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ABSTRACT

As aqueous humor passes through the outflow network in the human
- eye, its fluid pressure drops 7 mm Hg in the normal eye and as much as
40 mm Hg in glaucomatous eyes. This study investigates the role of

Schlemm's canal in producing this pressure drop.

A mathematical model of Schlemm's canal is constructed in which
Schlemm's canal is modeled as a porous, compliant channel which is held
open by the trabecular meshwork. The trabecular meshwork is modeled as
a series of Tinear springs which allow the inner wall of Schlemm's

~canal to deform in proportion to the local pressure drop across it.

4 We are in the process of obtaining detailed pressure-flow measure-

ments on enucleated human eyes, and the preliminary data is compared

with the theoretical model. Based on this comparison and on results

reported in the literature, the following tentative conclusions are
reached:

(1) Most of the pressure drop in the aqueous outflow network
occurs in the inner wall of Schlemm's canal.

(2) Significant collapse of Schlemm's canal only occurs when the
intraocular pressure is substantially e1evated.

(3) The assumption that the inner wall resistance occurs in pores
which are 10 um in length and 1.5 uym in diameter leads to the conclusion
@hgt there are approximately 1400 of the pores in the eye.

(4) Glaucoma is not caused by a weakening of the trabecular
meshwork and a resultant collapse of Schlemm's canal alone. Glaucoma is
likely caused by a decreased porosity of Schlemm's canal inner wall.

Thesis Supervisors:

Roger Kamm ' Ascher H. Shapiro
Assistant Professor of Institute Professor
Mechanical Engineering
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NOMENCLATURE

Meaning

Viscoelastic coefficient of the eye

Compliance of the eye, C = dV/dIOP

Spring modulus of the trabecular meshwork
Spring modulus of the septae

Effective spring modu]ué which includes the meshwork
and septae moduli

Height of the channel
Undeformed height of the channel
Effective height of the septae

Effective undeformed height of the channel 1nc1ud1ng
effects of the meshwork and the septae

Non-dimensional height of the channel, H(x') = h(x)/h
Intraocular pressure |

Length of "pores" through the Juxtacana11cu1ar mesh-
work

Pressure within the channel

Non-dimensional pressure within the channel,
P(x') = [10P - P(x')]/E

Collector channel pressure

Episc]era] Venous pressure

Pressure drop (IOP - Pv)

Volumetric f]owratekwithin the channel

Non-dimensional flowrate within the channel,
Q(X)ﬂugi_x)s |

wh (x )E

Total non-dimensional flowrate through the channel,

azam | \



in
out
in

out

Rinner
wall

Rchannel

r

Non-dimensional flowrate within the compliant section
of the channel

Total non-dimensional flowrate through the compliant

section of the channel, QC = Qc(l)

Non-dimensional flowrate within the rigid section of
the channel

Total non-dimensional flowrate through the rigid
section of the channel, QR z QR(l)

Total non-dimensional flowrate through the channel
in Regime III of the compliant septae model,

Q = u!32(1)s
Whete (1) Eety
Flowrate into the eye
Flowrate out of the eye
Resistance to flow into the eye (mm Hg.min/ul)
Resistance to outflow from the eye (mm Hg-min/ul)

Resistance per un1t length to flow through the inner
wall

Total resistance to flow through the inner wall

Total resistance to flow caused by the channel

Radius of the "pores" through the juxtacanalicular
meshwork

Length of the channel

Length of the rigid channel
Time 1

Volume of the eye

Unstressed volume of the eye

Width of the channel perpendicular to the paper
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i

Axial distance
Non-dimensional axial distance

Non-dimensional location at which the septae first
inhibit Schiemm's canal from further collapse

Greek

Ratio of the channel resistance to the inner wall
resistance

Square root of the ratio of the undeformed channel
resistance to the undeformed inner wall resistance,

121 s/Wh 3
RW/
B for the compliant section of the channel

B for the rigid section of the channel

B for the channel in Regime IIl of the compliant
septae model,

3
g2 - 1211.5/Wheff
Rw/s
Non-dimensional pressure drop, € = AP/E

Non-dimensional pressure drop at which the septae
first inhibit further collapse of Schlemm's canal

Non-dimensional pressure drop at which the entire
canal is collapsed to the septae height

€ for the channel in Regime III of the compliant
septae model, ¢ =AP/Eeff

Time constant for a constant inflow perfusion experi-
ment ’

Time constant for a constant supply pressure perfu-
sion experiment

Viscosity
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CHAPTER T

THE PROBLEM

Open-angle glaucoma is a disease caused by ocular
hypertension which results from an obstruction to the
outflow of aqueous humor from the eye. Aqueous humor
flows through the outflow network at an extremely Tow
flowrate (2.0 yL/min), yet its pressure drop in the
glaucomatous eye can be quite dramatic: as much.as 40 mm
Hg. Suprisingly, the.pressure drop of aqueous humor
- flowing through the outflow network of a nbrmal eye 1is
also quite significant (around 7 mm Hgqg).

“In drder to achieve a better understandinq of the
outflow network, changes in which can lead to ocular
hypertension and glaucoma, in this investigation we study
the role of Schlemm's canal in producing a pressure drop

in the normal eye.

1.1 The Aqueous Humor Circulatory Pathway (Figure 1)

1.1.1 Aqueous inflow. Aqueous humor is formed from

. .blood by a combination of secretion and‘u]trafi]tﬁation in
the ciliary processes behind the iris. The rate of
formation is nearly constant at 2.0 uL/min, although a
rise in the intraocular pressure can decrease the formation
rate slightly.

Aqueous humor has fluid properties like those of

blood plasma: it has a viscosity 2.5 - 4.0% higher than
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water (Moses, 1970), and seems to be isotonic with blood

plasma in spite of having a lower concentration of large
proteins.

‘Aqueous, after being formed in the ci]iafy processes,
flows into the posterior chamber. It then proceeds in
front of the lens and through the pupil. Once in the
anterior chamber, the aqueous flows radially outward
toward the anqgle between the iris and the cornea. Calcu-
lations have indicated that there is virtually no pressure
drop as the aqueous flows from the ci]iqry procésses to
the iridocorneal angle (Friedland, 1978). From the angle,
the aqueous flows into the aqeruS outflow network.

1.1.2 Aqueous outflow. The aqueous outflow network

consists of the trabeculér meshwork,'Schlemm}s canal and
the aqueous veins. Figure 2 shows the trabecular meshwork
and Schlemm's canal.

The trabecular meshwork can be thought of as a series

-of porous sheets through which the aqueous humor percolates
on its way to Schlemm's canal. It can be gonsidered to
consist of three layers: The cornedscléral meshwork, the
"juxtacana1icu1ar meshwork, and the éndothelia] lining of
Schlemm's canal.

The corneoscleral meshwork (Tripathy, 1974) consists

of 8 to 15 flattened, perforated sheets of mean thicknéss
3um which are connected by trabecular beams. The spaces
in the corneoscleral meshwork can be divided into two

classes: the inter-trabecular spaces -- spaces between
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adjacent sheets varying 1in size from 0 to 8 um; and, the
intratrabecular spaces -- spaces formed by.the perforations
in the trabecular sheets varying from 25 to 75 um in
diameter near the angle, and decreasin§ to from.2 to 15 um
in diameter in the deeper levels of the corneosc]erd] mesh-
Wbrk. The intra-trabecular spaces do not superihpose in
succeeding layers, and thus the aqueous humor travels a
fortuous path as it traverses this filter-like tissue.

The mechanism by which aqueous humor passes through

‘the juxtacanalicular meshwork and the endothelial lining

of Schlemm's canal is imprecisely known. There are current-

ly three theories:

(i) Tripathy (1971) has proposed that giant
vacuoles observed in the endothelial lining of
Sﬁh]emm's canal may transport fluid by passive
macropinocytosis. |

(ii) Bill (1972) has observed pores in the

~endothelial lining, but there is a question as to
whether they are artifacts of the fixation process
(Johnstone, personal communication).:

(iii) Johnstone (1974) has demonstrated
endothelial tubules in Schlemm's canal, but it is
not yet certain that they»have a role in fluid
transport; they may only have a structural role.
bTo avoid the complexities of these various modeis;'

this study assumes the juxtacanalicular meshwork and

.endothelial lining to have a flow resistante per unit
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of face area which is independent of the local pressure

drop across it. The mechanism resbonéib]e for this flow

resistance will be an important area for future research.
Upon passing through the endothelial lining, the

aqueous enters Schlemm's canal which has the appearance

of a highly e]dngated ellipse in cross-section, measuring
250 uym by from 2 to 30 um. The inner wall (viewed from
within the can;]) is a surface dominated by the giant
vacuoles of the endothelial 1ining which invade the canal.
The outer wall has no distinguishing characteristics except
. for the occasional opening that leads to the collector
Channelé. The canal is ocﬁasional]y interrupted by a
sepfum (or endothelial tubule) which connebts the inner
wall with the outer wall (as if it were a beam). They are
especially numerous near collector channels suggesting
that they may serve to'prevent occlusion of the collector
channels.

Afterrthe aqueous humor enters the canaT, ft travels
circumferentia]]y around the céha] until it reaches one of
the openings which lead to the collector channels. Thé
‘cb11ector channels connect Schlemm's canal with thé aqueous
veins. | |

The aqueous veins carry the aqueous humor to the

surface of the eye where they anastomose With the epis-
cleral veins. The aqueous veins are 10 - 100 ym in radius,
and despite numerous casting studies their'path through the

A sc]eré is still not well known.
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1.2 The Physiological Significance of the Aqueous Humor
Circulatory System

1.2.1 The function of aqueous humor. The eye is a

uniqué biological structure which must provide a trans-
‘parent path by which 1ight can reach:the rétina, while

also providing for the normal biological needs of the eye
tissue. Blood is not transparent, and therefore cannot
brovide for the biological needs of the tissue in the
optical pathway (the lens and the cornea). Aqueous humor
cén.satisfy these needs since it is clear and yet can carry
oxygén and nutrients.

1.2.2 The function of the trabecular meshwork and

Schlemm's canal. These structures appear to serve three

1mportant'fﬁctions:

(i) Act as a barrier to the reflux of blood
through the aqueous outflow network into the eye so
that red blood cells do not enter the visual field.

(idi) Prevent debris (e.g. pigment), which will
tend to flow along with the aqueous into the trabecu-
lar meshwork, from accumulating in the juxtacanalicu-
lar meshwork. |

(1i1) Maintain intraocular pressure which

- provides ocular rigidity which is necessary for
visual clarity.
The most effective barrier to reflux through the
aqueous outflow network would be an active transport systém,

or a filter with extremely small opening (- 1000°). However,

}
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both of these possibilities would preclude removal of debris
from the eye. Similarly, a system with 1arge openings to
faéilitate the removal of debris would be unsuitable as a
blood-aqueous barrier. Thus functions (i) and'(ii) appear
to be contradictory. o

The trabecular meshwork is a'compromise system which
serves both functions. It also serves.fo maintain the intra-
ocular pressure.

(i) Barrier to blood reflux. The retrograde

flow of venous blood is normally prevented by the higher
hydrostatic pressure in the aqueous veins. A rise in.venous
blood pressure will increase the intraocular pressure due

to énqorgemeht of the intraocular veins, and thus is not
likely to reverse thfs pressure gradient. Howeyer, if thé
intraocu]ar‘pressure does not increase as much as the centraj
venous pressure, or if the episcleral venous pressure alone
"is increased by local occlusion, b]ood can reflﬁx into the
aqueous vefns which lead to Schlemm's canal.

" The endothelial 1ininq of Schiemm's canal is the first
 1ine of defense against the red blood cells. It has openings
the maxiMum diameter of which is thought to be arouﬁd two
» microns. (Huggert, 1955). These openings inhibit the reflux
of red biood cells into the eye. These small openinas
continue into the.juxtacanalicu]ak méshwork where they
further impede red blood cell reflux.

The final barrier to this reflux is‘the one-way valve
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action of the trabecular meshwork. The meshwork acts like

a sponge which is bound circumferentially at the angle. As
the intraocular pressure increases, the sponge expands; when
Qenous pressure ihcreases, the sponge closes down. In this
Way, the meshwork acts as a one-way vaive which closes down
when venous pressure increases relative to the intraocular
pressure. (Johnstone and Grant, 1973). It can be noted
here that this one-way action is directly a result of the
existence of Schlemm's canal and the meshwofk tethering at
fhe angle. Without the canal, the trabetu]ar meshwork would
be attaéhed'to the corneoscleral wall, and would be unable
to close down in response to a chanqge in venous pressure.

(i) Removal of the debris. Any inflammatory

respohse in the eye can result in debris which needs to be
removed from the eye. If this debris were to flow unimpéded
with the aqueous humor, it would plug Qb the juxtacanalicular
méshwork. Therefore the corneoscleral méshwork acts as a
filter to trap the material before itvqets to the juxta-
canalicular meshwork. ‘Onée trapped, it is enqgulfed by
trabecular éhddthe]ia] cells acting as stationary macrophages
(Richardson, Hutchinson and Grant, 1977).

| Once the material has been digested, the endothelial
cells release fhemseives'from fhe trabecular wall and flow
out with the équeous humor. ~The corneoscleral meshwork
offers qlmost nb.resistance when the fhtrébcu}ar pressure is
greater than venous pressure. The cells are ameboid and are

therefore able to slide through the juxtacanalicular meshwork.
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(iii) Maintenance of the intraocular pressure.

The sma11'openinqs in the juxtacanalicular meshwork and the
endothelial lining of Schlemm's canal are well suited to
provide considerable fluid resistance and thus maintain the

intraocular pressure.

1.3 The Princiya]_Site of Flow Resistance

In view of the extremely slow rate of aqueous humor
flow throuqh the outflow network (2.0 uL/min) and the shoft
'flow distance (1ess than one mi]]imetér), the pressure drop
is'supkisinq]y large (7 mm Hg). _Many studies have sought
fo determine .the principal site of resistance. Toward this
_ehd, a number of pressure - flow curves have been determined
experimentally. Qualitatively these studies indicate that
the reiationship between pressure and flow is nearly linear
with the flow resistance increasing slowly with pressure.
| A number of sites have beengidgntified as possible
source§ of this resistance:

(i) corneoscleral meshwork

(ii) juxtécané]icu1ar meshwork

(iii) endothelial 1ining of tﬁe,inner wall of
- Schlemm's canal |

(iV) Schlemm's canal

(v) aqueous veins

1.3.1 The corneoscleral meshwork. Two considerations

preclude the_corneosclerél meshwork from being the principle.

site of resistance: (1) the size of the openings in the
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trabecular meshwork is too large tv cause an appreciable
-résistance. (2) Johnstone and Grant (1973) showed that as
the intraocular pressure increases, the trabecular meshwork
opens up like a sponge bound where the flow enters (See
Fﬁgure 3). If the corneoscleral meshwork were the principal
site of resistance, then one would expect the flow resis-
fance to decrease as the intraocular pressure increases.
AHowever, experiments on human eyes have shown that this is
'not the case. | |

1.3.2 The inner wa]]: the juxtacanalicular meshwork

and the endothelial lining of Schlemm'§'cana1. Because the
precise mechanism by'which aqueous humor passes through this
regioh is not well known,.this region is considered as the
inner wa]] of Schlemm's canal in this study. |

There is good reason to believe that this‘reqidn is
the'prinéfpal site of‘resistance. Perfusion studies with
tracers used to determine the smallest flow dimensions in
the opfflow network have consistently shown the inner wall
'~ to have the smal]esf'flow dimensioné (Huggert, 1955).
B Thése flow dimensions are estimated at 1.5 um in diameter
Qﬁich is cons{stent with the observed pressure drop.

Another.compe1ling reason to consider the inner wall
to be the principal site of resistance is found in the work
‘done by Bil1l and Svedbergh (1972, 1980). They estimatéd
the nuﬁber of pores in the endothelfal lining of Schlemm's
canal, and found that there were too many pores to account

for the known resistance. However, when they added NaZEDTA
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(a chelating agént which binds ca]cium.and théréby &isrupts
cell junctions) to the aqueous outflow pathway, they found
the juxtacanalicular region and the endothelial lining
generally disrupted; and, the number of pores they observed.
‘accounted for the measured flow resistance.

This suggests that the juxtacanalicular meshwork is
the primary site of resistance, and NaZEDTA dramatically
decreases this resistance by opening up this region.

1.3.3 Schlemm's canal. Two characteristics of

Schlemm's canal make it particularly well-suited to contrf-
"bute to flow resistance in the outflow network: (1)_As thg
trabecular meshwork expands in response to increasing
intraocular pressure, Schlemm's canal is narrowed. It has
{the potential to collapse to an extremely narrow channel
which‘w6u1d generate considerable flow resistance.

(2) Schlemm's canal narrows with increasing intraocular
pressure which is consistent with experiments showing in-
creased flow resistanée with increased intraocular preésure.

1.3.4 Aqueous veins. The diameter of the aqueous veins

is much too large fo cause any appreciable resistance
(Battaglioli, 1981). Stresses in the sclera due to 'the
intraocular pressure could conceivably cause co11abse of the‘
.aqueous veins (and thus generate siénificant flow resistance);
‘but recent work shows that this does not occur until the
intraocu1ar pressure is substantially elevated (Battaglioli,

1981).
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1.4 Our Approach to the Problem

| 1t appears likely that the principal site of flow
resistance is either the inner wall of Schlemm's canal, or
Schlemm's canal or both. In this study, therefore, we
investfgate a theoretical model which accounts for the

f1dw resistance of both. Experimental pressure-flow curves
obtained from enucleated human eyes are then compared with

the theoretical model.
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CHAPTER II

A MODEL OF SCHLEMM'S CANAL AS

A POROUS, COMPLIANT CHANNEL

The flow model is two-dimensional (Figure 4). Aqueous
humor flows from the trabecular meshwork (T.M.) through the
inner wall, which is assumed to have constant flow resis-
tance per unit of face area, into Schlemm's canal. The flow
through Schlemm's canal is modeled as a two-dimensional,
quasi-rectilinear, inertia-free flow between two nearly
parallel sheets. The lower sheet represents the flexible
inner wall of Schlemm's canal, the structual'support of which
is provided by the meshwork attachment. In the model, the
attachment is represented by linear springs which allow the
inner wall to deform in proportion to the local pressure
drop across it. The upper sheet, assumed rigid, represents
the outer wall. After entering the canal, the fluid travels
circumferentially until it reaches one of the collector
channels. There are assumed to be 30 of these equally

spaced every 1200 um around the circumference of the eye.

2.1 The Theory of Viscous Flow Through a Porous, Compliant

Channel

The}problem of viscous flow through various types of
channels has numerous applications in physiology. Funqg (1977)
analyzed the viscous flow of blood between the compliant

alveolar sheets in the lungs. Kenyon (1980) modeled the flow
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of synovial fluid through cartilage in joints as viscous flow
through a porous channel. Here we consider the general case
of viscous flow through a porous, compliant channel.

2.1.1 The derivation of the governing differential

‘equation. The geometry of the system is shown in Figure 4.
The fluid pressure is assumed constant until it flows through
the inner wall. For the aqueous outflow network this pressure
is the intraocular pressure (IOP). The inner wall is assumed
to have a constant resistance (Rw) per unit length along the
channel.  Using the continuity equation, these two assump-
tions are combined to yield a re]ationship between flowrate

(Q(x)) and pressure (P(x)) at a location in the channel.

dq( _ [I0P - -P(x)
_SXX) - L R, <] (2.1)

Because the channel height (h(x)) is assumed to vary
.slowly with position and is typically much smaller than the
width of the channel, the flow is modeled as quaﬁf—recti]inear
“flow bétweeﬁ two nearly parallel sheets. fhe Reynolds number
of the flow is much less than one and hence the flOW'fs |
inertia-free. The well-known solution of the Navier-Stokes
equations for two-dimensional, inertia-free channel flow is:
dP(x) _ _ 12uQ(x)
dx Wh3(x) (2.2)
where W is the width of the
channel ﬁerpendjcu]ar

to the papér
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The inner wall is held away from the outer wall by a series

of linear springs which allow the inner wall to deform in
proportion to the local pressure drop across it. The

displacemeht of these springs is described as follows:

h(x) - "o _ 1[P(x) - 10P] , (2.3)
ho E - .

where E is the modulus of the springs
hog is the undeformed height of
the channel
Although the relationship is here assumed linear, the impli-
‘cations of other non-linear forms will later be addressed.
Two- boundary conditions are applied (see Figure 4).
(1) By;éymmetry, there is no flow at the beginning of the
channél'(x = 0);1this corresponds to a point halfway between
two collector channels in Schlemm's canal. (2) The pressure
at the end of the channel (x=s) is ‘the collector channel

).

: e
pressu e (PCc

"

0

PCC

(1) a(0)
(2)  P(s)

.- It is convenient here to introduce several non-dimension-

al variables.
The non-dimensional height.

' It varies between zero
H(x) = b{?&l =1 _Ijﬂléﬁjlﬁl (totally collapsed) and one
Y (the undeformed state)

(IOP-PCC) The non-dimensional pressure
—F ‘drop of the system

1Y

The non-dimensional distance
x' = x/s along the channel.
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2 _ 12us/Wh-3 - The ratio between the resis-
B = -—T{j7§—12 tance in the undeformed
W channel and the resistance

of the inner wall.

2;1;2 The governing differential equation. The non-

dimensional variables are now introduced, and Equations

(2.1) - (2.3) are combined to yield the single governing

differential equation:

2lurony Al w3ty a2ugo 2y Tang o]
8% [H(x") - 1] = H(x JAH{x7) . 3H (x)[wu]. (2.4)
‘ dx'

dx’

The first boundary condition is related to H(x') using
Equation (2.2). The hon-dimensiona] boundary conditions are:
(1) ngq) =0
. dx
(2) H(1) =1 - ¢

Equatioh (2.4) indicates that, since the non-dimensional
height H(x;) varies between zero and one, dZH(x')/dx'2 < 0.
With the exceptfdh of the trivial case of constant height, we
cohc1ude that fhere are no inflection points in the curvé for
channel héight: the rate of co]]apse offfhe channe] increases
35 the collector channel is approached (e.g. Figure 6).

- This result can be explained physically as foT]on. Due
to viscosity, the pressure of the fluid drops as it moves
through the ;hanne1. As the pressure drops, the pressure
difference acting across the inner wall increases cauSing:tEe |
channel to bgcome narrower. As the channel narrows, the vis-

cous forces increase due to the fluid being forced through a
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smaller space. This increases the pressure drop in the
channel and accelerates the rate of coijapse.*

It can also be noted here the Equation (2.4) has a
singularity when the non-dimensional.héight becomes zero.
As the pressure at the exit of the channel is reduced, the
flowrate through the channel increases and the height of the
channel decreases. The maximum flowrate is reached és
height of the channel approaches zero. However, when the
~‘channel height at the exit becomes zero (e = 1), the flow-
rdfe drops to zero. This is the source of the singularity
in Equétiqn (2.4).

This disfontihuity would not occu; in a physical system.
Inertiai forces, which have been neglected in this analysis,
become important as the height of the channel appkoaches zero.

2.1.3 Solution of the governing differential equation.

Equation (2.4) is an autonomous differential equation. Thus
the order of the equation can be reduced by making the
autonomous substitution: U = dH(x')/dx'. We use this sub-
stitution and incorporate the first boundary condition of
‘Equatiqn_(2.4).

) |
{dHQs'l] o _28% W5(x) | wtx) , wto) H5(0)}
dx" W (xnl s 4 4 5

*One might say that it is a viscous circle.
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We take the square root of the equation keeping the

negative root since the pressure gradient is negative.

| o | 172
an(x') _ _ _ 28 [W5(x1)  wix) | wio) | Hi(o)]
dx' H3(X') 5 4 4 -5 !
(2.5).

It is useful here to introduce the non-diménsiona]

flowrate. _
qx') = 2QxS
T
)
Equation (2.2) is used to relate the non-dimensional flowrate

to the non-dimensional channel height

qUx') - CHM) ax) (2.6)

We combine this result with Equation (2.5).
1/2

| 5 4, b0y 5
Tx) = [:L ) i), o) go{]

Finally, the total f]owrate through the channel (Q) is
4found by evaluating this equation at x' = 1.
.- ' : . o ‘ _l,]/z
_ oy - 228 () vty vt o)
= a(1) {— S S 5 .J

=

12

(2.7)
H(1) is givéh in the boundary conditioﬁs, but H(0) is

'uﬁknown. It can only be found by solving Equation (2.5).

"Unforfunate1y, attempts to solve this equation analytically

have been unsuccessful.
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2.2 Perturbation Solutions of the Governing Differential
Equation

whgn applying perturbation analysis to Equation (2.4), two

possible perturbation parameters are apparent: 32 and €.

q = 9(8%.¢)

e varies between zero and one; as will be shown later, we have

2

reason to believe that g~ in the Schlemm's canal system is much

less than one. Therefore, it appears natural to pursue a

perturbation series in 32.

2.2.1 Perturbation series in 32. H(x') is expanded as a

perturbation series in 32.

H(x") = Hg(x') + szH](X‘) + B4H2(X') + 0(s%)

This series is substituted into Equation (2.4). A series

of equations result subject to the boundary conditions:

dHO(O)
.‘-"(T)'(*.—--O Ho(])-]-e
dH, (0)

The serfes of equations which result wére both determined’
and sqlved_by an M.I.T. computer language known as MACSYMA.
The use of MACSYMA led to substantial time savings, and allowed
the_ca]cu]étion of terms in the perturbation series that.would
not otherwfse have been attempted.

The'kesu1ting solutions for the perturbation series is'

found to be:
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te(1-x'2)[(8e + 1)x'2 - 4e - 56"
24(1-¢)’

+ 0(g%)

To find the flowrate through the system, the perturbation
series for the non-dimensional height is substituted into

Equation (2.6) and evaluated at x' = 1.

_ 2 4 6 '
Q = e €g + €(€+2)B - 0(38) _ (28)

12 36(1-¢)%  180(1-¢)’

2, the relation for Q can be

For small values of ¢ and B8
“approximated:
q - e8%/12 (2.9)

However, as ¢ approaches one, the asymptotic relation in
Equation (2.8) can be seen to be divergent. Other than the
linear relationship between flowrate and pressure drop
indicated in Equation (2.9), the’bnly additional information
that can be gleaned from Equation (2.8) is an evaluation of
the extent of va]idity of Equation (2.9).

For this determination, define the second term of the

perturbatidn series (2.8) to be negligible When it is less

than one percent of the first term.
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4

<62 | 100c8
12 - 36(1-¢

3
: )3
Therefore, the linear approximation in Equation (2.9) is

2/3

valid for:
e <1 - 3.228
That is, for small g and no more than moderate degrees of

Physically Equation (2.9) says that all of the pressure

It is also useful to

2

for small g

collapse.
drop occurs in the inner wall, which is what one would expect
pUrsue a perturbation solution for H(x') in terms of a

Perturbation series in ¢.

2.2.2
-series in ¢ which is again expected to be valid only for

moderate collapse.
This series is substituted into Equation (2.4). A series

Hy(x') + eH (x') esz(x') + 0(e3d)

- H(X')
‘of equations kesu]t subject to the boundary cqnditions:

dHy (0) |
— =0 Ho(l) = 1
dx' '
dH,(0) - Ho(1) = -1
dx'
dHy(0) |
N -0 Hy(1) = 0 N o> 1
dx'
again used to determine and solve the

'MACSYMA was once

resu]taht equations.
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H(x') =1
- COSH(Bx')e
COSH 8
+ COSH(2g) |COSH(gx"') COSH(28x"')| 2
cosHls  [cosH 8 cOSH(2s8) - |
- 0(c?)

The perturbation series for non-dimensional height is sub-

stituted into Equation (2.6) and evaluated at x' = 1.
Q- [%I%%ﬂé] e + 0 (e2) (2.10)

Equation (2.10) is interesting in that the first tefh
ofvthe perturbation series is the solution for the flowréte
through a rigid channel with a porous wall (Moses, 1979).
Equation (2.9) is the émal] 32 approximation to Equation
(2.10). | |

As discussed in Section 2.1.2, Equation (2.4).has a
singu]érity at e = 1. This singularity is the source of the
divergent nature of the perturbatioh series and 1imits their
usefulness to the linear segment of the pressure-flow curve.

For further progress on the solution to the governin§

differential equation, a numerical approximation is needed. -

2.3 Numerical Solution of the Governing Differential Equation

Two different numerical methods are available for solving
Equation (2.4): One could use the standard différentia]
equation solvers such as Rdnge-Kutta,.br one could numeri-

| ca]]y»integrate Equation (2.5) which is the first integral of
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Equation (2.4). "Numerical integration, in contrast to

differentiation, is basically a stable process” (Conte and
ngoor, 1965). Therefore, Equation (2.5) is integrated.

Begin by defining g(H):

1/2
g(H)s-[&g_Ei _HY, HY(0) H (0{'
3 HY[5 4 4 5

Equation (2.5) then becomes:

H(x') - H(1) = [ gEux')](-dx') o (2.1)
‘ ' 1

The numerical integration starts at x' = 1 because this is
where the boundary condition on H(x') is given. The ihdepen-
dent variable is discretized in a manner consistent with the

.'integfation beginning at x' = 1 and proceeding toward x' = 0.
Nax = 1 - x'

where Ax is the step size

N is the step number

The bdﬁndary condition at x' = 0 has already been
satisfied’in deriving Equation (2.5), but the constant H(b)
is still an unknown which is necessary to evaluate g(H). The
boundary condition at x' = 1 uniquely determines H(O), a]though

the value of H(0) is a result of the numerical integration.

~ Determination of H(0) therefore must be accomplished in an

jterative fashion.
The bisectioh method (Conte and deBoor,1965) is used to
guess shccessive va]ues‘of H(0). The_initia] bounds on the

bisection are H(1) and one. The value guessed for H(O) is



32

used in the numerical integration of Equation (2.11). When
the value guessed is sufficiently close to the value obtained
from the numerical integration of Equatfon (2.11), the
Viteration ends.

2.3.1 The numerical inteqgration. For N = 0, the

solution for H(x')(=H(1))is given in the boundary conditions.

For N=1, a Taylor series approximation for H(x') is used.

) ,
H(1-ax) = H(1) - O, GHOT)L L2 4 (a3
. dxl

where:
' | 1/2
an(1) ___vZs (W31 _wtn) , who)  wi(0)

?u) . 8% oy - 9] - 3 [aan)?
dx 2 H3(1) [ J H(1) [dx{}
The equations for the first and second derivatives are
Equations (2.4) and (2.5) evaluated at x' = 1.
For N = 2 and all higher even-numbered steps, Simpson's
':'ruleAis‘used. For convenience 6f notation H(1 - Nax) is

}épresented as,HN.

Hy - Hy = - A%[é(no) + 4 (Hq)
+ 2g(H,) + 4g(Hj) + 2g9(H,) + .
+ 4g(Hy_q) + g(HN{] + 0 (ax*) (2.12)

Note that in Equation (2.12), Hy is required on the

'right hand side of the equation. Since this is what is being
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solved for, its value is estimated. This is done using a

Taylor series.
dHN—]

N N-1 dx'

AX + Q(sz)

The first derivative required for this expression is estimated

using a 3-point backward differencing scheme.

dH, _ My o - BHL o+ Ho |
(S Pl 5 M Y Bl %] + 0(ax?)

When the Taylor series is substituted into the right hand
éide of Equation (2.12), the order of the error is reduced
to third order.

For odd-numberea steps a smal]‘change is necessary,.
" since the ordinafy'Sihpsbn'é rule does not end on odd-
’nhmbered steps. Fpr odd-numbered steps, the ordinary Simp-
son's rule will be used to find Hy.3- Then the Simpson's

'-3[8 rule will be used to calculate HN'

o _ 3AX
Hy = Hy.3 = - '??_[%(HN-3) + 39(Hy_p)
+ 3g(HN_]) + g(HN{] + 0(ax") n > 4
: (2.13)
As with Equation (2.12), it is once again necessary to
estimate HN using a Taylor series. The same formulation is
‘used.

| ‘One thousand steps were used to divide up the interval
" between x' = 1 and x' = 0. The integratiqn stops at step

number 999. The boundary condition at x' = 0 indicates that
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Hggg = H1000. If the value obtained for Hi000 15 sufficiently

glose:to the guess for H(0), the iteration stops (the criterion
for convergence is [H(0) - H]OOO] < 3 x 10'7). If the value is
not yet converged, the bisection method is used to make a new
guess for H(0). |

The computer program used is ‘listed in appendix A. It
ca]cu]afes H(x') and Q. Q (the non-dimensional flowréte) is
caicu]ated using Equation (2.7). |

2.3.2 Results from the numerical so]ution. It is useful

-_inAevaluating the numerical results to define what is meant by
the resistance of the inner wall and -the resistance of the
channel (Schlemm's canal). The continuity'Equation (2.1) is

‘integrated yielding:

as) = x IS [10P - P(x)]dx
w

o
define:

) S

Pehannel = § J P(x)dx
' 0

AP = IOP - PCC
R'inner = Rw/S
wall

R L
channel Q(sS) inner .
‘ wall

These definitions are used to find the ratio of the channel

resistance to the inner wall resistance (a).

R

o =
Rinner 10P - Pchanne]

wall

channel _ 'channel - Pec (2 ]4)
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FigUre§ 5, 6 and 7 show the variation of the non-
dimensional height with non-dimensional distance along the
'channel. There is no appreciable pressure drop in the chan-
nel for small e€; but as € increases, the pressure drop in the
chanhel becomes signfficant with most of it occuring near the
exit. As 8 increases, this effect is amplified.

For small values of g, the resistance of the inner
wall is always much greater than thaﬁ of the channel; however,
- changes in é make dramatic changes in the channé] resis-

' ténce.

Figures 8 and 9 show the non-dimensional pressure-flow
curves for Various values of B. For small g, the curves are
Tinear until thé channel is significantly collapsed. The
ndn—linearity increases dramatfcally in magnitude as 8
increases. Since the aqueous outflow curves of the human
eye show only small non-linearities, one expects that‘B is
small for Schlemm's canal. |

The curves stop at e = 0.9 because of the singularity
at e= 1. Most likely, septae prevent total collapse of
Sch]emm's canal and this case is considered in the next

chapter.
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CHAPTER III

A MODEL OF SCHLEMM'S CANAL AS A POROUS, COMPLIANT
CHANNEL WITH COMPLETE COLLAPSE PREVENTED BY SEPTAE

The model introduced in Chapter II has a singuiarity when
thé channel comp]etely collapses. The.singu1ar1ty, as i§
discussed Section 2.1.2, occurs at e = 1. It is however
uﬁ]ike1y~that toté] collapse of Schlemm's canal actually
occurs due to the presence of septae (or endothelial tubules)
in Schlemm's canal as'have been obserVed by many investigators
(Johnstone, 1974; Hoffman, 1971). These septae are concen-

" trated near collector channels where our MOdel predicts
“collapse would first occur and where they would therefqre be
of greatest value. Johnstone (personal communication) has
estimated that there are 2000 endothe]ia] tubu]es‘in the
human eye. |

In this’chapter,vwe model the septae as supporting mémber§
Awhfch ihhibit Sch]emm's canal from further collapse when the
qaﬁa] has collapsed sufficient]y for the supporting members
- to become effective. The supporting members are assumed to
bé:distributed_uniform1y along Schlemm's canal. First they

are considered to be rigid, and, subsequently, elastic.

3.1 Septae Modeled as Rigid Structures

In this section the septae are modeled as rigid support-
ing members which prevent the channel from collapsing to a
height smaller than the effective height of the supporting

members (hefeafter, the effective height of the supporting
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members is referred to as the post height).

Schlemm's canal is modeled in one of three ways
depending on the magnitude of the pressure drop acting
across it. ‘For non-dimensional pressure drops below a cer-
tain.value (e ), the channel height is everywhere greater
- than the post height, and the channel behaves as the porous, '
cbmp]iantlchanne1 of Chapter II. For non-dimensional pres-
sure drops greater than a certain value (eR),‘the channel
is everywhere co]lapsed to the height of the posts, and the
channel behaves as a porous, rigid channel. For non-dimen-
sionél pressure drops between €e and LAY the part of the
channel nearer the collector channel behaves as a porous,
rigid channel while the remainder behaves as a porous,
compliant channel as shown in Figure 10. We start the analy-
sis of this flow network by studying the flow in a porous,
rigid channel. o

3;1.1' The theory of viscous flow in a porous, rigid

channel. In this section, we consider the general caée of
, Viscous flow in a porous, rigid channel; its application to
Schlemm's canal is considered in the next sectioﬁ.

. The development followed here is similar to that of
Section 2.1.1 with two important exceptions: (i) the height
of the channel is constant; and (ii) thé boundary condition
at the begihhing of the rigidAchanne1 is éhanged to allow for
a non-zero inflow. .

'~Equation (2.1) is still applicable, but Equation (2.2)

must be altered to reflect the change in geometry.
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dP(x) _ _12uQ(x)
dx wh3
S

(3.1)

where hS is the constant height of the channel
(the post height)

The boundary condition at the beginning of the channel

(x = 0) is expressed using Equation (3.1).

(1) dP(0) _ _12uQ(0)
dx wh3
s
The second boundary condition is the same as that for the
compliant channel: the pressure at the end of the channel

).

(x = SR) is the collector channel pressure (PCC

Several changes are necessary in the definition of the
non-dimensional variables:
x' = x/Sp The non-dimensional distance

along the rigid channel.
is the length of this channel.

F(x') = I0P - P(x"') The non-dimensional pressure.
PIx") = E E is the elastic modulus of the
trabecular meshwork defined in
Chapter II.
_ uQ(x*)sy . . |
(x') - ——~ The non-dimensional flowrate
Q
S
3 The ratio between the resistance
g2 = ]ZUSR/whs in the channel and the resis-

R ~ Rw/SR‘ tance in.the inner wall
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e, as in Chapter II, is the non-dimensional pressure evalu-
“ated at x' = 1.
The non-dimensional variables are now introdﬁced, and
Equations (2.1) and (3.1) are combined to yield the single
differential equation for viscous flow in a porous, rigid

channel with a non-zero inflow at x'= 0,

2=/, _ ‘ :
CEL) - ZFxr) - 0 -2
X

for which the boundary conditions are:

' dp -
(1) 4P0) - 12g,(0)
(2) ~  P(1) = ¢

Equation (3.2) is solved analytically, yielding:
- 1 o -8R 'y BpX "]
5(xt) = cCOSH(Bpx') , 120R(0)~*R cosu(spx') __-BR*| (5 5
: COSH B Br COSH BR |

Finally Equation (3.3) is substituted into Equation (3.1)
'~énd'eva1uated at x' = 1 to find the total flowrate exiting

through the collector channel.

-8
Rp~ ——— R L ‘
12 B
Setting ER«U = 0, this simply reduces to the first order
perturbation solution to the compliant wall problem

(Equation 2.10).
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3.1.2 Combining the rigid channel and the compliaht

channel solutions. Unlike the situation described in

Chapter II for which one solution describes the entire
range of pressures, the addition of rigid septae within the
channel gives rise to three separate flow regimes (see
Figure 11): v
Regime I (e<e ) The channel heigﬁt is everywhere:
greater than the post height, and ihus the channel
behaves as the porous, comp1ianf chaﬁnel'described in

Chapter II.

Regime II (ec<e<eR) Within this range of e, the channel
can be divided into two parts: one, extending from

x'=0 to x'=xc where the channel has a height greater than
the post height and behaves as the porous, compliiant
channel of Chapter II; and the other extending from
x'=x_ to x'=1 where the chénne] is collapsed to the

post height and behaves as the porous, rigid channel

described in Section 3.1.1.

Regime III (e>eR) The channel height is everywhere

collapsed to the post'height (hs); constrained from

further collapse, and isAdescribedvin Section 3.1.1.

The pressure-flow characteristics of Regime I are as
’described in Chapter II; the characteristics of Regime III
':are as described'in Section 3.1.1 with ER(0)=‘0. The
remainder of this Section.Will describe the pressure-flow

characteristics of Regimé II.
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The parameters for the compliant.section of the channel
are necessarily different than those in the rigid section,
“since their characteristic dimensions aré different. Since
these parameters also need definition for the system as a

whole, three definitions of each are given in Table I.

. The non-dimensional flowrate in the compliant section
(GC) is a function of the resistive parameter for that sec-
~tion (Bc) and the non-dimensional pressure at the end of
the compliant section (ec). The non-dimensional flowrate
in the rigid section (ER) is a function of the resistive
parameter for that section (BR), the-fiowrate entering the
rigid section.from the comp]iant section, énd the non-
dimensioﬁa] pressure at the exit (e)._

These two coupled solutions determine the pressure-
flow characteristics of the system as a whole in Regihe II1.
The procédure used té calculate these parameters is aS
follows:

A(l) Values are chosen for g and €c- These are the two
barameters which control the pressure-flow charaéteristits
- of the system.

“ ‘ (2) The non-dimensional location where the compliant
seétion ends and the rigid'section begins (xc) is allowed
to vary between zero and one. '

(3) The resistive parameter for the compliant section

is calculated.

(4) The computer program discussed in Chapter II is
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. used to find the non-dimensional flowrate in the compliant
section.

Q1) = T lsc,)

(5) The flowrate at the end of the compliant section
must be equa] to the flowrate at the beginning of the rigid
section. This is expressed in non-dimensional terms as:

1-x. Q.(1)

Q—R(O) - Xe (1-sc)3

(6) The resistive parameter for the rigid section is

‘calculated.
' (1-x,)

Br f TTTZET3/2_B

(7) The choice of x 'determines:the non-dimensional

o c
pressure drop of the system (e). e can be determined using

Equation (3.3) with P(0) = €.~

o -8
120,(0) (COSHB e R).
e = . BR | f-ec COSH BR

(8) The non-dimensional flowrate through the rigid

section can now be calculated using equation. (3.4)

Qp(1) = —2—5—2 + Tp(0)e  R[1 + TANH g,]

(9) Finally, the non-dimensjon flowrate of the system can be

found. o 3
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Regime II ends when the entire channel is collapsed and fuctioning
as a rigid channel. This occurs when X, becomes zero. R is defined

as the ¢ at which this occurs and is found using equation (3.3)

8 , .
ep = e, COSH |———751 (3.5)
R fc V% E]_EC)S/Z]

3.1.3 Results from the rigid septae model. Figure 12 shows the

| non-dimensiona1 pressure-flow curvés for various values of g, with
sé =40.8 (if we, somewhat arbitrarily, assume the undeformed height
of Schlemm's canal (ho) to be 30 um, this corresponds to a post
“height of 6um). For small values of B, Regime II is of negligible
width (eC = eR), and thus there is no apparent slope change between
Regime I.and Regime III. As B increases, the slope change between
Regime_I and Regime III increases, and Regime II extends for a ]arger
range Qf e.. |

Figure 13 shows the non-dimensional pressure-flow curves for
various va]ués of 8, with e = 0.9 (for hy = 30 um, this corresponds
to a'post height of 3um). For all curves except the smallest 8,
Regime II extendsfor a considerable range. As €c approaches one,
eR becomes larger yet and the range of Regime‘II extends toward
infinity. |

3.2 Septae Mode1ed with an Elastic Modulus

The septae preventing complete collapse bf Schlemm's canal,
élthough not perfectly rigid, are modeled as such in Section 3.1.
" Furthermore, it has been assumed that ihe inner wall does not collapse

beyond the effective height of the septae even in between adjacent
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septae. In this section we consider the possibility that
either the septae are somewhat compliant in their collapsed
state, or that the inner wall could collapse éround the
septae so that the effective channel height might be less
than the septae heighf, hs‘

In Chapter II, the trabecular meshwork is modeled as a
set of linear springs holding Schlemm's canal opeﬁ. Here,
we cdnsfder the septae to act as linear springs working in'
" conjunction with the trabecular meshwork to keep Schlemm's
cana]'dpen. |

The spring law expressed in Equation (2.3) is valid for

h(x).> hs' .For h(x) < hs’ the spring law must

include the effect of the septae.

I0OP - P(x) = ETM[ho°h(x)] + g Ihg-h(x)] h(x) < h
o | s
where Erm is the modulus of the trabecular meshwork

'ES is the apparent modulus of'fhe septae

By defining an effective spring modulus (Eéff)‘and an
effective undeformed spring height (heff)’ the above eéquation

can be rearranged into the form of Equation (2.3).

h(;)-heff _ ELE)-IOP h(x) < hg (3.6)
| eff eff '
where Eere = Eqn + Eg

Ne Es*Erpm
eff S ES+(hS/h'0)ETM
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The pressure-flow éurves for this system are similar to
those of the rigid septae model. Three regimes can once
‘again be identified. AIn Regime I the curves are identical
to those of the rigid septae model. Regime II is also very
ssimilar since the septae do not change dimension appreciably
in this regime. Since we have not solved for the flow in a
COmpliant; porous.channe1‘with an input flow at x = 0, the
solution for the Regime II characteristics of the rigid
fseptae modél wfl] be used to approximate those of the com-
p]iant septae model. |

| The channel is in Regime III when the entire channel

has. an increased modulus and a decreased undeformed height
.dﬁe to interaction with the septae. The pressure-flow charac-
teristics of this regime are found usihg the computer program
discussed in_Chapter II. The procedure used to calculate
~ these parameters follows.
(1) fhe resistive parameter for fhis.regime is caicu—

lated 3/2

hO
B'= 8
<Feff)

(2) The computer program is used to calculate the

smallest ¢ for which the height of the channel is everywhere
less thah that of the septae.  This is ER;
(3) The non-dimensional pressure drop for this regime
is defined - )
10P Pcc

g' = ——
Eeff
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(4) e' is allowed to vary between the minimum calculated
in step (2) and 0.9.
(5) The computer program is used to calculate tﬁe non-
dimensional flowrate
Q' = Q'(s',e")
(6) These non-dimensional variables are not defined in

the same way as those in Regimes I & II. They are now

=(Eeff>€.
Erm
3
] (heff> (Eeff> T
h E
0 ™

Figure 14 shows the non-dimensional pressure-flow curves

converted.

Ol

for two values of g, with €. = 0.8, and the septae modulus
four and eight times that of the trabecular meshwork. The
rigid solution is shown for comparison. The curves indicate
that unless the septae are very compliant, the changes from
the rigid septae model will be imperceptible at ]owkpressufes,
and have only a moderate effect (less than 20%) at the upper

end of the range of normally observed intraocular pressures.
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CHAPTER IV

EXPERIMENTAL INVESTIGATION INTO THE PRESSURE-FLOW
CHARACTERISTICS OF THE HUMAN EYE

The models discussed in the previous chapters character-
ize the flow of aqueous humor through Schlemm's canal in the
regfon extending from the midpoint between two collector
- channels to the co11éctor channel itself. The human eye,
“"however, héS approximately thirty collector channe]s; and the
: flow_path associated with each of them has different geometry.
and structure, and hence different pressure-flow character-
istics. To the extent that the geometrical and structural
propefties 6f the trabecular meshwork, the septae and
Schlemm's canal are reasonably uniform, one would expect the
pressure-flow curve of the human eye to be qualitatively
simi]ér to that predicted for the floﬁ péth associated with
a typical collector channe].

In order to evaluate our theories, we perfused enu-
cleated human eyes and determined their‘préssure-flow‘
characteristics. Enucleated eyes were used since it is un-
likely that active transport plays a role in aqueods outflow
(Johnstone and Grant, 1973). No significant changes in .the
pressure-flow characteristics are expected until tissue

degeneration begins.
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4.1 Perfusion of the Eye

The perfusion experiments involve the simultaneous
déterminétion of intraocular pressure and flowrate through
"the aqueous outflow network. Although intraocular pressure
éan be'directly measured, the outflow rate cannot; instead
we meaﬁure thé rate of inflow introduced to the posterior
- chamber. 'If.the voiume of the eye remains constant, then
the inf]dw to the posterior chamber must equal the outflow

'_through.the aquedus outflow network. HoWever; since the

contained volume of the eyes changes with intraocular
pressure, increasing the inflow to the eye causes the eye.
to expand unt11 it reaches a new equilibrium size. Only
when it does will inflow equal outflow.

4.1.1 The eye as a fluid capaéitor. The eye is a

compliant pressure vessel with complex elastic and visco-
-elastic propefties. For a simple approximation,‘we
tenatively model the'relation between the intraocular

pressure (IOP) and the eye volume (V) as follows:

(v-v_) '
- 0 dv
I0P = C + b s (4.1)
where C is the compliance of the eye
b is the viscoelastic coefficient
) is the unstressed volume of the eye

0

"The compliance and the viscoelastic coefficient are complex
functions of pressure; however, we here consider them con-

stants since this is sufficient for a qualitative description.
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The volume change of the eye is a result of the differ-
~ence between the inflow to the eye (Qin) and the outflow

).

"from the eye (Qout

Qi - Qgy¢ = 4V/dt | - (4.2)

For this simple approximation, we assume the outflow

).

network to have a constant flow resistance (R

_ out
I0P - Pv o . o
Q. ., = —p— (4.3)
out Rout | :
where - Pv is the episcleral venous pressure

to which the aqueous outflow network

empties

We combine Equations (4.1) - (4.3) into a single

eduation describing the voTume change of the eye with an

.)d
out

Two methods of perfusion are of particular interest

arbitrary inflow.

P (V-V )
Q; + p— - e - O +
R CR, .+

-l

oo

(4.4)

a
ot

because they are easy to realize experimental]y:

(1) constant rate of inflow, and (ii) constant supply
bressure. -Each case has associated with it a time constant
(r)‘fndicdtive of how ldng it will take to reach 63.27%

(].- e‘]) of the steady-state value. For»the case of

constant inflow (Q, = const), the time constant (TQ) is
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. found from Equation (4.4) to be:
(1) T = Routc +.bC

 For the case of constant supply pressure, Qin depends on the
flow resistance (Rin) to the inflow.
Qin = (P - IOP)/Rin

where P is the constant supply pressure

Substituting this re1ation.for Qin into Equation (4.4)

and using Equation (4.1), we solve for the time constant (rp).

1

R R,

n
R,

C + bC
out in :

The inflow resistance (Rin) depends on the equipment used,
but is always much less than the outflow fesistance (Rout);
hence, this relation can be approximated.

(ii) Ty T RinC + bC

The various parameters used in this anaiysis are not
constant, and therefore these estimates of time constants
serve only to give the order of magnitude of the 1eﬁgth of
time required for each pressure-flow data point to reach

"steady-state. For this estimate, we use the following values:
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Rin = 0.05 mmHg -_min/uL
Rou't = 4.0 mmHg - min/ul
C =1.4 ulL/mm Hg
b = 6.8 mm Hg - min/ul

 The valueS'fof Rin and Rout are typical of the experiments
we performed. ;The values of C and b are typical of those
dfscqssgd by Col]ihs (1980).

These va]ues.yield a time constant for the constant
inf]owvcase 6f'15.1 minutes, and, for the constént supply
pressufe, of 9.6 minutes. 99% of the steady—state value
should be reached after waiting five time constants, and
thus constant flow experiments should take approximatéfy
seventy-five minutes for each data point, while constant
pressure experiments should take appfoximately fourty—fiveA
minutes. In the constant flbw experiments discussed later,
the time to steady-state was consistent with these predib-
tions: around sixty minutes. .
| We tried to reduce the time required for each data
| point by ﬁeasuring eye circumference using a mercury-fn-
iéilaétic strain gage from which we could determine ‘the
volumetric. expansion of the eye. Then, knowing dv/dt, we

could use Equation (4.2) to compute Q Unfortunately,

out”
the magnitude of the strain was so small that it was not
‘possible to discern true changes in circumference from
variations caused by changes in mercury temperature. Since

changes in mercury temperature as small as 0.1° ¢ per
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minute would cause significant errors, we decided that this

approach was not practical.

4.1.2 Review of perfusion experiments by other

investigators. The use of perfusion experiments to determine

the effect of intraocular pressure on the resistance to
outflow dates back nearly 100 yeérs (Smith, 1888). As a
result of numerous studies, mach evidence has acCuhu]ated
_indicating that the resistance to outflow increases with
intraocular pressure (see Moses (1977) for a reviéw).

in one 6f the most comprehensive studies Brubaker'(1975)
- perfused enucleated human eyes imbedded in hydrous calcium
sulfate stone to prevent changes in eye volume and found
that floQ resistance increased linear]y with intraocular
pressure. The experiments were carefully done, but several
bbjections might be raised. First, it is unclear what affect
the calcium sulfate stone would have on the éye. Sgcond,
Brubaker presented'only averaged data from several different
eyes. There is substantial variability between eyes and
averaging the data from differentreyes masks the true details
of individual pressure-flow curves.

Using the ﬁonstant pressure technique, Ellingsen and
Grant (1971) conducted perfusion studies on enucleated human
'j'eyes. They concluded that outflow resistance increases as
intraocular pressure increases, and.that anteribr chamber
'deepening.reduces this efféct. In their pkocedure_they wait-

ed 4 or 5 minutes for the eye to reach steady—state while
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averaging the inflow over the entire period. In view of the
estimates of time constant made above, this may not have
been sufficient for fhe eye to come to steady-state. Their
data on the effect of prolonged perfusion time on resistance
tend to support this possibility.

Levene and Hyman (1969) measured the outflow resistance
 ~of‘in.vivo human eyes using tonographic techniques. They
also investigated the effects of pressure elevation on out-
f1ow resistance. Although their techniques involved consider-
ab]e.uncertainty, several interesting Conc]usions were |
Yeéched. They found resistance to increase as the intra-
ocular pressure increased; however, they found that resis-
tance réached a maximum and remained hearly constant as
vintraocdlar pressure was furtﬁer increaéed. This is consis-
tent with the predictions of the model dfscussed in Chaptér
III. They also found that the resistance increased less in
eyes with high initial resistance. |

- Although many studies have been conducted, the literature
contains little information on the pressure;f1oQ characteris-
tics of human eyes at high pressures (50 - 100 mm‘Hg). ‘Also,
.Tn most studies, thé results from many eyes were avéraged.

For these reasons, the literature is not well suited to a
~critical assessment of our theories and we decided to conduct
éur.own experimehts. Theibbjectives'of present study ﬁhen,
was to iﬁvestigate the pressure-flow curves of individua]

eyes over a wide range of intraocular pressures.



54

4.2 The Present Perfusion Experiments

We were fortunate during our experiments to be permitted
to use a perfusion device neW]y designed-by Dr. P. John
Anderson of the Massachusetts Eye and Ear Infirmary. The
studies were preliminary in the sense that we were learning
“the experimental procedure, and there were insufficfent
enucleated human eyes to do a full-scale study.

4.2.1 Description of the perfusion apparatus. Figure

15 shows two views of the perfusion apparatus: two syringe
pumps and their associated electronics are on the cart along
with pressure and flow measurement electronics; the experi-
mental setup for perfusing the eye is on the table. The left
syringe pump is connected via plastic tubing to the experi-
mental setup on the table. |

A schematic of the system is shown in Figure 16. The
syringe pump drives fluid into the eye at a constant rate
while the pressure transducer monitors pressure just up-
stream from the eye. Figure 17a shows the experimental
setup without the connection to the syringe pump. The
refi]] reservoir is seen at the top of the picture, the.
bressure transducer in the middle and the syringe for back-
filling the system at the bottom-left. At the bottom-right
of the picture is_a calf eye in a beaker.

‘The eye to be perfused is placed in a beaker containing
several gauze pads; the beaker is filled with saline. The

surface of the eye is then wrapped with saline-wetted gauze.
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Figure 17b shows a close up of the calf eye. The needle
carrying the perfusion fluid can be seen to pass through
the cornea and then disappear behind the iris. The tip of
the needle is placed behind the iris, in the posterior
’chamber, to prevent anterior chamber deepening which is
known to affect outflow resistance.

4.2.2 The experimental routine. In preparation for

experimentation, the pressure sensor and syringe pump were
calibrated. The resistance between the pressure sensor
and the eye was measured and found to be negligible

4(0.05 mmHg « min/ul).

The perfusion fluid was Dulbecco's phosphate buffered
saline to which'g]ucose was added (5.5 mM). This solution
was selected because it is known to cause a minimal wash-out
effect (the decrease in outf]ow resistance with time). The
solution is passed through a micropore filter, and then used
to fill the system while attempting to eliminate all bubbles.

The enucleated eyeé are usually received about twenty-
four hours after death. fhe eye to be perfused is placed in
va beaker (as described above) which is maintained at a con-
stant temperature of 72° F.  This temperature is siénificant-
ly less than the physiologic temperatufe and thus the viscosi-
ty of the perfusion fluid is increased correspondingly (by
about 40%). This causes an increase in the measured resis-
tance.

"A 23 gauge needle is passed through the éornea, main-

taining a constant flow of perfusate to prevent occlusion of
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.the needle. The cornea seals around the needle. The tip of
- the needle is placed behind the iris. The eye is then.a11owed
to }emain for one hour with no flow to establish zero pressure.
The experiments were kun in constant flow mode, although
:in some insfances we attempted to adjust the flowrate to
achievé steady-state more quickly. Steady-state was deter-
‘mined to occur when the pressure reading remained constant for
_ five minutes. The observed time to steady-state varied
between oné,ha]f hour and one hoﬁr.

The pressure uncertainty is calculated as follows:

PRESSURE PRESSURE

: -+ ZERO . yorsg  + END POINT
UNCERTAINTY  SENSOR DRIFT UNCERTAINTY

ERROR . . ERROR

The pressure sensor errof is approximately 0.25 mm Hg and

~ the zero drift is estimafed at 0.25 mm Hg. The noise and
the end point uncertainty (uncertainty as to whether the
experiment‘has reached steady-state) were estimated for each
data point from the strip chart recording of pressure. The
measurement of flow are accurate to within 0.5%.

4.2.3 The experimental results. The results from the

berfusion experimentsAafe shown in Table II and Figures

18-20. The figures show open symbols for one eye of the pair
and 6Tosed symbo]s'for.the other. The numbers below the
closed symbb]é (and above the open symbols) indicate the order
in which the data were acquired. The dashed Tine on the

figures -- héving the same general form as the curves predic-
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ted in Chapter III -- is included only. to demonstrate that
the data are consistent with, but by no means confirm the
fheoretical predictions.

Although four pairs of eyes were tested, we are confi-
dent on]y'of the results obtained on the fourth pair. we"
be]ieve, however, that the results obtained on the firsi two
pairs.of-eyes (Tables Ila and IIb and Figures 18 and 19) are
eua1itative1y correct in spite of some error due to a small
leak pest the syringe. The leaky syringes were replaced by
| leakproof syringes prior to testing the fourth pairs of eyes
(Table IIc and Figure 20).

4.3 Analysis of the Experimental Data

As stated above, the experiments were preliminary and
more data are necessary before we can reach any definite
conclusions. Still, it is useful to calculate representa- -
~tive'veiues of.the various parameters pertaining to the
theory.

4.3.1 Parameters describing the shape of the pressure-

flow curve. To calculate representative values of the non-

dimensional parameters which describe the pressure-flow curve,
»tHe data from the fourth pair of eyes (Table IIc anQ'Figure
20)are used, as these are the data most Tikely to be reliable.
From‘these results, we will estimate four parameters of the -
model: .the pressure at which Schlemm's canal has first
eollapsed, the pressure at which the entire canal is collapsed -

and the'slopes of the pfessure-flow curve both above and below
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these-pfessures. This information will then be used to

2nand E.

_ determine numerical values for €c* €p» B
The shape of the pressure-flow curve in Figure 20 is
suggestive of the models discussed in-Chapter ITT (rigid or
‘compliant septae). ‘Equation (3.5) reiates the non-dimension-
'ai pressdre at which the inner wall of Schlemm's canal has
first collapsed to the effective height of the septae (ec),

 'to the non-dimensional pressure at which Schlemm's canal is

first entirely collapsed (eR)

ep/e. = COSH [(]_ec)s/zl

€ is located on Figure 20 at data point 7, while R is
lTocated just past data point 9. We find that eR/eC = 1.8.
Figure 11 shows the relationship between the slope in Regime

I and the slope in Regime III.

Wde|oog  (1-0)¥2 TaNK [B/(]_ec)3/4
da/de' - TANH 8

€E<E
C

From Figure 20 this ratio of slopes is found to be 0.70.
These two equations are solved simultaneously for g and €.
yielding: |

B = 0.11 | €c = 0.79

" Therefore ep equals 1.26.
The value of . can be used to determine the spring

consiant (E) of the trabecu]dr meshwork.
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€c T ApC/E

where ApC is the pressure.drop correspond-

ing to €t

The pressure drop corresponding to € is 15.4 mm Hg. There-

~fore;, E can be estimated.

E =19.4 mm Hg.

From the definition of 82 in Chapter 11, we find:

RESISTANCE TO FLOW IN
SCHLEMM'S CANAL IN THE

» - UNDEFORMED STATE

B RESISTANCE TO FLOW THROUGH
THE INNER WALL OF
SCHLEMM'S CANAL

= 0.013

This is consistent with the conclusions reached by Moses
(1981) that most of the resistance to outflow occurs in the
inner wall of Schlemm's canal.

These values are only meant to be estimates as they
could change significantly depending on the error range.
This represents one, but certainly not the only interpreta-
~tion of the data.

4.3.2 The inner wall resistance. If these preliminary

conclusions can be verified by additional experiments, it

appears likely that most of the outflow resistance occurs in
the inner wall of Scﬁlemm‘s canal. It is therefore interest-
ing to speculate on the nature of this resistance. We might
assume that the inner wall resistance occurs in pores which

are 10um 1in length and 1.5 um in diameter. The pore diameter
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is based bn perfusion studies which used tracers to determine
fhe smallest flow dimensions (Huggert, 1955); the length of
.the pores is admittedly arbitrary but is certainly the right
.order of magnitude. The pressure drop through these pores
can be calculated using the following formula (Dagan,

Weinbaum and Pfeffer, 1979):

w0 = (3 + 8L/wr) 24
r
where r is the radius of the pore

L is the length .of the pore

TheAfirst term on fhe right hand side of the equation repre-
sents the pressure loss of fluid traveling to the pore; the
second tefm, the ﬁressure drop caused‘by the Poiseuille flow
~through the pore. This formula neglects the entrance length
in the pore fpr developing the Poiseu{lle profile, however
this has reééntly been shown to be‘insignﬁficant (Eriksson
and Svedbergh, 1980). X
The flowrate (Q) is set equal to 2.0/N ulL/min, where N
is the number of porés. For a pressure drop of 6 mm Hg, we
find that N=1400 (130 pores/mm%). This number is signifi-
_cént]y smaller than the 23,000 pores found by Bill and
Svedbergh (1972), but it is consistent with the number of
endothelial tubules (2000) found by Johnstone (personal

communication).
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4.3.3 Implications for glaucoma. The spring constant

~for the trabecular meshwork estimated above -- approximately
20 mm Hg ~-- is roughly consistent with the studies done by
Johnstone and Grant (1973) on the pressure-dependent changes
~of the trabecular meshwork. Certainly, when the ihtraocular
pressufe is 50 mm Hg., the trabecular meshwork is completely
e*panded and Schlemm's canal is completely collapsed. VYet
the outflow resistance at 50 mm Hg, measured by several
inveStigatoré, is not high enough to cause glaucoma. This
suggests that glaucoma is not caused by.a weakening of the
_ trabecd1ar meshwork and a resultant collapse.of Schlemm's

canal alone.
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CHAPTER V

CONCLUSIONS AND SPECULATIONS

The experimental data contained within this study are
ndt.sufficient to draw any definite conclusions. However,
when we combine our theoretical results with the experiment-
al eviﬂence_from other investigators, a number of interest-
ing conclusions arise.

(1) Most of the pressure drop in the aqueous outflow

network occurs in the inner.wall of Schlemm's canal.
Most experimental investigations (ithuding the present
ones) have on1y found small non-linearities in the aqueous
outflow curves for human eyes. If Schlemm's canal contri-:
buted significantly to the total outflow resistance, thén
changes in its dimensions ~- caused by changes in the ihtré-
ocular pressure -- would lead to large changes in resistance.
Since bn]y sma]i changes in resistance occur as.the‘intra-
ocular pressure is changed, Schlemm'é canal resistance musf
be a small part of the total resistance. |
In Section 1.3.2 and 1.3.4 we discuss why the trabecular
‘meshwork and the aqueous veins are unlikely to cause signifi-
cant flow resistance. Therefore, the inner wall of Sch]emh's
cand] appears to be the major sourcé of resistance. The Na2
EDTA studies (Bill and Svedbergh, 1980) discussed in Section

1.3.2 suggest that the juxtacanalicular meshwork is the

primary site of resistance within the inner wall.
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(2) Significant collapse of Schiemm's canal occurs only

when the 1ntraocu1ar pressure is substantially

elevated. | |
The estimated expérimenfa] value for the spring constant
(E) of the trabecular meshwork of 20 mm Hg is consistent with
other observations of meshwork diStension (Johnstone and
Grant, 1973). Therefore, a normal pressure drop through the
aqueous outflow network of 6 mm Hg is equivalent to ¢ = 0.3.
Figure 6 shows that for e = 0.3 and 8 = 0.1, the model pre-
dicts fhat Schlemm's canal is nearly wide open. Recent work
by Moses (1981) supports this conclusion.

(3) The assumption that the inner wall resistance occurs

in pores which are 10um in ]quth and 1.5 um in

diameter leads to the concluSion that there are

approximately 1400 of these pores in the eye.

In Section 4.3.2, we show that 1400 pores are necessary
- to pass the flowrate of 2.0 uL/min at a pressure drop of

6 mm Hg.

(4) Glaucoma is not caused by a weakening of the trabecu-

lar meshwork and a resultant collapse of Schlemm's

canal alone. Glaucoma is 1ike1y caused by a de-

creased porosity of Schlemm's canal inner wall.

If we accept that the spring constanfbfor.the trabecular
meshwork is approximately 20 mm Hg, then Schlemm's canal is
certainly collapsed when the intraocular pressure is 50 mm
H§. Yet the resistance at 50 mm Hg, measured by several-

investigators, is not high enough to cause glaucoma.
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Two possible explanations could be proposed: Although
weakening‘of the trabecular meshwork'aloné would not cause
Q]aucoma, a concurrent weakening of the septae, which norm-
ally prevent the collapse of Schlemm's canal, could. .However,
a seemingly more likely possibility would be that glaucoma

is caused by a decrease of inner wall porosity.
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APPENDIX A

INTEGRATION FOR H(X)

SUBROUTINE SCHLEM(E,B,Q)
DIMENSION H(1001)
PARAMETER NMAX=1001

START PROGRAM

H1=1.-E
TOP=1.

BOTTOM=H1

N=1

HO=(TOP+BOTTOM) /2.

CALL INTEG(H1,B,HO,*300,H)

L=1

IP(ABS(HO-H (NMAX)).LE.3.E-07) GO TO 200
GO T0 110 _

=0

N=N+1

IF(N.GT.25) GO TO 400

IP(L.EQ.0) GO T0 120

TOP=HO

G0 T0 100

BOTTOM=HO

GO TO 100

CALL DERIVH(H1,H(NMAX),B,*400,VALUE)
Q= (q1**3)*VALUE/12

WRITE(6,1001) Q,H(NMAX),H(2),N
SUM=0.

DO 500 I=1,1001

WRITE(10, 1005) I,H(1)

SUM= %UM+H(I)

CONTINUE

SUM=SUM/1001.

WRITE(10, 1006) SUM

FORMAT(SX 15,70.5)

WORMAT(ZOX FO. 5) ‘

RETURN

ERRORS
WRITE(6,1002) N,HO,T(NMAX )
STOP

FORMAT(F10.5)

FORMAT (10X,3M2.7,15)
WORMAT(1OX 'FR{OR' ,5X, [5,2F10.5)
FORMAT (2X,' H1 $)
FORMAT(?X B ', 3)
END
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SUBROUTINE INTEG(H1,B,HO,*,H)
DIMENSION H(1001), VALU“(1001) Pqum(1oo1)
PARAMETER NMAX=1001
INPUT H1: H(1)

"HO: GUESSED VALUE FOR H(O)

B: BETA

F: DERIVATIVE OF H WITH RESPRCT TO X

. *:  RETURN FOR H(X) .aT. i (0)
OUTPUT H: MH(N) N=1,NMAX
DEL'"AX=1./FLOAT(NMAX-1)
H(1)=M1
CALL DERIVH(H1,HO,B,*200,VALUE(1))
PSUM(1) H1+VALUE(1)*DELTAX/3

DO 100 W=2,NMAX-1
CONST=2,. .
IFé(N/Q)*Z EQ.N) CONST=4.
I"(N.LE.3) GO T0 250
HGUESS= (3. *H(N~1)-4  *H(N=2)+H(N-3) ) /2. +H(N-"
CALL DERIVH(HGUESS HO B, *200,VALUE(N))
PSUM(N)= PSUM(V—1)+CONST*VALUF(N)*DELTAX/j
IF((N/2)*2.EQ.N) GO TO 300

"H(N)=PSUM(N-1)+VALUE(N)*DELTAX/3.

G0 TO 100

IP(N.EQ.2) GO TO 350

H(N)=H(N-3)+(VALUE(N-3)+3, *(VALUE(V-2)+VAL"E(W— ))
+VALUF(N))*3 *DELTAX /8. :

G0 TO 100

D2=(B**2)* (H(1)=1.)/(H(1)**3) -3 *(VALUE(1 ) **2) /2 {1

H(2)=H(1)+VALUE (1) *DELTAX+D2* (DELTAX**2)

CONTINUE

H(NMAX ) =H(NMAX-1)

IF(H(NMAX) .GT.HO) GO TO 200

RETURN

CALL DERIVH(H(N-1),HO,B,*200,VALUE(N))

HGUESS=H (N-1)+VALUE (N} *DELTAX

GO TO 50

RETURN 1

END
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SUBROUTINE DRERIVH(H,HO,B,*,VALUR)
TERM1 = (HO**4) /4, -(H0O**5) /5.
TERM2=(H%**4) /4.-(H**5) /5,
IP(TERM1.LT.TERM2) GO TO 100
VALUE=B*SQRT(2.*(TERMI —=TERM2 ) ) / (H**3)
RETURN

SRROR RETURN

RETURN 1

END
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TABLE II
PRESSURE-FLOW DATA FROM
ENUCLEATED HUMAN EYES

FIRST cYE SECOND EYE

PRESSURE PRESSURE
UNCER- UNCER-
FLOW  PRESSURE TAINTY FLOW PRESSURE TAINTY

(uL/min) (mm Hg) (mm Hg) (uL/min)(mm Ha)(mm Hg)

(a) 86 years old; 2.99 9.76 +1.5/-0.5
33 hours after 1.49 4.34 +0.5

death * 4.79 20.4 +0.5
5.29 25.0 +1.5/-0.5
7.32 36.0 +1.0
8.01 41.6 +2.0

(see fiqure 18)

(b) 68 years old; 0.97 1.95 +0.5 2.10 5.95 0.5
21 hours after 1.61 3.04 0.5 3.35 9.14 0.5
death 1.26 3.15 *0.5 11.2 > 40
‘ 2.35 7.57 0.5 14.7 > 61
3.16 9.14 +0.5 12.6 > 56
4.20 11.08 *0.5 9.47 35.6 +1.5/-0.5
5.60 17.1 +1.0/-0.5
6.66 20.4 0.5
(see closed symbols on (see open symbols
figure 19) on figure 19)

- - —— = T = = = o = = = - = - = e = = = e = e e

"(c) 48 years old;  3.46 10.22 +1.0/-0.5 .69 5.62 1.0
19 hours after 1.67 4.54 0.5 10.23 53.4 +1.0/-1.5
death 1.01 2.92 +0.5 120 441 +71,

2.24 8.06 +1.0/-0.5 19 36.9 0 +#1.
2.68 10.16  +0.5/-1.5 35.8 %1,
0.56 1.95 +0.5/-1.0 .51 4.33 +0.

.18 15.52 1.

.67 9.35 0.

.30 25.7  #0.
(see closed symbols see open symbols
on figure 20) on figure 20)

A~ D =IO —
(8]
~N
NTUTO N O OD

*No measurements on second eye.



72
FIGURE CAPTIONS

Outline of the aqueous humor circulatory system

Micrograph of the trabecular meshwork and Schlemm's canal
(Tripathy, 1974). SC- Schlemm's canal, TM- Trabecular
meshwork, CSW- Corneoscleral wall, CC- Collector channel,
S- Septae.

Schematic showing the effect of intraocular pressure on the

- trabecular meshwork and Schlemm's canal (Johnstone and Grant,

1973).

Model of Schlemm's canal as a porous, compliant channel.

'Degree of collapse as a function of distance a1ong the channel,

- g?o= 0.0036.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig.. 7.
Fig. 8
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17a.

Degree of . collapse as a funct1on of d1stance along the channel,
gz = 0.01.

Degree of co]]apse as a funct1on of distance along the channel,

B% = 0.25.

. Flowrate vs. pressure drop on.0.02‘< 8 < 0.10.

Flowrate vs. preséure drop fbr‘0,2 < B < 0.5.

Model of Schlemm's canal as a porous, compliant channel with
complete collapse prevented by septae.

Schematic of typical presgure-f]ow Curve for rigid septae model.

Flowrate vs. pressure drop for the rigid septae. model. e = 0.8,
0.02 < B8 < 0.10.

Flowrate vs. pressure drop for the rigid septae model. €c

0.9,
0.02 < 8 < 0.10. |

Flowrate vs. pressure drop for the compliant septae model.
B = 0. 06 and 0.10.
Photograph of perfusion apparatus.

Schematic of perfusion system.

Photograph of refill reservoir, pressure transducer and back-
filling syringe.



Fig.
Fig.
Fig.
Fig.
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17b. Photograph of a calf eye being perfused

18. Pressure-flow data from first pair of eyes.
19. Pressure-flow data from second pair.

20. Pressure-flow data from third paid of eyes.



74

ANTERIOR
CHAMBER
POSTERIOR

CHAMBER

TRABECULAR
MESHWORK

(%]
-
= <C
=
O <C
wm O -

Figure 1



75

Qunb 4




76
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Figure 15b

Figure 15a
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