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ABSTRACT

As aqueous humor passes through the outflow network in the human
eye, its fluid pressure drops 7 mm Hg in the normal eye and as much as
40 mm Hg in glaucomatous eyes. This study investigates the role of
Schlemm's canal in producing this pressure drop.

A mathematical model of Schlemm's canal is constructed in which
Schlemm's canal is modeled as a porous, compliant channel which is held
open by the trabecular meshwork. The trabecular meshwork is modeled as
a series of linear springs which allow the inner wall of Schlemm's
canal to deform in proportion to the local pressure drop across it.

We are in the process of obtaining detailed pressure-flow measure-
ments on enucleated human eyes, and the preliminary data is compared
with the theoretical model. Based on this comparison and on results
reported in the literature, the following tentative conclusions are
reached:

(1) Most of the pressure drop in the aqueous outflow network
occurs in the inner wall of Schlemm's canal.

(2) Significant collapse of Schlemm's canal only occurs when the
intraocular pressure is substantially elevated.

(3) The assumption that the inner wall resistance occurs in pores
which are 10 um in length and 1.5 pm in diameter leads to the conclusion
that there are approximately 1400 of the pores in the eye.

(4) Glaucoma is not caused by a weakening of the trabecular
meshwork and a resultant collapse of Schlemm's canal alone. Glaucoma is
likely caused by a decreased porosity of Schlemm's canal inner wall.

Thesis Supervisors:

Roger Kamm Ascher H. Shapiro
Assistant Professor of Institute Professor
Mechanical Engineering
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NOMENCLATURE

Symbol

b

C

E, ETM

Es•

Eeff

h(x)

h

hs

heff

H(x')

IOP

L

Meaning

Viscoelastic coefficient of the eye

Compliance of the eye, C - dV/dIOP

Spring modulus of the trabecular meshwork

Spring modulus of the septae

Effective spring modulus which includes the meshwork
and septae moduli

Height of the channel

Undeformed height of the channel

Effective height of the septae

Effective undeformed height of the channel including
effects of the meshwork and the septae

Non-dimensional height of the channel, H(x') E h(x)/h 0

Intraocular pressure

Length of "pores" through the juxtacanalicular mesh-
work

Pressure within the channel

Non-dimensional pressure within the channel,
P(x') - [IOP - P(x')]/E

Collector channel pressure

Episcleral venous pressure

Pressure drop (IOP - Pv)

Volumetric flowrate within the channel

Non-dimensional flowrate within the channel,

Q(xs')
wh (x')E

Total non-dimensional flowrate through the channel,
Q Q()

P(x)

P(x')

P

v
AP

Q(x)

Q(x')



Qc(x') Non-dimensional flowrate within the compliant section
of the channel

Qc Total non-dimensional flowrate through the compliant
section of the channel, Qc = Qc(1)

QR(x') Non-dimensional flowrate within the rigid section of
the channel

QR Total non-dimensional flowrate through the rigid
section of the channel, QR R- (1)

Q' Total non-dimensional flowrate through the channel
in Regime III of the compliant septae model,

- Pi(l)s

Wh (1) Effeff eff

Qin Flowrate into the eye

Qout Flowrate out of the eye

Rin Resistance to flow into the eye (mm Hg.min/uL)

Rou t  Resistance to outflow from the eye (mm Hg.min/ýL)

Rw Resistance per unit length to flow through the inner
wall

Rinner Total resistance to flow through the inner wall

wall

Rchannel Total resistance to flow caused by the channel

r Radius of the "pores" through the juxtacanalicular
meshwork

s Length of the channel

SR  Length of the rigid channel

t Time

V Volume of the eye

V0  Unstressed volume of the eye

W Width of the channel perpendicular to the paper



x Axial distance

x' Non-dimensional axial distance

x Non-dimensional location at which the septae first
c inhibit Schlemm's canal from further collapse

Greek

a Ratio of the channel resistance to the inner wall
resistance

B .Square root of the ratio of the undeformed channel
resistance to the undeformed inner wall resistance,

12P s/Wh o
B2

R /S

ýc ý for the compliant section of the channel

BR  B for the rigid section of the channel

' f3 for the channel in Regime III of the compliant
septae model,

12 11. s/Wh
)12 eff

Rw/s

£ Non-dimensional pressure drop, E = AP/E

E Non-dimensional pressure drop at which the septae
c first inhibit further collapse of Schlemm's canal

6R Non-dimensional pressure drop at which the entire
canal is collapsed to the septae height

E' :c for the channel in Regime III of the compliant
septae model, e' =AP/Eeff

7Q Time constant for a constant inflow perfusion experi-
ment

Time constant for a constant supply pressure perfu-
sion experiment

Vi scosi tvViscositv
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CHAPTER I

THE PROBLEM

Open-angle glaucoma is a disease caused by ocular

hypertension which results from an obstruction to the

outflow of aqueous humor from the eye. Aqueous humor

flows through the outflow network at an extremely low

flowrate (2.0 pL/min), yet its pressure drop in the

glaucomatous eye can be quite dramatic: as much as 40 mm

Hg. Suprisingly, the pressure drop of aqueous humor

flowing through the outflow network of a normal eye is

also quite significant (around 7 mm Hg).

In order to achieve a better understanding of the

outflow network, changes in which can lead to ocular

hypertension and glaucoma, in this investigation we study

the role of Schlemm's canal in producing a pressure drop

in the normal eye.

1.1 The Aqueous Humor Circulatory Pathway (Figure 1)

1.1.1 Aqueous inflow. Aqueous humor is formed from

blood by a combination of secretioh and 'ultrafiltration in

the ciliary processes behind the iris. The rate of

formation is nearly constant at 2.0 pL/min, although a

rise in the intraocular pressure can decrease the formation

rate sliqhtly.

Aqueous humor has fluid properties like those of

blood plasma: it has a viscosity 2.5 - 4.0% higher than
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water (Moses, 1970), and seems to be isotonic with blood

plasma in spite of having a lower concentration of large

proteins.

Aqueous, after being formed in the ciliary processes,

flows into the posterior chamber. It then proceeds in

front of the lens and through the pupil. Once in the

anterior chamber, the aqueous flows radially outward

toward the angle between the iris and the cornea. Calcu-

lations have indicated that there is virtually no pressure

drop as the aqueous flows from the ciliary processes to

the iridocorneal angle (Friedland, 1978). From the angle,

the aqueous flows into the aqueous outflow network.

1.1.2 Aqueous outflow. The aqueous outflow network

consists of the trabecular meshwork, Schletnm's canal and

the aqueous veins. Figure 2 shows the trabecular meshwork

and Schlemm's canal.

The trabecular meshwork can be thought of as a series

of porous sheets through which the aqueous humor percolates

on its way to Schlemm's canal. It can be considered to

consist of three layers: The corneoscleral meshwork, the

juxtacanalicular meshwork, and the endothelial lining of

Schlemm's canal.

The corneoscleral meshwork (Tripathy, 1974) consists

of 8 to 15 flattened, perforated sheets of mean thickness

3pm which are connected by trabecular beams. The spaces

in the corneoscleral meshwork can be divided into two

classes: the inter-trabecular spaces -- spaces between
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adjacent sheets varying in size from 0 to 8 pm; and, the

intratrabecular spaces -- spaces formed by the perforations

in the trabecular sheets varying. from 25 to 75. pm in

diameter near the angle, and decreasing to from 2 to 15 pm

in diameter in the deeper levels of the corneoscleral mesh-

work. The intra-trabecular spaces do not superimpose in

succeeding layers, and thus the aqueous humor travels a

tortuous path as it traverses this filter-like tissue.

The mechanism by which aqueous humor passes through

the juxtacanalicular meshwork and the endothelial lining

of Schlemm's canal is imprecisely known. There are current-

ly three theories:

(i) Tripathy (1971) has proposed that giant

vacuoles observed in the endothelial lining of

Schlemm's canal may transport fluid by passive

macropinocytosis.

(ii) Bill (1972) has observed pores in the

endothelial lining, but there is a question as to

whether they are artifacts of the fixation process

(Johnstone, personal communication).

(iii) Johnstone (1974) has demonstrated

endothelial tubules in Schlemm's canal, but it is

not yet certain that they have a role in fluid

transport; they may only have a structural role.

To avoid the complexities of these various models,

this study assumes the juxtacanalicular meshwork a.nd

endothelial lining to have a flow resistance per unit



of face area which is independent of the local pressure

drop across it. The mechanism responsible for this flow

resistance will be an important area for future research.

Upon passing through the endothelial lining, the

aqueous enters Schlemm's canal which has the appearance

of a highly elongated ellipse in cross-section, measuring

250 um by from 2 to 30 um. The inner wall (viewed from

within the canal) is a surface dominated by the giant

vacuoles of the endothelial lining which invade the canal.

The outer wall has no distinguishing characteristics except

for the occasional opening that leads to the collector

channels. The canal is occasionally interrupted by a

septum (or endothelial tubule) which connects the inner

wall with the outer wall (as if it were a beam). They are

especially numerous near collector channels suggesting

that they may serve to prevent occlusion of the collector

channels.

After the aqueous humor enters the canal, it travels

circumferentially around the canal until it reaches one of

the openings which lead to the collector channels. The

collector channels connect Schlemm's canal with the aqueous

veins.

The aqueous veins carry the aqueous humor to the

surface of the eye where they anastomose with the epis-

cleral veins. The aqueous veins are 10 - 100 um in radius,

and despite numerous casting studies their path through the

sclera is still not well known.
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1.2 The Physiological Significance of the Aqueous Humor
Circulatory System

1.2.1 The function of aqueous humor. The eye is a

unique biological structure which must provide a trans-

parent path by which light can reach the retina, while

also providing for the normal biological needs of the eye

tissue. Blood is not transparent, and therefore cannot

provide for the biological needs of the tissue in the

optical pathway (the lens and the cornea). Aqueous humor

can satisfy these needs since it is clear and yet can carry

oxygen and nutrients.

1.2.2 The function of the trabecular meshwork and

Schlemm's canal. These structures appear to serve three

important fuctions:

(i) Act as a barrier to the reflux of blood

through the aqueous outflow network into the eye so

that red blood cells do not enter the visual field.

(ii) Prevent debris (e.g. pigment), which will

tend to flow along with the aqueous into the trabecu-

lar meshwork, from accumulating in the juxtacanalicu-

lar meshwork.

(iii) Maintain intraocular pressure which

provides ocular rigidity which is necessary for

visual clarity.

The most effective barrier to reflux through the

aqueous outflow network would be an active transport system,

or a filter with extremely small opening (~ 10000). However,



both of these possibilities would preclude removal of debris

from the eye. Similarly, a system with large openings to

facilitate the removal of debris would be unsuitable as a

blood-aqueous barrier. Thus functions (i) and (ii) appear

to be contradictory.

The trabecular meshwork is a compromise system which

serves both functions. It also serves to maintain the intra-

ocular pressure.

(i) Barrier to blood reflux. The retrograde

flow of venous blood is normally prevented by the higher

hydrostatic pressure in the aqueous veins. A rise in venous

blood pressure will increase the intraocular pressure due

to enqorgement of the intraocular veins, and thus is not

likely to reverse this

intraocular pressure d

venous pressure, or if

is increased by local

aqueous veins which le

The endothelial

line of defense agains

the maximum diameter o

microns. (Huggert, 19

pressure

oes

the

occl

ad t

lini

t th

f wh

55).

gradient. However,

not increase as much

episcleral venous pr

usion, blood can refl

o Schlemm's canal.

nq of Schlemm's canal

e red blood cells. I

ich is thought to be

These openings inhi

if

as the

essure

ux into

the

central

alone

the

is the first

t has openings

around two

bit the reflux

of red blood cells into the eye. These small openings

continue into the juxtacanalicular meshwork Where they

further impede red blood cell reflux.

The final barrier to this reflux is the one-way valve
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action of the trabecular meshwork. The meshwork acts like

a sponge which is bound circumferentially at the angle. As

the intraocular pressure increases, the sponqe expands; when

venous pressure increases, the sponge closes down. In this

way, the meshwork acts as a one-way valve which closes down

when venous pressure increases relative to the intraocular

pressure. (Johnstone and Grant, 1973). It can be noted

here that this one-way action is directly a result of the

existence of Schlemm's canal and the meshwork tetherinq at

the angle. Without the canal, the trabecular meshwork would

be attached to the corneoscleral wall, and would be unable

to close down in response to a change in venous pressure.

(ii) Removal of the debris. Any inflammatory

response in the eye can result in debris which needs to be

removed from the eye. If this debris were to flow unimpeded

with the aqueous humor, it would plug up the juxtacanalicular

meshwork. Therefore the corneoscleral meshwork acts as a

filter to trap the material before it gets to the juxta-

canalicular meshwork. Once trapped, it is engulfed by

trabecular endothelial cells acting as stationary macrophaqes

(Richardson, Hutchinson And Grant, 1977).

Once the material has been digested, the endothelial

cells release t hemselves from the trabecular wall and flow

out with the aqueous humor. The corneoscleral meshwork

offers almost no resistance when the intraocular pressure is

greater than venous pressure. The cells are ameboid and are

therefore able to slide through the juxtacanalicular meshwork.
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(iii) Maintenance of the intraocular pressure.

The small openings in the juxtacanalicular meshwork and the

endothelial lining of Schlemm's canal are well suited to

provide considerable fluid resistance and thus maintain the

intraocular pressure.

1.3 The Principal Site of Flow Resistance

In view of the extremely slow rate of aqueous humor

flow throuqh the outflow network (2.0 1L/min) and the short

flow distance (less than one millimeter), the pressure drop

is suprisingly large (7 mm Hg). Many studies have sought

to determine the principal site of resistance. Toward this

end, a number of pressure - flow curves have been determined

experimentally. Qualitatively these studies indicate that

the relationship between pressure and flow is nearly linear

with the flow resistance increasing slowly with pressure.

A number of sites have been identified as possible

sources of this resistance:

(i) corneoscleral meshwork

(ii) juxtacanalicular meshwork

(iii) endothelial lining of the inner wall of

Schlemm's canal

(iv) Schlemm's canal

(v) aqueous veins

1.3.1 The corneoscleral meshwork. Two considerations

preclude the corneoscleral meshwork from being the principle

site of resistance: (1) the size of the openings in the



trabecular meshwork is too large to cause an appreciable

resistance. (2) Johnstone and Grant (1973) showed that as

the intraocular pressure increases, the trabecular meshwork

opens up like a sponge bound where the flow enters (See

Figure 3). If the corneoscleral meshwork were the principal

site of resistance, then one would expect the flow resis-

tance to decrease as the intraocular pressure increases.

However, experiments on human eyes have shown that this is

not the case.

1.3.2 The inner wall: the juxtacanalicular meshwork

and *the endothelial lining of Schlemm's canal. Because the

precise mechanism by which aqueous humor passes through this

region is not well known, this region is considered as the

inner wall of Schlemm's canal in this study.

There is good reason to believe that this region is

the principal site of resistance. Perfusion studies with

tracers used to determine the smallest

the outflow network have consistently s

to have the smallest flow dimensions (

These flow dimensions are estimated at

which is consistent with the observed p

Another compelling reason to cons

to be the principal site of resistance

done by Bill and Svedbergh (1972, 1980)

the number of pores in the endothelial

flow dimensions in

hown the inner wall

Huggert, 1955).

1-.5 im in diameter

ressure drop.

ider the inner wal

is found in the wo

They estimated

lining of Schlemm's

canal, and found that there were too many pores to account

for the known resistance. However, when they added Na2EDTA
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(a chelating agent which binds calcium and thereby disrupts

cell junctions) to the aqueous outflow pathway, they found

the juxtacanalicular region and the endothelial lining

generally disrupted; and, the number of pores they observed

accounted for the measured flow resistance.

This suggests that the juxtacanalicular meshwork is

the primary site of resistance, and Na2EDTA dramatically

decreases this resistance by opening up this region.

1.3.3 Schlemm's canal. Two characteristics of

Schlemm's canal make it particularly well-suited to contri-

bute to flow resistance in the outflow network: (1) As the

trabecular meshwork expands in response to increasing

intraocular

the potentia

which would

(2) Schlemm'

pressure whi

creased flow

1.3.4

is much too

(Battaglioli

intraocular

pressure, Schlemm's canal is narrowed. It has

1 to collapse to an extremely narrow channel

generate considerable flow resistance.

s canal narrows with increasing intraocular

ch is consistent with experiments showing in-

resistance with increased intraocular pressu

Aqueous veins. The diameter of the aqueous v

large to cause any appreciable resistance

1981). Stresses in the sclera due to 'the

pressure could conceivably cause collapse of

aqueous veins (and thus generate significant fl

but recent work shows that this does not occur

intraocular pressure is substantially elevated

1981).

re.

ei ns

the

ow resistance),

until the

(Battagliol i,
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1.4 Our Approach to the Problem

It appears likely that the principal site of flow

resistance is either the inner wall of Schlemm's canal, or

Schlemm's canal or both. In this study, therefore, we

investigate a theoretical model which accounts for the

flow resistance of both. Experimental pressure-flow curves

obtained from enucleated human eyes are then compared with

the theoretical model.
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CHAPTER II

A MODEL OF SCHLEMM'S CANAL AS

A POROUS, COMPLIANT CHANNEL

The flow model is two-dimensional (Figure 4). Aqueous

humor flows from the trabecular meshwork (T.M.) through the

inner wall, which is assumed to have constant flow resis-

tance per unit of face area, into Schlemm's canal. The flow

through Schlemm's canal is modeled as a two-dimensional,

quasi-rectilinear, inertia-free flow between two nearly

parallel sheets. The lower sheet represents the flexible

inner wall of Schlemm's canal, the structual support of which

is provided by the meshwork attachment. In the model, the

attachment is represented by linear springs which allow the

inner wall to deform in proportion to the local pressure

drop across it. The upper sheet, assumed rigid, represents

the outer wall. After entering the canal, the fluid travels

circumferentially until it reaches one of the collector

channels. There are assumed to be 30 of these equally

spaced every 1200 pm around the circumference of the eye.

2.1 The Theory of Viscous Flow Through a Porous, Compliant

Channel

The problem of viscous flow through various types of

channels has numerous applications in physiology. Fung (1977)

analyzed the viscous flow of blood between the compliant

alveolar sheets in the lungs. Kenyon (1980) modeled the flow



of synovial fluid through cartilage in joints as viscous flow

through a porous channel. Here we consid

of viscous flow through a porous, complia

2.1.1 The derivation of the governi

equation. The geometry of the system is

The fluid pressure is assumed constant un

the inner wall. For the aqueous outflow

is the intraocular pressure (IOP). The i

to have a constant resistance (R w) per un

channel. Using the continuity equation,

tions are combined to yield a relationshi

er

nt

ng

the general case

channel.

differential

own in Figure 4.

1 it flows through

twork this pressure

er wall is assumed

length along the

ese two assump-

between flowrate

(Q(x)) and pressure (P(x)) at a location in the channel.

dQ(x) = [IOP - P(x)]
dx Rww

(2.1)

Because the channel height (h(x)) is assumed to vary

slowly with position and is typically much smaller than the

width of the channel, the flow is modeled as quasi-rectilinear

flow between two nearly parallel sheets. The Reynolds number

of the flow is much less than one and hence the flow is

inertia-free. The well-known solution: of the Navier-Stokes

equations for two-dimensional, inertia-free channel flow is:

dP (x) _ 1 2 q(x_

dx Wh3(x) (2.2)

where W is the width of the

channel perpendicular

to the paper
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The inner wall is held away from the outer wa

of linear springs which allow the inner wall

proportion to the local pressure drop across

displacement of these springs is described as

h(x) - ho _ 1[P(x) - lOP]
ho E

11 by a series

to deform in

it. The

follows:

(2.3)

where E is the modulus of the springs

ho is the undeformed height of

the channel

Although the relationship is here assumed linear, the impli-

cations of other non-linear forms will later be addressed.

Two. boundary conditions are applied (see Figure 4).

(1) By symmetry, there is no flow at the beginning of the

channel (x = 0); this corresponds to a point,halfway between

two collector channels in Schlemm's canal. (2) The pressure

at the end of the channel (x=s) is the collector channel

pressure (P cc

(1) Q(O)

(2) P(S)

= 0

= Pcc

It is convenient here to introduce several non-dimension-

variables.

H(x) = ) =  IOP-P'xjho  E

(IOP-P )
E

X' I X/s

The non-dimensional height.
It varies between zero
(totally collapsed) and one
(the undeformed state)

The non-dimensional pressure
drop of the system

The non-dimensional distance
along the channel.



32 _ 12ps/Wh

Rw/S

The ratio between the resis-
tance in the undeformed
channel and the resistance
of the inner wall.

2.1.2 The governing differential equation. The non-

dimensional variables are now introduced, and Equations

(2.1) - (2.3) are combined to yield the single governing

differential equation:

2 IH(xl) H 3 (
H(x')- = H3 (x')d 2H(x' )

dx' 2 3H2(x') dH(x'

dx'

The first boundary condition is rela

Equation (2.2). The non-dimensional

(2.4)

ted to H(x') using

boundary conditions are:

(1) dH(O) = 0dx'

(2) H(1) = 1 -

Equation (2.4) indicate

height H(x') varies between

With the exception of the tr

conclude that there are no i

channel height: the rate of

as the collector channel is

This result can be expl

to viscosity, the pressure o

through the channel. As the

difference acting across the

channel to become narrower.

cous forces increase due to

s that, since the non-dimensional

zero and one, d2H(x')/dx' 2 < 0.

ivial case of constant height, we

nflection points in the curve for

collapse of the channel increases

approached (e.g. Figure 6).

ained physically as follows. Due

f the fluid drops as it moves

pressure drops, the pressure

inner wall increases causing the

As the channel narrows, the vis-

the fluid being forced through a
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smaller space. This increases the pressure drop in the

channel and accelerates the rate of collapse.

It can also be noted here the Equation (2.4) has a

singularity when the non-dimensional height becomes zero.

As the pressure at the exit of the channel is reduced, the

flowrate through the channel increases and the height of the

channel decreases. The maximum flowrate is reached as

height of the channel approaches zero. However, when the

channel height at the exit becomes zero (E = 1), the flow-

rate drops to zero. This is the source of the singularity

in Equation (2.4).

This discontinuity would not occur in a physical system.

Inertial forces, which have been neglected in this analysis,

become important as the height of the channel approaches zero.

2.1.3 Solution of the governing differential equation.

Equation (2.4) is an autonomous differential equation. Thus

the order of the equation can be reduced by making the

autonomous substitution: U = dH(x')/dx'. We use this sub-

stitution and incorporate the first boundary condition of

Equation (2.4).

dH(x') 2o 2 H5[ H4(x') H4(O) H404

L dx' J H6(x')L 5 4 4 5 q

*One might say that it is a viscous circle.
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We take the square root of the equation keeping the

negative root since the pressure gradient is negative.

1/2

dx' H3 5 4 4 5

(2.5)

It is useful here to introduce the non-dimensional

flowrate.

, PQ(x')SQ(x')
Wh E0

Equation (2.2) is used

to the non-dimensional

We combine this result

to relate the non-dimensional flowrate

channel height

= - H3 x' ) dHx

with Equation (2.5).

(x' 5(x') H4(x') + H4(O)
12 5 4 4

(2.6)

1/2
H5(0 "

5

Finally,

found by eval

the total flowrate through the channel

uating this equation at x' = 1.

1/2

5 
-H(l) H4(1) H4 (O 'H5(0

H(1) is given in the boundary conditions, but

unknown. It can only be found by solving Equation

Unfortunately, attempts to solve this equation anal

have been unsuccessful.

(2.7),

H(O) is

(2.5).

ytical ly

(Q) is
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2.2 Perturbation Solutions of the Governing Differential
Equation

When applying perturbation analysis to Equation (2.4), two

possible perturbation parameters are apparent: i2 and e.

= (82 )

e varies between zero and one; as will be shown later, we have

reason to believe that B2 in the Schlemm's canal system is much

less than one. Therefore, it appears natural to pursue a

perturbation series in 82

2.2.1 Perturbation series in B2 . H(x') is expanded as a

perturbation series in a2

H(x') = HO(x') + 82 H1(x') + 84 H2(x ' ) + 0(86)

This series is substituted into Equation (2.4). A series

of equations result subject to the boundary conditions:

dH0 (0)
dx' =0 HO(1) = 1 -

dHN(O)dx, = 0 HN(1) = 0 N > 0

The series of equations which result were both determined

and solved by an M.I.T. computer language known as MACSYMA.

The use of MACSYMA led to substantial time savings, and allowed

the calculation of terms in the perturbation series that would

not otherwise have been attempted.

The resulting solutions for the perturbation series is

found to be:



H(x') = (1'-)

+ E(1-X'2) 2

2(I-E)
3

+E(1-x'2) (8E + 1)x ' 2

24(1-c)7

- 4c - 5 84

+ 0(86)

To find the flowrate through

series for the non-dimensional hei

Equation (2.6) and evaluated at x'

the system, the perturbation

ght is substituted into

= 1.

2
F= E.- _

12

For small

approximated:

4  6
C+ 3 E (+2) 7 - O( 8)

36(1-c) 180(1- )

values of E and 82, the relation for Q can be

E a •s /12

However, as c approaches one, the asymptotic r

Equation (2.8) can be seen to be divergent. Other

linear relationship between flowrate and pressure d

.indicated in Equation (2.9), the only additional in

that can be gleaned from Equation (2.8) is an evalu

the extent of validity of Equation (2.9).

For this determination, define the second term

perturbation series (2.8) to be negligible when it

than one percent of the first term.

(2.8)

(2.9)

elati

than

rop

forma

ation

on in

the

tion

of

of the

is less
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E6 100e8 4
12 -  36(1-E)

Therefore, the linear approximation in Equation (2.9) is

valid for:

2/3C < I - 3.220

That is, for small B and no more than m

collapse.

Physically Equation (2.9) says tha

drop occurs in the inner wall, which is

for small B2

2.2.2 Perturbation series in E.

pursue a perturbation solution for H(x'

series in E which is again expected to

moderate collapse.

H(x') = H (x'

This series i

of equations resul

dHO (0)

dx'

dH1(0)

dx'

dHN(O)

dx'

ioderate degrees of

t all of the pressure

what one would expect

It is also useful to

) in terms of a

be valid only for

+ SH (X') + 2 H2(x ) + 0(3 )

substituted into Equation (2.4). A series

subject to the boundary conditions:

= 0

= 0

= 0

HO (1) = 1

H1 (1) = -1

HN(1) = 0 N >1

MACSYMA was once

resultant equations.

again used to determine and solve the



H(x') = 1

- COSH(Bx')E

COSH B

+ COSH(28) COSH(Bx') COSH(28x') 2

COSH 2B COSH B COSH(2B)

- )(E )
The perturbation series for non-dimensional height is sub-

stituted into Equation (2.6) and evaluated at x' = 1.

= BTANHS 2
•L •T + 0 (2) (2.10)

Equation (2.10) is interesting in that the first term

of the perturbation series is the solution for the flowrate

through a rigid channel with a porous wall (Moses, 1979).

Equation (2.9) is the small 82 approximation to Equation

(2.10).

As discussed in Section 2.1.2, Equation (2.4) has a

singularity at E = 1. This singularity is the source of the

divergent nature of the perturbation series and limits their

usefulness to the linear segment of the pressure-flow curve.

For further progress on the solution to the governing

differential equation, a numerical approx~ima,tion is needed.

2.3 Numerical Solution of the Governing Differential Equation

Two different numerical methods are available for solving

Equation (2.4): One could use the standard differential

equation solvers such as Runge-Kutta, or one could numeri-

cally integrate Equation (2.5) which is the first integral of
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Equation (2.4). "Numerical integration, in contrast to

differentiation, is basically a stable process" (Conte and

deBoor, 1965). Therefore, Equation (2.5) is integrated.

Begi.n by defining g(H):
1/2

g(H)5 H4  4  5(O
g(H) / H 3 (0

H 5 4 4 5

Equation (2.5) then becomes:

H(x') - H(1) = g (x' (-dx')

1

(2.11)

The numerical integration starts at x' = 1 because this is

where the boundary condition on H(x') is given. The indepen-

dent variable is discretized in a manner consistent with the

integration beginning at x' = 1 and proceeding toward x' = 0.

NAx = 1 - x'

where AX is t

N is t

The boundary condition at x' = 0

satisfied in deriving Equation (2.5),

is still an unknown which is necessary

boundary condition at x' = 1 uniquely

the value of H(O) is a result of the n

Determination of H(O) therefore must b

iterative fashion.

The bisection method (Conte and d

guess successive values of H(O). The

bisection are H(1) and one. The value

he step

he step

size

number

has already been

but the constant H(O)

to evaluate g(H). The

determines H(O), although

umerical integration.

e accomplished in an

eBoor,1965) is

initial bounds

guessed for H

used to

on the

(0) is
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used in the numerical integration of Equation (2.11). When

the value guessed is sufficiently close to the value obtained

from the numerical integration of Equation (2.11), the

iteration ends.

2.3.1 The numerical integration. For N = 0, the

solution for H(x')(=H(l))is given in the boundary conditions.

For N=l, a Taylor series approximation for H(x') is used.

H(1-ax) = H(1) - dH() + d 2 H(1)Ax2 + 0(Ax 3
dx' dx 2

where:
1/2

dH(l) = .,r1- H (1)+
dx' H3()L 5 4

H4  - 5( )
4 5

2

3
H (1)

H(l 1] 3 d

H(1) dx'

The equations for the first and second derivatives are

Equations (2.4) and (2.5) evaluated at x' = 1.

For N = 2 and all higher even-numbered steps, Simpson's

rule is used. For convenience of notation H(l - NAx) is

represented as HN.

HN - H0 -

+ 2g(H 2 )

+ 4g(HN-
1

3 X (Ho) +

+ 4g(H 3) +

) + g(HN)]

4g (H1 )

2g(H 4) +

+ 0 (Ax4)

Note that in Equation (2.12)

right hand side of the equation.

, HN is required on

Since this is what

the

is being

d H(1)
dx 2

(2.12)
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for, its value is estimated. This is done using a

series.
dHH H N- A + O(AX 2 )

N N-1 dx'

The first derivative required for this expressi

using a 3-point backward differencing scheme.

dHN- 3HN - 4 HN2 + H

dx' 2Ax

on is estimated

+ O(Ax 2 )

When the Taylor series is substituted into the right hand

side of Equation (2.12), the order of the error is reduced

to third order.

For odd-numbered steps a small change is necessary,

since the ordinary Simpson's rule does not end on odd-

numbered steps. For odd-numbered steps, the ordinary Simp-

son's rule will be used to find HN 3. Then the Simpson's

3/8 rule will be used to calculate HN.

H - H 3Ax (H + 3g(H 2 )
N N-3 8 N-3 N-2

+ 3 g(HN-1) + g(HN) + 0(

As with Equation

estimate HN using

(2.12), it is

a Taylor series.

once again

The same

AX") n > 4

(2.13

necessary to

formulation is

used.

One tho

between x' =

number 999.

usand steps were used to divide

1 and x' = 0. The integration

The boundary condition at x' =

up the interval

stops at step

0 indicates that

solved

Taylor

I)

n.
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H9 9 9 = H1000  If the value obtained for H1000 is sufficiently

close to the guess for H(O), the iteration stops (the criterion

for convergence is [H(O) - H10 00] < 3 x 10-7). If the value is

not yet converged, the bisection method is used to make a new

guess for H(O).

The computer program used is 'listed in appendix A. It

calculates H(x') and Q. Q (the non-dimensional flowrate) is

calculated using Equation (2.7).

2.3.2 Results from the numerical solution. It is useful

in evaluating the numerical results to define what is meant by

the resistance of the inner wall and the resistance of the

channel (Schlemm's canal). The continuity Equation (2.1) is

integrated yielding:

Q(S) = [IOP - P(x)]dx

0
define:

channel

AP

R. •inner

wall

Rhannechannel

dx
S

S- 1 P(x)

IOP - PCCcc

SR I/Sw

S P R
Q•) - inner

wall

These definitions are used to find the ratio of the channel

resistance to the inner wall resistance (a).

R P P
channel channel - cc

a R. IOP - Pinner channel
wall



Figures 5, 6 and 7 show the variation of the non-

dimensional height with non-dimensional distance along the

channel. There is no appreciable pressure drop in the chan-

nel for small e; but as E increases, the pressure drop in the

channel becomes significant with most of it occuring near the

exit. As B increases, this effect is amplified.

For small values of B. the resistance of the inner

wall is always much greater than that of the channel; however,

changes in E make dramatic changes in the channel resis-

tance.

Figures 8 and 9 show the non-dimensional pressure-flow

curves for various values of 8. For small 8, the curves are

linear until the channel is significantly collapsed. The

non-linearity increases dramatically in magnitude as 8

increases. Since the aqueous outflow curves of the human

eye show only small non-linearities, one expects that B is

small for Schlemm's canal.

The curves stop at e = 0.9 because of the singularity

at E= 1. Most likely, septae prevent total collapse of

Schlemm's canal and this case is considered in the next

chapter.
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CHAPTER III

A MODEL OF SCHLEMM'S CANAL AS A POROUS, COMPLIANT
CHANNEL WITH COMPLETE COLLAPSE PREVENTED BY SEPTAE

The model introduced in Chapter II has a singularity when

the channel completely collapses. The singularity, as is

discussed Section 2.1.2, occurs at e = 1. It is however

unlikely that total collapse of Schlemm's canal actually

occurs due to the presence of septae (or endothelial tubules)

in Schlemm's canal as have been observed by many investigators

(Johnstone, 1974; Hoffman, 1971). These septae are concen-

trated near collector channels where our model predicts

collapse would first occur and where they would therefore be

of greatest value. Johnstone (personal communication) has

estimated that there are 2000 endothelial tubules in the

human eye.

In this chapter, we model the septae as supporting members

which inhibit Schlemm's canal from further collapse when the

canal has collapsed sufficiently for the supporting members

to become effective. The supporting members are assumed to

b'e distributed uniformly along Schlemm's canal. First they

are considered to be rigid, and, subsequently, elastic..

3.1 Septae Modeled as Rigid Structures

In this section the septae are modeled as rigid support-

ing members which prevent the channel from collapsing to a

height smaller than the effective height of the supporting

members (hereafter, the effective height of the supporting
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members is referred to as the post height).

Schlemm's canal is modeled in one of three ways

depending on the magnitude of the pressure drop acting

across it. For non-dimensional pressure drops below a cer

tain value (E ), th

than the post heigh

compliant channel o

sure drops greater

is everywhere colla

channel behaves as

sional pressure dro

channel nearer the

rigid channel while

compliant channel a

e channel h

t, and the

f Chapter I

than a cert

psed to the

a porous, r

ps between

collector c

the remain

s shown in

eight i

channel

I. For

ain val

height

igid ch

c and

hannel

der beh

Figure

s everyw

behaves

non-di m

ue (ER),

of the

annel.

eR' the

behaves

aves as

10. We

here greater

as the porous,

ensional pres-

the channel

posts, and the

For non-dimen-

part of the

as a porous,

a porous,

start the analy-

sis of this flow network by studying the flow in a

rigid channe.l.

3.1.1 The theory of viscous flow in a porous, rigid

channel. In this section, we consider the general case of

viscous flow in a porous, rigid channel; its application to

Schlemm's canal is considered in the next section.

The development followed here is similar to that of

Section 2.1.1 with two important exceptions: (i) the height

of the channel is constant; and (ii) the boundary condition

at the beginning of the rigid channel is changed to allow for

a non-zero inflow.

Equation (2.1) is still applicable, but Equation (2.2)

must be altered to reflect the change in geometry.

porous,



dP(x) = 12PQ(x)
dx Wh3

s

where h is the
s

(3.1)

constant height
(the po

of the channel
st height)

The boundary condition at the beginning

(x = 0) is expressed

(1)

of the channel

using Equation (3.1).

dP(O) - _12pQ(0)
dx Wh3

S

The second boundary condition is the same as that for the

compliant channel: the pressure at the end of the channel

(x = SR) is the collector channel pressure (Pcc).

(2) P(SR) = cc

Several changes are necessary in the definition of the

non-dimensional variables:

x' E x./S The non-dimensional distance
along the rigid channel. SR
is the length of this channel.

lOP - P(x')
S E

The non-dimensional
E is the elastic mo
trabecular meshwork
Chapter II.

pressure.
dulus of the
defined in

R(x')
PQ(x' )SR

Wh3E
S

3
12 S /WhsR s

Rw/S
R

The non-dimensional flowrate

The ratio between the resistance
in the channel and the resis-
tance in 'the inner wall



E, as in Chapter II, is the non-dimensional pressure evalu-

ated at x' = 1.

The non-dimensional variables are now introduced, and

Equations (2.1) and (3.1) are combined to yield the single

differential equation for viscous flow in a porous, rigid

channel with a non-zero inflow at x'= 0,

for which the

(2)

Equation

2d2P(x')
dx' 2

boundary

dP(0) =
dx'

P(1) =

(3.2) is

(x') = COSH(8RX') +
COSH BR

RP(x') = 0

conditions are:

solved analytically,

12QR( 0) 8R

OR
COSH(BRx')

COSH BR

yielding:

- x'
- R I-e J

Finally Equation (3.3)

and evaluated at x' =

through the collector

is substituted into Equation (3.1)

1 to find the total flowrate exiting

channel.

(3.4)R =  RTANHB R  1 + TANH8s
RQ R (O)e IR '10 R

Setting QR(O)= 0, this simply reduces to the first order

perturbation solution to the compliant wall problem

(Equation 2.10).

(3.2)

(3.3)

Ir
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3.1.2 Combining the rigid channel and the compliant

channel solutions. Unlike the situation described in

Chapter II for which one solution describes the entire

range of pressures, the addition of rigid septae within the

channel gives rise to three separate flow regimes (see

Figure 11).:

Regime I (e<E ) The channel height is everywhere

greater than the post height, and thus the channel

behaves as the porous, compliant channel described in

Chapter II.

Regime II (Ec<E<ER) Within this range of E, the channel

can be divided into two parts: one, extending from

x'=O to x'=x where the channel has a height greater than

the post height and behaves as the porous, compliant

channel of Chapter II; and the other extending from

x'=x to x'=l where the channel is collapsed to the
c

post height and behaves as the porous, rigid channel

described in Section 3.1.1.

Regime III (E>cR) The channel height is everywhere

collapsed to the post height (hs), constrained from

further collapse, and is described in Section 3.1.1.

The pressure-flow characteristics of Regime I are as

described in Chapter II; the characteristics of Regime III

are as described in Section 3.1.1 with QR(0)= O. The

remainder of this section will describe the pressure-flow

characteristics of Regime II.



The parameters for the compliant.section of the channel

are necessarily different than those in the rigid section,

since their characteristic dimensions are different. Since

these parameters also need definition for the system as a

whole, three definitions of each are given in Table I.

The non-dimensional flowrate in the compliant section

(Qc) is a function of the resistive parameter for that sec-

tion (Bc ) and the non-dimensional pressure at the end of

the compliant section (e c). The non-dimensional flowrate

in the rigid section (QR) is a function of the resistive

parameter for that section (BR), the flowrate entering the

rigid section from the compliant section, and the non-

dimensional pressure at the exit (E).

These two coupled solutions determine the pressure-

flow characteristics of the system as a whole in Regime II.

The procedure used to calculate these parameters is as

follows:

(1) Values are chosen for B and Ec . These are the two

parameters which control the pressure-flow characteristics

of the system.

(2) The non-dimensional location where the compliant

section ends and the rigid section begins (xc) is allowed

to vary between zero and one.

(3) The resistive parameter for the compliant section

is calculated.

c = X= (3

(4) The computer program discussed in Chapter II is



used to find the non-dimensional flowrate in the compliant

section.

Sc(1) = c c'Cc)

(5) The flowrate at the end of the comp]

be equal to the flowrate at the beginning

on. This is expressed in non-dimensional

R( 0 ) = c (lc 3)

(6) The

calculated.

iant section

of the rigid

terms as:

resistive parameter for the rigid section is

(1-xe)
R = 3/2 BR ( c-E

(7) The choice of xc determines- the

ure drop of the system (E). e can be

ion (3.3) with P(O) = E .

BR
12QR (0 ) (COSH R-e COSH

S =  +-E COSH B
BR c

non-dimensional

determined using

R

(8) The non-dimensional flowrate through the rigid

section can now be calculated using equation (3.4)

RB TANHBR

R( 1 ) = 12 + QR(O)e

found.

-R[ + TANH

(9) Finally, the non-dimension flowrate of the system can be

3

Q 0 -x C) IR(1)

must

secti

press

Equat



Regime II ends when the entire channel is collapsed and fuctioning

as a rigid channel. This occurs when xc becomes zero. ER is defined

as the e at which this occurs and is found using equation (3.3)

ER = EC COSH (3.5)R c 3/2
l-EC

3.1.3 Results from the rigid septae model. Figure 12 shows the

non-dimensional pressure-flow curves for various values of B, with

E = 0.8 (if we, somewhat arbitrarily, assume the undeformed height

of Schlemm's canal (ho) to be 30 pm, this corresponds to a post

height of 6pm). For small values of 8, Regime II is of negligible

width ( c  ER), and thus there is no apparent slope change between

Regime I and Regime III. As 8 increases, the slope change between

Regime I and Regime III increases, and Regime II extends for a larger

range of E.

Figure 13 shows the non-dimensional pressure-flow curves for

various values of B, with ec = 0.9 (for h0 = 30 Pm, this corresponds

to a post height of 3pm). For all curves except the smallest B,

Regime II extends for a considerable range. As Ec approaches one,

ER becomes larger yet and the range of Regime II extends toward

infinity.

3.2 Septae Modeled with an Elastic Modulus

The septae preventing complete collapse bf Schlemm's canal,

although not perfectly rigid, are modeled as such in Section 3.1.

Furthermore, it has been assumed that the inner wall does not collapse

beyond the effective height of the septae even in between adjacent



septae. In this section we consider the possibility that

either the septae are somewhat compliant in their collapsed

state, or that the inner wall could collapse around the

septae so that the effective channel height might be less

than the septae height, hs.

In Chapter II, the trabecular meshwork is modeled as a

set of linear springs holding Schlemm's canal open. Here,

we consider the septae to act as linear springs working in

conjunction with the trabecular meshwork to keep Schlemm's.

canal open.

The spring law expressed in Equation (2.3) is valid for

h(x) > h . For h(x) < h , the spring law must

include the effect of the septae.

IOP - P(x) = E[h -h(x)] h E hs-h(x)]
TM h s hh h

where

h(x) < h- S

ETM is the modulus of the trabecular meshwork

Es is the apparent modulus of the septae

By defining an effective spring modulus (Eeff) and an

effective undeformed spring height (heff), the above dquation

.can be rearranged into the form of Equation (2.3).

h(x)-heff . P(x)-IOP
heff Eeff

where

h(x) < h (3.6)

Eeff = ETM + Es

h Eh s+E TM
eff s Eshs h )ETM-S h 0 T

' '



The pressure-flow curves for this system are similar to

those of the rigid septae model. Three regimes can once

again be identified. In Regime I the curves are identical

to those of the rigid septae model. Regime II is also very

similar since the septae do not change dimension appreciably

in this regime. Since we have not solved for the flow in a

compliant, porous channel with an input flow at x = 0, the

solution for the Regime II characteristics of the rigid

septae model will be used to approximate those of the com-

pliant septae model.

The channel is in Regime III when the entire channel

has an increased modulus and a decreased undeformed height

due to interaction with the septae. The pressure-flow charac-

teristics of this regime are found using the computer program

discussed in Chapter II. The procedure used to calculate

these parameters follows.

(1) The resistive parameter for this regime is calcu-

lated
h h0( eff/

(2) The computer program is used to calculate the

smallest E for which the height of the channel is everywhere

less than that of the septae. This is cR.

(3) The non-dimensional pressure drop for this regime

is defined IOP-P
, cc

E = Eeff
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(4) E' is allowed to vary between the minimum calculated

in step (2) and 0.9.

(5) The computer program is used to calculate the non-

dimensional flowrate

Q, = QI'()',,)

(6) These non-dimensional variables are not defined in

the same way as those in Regimes I & II. They are now

conVerted.

Seff eff

( h E TM)

Figure 14 shows the non-dimensional pressure-flow curves

for two values of B, with c = 0.8, and the septae modulus

four and eight times that of the trabecular meshwork. The

rigid solution is shown for comparison. The curves indicate

that unless the septae are very compliant, the changes from

the rigid septae model will be imperceptible at low pressures,

and have only a moderate effect (less than 20%) at the upper

end of the range of normally observed intraocular pressures.



CHAPTER IV

EXPERIMENTAL INVESTIGATION INTO THE PRESSURE-FLOW
CHARACTERISTICS OF THE HUMAN EYE

The models discussed in the previous chapters character-

ize the flow of aqueous humor through Schlemm's canal in the

region extending from the midpoint between two collector

channels to the collector channel itself. The human eye,

however, has approximately thirty collector channels; and the

flow path associated with each of them has different geometry

and structure, and hence different pressure-flow character-

istics. To the extent that the geometrical and structural

properties of the trabecular meshwork, the septae and

Schlemm's canal are reasonably uniform, one would expect the

pressure-flow curve of the human eye to be qualitatively

similar to that predicted for the flow path associated with

a. typical collector channel.

In order to evaluate our theories, we perfused enu-

cleated human eyes and determined their pressure-flow

characteristics. Enucleated eyes were used since it is un-

likely that active transport plays a role in aqueous outflow

(Johnstone and Grant, 1973). No significant changes in .the

pressure-flow characteristics are expected until tissue

degeneration begins.



4.1 Perfusion of the Eye

The perfusion experiments involve the simultaneous

determination of intraocular pressure and flowrate through

the aqueous outflow network. Although intraocular pressure

can be directly measured, the outflow rate cannot; instead

we measure the rate of inflow introduced to the posterior

chamber. If the volume of the eye remains constant, then

the inflow to the posterior chamber must equal the outflow

through the aqueous outflow network. However, since the

contained volume of the eyes changes with intraocular

pressure, increasing the inflow to the eye causes the eye

to expand until it reaches a new equilibrium size. Only

when it does will inflow equal outflow.

4.1.1 The eye as a fluid capacitor. The eye is a

compliant pressure vessel with complex elastic and visco-

elastic properties. For a simple approximation, we

tenatively model the relation between the intraocular

pressure (lOP) and the eye volume (V) as follows:

(V-Vo ) dV
IOP + bd- (4.1)C dt

where C is the compliance of the eye

b is the viscoelastic coefficient

V is the unstressed volume of the eye

The compliance and the viscoelastic coefficient are complex

functions of pressure; however, we here consider them con-

stants since this is sufficient for a qualitative description.



The volume change of the eye is a result of the differ-

ence between the inflow to the eye (Qin) and the outflow

from the eye (Qout).

Qin - Qout = dV/dt (4.2)

For this simple approximation, we assume the outflow

network to have a constant flow resistance (Rout ).out
lOP - Pv

out R (4.3)
out

where P is the episcleral venous pressure

to which the aqueous outflow network

empties

We combine Equations (
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Two methods of perfusion are of particular interest

because they are easy to realize experimentally:

(i) constant rate of inflow, and (ii) constant supply

pressure. Each case has associated with it a time constant

(r) indicative of how long it will take to reach 63.2%

(1 - e-1 ) of the steady-state value. For the case of

constant inflow (Qin = const), the time constant (TQ) is

(4.4)



found from Equation (4.4) to be:

(i) TQ = RoutC + bC

For the case of constant supply pressure, Qin depends on the

flow resistance (Rin) to the inflow.

Qin = (P - IOP)/Rin

where P is the constant supply pressure

Substituting this relation for Qin into Equation (4.4)

and using Equation (4.1), we solve for the time constant (T ).

R R.
out in C + bC
out in

The inflow resistance (Rin) depends on the equipment used,

but is always much less than the outflow resistance (Rout);

hence, this relation can be approximated.

(ii) T= RinC + bC

The various parameters used in this analysis are not

constant, and therefore these estimates of time constants

serve only to give the order of magnitude of the length of

time required for each pressure-flow data point to reach

steady-state. For this estimate, we use the following values:



51

R. =in
D

0.05 mmHg * min/pL

ut = 4.0

C = 1.4

b = 6.8

mmHg * min/pL

pL/mm Hg

mm Hg - min/pL

The values for

we performed.

discussed

These a

inflow case o

pressure, of

should be rea

thus constant

seventy-five

pressure expe

minutes. In

the time to s

R.in

The

Coll

lues

f 15

9.6 min

ched af

flow e

minutes

riments

the con

teady-s

and R are typical of the experimentsout

values of C and b are typical of those

(1980).

eld a time constant for the constant

minutes, and, for the constant supply

utes. 99% of the steady-state value

ter waiting five time constants, and

xperiments should take approximately

for each data point, while constant

should take approximately fourty-five

stant flow experiments discussed later,

tate was consistent with these predic-

tions: around

We tried

point by meas

sixty minutes.

to reduce the time required for

uring eye circumference using a

each data

mercury-in-

silastic strain gage from which we could determine 'the

volumetric expansion of the eye. Then, knowing dV/dt, we

could use Equation (4.2) to compute Qout' Unfortunately,

the magnitude of the strain was so small that it was not

possible to discern true changes in circumference from

variations caused by changes in mercury temperature. Since

changes in mercury temperature as small as 0.10 C per
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minute would cause significant errors, we decided that this

approach was not practical.
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eyes. There is substantial variability between eyes and

averaging the data from different eyes masks the true details

of individual pressure-flow curves.

Using the constant pressure technique, Ellingsen and

Grant (1971) conducted perfusion studies on enucleated human

eyes. They concluded that outflow resistance increases as

intraocular pressure increases, and that anterior chamber

deepening reduces this effect. In their procedure they wait-

ed 4 or 5 minutes for the eye to reach steady-state while
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averaging the inflow over the entire period. In view of the

estimates of time constant made above, this may not have

been sufficient for the eye to come to steady-state. Their

data on the effect of prolonged perfusion time on resistance

tend to support this possibility.

Levene and Hyman (1969) measured the outflow resistance

of in vivo human eyes using tonographic techniques. They

also investigated the effects of pressure elevation on out-

flow resistance. Although their techniques involved consider-

able uncertainty, several interesting conclusions were

reached. They found resistance to increase as the intra-

ocular pressure increased; however, they found that resis-

tance reached a maximum and remained nearly constant as

intraocular pressure was further increased. This is consis-

tent with the predictions of the model discussed in Chapter

III. They also found that the resistance increased less in

eyes with high initial resistance.

Although many studies have been conducted, the literature

contains little information on the pressure-flow characteris-

tics of human eyes at high pressures (50 - 100 mm Hg). Also,

in most studies, the results from many eyes were averaged.

For these reasons, the literature is not well suited to a

critical assessment of our theories and we decided to conduct

our own experiments. The objectives of present study then,

was to investigate the pressure-flow curves of individual

eyes over a wide range of intraocular pressures.



4.2 The Present Perfusion Experiments

We were fortunate during our experiments to be permitted

to use a perfusion device newly designed by Dr. P. John

Anderson of the Massachusetts Eye and Ear Infirmary. The

studies were preliminary in the sense that we were learning

the experimental procedure, and there were insufficient

enucleated human eyes to do a full-scale study.

4.2.1 Description of the perfusion apparatus.
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Figure 17b shows a close up of the calf eye.

carrying the perfusion fluid can be seen to
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the needle. The cornea seals around the needle. The tip of

the needle is placed behind the iris. The eye is then allowed

to remain for one hour with no flow to establish zero pressure.

The experiments were run in constant flow mode, although

in some instances we attempted to adjust the flowrate to

achieve steady-state more quickly. Steady-state was deter-

mined to occur when the pressure reading remained constant for

five minutes. The observed time to steady-state varied

between one half hour and one hour.

The pressure uncertainty is calculated as follows:

PRESSURE = PRESSURE + ZERO + NOISE + END POINT

UNCERTAINTY SENSOR DRIFT UNCERTAINTY

ERROR ERROR

The pressure sensor error is approximately 0.25 mm Hg and

the zero drift is estimated at 0.25 mm Hg. The noise and

the end point uncertainty (uncertainty as to whether the

experiment has reached steady-state) were estimated for each

data point from the strip chart recording of pressure. The

measurement of flow are accurate to within 0.5%.

4.2.3 The experimental results. The results from the

perfusion experiments are shown in Table II and Figures

18-20. The figures show open symbols for one eye of the pair

and closed symbols for the other. The numbers below the

closed symbols (and above the open symbols) indicate the order

in which the data were acquired. The dashed line on the

figures -- having the same general form as the curves predic-
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ted in Chapter III -- is included only. to demonstrate that

the data are consistent with, but by no means confirm the

theoretical predictions.

Although four pairs of eyes were tested, we are confi-

dent only of the results obtained on the fourth pair. We

believe, however, that the results obtained on the first two

pairs of eyes (Tables IIa and IIb and Figures 18 and 19) are

qualitatively correct in spite of some error due to a small

leak past the syringe. The leaky syringes were replaced by

leakproof syringes prior to testing the fourth pairs of eyes

(Table IIc and Figure 20).

4.3 Analysis of the Experimental Data
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From these results, we will estimate four parameters of the

model: the pressure at which Schlemm's canal has first

collapsed, the pressure at which the entire canal is collapsed

and the slopes of the pressure-flow curve both above and below



these pressures. This information will then be used to

determine numerical values for Ec' E R B2 and E.

The shape of the pressure-flow curve in Figure 20 is

suggestive of the models discussed in Chapter III (rigid or

compliant septae). Equation (3.5) relates the non-dimension-

al pressure at which the inner wall of Schlemm's canal has

first collapsed to the effective height of the septae (c ),

to the non-dimensional pressure at which Schlemm's canal is

first entirely collapsed (ER)

ER/E = COSH T C)3/2
c

E is located on Figure 20 at data point

located just past data point 9. We find

Figure 11 shows the relationship between

I and the slope in Regime III.

7, while ER

that ER/Ec =

the slope in

dQ/dE IE=R

dQ/ds

From Figure 20 this.

These two equations
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opes

simul

is found to be 0.70.

taneously for s and E

a = 0.11 E = 0.79

Therefore ER equals 1.36.

The value of ec can be used to determine the spring

constant (E) of the trabecular meshwork.

is
1.8.

Regime



£c = Ap /E

where Apc is the pressure .drop correspond-

ing to Ec

The pressure drop corresponding to e is 15.4 mm Hg. There-

fore, E can be estimated.

E = 19.4 mm Hg.

From the definition of B2 in Chapter II, we find:

RESISTANCE TO FLOW IN
SCHLEMM'S CANAL IN THE
UNDEFORMED STATE
RESISTANCE TO FLOW THROUGH
THE INNER WALL OF
SCHLEMM'S CANAL

This is consistent with the conclusions reached by Moses

(1981) that most of the resistance to outflow occurs in the

inner wall of Schlemm's canal.

These values are only meant to be estimates as they

could change significantly depending on the error range.

This represents one, but certainly not the only interpreta-

*tion of the data.

4.3.2 The inner wall resistance. If these preliminary

conclusions can be verified by additional experiments, it

appears likely that most of the outflow resistance occurs in

the inner wall of Schlemm's canal. It is therefore interest-

ing to speculate on the nature of this resistance. We might

assume that the inner wall resistance occurs in pores which

are 10m in length and 1.5 pm in diameter. The pore diameter



is based on perfusion studies which used tracers to determine

the smallest flow dimensions (Huggert, 1955); the length of

the pores is admittedly arbitrary but is certainly the right

order of magnitude. The pressure drop through these pores

can be calculated using the following formula (Dagan,

Weinbaum and Pfeffer, 1979):

AP = (3 + 8L/7r) PQ
3r

where r is the radius of the pore

L is the length of the pore

The first term on the right hand side of the equation repre-

sents the pressure loss of fluid traveling to the pore; the

second term, the pressure drop caused by the Poiseuille flow

through the pore. This formula neglects the entrance length

in the pore for developing the Poiseuille profile, however

this has recently been shown to be insignificant (Eriksson

and Svedbergh, 1980).

The flowrate (Q) is set equal to 2.0/N pL/min, where N

is the number of pores. For a pressure drop of 6 mm Hg, we

find that N=1400 (130 pores/mm2). This number is signifi-

cantly smaller than the 23,000 pores found by Bill and

Svedbergh (1972), but it is consistent with the number of

endothelial tubules (2000) found by Johnstone (personal

communication) .
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4.3.3 Implications for glaucoma. The spring constant

for the trabecular meshwork estimated above -- approximately

20 mm Hg -- is roughly consistent with the studies done by

Johnstone and Grant (1973) on the pressure-dependent changes

of the trabecular meshwork. Certainly, when the intraocular

pressure is 50 mm Hg., the trabecular meshwork is completely

expanded and Schlemm's canal is completely collapsed. Yet

the outflow resistance at 50 mm Hg, measured by several

investigators, is not high enough to cause glaucoma. This

suggests that glaucoma is not caused by a weakening of the

trabecular meshwork and a resultant collapse.of Schlemm's

canal alone.



CHAPTER V

CONCLUSIONS AND SPECULATIONS

The experimental data contained within this study are

not sufficient to draw any definite conclusions. However,

when we combine our theoretical results with the experiment-

al evidence from other investigators, a number of interest-

ing conclusions arise.

(1) Most of the pressure drop in the aqueous outflow

network occurs in the inner wall of Schlemm's canal.

Most experimental investigations (including the present

ones) have only found small non-linearities in the aqueous

outflow curves for human eyes. If Schlemm's canal contri-

buted significantly to the total outflow resistance, then

changes in its dimensions -- caused by changes in the intra-

ocular pressure -- would lead to large changes in resistance.

Since only small changes in resistance occur as the intra-

ocular pressure is changed, Schlemm's canal resistance must

be a small part of the total resistance.

In Section 1.3.2 and 1.3.4 we discuss why the trabecular

meshwork and the aqueous veins are unlikely to cause signifi-

cant flow resistance. Therefore, the inner wall of Schlemm's

canal appears to be the major source of resistance. The Na2

EDTA studies (Bill and Svedbergh, 1980) discussed in Section

1.3.2 suggest that the juxtacanalicular meshwork is the

primary site of resistance within the inner wall.



(2) Significant collapse of Schlemm's canal occurs only

when the intraocular pressure is substantially

elevated.

The estimated experimental value for the spring constant

(E) of the trabecular meshwork of 20 mm Hg is consistent with

other observations of meshwork distension (Johnstone and

Grant, 1973). Therefore, a normal pressure drop through the

aqueous outflow network of 6 mm Hg is equivalent to E = 0.3.

Figure 6 shows that for E = 0.3 and a = 0.1, the model pre-

dicts that Schlemm's canal is nearly wide open. Recent work

by Moses (1981) supports this conclusion.

(3) The assumption that the inner wall resistance occurs

in pores which are 10m in length and 1.5 pm in

diameter leads to the conclusion that there are

approximately 1400 of these pores in the eye.

In Section 4.3.2, we show that 1400 pores are necessary

to pass the flowrate of 2.0 pL/min at a pressure drop of

6 mm Hg.

(4) Glaucoma is not caused by a weakening of the trabecu-

lar meshwork and a resultant collapse of Schlemm's

canal alone. Glaucoma is likely caused by a de-

creased porosity of Schlemm's canal inner wall.

If we accept that the spring constant for the trabecular

meshwork is approximately 20 nim Hg, then Schlemm's canal is

certainly collapsed when the intraocular pressure is 50 mm

Hg. Yet the resistance at 50 mm Hg, measured by several

investigators, is not high enough to cause glaucoma.
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Two possible explanations could be proposed: Although

weakening of the trabecular meshwork alone would not cause

glaucoma, a concurrent weakening of the septae, which norm-

ally prevent the collapse of Schlemm's canal, could. However,

a seemingly more likely possibility would be that glaucoma

is caused by a decrease of inner wall porosity.



APPENDIX A

INTEGRATION FOR H(X)

SUBROUTINE SCHLEM(E,B,Q)
DIMENSION H(1001)
PARAMETER NMAX=1001

START PROGRAM

C
C

C
C
C

100

300
110

,*300,H)

.LE.3. E-07) GO TO 200

IF(N.GT.25) GO TO 400
IP(L.EQ.0) GO TO 120
TOP=HO
GO TO 100

120 BOTTOM=IHO
GO TO 100

200 CALL DERIVH(I1 ,H(NMAX),B,*400,VALUE)
Q=(HI**3)*VALUE/1 2.
WRITE(6,1001) Q,H(NMAX),H(2),N
SUM=0.
DO 500 =1 ,1001
WRITE(10,1005) I,H(I)
SUM=SUM+H (I)

500 CONTINUE
SUM=SUM/1001.
WRITE(10,1006) SUM

1005 FORMAT(5X,I5,F10.5)
1006 FORMAT (20X, P10.5)

RETURN
ERRORS

WRITE(6,1002) N,iIO
S"TOP
FORMAT(F10.5)
FORMAT(1OX,3 F12 .7
FORMAT(1 OX, 'iERHOR'
FORMAT(2X,' H1 =
FORMAT(2X,' B
END

113)
,5X,
,$)

15,2F10.5)

HI =1 .- E
TOP=1.
BOTTOM=II1
N=1
HO=(TOP+BOTTOM)/2.
CAiLL INTEG(H1,B,HO
L=1
I(ABS(HO-H(NMAX))
GO TO 110
L=O
N= N+1

C
400

000
001
002
003
004

, Ir( ,l•AX )



SUBROUTINE INTEG(H1,B,HO,*,H)
DIMENSION H(1001 ),VALUE(1001 ),PSUM(1001 )
PARAMETER NMAX=1 001
INPUT H1: H(1)

HO: GUESSED VALUE FOR H(O)
B: BETA
F: DERIVATIVE OF H WITH RSiPECT
*:' RETURN POR H(X) .GT. i(O)

OUTPUT H: TI(N) N=1,NMAX

TO K

C
C
C
C
C
C
C

50

300

350

100

250

.200

N-1))

) /i(1'

DELAX=1 . /FLOAT(NMAX-1)
H(I )==Hl
CALL DERIVH(H1,HO,B,*200,VALUE(1))
PSUM(1 )=Hl+VALUE(1 )*DELTAX/3.
DO 100 N=2,NMAX-1
CONST=2.
IF (N/2)*2.EQ.N) CONST=4.
IF N.LE.3) GO TO 250
HGUESS=(3.*H(N-1)-4.*H(N-2)+H(N-3))/2.+H(N-1)
CALL DERIVH(HGUESS,HO,B,*200,VALUE(N))
PSUM(N)=PSUM(N-1 )+CONST*VALUE(N)*DELTAX/3.
IF((N/2)*2.EQ.N) GO TO 300
H(N)=PSUM(N-1 )+VALUE(N)*DELTAX/3.
GO TO 100
IF(N.EQ.2) GO TO 350
H(N)=H ( N-3)+(VALUE(N-3)+3.*(VAL[JE(N-2) +VALTTE(

C +VALUE(N) )*3.*DELTAX/8.
GO TO 1.00
D2=(B**2)*(H(1)-I. )/(H(1)**3)-3.*(VALUJE(1)**2
H(2)=H(1 )+VALUE(1 )*DELTAX+D2*(DELTAX**2)
CONTINUE
H(NMAX)=H(NMAX-1)
IF(H(NMAX).GT.HO) GO TO 200
RETURN
CALL DERIVHH((N-1 ),HO B,*200,VALUE(N))
HGUESS=H(N-1 )+VALTJE(N *DELTAX
GO TO 50
RETURN 1
END
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3JUBROUTINE DERIVI(H,HO,B *,VA LUE)
TERM1=(HO**4)/4.-(HO**5) /5.
T EM2= (i**4) /4.- (**5) /5.
IP(TERM1.LT.TERM2) GO TO 100
VALTTE=-B*SQRT (2.*(TERM1 -T ERM2) ) /(H
RETURN

C ERROR RETIURN
100 RETURN 1

E ND
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TABLE II

PRESSURE-FLOW DATA FROM

ENUCLEATED HUMAN EYES

FIRST EYE

PRESSURE
UNCER-

FLOW PRESSURE TAINTY

SECOND EYE

PRESSURE
UNCER-

FLOW PRESSURE TAINTY

(a) 86 years old;
33 hours after
death *

(b) 68 years old;
21 hours after
death

(c) 48 years old;
19 hours after
death

(IjL/min) (mm Hg) (mm Hg) (pL/min)(mm Ha)(mm Hg)

2.99 9.76 +1.5/-0.5
1.49 4.34 ±0.5
4.70 20.4 +0.5
5.29 25.0 +1.5/-0.5
7.32 36.0 +1.0
8.01 41.6 +2.0
(see figure 18)

0.97 1.95 +0.5
1.61 3.04 ±0.5
1.26 3.15 ±0.5
2.35 7.57 ±0.5
3.16 9.14 +0.5
4.20 11.08 +0.5
5.60 17.1 +1.0/-0.5
6.66 20.4 ±0.5
(see closed symbols on
figure 19)

3.46
1.67
1.01
2.24
2.68
0.56

10.22
4.54
2.92
8.06

10.16
1.95

+1.0/-0.5
±0.5
+0.5

+1.0/-0.5
+0.5/-1.5
+0.5/-1.0

(see closed symbols
on figure 20)

2.10
3.35

11.2
14.7
12.6
9.47

5.95
9.14
> 40
> 61
> 56
35.6

±0.5
+0.5

+1.5/-0.5

(see open symbols
on figure 19)

1.69 5.62 ±1.0
10.23 53.4 +1.0/-1.5
9.12 44.1 ±1.0
8.19 36.9 ±1.0
7.52 35.8 ±1.0
1.51 4.33 +0.5
4.18 15.52 ±1.0
2.67 9.35 ±0.5
5.30 25.7 ±0.5
(see open symbols
on figure 20)

*No measurements on second eye.
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FIGURE CAPTIONS

Fig. 1. Outline of the aqueous humor circulatory system

Fig. 2. Micrograph of the trabecular meshwork and Schlemm's canal
(Tripathy, 1974). SC- Schlemm's canal, TM- Trabecular
meshwork, CSW- Corneoscleral wall, CC- Collector channel,
S- Septae.

Fig. 3. Schematic showing the effect of intraocular pressure on the
trabecular meshwork and Schlemm's canal (Johnstone and Grant,
1973).

Fig. 4. Model of Schlemm's canal as a porous, compliant channel.

Fig. 5. Degree of collapse as a function of distance along the channel,
8 = 0.0036.

Fig. 6. Degree of collapse as a function of distance along the channel,
8 = 0.01.

Fig.. 7. Degree of collapse as a function of distance along the channel,
B2 = 0.25.

Fig. 8. Flowrate vs. pressure drop for 0.02 < < 0.10.

Fig. 9. Flowrate vs. pressure drop for 0.2 < ý < 0.5.

Fig. 10. Model of Schlemm's canal as a porous, compliant channel with
complete collapse prevented by septae.

Fig. 11. Schematic of typical pressure-flow curve for rigid septae model.

Fig. 12. Flowrate vs. pressure drop for the rigid septae model. Ec = 0.8,
0.02 < B < 0.10.

Fig. 13. Flowrate vs. pressure drop for the rigid septae model. E = 0.9,
0.02 < B < 0.10.

Fig. 14. Flowrate vs. pressure drop for the compliant septae model.
S = 0.06 and 0.10.

Fig. 15. Photograph of perfusion apparatus.

Fig. 16. Schematic of perfusion system.

Fig. 17a. Photograph of refill reservoir, pressure trdansducer and back-
filling syringe.
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Fig. 17b. Photograph of a calf eye being perfused

Fig. 18. Pressure-flow data from first pair of eyes.

Fig. 19. Pressure-flow data from second pair.

Fig. 20. Pressure-flow data from third paid of eyes.
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