacial tension can have a unique minimum. Equations (2.6) and (2.7)

indicate that an overlayer on such a substrate should assume the

orientation corresponding to the minimum of generalized interfacial tension.

Since this overlayer-substrate orientation would be uniform and unique, in

effect, heteroepitaxy would be obtained on an amorphous substrate. The

idea advanced in this thesis is that under suitable conditions real

systems can approach this idealized equilibrium configuration and oriented

single-crystal overgrowths can be induced on amorphous substrates by

surface relief structures.



2.5 CONSIDERATIONS IN THE CHOICE OF OVERLAYER-SUBSTRATE COMBINATIONS AND
SUBSTRATE SURFACE RELIEF STRUCTURE FOR AN EXPERIMENTAL DEMONSTRATION
OF THE ORIENTATION EFFECT

In the previous sections of this chapter it was shown that at equil-

ibrium it should be possible to impart a desired orientation to an aniso-

tropic overlayer on an amorphous substrate by defining an appropriate

surface relief structure on the substrate. To assess the possibility of

experimentally demonstrating the predicted effect, the elements required

for an experimental investigation must be considered.

i) An overlayer material which exhibits an anisotropic interfacial

tension, preferably a material with large anisotropy.

ii) A well-controlled and characterized surface-relief structure

on an amorphous substrate with the required dimensions and shape.

iii) A convenient deposition technique for applying the overlayer

material to the substrate such that the overlayer can approach

the equilibrium configuration during deposition. (Another

possibility is that the overlayer could approach equilibrium after

deposition by being "annealed").

iv) A convenient unambiguous evaluation technique capable of

determining the orientation of the overlayer with respect to the

substrate surface relief structure.

Although a great many solid crystalline and liquid crystal materials

exhibit anisotropic interfacial tensions, only a restricted class of materials

are compatible with the shape of the surface relief structures which can be

fabricated at the present time. As will be shown in Chapter III fabrication



techniques have been developed which permit the fabrication of well-

controlled square-wave-grating surface-relief structures in amorphous SiO 2.

(The structures illustrated in Figs. 1-1(b) and 2-2(b) could represent

idealizations of the real structures which can be fabricated.) For a well

defined minimum to occur in the generalized interfacial tension of the

overlayer material and the square-wave structure such that the equilibrium

orientation of the overlayer would be unique, the planes of minimum inter-

facial tension for the overlayer material must naturally occur at right

angles to one another. As an example, if the {l00} or {110} planes of a

cubic overlayer material were the planes of minimum interfacial tension,

the generalized interfacial tension would have a minimum at {l00} or {ll110}

parallel to the substrate plane and <100> parallel to the grating groove

direction. Another possibility would be a tetragonal overlayer material

where {100} is the plane of minimum interfacial tension. In this case the

minimum of the generalized interfacial tension would occur for {100} parallel

to the substrate plane and <001> parallel to the grating groove direction.

For some liquid crystals, any plane parallel to the liquid crystal director

or c-axis of the liquid crystal can correspond to a plane of minimum inter-

5facial tension . The minimum of generalized interfacial tension for those

liquid.crystals on a square-wave grating structure would occur for the c-axis

parallel to the plane of the substrate and parallel to the grating groove

direction.

With the required material properties in mind the following over-

layer materials were chosen for this first investigations of the orientation



effect.

i) Liquid crystals - MBBA and M-24

ii) Alkali halides - KC1

iii) Metals - Tin

The argument presented in section 2.4 for the orientation effect was

an equilibrium argument and its applicability to practical situations depends

upon the ability of a real deposit-substrate system to approach

equilibrium. Liquid crystals are known to exhibit highly anisotropic

interfacial tensions. The liquid crystal molecules are also highly mobile

and an equilibrium configuration in a thin overlayer is more easily achieved

than for solid crystal systems. For these reasons liquid crystals are well

suited for the initial overlayer orientation experiments. The alkali

halides were determined to be an excellent choice for the first orientation

experiments with solid crystalline materials because they have a cubic

structure with a minimum of y ( ) at {100} parallel to Si023. Also the

alkali halides are known to have much more anisotropic interfacial tensions

than other cubic materials such as metals 1'6 . The alkali halides are easily

deposited from an aqueous solution by a very simple evaporation technique

or by electron beam evaporation in a high vacuum. Because KC1 is water

soluble and is easily removed, depositions can be performed several times

on the same substrate.

Vacuum evaporated Tin, which has a tetragonal structure, exhibits a

{100} fiber texture when deposited on smooth amorphous Si0 2 substrates 3

This indicates that the {100} planes are the planes of minimum interfacial

tension. Tin has a low melting point which lends to a relatively high



atomic mobility, it also can be annealed7' 8 so as to approach equilibrium

at modest temperatures of 100-200 "C.

Although the underlying principle of overlayer orientation by surface

relief structures is the same for both liquid crystals and solid crystalline

materials the detailed models of the orientation effect for each material

are quite different. The modeling of surface-relief-structure-induced

orientation effects for liquid crystals and liquid crystal orientation

experiments are discussed in Chapter IV. A detailed model of orientation

of solid crystalline overlayers is presented in Chapter V. Because the

atoms in a solid deposit are much less mobile than those of a liquid

crystal, very careful consideration of the mechanism of deposition is

necessary in the case of solid overlayers. In Chapter V both deposition

from aqueous solution and by vacuum evaporation are treated by the same

model of thin film nucleation and growth.

A prerequisite for all orientation experiments is the availability

of a well-controlled and characterized surface-relief structure on an

amorphous substrate. The idealized square-wave structure shown in Figures

1-1(b) and 2-2(a) was assumed to have perfectly smooth facets oriented at

exactly 900 to one another joined by infinitely sharp edges. The facets of

a real structure will have some finite roughness and they will not be

oriented at exactly 900 to one another. The edges will have some finite

curvature. As shown in Fig. 2-3 for a given height,h,the anisotropy

and orientation force of the square wave structure decreases as period s

increases. Thus, in a real system, the structure will have some maximum



period at which it will be effective in inducing overlayer orientation.

The detailed models of thin solid film depositions indicate that square-

wave grating periods less than one micrometer (corresponding to the

natural grain size of polycrystalline overlayers of these materials)

would be needed to induce single crystal overlayer growth. As the

roughness of the facets increase and the facets deviate from inter-

section angles of 900, and the sharpness of the edges decreases the

anisotropy of the generalized interfacial tension of the overlayer and

the surface relief structure will decrease. A priori it is difficult to

place a limit on the maximum acceptable deviation from the idealized square

wave structure. In order that the square-wave structure remain well defined,

the roughness of the facets should probably deviate less than 10% of the

structure period, and the sidewall angles should deviate less than 10% from

900. Obviously the radius of curvature of the grating edges must be less

than the height of the grating if it is to approximate a square wave. The

thin solid film deposition model of Chapter V indicates that important

nucleation phenomenon could be induced by very sharp grating edges. For

this reason radii of curvature as small as 0.1 nm would be desirable. In

the case of liquid crystals a model indicates that the anisotropy of the

generalized interfacial tension increases rapidly as the edge curvature

decreases. The problem of fabricating and characterizing square-wave

structures on amorphous substrates with the required dimensions is

addressed in Chapter III.



III. FABRICATION OF SURFACE RELIEF STRUCTURES

3.1 INTRODUCTION

The fabrication method used in this research has become known as

the planar process. This very flexible technique has a long history and

has been used for many years in the fields of art and printing. Recently

the use of the planar process in the manufacture of integrated circuits

has lead to a great deal of research into the capabilities of the process

itself. As a result of this work high resolution techniques have been

developed which make possible the fabrication of submicrometer structures.

An excellent review of these advances has been published by Smith4

Despite the recent achievements in fabrication technology, prior to this

thesis research, the ability to fabricate structures with the properties

described in the introduction and section 2.5 had not been demonstrated.

Because existing fabrication techniques were found to be inadequate for

this work new methods were developed. The theory and practice of these

new techniques as applied to the fabrication of grating type surface

relief structures on amorphous silicon dioxide (Si0 2) for use in
23

crystalline overlayer orientation experiments are described in this

Chapter.

The basic fabrication steps used in the planar process are as follows.

The substrate on which the structure is to be fabricated is coated with

a layer of radiation sensitive polymer (resist). The resist is then

exposed to a pattern of radiation. (Exposure to radiation either

increases or decreases the solubility of the resist in its developer for



positive and negative resists respectively.) After exposure, the resist is

immersed in developer, the resulting resist pattern can then act directly

as a mask during substrate etching or serve to define a pattern by the

liftoff technique 4 . Many combinations of etching, liftoff, and multiple

pattern exposure are of course possible. The specific fabrication process

developed during the thesis work to produce the basic grating structure

used for most overlayer orientation studies is shown schematically

in Fig. 3-1.

The process is comprised of five major steps:

1. Mask pattern generation by holographic exposure and ion-beam

etching.

2. Pattern replication by X-ray lithography.

3. Liftoff of chrome.

4. Reactive-ion-etching.

5. Final cleaning.

In the next sections each of these steps is discussed in detail.
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Fig. 3-1. A schematic illustration of the process developed for
fabricating submicrometer period square-wave grating surface-relief
structures in amorphous Si0 2.

m



3.2 MASK PATTERN GENERATION BY HOLOGRAPHIC LITHOGRAPHY

To generate a grating-type surface relief structure by the planar

process depicted in Fig. 3-1 an X-ray mask pattern must first be generated.

At the present time, only two pattern generation techniques are capable

of directly producing polymer reli.ef gratings with spatial periods smaller

than 500 nm, these are scanning electron beam lithography (SEBL) and

holographic lithography. The use of an existing SEBL system at Lincoln

Laboratory was considered for this work and rejected because of electron

backscattering problems and the extremely long exposure times needed to

produce gratings of 100 nm linewidth over the desired 1 cm2 areas.

Holographic lithography, first proposed by Rudolph and Schmahl10

is well suited for producing large area grating patterns. The apparatus

required is simple and the exposure times are short (10-60 sec). However,

during this research the technique was found to have several drawbacks

which limit its use as a final lithography step in the fabrication of

square-wave grating structures in SiO 2. These drawbacks include, limited

resist profile control as a result of substrate reflection, intrinsic

granularity of the photoresist, and poor adhesion of photoresist to Si02

surfaces. Nevertheless holographic lithography can be used for pattern

generation during fabrication of the gold absorber patterns used in the

X-ray masks described in section 3.3.4.

The apparatus used for holographic lithography exposures is shown

schematically in Fig. 3-2. The beam from an argon ion laser (457.9 nm)

is passed through a spatial filter and beam expander, and split into two
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Fig. 3-2. A schematic illustration is shown of the configuration of
optical compoenents used to expose gratings in Shipley AZ-1350 photo-
resist by interfering two laser beams.



plane wave beams of equal intensity. These beams are then reflected from

a pair of mirrors arranged so as to bring the two beams together at a

known angle on a photoresist coated substrate. The two laser beams inter-

fere to produce a sinusoidal intensity pattern in the plane of the sub-

strate with a spacing given by

S= 2 sin 0 (3.1)

Where s is the grating period, X is the wavelength of the radiation and

8 is the angle between the beams and the substrate normal.

In the case of a reflective substrate surface the reflected waves

will interfere with the incident waves and the intensity pattern will

also vary sinusoidally in the direction normal to the substrate surface.

The intensity will be approximately zero at the interface between the

resist and a highly reflective substrate leading to under exposure at the

interface. In general, to insure optimum exposure on a reflective substrate

the thickness of the photoresist, tr , should be less than one half the spatial

period of the intensity pattern in the direction normal to the substrate or

where nr is the index of refraction of the photoresist,

tr < 4n 1 -
Fs n) (3.2)

The smoothness of the final pattern is of great importance as

indicated in section 2.5. The intensity pattern of two interfering laser

beams is expected to be extremely smooth, thus the intrinsic smoothness

of the resist will determine the amount of edge ripple in the exposed



resist pattern. An SEM micrograph is shown in Fig. 3-3 of the type of

photoresist pattern obtained on a reflective substrate. The photoresist

is Shipley AZ-1350J 11 , a high resolution positive photoresist, which has

been studied extensively by Dill and others 2 . Note that the intrinsic

roughness of the resist appears to be % 10 nm. The resist thickness

of 100 nm was obtained by diluting AZ-1350J resist with AZ thinner and

spin-coating at 5000 rpm for 30 sec. The substrate material is a thin film

of gold. The incident exposure energy was q 0.1 joule/cm 2 . The develop-

ment was by immersion for 15 sec. at 20 OC in a 1:1 mixture of AZ developer:

H20.

The rounded photoresist profile shown in Fig. 3-3 is useful as

an ion-beam etching mask for materials such as gold which etch much faster

than the photoresist, but such profiles are not adequate to define the

desired square profiles in low etch-rate materials such as Si02.

Attempts to produce a square profile in Shipley AZ-1350 resist by

holographic lithography were frustrated by back reflection from the sub-

strate, which causes an unavoidable modulation in the intensity pattern

of the interfering laser beams in the direction normal to the substrate

surface.

It was found that by using a simultaneous exposure and development

technique13914 (which enhances resist nonlinearity) and a transparent sub-

strate with nearly the same refractive index as the photoresist, a

nearly square profile can be obtained. A SEM micrograph of this result

is shown in Fig. 3-4. Unfortunately this technique could not be used

as a final lithography step in the fabrication process outlined in Fig. 3-1.



Fig. 3-3. An SEM micrograph of a holographic exposure of AZ-1350 photo
resist on a 100 nm thick gold film. The grating period is 320 nm, and the
resist thickness 100 nm. The exposing wavelength was 457.9 nm and the total
exposure energy density was -0.1 joule/cm2. Development was by immersion
for 15 sec. in a 1 to 1 solution of AZ-developer and water.
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Fig. 3-4. An SEM micrograph of a 320 nm (3200 A) period grating of ShipleyAZ - 1350 J photoresist on a glass substrate produced using simultaneousexposure and development holographic lithography. Note the roughness ofthe sidewalls.
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The restriction to transparent substrates severely limits the range

of substrate materials which can be used. The intrinsic rougness of the

Shipley AZ-1350 photoresist which is quite evident in Fig. 3-2 and 3-4

appears to place a lower limit on the edge roughness which can be obtained

directly with AZ-1350 resist. The poor adhesion of AZ-1350 resist to Si02

also makes the process unreliable, since the photoresist can easily

become detached from the substrate during normal processing.

Because of the problems associated with the use of holographic

lithography as a final lithographic step the use of the more flexible

technique of X-ray lithography was explored. Details of this research

are given in the next section.



3.3 PATTERN REPLICATION BY X-RAY LITHOGRAPHY

3.3.1 PROCESS CAPABILITIES

Prior to this research X-ray lithography had been demonstrated to

have several properties which made it particularly attractive as a

final lithography step for the exposure of submicrometer surface relief

patterns4 . These properties include:

i. Intrinsic high resolution because of the absence of significant
0

diffraction at the 1-100 A wavelengths which can be used.

ii. The compatibility of the extremely high resolution resist Poly-

methylmethacrylate (PMMA) with the process.

iii. The absence of back reflection problems, which makes possible

the achievement of vertical sidewall resist structures.

iv. The relative simplicity of the technique and its low cost.

v. Reasonably short exposure time per sample. (s 20-100 min.

for CuL (13.3 A) with a 400 watt electron bombardment source.)

Despite these important properties, replication of square profiles

with linewidths less than 500 nm had not yet been demonstrated. During

this research the replication of very smooth-walled square cross-section

profiles in PMMA with linewidths as small as 100 nm was achieved using
O O0

the very soft CuL (13.3 A) and CK (44.8 A) X-rays. Details of this

achievement are presented in this section.



3.3.2 CONSIDERATIONS IN THE CHOICE OF CuL and CK X-RAYS FOR SUBMICROMETER
PATTERN REPLICATION

The X-ray lithography process using a conventional electron bom-

bardment source is shown schematically in Fig. 3-5. An X-ray image

is produced in the PMMA by modulating a uniform X-ray flux with a pattern

of X-ray absorbing material carried on a relatively transparent mask

membrane.

In general there will be a gap, s, between the mask and substrate.

Since the X-ray source has a finite size and is not collimated, the shadow

cast by the absorber pattern will exhibit penumbral blurring and geometric

distortion. Both of these problems can be effectively eliminated by

maintaining the mask and substrate in intimate contact and/or by increasing

the source to substrate distance.

Ultimately the resolution of X-ray lithography is limited by the

instrinsic resolution of the X-ray sensitive resist. Therefore the

resist characteristics are of utmost importance. The X-ray sensitive

resist with the highest known resolution is PMMA. Its properties have

been studied extensively be several workers15'16'17and the mechanism of

exposure and development is well understood. In this work, the unexposed

resist consists of PMMA of a uniformly high molecular weight, (950,000

molecular weight PMMA was used). The exposing X-radiation breaks bonds

in the long chain polymers, reducing the molecular weight in the exposed

region. The resist is developed by immersion in a weak solvent which

preferentially dissolves the low molecular weight material such as a



X- RAY LITHOGRAPHIC SCHEME

Fig. 3-5. Illustrates the X-ray lithographic replication process using
an electron bombardment X-ray source. An X--ray mask, consisting of an
X-ray transparent membrane holding an absorber pattern, casts a shadow
on the radiation sensitive polymer on the substrate. The insets show
the effects of penumbral blurring and geometric distortion of the rep-
licated pattern caused by the finite source size, d, and noncollimated
nature of the exposinq radiation.



mixture of 60% isoproply alcohol (IPA) and 40% Methyl Isobutyl Ketone (MIBK).

The dissolution rate of PMMA for this mixture and ethyl alcohol and pure

MIBK has been found to be a highly nonlinear function of the energy

dissipated per unit volume in the PMMA9. A plot of the measured dependence

of dissolution rate on energy dissipation for electron exposure is shown

in Fig. 3-6. (Similar results have been obtained by Bernacki 18 for Alk

X-ray exposure.)

In the case of X-ray lithography the resolution of PMMA appears to be

limited only by the range of the photoelectrons emitted upon absorption of

an X-ray photon. Figure 3-7 shows a calculation19 of the maximum range

of photoelectrons as a function of energy. Also shown is a curve extra-

polated from measurements of Spiller's20 of an effective electron range in

PMMA, a measure of the distance over which a significant exposure occurs.
0 0 O 0

Note that the effective range is 400 A, 200 A, and 50 A at Alk, 8.3 A,
0 O

CuL (13.3 A), and Ck (44.8 A) respectively. This indicates that the longer

X-ray wavelengths are more desirable for the highest resolution work, than

the Alk X-ray which is commonly used for linewidths of > 0.5 pm.

The choice of the optimum X-ray wavelength for replicating ýl000 A

linewidth grating patterns with smooth vertical sidewalls is determined

by several considerations.

i. The absorber attenuation must be > 5 db to provide adequate

contrast for optimum exposure.

ii. In general the gold absorber pattern is not perfect and has

considerable high spatial frequency edge roughness and some

edge smoothing is desirable.
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iii. A mask membrane material with reasonably low attenuation must

be available.

iv. An X-ray source with a strong X-ray line must be available.

It has been found that the 13.3 A CuL X-ray is nearly optimum

given the above constraints. The reasons for this are outlined below:

Figure 3-8 shows a plot of the attenuation in gold and polyimide

versus X-ray wavelength21 222 29. Gold is generally the material chosen for

an X-ray absorber. It exhibits one of the highest material absorptions of

any element and is a very convenient material to use in mask pattern

fabrication because of its high sputter etching rate. Nevertheless

fabrication of gold structures with aspect ratios much greater than one

by ion beam etching is difficult. Therefore, if replication of linewidths

less than 100 nm is desired, reference to Fig. 3-8 indicates that the

X-ray wavelength used should be greater than a 12 A in order that the

pattern will have contrast > 5 db. At the same time, because the edges

of the grating pattern are rough, some blurring or smoothing of the

replicated pattern is desirable. For this reason using the shortest

practical wavelength is advantageous since photoelectron range increases

with decreasing wavelength.

The attenuation of most materials increases rapidly with wavelength
0

above 10 A. To minimize absorption and maximize film thickness for

reasons of strength and stability, the mask membrane should have a low

material attenuation. Fortunately several organic polymers which are

particularly convenient to use in thin film form as mask membranes have



1 2 4 6 810

WAVELENGTH (A)

Fio. 3-8. A plot of the attenuation (gb/um) of gold and polyimide ver-
sus wavelenoth for soft x-rays (1-100 A). The data was obtained from
several sources. ,a

64

20 40 6080100



0

acceptable attenuations of < 3 db/pm for wavelengths below 15 A and in

the region of the carbon absorption edge at 44.8 A. The attenuation curve

of polyimide shown in Fig. 3.8 is typical of many high carbon content
0

polymers. Lastly, copper which exhibits a strong L line at 13.3 A is a

convenient material to use as an electron bombardment source because of

its high thermal conductivity and relatively high melting point.

The 44.8 A Ck X-ray is also very well suited for high resolution

X-ray lithography20 . In fact it appears to be the optimum wavelength for

the highest resolution work because the maximum attenuation of gold

occurs near 44.8 A and low attenuation mask membrane materials are

available at 44.8 A because of the occurance of the carbon absorption
0

edge. For wavelengths greater than 50 A the resolution limit is probably

determined by diffraction rather than photoelectron range. If better

absorber patterns can be made and the edge smoothing effect of the CuL

radiation is not necessary the Ck X-ray is expected to be the optimum

wavelength for high resolution work.



3.3.3 THE X-RAY SOURCE

A schematic of the apparatus which was developed to implement the

X-ray lithographic process is shown in Fig. 3-9. X-rays are generated

by electron bombardment of a copper or carbon target. Any electrons

escaping from the X-ray source are deflected by an electron deflection

assembly and thus prevented from striking the substrate. The PMMA

coated substrate is mounted in thermal and electrical contact with a

water cooled copper block. The X-ray mask is maintained in intimate

contact with the substrate by an electrostatic hold down scheme.

The electron bombardment X-ray source consists of a modified Vacuum

Generators EG-1 electron beam evaporation unit24 . Electrons emitted from

the resistance heated tungsten ring cathode are electrostatically focused

to an -~ 1 mm diameter spot in the center of the water cooled anode. The

anode consisted either of a 2mm thick copper disk or sandwich of 1 mm

thick high density graphite, 250 pm thick indium, and 1 mm thick copper.

It was determined experimentally that the copper and carbon anodes would

begin to evaporate at total power levels of ,550 watts into an ~ 1 mm

spot. In practice a maximum total power dissipation of 400 watts was used.

Early X-ray exposures showed much less contrast than predicted. This

problem was traced to spurious PMMA exposure from stray electrons emitted

from the electron gun assembly. This problem was eliminated by installing

an electron deflector assembly above the X-ray source, (See Fig. 3-9).

The X-radiation emitted by the electron bombardment source consists

of line radiation and continuum or bremsstrahlung radiation. The wave-
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Fig. 3-9. A schematic diagram of the apparatus used to implement
X-ray lithography with the Cu and Ck X-rays. The dimensions and
voltages shown are typical opbrating parameters. A source to sub-
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length of the desired line radiation is of course determined by the target

material. The spectrum of the continuum is determined by the material

and the energy of the incident electron, with the upper limit of the photon

energy equal to the incident electron energy.

The following empirical expressions 25 indicate the dependence of X-ray

line and continuum emission on material parameters and electron energy.

The number of photons emitted, N, per steradian, per electron is

given by

N = 1 f.e (Ee-Ex) 6 3  (3.3)

4Tr 4frf

The power in the continuum in total watts emitted per KeV interval

per watt of electrical power is given by

eP(E)=k *f(E) Z (lI2E (34)

where e is characteristic of the target element, f is the target re-

absorption factor, Ee is the energy of the bombarding electrons in KeV,

Ex is the ionization energy of the shell (K or L) of interest in KeV,

Ep is the photon energy in KeV, Z, is the atomic number of the substrate,

and k, is a number characteristic of the material.

Of primary importance is the relative power absorbed in the PMMA

from the line and continuum radiation since the mask will have low con-

trast for the higher energy continuum radiation. Using equations 3.3 and

3.4 and the measured 29 absorption versus wavelength of PMMA the total power

in watts/watt/steradian absorbed in 1 pm of PMMA per unit photon energy was



calculated for a copper source operated at 8 kV (just below the threshold

for excitation of the Cuk 1.5 A line). The result is plotted below in

Fig. 3-10. The total power absorbed from the continuum ise 5% of the

power absorbed from the line radiation. Because of the high nonlinearity

of the resist development rate as shown in Fig. 3-6 the effect of this

additional exposure by the continuum should be negligible, (provided that

the mask membrane does not significantly alter the spectrum of the

exposing radiation).
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3.3.4 THE FABRICATION OF X-RAY MASKS

A major problem encountered in implementation of X-ray lithography

with the CuL and Ck X-rays was the fabrication of the X-ray mask. Several

techniques had been developed by other researchers26 927928 to produce

masks for use with the 8.3 A Alk X-ray, and other shorter wavelength

X-rays. However, the attenuation in the mask membrane of these masks at

the CuL and Ck wavelengths were unacceptably high (i.e., > 3 db). Membranes

used at the shorter wavelengths are usually a few pm thick while material

attenuation at wavelengths longer than ,12 A forces one to use thick-

nesses 1 -pm or less.

To solve this problem, several new types of mask membranes were

investigated, including, very thin ( P200 nm) Si3N4/Si0 2 membranes, and

various thin organic polymer films including mylar, polethylhene, and

polyimide. Useful X-ray masks were fabricated with silicon nitride using

a process similar to that developed by Spiller29,30. These masks were

found to be extremely fragile and their use was abandoned. Nevertheless,

the technology developed to fabricate silicon nitride masks has been very

useful in another part of the thesis work, namely, sample preparation

prior to observation in transmission electron microscopy as described in

section 3.5. The fabrication of silicon nitride X-ray masks is detailed

in Appendix A. Commercial Mylar film which has been used as a mask

membrane with the Alk X-ray and shorter wavelengths27'28 was found to have

an extremely rough surface unsuitable for high resolution work. Poly-

ethlylene films which can be easily prepared in 0.5 pm thicknesses by



stretching a 25 pm thick sheet were found to be extremely heat sensitive

and could not withstand ion-beam etching of the gold mask pattern.

Eventually this research led to a very successful new process for

fabricating X-ray masks with polyimide mask membranes 31 . This new mask

was used for nearly all the soft X-ray lithography work presented here.

The process developed for fabricating polyimide X-ray masks is

shown schematically in Figures 3-11 and 3-12. In the first step of the

process, a glass substrate is coated with a film of polyamic acid (Dupont

product PI-2530) 32 using a conventional spinning technique. Both 200 pm

thick Corning 0211 glass33 substrates and 1.5 mm thick optically flat glass

substrates were used. Polyamic acid thicknesses ranging from 0.5 pm to

5 pm were obtained by varying the spinning speed and the dilution of the

polyamic acid in a solution of equal parts of N-Methyl-2-pyrollidone and

acetone. To obtain the film thickness of 0.9 pm used for most of the

CuL work a mixture of 4 parts PI-2530, 1 part N-Methyl-2-pyrollidone, and

1 part acetone was spun at 6000 rpm for 60 sec. After spinning, the

polyamic acid is converted to polyimide by curing the film at 150 OC

for 15 minutes and then at 250 oC for 60 minutes. Next the absorber

pattern is fabricated. A layer of 10 nm of chrome (for adhesion) and a

layer of 100 nm of gold are evaporated onto thepolyimide surface, then

100 nm of AZ-1350J resist is spun onto the gold surface (2:7, AZ-1350J:

AZ-thinner at 5000 rpm). A grating pattern is exposed in the resist using

the holographic technique described in section 3.2. This resist grating
4pattern then acts as a mask during ion-beam 36pattern then acts as a mask during ion-beam etching of the gold. After
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Fio. 3-12. a). A schematic cross-secti n is shown of thp bonding of a
cooner tube etching holder to a polyimide flm prior to etchino of the
Qlass substrate. An optional step of bonding of a support ring is also
shown. b). The method of removina the glass substrate by etchinn in
dilute hydroflouric acid is illustrated. Isooropy] alcohol can be
used as shown to prevent any acid from leaking through pinholes in the
nolvimide which may be present when the glass has been removed.
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ion-beam etching of the gold a copper tube is bonded to the polyimide

using epoxy 34 as indicated in Fig. 3-12(a). (At this point a support ring

can also be bonded to the polyimide.) The glass substrate is etched

away by immersing the assembly in a solution of 2 parts water to 1 part

concentrated hydroflouric acid. Following removal of the glass a beveled

support ring of aluminum or stainless steel is bonded to either side of

the polyimide membrane using epoxy 35, (unless it was already done before

the glass was removed). After the membrane has been mounted on a support

ring a layer of 50 nm of aluminum is evaporated over the absorber side of

the mask membrane. Electrical contact is made between the aluminum

layer and the support ring using conductive paint or by insuring a

continuous path between the aluminum and the ring. Cross-sections of

the completed polyimide X-ray mask configurations which result are shown

in Figures 3-13 and 3-14.

Further details about the fabrication of polyimide X-ray masks

are given in Appendix B.
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Fip. 3-13. Schematic cross-section of a polyimide X-ray mask developed
for high resolution X-ray lithopraphy using the CuL and C x-ray wave-
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mask.
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POLYIMIDE MEMBRANE
(0.5 to 4p.m)

GOLD ABSORBER
(r) nrA fn ' ri is,m1

SUPPORT RING (0.05p.m)

Fig. 3-14. Cross-sections of two types of polyimide X-ray masks are
shown where the gold absorber pattern in on the "back" of the mask.

a.) The configuration which results when a flat support ring is
bonded to the polyimide before etching, as shown in Fig. 3-12.
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(0.05 Mm)

Fig. 3-14. Cross-sections of two types of polyimide X-ray masks are
shown where the gold absorber pattern in on the "back" of the mask.

b.) The configuration which results when a beveled support ring
is bonded after etching of the substrate.



3.3.5 THE MAINTENANCE OF INTIMATE MASK-SUBSTRATE CONTACT

To minimize penumbral blurring during X-ray exposure the mask

and substrate are held in intimate contact. Since the exposure takes

place in a vacuum the usual pneumatic hold down methods cannot be used.

For this reason an electrostatic hold-down technique was developed

which employs the force developed across a parallel plate capacitor

when a voltage is applied. Three distinct exposure geometries have been

used in this work as shown in Fig. 3-15.

Given the insulator thickness, t, in pm and dielectric constant,

kc , of the insulator, the pressure, P, in atmospheres exerted upon the

X-ray membrane will be V2

P = (4.4 x 10- 5) kc 2 (3.5)c 2

For typical values of t = 1 i-m, V = 40 volts, and kc = 10, the pressure,

P = 0.7 atmospheres, is more than adequate to maintain intimate contact.

The integrity of the insulator between the mask and substrate conductors

is essential to the maintenance of reliable contact since a short circuit

will eliminate the hold down force. PMMA has been found to be.an

unreliable insulator because it is easily scratched and often contains

pinholes, thus, either the substrate itself or the polyimide membrane

must act as the insulator.

It was found that during exposure to X-rays a fixed charge tends

to accumulate in the insulator such as to cancel the field between the
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Fig. 3-15. Schematic cross-sections are shown of three mask and sub-
strate geometries used to obtain intimate contact between a mask and
substrate using electrostatic pressure.
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mask and substrate. If this process is allowed to continue the mask

and substrate eventually lose contact. However, contact can be maintained

by reversing the voltage across the mask and substrate before the field

is completely cancelled. An automatic monitoring system was developed

for this purpose. The area of contact of the mask and substrate is

monitored by measuring the capacitance of the mask substrate combination.

Before X-ray exposure,at a given voltage,the balance of electrostatic

pressure and mask tension determine the area of contact. As the electro-

static pressure decreases, due to charging, the area of contact also

decreases. At a preset threshold value of capacitance the sign of the

contact voltage is automatically reversed and (at least) the intital

contact area is regained. This process then repeats as long as the

X-ray flux is incident on the mask. Continuous intimate contact is thus

maintained.



3.3.6 EXPERIMENTAL RESULTS - PMMA PROFILES OBTAINED USING CuL AND Ck X-RAYS

To test the X-ray replication process grating patterns of 320 nm

period were replicated in PMMA layers 0.5 pm and 1 pm thick. SEM micro-

graphs of the results are shown in Figures 3-16 to 3-20.

All of the exposures shown were done on 500 nm thick Si0 2 which was

thermally grown on silicon wafers. PMMA was spun onto the Si0 2 as

described in Appendix C. A polyimide X-ray mask of the type shown in

Fig. 3-13 was used. The polyimide thickness was 0.9 pm and the

gold absorber thickness was 100 nm. The exposure configuration shown

in Fig. 3-9 was used where the source to substrate distance was

5 cm and a power of 400 watts was used. Switching of the voltage applied

between the mask and substrate was employed to maintain mask-substrate

contact. Exposure time under these conditions was 75 min. The

development rate (which decreased slowly with depth because of absorption

of the X-rays) averaged 3.5 nm/sec. Development was monitored by observing

the PMMA thickness in a fully exposed area adjacent to the grating. When the

PMMA was completely removed in that area the development was terminated.

To observe the structures in the SEM the profiles, which are

insulators, must be coated with a conducting film to prevent charging

by the electron beam. This was done by RF sputtering of gold. It was

found that the PMMA profiles could easily be distorted by heating during

the gold sputtering. To minimize this effect the sputtering.was done at a



Fig. 3-16. SEM micrograph of a 320 nm (3200 A) period grating of PMMA on
an amorphous Si0 2 substrate which was exposed using the CuL (13.3 ) X-ray.
The depth of the grating is 400 nm. The slight sidewall roughness is caused
by roughness in the gold X-ray mask absorber pattern.

83



Fig. 3-17, A higher magnification SEM micrograph of the PMMA structure
shown in Fig. 3-16.
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Fig. 3-18. SEM micrograph of a 320 nm (3200 A) period grating of
PMMA on an amorphous Si0 2 substrate exposed using the CUL X-ray. The
grating depth is, 900 nm. The slight curvature of the PMMA slabs wasprobably caused by heating of the PMMA during gold coating of the
sample prior to SEM examination or possibly by overdevelopment which
lead to softening of the PMMA.

85



Fig, 3-19. A higher magnification SEM micrograph of the PMMA structureshown in Fig. 3-18.
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Fig. 3-20, SEM micrograph of a 320 nm (3200 A) period grating of PMMA on
an amorphous Si0 2 substrate exposed using the Ck (44,8 A) x-ray. The
sidewall roughness is believed to be a faithful reproduction of the mask
edge roughness.
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power of 20 watts in 20 second intervals seperated by 5 minute cooling

intervals during which the entire sputtering system was shut down.

Note that the exposures done with the CuL X-ray at 13.3 A shown

in Figures 3-16 to 3-19 are smoother than the exposure done with

the Ck X-ray at 44.8 A. Although direct comparison is not valid because

different masks were used, it appears that the mask edge roughness has

been more faithfully reproduced by the carbon X-ray because of the

shorter photoelectron range and higher intrinsic resolution. Also observe

that the sidewalls of the 1 pm deep exposure shown in Figures 3-18 and

3-19 are smoother than the shallower exposures. This is probably due to

the increased penumbral blurring in the deep exposure. although the slight

curvature of the PMMA profile evident in the micrographs indicate that

the structure may have been overheated during gold sputtering. Con-

ceivably the increased smoothness could be due to surface melting.



3.4 ETCHING OF THE SURFACE RELIEF STRUCTURE

To define a square-wave surface-relief structure such as illustrated

in Fig. 2-2(a) a directional etching technique must be used. (Aqueous

chemical etching techniques are isotropic in amorphous solids, thus

they are entirely unsuitable for defining structures with vertical

sidewalls.) Sputter etching4 is a highly directional etching technique

which has been used extensively in the fabrication of integrated circuits,

integrated optics devices, and surface acoustic wave devices. Nevertheless

ion-beam sputter etching was found to be inadequate for defining straight-

walled surface-relief structures because of redeposition of sputtered

material 36 . To solve this problem in the case of Si0 2 a new reactive

sputter etching technique37 ' 38 ' 3 9 was developed in collaboration with Dr.

Hans Lehmann of RCA Laboratories in Zurich, Switzerland. The extraordinary

capabilities of this technique have made SiO2 the most advantageous

material for this research at the present time.



3.4.1 ION BEAM ETCHING-REDEPOSITION

When the research began it was hoped that ion-beam etching would

provide a general means of defining square-wave profiles. The intital

results of etching of very fine linewidths were disappointing so a study

of the technique was initiated. The results of this study are dramatically

illustrated by the series of micrographs shown in Fig. 3-21.

The SEM micrographs show an AZ-1350J photoresist pattern on a silicon

substrate prior to ion beam etching, after ion beam etching, and after

removal of the photoresist by dissolution in acetone and plasma ashing

in oxygen. Note that the sidewall ripple of the original photoresist

profile, (a), has been replicated by the redeposited sputtered material,(c).

The faceting of the resist profile observed in (b) is a well known effect 4

caused by the angular variation of the sputter yield.

The composition of the redeposited material is not known. It may

consist entirely of redeposited substrate material or it may be some

mixture of sputtered photoresist and substrate material. In any case,

significant redeposition was observed with etching masks of aluminum,

AZ-1350 photoresist, and PMMA after etching of such relatively low sputter.

rate materials as silicon, and silicon dioxide. Redeposition was not

observed on high sputter-rate materials such as gold. These observations

were confirmed by H.W. Lehmann 40 and P. Gloersen41. Subsequently

Lehmann modeled the sputter etching process including the redeposition

effect40. Excellent agreement between the model and experiments has been

obtained.



Fig. 3-21. SEM micrographs showing (Top) AZ-1350 J photoresist pattern ona silicon substrate prior to ion-beam etching, (Center) after ion-beametching to a depth of 130 nm, (Bottom) after dissolution of photoresist inasolvent and plasma ashing in oxygen. Note that the inner surface of theredeposited material left standing shows ripples identical to those on thesidewalls of the photoresist, indicating that the redeposited materialmakes a cast of the photoresist.
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Lehmann's model predicts that in effect it will be impossible to

obtain a square-wave vertical-walled surface-relief structure in a low

sputter-rate materials such as silicon dioxide. Obviously a new technique

was needed, in the case of silicon and silicon dioxide this new technique

has proven to be reactive-ion etching.



3.4.2 REACTIVE ION ETCHING

H. Lehmann developed a reactive-ion etching technique 37938 for silicon

dioxide for the fabrication of straight-walled-grating surface-relief

structures of 1.4 rpm period for use in Zero Order Diffraction color

filters42. In collaboration with Dr. Lehmann the process was transferred

to M.I.T. Lincoln Laboratory. The technique was then successfully applied

to the etching of linewidths as small as 90 nm39 . The process does not

suffer redeposition problems and the etching is highly directional. Re-

search is underway to determine the mechanism of etching which at present

is not fully understood. It is believed that the highly directed ions

which bombard the surface strongly enhance etching of the bombarded sub-

43strate area by the active species in the RF plasma43

Etching is performed in a conventional RF sputtering system using

CF4 or CHF 3 gas at a pressure of lO0- 2 torr. The configuration is

shown in Fig. 3-22. It was determined that the etch rate of SiO 2 was

~25 nm/min. at a total RF input power of 40 watts. Unfortunately the

etching rate of PMMA was also found to be t25 nm/min. PMMA is

therefore unsuitable as an etching mask in the reactive-ion etching

process with CF4 and CHF 3. To circumvent this problem a chromium mask

is fabricated by the liftoff process. Chromium functions as an excellent

etch mask since its etch rate is z0.9 nm/min.

4The liftoff process used to fabricate a chromium etch-mask from a

PMMA grating relief structure is shown schematically in Fig. 3-23.

Chromium is evaporated (to a thickness of 10 nm in most cases) onto
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Fig. 3-22. Schematic diagram of the apparatus used to do reactive-ion
etching. It is a conventional RF sputtering system where C1F 3 or ý

gas is substituted for argon.
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Fig. 3-23. Schematic of the sequence of steps in the liftoff process.



the PMMA surface relief structure such that the chromium atoms arrive at

normal incidence. Because the PMMA structure's walls are parallel to

the incoming atomsa continuous chrome film is not formed on the walls,

The PMMA and the metal which has been evaporated upon it are subsequently

removed by immersion in monochlorobenzene C6H5C1. (It was found that in

the case of 320 nm period gratings ultrasonic agitation is usually

necessary to completely remove the superfluous metal.)

Using a 20 nm thick chrome etch-mask, a 320 nm period surface

relief structure was etched into Si0 2 using CHF 3 gas. The gas pressure

was 1.5 x 10-2 torr, flow rate of 15 cc/min., 40 watts of R.F. power, for

an etch time of 10 minutes. SEM micrographs of the resulting structure

are shown in Figures 3-24 and 3-25. These structures are of course

somewhat deeper than the structures employed in overlayer orientation

experiments, but they do demonstrate the remarkable directionality

and absence of redeposition characteristic of the reactive-ion-etching

process.



Fig. 3-24. This SEM micrograph shows a 320 nm (3200 A) period surface
relief structure in amorphous SiOp. The structure was fabricated by re-active-ion etching with CHF gas hrough a 20 nm thick chromium mask. The
chromium mask was fabricated on the substrate by liftoff using the PMMA
structure shown in Fig. 3-16.
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Fig, 3-25. Higher magnification SEM micrograph of the amorphous Si02
surface relief structure shown in Fig. 3-24.
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3.4.3 FINAL CLEANING

Following reactive-ion etching, the chromium etching mask is

chemically removed using an aqueous chromium etch (Ceric Ammonium

Nitrate, perchloric acid, and water, 16 4.5 grms, 43 ml, and 1000 ml

respectively) and the substrate is given a thorough rinse in water.

At this point it has been observed that the substrates do not wet

uniformly in water indicating some surface contamination. Researchers

have found that a thin layer of carbon can be deposited on a substrate

43during reactive-ion etching with CHF 3 .. To remove any carbon or

organic contamination the substrates were subjected to UV-Ozone cleaning44 .

The samples were placed approximately 2 mm from a quartz low pressure

mercury lamp45 in atmosphere for 30 minutes. The combined action of

ozone and ultraviolet light is known to be effective in the removal of

carbon and organic residues. Following this treatment substrates were

found to wet uniformly indicating a clean uncontaminated SiO 2 surface.

* This is sometimes designated Kodak Chrome Etch.



3.5 CHARACTERIZATION OF SURFACE RELIEF STRUCTURES

The ability to observe and characterize surface relief structures

before and after fabrication is of great importance. Without precise

knowledge of the results of a procedure process development and

improvement are very difficult.

For observations where resolution of only 10 nm is required

Scanning Electron Microscopy (SEM) is adequate. A drawback of the SEM

is the necessity of coating nonconducting samples with metal which can

alter or obscure detail. Another difficulty is that electron diffraction

cannot be done in the SEM to determine the crystallinity of a sample.

To obtain higher resolution, perform selected area diffractions,

and avoid the necessity of coatin, samples conventional Transmission

Electron Microscopy (TEM) or Scanning Transmission Electron Microscopy

(STEM) must be used. The price one pays for these improvements over SEM

is that the samples must be very thin ( < 200 nm thick for SiO 2) and

of small diameter ( < 3 mm).

Sample thinning prior to observation by TEM or STEM is done using

the techniques developed for the fabrication of Si3N4 - Si0 2 X-ray

masks. As described in Appendix A, a film of Si3N4 approximately 100 nm

thick and Si0 2 approximately 100 nm thick is grown on a {100} silicon

wafer, or a film of approximately 200 nm of Si0 2 alone is grown. A

surface-..relief structure is then fabricated in the Si0 2 film. When the

structure is completed or after an overlayer deposition experiment, the

underlying silicon is etched away. The silicon substrate is placed in
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a special holder (see Appendix A) which protects the surface relief

structure. The silicon is anisotropically etched through a mask

pattern on the back of the silicon using a solution of Ethylene Diamine

Pyrocatachol in water.83 The mask pattern on the back of the silicon

defines small square frames which support the thin a 200 nm thick

membrane.

After thinning the samples can be viewed directly by either TEM

or STEM. TEM micrographs of an SiO 2 structure similar to that shown

in the SEM micrographs of Figures 3-24 and 3-25 are shown in Fig. 3-26.

Careful measurement of these and other TEM micrographs indicate that

the sidewalls of square-wave surface-relief structures fabricated using

reactive-ion etching deviate a maximum of 6 degrees from vertical and the

radii of curvature of the top edge and groove corners are less than 5 nm.
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Fig. 3-26. TEM micrographs are shown of a 320 nm-period 50 nm-deep
square-wave surface-relief structure in amorphous SiO The upper
micrograph was taken with the sample tilted 00 with rgspect to the
electron beam. The lower micrograph was taken with the sample tilted
120 with respect to the electron beam. The magnification is 150 kx.
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3.6 CONCLUSION

New X-ray lithographic and reactive-ion etching techniques have been

developed. These techniques have been applied to the fabrication of 160 nm

linewidth square-wave gratings in Si0 2 for use in overlayer orientation

experiments. Improvements in the quality of the gold absorber pattern of

X-ray masks, improved liftoff techniques, and a better understanding of

reactive-ion etching should lead to further improvement in the smoothness

of the sidewalls and sharpness of the edges of square-wave gratings. The

techniques themselves are quite general and can be used for the fabrication

of a wide variety of structures with submicrometer dimensions.

103



IV. ORIENTATION OF LIQUID CRYSTALS BY ARTIFICIAL
SURFACE RELIEF STRUCTURES

4.1 INTRODUCTION

As explained in section 2.5, liquid crystals are a particularly

convenient material to use to test the concept of orientation of aniso-

tropic overlayer materials by surface relief structures. The interfacial

tensions of liquid crystals are highly anisotropic, their orientation is

easily measured by optical techniques, and an equilibrium configuration

is easily achieved because of the high mobility of the molecules in the

liquid crystal. In this Chapter, the properties of the nematic and

smectic A phases of liquid crystals are discussed, a proposed mechanism

of liquid crystal orientation by an artificial surface-relief structure

is presented, and details are given of an experimental demonstration of

uniform "single crystal" orientation of nematic and smectic A liquid

crystals by square-wave surface-relief gratings in amorphous Si0 2.
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4.2 PROPERTIES OF LIQUID CRYSTALS

Certain phases of some organic materials whose molecules are

elongated have mechanical properties and symmetry properties which are

intermediate between those of a liquid and those of a solid crystal5 . For

this reason such materials are often called liquid crystals. The more

proper name is mesomorphic phases (mesomorphic meaning; of intermediate

form). The molecules of a conventional isotropic liquid are both position-

ally and orientationally disordered while in a crystal the molecules are

located and oriented on a three dimensional lattice. Two of the possible

mesophases which are of interest here are:

(i) Nematic phases, where certain organic liquids show a low temp-

erature phase where the elongated molecules are aligned preferentially

along one direction. They are positionally disordered, but orient-

ationally ordered. At higher temperatures they undergo a transition

to a conventional isotropic liquid phase.

(ii) Smectic phases, obtained by imposing positional order in one

direction only. Such a system is simply a set of two dimensional

liquid layers stacked on each other with a well defined spacing.

If the molecules are oriented normal to the layers, within each layer,

it is known as a smectic A phase.

Fig. 4-1 illustrates schematically the nematic and smectic A phases.

Some liquid crystal materials exhibit a series of phase transitions from

isotropic, to nematic, to smectic, to crystalline as the temperature is

lowered. The sequence is clear from Fig. 4-1.
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Fig. 4-1. Schematic representations of the isotropic, nematic, smectic
A and crystalline phases of a liquid crystal material.
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The local orientation of both a nematic and smectic A phase can be

specified by a unit vector, t, which is parallel to the average direction

of the elongated molecules. Since both the smectic A and nematic phases

are optically uniaxial the local optic axis will also correspond to n.

The terms optic axis and director are thus interchangeable.

The polar plot of the interfacial tension, y (n-), of an interface

between a nematic or smectic A phase and a nonordered phase will be a

smooth nonspherical surface as described in section 2.2 Since the function

y (") is cylindrically symmetric the entire plot can be represented as a

two dimensional curve. The interfacial tension of interest here will be

that of the specific liquid crystals MBBA and M-24. (See Appendix D for

properties of these materials.) The entire plot of y (ni) is not available

for either material. However, the orientation at which the minimum

interfacial tension occurs can be determined by observing the orientation

of a thin slab of the liquid crystal confined between two identical

interfaces. 5,46 The equilibrium orientation will correspond to the orientation

at which the minimum interfacial tension occurs. The possible results of

such a measurement are shown in Fig. 4-2.

For smooth clean glass or Si0 2 surfaces, most investigators

report that the minimum interfacial tension occurs with,n, parallel to the

surface (Fig. 4-2(c)) for MBBA and M-24. By coating an Si0 2 surface
48 49with various silane compounds or lecithin it is possible to obtain a

surface with the minimum interfacial tension at the orientation where n is

perpendicular to the surface (Fig. 4-2(a)). Other surface treatments
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Fig. 4-2. The possible equilibrium orientations of a nernatic (or
smectic) liquid crystal confined between smooth parallel interfaces.
In practice the component of -6 in the plane of the interfaces will have
no preferred direction for a smooth amorphous materiai. In this case
the confined liquid crystal will be composed of small randomly oriented
domains as shown in the lower diagram.
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48 50including certain silanes4and evaporated carbon can also produce
4-

surfaces with minimum interfacial tension for,n, parallel to the surface.

It is worth nothing that Creagh and Kmetz have claimed that MBBA will

orient with,n, perpendicular to a glass surface if it is "thoroughly

cleaned" with chromic acid. It appears likely that the glass surface

has been etched by their "cleaning" step and the surface is no longer

planar 5 . In any event, it is well established that the minimum inter-

facial tension of MBBA and M-24 occurs for n parallel or very near

parallel to a conventionally cleaned smooth SiO 2 surface.

5For many experimental purposes and for some commercially important

46nematic liquid crystal display devices it is often desirable to maintain

uniform alignment of the director, n, parallel to a substrate surface in

some specified direction . In practice, uniform parallel alignment is not

obtained between parallel smooth amorphous substrate surfaces even though

the minimum interfacial energy occurs for n parallel to the substrate.

This is explained by noting that the interfacial tension is isotropic for

variations of the director in the substrate plane, thus the equilibrium

orientation in the plane is indeterminate, and very small random pert-

urbations can cause the orientation of the director to wander in the plane

of the substrate over a macroscopic sample. Samples of nematic liquid

crystal confined between smooth glass or amorphous SiO 2 surfaces where the

interfacial tension is a minimum for n parallel to the substrate tend to

be made up of regions where n varies slowly (on the order of a micrometer

in diameter) separated by disclinations5,51(see Fig. 4-2). Smectic A liquid
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crystals confined in the same manner also tend to form domains or grains

of micrometer size separated in this case by both dislocations and dis-

5951clinations

It has been determined empirically that uniform parallel alignment

of nematics and smectics can be induced by employing surfaces which are

anisotropic in the plane. Successful orientation has been obtained on

planar single crystal surfaces 52 (i.e., heteroepitaxy of liquid crystals)

and on surfaces which have been unidirectionally rubbed with paper, cotton,

rouge, leather, diamond paste, etc. 5,46. Alignment has also been obtained

on SiO, surfaces evaporated at a steep angle and on surfaces which

have been unidirectionally pulled from various solutions55 . In all cases

the liquid crystal alignment direction coincides with the direction of

rubbing, pulling, evaporation, crystal anisotropy etc.

Various models 56'48'57'58have been proposed to explain the observed

alignment in the case of rubbing and evaporation of SiO 2 . The most

generally accepted model is Berreman's56 which maintains that surface

relief structures produced on the substrate by the rubbing and evaporation

processes lead to an anisotropy in the interfacial tension for variations

of the director in the plane such the the minimum total free energy

configuration occurs with the director parallel to the rubbing or evap-

oration direction. Direct correlation of surface structure with orient-

ation has been difficult because of uncertainties in the preparation of

the surfaces and the difficulty of observing the surface57 . Now that

well controlled surface relief structures on amorphous substrates can be
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prepared using the techniques described in Chapter III, a direct test of

the theory of liquid crystal orientation by surface relief structures is

possible.
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4.3 THE GENERALIZED INTERFACIAL TENSION OF A LIQUID CRYSTAL AND A SURFACE
RELIEF STRUCTURE

If the interface between a liquid crystal and a substrate is not

planar but is described by the periodic function, I (x,y), the generalized

interfacial tension ac ({) as defined in section 2.3 will not be isotropic
£c+

in the substrate plane, In general the interfacial tension oZc (n) will

now be described by a polar plot which will be a surface which is not

cylindrically symmetric.

Insight into the form of Oac (n) for an interface described by I (x,y)

can be gained by considering the interfaces illustrated in Fig. 4-3.

Note that the liquid crystal can be distorted in the interface region as

in Figs. 4-3(a) and 4-3(b). Associated with this distortion is a distortion

free energy, Fd. In general the total interfacial tension will consist of

a "physiochemical part", determined by the interfacial tension of the

liquid crystal at the liquid crystal-substrate discontinuity, and a

distortion free energy part determined by the excess free energy resulting

from the surface relief structure induced distortion. The total inter-

facial tension will thus be given by

C (4.1)
aec £(i ' Jy c (ni (x,yz))dA +fFd (x,y,z) dv (4.1)

I(x,y) Interface region

Where n specifies the orientation just outside the interface region, and

ni(x,y,z) gives the local director.

The distortion free energy for a nematic liquid crystal can be
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Fig. 4-3. Schematic illustration of possible configurations of a
nematic liquid crystal at a square-wave grating interface. The direc-
tor is tangent to the curves drawn above the interfaces. a). Config-
uration for n perpendicular at z = I(x,y). b). Configuration for n
tangent to z = I(x,y) and perpendicular to the y or groove direction.
c). Configuration for n tangent to z = I(x,y) and parallel to the
groove direction. d). Configuration where W is everywhere perpendicu-
lar to the x-y plane.
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written in general as

+2 2 +2Fdn = 1/2 K (div n) + 1/2 K2 (nO. curl n)2

+1/2 K3 (i x curl n)2 (4.2)

Where K1, K2, and K3 are the splay, twist, and bend elastic coefficients.

Assuming that the interplanar spacing remains constant, the distortion

free energy for a smectic A phase is given by

Fds 1= /2 K1 (div n)2  (4.3)

Both the bend and twist distortion are forbidden in the smectic A so these

terms are absent.

Evidently the minimum interfacial tension atc (i) will be obtained if

the director orientation is constant in the interface region making Fd = 0

andfYec ni (x,y,z) dA is a minimum. This will be the case for both

nematics I (x,y) and smectics A on a square-wave grating such as shown

in Fig. 4-3(c),when y£c (h) is a minimum for n parallel to a smooth

surface of the grating material. If the minimum of yc (n") should occur

at some orientation other than parallel, then the orientation at which

minimum atc ( n ) occurs will be determined by the competition between the

distortion free energy term and the physiochemical interfacial tension

term. This will also be the case if the surface relief structure varies

in both X and Y directions since there will be no orientation where the

distortion free energy term vanishes.
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4.4 THE ORIENTATION OF LIQUID CRYSTALS BY SQUARE WAVE GRATINGS ON
AMORPHOUS Si0 2 SUBSTRATES - EXPERIMENT

Several liquid crystal alignment experiments were done in the

following manner. Square-wave grating structures were fabricated on

amorphous Si0 2 substrates using the techniques described in Chapter III.

A "sandwich" consisting of two substrates with surface-relief grating

structures oriented parallel to one another, spacers, and liquid crystal

was then assembled as shown in Fig. 4-4. The orientation of the liquid

crystal layer was measured by observing the sandwich in transmitted light

between crossed polarizers in an optical microscope. Uniform alignment was

observed (as predicted) in the direction of the grating grooves for M-24 in

both the nematic and smectic A phases. The same result was obtained for

the nematic phase of MBBA.
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Fig. 4-4. A schematic cross-section and top view are shown of the "sand-
wich" assembly used to investigate surface-relief structure orientation
effects in nematic and smectic A liquid crystals.
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4.4.1 THE GRATING STRUCTURES

Two substrates were prepared with grating surface-relief structures

using identical procedures. Optically polished fused quartz substrates59

(amorphous SiO 2) 3.75 cm in diameter, and 1.5 mm thick were used.

A 320 nm period grating, 1.25 cm square, was exposed in 300 nm of PMMA

using CuL X-ray lithography. Following development of the X-ray exposure

10 nm of chromium was lifted off. The substrate was then reactive-ion

etched in CHF 3 gas to a depth of 25 nm. Finally the chromium was

chemically removed using an aqueous cheomium etch. Prior to the first

alignment experiments the only cleaning of the completed substrate

relief structure was a thorough rinse in distilled water. At that point

the surface was not wet by water indicating the presence of surface

contamination. The most likely contaminent appears to have been a carbon

43film produced during reactive-ion etching43 After the first alignment

experiments the substrates were cleaned with organic solvents and were

subjected to UV ozone cleaning4. This cleaning procedure resulted in

uniform wetting of the substrates by water indicating an uncontaminated

SiO2 surface. However, no significant difference was noticed between align-

ment experiments using substrates which wet and those that did not.
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4.4.2 ALIGNMENT OF MBBA IN THE NEMATIC PHASE

Two substrates were assembled in a sandwich as shown in Fig. 4-4

using two 50 micrometer thick teflon spacers. To align the two gratings

parallel to one another the light diffracted by the two gratings from an

incident collimated light beam was observed while rotating the samples

relative to one another. Near grating groove parallelism a moire pattern

was observed. By minimizing the number of fringes in the moire pattern the

two gratings were aligned parallel to within less than one milliradian.60

The grating areas on the two substrates did not overlap exactly, because of

this, the area between the two substrates was comprised of three distinct

regions:

A. A region outside the grating area of both substrates where smooth

surfaces faced each other.

B. Regions where a grating on either the top or bottom substrate

faces a smooth substrate area.

C. A region where parallel gratings face one another.

Following assembly the entire sandwich was heated on a hotplate to a

temperature above the nematic-isotropic transition of MBBA. MBBA was then

introduced between the substrates by capillary action. The sandwich was

removed from the hot plate and allowed to cool rapidly to room temperature.

Upon transition to the nematic phase at ;46.5 °C a large number of defects

or disclinations 51 were observed in all regions of the sandwich. The

density of defects began to decrease immediately. After about 60 seconds

the density of disclinations in region C was much lower than in region A.
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The density of defects in region B was intermediate.

The sandwich was observed in transmission in a microscope between

crossed polarizers. The incident light arrived normal to the thin

liquid crystal layer and the entire sandwich could be rotated in the

plane of the layer.

An aligned nematic or smectic A liquid crystal behaves as an

optically uniaxial medium with its optic axis parallel to the director n.

From the indicatrix construction 61 one sees that linearly polarized light

passing through a slab of uniaxial medium at normal incidence will remain

linearly polarized (for all frequencies and slab thicknesses) only if

the direction of propagation, k, the polarization direction i, and the

optic axis, A, lie in the same plane, or if 6 is in the direction of Z x n

In other words, a normally incident linearly polarized wave will remain

linearly polarized if the incident light is polarized parallel or

perpendicular to the projection of the director on the plane of the slab.

Thus, by observing the light transmitted through a uniaxial slab between

crossed polarizers one can determine the direction of the in plape component

of the director to within 90 degrees by finding the angular orientation of

the slab relative to the polarizers which results in a transmission null.

The intensity of the light passing through the MBBA liquid crystal

sandwich between crossed polarizers was observed in regions A, B, and C,

as the sandwich was rotated relative to the polarizers. Within region

A a complex pattern of disclinations was observed. A micrograph of the

type of pattern observed is shown in Fig. 4-5.
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Fig. 4-5. An optical micrograph is shown of a 50 upm thick slab of
MBBA in the nematic phase confined between smooth amorphous substrates.
The slab is observed between crossed polarizers. Several wedge dis-
clinations are visible.
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The rapid variations in intensity indicate essentially random

orientation of the nematic director in the plane in this region. Within

region C, transmission nulls were obtained when the incident polarization

was precisely parallel or perpendicular to the grating direction to within

the experimental error of + .25 degrees. This evidence indicates that

within region C the projection of the nematic director was uniformly aligned

either parallel or perpendicular to the grating groove direction. Uniform

alignment was observed in all areas of region C. At the border between

regions A and C the uniform alignment of region C abruptly changed to the

random alignment of region A. In the intermediate region, B, alignment was

not uniform, yet it was generally in the direction of the grating. Further

experiments were performed to determine more precisely the orientation of

the director. The MBBA in the sandwich was lightly doped with a dye whose

elongated molecule is known to orient parallel to the liquid crystal

director 62. It is also known that this dye preferentially absorbs light

polarized parallel to the dye molecule's long axis. Within region C the

doped MBBA was found to preferentially absorb light polarized parallel to

the groove direction. Thus it was concluded that the projection of the

director was definitely oriented parallel to the grooves. To determine

whether the director was parallel to the plane of the substrates or tilted

with respect to the plane the phase delay for a normally incident wave was

measured. Within experimental error the director was found to be parallel

to the substrate plane. Because of the large uncertainty of ± 150 associated

with the measurement technique it is possible that there could be a slight

tilt of the director from the plane. The analysis presented in section 4.3
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predicts the observed orientation. This is seen by noting that orientations

of the liquid crystal in the sandwich will correspond to the equilibrium

orientation determined by the minimum free energy configuration. The

contributions to the free energy will include the interfacial free energies

associated with the grating structures and the free energy of the liquid

crystal layer between the grating structures. As argued in section 4.3

the minimum interfacial free energy for MBBA on a square grating should

occur for n parallel to the groove direction since this minimizes both

the "physiochemical" and distortion parts of the interfacial tension for

MBBA. Minimum free energy for the bulk nematic phase obviously occurs for

constant n. Thus the equilibrium orientation of MBBA in region C of the

sandwich should indeed correspond to n parallel to the groove direction.

After the alignment experiments with MBBA were completed, the sandwich

was disassembled and the MBBA was removed from the substrates by immersion

in acetone, followed by UV ozone cleaning 44
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4.4.3 ALIGNMENT OF M-24 IN THE NEMATIC AND SMECTIC A PHASES

An experiment similar to the one described above for MBBA was under-

taken using the liquid crystal M-24 (see appendix D), which has a smectic

A phase as well as a nematic phase. A sandwich was constructed as shown in

Fig. 4-4 in the manner described in section 4.4.2. In this case, Mylar

spacers 25 pm thick were used rather than Teflon. The sandwich was heated

to above the isotropic transition of M-24 on a temperature-stabilized

microscope hot stage. The liquid crystal was then introduced between the

substrates by capillary action. The sample was next cooled, very slowly,

to the nematic-isotropic transition at 78.3 oC while being observed between

crossed polarizers. When the transition occured, a small number of disc-

linations appeared and then shrank very rapidly (in less than one second)

and disappeared. In the nematic phase the three regions (see section 4.4.2

and Fig. 4-4) A, B, and C as observed between crossed polarizers in trans-

mitted light had very distinct properties. In region C, nulls in the trans-

mission were observed for polarization precisely parallel or perpendicular

to the grating grooves. In region A, the orientation of the polarizers with

respect to the sample at which the transmission null occured wandered

randomly from area to area. In region B, the orientation of the nulls

varied only slightly from the grating direction. The interpretation of

this result is the same as given in section 4.4.2 for MBBA. The absence

of disclinations in all regions in this case was particularly striking,

however. This could possibly be explained by the very slow cooling of the

M-24 through the nematic-isotropic transition which would allow oriented
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"nucleation and growth" (see Chapter 5) of the nematic phase from the

isotropic phase.

After observing the M-24 sandwich in the nematic phase, it was cooled

very slowly (<10-1 °C/minute) through the nematic to smectic A transition

at 66.5 *C. Within region C the only observed change below the transition

was the absence of director fluctuations which is characteristic of the

smectic phase. The entire area of region C appeared uniformly dark between

crossed polarizers for the groove direction parallel or perpendicular to

the incident polarization. However, below the transition, region A had a

remarkable appearance. Observed between crossed polarizers it presented a

kaleidoscopic pattern of dislocations and focal conic textures5. Region

B exhibited a striated texture of dislocations, but the average director

orientation coincided with the grating direction. The transition was slowly

traversed in temperature several times with the result that the texture in

regions A and B changed slightly: The other features of the phenomenon were

unchanged.

The temperature of the sandwich was then lowered 3 OC below the

nematic-smectic A transition. As the temperature decreased very faint

striations could be observed in region C. These are believed to be dis-

locations in the smectic phase 5 caused by defects at the edge of region C.

Once again the observed orientation of the liquid crystal by the

square-wave surface-relief structure can be explained by the minimization

of free energy arguments given in sections 2.4, 4.2, 4.3, and 4.4.2.
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4.5 CONCLUSIONS

An experiment has been done where a well controlled and characterized

surface relief structure was fabricated and shown to align both nematic and

smectic liquid crystals with the orientation consistent with theory.

Berreman56, Kahn48, and others 57 have attempted to explain the observed

orientation of nematic liquid crystals by rubbed and evaporated surfaces

with a theory of liquid crystal orientation by surface-relief structures.

Their efforts have been frustrated by the difficulty of observing and

characterizing the surfaces. Here a different approach has been taken

and a theory similar to theirs has been shown to be qualitatively correct.

It is worth noting that Berreman's theory was formulated to explain the

specific case of liquid crystal alignment and that it is only a specific

case of the broader theory of crystalline overlayer orientation by surface

relief structures which is presented here. Further liquid crystal

orientation experiments are suggested in Chapter 6.
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V. ORIENTATION OF SOLID CRYSTALLINE OVERLAYERS BY SURFACE RELIEF

STRUCTURES ON AMORPHOUS SUBSTRATES

5.1 INTRODUCTION

In this chapter the orientation of solid crystalline overlayers on

amorphous substrates by surface-relief structures is discussed. The

general features of thin solid film growth are first presented to

provide background. Specific models are then discussed for the growth

processes of nucleation, island information, and coalescence. From the

models of the individual steps in the growth process, a model is

constructed for oriented thin film growth on a surface.-relief structure

on an amorphous substrate. Finally, experimental results, which agree

with this model,are presented showing oriented growth of KC1 on square-

wave grating structures on amorphous SiO 2. The results of gold and

tin depositions on square-wave gratings are also presented and explained

in light of the growth model.
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5.2 GENERAL FEATURES OF THIN FILM GROWTH

5.2.1 THE THIN FILM GROWTH PROCESS

The deposition of thin films on solid substrates has been the

subject of extensive research. A large number of deposition techniques

have been developed including evaporation, sputtering, chemical vapor

deposition, molecular beam, and liquid phase growth techniques. Many

substrate-deposit combinations have been investigated. Several com-

prehensive reviews of this subject have recently been published1 '2'63

Despite the great variety of deposition techniques and substrate and

deposit combinations, the general features of the mechanism of film

formation is similar in most cases (a possible exception is the case

where the deposit-substrate bonding is very strong and layer by layer

growth occurs). The several distinct stages of thin film growth are

illustrated in Fig. 5-1. In the initial stage of deposition a large

number of small nuclei form on the substrate. These nuclei often have

a multiplicity of crystallographic orientations regardless of the

substrate crystalline structure. On a smooth substrate the nuclei

are randomly distributed, however, an extremely interesting instance

of nonrandom nucleation is sometimes seen on cleavage steps and other

substrate topographic features. An example of this phenomenon (from work

of Basset's 64 ) termed "decoration" is shown in Fig. 5-2. (Note that

the tiny gold nuclei have preferentially nucleated on the NaCl cleavage

steps.)
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Fig. 5-1. A shematic illustration of the distinct stages of thin film
qrowth. This sequence of film growth is characteristic of a large number
of deposit-substrate combinations where the deposit-substrate bonding
is weaker than the deposit-deposit bonding.
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(Bassett et al.) 64
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Following nucleation, the nuclei or "islands" grow in size. In some

cases, those with a particular crystallographic orientation grow more

rapidly than others. It also appears that these small islands often have

considerable mobility on the substrate surface and can easily change

their crystallographic orientation.

Eventually, as growth continues, some islands coalesce with one

another to form larger islands. During coalescence of two isolated

islands, there is a considerable amount of mass transfer, and a tendency

for the compound island to take on a single crystallographic orientation.

It is often at this stage that the formation of large area single

crystal islands takes place through the reorientation of many small

islands. It has been observed that in some cases the islands exhibit

a liquid-like behavior during coalescence 65 Explanations :of the phenomenon

of coalescence attribute this behavior to mass transfer by surface self-

diffusion of the deposit atoms driven by the tendency of the small
65

islands to minimize their surface free energy. The process of coalescence

and recrystallization of islands continues until the growing islands

reach a size at which coalescence is inhibited and a more or less

continuous network of islands is formed. Once this "network" stage has

been reached, recrystallization is inhibited. The voids or channels that

still exist between the joined islands are usually quite irregular in

shape. These become filled in as small islands located in the channels

grow and coalesce with the network structure. The size of the islands

just prior to the network stage can vary greatly with temperature,
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substrate-deposit combination, and deposition conditions. If a continuous

film is formed at a very small island size and the islands are randomly

oriented, an amorphous or small grained polycrystalline film results.

This is the case with most depositions done at low temperatures (relative

to the deposit melting point) and high deposition rates on both amorphous

and single crystal substrates. At higher temperatures and lower deposition

rates the islands tend to be larger at the network stage because of the

lower nucleation rate and increased mobility of the deposit. Island

sizes of 100 nm or more are not uncommon. If these large islands are

randomly oriented, a large grained polycrystalline film is formed. If

the islands have a single or highly preferred orientation at the network

stage, a single crystal heteroepitaxial film can result.

Heteroepitaxy is known to occur only on single crystal substrates

and for a limited number of substrate-deposit combinations. Because of

the complexity of the problem and the large number of often uncontrolled

and unknown parameters involved no.generally successful theory of hMtero-

epitaxy has been developed and there is a great deal of debate about the

details of the mechanisms which lead to heteroepitaxy.

Although heteroepitaxy does not occur on amorphous or polycrystalline

substrates , the polycrystalline films deposited on smooth amorphous

substrates are not necessarily entirely random. In fact, under the

proper deposition conditions, films with a "fiber texture' can be grown,
66,67

*With the possible exception of some very controversial work by G. Distler,
where it has been claimed that single crystal films have been grown on
"replicas" of single crystal substrates in amorphous materials.
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where a single crystallographic direction of the individual grains has a

highly preferred direction. This phenomenon is discussed in detail in

section 5.2.7.

The above general features of thin film growth appear to be well
63

understood. It is also widely known that the surface structure of a single

crystal substrate can dramatically affect the final quality of a hetero-

epitaxial film. Poorly polished substrates with many scratches and other

defects always tend to produce inferior films. However, the influence

of the specific structures on a substrate surface on the growth process

has received little attention aside from a few studies of decoration

of cleavage steps. The uncontrolled nature of the surfaces prepared by

.conventional techniques makes systematic study of these effects very

difficult. Thus researchers have endeavored to eliminate the uncontrol-

led influence of accidentally produced surface structures by producing

a featureless smooth substrate. (An interesting exception to this general

rule occurs in homoepitaxial or layer by l1ayer heteroepitaxial film

growth where the substrate plane is cut slightly off the desired growth

plane such that the surface consists of an array of monotomic steps).

Even less is known about the influence of surface topography on film

growth on amorphous substrates.

To understand how artificially-produced surface-relief structures

on an amorphous substrate might influence the thin film growth process a

detailed understanding of each of the distinct stages of thin film growth

process is useful. Each of these growth stages is discussed in the
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next sections and a model of thin film growth on surface-relief structures

is presented in section 5.3.
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5.2.2 EQUILIBRIUM FORM OF A CRYSTALLINE ISLAND ON AN AMORPHOUS SUBSTRATE

During the nucleation, island growth, and coalescence stages of

thin film growth the deposit exists in the form of small isolated

islands. Insight into the behavior of these islands can be obtained

by considering the equilibrium form of a crystalline material on a

substrate.

The shapes of large growing crystals are, in most cases, determined

by competition between the rates of various transport mechanisms and a

complete understanding of the development of crystal shape requires a

detailed knowledge of the kinetics of growth. Fortunately, the small

size of the islands involved in thin film growth (usually less than

200 nm) makes an equilibrium treatment of the problem realistic since

for small islands the tendency of the crystal to lower its surface free

energy is often the principle motivation for changes in surface structure.

A partial treatment of the problem of determining the equilibrium form
69

of a small crystalline island has been given by Winterbottom. The

following development closely parallels his arguments.

Three interfacial tensions are involved, Ysv' Ysd' Ydv' the sub-

strate-vapor, substrate-deposit, and deposit-vapor. Under conditions

of constant volume, temperature', and total npmber of moles, the equili-

brium configuration is determined by equation 2.5. More explicitly this

requirement becomes

6fv Ysv dA1 + fd "sd dA2 + .v Ydv dA3 = 0 (5.1)
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For a constant deposit volume, where 6 specifies a variation of the sur-

face shape and the integrals are taken over the entire interfacial area

of the specified interface.

If it is assumed that the substrate surface is not deformed by

the deposit,-dA, = dA2 and expression 5.1 can be simplified to yield

6fsd (Y sd Ysv) dAl t '+ 6dv dv dA3  = 0 (5.2)

OR

6 y dA = 0 (5.3)

Where the integral is taken over the entire deposit surface and y is an

interfacial tension for the deposit defined by

* ydv for the deposit-vapor interface

(5.4)
y sd - sv over the substrate-deposit

interface

If the deposit-substrate orientation is specified, the function

y is unique. Equation 5.3, subject to the volume constraint, can then

be solved directly by the calculus of variations. Landau and Lifshitz
70

have obtained a general solution to this problem which has a simple
6

geometric interpretation known as the Gibbs-Wulff construction. The

solution for the equilibrium form of a cubic deposit material with a' {100

face parallel to an amorphous substrate is illustrated in Fig. 5-3.

First the polar plot of y is drawn, the Gibbs-Wulff construction

then consists of planes drawn perpendicular to each radius vector at the
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ds sv dv
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ds - Sv <0

-YV

Fig. 5-3. An illustration of the application of the Gibbs-Wulff con-
struction to the determination of the equilibrium form of a cubic de-
posit on a substrate. The equilibrium form is geometrically similar
to the inner envelope of all possible planes drawn normal to the y(U)
(Wulff) plot.
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y surface. The inner envelope formed by all possible planes is

geometrically equivalent to the equilibrium form of-the deposit.

Three cases are shown in Fig. 5-3 where 'sd - Ysv is <0, >0, and

> Ydv" Note that the case (Ysd - Ysv) <0 can be handled by placing the

origin (Wulff point) outside the envelope of the construction. (Insight

into the equilibrium forms of various deposits on flat substrates can be

gained by considering the possible equilibrium shapes of free particles

of anisotropic and crystalline materials. From the possible shapes of the

yplot as enumerated in Table 2-l,representative equilibrium shapes8 can

be drawn as shown in Fig. 5-4. Flat faces are obtained only if the y

plot is cusped.( Note that a polyhedral shape is obtained only in the

case of a cusped y plot with a large anisotropy.) The Gibbs-Wulff

construction shown in Fig. 5-3 does not give the absolute minimum free

energy configuration, it simply gives the minimum free energy configuration

for a given substrate-deposit orientation. To determine the absolute

minimum of free energy, variations of the substrate-deposit interfacial

orientation must also be considered. However, it is easily seen that if

the function Ysd - Ysv is cusped at some orientation there is a

relative minimum of free energy at the orientation of the cusp. At

the cusp with minimum Ysd - Ysv an absolute minimum of free energy

should be obtained. If we assume that the interfacial tension varies

for a cubic deposit.on an amorphous substrate as shown in Fig. 2-1(c).

then the equilibrium form determined by the modified Gibbs-Wulff

construction in Fig. 5-3 will represent the absolute minimum of-free
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Fig. 5-4. A schematic representation of the equilibrium forms for the
possible interfacial tensions as enumerated in Table 2-1.
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energy for the system and will be the true equilibrium form.

The modified Gibbs-Wulff construction can also be used to find the

equilibrium form of a deposit island at a step for a specified deposit

orientation relative to the step. The required construction is

illustrated in Fig. 5-5 for both an isotropic and a cubic material.

Once again the equilibrium form for the cubic material shown in Fig.

5-5 will correspond to a true equilibrium for the system because both

deposit-substrate interfaces occur at cusped minimum when yds

varies as in Fig. 2-1(c).

In general to find the minimum free energy configuration for a

deposit contacting a nonplanar substrate the full variational problem

must be solved.
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(a)

(b)

(C)

Yds - Yv j

ds Y vdi iv

dS - v
<

Fig. 5-5. The shaded area of the above diagrams are cross-sections
determined by the Gibbs-Wulff construction of the equilibrium form of a
cubic crystalline material and an isotropic material in a 90' corner of
an isotropic material. The cross-section is taken in a plane which is
perpendicular to both faces of the 90' corner.
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5.2.3 NUCLEATION

Both classical thermodynamic and atomistic theories have been

developed to explain nucleation. The theory of nucleation on a foreign

71substrate has been treated extensively in a recent review.

The classical theory is considerably less involved than the atomistic

theory, and the problem can be handled with a smaller number of

variables. The crucial assumption in the classical theory is that

small cluster of atoms can be characterized by the same thermodynamic

properties as those of the stable bulk phase. Nuclei are thus assumed

to have an interfacial tension, y, and a free energy of formation per

unit volume, AGv , identical to that of the bulk phase. If the nuclei

are sufficiently large, this appears to be a reasonable assumption, for

very small nuclei the use of macroscopic thermodynamics is highly question-

able. In any case the analysis presented here is able to provide only

a qualitative understanding of the nucleation phenomenon. Quantitative

comparisons with theory could not be made in this study due to the lack

of accurate knowledge of even the bulk values of the thermodynamic

quantities. The treatment given below follows closely the work of

Robertson and Pound,71 Kenty and Hirth,72 and Chakraverty and Pound.73

The mechanism of formation of nuclei is as follows. Atoms from

the parent phase, which is supersaturated with respect to the bulk

solid phase, strike the surface and either immediately rebound or are

absorbed and become thermally equilibrated with the substrate. These

absorbed atoms (adatoms) diffuse over the surface and through
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fluctuations in concentration, form small clusters of atoms which grow or

decay by the addition or loss of atoms. Increase in the size of a cluster

is energetically unfavorable until it exceeds a critical size, at which

time it grows rapidly, limited only by the arrival of adatoms.

Energy to drive the nucleation process comes from the volume (Gibbs)

free energy change, AGv, for the transformation from the parent phase to

the solid phase given by;

AG = -KT In 1  (5.5)v u nie

where, u, is the atomic volume and n1/nle is the super saturation

where nj is the actual adatom concentration and nje is the adatom concen-

tration which would exist in equilibrium with the solid phase.

The "barrier" to nucleation is provided by the interfacial free

energy associated with the nuclei. If the equilibrium form of a nucleus

is known, the density of free energy of formation, AGvt, and the total
t

interfacial free energy density, yt, can be calculated for a nucleus of

unit size, r. The free energy of formation AGf of a nucleus will then be:

AG = AGvt r3 + r2 (5.6)v Yt (5.6)

The critical size of the nucleus, r*, will correspond to the size at

which the maximum value of the free energy of formation, AGf, occurs

since growth will be energetically favorable for a nucleus larger than

r*. Maximizing equation (5.6) yields r* = - 2 t (5.7)

AGvt

1 Although not numerically equal the interfacial tension and interfacial
free energy will have the same symmetry properties. For purposes of
discussion, here they will be assumed equal.
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and

AG 4 t 2 (5.8)f 27 A Gvt

Since A Gvt depends upon supersaturation (see equation 5.5) one sees that r*

,an be. large if the supersaturation is low.

The steady state nucleation rate, J, with units of number of nuclei

2 73
formed /cm /sec has been formulated as:

J = n Aex p ( K T (5.9)

where n0 is the number of nucleation sites/cm2 and A is an adatom im-

pingement frequency which is expected to change only slightly for the

variations in nuclei geometry considered in this analysis, and will be

considered to be independent of such factors. It is obvious from equation

(5.9) that the nucleation rate decreases rapidly as the critical free

energy of formation AGf increases.

An important quantity which can be obtained from equation (5.9) is

the relative nucleation rate of two nuclei with slightly different critical

free energies of formation. AGfl and AGf 2 such that AGfl - AGf2  Ag*.

From equation (5.9) the ratio of their nucleation rates will then be:

S e x p (- Ag* (5.10)

where the number of nucleationsites is assumed equal for both nuclei.

The implications of equation (5.10) will be discussed in the context

of the observed nucleation phenomena of decoration and fiber texture in
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sections 5.2.4 and 5.2.7.

For the case of deposition from a vapor, relative nucleation rate
72

equation (5.10) has been discussed in great detail by Kenty and Hirth.

Their basic conclusion is that even for very small A g the lower free

energy nuclei can be highly preferred under conditions of low super-

saturation (meaning in the case of vapor deposition, high substrate

temperatures and/or low impingement rates). The size of the critical nucleus,

calculated using equation 5.7, for deposition from a vapor tends to be less

than 1 nanometer under most deposition conditions. Nucleation experiments2

by Chopra indicate that the size of the critical nucleus is less than three

atoms for metals deposited on amorphous carbon. It appears that equation

5.7 overestimates the size of the critical nucleus in the case of small

critical nuclei.
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5.2.4 DECORATION EFFECTS

One of the most dramatic examples of the influence of the substrate

surface relief structure on thin film growth is the decoration of natural

cleavage steps at the nucleation stage. This effect, first described by
64

Basset, has mainly been used to make surface defects of single crystals

visible in transmission electron microscopy. An example of the phenomenon

shown earlier in Fig. 5-2 shows small gold nuclei which have nucleated

preferentially on natural cleavage steps on a NaCl surface. (A remarkable

feature of this particular example is that all of the nuclei are confined

to the steps in the region where the steps are closely spaced).

Decoration has been observed on natural cleavage steps of a great

many deposit-substrate combinations, including gold-on-graphite74 , gold-

on-rocksal 4, silver-on-mica75, and tin-on-rocksalt 76. In the case of

gold-on-rocksalt it has been shown conclusively that even monatomic cleavage

steps can be decorated .

Preferential nucleation at steps (where the number density of nuclei

is greater in the region of the step than on a flat area) has been
73 71

explained with both classical nucleation theory and an atomistic theory.

The classical theory explanation can be illustrated very easily using the

results derived in sections 5.2.2 and 5.2.3.

Evidently the nucleation rate must be higher at the steps than on a

flat region of the substrate if decoration is to be observed. To find

the nucleation rate ratio on the flat part of a substrate versus
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at a step on the same substrate one can use equation (5.10) if the

difference in free energy of the critical nuclei at the two sites is known.

This difference, A g , can be found by first determining the equilibrium

form of the nuclei at a step and on a plane using the modified Gibbs-Wulff

construction detailed in section 5.2.2. The free energy of formation of

the critical nucleus is then found by maximizing A Gf for the equilibrium

shape. A g is then the difference between the critical free energy of

formation at the step and at the plane.

The equilibrium forms of nuclei on a plane and at a step for a

material with a cubic interfacial tension are illustrated schematically in

Fig. 5-6.

The corner of the step in Fig. 5-6 has a finite radius, R .

If the critical radius r is large compared to Rg, the step can be regarded

as a perfect 90 degree step, if r is comparable to R or smaller the

problem will reduce to a problem of nucleation on a concave surface of

radius Rg, versus nucleation on a plane. This point is discussed further

in section 5.3 for the case of decoration of artificial surface relief

structures. In the following discussion it is assumed that r >> R .
* g

The critical nucleus free energy difference, Agi for a nucleus with

isotropic interfacial tensions calculated from the equilibrium form given

by the Gibbs-Wulff construction of Fig. 5-5 is found to be:

3

Ag* = v ( F (ec)) (5.11)
i 2

3 AG
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where F (e) is a function of the contact angle 0c, Where contact angle
-1

is defined as 0d = cs ( Yds - Ysv ) . From equation (5.10), the

Ydv

nucleation ratio s , for a nucleus with isotropic interfacial tension will

If

be: *
I n Agi

ln ( s ) ln ( s) +In n KT (5.12)

Equation (5.12) is plotted versus contact angle in Fig. 5-7 using

experimentally determined values of dv', n , and AGv . (Theshape
nf

of the curve does not depend on these parameters).

The critical nucleus free energy difference Ag c' for a cubic nucleus

is found to be:

* 4 Ydv (K K2) (5.13)Ag d-K
3 AGv2

The ratio of nucleation rates at a step and on a plane for the case of the

cubic nucleus, s , is plotted in Fig. 5-8 as a function of K. Where K = d
f

where d and t are defined in Fig. 5-6.

Several important qualitative features of the decoration effect are

apparent from equations (5.12) and (5.13) and Figures 5-7 and 5-8. It

is apparent that the effect is greatly enhanced for low supersaturations,

or equivalently low AG . It is also seen that the ratio of nucleation

rates becomes small as the substrate nuclei interaction becomes negligible

(i.e., Ec - 1800 or K - 1. It is also worth noting that the nucleation
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rate at a step site is always greater than the rate at a site on the flat

plane. Another point is that the equilibrium nuclei orientation should be

highly favored at a step because of its lower free energy. An example of

this phenomenon for the case of a single crystal substrate appears in some

work shown in Fig. 5-9 of G. Shinaoka and G. Komoriya for tin deposited on
76

steps in NaCl. The tin islands which decorate the steps have a highly pre-

ferred orientation where <001> is parallel to the cleavage steps and' { 100

is parallel to the substrate.

In practice it has been difficult to test nucleation and decoration

theories. This is because the critical nuclei sizes tend to be very small

and are difficult to observe. In general deposited films which are claimed

to be at the "nucleation" stage are actually well past nucleation and con-

siderable coalescence may have already taken place. Some of the observed
73

"decoration" effects may be the result of preferential growth at steps.
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5.2.5 ISLAND GROWTH

As soon as nuclei form on a substrate the nucleation rate is significantly

lowered in a region around each nucleus because of adatom depletion by the

growing islands. Thus, following nucleation, a maximum density of nuclei

is soon reached. Growth of the islands is then a diffusion controlled

process where adatoms diffuse over the surface and are captured by stable

islands. Under equilibrium conditions the islands, irrespective of their

orientation at nucleation, should assume the equilibrium form predicted

by the Gibbs-Wulff construction. This tends not to be the case during

most deposition processes and the growing islands often continue to have a

multiplicity of orientations at this stage.
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5.2.6 COALESCENCE AND NETWORK FORMATION

It is generally observed that the density of islands decreases

monotonically with time from the maximum determined by the nucleation

conditions. This is explained by the coalescence of growing islands

illustrated in Fig. 5-10. When two islands touch, a neck or bridge

if formed. This generally high curvature neck is rapidly eliminated

by surface and volume diffusion until the two islands have coalesced to

form a single island. As a general rule, two islands which have different

orientations tend to recrystallize upon coalescence to yield a single

crystal island. Such behavior has been observed to occur in times less

than one second for islands as large as 100 nm, for larger islands

coalescence tends to be quite slow and reorientation is less likely. As a

rule of thumb coalescence of islands less than 100 nm in size tends to

result in a single island which tends to assume an equilibrium configuration.

The dynamics of coalescence are not completely understood (as is very little

of thin film growth), but its mechanism can probably be adequately described

as a sintering process where the basic driving force is provided by the

tendency of the island to minimize its surface free energy.

A convincing argument for the sintering model of coalescence is that

it predicts the onset of the network stage of thin film growth (see Fig.

5-1). According to the sintering model, the time required for coalescence

of two islands increases approximately as the fourth power of the island

radius. In effect this predicts a critical island size where coalescence

will become slow compared to island growth. At this critical size coal-
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escence of two islands is not completed before a third island contacts the

compound island, etc. At this point a continuous network of interconnecting

islands is rapidly formed and large scale reorientation essentially ceases.

This phenomenon is illustrated in Fig. 5-11. If coalescence is rapid

compared to growth a set of small randomly oriented islands can eventually

form a large single crystal island as shown in Fig. 5-11(a). If coalescence

is slow compared to growth the initial set of islands will form a continuous

network of interconnecting grains as shown in Fig. 5-11(b). As growth

continues the remaining channels and holes are filled by deposited material

which tends to coalesce with the surrounding network structure and take on

the local orientation of the network.

It is generally observed that single crystal deposits are not formed

unless the individual islands have a single uniform orientation immediately

prior to the network stage because of the difficulty of reorientation at

that stage.
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Fig. 5-11. a.) The coalescence of a group of growing islands
shown for the case of rapid coalesence and recrystallization.
b.) The onset of the network stage of film growth is shown to
occur when coalescence and recrystallization proceed slowly with
respect to growth.
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5.2.7 FIBER TEXTURES ON SMOOTH AMORPHOUS SUBSTRATES

As mentioned in the introduction to this chapter the polycrystalline

films which result from deposition of crystalline overlayers on smooth

amorphous substrates are not necessarily entirely random. These films

can be textured having some preferred crystallographic orientation. This

phenomenon known as "fiber texture" has been observed for a great many
3

substrate-deposit combinations. Bauer has reviewed the subject and has

proposed a model to explain the observed textures. He finds that there

are generally two kinds of textures; nucleation-equilibrium textures and

growth textures. Nucleation-equilibrium textures appear to occur in

systems which have a high adatom and island "mobility". Growth textures

occur in systems with low mobility where the orientation of the deposit

is determined by the direction of impinging atoms and the direction of

fastest growth. The phenomenon of interest here is the nucleation-

equilibrium texture since its orientation is determined by the substrate-

deposit interfacial tensions.

The mechanism of formation of a nucleation-equilibrium textured film

can be seen by considering the thin film growth of a crystalline over-

layer material on a smooth amorphous substrate in light of the nucleation

model given in sections 5.2.2 and 5.2.3.

From equation (5.10) and the arguments of section 5.2.2 one sees that

under conditions of low supersaturation the minimum free energy

nucleus orientation will be favored at the nucleation stage. These nuclei

will have some particular crystallographic plane parallel to the substrate
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although they will have a random in plane "azimuthal" orientation. As

growth continues the islands will coalesce as described in section 5.2.6

and can be expected to retain or acquire the minimum free energy configuration.

Since there is no anisotropy in the plane of the smooth amorphous surface

the individual single crystal islands will continue to have random

orientations in the plane of the surface. When the network stage of film

growth is reached, coalescence of the islands effectively ceases and because

the islands had no preferred direction in the plane a polycrystalline film

results. However, because the individual islands comprising the film had

a preferred plane parallel to the plane of the substrate the final film

has a preferred crystallographic direction normal to the substrate.

Bauer shows that this simple model correctly predicts the observed

textures of most vapor deposited BCC, FCC, and tetragonal metals, and the

alkali halides as deposited on smooth glass, amorphous SiO 2, and amorphous

carbon substrates. The model also predicts the observed textures of alkali

halides deposited from aqueous solutions.

159



5.3 A MODEL FOR ORIENTATION OF THIN FILM DEPOSITS ON AMORPHOUS SUBSTRATES
BY SQUARE-WAVE SURFACE-RELIEF STRUCTURES

A detailed model of the influence on thin film growth of surface-

relief structures on amorphous substrates is presented in this section.

General arguments given in Chapter II indicated that at equilibrium a

crystalline overlayer should assume a uniform orientation relative to a

suitable surface-relief structure on an amorphous substrate. The nonequili-

brium process of thin film deposition was described in section 5.2 as a

series of steps which can be understood qualitatively using familar thermo-

dynamic concepts. We have seen in section 5.2.3 that the nucleation process

can be dramatically influenced by the substrate surface-relief structure

and in section 5.2.7 we have seen that a crystalline material deposited

on a smooth amorphous substrate can have a fiber texture which is partially

oriented. Here it is shown that a surface-relief structure on an amorphous

substrate can have an influence at all stages of thin film growth and that

this influence can result in the formation of a single crystal film on an

amorphous substrate with the orientation predicted by the equilibrium

model of section 2.4.
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5.3.1 SURFACE RELIEF STRUCTURE CHARACTERIZATION

The type of surface relief structure considered in this section is an

array of vertical steps which is an idealization of the square-wave-grating

structures which can be fabricated in amorphous Si0 2 by the techniques

described in Chapter III. The cross section of this idealized array of steps

is shown in Fig. 5-12.

The step array will have a period, s, a height, h, a top width, wt ,
and a groove width, wg. The corners of the step will also have finite

radii RT and RG . The deposit material will be assumed to be cubic with

interfacial tensions described by the polar plot of Fig. 2-1 (c). The

arguments given here can of course be generalized to other materials and other

surface-relief structures including the saw tooth structures shown in

Figures 1-1 and 2-2.

It is known, as detailed in section 5.2, that in order to obtain a

single crystal film by the thin film growth process, the individual islands

of a deposit should be uniformly oriented before the onset of the network

stage of growth. Since it is expected that vertical steps as shown in

Fig. 5-12 will directly influence only those islands which contact

the step, there will be a maximum spacing of the steps determined by the

island size at the network stage. For most materials and deposition

conditions this requires that the step spacing be less than 200 nm

(It is possible that this requirement could be relaxed if the network

stage could be delayed by the use of a two dimensional grid type structure

such as shown in Fig. 5-13).
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Fig. 5-12. An idealized representation is shown of the square-wave
surface-relief structure used for overlayer orientation experiments.
The structure consists of a periodic array of vertical steps of height,
h, period, s, top width, W , and groove width, W . The edges have some
finite radii of curvature and R. g
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Fig. 5-13. A schematic representation of a grid-type square-wave struc-
ture which could be used to delay the onset of the network stage of
film growth and induce overlayer orientation.
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Conceptually one would also want to minimize the top width, wt, since islands

in that region would not contact steps (once again the more complex structure

of Fig. 5-13 would reduce this problem). However, for the first

experiments, minimization of the top width is not important and perhaps

not desirable since unexpected orientation effects might very well occur

on the grating tops.

The optimum height of the steps is expected to be determined by several

factors. As indicated in section 2.3 the anisotropy in the plane of .the

interfacial tension increases with the step height. Thus, there will

probably be some minimim step height required to induce orientation

in any particular case. The smoothness and possibly the dislocation density

of the final film will also depend upon the step height. For

these reasons the height should be minimized. Because the deposit on the

top of the grating is likely to experience a strong orientational effect

only after it has coalesced with the deposit in the groove, the height

should also be less than the average thickness of the islands at the

network stage.

The radii of curvature Rg and Rt at the groove corners should be

minimized to enhance decoration and alignment effects. (SiO 2 structures

fabricated by the techniques of Chapter III have Rg and Rt estimated to be

less than 5 nm).
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5.3.2 NUCLEATION AND GROWTH ON A SQUARE WAVE GRATING ON AN AMORPHOUS
SUBSTRATE

If the radius, Rg, is considerably less than the radius, r*, of the

critical nucleus of the deposit and the deposit adheres to the substrate,

the corners of the grooves should be decorated at the nucleation stage

by the deposit. This is evident from Fig. 5-8 of section 5.2.4. To

insure that this occurs the deposition should begin under conditions of

low supersaturation. The sequence of growth on the surface-relief structure

should depend critically upon the "strength" of the decoration of the steps

and the size of the islands at the network stage. Several deposition

senarios are illustrated in Figures 5-14, 5-15, and 5-16. In these

illustrations a schematic top view is shown of hypothetical growth

sequences from nucleation to network formation for a cubic deposit material

on a square-wave structure.

If the steps are sufficiently close together and decoration is strong

it is possible that all islands could be confined to the steps at the

nucleation stage as shown in Fig. 5-14. (It is also possible that nearly

all of the idlands c6uld be confined to the steps at an early stage if

that configuration is energetically favorable and the small islands are

mobile such that they could migrate to the steps irrespective of their position

at nucleation). The confinement of all growing islands to the steps is probably

an optimum situation, since it insures that the growing islands would con-

tinuously experience the orienting influence of the steps.
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wave structure for the case of perfect "decoration" of the vertical
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Fig. 5-15. The sequence of growth of a cubic material on a square-wave
structure where nuclei occur both at the steps and between the steps.
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Fig. 5-16. The sequence of growth of a cubic material on a square wave
structure where the nucleation is random and few nuclei occur at the
steps. If the network stage of thin film growth occurs before the
islands contact the steps, as in (e), oriented growth would be unlikely.
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As shown in Fig. 5-6 the minimum free energy equilibrium orientation

of a cubic island at a step with the assumed interfacial tensions would be

with'{ 100 } parallel to both the substrate plane and the step wall. In

addition it is easily seen that if the deposit adheres to the substrate the

free energy of an island of constant volume with the equilibrium orientation

would be smaller at the step than on the flat substrate. Thus, as explained

in section 5.2.4, under conditions of low supersaturation and small Rg (as

compared to the critical nuclei size) a cubic deposit should preferrentially

nucleate and grow at the steps with the equilibrium orienation. Under

these ideal conditions the oriented deposit would nucleate and grow from

the steps to fill the grating grooves with single crystal material, which

would then grow to cover the top of the grooves to yield a uniform single

crystal film.

If decoration of the steps was not perfect and islands also nucleated

in the groove area between the steps or on the grating tops as shown in

Fig. 5-15(a) the mobility of the islands would play an important role in

determining the growth sequence. If the nuclei were highly mobile they

could migrate to the steps and would tend to become fixed at the steps

because the step location is energetically favored. If essentially all

of the nuclei were confined to the steps in this way, growth would proceed

in the way shown in Fig. 5-14. If the islands were not mobile growth

would proceed until islands contacting the steps coalesced with the

unconfined islands at which time the compound islands should take on the

minimum free energy configuration in contact with the step. This sequence
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is shown in Fig. 5-15. As the oriented islands in the grooves grew.

above the steps they would eventually contact the unoriented islands on

the top of the grating. Upon coalescence these islands should also assume

the minimum free energy orientation and a single crystal film would result.

If nucleation was random, with few nuclei occuring at the steps and

the islands were not mobile, the orientation effect would be considerably

reduced. This situation is illustrated in Fig. 5-16. As nuclei grew and

coalesced, they would tend to recede from the step. The reason for this is

evident from Fig. 5-10. The position of the center of the island resulting

from the coalesence of two islands tends to be at the "center of gravity"

of the two parent islands. Thus, an island which was originally near a step

but not contacting a step, would tend to move away from the step because of

the unidirectional population of islands. Eventually the islands would

fill the region between the steps and contact the vertical walls of the step.

If this occurred at an island size such that reorientation was still possible

the island could then assume the oriented equilibrium configuration as

shown in Fig. 5-16 (f). The oriented islands in the grooves would then grow

to contact the islands on the top of the gratings, etc. If growth should

proceed as in Fig. 5-16 (a)-(d), but the islands did not contact the steps

before the network stage was encountered in the grating grooves, the emergence

of an oriented film would be unlikely since the randomly oriented islands

between the steps and on top of the grating would be effectively locked in

their random orientations before they contacted the steps. This situation

is illustrated in Fig. 5-16(4.).
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It is of course possible that a randomly oriented film resulting from

the above senario could be annealed after deposition to yield an oriented

equilibrium configuration. In fact there is considerable experimental

evidence that randomly oriented continuous polycrystalline films of

several materials including A7u, tin, and silic7on, on amorphous substrates

can undergo considerable reorientation and acquire strong fiber textures

during annealing by heating. It is also kno80that water soluble films

such as alkali halides can be annealed by placement in humid atmospheres.
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5.4 DEPOSITION OF CRYSTALLINE OVERLAYERS ON SQUARE-WAVE GRATINGS IN AMORPHOUS
Si O2- EXPERIMENTS

5.4.1 EXPERIMENTAL PROCEDURE

The experimental procedure used to investigate the deposition of thin

solid films on square-wave surface relief structures is outlined in Fig.

5-17. The surface-relief structure is fabricated in amorphous Si0 2 on a

silicon substrate using the methods described in Chapter III. The over-

layer material is then deposited on the surface-relief structure. At this

point the crystallinity of the overlayer can be examined using reflection

high energy electron diffraction (RHEED). Alternatively, the sample can be

thinned by anisotropically etching the silicon away. After thinning, the

deposit and surface-relief structure can be observed in a transmission

electron microscope. At the same time selected area electron diffraction

can be performed to determine the crystallinity of the deposit. (Some-

times for convenience the substrate is thinned before deposition.)
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Fig. 5-17. The procedure used for investigating the effect of surface
relief gratings on thin film growth.
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5.4.2 DECORATION EXPERIMENTS

The proposed optimum growth sequence on a square-wave structure

described in section 5.3.2 and illustrated in Fig. 5-14 relies upon

strong decoration of the grating steps at the nucleation stage. Because

of the perceived importance of decoration in determining the growth

sequence a study of the decoration effect was conducted. From the classical

thermodynamic analysis of nucleation-decoration presented in section

5.2.4 it is seen that a critical parameter which determines whether

decoration will occur is the curvature, Rg, of the grating groove corner

as compared to the size of the critical nucleus. If the radius of curvature, Rg'

is smaller than the radius of the critical nucleus decoration shoul:doccur.

If, Rg, is larger than the critical nucleus decoration is expected to be

very weak or nonexistant. The critical nuclei for materials deposited

by evaporation or sputtering in high vacuum are believed to be smaller

than 1 nm. At the present the resolution of direct methods for viewing

surface-relief structures is inadequate to determine accurately the radii

of curvature Rt and Rg. TEM and SEM observations indicate that an upper

limit on Rg for the best structures is$ 5 nm.

To determine whether decoration would occur on an array of steps

fabricated by the techniques of Chapter III several experiments were

performed. The first decoration experiments were done using gold because

of the ease of observation of small islands in TEM due to the relatively

large scattering of electrons by gold. Fiber textures with a. <111>

direction normal to a smooth Si0 2 substrate are observed for-
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gold, thus the minimum interfacial tension of gold with Si02 occurs for'{ 111

parallel to the interface. However, the anisotropy of the interfacial tension

of gold is small. In fact, the decoration phenomenon for gold can probably

be accurately modeled by assuming an isotropic interfacial tension. Using
1

published values of interfacial tension for gold and SiO 2 the contact

angle of gold on Si0 2  is estimated to be 901. Fig . 5-7 indicates that

decoration should be very strong (assuming Rg is sufficiently small).

Decoration experiments were done on square-wave SiO 2 structures fabricated

by three different techniques. The procedures used are outlined in Fig.

5-18. Details of the techniques are given in Chapter III. Briefly, a

320 nm period grating was exposed in PMMA using CuL X-ray lithography. The

PMMA was then used directly as an etching mask during ion-beam etching

or was used to define a grating structure in another material by the liftoff

process. A square-wave grating structure in amorphous SiO 2 was produced

by liftoff of evaporated SiO 2. (Actually the evaporated SiO 2 is not

stochiometric and is designated SiOx.) The third fabrication method

also used the liftoff process. A 10 nm thick film of chromium was evaporated

over the PMMA structure and lifted off to yield a chromium grating on the

SiO 2 substrate which in turn was used as an etching mask during reactive-

ion etching of the SiO 2 . Following reactive-ion-etching the chromium

was removed using an aqueous chemical etch. These three different structures

will be referred to as the ion-beam etched, liftoff, and reactive-ion-etched

structures.

Because of the redeposition effects discussed in section 3.4.1 the ion
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Fia. 5-18. The procedure used for fabricating square-wave surface
relief structures.

176

LI FlI

0



beam etched structure probably had the largest Rg. The profiles of the

liftoff and reactive-ion-etched structures more closely approached the

ideal square-wave structure and Rg for these structures was probably

somewhat smaller than the Rg of the ion-beam-etched structure.

Gold was deposited on the structures by ion-beam sputtering. The

substrates were heated to ^300 oC. The deposition rate was x 0.1 nm/sec.

An average thickness of 1.5 nm of gold was deposited. (The deposition
64

parameters closely approximate those used by Bassett for the decoration of

cleavage steps on NaCl shown in Fig. 5-2). Following deposition the

substrate was allowed to cool slowly to room temperature. The substrate

was then thinned by anisotropically etching the silicon using the methods

described in section 3.5 and Appendix A. The deposit was examined in a

TEM. Micrographs of deposits on the ion-beam etched, liftoff, and reactive-

ion-etched structures are shown in Figures 5-19, 5-20, and 5-21 respectively.

The size and shape of the islands indicates that some coalescence has already

occurred. None of the structures exhibit strong decoration. The islands

appear to have avoided the steps in all of the Figures. This is

probably explained by the coalescence effect illustrated in Fig. 5-16

where nucleation is random and coalescence tends to make the islands migrate

toward their center of gravity and hence away from the steps. The larger

island size and more pronounced avoidance of the steps in the case of

the reactive-ion-etched structure of Fig. 5-21 is explained by the fact

that this deposition was done at a substrate temperature of 500 °C versus

300 oC for the other structures. The lower density of islands in the
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Fig. 5-19. Transmission electron micrograph of gold islands on an amorphous
SiO surface with a 1.5 nm deep, 320 nm period, square-wave surface-relief
grating fabricated using ion-beam etching. The magnification is -100 KX.
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Fig. 5-20. Transmission electron micrograph of a gold deposit 1.5 nm
average thickness on a square-wave grating surface-relief structure in
SiO, fabricated by liftoff of evaporated SiO . The grating depth is
;10 nm and the period is 320 nm. The magnification is ~62 KX.
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Fig. 5-21. Transmission electron micrograph of a gold deposit on a 5 nm
deep, 320 nm period square-wave grating in amorphous SiO0 fabricated
using reactive-ion etching. The average gold thickness is s1.5 nm.
The magnification is ll5 KX.
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grooves versus the grating tops in Fig. 5-21 is probably explained by

contamination in the grooves. Possibly a layer of carbon was deposited
43

in the grooves during reactive-ion-etching. If carbon was present the

lower density of nuclei would be consistent with gold deposition experiments

done on carbon strips defined on an SiO 2 substrate by liftoff. A micro-

graph of the results of this experiment is shown in Fig. 5-22 which shows

a much lower nuclei density on the carbon strips.

A slightly higher density of islands in the grooves at or near the steps

can be discerned in some areas of the micrographs particularly for the liftoff

structure of Fig. 5-20. This may be a weak decoration effect. The lack

of strong decoration is probably due to the small critical nucleus size

as compared to the radius of the corners of the SiO 2 structures.

The fact that strong decoration does not occur for gold is disappointing

because it is believed that the growth scenario of Fig. 5-14, where oriented

growth proceeds from the steps, cannot be realized for gold and other

materials that nucleate in the same fashion. Nevertheless, as shown in

section 5.3.2 and Figures 5-15 and 5-16, orientation could still occur during

the island growth and coalescence stage even in the absence of decoration.

Further deposition experiments of gold on square-wave structures

were not done because the well known { 1ll} fiber texture of gold on SiO 2
is not directly compatible with the square-wave structure since the angles

between { 1111 planes do not equal 90 degrees, and strong alignment effects

are not expected.
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Fig. 5-22. Transmission electron micrograph of a gold deposit of 1.5 nm
average thickness on an Si0 2 substrate on which a 320 nm period grating
of 10 nm thick carbon strips has been defined by the liftoff process. The
lower island density occurs on the carbon strips. The magnification is
zs28 KX.
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5.4.3 POTASSIUM CHLORIDE DEPOSITION EXPERIMENTS

The alkali halides deposited by evaporation in high vacuum or from an

3
aqueous solution are known to exhibit strong' { 1001 fiber structures on

smooth amorphous materials. Deposited on a square-wave grating structure

on Si0 2 they should orient with'{ 1001 parallel to the substrate and <100>

parallel to the groove direction.

Deposition from solution is convenient because the deposit can be

applied, examined, and removed without damaging the substrate. Several

deposition experiments can be performed on the same structure. Unfortunately

deposition from solution is difficult to control. If small deposit islands

are to be obtained relatively high supersaturations must be achieved during

deposition. These high supersaturations are obtained by rapidly evaporating

the water from a thin layer of saturated solution placed on the surface-

relief structure. This process is by its nature uncontrolled. However,

with this deposition process small deposit islands can be obtained consist-

ently. Deposition by thermal evaporation in high vacuum can be controlled

with great precision. Deposition times and rates are easily measured.

However, the mobility of the deposit is much smaller during ,vacuum evapora-

tion than during deposition from aqueous solution. A practical difficulty

associated with vacuum evaporation deposition of KC1 is that KC1 is hydro-

scopic and its presence in a vacuum system can damage it an degrade the

vacuum performance. For these reasons all depositions of KC1 were done

from aqueous solutions. Tin has a higher mobility than KC1 and is more
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compatible with high vacuum practices. It was used for thermal-evaporation-in-

vacuum deposition experiments. Tin deposition experiments are discussed

in section 5.4.4.

The surface-relief structures used for KC1 depositions were fabricated

using reactive-ion-etching. The Si0 2 substrates used were films 100 nm

thick over a 100 nm thick amorphous Si3N4 film. Both films were grown on

a' { 100 oriented silicon wafer by a commercial chemical vapor deposition

process. As illustrated in Fig. 5-18 and detailed in Chapter III, a

grating was exposed in PMMA using CuL X-ray lithography, followed by

liftoff of 10 nm of chromium, followed by reactive-ion etching of the

SiO 2 to a depth of 25 nm in CHF 3 gas. The chromium was removed with an

aqueous chromium etch and the substrate was thoroughly rinsed in water. 10 nm

of chromium and 100 nm of gold were then evaporated over the entire grating

area to act as a protective covering during anisotropic etching of the

substrate. The silicon underlying the Si3N4 and Si0 2 films was etched

away using ethylene diamine pryrocatochol (See Appendix A). After etching

of the silicon, the gold and chromium were removed by chemical etching.

Because the substrates were now only 200 nm thick they could be viewed by

transmission electron microscopy using both conventional TEM and STEM systems.

The KC1 was deposited by flooding the Si0 2 grating with a solution of

KC1 in water and then gently blowing nitrogen gas over it to promote evapor-

ation, supersaturation, and crystal growth. (Experiments indicate that

crystal orientation in the grating area was uncorrelated with the blowing

direction.) Prior to storage in a desicator, while waiting for observation

in the STEM, the sample is unavoidably exposed to a humid atmosphere for a

few minutes. This may very well result in some annealing of the deposit.
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Figure 5-23 is a scanning-transmission-electron-micrograph of a KCI

deposition. The sides of nearly all of the rectangular KC1 islands are

aligned parallel and perpendicular to the surface grating. Virtually all

of the small islands are located in the grating grooves (the lighter stripes).

Selected area electron diffraction patterns, taken in a scanning transmission

electron microscope (STEM), confirm that the'{ 100}1pnanes of the crystallites

are parallel to the substrate surface and the <100> directions are normal

to the flat sides of the crystallites. Outside the grating area the < 100>

directions of the crystallites showed no preferred orientation in the plane

of the substrate. (An optical micrograph of a KCI deposit on a flat SiO 2

substrate is shown in Fig. 5-24). A series of (TEM) micrographs of different

areas of KCI deposit on the same sample are shown in Fig. 5-25. A

histogram of the measured deviation 6f the <00> direction of the'crystallites

from the grating groove direction is shown in Fig. 5-26. The equivalent

random distribution is also plotted in the Figure.

Because the smallest islands observed in the micrographs are located

at the steps and nearly all of the islands are located in the grating

grooves it appears that the steps may have been"decorated", and oriented

growth has proceeded from the steps. Because of the relatively low

supersaturations which are achieved during deposition from aqueous solution

the critical radius of the KC1 nucleus is expected to be larger than the

critical radii for depositions by thermal evaporation in vacuum. In fact

it is believed that the size of the critical nucleus under these low super-

saturation conditions could be larger than the 5 nm (maximum) radius of the
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Fig. 5-23. Scanning-transmission-electron micr-ograph ·of KCl crystal 1ites
grown on a 320 nm spatial ....period square-wave surface-relief grating in
amorphous 5i02 showing that the grating has induced an oriented crystal
growth where <100> directions are parallel to the grating grooves. The
grooves are 25 nm deep and have the lighter shading. The electron
microscopy produces some decomposition of the KCl crystallites during
viewing leading to the serrated edges of some of the crystallites.
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Fig. 5-24. An optical micrograph of KCI crystallites grown on a smooth Si02surface. The magnification is 500X,
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Fig. 5-25. Three transmission electron micrographs of different
areas on the same substrate are shown of KCI crystallites grown on
a 320 nm spatial-period square-wave surface-relief grating in amorphous
SiO 2. The grooves are 25 nm deep and have the lighter shading.

a.) The first area viewed.
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Fig. 5-25. Three transmission electron micrographs of different areas
on the same substrate are shown of KC1 crystallites grown on a 320 nm
spatial-period square-wave surface-relief grating in amorphous Si02.The grooves are 25 nm deep and have the lighter shading.

b.) The second area viewed.
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Fig. 5-25. Three transmission electron micrographs of different areas
on the same substrate are shown of KC1 crystallites grown on a 320 nm
spatial-period square-wave surface-relief grating in amorphous SiO 2.
The grooves are 25 nm deep and have the lighter shading.

c.) The third area viewed. Very long "dendritic" crystallites
such as seen here in (c.) tend to break up into small crystallites
during annealing.
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Fig. 5-26. A plot is shown of the measured deviation of the <100> di-
rection of the KC1 crystallites from the grating groove direction for
the microaraphs shown in Fig. 5-25.
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groove corners. (The smallest KC1 islands seen in micrographs of
0

depositions have been z 200 A in length.) Depositions performed on

surface-relief structures where 25 nm high steps were spaced 1-3 Pm

apart versus the 0.16 rpm spacing of the structure in Fig. 5-23 exhibited

"decoration" of the steps where essentially all of the KC1 crystallites

were located at the steps. An optical micrograph of such an experiment

is shown in Fig. 5-27.

An attempt was made to determine if the observed "decoration"

effect where virtually all of the KC1 islands occur at steps could be

destroyed by increasing the radius of the groove corners of the gratings

structure. The original square profile of the substrate used for the

deposition shown in Fig. 5-23 was degraded by removing 15 nm of SiO2

with an isotropic aqueous chemical etch. ("P-etch" 15 ml HF, 10 ml HNO 3

and 300 ml H20 for 60 sec. was used) . The new radius Rg could not

be measured directly but is expected to be > 15 nm. A KC1 deposition

was performed on the degraded structure. Micrographs of the result

are shown in Fig. 5-28. A strong "decoration" effect is still present

and nearly all of the KCI islands occur at the steps. However, there

was a major change in morphology relative to Fig. 5-23, the orientation

effect appears to have been seriously degraded. Few of the KC1 crystal-

lites are oriented with the grating groove direction. This lack of

strong orientation was observed over the entire sample. The sample

was "annealed" by placing it in a humid atmosphere for several hours.

The sample was then reexamined in the STEM. A micrograph of the

annealed sample is shown in Fig. 5-28(b). During the annealing

the crystallographic shape of the KCI islands became better defined but
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Fig. 5-27. Optical micrograph at 100QX of a KCI deposition on a square-
wave surface-relief structure in Si02 with an irregular step spacing which
in some areas is as large as 3 tm Close examination reveals that nearly
all of the small nuclei are confined to the steps,
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Fig. 5-28. Scanning-transmission-electron micrographs of a KC1
deposition on a square-wave structure which has been degraded by
isotropically etching 150 A of SiO 2 from the structure shown in
Fig.5-23.

a,) Immediately after deposition.
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Fig. 5-28. Scanning-transmission-electron micrographs of a KC1
deposition on a square-wavestructure which has been degraded by
isotropically etching 150 A of SiO 2 from the structure shown in
Fig. 5-23.

b.) After a 2 hour "anneal" in a humid atmosphere.
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it appears that the orientation did not significantly improve. Attempts

to further degrade the square profiles by removing more Si0 2 by isotropic

chemical etching failed because further reduction in the thickness of the

SiO2 layer weakened the thin samples to the point where they broke.

It appears that the degraded SiO 2 structure induces some sort of

"decoration" effect but does not induce oriented growth. This would be

expected if the curvature of the grooves was still small enough to induce

decoration but the structure did not provide sufficiently well defined

facets such that a strong minimum in the interfacial tension was obtained

at the < 100 > orientation.

It was observed that large crystallites which are sometimes formed

during KC1 deposition tend not to be oriented with respect to the grating

structure. This phenomenon can be seen in Fig. 5-27 where the large

( 10 pm) crystallite in the center of the micrograph is not oriented.

The large crystallites are most likely the first ones which nucleate. It

is possible that these larger islands are not oriented because they nucleate

on dirt particles in the solution or on the substrate at relatively low

supersaturations early in the deposition. Another possibility is that all

islands large and small nucleate randomly and acquire their orientation at a

later stage. The large crystallites would be less likely to reorient

than the small crystallites. Significant improvement of the orientation

of KCI deposits by annealing has not been observed. However, there is an

unavoidable delay between the time of deposition and the time of observation

and annealing may occur spontaneously before the deposit is observed.
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In conclusion the available data strongly indicates that oriented

nucleation and growth of KCI deposited from aqueous solution occurs on

square-wave grating surface relief structures on amorphous SiO 2 substrates.

Preferential nucleation appears to occur on degraded square wave structures

but oriented nucleation and growth does not appear to occur. Some questions

remain about the role of unavoidable annealing of the deposit. Irrespective

of the exact details of the mechanisms which lead to orientation the fact

remains that a KC1 deposit has been oriented by a square-wave grating on an

amorphous substrate with the minimum free energy orientation predicted by

the simple models of Chapter II and section 5.3.2. In effect, heteroepitaxy

has been induced on an amorphous substrate by the introduction of an

"anisotropic" surface structure.
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5.4.4 TIN DEPOSITIONS

The alkali halides can be deposited by thermal evaporation in a high

vacuum. Because of the success which was achieved with KC1 deposited

from solution it would be a natural choice for thermal evaporation

deposition experiments. Unfortunately this could not be done because it

was believed that the presence of KC1, which is hydroscopic, in a vacuum

system would lead to its deterioration. For this reason thermal evaporation

deposition experiments were done with tin which is more compatible with good

vacuum practice.

Tin has a tetragonal structure (at room temperature) which exhibits

a very strong fiber texture when deposited on smooth Si02 substrates where
78

< 100 > is normal to the substrate surface. (This orientation represents

the most densely packed plane parallel to the substrate). A tetragonal

material which exhibits such a texture is ideally suited for orientation

by a square-wave grating because the equilibrium orientation is unique

and should occur for the < 001 > direction parallel to the groove direction.

To study the growth of tin a series of depositions by electron beam

evaporation in high vacuum onto square-wave gratings in Si02 were performed.

The structures were fabricated in precisely the same way as those used for

the KC1 deposition experiments discussed in section 5.4.3 Depositions

were done in which the average tin thickness was 0.8 nm, 4 nm, 40 nm and

80 nm. Micrographs of the results are shown in Figures 5-29, 5-30, 5-31 and

5-32 respectively. The deposition rate wassl1 A/sec. for the 0.8 nm and 4 nm
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Fig. 5-29. A scanning-transmission-electron micrograph of an 0.8 nm
average thickness tin deposit on a 50 nm deep 320 nm period square-wave
grating in amorphous SiO 2. The lighter area is a grating groove. The
magnification is ̂215 KX.
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Fig. 5-30. Scanning transmission electron micrographs of a 4 nm averagethickness tin deposit on a 50 nm deep, 320 nm period square-wave gratingin amorphous SiO Some perferential nucleation appears to have occuredat the steps, T4e magnification is ~150 KX for the upper micrograph and, 300 KX for the lower micrograph.
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Fig. 5-31. A transmission electron micrograph of a 40 nm average thicknesstin deposit on a 50 nm deep 320 nm period square-wave grating in amorphous
Si0 2. The magnification is 1l20 KX.
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Fig. 5-32, A transmission electron micrograph of an 80 nm average thicknesstin deposit on a 50 nm deep, 320 nm period square-wave grating in amorphousSiO The film has entered the early network stage of film growth and re-crystallization appears to be slow.
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thick depositions and (1-5) A/sec for the 40 nm and 80 nm thick depositions.

The depositions were performed with the substrate at room temperature.

Growth appears to proceed by the sequence described in section 5.3.2

and depicted in Fig. 5-15 or Fig. 5-16. As seen in Figures 5-29 and

5-30 significant decoration of the steps does not occur at the early stages

of growth. (A weak decoration effect can be detected in Fig. 5-30.) This

is consistent with the results obtained with gold since the size of the

critical nuclei should be comparable for gold and tin deposited in vacuum

by thermal evaporation. As growth proceeds the islands tend to recede

from the steps by the coalescence phenomena discussed in section 5.3.2 and

illustrated in Fig. 5-16. For this reason the islands do not experience

the orienting influence of the steps until they have grown large enough

to touch the step walls. Examination of the micrographs shown in Figures

5-31 and 5-32 indicates that the network stage of film growth occurs before

the islands grow to touch the walls and the orientation of the islands

has been strongly affected. This situation, depicted in Fig. 5-16(e),

makes the appearance of a single crystal film unlikely because reorientation

does not appear to occur for the large islands resulting from the network

formation. However, the morphology of the islands which do touch the walls

in the 80 nm thick film shown in Fig. 5-32 indicates that the tin film may have

acquired some preferred orientation. Reflection electron diffraction

(RHEED) of the deposit revealed that the { 100 1 planes of the crystallites

are parallel to the substrate (as expected.) but no in plane orientation

was found. Because of the grazing incidence of the electron beam used,
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RHEED only samples the uppermost layers of the deposit. Oriented islands

between the grooves might not be detected. Selected area electron diffraction

of the 40 nm thick deposition where few islands touch the walls showed

no preferred in plane orientation. Selected area diffraction of the 80 nm

thick deposit where most of the islands do touch the step walls was difficult

.because of its high electron attenuation. Some of the diffraction patterns

which were obtained indicated that a major crystallographic direction of some

of the islands of the deposit was aligned with the grating direction. An

example of a selected area and the corresponding diffraction pattern are shown

in Fig. 5-33. Because only a partial spot pattern was obtained and other spots

are present unambiguous determination of the deposit orientation from the dif-

fration pattern is difficult. The spots in Fig 5-33(b) which are indicated

correspond to' { 100} parallel to the substrate and <001> parallel to the

grating direction. This incomplete spot pattern can be compared with the

complete pattern shown in Fig. 5-9 for the same orientation of tin. The dif-

fration patterns obtained from the 80 nm thick tin deposition suggest that

some weak preferred orientation has been induced by the square wave

structure.

If the square-wave grating structure is to exert a stronger orienting

influence, the grating must orient the tin islands before the network

stage is reached. Thus, the grating period should be smaller and/or

the corners of the structure should be sharper so as to induce strong

decoration effects. It is also possible that careful control of

deposition parameters and/or annealing could lead to orientation using the
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Fig. 5-33. A TEM micrograph of the 80 nm average thickness tin depositionand the corresponding selected area electron diffraction pattern are shown.The arrows on the diffraction pattern indicate spots which could originatefrom crystallites with {100} parallel to the substrate and <001> parallelto the grating groove direction. The arrow on the image indicates thegrating groove direction.
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existing structures or that grid structure such as the one depicted in

Fig. 5-13 could be used to avoid onset of the network stage before the

steps induced reorientation of the growing islands.
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VI. CONCLUSION

6.1 SUMMARY OF WORK

A new method of orienting crystalline overlayers on amorphous substrates

by artificially-produced surface-relief structures was investigated. A

simple model indicated that demonstration of the predicted orientation

effects would require submicrometer-dimension surface-relief structures

with well controlled profiles. Existing fabrication technology was found

to be inadequate to define such structures. To solve this problem new

fabrication techniques were developed inhcl:diig, very soft X-ray litho-

graphic techniques and reactive-ion-etching. With these new techniques

320 nm period square-wave gratings in SiO 2 were fabricated. These simple

structures were used to investigate orientation effects in several

overlayer systems. Uniform single crystal orientation was induced in

nematic and smectic A liquid crystals. The observed orientation of the

liquid crystals agreed with the model presented here, and with an earlier

model of Berreman'S. Potassium chloride (KC1) crystallites deposited from

aqueous solution on square-wave gratings were aligned with <100> directions

parallel to the groove directions and perpendicular to the substrate as

predicted by a detailed model of the thin film growth process. Potassium

chloride (KCI) crystallites appear to have preferentially nucleated at

vertical steps in the grating. Square-wave-grating structures which had been

degraded by isotropic etching still induced "decoration" effects but failed

to induce orientation of KCI crystallites. Depositions of gold and tin by

vacuum evaporation onto the square-wave grating structures exhibited only

207



very weak decoration effects. This could be explained by the fact that the

radii of the corners of the square-wave structures are larger than the radii

of the critical nuclei of gold and tin. A series of tin depositions of in-

creasing thickness were done on a square-wave structure. The growth proceeds

by random nucleation followed by a coalescence stage where the tin islands

recede from the steps. Eventually, the islands grow to the point where they

contact the steps, at this stage some weak orientation appears to have been

induced. Before large scale orientation of the tin is achieved, a network

of islands is formed and reorientation is inhibited. This result is explained

by a detailed model of thin film growth on square-wave structures. It is

proposed that improved surface relief structures are needed to achieve strong

orientation effects for vacuum evaporated films.

These experiments show that the concept of orienting crystalline over-

layers on amorphous substrates by surface relief structures has been clearly

demonstrated in the cases of the liquid crystals MBBA and M-24, and for

potassium chloride deposited from aqueous solutions. A series of experiments

with gold and tin have yielded very useful information about the sequence of

nucleation, growth, and coalescence on surface relief structures. The results

with tin indicate that the orientation of tin islands has been weakly affected

and that by reducing the period of the surface relief structure-single

crystal orientation should be achieved.
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6.2 PROPOSALS FOR FUTURE WORK

It is believed that this new approach of manipulating overlayers with

an artificially produced substrate surface-relief structure should open a

new field of investigation. A few new experiments which are suggested by

the results obtained in this thesis research are presented here.

Many more materials and deposition techniques could be employed in

further orientation experiments on the simple square-wave gratings in Si02

used for the orientation effects reported here. A great many cubic and

tetragonal crystalline materials are known to exhibit {100} and {110}
1,2,3

nucleation deposition and annealing fiber textures. These are obvious

candidates for further experiments with square-wave gratings. Of particular

interest may be the study of annealing of overlayers of these materials

deposited under conditions such that the overlayer is initially amorphous

or very small grained polycrystalline.

The fabrication techniques already developed are very versatile and

immediately have a wide area of possible applications including integrated

optics, integrated circuits, and a host of planar devices requiring sub-

micrometer structures. Crystalline overlayer orientation experiments provide

an excellent framework for developing and improving fabrication techniques

because the structures required for orienting crystalline overlayers provide

very stringent and well defined goals for technology improvement.

If smaller structures are required to orient vapor deposited overlayers

there appears to be no fundamental problem. 83.5 nm period gratings in PMMA

4have already been defined by Bjorklund using holographic lithography.
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Extensions of the holographic lithography mask pattern generation technique
81 82

or recently developed contamination electron beam writing sAould yield grating

type mask patterns with linewidths of less than 10 nm. As discussed in Chapter

III, Ck 4.48 nm X-ray lithography using PMMA should have the resolution

required to replicate such patterns. Before such linewidths are used

a great deal can be done to improve the quality of 160 nm linewidth square -

wave gratings in amorphous Si0 2 .Grating sidewall smoothness and groove

straightness could be improved by improvements in X-ray mask quality, improve-

ments in the liftoff process, and a better understanding of the reactive-ion-

etching process.

Obviously, the ability to fabricate structures other than square wave

gratings is desirable. The extension of the techniques presented here to

the fabrication of grids and other patterns which are superpositions of

gratings is straightforward. Techniques for fabricating sawtooth structures

with smooth facets at specified angles are less obvious. At the present

there is a great deal of interest in the development of fabrication technology

for small structures. This new application should provide an important

testing ground.

A goal of this work has been to produce large area single crystal films,

for some applications, notably integrated circuits, a large area single

crystal film is not required. The individual components of an integrated

circuit actually occupy very small volumes of semiconductor and must be

electrically isolated from one another. If isolated single crystal islands

several square micrometers in area could be deposited on an insulating
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substrate, this should be sufficient to fabricate an integrated circuit.

A possible way of achieving this is illustrated in Fig. 6-1. Square

pits could be etched into an amorphous substrate using a chrome etch mask

which has been defined using X-ray lithography and liftoff. Silicon could

then be evaporated or sputtered over the entire substrate. The silicon in

the pits should assume a single crystal orientation within each pit under

the proper deposition conditions as discussed in Chapter V. Subsequently

the superfluous silicon could be lifted off by chemically removing the

chrome.

The remarkable success achieved in orienting liquid crystals makes

possible a wide variety of experiments. It has been estimated that approx-

imately 0.5% of the organic molecules exhibit liquid crystal mesophases. A

tremendous number of materials are thus available for experimentation.

Since the geometry of the structures can be directly controlled and the

orientation mechanisms are understood, one could possibly use surface-

relief structures to organize liquid crystal molecules for some purpose.

As an example, one might want to study a uniform array of disclinations in a

nematic liquid crystal or an array of "myelinic" textures in a material

exhibiting the smectic A phase. Remembering that bend and twist are fo&-

bidden in a smectic A and that distortions must be pure splay, one sees that

a sandwich of substrates with an array of a "spoke type" surface relief
5

structures such as shown in Fig. 6-2 should result in an array of myelinic

(from the myelin sheaths of human nerves which exhibit this structure)arrange-

ments of the smectic A phase,if the minimum interfacial tension corresponds

to the molecules parallel to a flat surface. A schematic representation of
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Fig. 6-1. A schematic representation of two proposed methods for pro-
ducing small areas of single crystal semiconductor for integrated cir-
cuit devices. In the upper illustration the semiconductor islands are
confined and oriented by a square pit in the amorphous substrate. In
the lower illustration the semiconductor islands are first defined by
etching a continuous film, and are then annealed to yield single crys-
tal islands.
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118-8--14576] ,ARRAY OF "SPOKE" SURFACE
RELIEF STRUCTURES

* *

*0 0 0

0 * , MOLECULAR ARRANGEMENT
* * * OF MYELINIC TEXTURE

Fig. 6-2. A hexagonal-close-packed array of "spoke" surface relief
structures is shown. A "sandwich" such as shown in Fig. 4-4 of two
of these structures and a smectic A liquid crystal should lead to an
array of "myelinic" structures. The molecular arrangement in the mye-
linic structure is shown schematically. The same configuration would
yield an array of 3600 and 1800 wedge disclinations for a nematic
liquid crystal.
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the predicted texture is also shown in Fig. 6-2. The same array of "spoke"
51

structureswould produce an array of 3600 and 1800 wedge disclinations in a

nematic material. Perhaps such manipulations of organic molecules could

lead to methods for making useful molecular assemblies.

This example of inducing an array of defect structures illustrates one

of the unique capabilities of the method of orienting crystalline overlayers

by artificial surface-relief structures. Because the orienting surface-relief

structures can be directly controlled one is not restricted to the production

of uniformly oriented overlayers. It should be possible to produce overlayers

with rapid variations in crystallographic direction which could be obtained

in no other way.

Other ideas too numerous to be recorded here have been stimulated by

this work. In essence a new degree of freedom has been introduced in the

science and technology of surfaces. It is believed that the models and

demonstrations of overlayer orientation presented here are but a first

example of what will be an exciting new field of investigation.

214



APPENDIX A - ANISOTROPIC ETCHING OF SILICON

The anisotropic etching of silicon is the key step in the preparation

of X-ray masks with silicon nitride - silicon dioxide (Si3N4-SiO 2 ) trans-

mitter membranes. It is also the key step in the preparation of samples

for viewing in transmission electron microscopes.

The anisotropic etch used is a solution of ethlylene diamine pyro-
83

catachol (EDP) in water. The solution is prepared by mixing in a nitrogen

atmosphere 45 grams of pyrocatochol (C6H4 (OH2 )), 255 ml of ethylenediamine

(NH2 (CH2) 2NH2 ) and 120 ml of water. This solution etches the {lll} planes

of silicon 5l6 times slower thanthe'{ 100 } planes.

X-RAY MASK FABRICATION

The cross-section of a Si3N4-Si0 2 X-ray mask is shown in Fig. A-l.

The mask is fabricated by first depositing films of 100'nm of Si3N4 and

100 nm of SiO2 on the front side of a {100} oriented silicon wafer. A

film of 500 nm of Si0 2 is then deposited on the back of the silicon wafer.

The Si3N4 and Si0 2 layers are deposited by a commercial chemical vapor

deposition CVD process. After the films have been deposited a "window"

or a pattern of "windows" is etched into the silicon dioxide on the back

of the wafer. Because large area masks are fragile, the windows should be

smaller than 2 mm x 2 mm. The straight edges of the windows are aligned with

the <110> direction in the plane of the wafer. The silicon dioxide "window"

pattern acts as a mask during anisotropic etching of the silicon. The gold

absorber pattern is defined on the front side of the sample using any pattern
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Fig. A-i. Schematic cross-section of a Si3N4 membrane X-ray mask.
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fabrication method compatible with silicon processing. As a final step

the silicon is anisotropically etched away beneath the absorber pattern to

yield a 200 nm thick membrane supported on a silicon frame.

During anisotropic etching the silicon wafer is held in a special

holder to protect the front side. The front must be protected because

the EDP etch slowly attacks silicon dioxide. The special holder and the

etching configurations are shown schematically in Fig. A-2. The holder

is made from glass or fuzed quartz. It consists simply of a flat plate

with a passage provided to a vent tube. The front side of the silicon

wafer is held against a Buna-N rubber O-ring by a teflon retaining ring.

The cavity between the silicon and the glass holder can be filled with

glycerol or it can remain empty. (If any leaks should develope around the

0-ring the glycerol serves to dilute the etchant). Glycerol is used rather

than water because its boiling point is higher than the 105 OC etchant

temperature required to achieve optimum etch rate. (The etch rate for EDP

at 105 OC is l/pm/min When all the silicon has been removed from the

window areas etching ceases because Si3N4 is not attacked by EDP. The X-ray

mask is removed from the etching holder and rinsed in methanol and water.

The mask is completed by evaporating a layer of aluminum on the backside.

SAMPLE THINNING FOR MICROSCOPY

Samples are prepared and etched for examination by transmission

electron microscopy using procedures similar to those used for X-ray mask

fabrication.
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Fig. A-2 Schematic diagram of the sample holder used during anisotropic
etching of silicon wafers.
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A film of CVD Si3N4 and Si0 2 or thermally grown SiO 2 is deposited on

the front side of the silicon wafer to a total thickness of less than 200 nm.

500 nm of SiO 2 is deposited on the backside of the wafer by CVD. A window

pattern is etched into the SiO 2 on the backside of the wafer. In this

case the open areas in the center of the windows are 1 mmxx 1 mm. Outside

the open area there is another open area which defines a "frame" for the

window. The outside dimensions of the frame are 2 mm x 2 mm. After the

windows have been etched into the SiO 2 on the back of the wafer a surface-

relief structure is defined on the front side of the wafer and a deposition

experiment is performed. The silicon is then anisotropically etched away

from the windows using EDP. During etching the frontside is protected in

the same holder which is used for X-ray mask fabrication. If Si02 alone

is used on the front side the etching must be watched carefully and term-

inated as soon as all of the silicon has been removed because the Si0 2 is

attacked by EDP. Since the window pattern incorporates a "frame" the small

windows can be removed from the larger (1.5" diameter) silicon wafer by

breaking the thin membrane outside the frame. The resulting 2mm x 2mm

substrates are thus square silicon frames supporting a <200 nm thick 1mm x

1 mm membrane. This sample size is directly compatible with most electron

microscope sample holders which are usually limited to a maximum sample

size of 3 mm diameter.
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APPENDIX B POLYIMIDE X-RAY MASK FABRICATION PROCEDURE

The fabrication of polyimide X-ray masks can be divided into four

major tasks.

B.1 Preparation of a polyimide film on a glass substrate.

B.2 Definition of a gold absorber pattern on the polyimide film.

B.3 Removal of the glass substrate.

B.4 Mounting of the X-ray mask on a ring holder.
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B.1 PREPARATION OF A POLYIMIDE FILM ON A GLASS SUBSTRATE

Any smooth glass substrate which can be completely dissolved in
33

hydroflouric acid is satisfactory as a substrate. Corning 0211 glass

2" x 2" (6-8 mils. thick) was used for the masks fabricated for the
32

thesis work. Dupont Product PI-2530, a polyimide plastic precursor, is

used in the fabrication process. The properties of PI-2530 are discussed

at the end of this appendix. The process steps for forming a polyimide

film on a glass substrate are as follows:

1. The glass substrates must be free of all organic films and

particulate contamination. An effective cleaning procedure for

0211 glass is:

a. Immerse for 10 min. in trichlorethylene.

b. Immerse for 10 min. in acetone.

c. Immerse for 10 min. in methanol.

d. Rinse in dionized (DI) water.

e. Immerse in concentrated sulfuric acid for 10 min.

f. Rinse in DI water.

g. Immerse in semiconductor grade detergent in water with

ultrasonic agitation for 10 min.

h. Rinse in DI water.

i. Immerse in hot flowing particulate free DI water for

60 min.
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2. The substrate surface should be examined to confirm that it

is free of particles and organic residue.

3. The glass must be thoroughly dry. It can be dried using an

infrared lamp or in a clean oven.

4. The glass substrate is coated with a film of polyimide pre-

cursor by spinning a diluted solution of PI-2530. A solution of

4 parts of PI-2530, 1 part N-Methyl - 2 - Pyrollidone, and 1 part

acetone is applied to the substrate through a 0.2 im sintered

silver filter. The substrate is spun for 120 sec. or until the

film is dry. Spin speeds of 3 krpm and 8 krpm.yield final poly-

imide film thicknesses of 1.4 pm and 0.9 pvm respectively. A

vented spinner must be used because the solvents are toxic.

5. The substrate is baked at 1500 C for 15 min. in a clean

vented oven to thoroughly dry the film.

6. The film of polyimide precursor is polymerized to yield

polyimide plastic by curing at 250 oC for 60 min. in a clean

vented oven. Thus prepared, these substrates can be stored

indefinitely while awaiting further processing.
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B.2 DEFINITION OF A GOLD ABSORBER PATTERN ON THE POLYIMIDE FILM

Polyimide is not seriously degraded by heating to temperatures as

high as 400 OC or by the chemicals used in most microfabrication processes.

It is compatible with most pattern definition techniques. The grating

patterns used for the thesis work were defined by holographic lithography

and ion-beam etching. The process steps are as follows:

1. To insure good adhesion between the polyimide and gold over-

layer the polyimide coated glass substrates are cleaned in an

oxygen plasma. About 15 nm of polyimide is removed by subjecting

the substrates to a 30 sec. clean at 300 watts of input power using

an LFE plasma asher.

2. Immediately after cleaning in the plasma asher 10 nm of chromium,

followed by 100 nm of gold are deposited on the polyimide by electron

beam evaporation in a high vacuum.
11

3. The gold is coated with 100 nm of Shipley AZ-1350J photoresist.

A solution of 7 parts of AZ-thinner and 2 parts of AZ-1350J spun at

5k rpm for 30 sec. yields a film ka 100 nm thick.

4. The sample is baked at 80 OC to drive off the photoresist solvents.

5. The photoresist outside a 1.25 cm x 1.25 cm square area in the

center of the sample is exposed to ultraviolet light and developed

in a solution of 1 part AZ-developer to 1 part water. This leaves

a square of unexposed resist in the center of the substrate.

6. A grating is exposed and developed in the remaining photoresist

square using the holographic lithography process described in

Section 3.2.
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7. The substrates are mounted on a water cooled flat aluminum plate

which acts as a heat sink during ion-beam etching. The aluminum

plate is heated to s 80 OC to liquify the Apiezon-N vacuum grease

which is used to provide thermal contact between the plate and the

substrate.

8. The samples are ion-beam etched using a neutralized 500 ev argon

ion beam with a current density of 0.65 ma/cm2. Etching is term-

inated when all of the gold has been removed outside the grating

area. (.90 sec for 100 nm of gold.)

9. The substrates are removed from the aluminum plate by heating

the plate to liquify the grease. The grease is cleaned from the

substrate using trichlorethylene.
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B.3 REMOVAL OF THE GLASS SUBSTRATE

34
1. A mixture of Devcon 5 minute epoxy is prepared.

2. A uniform layer of the epoxy is applied to the end of a 1.5"

diameter copper tube etching holder. (See Fig. 3-12 (a).)

3. The epoxy coated copper holder is pressed to the polyimide

side of the substrate and allowed to cure for, 2 hrs at room

temperature.

4. The substrate and end of the holder are immersed in a solution

of 2 parts Conc. HF and 1 part H20. 8 mils of glass are etched

in 16 min. (See Fig. 3-12 (b).)

5. When the glass has been completely etched away, the polyimide

membrane and end of the holder are dipped into H20 and then into

isopropyl alcohol. (Water will "bead up" on polyimide while it will

wet glass, thus it is possible to monitor the presence of glass on

the membranes by the wetting of the membrane.)

6. After a final rinse in isopropyl alcohol the polyimide mem-

brane is blown dry with nitrogen.
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B.4 MOUNTING OF THE X-RAY MASK ON A RING HOLDER

A flat ring can be epoxied to the polyimide side of the substrate

before the glass is etched away as shown in Fig. 3-12 (a). This would

be done at step B.3-4. If a ring was not bonded to the polyimide at that

point a support ring must be bonded after the glass has been etched away.

Aluminum rings with 1" O.D. and 0.75" I.D. and 0.1" thickness were used

for the masks fabricated for the thesis work. One surface of the ring

was beveled at an angle of 50. The membrane is mounted on the ring by

coating the beveled surface of the ring with a low-viscosity high-

temperature epoxy (Tracon 2115 5and gently pressing the ring to the

polyimide membrane which is still attached to the copper tube etching

holder. After the epoxy has cured at room temperature the superfluous

membrane outside the aluminum ring is cut away with a knife.

An aluminum film for use in the electrostatic hold down scheme

described in section 3.3.5 can be evaporated onto either side of the

X-ray mask. The resulting mask Configurations are shown in Figures 3-13

and 3-14.
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THE PROPERTIES OF THE POLYIMIDE PRECURSOR PI-2530

PI-2530 is a polyimide precursor which consists of a solution

of polyamic acid in N-Methyl - 2 - Pyrollidone and cellusolve. Upon

heating, the polyamic acid polymerizes to form polyimide plastic. Polyamic

acid is soluble in a very limited number of solvents. It is not soluble

in any of the common solvents such as acetone, trichlorethylene or

methanol. Water reacts with Polyamic acid to 1form a white resin which

is completely insoluble in any solvent. PI-2530 has a very limited shelf,

life at room temperature and must be stored at a temperature of <40 OF

at all times. Because of these properties, the following precautions must

be observed:

1. Water reacts with PI-2530 to form an intractable residue. Any-

thing which touches the solution must be strictly dry.

2. Solutions of PI-2530 should be allowed to warm to room temp-

erature in a closed container before use to avoid condensation

of water on the surface of the liquid, also cold solutions of

PI-2530 are very viscous and are difficult to force through 0.2 i

filters.
84

3. Use only sintered silver filters for filtering the solution

because of the corrosive .nature of the PI-2530 solvents.

4. Always use a vented spinner when spinning PI-2530. The

fumes are toxic.

5. Always use a vented oven for baking the PI-2530 coated

substrates. Poisonous amine fumes are produced during curing.
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6. When preparing solutions of PI-2530 and 1:1 Acetone: NMP,

use only fresh acetone since acetone absorbs water when exposed

to air.

7. PI-2530 is very difficult to clean up and its residue can

easily contaminate glassware. Discard any beakers or other

containers which become coated with the solution. NMP will

remove uncured PI-2530 but it is very expensive : $50.00/liter.
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APPENDIX C - PREPARATION AND SPINNING OF POLYMETHLY METHACRYLATE (PMMA)

PMMA of 950,000 molecular weight was obtained from Esschem Corporation.84

To insure that the unexposed PMMA had the minimum solubility in the

developer of 60% isopropyl alcohol and 40% methyl isobutyl ketone, the

950,000 molecular weight product is "leached" in the developer. Ten grams

of PMMA is mixed with 1000 cc of developer and stirred for 24 hours, at

which time the remaining PMMA is separated from the developer by vacuum

filtration with a fritted glass filter. Any remaining solvent is allowed

to evaporate. The "leached" PMMA is then dissolved in monochlorobenzene

C6H5C1. Concentrations as great as 16% by weight are possible at room

temperature.

Spin coating samples with solutions of PMMA in chlorobenzene requires

some special precautions. The solution must be filtered to remove any

suspended particles. Sintered silver filters hich filter to 0.2 Ipm have

been found to be satisfactory. A vented spinner shoul.d be used because

the monochlorobenzene is a toxic substance, and a moderate air velocity

normal to the sample surface helps to prevent any PMMA "cobwebs", which may

form at the edge of the sample during spinning, from falling on the substrate

surface. After spinning (spin time 60 seconds) the PMMA film is baked at

180 OC in flowing dry N2 for 30 minutes to drive off the solvent and to

remove residual stress in the film.

A table is given below of measured PMMA film thickness for PMMA con-

centration of 4% and 8% by weight in C6H5C1 and spin speeds of 3K, 5K, and
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7K rpm. The solutions are prepared with the following quantities of

C6H5C1 and PMMA.

86.8 milliliters C6H5C1

4 grams PMMA

100 grams of 4% solution

83.2 milliliters C6H5Cl

8 grams PMMA

100 grams of 8% solution

Table D-1 PMMA thickness versus spin speed and concentration in C6H5C1 by

weight
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APPENDIX D PROPERTIES OF MBBA AND M-24

D.1 MBBA

MBBA is an abreviation for N-Cp-methoxybenzylidene -p-butylaniline

with the formula:

CH3

0 , / -CH=N-C H

\tH CH2 3

MBBA is a "thermotropic" liquid crystal which changes its phase as the

temperature varies. It exhibits a nematic phase from 20 OC to 47 oC.

Above 47 °C MBBA is a conventional isotropic liquid.

The elastic constants which characterize MBBA are as follows:

(Splay) K1 = 5.3 + 0.5 x 10- 7 dynes

(Twist) K2 = 2.2 + 0.7 x 10- 7 dynes

(Bend) K = 7.45 + 1.1 x 10-7 dynes
3 -

The indices of -refraction are as follows:

1.5443 ordinary 0
@ 6328 A

1.7582 extraordinary

1.5615 ordinary o
@ 5145 A

1.8062 extraordinary

D.2 M-24

M-24 is an abbreviation for 4-cyano-4 '-n-octoxy biphenyl86 M-24
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is a thermotropic liquid crystal. It exhibits isotropicý nematic, smectic

A, and crystalline phases over the following temperature ranges:

Isotropic -T above 78.3 OC

Nematic - 66.5 OC < T < 78.3 oC

Smectic A - 54.5 C. <T < 66.5 OC

Crystalline - T < 54.5 OC
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