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Abstract

This thesis is broadly concerned with the electrical properties of MOS devices
with thin (12 nm) nitrided oxide and reoxidized nitrided oxide gate dielectrics and
specifically with the reliability and 1/f-noise properties of MOSFETs with such
dielectrics. Nitrided oxides are formed by low pressure annealing of thermal silicon
dioxide films in ammonia and reoxidized nitrided oxides are formed by low pressure
annealing of nitrided oxides in oxygen. The annealing is accomplished at 950 'C in
a custom-built low pressure furnace system operating at a pressure of 0.1 or 0.01
atmospheres for anneal times ranging from 15 minutes to 10 hours.

Previous researchers have shown that sufficiently heavy nitridations of silicon
dioxide provide resistance to interface state generation under electrical stress, in-
sensitivity to ionizing radiation, and a barrier to various dopants and contaminants.
However, the nitridation process, which is typically performed at atmospheric pres-
sure and at high temperatures (2 1000 *C), is known to introduce a large number of
electron traps and a high fixed charge density. The process of reoxidation has also
been shown to be somewhat effective in reducing nitridation-induced electron traps.
Thus, reoxidized nitrided oxides show promise as reliable dielectrics but suffer from
high fixed charge which reduces the inversion layer mobility of devices.

In this thesis, we demonstrate that light, low pressure nitridations coupled with
reoxidations can be used to reduce fixed charge and trap densities to levels approach-
ing those of silicon dioxide, while maintaining better reliability under electrical stress
as well as under ionizing radiation.

A capacitor study indicates that a reoxidized nitrided oxide process reduces in-
terface state generation under high-field stress by more than a factor of 25 compared
to silicon dioxide. While the process of nitridation and reoxidation degrades the
pre-stress interfacial characteristics of oxide, we are able to achieve fixed charge
densities as low as - 2-3 x 1011 cm - 2 and midgap interface state densities as low
as , 3 x 1010 cm - 2 eV- 1, while maintaining the improvement in reliability.



A transistor study indicates that a low pressure reoxidized nitrided oxide process
results in devices with a projected operating life that is one order of magnitude larger
than for silicon dioxide devices. We achieve this with only a ~20% degradation in
the electron and hole inversion layer mobilities.

Since nitridation introduces oxide traps near the band edges of Si, this thesis
also investigates the use of 1/f noise measurements as means of characterizing these
traps. Two extensions of the basic number fluctuation model, which attributes noise
to tunneling of channel electrons to and from interfacial oxide traps, are considered.
In the first case, the effect of a nonuniform oxide trap distribution in space and
energy is analyzed. It is theoretically shown that a nonuniform distribution of oxide
traps can give rise to a gate voltage dependence in the magnitude and exponent, y,
of the 1/fP spectrum.

In the second case, an extension of the 1/f noise theory based on the McWhorter
tunneling number fluctuation model is considered which includes both number fluc-
tuations and correlated mobility fluctuations. Both the number and mobility fluc-
tuations arise from the same physical mechanism involving electronic tunneling
transitions between interfacial oxide traps and the MOSFET channel. The trapped
electrons result in coulombic scattering of channel carriers causing mobility fluctu-
ations. The model includes the dependence of coulombic scattering on the distance
of the trapped charge from the interface and considers the consequence of such a
scattering dependence on the shape of the 1/f noise spectrum. It is shown that
the correlated model also predicts a gate voltage dependence in the magnitude and
exponent of 1/fr noise even for the case of uniform trap distributions.

Both the above noise models are then used to analyze 1/f noise data on oxide
devices to extract the oxide trap density and distribution in space and energy.

The number fluctuation model is also applied to characterizing the effect of
ammonia and oxygen annealing of the gate oxide on the 1/f noise properties of
n- and p-channel MOSFETs. It is shown that nitridation increases the interfacial
electron trap density in the oxide near the conduction band of silicon by a factor of
2-10 over control oxide devices. Reoxidation is shown to decrease the nitridation-
induced interfacial electron trap density under certain conditions.

Analysis of p-channel results indicate that the nitridation process increases the
hole trap density near the valence band of Si by a factor of 2-6 over control oxide
devices. Hole traps due to nitridation have not been previously observed. Reox-
idation is shown to reduce the nitridation-induced interfacial hole trap density to
values approaching those found in oxide.

Thesis Supervisor: Professor Charles. G. Sodini

Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Limitations of thermal silicon dioxide

Thermally grown silicon dioxide on silicon forms a nearly perfect insulator-

semiconductor system with an atomically smooth and abrupt interface with few

dangling bonds. Approximately 30 years of development have lead to low interface

states densities(•5 1010 cm -2 eV-'), low fixed charge density (< 5 x 1010 cm-2), and

high dielectric breakdown strengths (10 - 12 MV/cm). The kinetics of the oxidation

process are well-understood and modelled by the Deal and Grove theory making it

possible to reproducibly grow oxides with uniform thickness. Silicon dioxide also

has a large effective bandgap of approximately 9 eV that creates a 3.2 eV barrier

to electrons and a 4.7 eV barrier to holes from the silicon conduction and valence

bands, respectively. The large bandgap yields MOS devices with a large input resis-

tance. These properties have facilitated the manufacture of high performance MOS

transistors with high transconductance, good reproducibility and stability [1,2,3].

Silicon dioxide, however, is not without limitations. To achieve greater function-

ality and performance in integrated circuits, device channel lengths, oxide thickness,

and junction depths have continued to be scaled down without a proportional de-

crease in power supply voltages. This has resulted in larger electric fields within



devices leading to a greater susceptibility to hot carriers, particularly in n-channel

devices [4]. Hot electrons can lead to charge trapping and interface state generation

in silicon dioxide and is one of the criteria that determines the overall operating

life of an MOS device. Hot electron issues have received considerable attention in

recent years [5,6]. One popular solution is the use of the lightly doped drain (LDD)

region which reduces the maximum electric field in the device [7,8]. An alterna-

tive solution, addressed in this thesis, is the use of a gate dielectric with greater

resistance to hot-electron effects.

Other concerns have been raised regarding the dopant barrier properties of thin

silicon dioxide films. For example, 10nm SiO 2 films are known to be a poor barrier to

the diffusion of dopants and contaminants [9,10]. Further concerns center around

the increasing use of plasma processes in the manufacture of integrated circuits,

which expose the wafer to ionizing radiation and the overall integrity of thin silicon

dioxide films with respect to dielectric strength, defect density, and yield [11].

1.2 Nitrided silicon dioxide as an alternative

Nitrided silicon dioxide is formed by first thermally growing an SiO 2 film and

subsequently annealing the film in an ammonia ambient. The process was first

introduced by Ito and Naiman [12,13]. The resulting dielectric is referred to as

nitrided oxide, nitroxide, nitrized oxide, or oxynitride. Here we will use the term

nitrided oxide. The term oxynitride has typically referred to both deposited as

well as thermally grown films. The nitridation process has been shown by several

authors to result in the incorporation of nitrogen and hydrogen into the dielectric,

radically changing its electrical properties. Under certain nitridation conditions,

the process results in reduced interface state generation under high-field stress [14]

and under ionizing radiation [15,16,17]. In addition, the process provides a diffusion

barrier to various dopants and contaminants [9,10]. These advantageous properties



have spurred research in nitrided oxides as a thin reliable gate dielectric [18,19,20],

as a radiation hard dielectric [15,16,17,21,22], as tunnel dielectric for non-volatile

memories [14,23,24], as a local oxidation mask [25], as a dielectric waveguide [26],

and as a dielectric system for the study of impurity diffusion in silicon [27,28,29].

The nitridation of silicon dioxide, however, has several side effects that has

limited its usefulness in MOS devices. The nitridation process is known to greatly

increase the density of electron traps [30,31,32], the fixed positive charge density

[21,33,34,96], and the density of interface states [33,34]. The fixed charge and

interface state density have been shown to increase with increasing nitridation, peak,

and subsequently decrease [35,36]. Typical behavior is shown in figure 1.1. This

turnaround behavior in fixed charge and interface state density motivated previous

researchers to use high temperatures and/or lengthy nitridation cycles to achieve

low fixed charge and interface state density. However, even in the post-turnaround

regime, the electron trap density remains large.

The fixed positive charge, high electron trap density and large interface state

density are detrimental to device stability and inversion layer mobilities [19,38].

The electron traps in nitrided oxides are also responsible for increased flicker noise

measured in MOS transistors [39].

The reoxidation (oxygen anneal) of a nitrided oxide film results in a film referred

to as reoxidized nitrided oxide with the terms ONO or ROXNOX being used as

abbreviations. Previous authors have reported a dramatic reduction in electron trap

density by the process of reoxidation [14,37,40]. However, fixed charge and interface

state density do not appear to be significantly reduced by reoxidation. Thus the

application of the nitridation/reoxidation process to scaled devices is limited by the

lower inversion layer mobilities available in these devices.
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1.3 Why low pressure nitridation?

There is a need to develop a nitridation technique which results in greater relia-

bility without compromising the low fixed charge and interface state density found in

oxide. Of the various techniques explored - atmospheric pressure [13,21,33,35,41,42],

dilute [171, low pressure [10], high pressure [43], rapid thermal [36,44,45,46,47], ni-

trogen implantation [48,49], and plasma nitridation [50,51] - we have favored the

low pressure technique. The initial motivation to pursue the low pressure process

was simply to reduce the fixed charge, interface state density, and electron trapping

while attempting to preserve the property of improved resistance to hot carriers. In

the course of our experimentation, the low pressure process was found to differ from

the atmospheric nitridation technique in two important respects. First, the fixed

charge and interface state density increased, peaked, and decreased with increasing

nitridation similar to atmospheric nitridation but in a more gradual fashion. This

suggested a sufficient process window in the early stages of the nitridation process

(pre-turnaround regime) to optimize the dielectric's electrical properties. Second,

low pressure nitrided oxides typically did not exhibit a suppression of interface state

generation under electrical stress unless a lengthy nitridation was performed. How-

ever, when coupled with a reoxidation, short nitridations dramatically suppressed

interface state generation. Moreover, reoxidation eliminated electron trapping as ex-

pected from previous work. These differences allowed the use of the pre-turnaround

regime in order to optimize the electrical properties of the dielectric.

A further motivation for low pressure nitridation was better process control.

The use of a low pressure furnace allowed the rapid and complete switching of gas

ambients facilitating the control of the 3-step process needed to form reoxidized

nitrided oxides. As shown in section 4.5, a dilute process with equivalent ammonia

partial pressure yielded erratic results which we attributed to residual oxygen.



1.4 Summary of results

The objective of this work was to develop a thin gate dielectric for scaled MOS

devices with improved reliability over silicon dioxide devices. Improved reliability

is sought without compromising the performance available in oxide devices. A

second objective was to develop a 1/f noise technique to study interfacial oxide traps

near the conduction and valence bands of Si, regions inaccessible to conventional

capacitance-voltage techniques [52].

The primary findings of this thesis can be broadly divided into two parts, relating

to the reliability of nitrided oxide MOS devices and to the 1/f noise properties of

nitrided oxide transistors.

(1) A low pressure nitridation/reoxidation process for the formation of thin (12

nm) and reliable gate dielectrics was developed. A capacitor study indicated that

dielectrics with dramatically reduced interface state generation and electron trap-

ping could be formed with fixed charge and interface state density approaching

oxide values. When applied to scaled MOSFETs the process exhibited dramati-

cally reduced transconductance degradation under channel hot-electron stressing

compared to MOSFETs with thermal oxide as a gate dielectric. The projected op-

erating life of reoxidized nitrided oxide transistors was at least a factor of 10 greater

than oxide transistors. This achievement in reliability was partially offset by a 20%

degradation in inversion layer mobility.

A related study of ionizing radiation effects in reoxidized nitrided oxides showed

reduced interface state generation and reduced positive charge trapping compared

to conventional silicon dioxide.

The low pressure process was compared to an Ar-diluted process under condi-

tions of equivalent ammonia and oxygen partial pressure. The low pressure process

showed better control due to the ability of the system to rapidly and completely

switch between gas ambients. The dilute process suffered from residual oxygen in

the system which lead to erratic electrical results.
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(2) The use of 1/f noise measurements in extracting the interfacial oxide trap

density and distribution was demonstrated. The method involved the application of

the McWhorter number fluctuation model, with inclusion of the effects of nonuni-

form oxide trap distributions (in space and energy) and correlated mobility fluc-

tuations on the 1/f noise spectrum. It was theoretically demonstrated that both

nonuniform trap distributions and mobility fluctuations give rise to a gate voltage

dependence in the magnitude and exponent of the 1/f7 spectrum. Thus by analyzing

the 1/f noise data, it was possible to infer the oxide trap density and distribution.

The above noise model was also used to study interfacial oxide traps near the

conduction and valence bands of Si due to the effect of nitridation and reoxidation.

1.5 Organization of the thesis

The thesis begins with a discussion of the low pressure nitridation/oxidation

system constructed for the formation of gate dielectrics. The gate dielectric pro-

cesses and the procedures used in the fabrication of poly-gate capacitors and tran-

sistors are then described. The measurement techniques are outlined in chapter

3. A brief literature review of the material properties of nitrided oxides is given

in the last section of chapter 3 and provides a context in which to understand the

electrical properties discussed in subsequent chapters. Our approach to dielectric

development was to first investigate a matrix of nitridation/reoxidation conditions

in poly-gate MOS capacitors. Selected dielectrics were then incorporated into a

transistor process to assess their suitability for scaled MOSFETs. The electrical

properties of MOS capacitors are first reported in chapter 4 and the electrical prop-

erties of MOS transistors are reported in chapter 5. In chapter 6, a 1/f noise theory

based on the McWhorter tunneling model is reviewed. The effect of nonuniform

oxide distribution in space and energy is then considered. In addition, the effect of

correlated carrier and mobility fluctuations are considered. The extented model is



then applied to extracting the interfacial oxide trap density and distribution near

the conduction and valence bands of silicon in oxide, nitrided oxide, and reoxidized

nitrided oxide transistors.



Chapter 2

Oxidation/Nitridation System

and Processing Techniques

In this chapter, an overview of the low pressure oxidation/nitridation system and

associated processing techniques are described. The low pressure oxidation/nitridation

system was constructed for the formation of oxide, nitrided oxide, and reoxidized

nitrided oxide gate dielectrics studied in this thesis. The details of gate dielec-

tric formation and the integration of the gate dielectric process into a standard

polysilicon gate capacitor process and a polysilicon gate NMOS/PMOS process is

described.

2.1 Low pressure oxidation/nitridation system

The oxidation/nitridation system is a high temperature, low pressure furnace

system located in a class 100 clean room environment dedicated to the thermal

growth of thin (12 nm) silicon dioxide films, for in-situ nitridation (ammonia anneal)

and in-situ reoxidation (oxygen anneal). The system was designed after the system

of Wong [50]. An overall schematic and photograph of the system are shown in

figure 2.1 and figure 2.2. The system resembles a typical low pressure chemical
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vapor deposition (LPCVD) system except for two differences. First, typical LPCVD

systems are limited in temperature capability by the use of o-ring vacuum seals

which cannot withstand temperatures greater than - 200 *C. In the present system

higher temperatures are made possible by placing the vacuum seals further away

from the hot zone through the use of an extra long process tube. A second difference

is the use of higher process pressures. LPCVD systems typically operate at less than

1 torr whereas in the oxidation/nitridation system the pressure can be controlled

from 1.0 to 100 torr. The higher pressures are possible due to the use of a fine

metering valve and an exhaust throttle valve which together control the conductance

of the vacuum line and hence the process pressure.

The details of the implementation are discussed below. Conceptually, the system

consists of four subsystems:

Gas Handling Subsystem

A schematic of the gas handling subsystem is shown in figure 2.3. The subsystem

is based on the design of Brown [53]. The gas handling subsystem is equipped with

four gases - dry nitrogen, dry oxygen, dry argon, and anhydrous ammonia. For all

experiments, house nitrogen and argon sources were used. Oxygen was used either

in bottled form or was obtained from the building source. There was no apparent

difference in the quality of the oxides formed with either of these sources. Ammonia

was always used in bottled form. The purity of all gases was rated at least 99.999

%. Flow rotameters were used to control the flowrate of gases at typically 1-4

liters/min. k-inch stainless steel lines and welded fittings with metal gasket seals

were used extensively throughout the system.

Furnace Subsystem

The temperature within the quartz tube was maintained via a 3-zone resistively

heated tube furnace. The temperature fiat zone was typically 6 inches in length

allowing a maximum load of 25 2-inch or 4-inch wafers. The temperature was

maintained to within ± 2.5 'C. While the temperature for all experiments reported
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here was 950 *C, the upper temperature limit of the furnace system is 1050 'C.

The furnace was fitted with a wheel base allowing linear motion along tracks. This

facilitated the loading of the wafers into the tube under cool conditions by rolling the

furnace hot zone away from the wafers. Following pump down and the establishment

of the process ambient, the furnace hot zone was positioned over the wafers under

controlled (typically vacuum) conditions.

Vacuum Subsystem

A schematic of the vacuum subsystem is shown in figure 2.4. All seals to the fur-

nace are made with silicone o-rings. The quartz tube is evacuated by a mechanical

pump with a pumping speed of - 200 1/min. A fine metering valve and an exhaust

throttle valve together provide coarse and fine control of the process pressure. The

range of controllable pressure is 1 torr to 100 torr. The pressure can be controlled

to ± 0.1 torr. The vacuum subsystem may be disabled allowing the operation of

the furnace at atmospheric pressure. During atmospheric operation, the door of the

tube is attached to the exhaust stack with a --inch teflon line.

Quartz Tube

The quartz tube has a 5¼-inch inside diameter and is 8 feet in length yielding a

total volume of 34 liters. The tube is fitted with a quartz flange at the loading end

allowing a seal to be made with a silicone o-ring which is sandwiched between the

aluminum door and the flange. The tube is typically evacuated from atmospheric

pressure in under one minute. For usual flow rates of 4 liters/min at atmospheric

pressure, the gas residence time is ' 8 minutes. For typical flow rates of 1 liter/min

at 0.1 atmospheres pressure, the gas residence time is 3.4 minutes. The gas inlet

is located at the rear of the tube and vacuum lines are attached near loading end

of the tube. We used a quartz pushrod to position the wafer boat in the furnace.

The tube was cleaned at 6-9 month intervals when yield on the oxide control wafers

began to drop. However, no HCI cleaning was performed. Mobile charge content

was periodically monitored but in all cases the mobile charge content was < 5 x 1010
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cm -2 . The furnace system was restricted to the growth of gate dielectrics on lightly

doped substrates. During the idle state the furnace was always left at 0.5 torr

nitrogen.

2.2 Low pressure dielectric growth process

A flow diagram of the fabrication process for various gate dielectrics in the low

pressure oxidation/nitridation system is outlined in figure 2.5. The processing of

various dielectrics begins with wafer cleaning in standard RCA solutions [115]. For

the experimental data presented on low pressure dielectrics the wafers were cleaned

in an existing 2" facility and then transported to the furnace for dielectric growth.

Following the clean, the wafers are loaded into the cool zone (- 850 0C) of the

furnace and the tube immediately evacuated to 50 mTorr. This takes approximately

1 minute. Following the pump down cycle, the pressure is raised to 0.1 atm. in

nitrogen and the furnace is rolled forward so that the wafers are now located in the

hot zone (950 *C). Once the pressure is stabilized at 0.1 atm., the system is ready

for the growth of gate dielectrics. Three types of gate dielectrics were investigated:

control oxides, nitrided oxides, and reoxidized nitrided oxides.

Control oxides are formed by a 40 minute cycle in undiluted oxygen at 0.1 atm.

The resulting oxide is ~ 12 nm in thickness. The oxidation kinetics appears to

be in the parabolic regime at 0.1 atm. Following the oxidation cycle, the tube is

again evacuated to 50 mTorr. The oxide then undergoes a final anneal in 0.1 atm.

nitrogen for 30 minutes. Following the anneal, the wafers are removed from the hot

zone by rolling the furnace away. The tube is then brought to atmospheric pressure

in nitrogen and wafers unloaded at - 9 inches/min.

Nitrided oxides are formed by a two-step process. The first step begins with the

growth of a 12 nm oxide identical to the way in which the control oxide is formed.

Following the oxidation cycle and the pump down, however, the oxide undergoes
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ammonia anneal cycle at 0.1 or 0.01 atm. for anneal times ranging from 15 min. to

10 hours. Following the nitridation cycle, the tube is again evacuated and a final

anneal in nitrogen is carried out.

Reoxidized nitrided oxides are formed by a three-step process. The first two

steps are identical to the formation of nitrided oxides. Following the nitridation

cycle and a pump down, the nitrided oxide undergoes an oxygen anneal cycle at 0.1

atm for times ranging from 15 min. to 3 hours. Following the reoxidation, the tube

is again evacuated and an anneal in nitrogen is performed.

The entire process of evacuating the tube and the establishing of a new gas

ambient typically takes 3 minutes. Thus the low pressure system is able to rapidly

switch between gas ambients without cross-contamination of gases.

On a typical day of runs we grew control oxides first and then the test dielectric.

Polysilicon was deposited immediately after dielectric growth on control and test

wafers simultaneously. The control and test wafers were then processed together.

Monitor wafers were included for Auger analysis and ellipsometry.

2.3 Dilute dielectric growth process

The purpose of examining a dilute dielectric growth process is twofold:

(1) To determine whether the low pressure process is intrinsically different

in terms of nitridation and reoxidation mechanisms from an Ar-diluted nitrida-

tion/reoxidation process under conditions of equivalent ammonia and oxygen partial

pressures.

(2) To develop a process that can be more easily incorporated into existing

oxidation furnaces which typically do not have a low pressure capability.

A flow diagram of the dilute process in shown in figure 2.6. The primary differ-

ences between the low pressure process and the atmospheric process are : (1) the

use of Ar-dilution to achieve a partial pressure of ammonia and oxygen equivalent
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Figure 2.7: Cross-section of the etched field oxide isolated MOS capacitor test

structure.

to that used in the low pressure process and (2) the use of tube and gas manifold

purges between oxidation and nitridation cycles to prevent cross-contamination of

gases. These inert purges took typically 30 minutes as compared to a - 3 minute

pump down used in the low pressure process to evacuate an ambient.

2.4 Polysilicon gate capacitor process

Since the various dielectrics are ultimately intended for a scaled CMOS process,

a simplified polysilicon gate MOS capacitor test process was devised. Two processes

were used. The process flows are outlined in Appendix A and B. For most of the low

pressure results, an etched field oxide isolated MOS capacitor test structures were

fabricated with an n+ polysilicon gate on 10-20 ohm-cm, < 100 >, 2-inch, n-type

silicon wafers. The n-type silicon substrate was used to prevent inversion under

the field oxide caused by positive charge introduced by the nitridation process.

The cross-section of the device structure is shown in figure 2.7. For most of the

dilute results, 4-inch wafers were used to form a LOCOS-isolated MOS capacitor

VLI~)L)~VII
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Figure 2.8: Cross-section of the LOCOS-isolated MOS capacitor test structure.

structure with n+ polysilicon gate on an n-type substrate. A cross-section of the

device structure is shown in figure 2.8. The devices received a final anneal in forming

gas (20% H2 :N2 ratio) for 30 min. While capacitors of area 100 x 100, 300 x 300,

and 500 x 500 /4m2 were fabricated, the smallest capacitors were commonly used

for high-field stress experiments.

2.5 NMOS and PMOS transistor process

NMOS and PMOS transistors with various gate dielectrics were fabricated using

a standard, four mask, self-aligned polysilicon gate MOS process on n- and p-type

(100) 2-inch diameter wafers of 10-20 ohm-cm and 10-40 ohm-cm, respectively. No

channel implants were used in order to minimize the number of process variables.

The devices received a final anneal in forming gas (20% H2:N2 ratio) for 30 min.

Transistors with geometries ranging from W/L=200/200 to 20/0.5 and capacitors

of various areas were fabricated. The process flow is outlined in appendix C.
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Chapter 3

Measurement Techniques and

Material Properties

3.1 Auger electron spectroscopy

The Auger Electron Spectroscopy (AES) profiles shown in this thesis were ob-

tained through Charles Evans Associates (Redwood City ,CA). The profiles were

taken on monitor wafers immediately after gate dielectric formation and did not

experience further thermal processing. AES was used to identify the atomic con-

centrations of nitrogen, oxygen, and silicon in 12 nm and 24 nm dielectrics un-

der various nitridation/reoxidation conditions. In the Auger electron spectroscopy

method, an electron beam is used to ionize atoms near the surface of the sample

ranging from 0.5 to 2.0 nm in depth. In a core level (n=l) ionized atom, if an

electron from the second shell (n=2) drops into the core level vacancy, the resulting

energy can be released as an X-ray or used to eject an energetic electron (Auger

electron) from outer shell forming a doubly ionized atom. The energy of the Auger

electron is characteristic of the nuclear charge and thus can be used to identify

the amount of a given element near the surface of the sample. The Auger process

requires three electrons: the initially ionized electron, the electron that relaxes to a



Primary Beam Voltage 10 KV

Primary Beam Current 0.6 mA

Primary Beam Spot Size 5-10 mm

Sputtering Rate 0.6 nm/min

Data Acquisition Rate 2 pts/min

Table 3.1: AES Analysis Parameters.

lower energy state, and the ejected (Auger) electron. The AES method, therefore,

cannot be used to detect hydrogen which is also incorporated during nitridation.

The AES conditions used to analyze the films are shown in Table 3.1. The sample

was sputter etched with argon while the AES was periodically measured to profile

the atomic composition as a function of depth. In discussions with Greg Meeker of

Charles Evans Associates, who performed the measurements, it was noted that the

spacing between AES measurement points was about 0.3 nm. However, the actual

depth resolution was limited by the ionization of surface atoms in a depth range of

0.5 nm to 2 nm during a scan. The effect is called AES broadening. The knock-on

effect of sputtering was found to be negligible by comparing chemically and sputter

etched samples. The sensitivity of the AES measurement to nitrogen, oxygen, and

silicon was calibrated with SiO 2 and Si3 N4 standards. The resolution of nitrogen,

oxygen, and silicon was estimated to be approximately ± 2 atomic percent.

3.2 Electrical characterization system

A schematic of the measurement system for MOS capacitors and transistors

is shown in figure 3.1. An HP4140 picoammeter and voltage source was used to

measure the quasi-static capacitance-voltage characteristic at a ramped voltage of

100 mV/sec. The HP4140 was also used in the measurement of I-V characteristics



Figure 3.1: Schematic of the electrical characterization system used to analyze MOS

capacitors and transistors.
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of capacitors. An HP4275 LCR meter was used to measure the small signal, high

frequency (30 mV, 100 kHz) capacitance at various bias voltages. The voltage

step size for QS and HF capacitance-voltage was 10 mV and measurements were

taken from strong inversion to accumulation. The bias for the HP4275 is provided

by the HP4145 semiconductor parameter analyzer. The HP4145 also provided a

constant current source and voltage meter for high-field stress measurements. The

HP9836 computer with associated TECAP [54] software was used to control the

above instruments, to acquire data, and to perform analysis.

In DC transistor measurements, the HP4145 semiconductor parameter analyzer

together with HP9836 was used for I-V and channel hot-electron stress measure-

ments. 1/f noise measurements used either the HP3585 spectrum analyzer or the

HP3561 dynamic signal analyzer.

During measurements, capacitor samples were placed in a probe station. The

probe station was located on an air table to minimize vibrations. A microscope

light was used for the photogeneration of minority carriers in CV measurements.

For some measurements, a stream of dry nitrogen was flowed over the sample to

prevent surface conduction. With these precautions, ultimate leakage could be

limited to < 10 fA.

3.3 Capacitor measurements

A detailed discussion of the measurement techniques used in the evaluation of

various gate dielectrics in MOS capacitors is contained in the Master's thesis of

Woodward Yang [55]. A summary of the techniques is provided here.

Three types of electrical measurements were performed on capacitors. (1) Quasi-

static (QS) and high frequency (HF) capacitance-voltage characteristics of MOS

capacitors were used to extract midgap interface state density and the flatband

voltage from which the dielectric charge was inferred. (2) Current-voltage measure-



ments were used to identify dominant conduction modes in various dielectrics and

to determine the dielectric strength. (3) High-field constant current stress mea-

surements were used to evaluate the reliability of dielectrics formed under various

oxidation/nitridation conditions.

3.3.1 Capacitance-Voltage

Capacitance-voltage measurements were used to extract the equivalent oxide

thickness, the substrate doping, the flatband voltage and the midgap interface state

density.

Equivalent oxide thickness

The insulator thickness is reported as the equivalent oxide thickness inferred

from the HF capacitance in accumulation by the relation

soAto, = (3.1)
where co, = 3.9o0 , A is the area of the capacitor, and Ci is the measured HF

capacitance in accumulation. It should be noted that the measurement of the insu-

lator thickness in this fashion may be in error for dielectrics undergoing a nitrida-

tion/reoxidation treatment due to slight changes in the dielectric constant. There-

fore changes in the dielectric thickness as a result of the nitridation/reoxidation

process were not detectable [561. The above expression thus gives only the equiva-

lent oxide thickness. The actual insulator thickness, ti, is related to the equivalent

oxide thickness, to,, by

to, = ti (3.2)
where ei is the actual insulator dielectric constant. In practice, we have observed

that nitrided oxides and reoxidized nitrided oxides typically have an equivalent oxide

thickness which is < 5-15% smaller than the thickness of control oxides. This may

be accounted for by a combination of a slight increase in the dielectric constant
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and/or a slight decrease in the dielectric thickness due to densification during the

nitridation process.

In the work of Naiman [57], 361 A nitrided oxides formed by atmospheric pres-

sure nitridation at 1000 *C, 1 hour, were characterized by ellipsometry. It was

found that the nitrided oxide could be modeled as a three-layer structure consisting

of surface (7.4 A), bulk (334 A), and interface (22 A) regions. The data indicates

that nitridation dramatically increases the index of refraction of the surface (nf =

2.0) and interface (nf = 1.7) regions, while increasing the index in the bulk by ~

3 %. The change in the overall dielectric thickness is less than 1 %. The process

of reoxidation is shown to reduce the index of the surface region until it becomes

indistinguishable from the bulk, which itself continues to have a slightly larger in-

dex than oxide. The interface region does not appear to be affected by reoxidation.

The overall dielectric thickness, however, appears to slightly increase with reoxida-

tion (1-3 % depending on the length of the reoxidation). Further discussion of the

composition of such films is deferred to section 3.5.

Substrate doping

Calculation of the substrate doping is used in the determination of the flatband

voltage. The substrate doping is calculated from the measurement of the maximum

high frequency capacitance in strong accumulation and the minimum high frequency

capacitance in strong inversion. The method is often referred to as the max-min

method [3]. The minimum high frequency capacitance in strong inversion is

cc, (inv)
CHF(inv) = C + C.(inv) (3.3)ci + C, (inv)

where Ci = CHF (accum) and C,(inv) is the high frequency semiconductor capaci-

tance in strong inversion given by

C, (inv) E,A (3.4)(2E.(pF + Eg/2q)/qND)1 / 2

where it is assumed that the electron quasi-Fermi level is pinned near the conduction
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band of Si in strong inversion. In addition, the depletion approximation has been

used and OF is the bulk potential given by qF = (kt/q)ln(No/n1 ), E, is the dielectric

constant of silicon, E, is the silicon bandgap and ND is the substrate doping. Using

the above expressions the following expression for NDo is obtained:

= kT No Eg 1 CiCHF(inv) (35)
ND = (2-In-- + -)) (3.5)

q ni q qE.A2 C - CHF(inv)

Thus using the maximum and minimum of the high frequency capacitance curve,

the above equation can be iteratively solved for the substrate doping. For n-type

substrates used in this thesis, the value of the substrate doping varied from 8 x

1014 to 1.5 x 101' cm - .

Fixed charge

Flatband voltage measurements are used to calculate the positive charge intro-

duced by nitridation and to measure the trapped electrons following a constant

current stress. The flatband voltage is the voltage at which the measured high

frequency capacitance is equal to the flatband capacitance.

CFB = (3.6)
Ci + C,(0, = 0)

where C,(tk, = 0) is semiconductor capacitance when the surface potential, 0,, is

zero. C.,(0, = 0) is given by

EA

C(, = 0) (kTE/q 2ND)I 2  (3.7)

where ND is obtained from the method of the previous section.

The fixed charge density, Qf, is found from the high frequency C-V measure-

ments by first measuring the flatband voltage, comparing it with the theoretical

flatband voltage assuming zero fixed charge, and multiply the resultant flatband

voltage shift by the measured insulator capacitance.

Qf = AVfbCi (3.8)



where AVfb is the difference between the measured flatband voltage and the flat-

band voltage for the case of zero fixed charge and Ci is simply the high frequency

capacitance in strong accumulation. The flatband voltage for the case of zero fixed

charge is simply the metal-semiconductor work function difference, 0,. Based

on the work of Hickmott [58], a value of m,, of -0.20 V was used for the case of

a phosphorus-doped polysilicon gate and a n-type substrate doped to 1.5 x 1015

cm-'. The uncertainty in the value of ,,, however, is about ± 0.06 V given the

range of values reported by Hickmott [58]. The flatband voltage of control oxide

samples was consistently -0.23 ± 0.01 V for numerous runs, yielding an average

fixed charge of 5 x 1010 cm -2 with a variation of approximately ± 2 x 1010 cm -2

over various runs. However, due to the uncertainty in m,,, the precise value of the

fixed charge cannot be specified to less than ± 1011 cm - 2 .

The above approach refers the calculated fixed charge to the interface and as-

sumes that the charge due to interface states at flatband is negligible. In reality,

the fixed charge may be distributed throughout the bulk of the dielectric. To deter-

mine the actual charge centroid (Q , ) one can in principle look at the positive and

negative gate I-V characteristics of the dielectric. These measurements, however,

are difficult to interpret for the thin dielectrics (12 nm) used in this study [55].

The accuracy of the flatband voltage measurement is limited to ± 10 mV (due to

the minimum step size of the voltage source) which corresponds to an uncertainty

in the fixed charge of ±2 x 1010 cm-2. The overall precision with which the fixed

charge can be specified, however, is dominated by the uncertainty in the work-

function difference limiting the absolute value of the fixed charge to approximately

S1011 cm - 2 .

Interface State Density

The interface state density between flatband (b, = 0) and the onset of strong

inversion (s, = 24 F) was obtained from the combined high-low frequency method

[109]. In this method, the interface state capacitance, Cit, is determined from the



difference between the QS C-V and HF C-V measurements as a function of gate

bias, V,,

)it- ( )- (3.9)Cos Ci CHF Ci
The density of interface states, Di, (states/cm2 eV), is obtained as a function of

V, as

Doi(V,) = Ci(V_ ) (3.10)
q

A relationship between the surface potential and the gate voltage can be obtained

from the QS C-V by noting that an incremental change in V, causes an incremental

change in r, through the capacitive voltage divider relation

C'
d4, = dV, (3.11)d ci + c, + c,,d  (3.11)

Rearranging equation 3.11 in terms of CQs and integrating from the condition

that ., = 0 at V = Vfb we obtain

V, CQS
= C- )dV (3.12)

The extraction of the interface density from the HFCV and QSCV by the high-

low method is limited to the range 0 < ?k, < 20f. Near 0, = 20f, the method

erroneously counts inversion charge (Qi,,) as interface states (Dt). Near 0, = 0,

interface states with short time constants may respond to the high frequency signal.

Thus the method is most valid near midgap where V;, = Of.

The resolution of the interface state density is determined by the magnitude of

the minimum displacement current. Typical maximum and minimum capacitances

for a capacitor area of 100pm x 100pm area are - 30pF and 1lpF, respectively.

For a ramp rate of 100 mV/sec, the minimum displacement current is - 100 fA.

The displacement current due to stray capacitances is usually 25 fA which can be

compensated to ±5 fA. Thus the resolution of capacitance measurement is ±50 fF



corresponding to an uncertainty in the interface state density of about ±5 x 109

states/cm2 eV.

3.3.2 Constant current stress

The constant current stress technique was used to study the time dependent

generation of interface states, the trapping of charges (primarily electrons), and the

charge-to-breakdown. The charge-to-breakdown is measured under constant cur-

rent conditions and is defined as the amount of charge that can passed through the

dielectric before destructive breakdown occurs. The technique provides a simple

means to evaluate the relative reliability of various dielectrics. Typically, a con-

stant current under high field conditions ( 6MV/cm - 10 MV/cm) is applied to

the dielectric and the voltage necessary to maintain the current is monitored. To

study the early degradation characteristics of the dielectric, a current density of 10

,pA/cm2 was used for stress times up to 10,000 seconds corresponding to a fluence

of 0.1 C/cm2 . The constant current stress is periodically interrupted for C-V mea-

surements from which the generated interface states and the trapped charge can be

extracted as a function of stress time. Both positive and negative gate stresses were

investigated. Under positive gate conditions, electrons tunnel from the substrate

into the dielectric and under negative gate stress, electrons tunnel from the gate

into the dielectric. The tunneling of holes was assumed to be negligible due to the

larger barrier height for holes.

When the stress is performed under higher current densities, the technique can

be used to measure the charge-to-breakdown, Qbd. This technique has seen extensive

use in recent years [59]. The charge-to-breakdown data reported here were obtained

under a constant current stress condition of 10 mA/cm2 . The resulting charge-to-

breakdown is normalized by the area of the device and is expressed in units of

C/cm 2 .
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Figure 3.2: Fowler-Nordheim Conduction in MOS Structure.

3.3.3 Current-Voltage

The current-voltage (I-V) characteristic of the dielectric was measured to iden-

tify the dominant conduction mechanisms and to determine the breakdown field.

In silicon dioxide MOS devices, Fowler-Nordheim (F-N) electron tunneling is the

dominant conduction mechanism [60] under high electric fields (> 5 MV/cm). Elec-

trons tunnel from the silicon conduction band into the oxide conduction band at a

constant energy under high electric fields as shown in figure 3.2.

In the figure, dt is the F-N tunneling distance, 'b is the electron barrier height

at the interface, and Eoz is the electric field in the dielectric. In principle, holes



can tunnel from the gate into the valence band of the dielectric. However, the hole

current is negligible since the barrier for holes is - 1.5 eV larger than for electrons.

The tunnel current is normally given by

B
I = ACE,, exp (3.13)Eox

where A is the area of the sample and the pre-exponential factor, C, is given by

q3
C q = (3.14)87rhmoz.D

and the exponential factor, B, is given by

B = 8r(2m) (3.15)
3qh

where h is Planck's constant, m is the free electron mass, and mo, is the effective

electron mass in oxide. Experimental data for silicon dioxide on silicon was found

to be in excellent agreement with C = 1.06 x 10-6 (amp/V 2) and B = 2.385 x 108

(V/cm) which corresponds to mo,, = .5m and ib = 2.9 eV. The value of (b is in

agreement with that calculated by Weinberg [60]. It is calculated assuming that

electrons in the emitting electrode are described by a Fermi gas. Weinberg [60]

points out that, in fact, electrons in the Si are confined in a narrow potential well

at the interface which leads to a quantization of their energy normal to the interface.

Since the current is dominated by tunneling from the lowest subband, the calculated

4Db represents the barrier from the bottom of the lowest subband (Eo - E, - 0.2

eV for (100) Si) and the conduction band of SiO 2. Correcting for the quantization

of the electron energy, 4a, as defined in figure 3.2, becomes 3.1 eV.

The resolution of the current measurements were limited by leakage at 10 fA.

The I-V characteristics were obtained by stepping the bias voltage at 250 mV

increments, waiting for 100 msec, and measuring the current as an average over 256

samples.



3.3.4 High-field edge effects

For constant current stress measurements, it is important to uniformly stress

the dielectrics. In order to investigate possible edge effects at high fields due to the

gate edge geometry, the current-voltage characteristics of capacitors with various

areas were compared. The geometries used were 100 x 100, 300 x 300, and 500 x

500 jpm 2 , which yielded devices with different perimeter-to-edge ratios. Figure 3.3a

shows the current-voltage characteristics of capacitors using the etched field oxide

isolation scheme (figure 2.7). Since the measured current density is the same for the

various geometries, we conclude that edge effects are negligible for such capacitors.

Figure 3.3b shows the current-voltage characteristics of capacitors using LOCOS

isolation (figure 2.8). In this case, there is a variation in the current density for the

various geometries, suggesting possible edge effects.

The data presented in this thesis on low pressure nitridations were taken on

capacitors using the etched field oxide isolation scheme. However, data taken on

dilute nitridation experiments were taken on capacitors using LOCOS isolation.

Due to edge effects, the comparison of high-field stressing of low pressure and dilute

nitridations must be qualitative, as discussed in section 4.5.

3.4 Transistor measurements

3.4.1 Effective channel length

The actual channel length of devices can differ substantially from the drawn

channel length due to photolithography variations as well as the lateral diffusion of

dopants. The determination of the actual length is important for device analysis.

The method used here was proposed by Chern, et. al. [61] and is outlined below.

Briefly, the method involves the measurement of the device resistance (VDs/IDs)
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of a set of transistors with the same widths but with different channel lengths for a

set of gate biases.

The current through a MOS transistor operating in the linear region is given by

we= 1  1
IDs Weff Co,(VGS - VT - VDS )VDS (3.16)Leff 2

and its intrinsic channel resistance is

VDos 1

IDS - f ,Co (VGcs VT- r VDS)VDS

where Wff = Wdrawn - AW and L,ff = Ldrawn - AL The measured resistance

however includes intrinsic and extrinsic resistances

Rm. = A•, + R,3x = Re,t + A(Ldraw - AL) (3.18)

where

1
A = ((Wff1 Coz(VGS - VT - 2VDS)) - 1  (3.19)

Given at least two transistors with different Ldra•, measured at the same Vg,,

a plot of R, versus Ldrawn forms a straight line. When several lines with different

gate biases are plotted the lines intersect at (R,,t, AL). An example is shown in

figure 3.4.

3.4.2 Channel hot-electron stress

The channel hot electron stress technique has seen extensive use in recent years

as a DC accelerated aging tool used to model and monitor hot-electron induced

degradation in MOSFETs [6]. We have used the technique to evaluate the relative

reliability of transistors formed with various gate dielectrics. The classical expla-

nation of hot-electron effects is that in short n-channel MOSFETs, electrons are

strongly accelerated (heated) by the lateral E-field particularly near the drain and
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Figure 3.4: Measured resistance as a function of drawn channel length used to
extract the effective channel length and extrinsic resistances.



some fraction are emitted into the gate oxide. This leads to electron trapping and/or

interface state generation which accounts for experimentally observed threshold

voltage shifts, transconductance degradation, and subthreshold slope degradation.

The damaged region is believed to be localized near the drain [62]. A simultane-

ous effect associated with hot-electrons is the presence of a substantial substrate

hole current which is produced by impact ionization near the drain. The substrate

current is an excellent monitor for hot-electron effects. The substrate current char-

acteristically forms a bell-shaped curve when ISUB is plotted against VGS for a given

VDs. The substrate current is modeled empirically by [63]

ISUB oc EmIosae- P/IE (3.20)

where E, is the maximum channel electric field proportional to (VDS - VDSAT) and

the term ae - 1/E" is the impact ionization rate. As Vas increases, IDs increases caus-

ing the initial rise in ISUB. However, as VGs becomes larger, VDSAT also becomes

larger and thus the maximum channel electric field decreases, eventually causing

ISUB to decrease, giving rise to the characteristic bell-shaped curve. In the work of

Chan [63], it was shown that a plot of ln(IsuB/IDs) versus 1/(VDs - VDSAT) yields a

straight line for device channel lengths ranging from 0.95 Am to 2.7 pJm for various

gate voltages. This implies that the ISUB/IDs ratio can be used to estimate the

maximum channel electric field. Chan [63] cautions, however, that the proportion-

ality between ISUB/IDs and E, can depend on such factors as to,, NSUB, and xz.

In this thesis, we are interested in estimating the relative reliability of transistors

with different types of gate dielectrics. Given that such factors as t,,, NsUB, and xj

are nominally the same in the various devices, the stressing of various devices under

conditions of similar ISUB/IDs ratios should subject the various devices to similar

stress conditions. As discussed in chapter 5, however, the level of degradation at a

given IsuB/Ivs was observed to have a slight channel length dependence.

It is customary to stress the device under a high VDs and a VGS corresponding



to the peak in the substrate current and to monitor hot-electron degradation by

monitoring the peak linear transconductance degradation as a function of stress

time. It is also common to define a quantity called lifetime, the stress time required

to reach 10% transconductance degradation, and to plot lifetime as a function of

ISUB/IDs or VDS. The linear extrapolation of lifetime from conditions of high VDS

or ISUB/IDS to lower operating conditions is often used to determine the operating

life of the device.

In measurements shown in this thesis, NMOS transistors with various dielectrics

and nominally similar channel lengths were stressed at large VDS and VGS corre-

sponding to the peak in the substrate current. However, since devices are not

identical due to slight variations in channel length and mobility, the drain voltage

during stress was set appropriately to obtain a range of IsUB/IDs ratios over which

the various devices could be compared. In this way, the effect of the gate dielectric

in the determining the reliability of a MOSFET was estimated.

3.4.3 Inversion layer mobility

Measurements were made on n- and p-channel devices with a W/L ratio of

100/100 Am. Values were extracted from the linear region of the IDS vs. VGs curve

for VDS = 50 mV. The effective mobility was defined as:

Aeff =I (3.21)-Cf o,(VGS - VT) VDS
where the threshold voltage, VT was found by linear extrapolation of the IDS vs.

VGs curve to IDs = 0. Since the process of nitridation and reoxidation produces

slight changes dielectric capacitance, it is important to use the actual dielectric

capacitance, Co., as determined from high frequency C-V measurements. The

above method may be somewhat in error near the threshold voltage particularly

in thin oxides because the assumed relation QN = Cox(Vus - VT) is not entirely

accurate [64]. We therefore report the mobility at V0s - VT >_ 0.5V. For evaluating
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the normal field dependence of the mobility, I!,ff is plotted against VGS - VT.

3.4.4 1/f noise

1/f noise, due its sensitivity to the density of oxide traps, has been used here

as a measurement tool to study oxide traps near the band edges of silicon [52]

where the process of nitridation/reoxidation is believed to introduce traps. As

discussed in section 3.3.1, normal C-V techniques are not valid in this region of the

bandgap. According to the McWhorter model [66], 1/f noise is attributed to carrier

density fluctuations arising from the trapping and de-trapping of inversion layer

carriers by oxide traps located within a tunneling distance of the interface. Thus

1/f noise measurements indicate the number of inversion layer carriers that are in

communication with oxide traps and allow an estimate of the interfacial oxide trap

density. As shown in section 6.1, 1/f noise expressed in terms of the drain voltage

noise spectrum is given by

2 NT(EF) V 2

S DS oc-T (3.22)Af WLC 2 f (3.22)z

where NT(EFP) (cm-') is the oxide trap density at the electron quasi-fermi level,

WL is the device area, C,, is oxide capacitance, f is the frequency, and typically -y

= 1. Since 1/f noise is sensitive to traps near the quasi-Fermi level, a low VDS is

desirable to maintain a nearly constant EFn from source to drain so as to determine

the energy location of traps. In strong inversion (Vas - VT Ž 0.2V), the EFn is

pinned near the conduction band but the oxide bands may move relative to the EFP

as shown in figure 3.5. Thus in principle, one can plot 1/f noise as a function of

gate bias to extract the oxide trap density as a function of energy and space.

To measure SVD, the test apparatus of figure 3.6 was used to measure the open

circuit drain voltage fluctuation. The entire device and test circuit are located

within a shielded probe station. The probe station was generally effective in elim-

inating radio-frequency interference, but additional care was required in reducing
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the electron quasi-Fermi level in Si.
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Figure 3.6: Test circuit used to measure 1/f noise in MOSFETs.



60 Hz noise interference. Two types of interference were observed: noise due to a

magnetic field and capacitively coupled noise. The former can be reduced by (i)

eliminating the sources of interference such as fluorescent lights, power supplies, and

power strips or (ii) by shielding the measurement system by enclosing it in material

with a high conductivity and high permeability. The skin depth of a material is

given by [65]:
1

6 = (3.23)

In the case of aluminum, the skin depth at 60 Hz is on the order of 9 mm. The

thickness of aluminum used in the construction of the probe station was 6 mm; thus,

the probe station was not particularly effective in attentuating magnetic fields at

60 Hz. However, greater success was had in reducing capacitively coupled noise

by reducing noise sources and eliminating stray capacitances. As final precaution,

noise measurements were not made at frequencies corresponding to 60 Hz multiples.

The device is biased with battery supplies instead of switch-mode power supplies to

eliminate the noise due to the power supply. The noise due to the batteries was be-

low the detection limit of the spectrum analyzers. The noise of the potentiometers

was limited to thermal noise and was well modelled by the relation Vth = 4kTRAf.

The drain voltage fluctuations are AC coupled to either of two spectrum analyz-

ers, the HP3585 or the HP3561. The HP3585's ultimate resolution is limited to

- 8nV/VH'z for a measurement bandwidth, A f = 3 Hz. It is capable of noise

measurements in the frequency range of 20 Hz - 50 kHz. The resolution of HP3561

is - 35nV/x/7i at A f = 0.3 Hz. but is capable of lower frequency measurements.

With AC coupling, the lower frequency limit of the HP3561 is , 1 Hz. For even

lower frequency measurements, DC coupling must be used and the measurement

becomes extremely sensitive to bias drift, thermal fluctuations, and other low fre-

quency fluctuations. Measurements with either the HP3561 or the HP3585 are in

agreement within the variances found on a single device that is measured repeatedly.

The total noise spectrum measured at the drain is a combination of the device



noise of interest and the noise due to the measurement system. In the following

first order analysis we determine the magnitude of the system noise which must

be subtracted from the total noise to yield the device 1/f noise. The total noise

spectral density, Sv,, measured by the spectrum analyzer is given by

V20 _ (r 0 II RL)2

SvT = f= + R 4kTRL + g(,o I R L)4kTR (3.24)

where Ž is the drain voltage noise spectral density of the DUT, 4kTRL is the

thermal noise of the load resistor, 4kTRG is the thermal noise of the gate bias

resistor, and ro = 1/go is output resistance of the device. The drain voltage noise

of the DUT contains both 1/f and thermal noise components

V2 ki 4kT g2
( -+ (-) (3.25)

Af WLCJf 2/3g, g0

where the first term of the RHS represents the 1/f noise of interest and second term

of RHS is the device thermal noise [67]. For measurements in the linear region,

VDs < VGs - VT, the drain current of the DUT is given by

W VD S
I = - Coz(VGS - VT - 2 )VDs (3.26)L 2

and the device transconductance, neglecting the normal field dependence of the

mobility is

w
gm = -- Co.VDs (3.27)

and the device output conductance is

90go -= Co(Vg, - VT - VDS) (3.28)

The value of the load resistance is



RL =VDD - VD(3.29)
oIDs

where VoD = 1.5V. For typical measurement values of VDs = 0.2 V and VGS - VT

= 0.5, 1 0.2 so that the measured noise can be approximated by
RL

SvT + (ro/RL)2 4kTRL + (gro)24kTRa (3.30)

where gr o < 1 in the linear region. For typical numbers, V0s - VT = 0.5, VDS =

0.2, W/L = 20/5, RL = 10 kfl the noise at the output due to the thermal noise of

the MOSFET is 8nV/VrHz, due to the load resistance is - 8nV/NV and due

to the gate resistance is - 9.6nV/V/H. Thus the total system noise for HP3585,

including the noise due to the spectrum analyzer is

system noise = ((9.6) ' + (8)' + (8)' + (8)') ' / ' 2 17nV/lH (3.31)

For the HP3561 the total system noise is

system noise = ((9.6)2 + (8)2 + (8)2 + (35)2))1/2 ~ 38nV/VI (3.32)

In devices with low 1/f noise, the system noise floor is easily detected in the

frequency range of the measurement. Usually, in comparing the noise in devices

with various gate dielectrics, we averaged the noise over at least 5 devices per wafer

to determine the variance in the noise. Typical relative variance across a wafer

defined as the ratio,

2

relative variance = s- (3.33)
SYD

where aoV is the variance in the observed noise and Sv, is the average observed

noise, varied from 10 % to 50 %. These variances are indicated as error bars in our

data.



Since the measured noise is also sensitive to the device area and the oxide ca-

pacitance the noise of devices from different wafers must be appropriately scaled for

meaningful comparisons. Unless otherwise indicated, the data is not the raw data

but has been scaled. Ideally, one would like to use large area devices to minimize

geometry variations, but as indicated by equation 3.22, the 1/f noise magnitude

falls off linearly with the area. This limits measurements to devices with areas <

100 utm 2 for t,, = 12nm particularly in the case of p-channel oxide devices which

consistently showed the lowest noise.

3.5 Effect of nitridation and reoxidation on com-

position

In this section, we will briefly review the material properties of nitrided oxides

as discussed in the literature. Where appropriate we include our data in support of

various observations on nitridation mechanisms.

It is generally accepted that the process of nitridation (or ammonia anneal) re-

sults in the incorporation of nitrogen and hydrogen into the silicon dioxide matrix

[12,41]. The extent of the incorporation depends on various factors including nitri-

dation temperature, pressure, time, and initial oxide thickness. Nitridation char-

acteristically results in the relatively rapid incorporation of nitrogen (or nitrogen-

containing species)into the surface and the interface region by primarily replacing

oxygen (or oxygen-containing species). The reaction with the bulk of the silicon

dioxide occurs more slowly by comparison. A typical AES depth profile is shown in

figure 3.7. It has been postulated that nitridation involves the reaction of NH3 (or

its derivatives) with the surface of the silicon dioxide film as well as the diffusion of

NHs (or its derivatives) through the silicon dioxide film to react with strained bonds

at the Si/SiO2 interface. The concept of a diffusion-limited reaction at the interface

is supported by the dependence of the interface nitrogen concentration on the initial
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oxide thickness as shown in figure 3.8 as well as the dependence on the ammonia

partial pressure (figure 3.9). The following reactions have been postulated to take

place [42]:

2Si02 + 2NH3 +-+ Si 2N 20 + 3H20 (3.34)

or

3Si0 2 + 4NH3 +-+ Si 3N4 + 6H20 (3.35)

Both reactions result in the evolution of oxygen-containing species which may

react elsewhere in the dielectric or out-diffuse from the dielectric. The role of

oxygen-containing by-products will be discussed shortly. The change in the free

energy for equation 3.34 is smaller than for equation 3.35 favoring the former as the

dominant reaction [421. In addition, the direct reaction of ammonia with the silicon

substrate is also possible. However, heavy nitridations indicate that the nitrogen

concentration is typically saturated at < 40 at. %, which would correspond to the

conversion of SiO 2 to Si 2N20. This is supported with AES data shown in figures

3.9 and 3.10. Nevertheless, the data does not preclude the presence of both Si 2N2 0

and Si3N4 phases on a molecular scale within the dielectric [57].

IR (infrared spectroscopy) studies by Naiman [69], indicate the presence of a

new line at a wavenumber of approximately 1000 cm - 1 which, due to its proximity

to the trisilylamine peak, was attributed to nitrogen which is planar triply bonded

to silicon. The nitridation conditions studied by Naiman, however, are relatively

heavy compared to the conditions used in this thesis. Thus the trigonal bonding

may represent a latter or final stage of the nitridation process.

An appealing view of the nitridation process has been proposed by Kuiper, et.

al. Naiman, et. al. Vasquez, et. al. and Han, et. al. [72,57,73,45] Nitridation of

SiO 2 is viewed as an equilibrium between nitridation by NHz species and oxidation

by OHY fragments which are by-products of the nitridation reaction. Everywhere in
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Figure 3.8: Effect of initial oxide thickness on the incorporation of nitrogen during

nitridation at 0.1 atm, 950 *C, 1 hour.
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poration of nitrogen during nitridation.



CC
8
a

E
0

0 5 10 15 20 25
Sputtering Time (min)

Figure 3.10: Data of Chang [31] showing the composition of a heavily nitrided oxide.

The oxide was annealed in ammonia at 1150 *C for 6 h.



the oxide film, a competition exists between nitriding species and oxidizing species.

While the nitridation of the surface occurs, the OHY by-products can easily escape

from the dielectric as long as the diffusion-limiting nitride-like layer is not com-

pletely formed. Simultaneously, the interface region is nitrided, with OH, groups

being consumed in the oxidation reaction of the underlying silicon. After a short

time, the reactions at the surface and at the interface are slowed down as a re-

sult of the formation of diffusion barriers. At this time the nitridation of the bulk

has not proceeded very far since the escape of OH, species from the bulk is more

difficult. Incorporation of nitrogen into the bulk of the dielectric is limited by

the out-diffusion of oxygen-containing by-products. It is also possible that some

NH. species and by-products may also become trapped within the film. Increasing

nitridation temperature enhances the out-diffusion of OH, and results in greater

nitrogen incorporation as well reduced hydrogen to nitrogen (H/N) ratios in the

film bulk [72].

Evidence for oxidation of the underlying silicon by oxygen-containing by-products

during nitridation can be seen in the data of Chang [31]. They present a 17 nm

film nitrided at 1150 *C for 6 hours, a very heavy nitridation condition, as shown

in figure 3.10. It is interesting to note that the profile clearly shows an oxygen

peak at the interface. Further evidence of oxygen-rich interfacial region is given by

Vasquez [70] in an XPS (X-ray photoelectron spectroscopy) study and by Han [45]

in an AES study. Our AES data was not optimized to detect the oxygen-rich region

though its presence may be suggested by electrical measurements.

The incorporation of hydrogen, while implicit in the above discussion, has not

been as extensively studied as the incorporation of nitrogen. The primary reason is

the difficulty in detecting hydrogen. However, in the work of Habraken and Kuiper

[71,721 hydrogen was detected by means of nuclear reaction analysis (NRA). The

NRA technique depends on a resonant nuclear reaction between protons (hydrogen)

in the sample and an incident 15N++ beam. As shown in figure 3.11, the incident
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Figure 3.11: Nuclear reaction technique. The incident beam loses energy until it is

at 6.385 MeV when a nuclear reaction occurs releasing a /y-ray which can calibrated

to the amount of hydrogen. The width of the resonance window is estimated to be

30 A [71].

beam enters the sample at an energy above 6.385 MeV. As it penetrates the material

the beam loses energy until it is at 6.385 MeV. At this precise energy a nuclear

reaction occurs yielding an a particle and a characteristic 4.43-MeV - ray which

can detected and calibrated to the amount of hydrogen in the sample [103]. Kuiper

and Habraken studied the simultaneous incorporation of nitrogen and hydrogen in

the temperature range of 800 - 1160 *C for ammonia pressures ranging from 1-10

atm. It was found that the distribution of hydrogen was nearly uniform throughout

the dielectric unlike the non-uniform nitrogen distribution. However, the amount

of hydrogen incorporated was related to the nitrogen content. The concentration of

hydrogen varied from less 1 at. % to 10 at. % in the case of a 10 atm. nitridation.



The fact that nitrogen and hydrogen incorporation is somehow correlated favors

a nitridation mechanism involving NH. as the reactive species. They speculated

that the hydrogen content of the more heavily nitrided interface and surface regions

may be less as more nitrogen becomes trigonally bonded to silicon in these regions.

Due to the resolution limit of the NRA technique to approximately 3nm, this could

not be directly substantiated. However, etch-rate measurements (which should

be sensitive to the hydrogen content of the film) suggested a reduced etch-rate

for surface and interface regions [57,72]. It was also found that the number of

hydrogen atoms incorporated per nitrogen atom incorporated (H/N ratio) decreased

with increasing nitridation temperature and decreasing nitridation pressure. The

reduced H/N ratio with lower nitridation pressure is explained by enhanced out-

diffusion of OH, by-products due to a more transparent diffusion barrier at the

surface. The reduced H/N ratio with increasing temperature is believed to be due

to enhanced out-diffusion of hydrogen-containing species at elevated temperatures.

Hydrogen is believed to be incorporated primarily as N-H into the dielectric.

In the work of Pan [35], FTIR analysis indicated an increase in the concentration

of N-H bonds. Si-OH bonds were not found to increase. The work of Ruggles, et.

al. [74] generally supports this. Infrared spectroscopy was used to detect a large

increase in the concentration of N-H groups. The concentration of O-H and Si-H

groups were only slightly increased. This does not, however, rule out the presence

of Si-H groups below the detection limit of the technique.

Wherever hydrogen is detected, the coordination of atoms is expected to de-

viate from that of a complete amorphous network characteristic of SiO 2 or Si3N4.
As nitridation proceeds, however, the nitrogen atoms become more completely co-

ordinated with silicon in the form of SisN 4 and/or Si2N20 [57] and the hydrogen

content is reduced [72].

The reoxidation of a nitrided oxide film again effects the nitrogen and hydrogen

content of the film. The most immediately apparent effect associated with reoxida-



tion is the observation that the interfacial nitrogen acts as a diffusion barrier which

prevents oxidation of the substrate [25,42]. As reoxidation proceeds, nitrogen ap-

pears to be removed from the surface and then the bulk regions of the dielectric

while leaving the interface nitrogen relatively intact [57] preventing the oxidation of

the substrate. This is illustrated in the AES profile of figure 3.12. While reoxidation

slowly removes the incorporated nitrogen in the surface and bulk of the dielectric

leaving the interface intact, the electrical properties of the dielectric change dra-

matically and comparatively quickly as discussed in chapter 4. Sufficiently long

reoxidations, however, eventually increase the film thickness [25,42].

The effect of reoxidation on the hydrogen content of nitrided oxides has received

relatively scarce attention. In the work of Pan [101], it is shown by the NRA tech-

nique that the hydrogen content of nitrided oxide films is reduced upon reoxidation.

However, the magnitude of the decrease and the time scale on which hydrogen is

removed is not reported.

In contrast with previous work, we have concentrated on low pressure nitrida-

tions which are relatively light and subsequent reoxidations of these light nitrida-

tions. Typically, a 1 hour, 0.01 atm. nitridation at 950*C had < 8 atomic % of

interfacial nitrogen and a negligible amount of bulk nitrogen. While 0.1 atm. reox-

idations up to 3 hours do not significantly change the interfacial nitrogen content

or increase the dielectric thickness, reoxidation was found to significantly alter the

electrical properties of nitrided oxides.
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Figure 3.12: Effect of reoxidation on the nitrogen profile in the original nitrided

oxide film.



Chapter 4

MOS Electrical Properties of the

Nitridat ion/ Reoxidat ion Process

4.1 Low pressure nitridation/reoxidation process

Various dielectrics were incorporated into field isolated, 100pm x 100.am, polysil-

icon gate MOS test capacitors for electrical characterization. The pre-stress fixed

charge (Qf) and midgap interface state density (Dit) were extracted from the high-

frequency and quasi-static C-V measurements. Constant current stressing (CCS)

was used for accelerated aging to study dielectric degradation under electrical stress.

A constant current stress of 10 t&A/cm 2 under positive gate bias and negative bias

was used and the CCS was periodically interrupted to measure the generation of

interface states at midgap (ADit) and the trapped charge (AQf). In addition, the

dielectric charge-to-breakdown (Qbd) was measured at a constant current density of

10 mA/cm2 under positive and negative gate bias. I-V measurements were used to

determine the dielectric breakdown field (Ebd) and to study the dominant conduc-

tion mechanism at high electric fields. The measurement techniques are described

in greater detail in section 3.3.
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Figure 4.1: The fixed positive charge measured as a function of nitridation condi-

tions. (,0) data points represent nitrided oxides, (M, ]) data points represent

reoxidized nitrided oxides, and (A) data points represent nitrided oxides that have

undergone an inert anneal.

4.1.1 Fixed Charge

The fixed charge, Qf, in the dielectric is reported as the effective charge at

the substrate interface. As discussed in section 3.3.1, the accuracy of the flatband

voltage measurement is ± 0.01 V, corresponding to an uncertainty of about ±2 x 1010

cm - 2 . However, due to the uncertainty in the value of ,ma of ± 0.06 V, the precise

value of the fixed charge is uncertain to 1011 cm - 2 .

Typically, our oxides had very little fixed charge, - 5 x 1010 cm - 2 . Low pressure

nitridation introduces fixed positive charge into the dielectric. In figure 4.1, the fixed

positive charge is shown to increase with increasing nitridation time and pressure.

With a sufficiently long nitridation (5 hour, 0.1 atm.), a maximum in the fixed
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charge is reached at 1.1 x1012 /cm 2 . With heavier nitridations the fixed charge

begins to decrease. This turnaround behavior in fixed positive charge has been

reported extensively by other researchers [21,33,34,38,96]. The peak fixed charge

reported in the literature ranges from 0.6 to 2.0 x 1012 /cm 2 depending on the initial

oxide thickness, nitridation temperature, nitridation technique (i.e. atmospheric

[21,34,38,37], rapid thermal [36,47], dilute [17], high pressure [42], and low pressure

[88]), and post nitridation anneal [56]. In general, in the post-turnaround regime,

lower fixed charge is associated with higher temperatures [21,96]. While low pressure

nitridation at 0.1 atm., 950 *C requires approximately 5 hours before the fixed

positive charge peaks and begins to decrease, atmospheric pressure nitridations of

10nm oxides turnaround more quickly and are reported to require only 10 and 30

minutes at 1000*C and 900*C, respectively [95,96]. A significant difference between

our work and previous work is the attempt to optimize the electrical properties of

the nitridation process in the pre-turnaround regime.

As shown in figure 4.1, an inert post-nitridation anneal at 0.1 atm Ar, 950*C

did not alter the fixed charge significantly. Other workers [21,34] have observed a

slight decrease (< 10%) with sufficiently long inert anneals and have observed that

continued nitridation appears to be more effective in reducing fixed charge than an

inert thermal anneal in the post-turnaround regime.

The reoxidation of nitrided oxides was performed in 0.1 atm. oxygen at 9500C

and did not significantly reduce the fixed positive charge (See Figure 4.1). Initially,

reoxidation of heavily nitrided oxides marginally increases the fixed positive charge.

Longer reoxidations or reoxidations of lightly nitrided oxides slightly reduce the

fixed positive charge. We speculate that the continued increase in fixed charge

during the initial stages of a reoxidation may due to a continued nitridation arising

from trapped NH, species in the dielectric [57] (See section 4.3).

We have concentrated on light nitridations to minimize the fixed positive charge

in nitrided oxides and reoxidized nitrided oxides. In contrast, previous workers



have used heavy nitridations to exploit the turnaround in Qj to minimize the fixed

positive charge. In the post-turnaround regime, the minimum fixed charge appears

to vary from 1.0-3.0x1011 cm-2 depending on the nitridation condition [21,37,96].

4.1.2 Midgap Interface State Density

The midgap interface state density, Dit, is reported as an average over 50 meV

around midgap. Typically our oxides had low interface state densities (- 1 x 1010

states/cm2 eV). Low pressure nitridation increases the midgap interface state den-

sity depending on the nitridation pressure and time until a maximum of 1.3 x 1011

states/cm2 eV is reached with a 5 hour, 0.1 atm. nitridation. Heavier nitridations

eventually decrease the midgap interface state density. (See Figure 4.2). The

turnaround behavior of Dit with nitridation closely tracks the behavior of Qf. Simi-

lar results were reported by Hori, et. al. using rapid thermal nitridation [36.' Previ-

ous researchers have reported peaks in Dit ranging from 0.7 to 5.0 x 1011 cm-2 eV - 1

depending on nitridation conditions with higher nitridation temperatures favoring a

lower peak interface state density [34,36]. In the case of an atmospheric nitridation,

a peak in the interface state density is reached at 30 minutes at 950 *C.

As shown in figure 4.2, an inert post-nitridation anneal at 0.1 atm Ar, 950 °C

does not reduce the interface state density significantly. Other workers [34,56] have

reported a slight decrease (•< 10%) for sufficiently long inert anneals.

The reoxidation of nitrided oxides did not reduce midgap interface state density

significantly (See Figure 4.2). In fact, initial reoxidations of heavy nitrided oxides

tend to increase Dit while longer reoxidations or reoxidations of lightly nitrided

oxides slightly reduce the midgap interface state density. Note that the behavior

of Qr and Dit are closely correlated over the range of nitridation and reoxidation

conditions studied.

Again, we have used the pre-turnaround regime to minimize interface state den-

sity. In the post-turnaround regime the minimum Dit values range from 1-3 x1010
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Figure 4.2: The midgap interface state density measured as a function of nitrida-

tion conditions. (@,0) data points represent nitrided oxides, ( ,El) data points

represent reoxidized nitrided oxides, and (A) data points represent nitrided oxides

that have undergone an inert anneal.
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cm- 2 eV- 1 depending on the nitridation conditions with heavier nitridation gener-

ally leading to lower Dit [34,36,37].

4.1.3 Charge Trapping

MOS capacitors with various dielectrics were stressed at a constant current den-

sity of 10 j&A/cm 2 under positive gate bias. The trapped charge, AQ1 , was measured

as a flatband voltage shift for various fluence levels to 0.085C/cm2 and is reported as

the effective charge at the substrate interface. Oxide characteristically exhibited a

very small negative flatband voltage shift corresponding to ~ 4 x 1010 /cm2 positive

charge trapping over the 8500 second CCS stress. In contrast, the flatband voltage

shifts of nitrided oxides were positive indicating that electron trapping dominated.

The amount of trapped charge versus fluence is shown for various nitrided oxides in

Figure 4.3. Notice that lighter nitridations exhibit much less electron trapping com-

pared with heavier nitridations. In figure 4.4, a maximum in the amount of electron

trapping at a fluence level of 0.035C/cm2 is found to be 2 x 1012 /cm2 for a 3 hour,

0.1 atm. nitridation. Previously reported results on various nitrided oxides under

various stress conditions [30,31,32,94] indicate that the electron trapping saturates

between 2.0 to 6.0 x1012 /cm2 . Notice that in figure 4.4, the AQ¢ at a fluence of

0.035C/cm 2 increases, peaks with a 3 hour, 0.1 atm. nitridation, and decreases with

heavier nitridations. A turnaround in electron trapping has not been previously re-

ported. This may be due to the fact that in the post-turnaround regime, electron

trapping remains very significant. Unlike fixed charge and interface state density,

electron trapping does not return to oxide values in the limit of heavy nitridations

[31].
As shown in figure 4.4, an inert post-nitridation anneal in 0.1 atm Ar does not

significantly reduce electron trapping. Other researchers have reported that a high

temperature atmospheric pressure inert anneal (at 1100 *C) is effective in reducing

electron trapping by as much as 35 % [32].
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Figure 4.3: Charge trapping as evidenced by flatband voltage shifts during a con-

stant current stress under positive gate conditions in nitrided oxides.
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Figure 4.4: The amount of trapped charge at a fluence of 0.035C/cm' is plotted

as a function of nitridation/reoxidation conditions. (*,0) data points represent

nitrided oxides, (0 , O) data points represent reoxidized nitrided oxides, and (A)

data points represent nitrided oxides that have undergone an inert anneal.



In agreement with previously reported results [14,37,40], reoxidation of nitrided

oxide produces a dramatic reduction in electron trapping under electrical stress

compared to the original nitrided oxide (See Figure 4.3 and 4.4). Charge trapping

in the 0.01 atm. nitrided oxides can be essentially eliminated by reoxidation. Re-

oxidations of heavier nitridations appear to be less effective than reoxidations of

lighter nitridations in reducing electron trapping. The similarity in the character-

istics of the nitrided oxides after being reoxidized for a range of times indicates

that the process window for achieving reduced electron trapping with reoxidation

is quite large (See figure 4.4). However, excessive reoxidation of nitrided oxides

increase the dielectric thickness and cause an increase in positive charge trapping

under electrical stress which is characteristic of oxide.

For certain applications, constant current stressing under negative gate condi-

tions is also important [48]. In this case, electrons are injected from the n + poly gate

as opposed to the substrate. Due to the inferiority of the polysilicon-insulator inter-

face relative to the single crystal-insulator interface, many capacitors, particularly

those with nitrided oxide and oxide gate dielectrics, did not survive a negative gate

stress. In figure 4.5, however, we see that reoxidized nitrided oxides are superior to

oxides under negative gate stress.

4.1.4 Interface State Generation

The generated interface state density at midgap, ADt, under positive gate con-

stant current stress at 10 lzA/cm 2 is shown for various dielectrics in figure 4.6.

Our oxides have a interface state generation rate which is within 20% of that re-

ported for oxide under similar CCS conditions by Liang, et. al. [90]. In contrast

to previously reported results, we found that lightly nitrided oxides generate more

interface states under electrical stress than oxide. However, heavily nitrided oxides

eventually exhibit interface state generation below that of oxide in agreement with

previous work using atmospheric, heavily nitrided oxides [14,23]. In figure 4.7, we
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Figure 4.5: Comparison of the flatband voltage shifts in reoxidized nitrided oxide

and control oxides under constant current stress for negative gate bias.
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Figure 4.6: Interface state generation during a constant current stress under positive

gate bias in nitrided oxides.
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Figure 4.7: Interface state generation at a fluence of 0.035C/cm2 is plotted as a

function of nitridation/reoxidation conditions. (,0) data points represent ni-

trided oxides, (U, O) data points represent reoxidized nitrided oxides, and (A)

data points represent nitrided oxides that have undergone an inert anneal.

observed that ADit at fluence level of 0.035C/cm' exhibits a turnaround with ni-

tridation with a peak at a 1 hour, 0.01 atm. nitridation and decreases for heavier

nitridations (increasing nitridation time and pressure). A turnaround in ADit has

not been specifically reported though it can be seen in the data of [37,88]. In the

data of Terry, a light nitridation at 800 *C exhibits greater ADit than oxide. In

the most recent data of Hori [102] 950 *C rapid thermal nitridations also exhibit a

greater ADit than oxide in agreement with our results.

As shown in figure 4.7, an inert post-nitridation anneal at 0.1 atm Ar does

not significantly reduce ADit. Thus continued nitridations are more effective in

reducing ADit than an inert thermal anneal.



The reoxidation of nitrided oxide dramatically reduces the generation of interface

states under constant current stress particularly in lightly nitrided oxides. The

improvement is by as much as two orders of magnitude (See Figure 4.6 and 4.7).

Reoxidation is much more effective in reducing the interface state generation than

increasing nitridation. Reoxidation of heavily nitrided oxides appear to have a

diminishing effect on interface state generation. Notice that the reoxidations of the

1 hour, 0.01 atm. nitrided oxide exhibited the lowest generation of interface states

under CCS. Similar to the reduced electron trapping effect, the process window for

achieving the reduced interface state generation is quite large as can be seen by the

similar characteristics of the nitrided oxides after various reoxidations. A reduction

in ADit due to reoxidation has not been specifically reported though it can be seen

in the data of Wong [881. Recently, Hori [1021 has reproduced the above effect using

rapid thermal nitridation and reoxidation.

Under negative gate constant current stressing, the generation of interface states

in reoxidized nitrided oxides is much less than in oxides as shown in figure 4.8.

4.1.5 Current-Voltage

The positive gate bias I-V characteristics of a reoxidized nitrided oxide (3 hour,

0.1 atm. reoxidation of a 1 hour, 0.01 atm. nitrided oxide) and of an oxide are shown

in Figure 4.9. Both the reoxidized nitrided oxide and oxide exhibit reproducible

I-V characteristics with little charge trapping. In contrast, nitrided oxide I-V

measurements irreversibly shift after each measurement due to significant electron

trapping. A good fit to the experimental data was obtained with both oxide and

reoxidized nitrided oxide by using the Fowler-Nordheim tunneling current model

[60]. In addition, the critical breakdown field, Ebd of oxide was found to be , 12

MV/cm while the Ebd of the reoxidized nitrided oxide was slightly higher at , 14

MV/cm under positive gate conditions.

Under negative gate conditions, the critical breakdown field, Ebd, of oxide varied
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Figure 4.8: Comparison of interface state generation in reoxidized nitrided oxides

and control oxides under negative gate constant current stress conditions.
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Figure 4.9: The positive gate bias I-V characteristics of a reoxidized nitrided oxide

(3 hour, 0.1 atm. reoxidation of a 1 hour, 0.01 atm. nitrided oxide) and of an oxide.
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Figure 4.10: Comparison of charge-to-breakdown under constant current stress in

reoxidized nitrided oxides and control oxides.

from 7-8 MV/cm while the Ebd of the reoxidized nitrided oxide varied from 8-10

MV/cm.

4.1.6 Charge-to-Breakdown

The charge-to-breakdown, Qbd, of reoxidized nitrided oxides was measured by pass-

ing a constant current density of 10 mA/cm2 (positive gate bias) through the di-

electric until destructive dielectric breakdown. Our oxide was found to have a Qba

comparable to the data presented by Chen, et. al. [59] Reoxidized nitrided oxides

have a much larger charge-to-breakdown, Qbd, compared to oxide. A typical Qbd of

140 C/cm' was obtained with a 3 hour, 0.1 atm. reoxidation of a 1 hour, 0.01 atm.

nitrided oxide. See figure 4.10.

In table 4.1, the Qbd of various dielectrics is summarized for positive and negative

·C· ~



Table 4.1: Charge-to-breakdown of reoxidized nitrided oxides at 10 mA/cm2 .

gate stresses. In general, Qbd for reoxidized nitrided oxides are superior to that of

oxides. Recently, Hori [102] has reported a Qbd of 350 C/cm 2 for 8 nm dielectrics

formed with rapid thermal nitridation and reoxidation.

4.2 Optimization of the nitridation/reoxidation

process

In the previous section, the effect of nitridation/reoxidation conditions on a

given electrical parameter was discussed independently of the behavior of other

electrical parameters. In optimizing the process for use in scaled transistors we

need to consider various parameters simultaneously. In general, optimization in-

volves numerous electrical parameters including fixed charge, interface state den-

sity, charge trapping, interface state generation, charge-to-breakdown, breakdown

86



field, and low-field leakage. Additional considerations include defect density and

yield, dopant masking properties, and thermal budget required to form the dielec-

tric. In order to make the optimization problem tractable we limit the variables to

just four electrical parameters: fixed charge (Q1), interface state density (Dit), elec-

tron trapping under CCS (AQf), and interface state generation under CCS (ADit).

Note that fixed positive charge and interface states are parameters that relate pri-

marily to device performance in that they affect inversion layer mobility, device

transconductance, and noise. Interface state generation and electron trapping are

parameters that relate primarily to device reliability since they represent a change

in device characteristics.

Dielectric optimization involves identifying the nitridation/reoxidation condi-

tions (time and pressure) which minimize the above process dependent electrical

parameters. In general, this leads us to lighter nitridations (lower pressures and

shorter times) which results in lower fixed positive charge, interface state density

and electron trapping. In addition, nitridations coupled with reoxidations elimi-

nate the remaining electron traps and result in improved suppression of interface

state generation. The constraint to arbitrarily light nitridations in this process is

the eventual loss of ADit suppression. These ideas are illustrated in the series of

Figures 4.11a-d which show the dependence of the various electrical parameters on

the nitridation/reoxidation conditions.
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Figure 4.11: (a) Fixed charge plotted against observed interface state generation.

(b) Interface state density plotted against observed interface state generation. Ni-

trided oxides are indicated by (A), reoxidized nitrided oxides by (0), and oxides

by (0).
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In these figures, fixed positive charge and interface state density are each plot-

ted against generated interface states,ADit, and trapped electrons, AQf, for a given

level of stress. Process conditions yielding points near the origin are optimal. In

each plot, the effect of various nitridation conditions are represented by a curve

which identifies the relationship between a given pair of performance-reliability pa-

rameters. The effect of reoxidation is the translation of the nitridation curve to

a more favorable curve closer to the vertical axis. The primary advantage of re-

oxidation is improved reliability. In each plot the maximum reliability occurs at

the following condition: 1 hour, 0.01 atm. nitridation combined with a reoxida-

tion. Moving towards heavier nitridations is not desirable because of increased

fixed positive charge, interface state density, electron trapping, and interface state

generation. Moving towards lighter nitridations results in the virtual elimination of

electron trapping and in a tradeoff between Qf and ADit and in a tradeoff between

Dit and ADit. The tradeoff region spans the region from the point of maximum

reliability through points of successively lighter nitridations to the limit of zero ni-

tridation corresponding to the case of silicon dioxide. Since the behavior of fixed

positive charge and interface state density closely track under nitridation and re-

oxidation, the minimization of one parameter generally optimizes the other. The

nitridation/reoxidation condition which produces the best reliability has the follow-

ing characteristics: the interfacial nitrogen content of the dielectric is - 8 at.%, the

fixed charge is - 2.5 x 101 1cm - 2 , the interface state density is - 3.0 x 1010cm-2eV - ',

charge trapping is virtually eliminated, and interface state generation is a factor of

25 less than in silicon dioxide. Lighter nitridations allow even lower fixed charge

and interface state density but less improvement in reliability.

4.3 Discussion

A. Nitridation/reozidation process



Nitridation degrades the pre-stress electrical properties of oxide by increasing

the fixed positive charge and interface state density. Under electrical stress, lightly

nitrided oxides also exhibit increased interface state generation and electron trap-

ping compared to oxide. With heavier nitridation, the positive fixed charge (Q1),

midgap interface state density (Dit), electron trapping (AQf) under CCS, and in-

terface state generation (ADit) under CCS all increase, peak, and subsequently

decrease (turnaround). Continued thermal nitridations seem to be more effective

in achieving these turnarounds than an inert thermal anneal, particularly in the

case of Qf, Dit, and ADit [56]. In the post-turnaround regime, fixed charge and

interface state density approach oxide values in the limit of heavy nitridations. The

generation of interface states is radically suppressed by at least an order of magni-

tude compared to silicon oxide. Electron trapping, however, remains significant and

much worse than oxide in this regime. It should be noted that other researchers

have reported that the amount of electron trapping increases monotonically with

increasing nitridation and does not turnaround [30,102].

In our data, the interface state generation under CCS exhibits the earliest

turnaround and peaks with a 1 hour, 0.01 atm. nitridation. The electron trap-

ping under CCS exhibits the next turnaround and peaks with a 3 hour, 0.1 atm.

nitrided oxide. The fixed positive charge and interface state density closely track

in agreement with recently reported results [36] and exhibit respective peaks at a 5

hour, 0.1 atm. nitridation.

The observed turnarounds in QI, Dit, AQf, and ADit suggest a defect forma-

tion mechanism associated with the incorporation of nitrogen or hydrogen and an

annealing process which reduces defects with continued nitridation. It is unlikely

that a simple thermal anneal is responsible for defect reduction particularly in the

case of Qf, Dit, and ADit since continued nitridation is more effective than an

inert thermal anneal in reducing these defects. A possible defect annealing mecha-

nism may be associated with the formation of a thin, interfacial oxygen rich layer



which is observed with continued nitridation and is attributed to the reaction of

oxygen-containing byproducts of nitridation process at the substrate [45,93].

The reoxidation of nitrided oxides initially increases the fixed positive charge and

interface state density. This may be attributed to a continued nitridation reaction

arising from nitrogen-containing byproducts of the reoxidation process released from

the surface and bulk regions that react at the interface and continue to form more

fixed positive charge and interface states. A continued nitridation reaction might

also be due to residual unreacted nitrogen-containing species which remain within

the dielectric when the nitridation process is discontinued [571. We have observed

this effect only in nitrided oxides with surface and bulk nitrogen content greater

than 8 at. %. The eventual decrease in Q1 and Dit with continued reoxidation

may be the result of interface reoxidation analogous to the reoxidation that occurs

for heavier nitridations. Reoxidation is more effective in reducing fixed charge and

interface state density than an inert thermal anneal [56]. Excessive reoxidation of

nitrided oxides results in an eventual increase in insulator thickness and electrical

properties characteristic of oxide such as positive charge trapping under electrical

stress and lower Qbd-

B. Speculative models of reliability improvement

The most dramatic effects associated with reoxidation are reduced electron trap-

ping relative to nitrided oxide and significantly decreased generation of interface

states relative to thermal oxide. Consider electron trapping. It is unlikely that

electron trapping is solely associated with the nitrogen content of the dielectric,

since the nitrogen content of the dielectric is not significantly altered by reoxidation

whereas electron trapping is dramatically reduced even for slight reoxidations. See

figure 4.4. It has been suggested that electron traps may be associated with O-H

bonds introduced by nitridation [30]. This speculation was motivated by research

in silicon dioxide which showed a correlation between the presence of O-H bonds

and electron traps [77,891. The capture cross-section of such traps was estimated to



10- 17cm 2 in oxides in agreement with capture cross-sections found in nitrided oxide

[30]. More recent work has shown that capture cross-sections in nitrided oxides may

be closer to 10- 14cm 2 [31] or 10- 15cm 2 [32]. Moreover, FTIR measurements detect

a greater number of N-H bonds in nitrided oxides than O-H bonds [35,74]. While

this suggests that electron traps may not be water-related, they nevertheless may be

related to the presence of hydrogen since nitridation is known to introduce hydrogen

[35,72] whereas reoxidation is known to remove hydrogen [101]. Furthermore, high

temperature (1100 0C) inert anneals have been shown to somewhat reduce electron

traps [30,32] which may also remove hydrogen. Direct evidence for the removal of

hydrogen due to an inert thermal anneal has not been provided yet.

The property of suppression of interface state generation is arguably the most

advantageous property of nitrided oxides and reoxidized nitrided oxides. A plausible

model of the suppression of interface state generation must explain the following

observations:

(1) Thermal silicon dioxide readily generates interface states.

(2) Lightly nitrided oxides actually generate more interface states than oxide.

(3) Heavier nitridations eventually result in less interface state generation than

oxides.

(4) The reoxidation of lightly nitrided oxide greatly reduces interface state gener-

ation compared to oxide. The reoxidation of heavier nitridations have a diminishing

effect on the suppression of interface state generation.

There are two possible models which have been used to explain interface state

generation in thermal silicon dioxide which might be applied to nitrided oxides.

In the first model, interface state generation in oxides is associated with inter-

facial stress in this Si-SiO system. This model has been lent credence through the

measurement of interface state generation under ionizing radiation as a function

of intentionally introduced interfacial stress [91]. In the work of Ma, it is shown

that interface state generation is suppressed when the underlying silicon surface



is placed under compression. In applying this model to nitrided oxides one might

argue that the process of nitridation results in the densification of the insulator as

the interface incorporates more nitrogen and as SiO2 tends towards Si3 N 4. Since

thermally grown oxide is compressive, as nitridation continues one might expect

that the interfacial region of the oxide to grow less compressive and tend towards

tensile stress characteristic of silicon nitride. This model, however, is difficult to

reconcile with the observation that ADit exhibits a turnaround whereas the model

suggests a monotonic improvement in ADit with nitridation. Moreover, it is in-

consistent with the observation that a reoxidation of lightly nitrided oxides greatly

suppresses ADit despite the fact that the interfacial nitrogen content is not altered

by reoxidation.

In the second model, interface state generation in oxides is associated with weak

hydrogenated bonds at the interface which are broken by energetic electrons during

electrical stress [6,78,92]. For example, one can write the following reaction

SiH + e- -+ Si* + Hi (4.1)

where S* is a trivalent silicon atom (i.e., interface trap) and Hi is an interstitial

hydrogen atom.

For short stress times, the model predicts that interface state generation is

a reaction-rate limited process proportional to the concentration of hydrogenated

bonds. We can then explain the turnaround behavior of ADit by postulating a

turnaround in the interface concentration of hydrogenated bonds as nitridation pro-

ceeds. Thus in the initial stages of the nitridation process, nitrogen and hydrogen is

incorporated into the interface region resulting in a concentration of hydrogenated

bonds which is much larger than in silicon dioxide. Thus interface state generation

is enhanced for light nitridations. As nitridation proceeds the interfacial hydrogen

concentration is reduced by two possible means: a) the incorporation of more ni-

trogen results in greater proportion of strong bonds as nitrogen becomes trigonally



bonded to silicon replacing weak hydrogenated bonds or b) interface reoxidation by

oxygen-containing byproducts replaces weak hydrogenated bonds. In either case,

the hydrogen concentration must be reduced below oxide levels to account for the

suppression of interface state generation for heavy nitridations. Unfortunately, the

measurement of the hydrogen content of the interface is limited by the depth reso-

lution of the NRA technique [103]. To explain observation 4) above we recall that

the interfacial nitrogen layer greatly hinders the diffusion of oxygen to the substrate

suppressing further silicon oxidation to the extent that an interfacial oxide layer has

not been observed. Nevertheless a small amount of oxygen may react with hydro-

genated bonds thereby reducing the interface hydrogen concentration . Recall that

reoxidation is known to remove hydrogen at least from the bulk of the nitrided oxide

[101]. Moreover the amount of oxygen required for such a purpose is less than a

monolayer since the number of generated interface states is ~ 1012 cm - 2 compared

to a Si surface bond density of ~ 10W5 cm - 2.

4.4 Radiation effects

The results reported in this section were obtained in collaboration with Gregg

Dunn of Lincoln Laboratories who performed radiation and C-V measurements on

our samples. The results were submitted to Applied Physics Letters [79]. Appro-

priate sections are reproduced below.

The nitridation of silicon dioxide has been known to result in improved radi-

ation resistance [16,17,21,22]. A general conclusion of the radiation studies has

been that the heaviest nitridations (high temperatures, long times) produce the

most radiation-resistant dielectrics [17,21,801. A high temperature-time product is

undesirable in device processing because this can result in unwanted dopant redis-

tribution and wafer warpage. Sundaresan et. al. [221 have addressed this problem

by employing rapid thermal nitridation. Here we show that light, low pressure



nitridations coupled with a reoxidation can be used to achieve radiation hardness.

For radiation experiments, a control oxide and two reoxidized nitrided oxide

devices were investigated. Lot A refers to a 7.6 torr, 1 hour nitridation followed by

a 76 torr, 3 hour reoxidation; lot B refers to a 7.6 torr, 15 minute nitridation followed

by a 76 torr, 45 minute reoxidation. The processing procedure and structure of the

capacitors were identical to those used in the above electrical measurements. The

area of capacitors was 300 pim x 300 jsm.

Capacitance-voltage measurements of the devices were performed before and

after irradiation. Capacitors were irradiated in an Aracor X-ray test system at a

dose rate of 312 krad(Si)/min to total doses 1, 2, and 5 Mrad(Si). +1.35 V bias

was applied to the gate during irradiation. After irradiation the devices were left

floating for 24 hours before testing. Measurements of selected samples immediately

after irradiation demonstrated that less than 10% rebound [81] occurred under these

conditions. Rebound refers to the annealing of radiation-induced fixed charge. This

annealing is enhanced by temperature and applied positive bias, and should be an

important consideration in any radiation experiment, as the time and conditions

between irradiation and test can strongly affect results.

Radiation-induced interface state build-up in the capacitors is plotted in figure

4.12. It can be seen that interface state density in Lot A devices is constant to within

experimental accuracy (_ 1 x 1010 cm - 2 eV-1), even after 5 Mrad. A moderate

build-up occurs in Lot B devices, about 2 x 010 cm -2 eV- 1. Substantial build-up

occurs in the oxide, about 1.5 x 1011 cm-' eV- 1. The increase appears to follow a

DO"0 5 dependence on dose, as reported by Winokur [82].

In order to assess fixed charge generation during irradiation, the midgap voltage

shifts were measured. The midgap voltage is the voltage at which the quasi-Fermi

is at the middle of the Si bandgap. Measurement of the midgap voltage shifts

has become preferred to flatband voltage due to reduced effect of interface states

at midgap. Midgap voltage shifts for the capacitors are plotted in figure 4.13.
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Figure 4.12: Radiation-induced interface state build-up in various dielectrics.
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Figure 4.13: Radiation-induced midgap voltage shifts in various dielectrics. LOT

A - 0.01 atm. ammonia 1 hr and reoxidation; LOT B - 0.01 atm ammonia 0.25 hr

and reoxidation.

Because negligible interface state build up occurred in the reoxidized nitrided oxides,

flatband and midgap voltage shifts agreed to within a few millivolts. Only 67 mV

shift occurred in Lot A devices after 5 Mrad, indicating a fixed charge increase

of approximately 1 x 1011 cm - 2. As with interface state build-up, the effect of

radiation on Lot B devices was greater, producing a 280 mV shift, and greater still

in the oxide, producing a 320 mV shift.

The reduced midgap voltage shifts measured in these reoxidized nitrided oxides

are believed to be a true indication of reduced fixed charge build-up, and not an

artifact due to electron trapping compensation, as discussed by Sundaresan et.al. It

is well known that nitridation of gate oxide results in an increase in electron traps.

Electrons released by the ionizing radiation may be trapped, resulting in a positive



voltage shift which counters the negative shift produced by trapped holes. However,

constant current stress measurements have shown that these reoxidized nitrided

oxides contain negligible amounts of electron traps (Section 4.1.3). Furthermore,

a simple calculation shows that the compensating effect due to electron trapping

must be very small, even in a nitrided oxide which contains considerable numbers

of traps.

We know from simple trapping theory that

dndn = a(N - n) (4.2)

where n is the density of trapped electrons, N is the density of traps, a is the

capture cross-section of the traps, F is the fluence, and detrapping is neglected.

For n << N we can write

n = aNF (4.3)

If we consider that free electrons are generated uniformly throughout the oxide and

subsequently move to the positively biased gate, we can define an effective fluence

F(z) = K(d - x) (4.4)

where K is the total number of electron-hole pairs created per unit volume, d is the

oxide thickness, x is measured from the collecting electrode, and recombination is

neglected. K can be calculated from

pR
K = pR (4.5)

where p = 2.3 g/cm3 is the density of SiO 2, R is the radiation dose and Epir~

2E,(SiO 2) = 18 eV. Benedetto and Boesch [83] have derived an empirical expression

from photocurrent measurements of X-irradiated thin MOS oxides which agrees

closely with this theoretical equation.



The shift in midgap (or threshold) voltage due to electron trapping can then be

calculated assuming that the effect of interface states is negligible by

AV = fd qn(x') dx'dx (4.6)

Solving for the condition n(x) = aNK(d - x), we obtain

qoNKd"AV = (4.7)

For a dielectric thickness of 25 nm, as in Sundaresan's experiments, typical electron

trap cross section a = 10-15 cm 2 and density N = 1018 cm -3 , and a dose of 1

Mrad(Si) - 0.55 Mrad(SiO 2), we obtain AV = 0.011 V. Sundaresan reported voltage

shifts due to fixed charge on the order of 0.5 V. It is clear that, even when detrapping

and recombination are neglected, the compensating voltage shift due to trapped

electrons must be a secondary effect.

A dramatic reduction in radiation induced interface state build-up in nitrided

oxides was first reported by Terry [16] and has since been confirmed by several

researchers [17,21,22]. This property makes nitrided oxides very appealing for low

dose rate radiation environments such as space, in which the concurrent annealing of

fixed charge reduces the importance of the latter's effect on device performance, and

leaves the non-annealing interface state build-up as the primary concern. However,

for high dose rate environments fixed charge build-up remains an important prob-

lem. The very low fixed charge build-up observed in Lot A devices shows particular

promise for these reasons.

4.5 Dilute nitridation/reoxidation process

The data reported in this section were largely taken by B. Jeffery Gross of our

group who is developing an atmospheric pressure nitridation/reoxidation process.

A set of experiments were performed to compare the low pressure nitridation
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Figure 4.14: Comparison of dilute and low pressure nitridation/reoxidation pro-

cesses for 0.1 atm nitridation in 100 % NH 3 or nitridation in 10 % NH3/Ar for 1

hour, 950 oC. ADit and AVfb data was obtained for fluence = 0.035 C/cm2 .

process with an Ar-diluted process under conditions of equivalent ammonia partial

pressures. The results of the comparison are summarized in figure 4.14. The two

processes differed in that the fixed charge and interface state density in the dilute

process was generally lower than in the low pressure process and varied considerably

from run to run. In addition, interface state generation in the dilute process was

considerably less than in the low pressure process. Finally, charge trapping was

virtually non-existent in the dilute process whereas it was prevalent in the low

pressure process.

The reduced interface state generation and charge trapping in the dilute process

is reminiscent of a nitrided oxide that has been partially reoxidized, and suggests

that oxygen may have been present during the nitridation step. The lower fixed
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charge and interface state density might also be explained by the presence of oxy-

gen. As discussed in section 3.5, the nitridation process may be limited by the

out-diffusion of oxygen-containing by-products of the nitridation reaction. The

presence of oxygen in the nitridation ambient would tend to inhibit the nitridation

reaction by retarding the out-diffusion of oxygen-containing by-products. Reduced

nitridation could account for the smaller fixed charge and interface state density.

The large variations in the electrical properties of the dilute process could then

be accounted for by large variations in the levels of oxygen contamination during

dilute nitridations. It should be noted that the presence of high-field edge effects in

LOCOS isolated capacitors (see 3.4.4) might also partially account for the reduced

interface state generation and electron trapping in dilute nitridations. However,

edge effects cannot explain the lower fixed charge and interface state density values

in dilute nitridations.

While further experimentation is required to substantiate the above speculation

regarding the presence of oxygen, it is nevertheless clear that the low pressure

process shows less variation in electrical properties than the dilute process.

4.6 Summary

In this chapter we presented a number of the basic electrical properties of di-

electrics formed by the low pressure nitridation and reoxidation of silicon dioxide.

A major difference between our work and previous work was the use of the

pre-turnaround regime of the nitridation process in order to optimize the electrical

properties of the dielectric. We exploited the effect that a lightly nitrided oxide

could be dramatically improved by reoxidation. Based on this effect, a dielectric

process was developed which exhibited greatly improved reliability over conventional

silicon dioxide. The amount of interface state generation under electrical stress was

reduced by a factor of 25 compared to silicon dioxide and charge trapping was
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virtually eliminated. In addition, the breakdown strength was somewhat improved

compared to oxide and the charge-to-breakdown was about one order of magnitude

better than oxide. On the other hand, parameters important to device performance

were somewhat degraded. The fixed charge density increased to - 2-3 x 101 cm - 2

and the interface state density to - 3 x 1010 cm - 2 eV - 1.

The procedure by which we optimized the dielectric processing was described

and reliability-performance tradeoffs outlined. It was shown that lighter nitridation

result in better performance but at the expense of reduced reliability improvement.

The low pressure nitridation/reoxidation process also showed better resistance

to ionizing radiation both in terms of interface state and fixed charge generation.

Finally, the low pressure process was shown to have better control compared

to a dilute process with equivalent partial pressure, even though the dilute process

appeared to have less interface state generation and electron trapping, a result

suggestive of the presence of oxygen contamination during the dilute nitridation.
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Chapter 5

Application to Scaled Transistors

Selected nitrided oxide and reoxidized nitrided oxide dielectrics from the ca-

pacitor study were incorporated into the transistor process to demonstrate their

applicability to scaled MOS devices. The selected dielectrics are listed in Table 5.1.

5.1 Inversion Layer Mobility

Inversion layer mobility measurements were made on n- and p-channel devices

with a W/L ratio of 100 Mm/ 100 jim. Values were extracted from the linear region

of the IDs vs. VGS curve for VDS = 50 mV. The effective mobility was defined as:

IDS
, C = (Vs - VT)VDS (5.1)

where the threshold voltage, VT, was found by linear extrapolation of the IDS vs.

VGS curve to IDS = 0 and Co, is the measured dielectric capacitance. The value

of the mobility is reported at Vcs - VT = 0.5 V. The mobility was averaged over

5 devices on a given wafer. The uncertainty in the mobility is approximately ±10

cm 2/V . s for n-channel and ±5 cm 2/V . s for p-channel devices.

The measurements, summarized in Table 5.2, show that nitridation reduces

inversion layer mobilities in both n- and p-channel devices.
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Table 5.1: Dielectric processing conditions for insulators selected for transistor

study.

Table 5.2: Effective inversion layer mobility measured at VGS - VT = 0.5V.

105

Dielectric Process Conditions

OX 40 min, 0.1 atm. oxidation

12 nm control oxide

NOX-H 1 hour, 0.1 atm. nitridation

of OX

NOX-L 1 hour, 0.01 atm. nitridation

of OX

ROXNOX-H 1 hour, 0.1 atm. reoxidation

of NOX-H

ROXNOX-L 3 hour, 0.1 atm. reoxidation

of NOX-L

Effective Surface Mobility

Dielectric cm 2/V.s

electron hole

OX 620 ±10 182 ±5

NOX-H 340 ±10 133 ±5

NOX-L 480 ±10 150 ±5

ROXNOX-H 400 ±10 142 ±5

ROXNOX-L 505 ±10 153 ±5



Observe that: (1) The percentage degradation, A f•ey//eItf, in n-channel devices

is more severe than in p-channel devices (~50% versus -25%). Upon reoxidation,

the electron mobility readily recovers. The hole mobility, on the other hand, does

not appear to recover as significantly within the resolution of the measurement.

(2) The gate voltage dependence of the electron mobility is also reduced with

nitridation and recovers upon reoxidation. The gate voltage dependence of the

hole mobility, on the other hand, is not affected as significantly by nitridation or

reoxidation (figures 5.1 and 5.2).

These observations are in agreement with those made by Terry [37] and Schmidt,

et. al. [38] on transistors with nitrided gate oxides formed by an atmospheric process.

In order to understand the role of the nitridation-induced fixed charge in mobility

degradation in nitrided oxide MOSFETs we plot the normalized inversion layer

mobility versus the observed effective fixed charge at the interface (figure 5.3). The

fixed charge densities were obtained by C-V measurements on capacitors adjacent

to the transistor. In the case of the electron mobility we plot the oxide device data

of Sun and Plummer where the fixed charge was intentionally introduced by an

oxygen anneal cycle [97]. In the case of the hole mobility we plot the oxide device

data of Galloway,et. al. where the fixed charge was introduced by ionizing radiation

[98]. We also plot the nitrided oxide data of Schmidt et. al. citeSchmidt:Mobility

for comparison. Observe that:

(3) Our data lies above the data of Sun and Plummer in the case of electrons

and above the data of Galloway in the case of holes. The degradation in mobility

appears to be less than would be expected from the observed fixed charge. This can

be explained by assuming that the centroid of the fixed charge is actually located

within the insulator at some distance from the interface. Whereas the effective

charge at the interface is reduced linearly with the distance at which the centroid

is located from the interface, coulombic scattering is reduced as the square of the

distance from the interface.
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Figure 5.1: Gate voltage dependence of electron mobility.
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Figure 5.2: Gate voltage dependence of hole mobility.
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Figure 5.3: Normalized electron and hole mobility versus the observed effective

charge at the interface. The data of Sun and Plummer [97] and Galloway [98] are

also shown.
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(4) The recovery of the electron mobility with reoxidation is more than can

be accounted for by the slight changes in the fixed charge whereas the nominal

change in the hole mobility with reoxidation can be explained by changes in the

fixed charge.

Observations (1),(2), and (4) suggest an additional nitridation-induced scatter-

ing mechanism for electrons which is not present for holes and which is reduced

with reoxidation.

The mobility data can be understood in the context of a recent model proposed

by Schmidt, et. al. [381. The model attributes the observed degradations in elec-

tron and hole mobilities to the combined effects of fixed charge and electron traps.

Since nitridation introduces fixed positive charge, both electron and hole mobilities

are degraded by coulombic scattering. In addition, nitridation introduces interfa-

cial electron traps which are believed to be located near the conduction band of Si

and charge neutral when empty (acceptor-like) [32]. These traps reduce the mobile

charge in the channel due to trapping. In addition, the trapped charges further

reduce the electron mobility due to coulombic scattering. The hole mobility is not

affected by these electron traps since the traps are empty and hence neutral when

the p-channel device is biased in inversion. The reoxidation of nitrided oxides, which

removes nitridation-induced electron traps, improves electron mobilities while hole

mobilities do not appear to be affected. The proposed model thus seems successful

in explaining the observed mobility dependence on nitridation and reoxidation con-

ditions despite differences in the nitridation techniques between the previous work

and our work. The model further suggests that the difference in electron mobility

that we have observed at a given level of fixed charge versus the electron mobility

observed by Schmidt, et. al. may be due to differing electron trap densities in the

two nitridation techniques.

In the case of a light nitridation combined with a reoxidation we are able to

obtain mobilities within ~20% of the oxide devices. To obtain higher mobilities
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even lighter nitridations must be used in combination with a reoxidation.

5.2 Channel Hot-Electron Stressing

Channel hot-electron stressing is a DC accelerated aging technique used to es-

timate the projected operating life of transistors. It is used here to verify that the

decreased electron trapping and interface state generation observed in reoxidized

nitrided oxide capacitors also results in improved transistor reliability.

Previous researchers have shown that channel hot-electron stressing of transis-

tors with nitrided oxide as a gate dielectric results in increased threshold voltage

shifts due to electron trapping but reduced transconductance degradation due to

the suppression of interface state generation [19,20]. Here we report that reoxidized

nitrided oxide devices show negligible VT shifts as well as reduced transconductance

degradation.

N-channel MOSFETs with effective channel length Lfe = 0.75 - 1.00 /m, width

W = 20 Am, and gate dielectric thickness to, = 12 nm were used for channel hot-

electron stressing experiments.

As discussed in section 3.4.2, channel hot-electron stressing is typically per-

formed at a large drain-source voltage where impact ionization near the drain pro-

duces hole-electron pairs resulting in an appreciable substrate hole current. Device

degradation has been shown to be primarily correlated with the substrate current

used during stress [6]. To obtain worst-case degradation at a given VDs, the gate-

source voltage is biased at the peak of the Iub vs. VGS curve. The peak substrate

current occurs roughly at VGs - VT VDS/2. The IDs vs. VGs characteristic at low

VDS = 0.1 V is taken before and after stress and the relative change in the maximum

linear region transconductance Agm/gmo is taken as a measure of the degradation.

The extrapolated threshold voltage shifts, AVT, were < 40 mV in oxide devices

and < 5 mV in ROXNOX devices for the range of stress conditions tested. These
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apparent shifts in the extrapolated threshold voltage were due to a degradation in

the slope of the IDS vs. VGS curve rather than an actual translation of IDs vs. VGs

curve due to fixed charge generation or electron trapping.

In figure 5.4, typical transconductance degradation data is plotted as a func-

tion of stress time for transistors with various dielectrics stressed over a range of

substrate-to-drain current ratios.

The curves are fit by the power law relation

Agm = At" (5.2)9mo
where the exponent n = 0.5-0.7 for our various devices. The value of n is in agree-

ment with that reported in the literature [5,6] and does not appear to depend on

the gate dielectric used. The magnitude of the degradation, A, is known to depend

strongly on the stress conditions as follows [5]:

A oc e VD cc IsuB/IDs (5.3)

In our case, the constant A also reflects the hot-electron resistance of the dielectric.

Under conditions of similar ISU/BIID, reoxidized nitrided oxide transistors show

a factor of 10 improvement over oxide devices. In figure 5.5, this improvement is

shown to hold over a range of substrate currents for a stress duration equal to 2

hrs.

Given figure 5.4, it is possible to estimate the projected operating life of devices.

This is usually done by defining a quantity called lifetime, r, as the stress time

required to reach 10 % transconductance degradation and by plotting the lifetime

versus the peak substrate-to-drain current ratio used during stress. This is shown in

figure 5.6. The data points on this plot were obtained by interpolation and extrapo-

lation of the data shown in figure 5.4 by assuming the power law relation. Note that

there appears to be a channel length dependence to the level of degradation under

conditions of similar ISUs/IDs, in that shorter channel length devices seem to ex-
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Figure 5.4: Transconductance degradation as a function of stress time for transis-

tors with various dielectrics. The substrate-to-drain current ratio expressed as a

percentage is shown in parentheses.
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perience greater degradation. However, by comparing 0.95 jim ROXNOX-L device

with a 1.00 pim OX device, we can see that the reliability improvement due to the

use of a reoxidized nitrided oxide gate dielectric is about one order of magnitude.

Note that since the inversion layer mobility of ROXNOX devices is somewhat lower,

the drain voltage corresponding to a given peak substrate current is higher. Thus

it is more appropriate to plot lifetime vs. ISUs/IDs rather than to plot lifetime vs.

VDS. The former plot isolates the contribution of the gate dielectric in determining

the overall life of the device whereas the latter reflects both the improved hardness

of the ROXNOX dielectric as well as the lower mobility of reoxidized nitrided oxide

devices.

5.3 Performance-Reliability Tradeoff

In the previous two sections we have demonstrated that ROXNOX devices ex-

hibit a 20 % degradation in inversion layer mobility but at least an order of mag-

nitude improvement in reliability under channel hot-electron stressing. From the

standpoint of circuit performance, an important device parameter is the saturation-

region transconductance [99]. While the inversion layer mobility of devices is lower

by ~ 20% in ROXNOX devices, the saturated transconductance is only ~ 10 - 15%

lower, depending on channel length. The apparent discrepancy is due to the some-

what increased (~ 5%) dielectric capacitance of ROXNOX insulators and due to

the fact that in short-channel devices the carriers move near velocity saturation

for a greater proportion of the channel [99]. Figure 5.7 shows that the saturated

transconductance as function of inverse channel length for oxide and ROXNOX-L

devices. The 10% reduction in transconductance in short-channel ROXNOX devices

can be compensated for by using a thinner gate dielectric or a shorter channel length

device. In assessing the advantages and disadvantages of the ROXNOX dielectric,

therefore, the appropriate comparison is the measurement of the hot-electron resis-
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Figure 5.7: Saturated transconductance as a function of inverse channel length for

oxide and ROXNOX-L devices.
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Figure 5.8: I-V characteristics of an oxide (L,eff = 1.0im) and a ROXNOX-L device

(Lef = 0.95p/m). The gate voltage is incremented at 1V/step.

tance of devices of identical performance. As shown in figure of 5.8, an oxide with

Lef = 1.00 /sm has nearly the same I-V characteristics as a ROXNOX device with

Lff = 0.95 .m. The results of stressing these devices is shown previously in figure

5.5 indicates a factor of ten improvement in reliability.

5.4 Summary

In this chapter, we have discussed the incorporation of selected dielectrics into

NMOS and PMOS devices. The inversion layer mobility of devices was analyzed. It

was found that the degradation of electron and hole mobility due to nitridation is

well-described by the Schmidt model [38]. In the case of a light nitridation combined

with a reoxidation we obtained electron and hole mobilities within 20 % of oxide
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values.

Channel hot-electron stressing measurements indicated an order of magnitude

improvement in the projected operating life of ROXNOX transistors over oxide

devices. It was also demonstrated that for devices of the same performance (same

g,,), ROXNOX devices still had a factor of ten advantage over oxide devices.
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Chapter 6

1/f Noise

6.1 Introduction

In this chapter, we investigate the use of 1/f noise measurements as a technique

for extracting the oxide trap density near the conduction and valence bands of Si.

The development of the technique, however, is complicated by the fact that 1/f

noise in MOSFETs is not fully understood.

The theories that have been proposed to account for 1/f noise in MOS transistors

can be broadly classified into three categories.

(1) The number fluctuation model, based on the original proposal of McWhorter

[66], attributes 1/f noise to fluctuations arising from electronic tunneling transitions

between interfacial oxide traps and the MOSFET channel. The model predicts an

equivalent gate voltage noise power spectral density for uniform trap distributions

which is independent of the gate voltage in strong inversion and proportional to C-1.

The theory is supported by several experiments [116,118,119] and, in particular, by

the widely observed proportionality between 1/f noise and the oxide trap density

[120,121,122,123].

(2) The mobility fluctuation model, based on Hooge's relationship [124], is an

empirical model able to fit noise data in homogeneous semiconductors and devices.
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When the model is applied to MOSFETs with certain modifications [1251, it can

fit noise data which is proportional to (Vcs - VT)/Co, [126,127]. Several sugges-

tions have been made regarding the possible physical origin of mobility fluctuations

[128,129] though none have been widely accepted.

(3) Some authors have combined both the number and mobility fluctuation

models in order to explain a broader set of data [130,131,132]. However, previous

models have combined number and mobility fluctuations in an uncorrelated manner.

In this chapter, we begin by reviewing the theory of 1/f noise based on the

McWhorter tunneling model. The review is provided in two parts. In the first

part, we develop the theory assuming that the oxide trap density and distribution

is constant over space and energy. In the second part, we treat the effect of oxide

band bending and nonuniform trap distributions. The nonuniformity is shown to

give rise to a gate voltage dependence of the 1/f noise magnitude as well as a change

in the exponent, -7, of the 1/f7 noise spectrum.

In section 6.3, we consider an extension of the number fluctuation model of

1/f noise which includes carrier number fluctuations as well as correlated mobility

fluctuations. We again begin by assuming a uniform trap distribution. As in the

number fluctuation model, the fluctuations are physically caused by the tunneling

of inversion layer carriers to and from interfacial oxide traps. Unlike the number

fluctuation model, however, our model accounts for mobility fluctuations caused by

scattering due to the trapped carrier. Initial evidence that such a mechanism may in

fact prevail was given by Ralls, et.al. [133] in their study of single electron switching

events in small area MOSFETs. In these experiments, it was shown that when an

electron becomes trapped, the change in the channel resistance may be more or less

than that expected from the effect of a missing charge. Such a switching behavior

can be explained by considering traps that are either neutral or charged when filled

and by accounting for the coulombic scattering due to these traps. Surya [131]

developed a theory based on such a mechanism for large area MOSFETs. However,
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Surya combined number and mobility fluctuations in an uncorrelated fashion despite

the fact that both fluctuations arise from the same mechanism. Here, we consider a

theory of 1/f noise which is based on correlated number and mobility fluctuations.

We include the dependence of the scattering on the distance of the trapped charge

from the interface and consider its effect on the frequency dependence of 1/f noise.

Since the mobility fluctuations cause a drain current fluctuation proportional to the

channel charge, noise due to mobility fluctuations is dependent on the gate voltage.

Thus the combined effects of nonuniform trap densities and mobility fluctuations

give rises to a gate voltage dependence of the magnitude and exponent of the 1/fV

noise spectrum.

In section 6.4, experimental results are presented and used to extract the oxide

trap density in space and energy, NT(x, E), in terms of both noise models. Finally,

the models are used to study the effect of nitridation (ammonia annealing of a

gate oxide) and reoxidation (oxygen annealing of a nitrided gate oxide) on the trap

density and distribution in the dielectric.

6.2 Number fluctuation model

6.2.1 Assumptions

The McWhorter tunneling model is also called the number fluctuation model

because it involves calculating the noise power of the number of fluctuating channel

carriers. In deriving the number fluctuation model we primarily follow the analysis

of Christensson [116]. We begin by reviewing several assumptions and simplifica-

tions that are commonly made in formulating the number fluctuation model of 1/f

noise. Initially, the case of uniform trap distributions in space and energy is treated.

(1) The trapping of an inversion layer carrier by an oxide trap is assumed to

induce only a carrier density fluctuation in the channel. The scattering due to

the trapped carrier produces a negligible mobility fluctuation. This assumption is
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removed in section 6.3.

(2) The MOSFET is biased in strong inversion so that carriers in the conduction

band tunnel directly into and out of oxide traps at the same energy level. Fluctua-

tions due to electronic transitions between the conduction band and interface states

located in the silicon bandgap are neglected under these conditions [123]. Inelastic

tunneling (that is, tunneling between different energy levels) is regarded as unlikely

[134].

(3) The device is biased in the linear region, ie. VDs <5 VGs - VT, so that we can

assume that the band bending is nearly constant along the channel from source to

drain. In addition, we assume that the inversion charge, QN, the mobility, ZN, and

the electric field, C, are all constant along the channel. Thus from simple MOSFET

theory the drain current can be expressed as

W
I = WNQNVs (6.1)

where QN = Co,(VGS - VT).

(4) The oxide tunnel barrier seen by an inversion layer carrier is a rectangular

barrier of height OE, where Os is the height of the oxide conduction band from the

Si conduction band. Since the wave function of an electron decays exponentially

into such a barrier, the time constant associated with a trapping event is given by

rrT = roe2 a x  (6.2)

where z is the distance into the oxide from the Si-SiO 2 interface and

2mr4= ,O (6.3)

where m* is the effective mass of the electron in the oxide and h is Plank's constant

divided by 27r. The value of a is typically taken to equal 108 cm- 1 and r0 is typically

taken to equal 10- 10 sec [116]. The above form explicitly neglects band bending in
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the oxide. If oxide band bending is included, then a becomes a function of x. Under

the WKB approximation [117],

rT = roe 2a(X, E) (6.4)

where

a(X, E) = (2 (( - 3/2 _ /2) (6.5)

For an e-field of 3 MV/cm (maximum used in this thesis), a noise measurement at

a frequency of 20 Hz (corresponding to a Tr T 0.05 sec) corresponds to a trap depth

of 10 A assuming a rectangular barrier and a depth of 10.4 A assuming a trapezoidal

barrier. Given the small difference between the rectangular and trapezoidal barrier,

we will assume a rectangular barrier for simplicity.

It is further assumed that the system is in steady-state and tunneling transitions

involving a given trap are dominated by a single time constant.

(5) When one unit of charge is trapped at some distance, dt, within the oxide

it induces a charge fluctuation in the channel which is less than one unit of charge.

That is,

to= - d,I 6QN = z I 6QTI (6.6)

For to, much greater than dt, however, we can assume that I 6,QN 6 1 6 QT I.

6.2.2 Spectrum of carrier fluctuations in an element volume

In this section, the spectral density of fluctuations in the number of trapped

carriers in an element volume, AV, and in an energy element, AE is calculated.

Given the noise spectral density in a volume and energy element, we can sum (in-

tegrate) over all volume and energy elements of the device to calculate the total

noise spectrum. The coordinate system in real and energy space is defined in figure

6.1. Consider first the effect of a single trap located at a distance, x, in the oxide,
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Figure 6.1: Definition of the coordinate system in (a) real and (b) energy space.

AV = AxAyAz is an element volume and AE is an energy element. x = 0

at the Si-SiO 2 interface and increases with distance into the oxide. E = 0 at the

bottom of Si conduction band edge and increases with energy above E, as measured

under flatband conditions. Note that AVAE shown in figure (b) is located at

(x > 0,E > 0).
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Figure 6.2: Random telegraph signal.

which interacts with the silicon inversion layer with a characteristic time constant,

rT. The trapping and detrapping of carriers by a single trap will produce a cur-

rent waveform at the device terminals which is normally referred to as a random

telegraph signal [135] as shown in figure 6.2.

This type of signal has recently been observed in extremely small area MOSFETs

where it has been possible to isolate the effect of a single trap [133]. For large area

MOSFETs, we need to consider the behavior of an ensemble of traps.

The power spectral density of a random telegraph signal has a shot noise spec-

trum of the form:

S(w) oc 1+ r (6.7)

This spectrum is often called a shot noise spectrum since it is white for frequencies

less 1/rT. [135].

Now consider a collection of traps in an element volume, AV, that is sufficiently

small so that all traps are characterized by a single time constant, rT. If these
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traps are distributed in energy around the electron quasi-Fermi level, then traps

a few kT below the quasi-Fermi level will be full and traps a few kT above the

quasi-Fermi level will be empty. Thus only traps near the quasi-Fermi level will

contribute to fluctuations. The power spectral density of the fluctuations in the

number of trapped electrons in the volume element, AV, and in the energy element,

AE, is thus [136,137]

SNT VAE NfT(1 fT)AVAE (6.8)
1 + w 2,rT2

where Nt is the trap density in units of cm- 3eV - 1 and fT is the probability that a

trap is filled given by the Fermi factor

1
fT= 1 (6.9)ET - En (6.9)

1+e kT

Note that the term fT(1 - fT) is a peaked function about the electron quasi-Fermi

level and reflects the fact that only traps near the electron quasi-Fermi level con-

tribute to fluctuations or noise. Under strong inversion conditions with t,, > dt,

the spectral density of the fluctuation in the trapped oxide charge is equal to the

spectral density of the induced fluctuation in the channel charge [138]:

SQNAVAE = q2 SNAVAE (6.10)

6.2.3 Spectrum of voltage and current fluctuations.

Given the spectral density of fluctuations in the channel charge, we can relate

these fluctuations to the noise that would be measured at the device terminals.

Consider an induced fluctuation in the number of carriers in the channel element,

AyAz, due to a fluctuation in trapped oxide charge in the element, AVAE. The

drain current fluctuation, 6 ID,AVAE, under conditions for which the drain is an AC

short-circuit, is given by
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D,A E WNVDS (6QN z) (6.11)
L WL

where (6QNAyAz) is simply q times the total number of carriers in element AyAz.

The drain current noise power spectrum is thus equal to

SID,AVAE IW SQNaVaE (6.12)

The short-circuit drain current noise spectrum is related to the open-circuit drain

voltage noise spectrum by

SVDAVA, = - W2LQ V SQ"NVaE (6.13)

where go is output conductance of the device. The equivalent gate voltage noise

spectrum can also be written as

SSID,AVA, SQNAVAE (6.14)
sva,ava g W 2 L2 CO,

The last equation has the particularly simple interpretation that a fluctuation in

the channel charge produces a fluctuation in the gate voltage through the relation

,QN
6 VG = LQN (6.15)

WLCoW

which is simply an expression of Q = CV.

6.2.4 Total noise spectrum including geometrical factors

Given the noise spectral density in a volume and energy element, we can sum

(integrate) over all volume and energy elements of the device to calculate the total

noise spectrum. The assumption here is that the noise due to each element volume

is uncorrelated. Integrating over x, y, z, and E and assuming that all variables are

uniform over x, y, z and E we have for the equivalent gate voltage noise spectrum
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SV d dE N(x, (x)fT (E)(1 - fT(E)) (6.16)

Given that the trap distribution is uniform in space and energy, the above in-

tegral can be evaluated analytically. The integral over E of NtfT(E)(1 - fT(E)) is

approximately 4kTNt(Epf,) NT(EF,)(cm- 3 ) [116]. The integral over x is calcu-

lated as follows:

q' NT(EFP) dmd rT(Z)sa W LC2, do 1 + W2 -T(z)2  (6.17)

where d, is chosen to be sufficiently large so as to account for all traps that con-

tribute to noise in the frequency range of interest. For example, a dm of 20 A

corresponds to a time constant of - 2 x 107 sec, which is already sufficiently large

for the frequency range of interest.

Changing variables to integrate over r instead of z we have

dm- r~ (x) d f(dm) r dr (.18)
1 + w24r(z) 1 + W2r2 2ar

Ir(,d.) 1 dr 1 (tan-wr(d,,) - tan-'wro) (6.19)ro 1 + W27 2a 2aw

For wro -< wr < wr(dm), tan-lwr(dm) - ?r/2 and tan-'wro - 0, yielding

q2 NT(E7.) V 2

Sv = 8WLC2 a NT(E) V (6.20)
8W LC) a f Hz

where NT(Erf) is oxide trap density adjacent to the electron quasi-Fermi level in

silicon.

6.2.5 Predictions of the number fluctuation model

Aside from explaining the frequency spectrum of the noise, the number fluctu-

ation model predicts that:
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(1) 1/f noise decreases with increasing device area.

(2) 1/f noise increases with the square of the oxide thickness.

(3) 1/f noise is independent of gate voltage since NT(EFn) is independent of gate

bias for uniform trap distributions.

6.2.6 Effect of nonuniform trap distributions and oxide band

bending

In the above discussion, we have explicitly assumed that oxide trap density

is uniform in space and energy. In this section, we show that nonuniform trap

distributions can give rise to a gate voltage dependence in the magnitude and the

exponent, -y, of the 1/rf spectrum.

We begin by identifying regions of the oxide (both in space and energy) that

are accessed by 1/f noise measurements and consider the effect of nonuniformities

within this region. Figure 6.3 illustrates the region or window of the (z, E) space

accessed by a measurement of the 1/f noise magnitude versus frequency for a gate

bias in strong inversion. The window is located within the oxide and is centered

about the axis of the electron quasi-Fermi in the silicon. The energy width of the

window is , 4kT and the length of the window depends on the range of frequencies

over which the noise measurement is performed. For example, a noise measurement

over 4 decades of frequency corresponds to a length of - 5A1. Note also that points

of increasing depth and increasing energy are intersected along the length of the

window due to oxide band bending.

In figure 6.4, it is shown that if the trap distribution is nonuniform along the

length of the window then the noise spectrum deviates from strictly 1/f and might

be approximated as 1/f' where y # 1. For a trap distribution that is skewed towards

the interface, there are a greater number of high frequency traps leading to - < 1.

Similarly for a trap distribution that is skewed away from the interface, there are

a greater number of low frequency traps leading to - > 1 [116,139]. Note that the
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Figure 6.3: Window in (x, E) space accessed by a measurement of the 1/f noise

magnitude versus frequency in strong inversion.
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Figure 6.4: Effect of a nonuniform trap distribution on the exponent of the 1/f

noise spectrum.
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Figure 6.5: Entire region of the (x, E) space accessible by a series of 1/f noise

magnitude versus frequency measurements over a range of gate biases.

nonuniformities along the length of the window can arise from nonuniformities in

the trap distribution in space and/or energy.

By performing a series of 1/f noise magnitude versus frequency measurements

over a range of gate biases, it is possible to examine a broader region of the oxide

as illustrated in figure 6.5. The peculiar shape of this region arises from the effect

of oxide band bending. As the gate bias is increased, traps which are above the Si

conduction band edge under flatband conditions are brought down into the window

accessible by 1/f noise measurements. Oxide traps that are further from the Si

interface are affected to a greater extent by oxide band bending than traps that are

nearer to the interface.

Given a set of noise data, the trap density and distribution used in the number

fluctuation model can be adjusted so that the calculated noise equals the measured
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noise. Using this procedure, it is possible to uniquely specify the oxide trap density

at each point, NT(X, E), within the region.

Experimentally, a gate voltage dependence of 1/f noise has been widely observed

[126,127,141,130]. Recently, a gate voltage dependence of the exponent, Y(Vas),

of the 1/fr has also been observed [139,140,1311. Both Surya [139] and Celik [140]

assumed a trap distribution that was exponentially increasing in energy but uniform

in space in order to fit both the magnitude and exponent, '(Vas), of the 1/Pf

spectrum. However, they found that it was not possible to simultaneously fit both

the magnitude and exponent particularly at higher gate biases. This difficultly

may be due to the peculiar functional form assumed for the oxide trap distribution.

As discussed above, it should be possible to fit any noise data by appropriately

adjusting the trap density at each point of the (x, E) space.

6.2.7 Limitations of the number fluctuation model

The primary limitation of the number fluctuation model is its neglect of possible

mobility fluctuations which are correlated with number fluctuations. As discussed

previously, evidence that mobility fluctuations might exist was provided by Ralls,

et. al. [133] in their study of single electron switching events. In these experiments,

it was shown that when an electron becomes trapped, the channel resistance may be

more or less than that expected from the effect of a missing charge. Such switching

behavior can be explained by considering traps that are either neutral or charged

when filled and by accounting for the coulombic scattering due to these traps.

This limitation lead Surya [131] to consider a theory of 1/f noise which combined

number and mobility fluctuations. However, mobility and number fluctuation were

combined in an uncorrelated manner whereas in fact they arise from the same

mechanism.

In the next section, we consider a 1/f noise model which combines number and

mobility fluctuations in a correlated manner and consider the consequences of such
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a theory on noise behavior. It is shown that the correlated fluctuation model also

gives rise to a gate voltage dependence in the magnitude and exponent of the 1/f'

noise spectrum even for uniform trap distributions.

6.3 Correlated number and mobility fluctuation

theory

We begin by considering the case of uniform trap distributions and by making the

usual assumptions of the number fluctuation model except for one critical difference.

The trapping of inversion layer carriers by oxide traps is now assumed to induce

a fluctuation in the number of channel carriers as well as a correlated fluctuation

in the mobility of inversion layer carriers caused by coulombic scattering by the

trapped charge. This changes the amplitude of the random telegraph signal of

figure 6.2 but does not alter the time constant of interaction since both number

fluctuations and mobility fluctuations arise from the same physical mechanism. A

theory of 1/f noise considering such a mechanism of correlated number and mobility

fluctuations is explored in this section.

Proceeding in a manner similar to section 6.2, the current fluctuation due to a

fluctuation in the number of carriers in the channel element AyAz and due to a

correlated mobility fluctuation, b6t, is

W 6QNdyAz
6Il,avaE = VDs ( QN AY + QNS6) (6.21)

L WL

The form of this equation immediately suggests a noise component that is de-

pendent on the gate bias through the relation QN = Co,(VGS - VT). Since the

fluctuation in the mobility, St&, is correlated with the fluctuation in the channel

charge, 6 QN, we can express b6z in terms of 6 QN.

Using Matthiessen's rule [142], we can write,
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1 1 6QNAyh z- - - + S(x)( Q (6.22)
An A N W L

where 4, is the instantaneous mobility, AN is the time average mobility, and S(x)

is the scattering rate. The scattering rate, S(x), will depend on the distance of the

trapped charge from the interface. Based on the work of Brews [1431, we assume

the following approximate dependence of the scattering rate on the location of the

scattering charge:

S(x) S So In (1 + (r-a-)2) (6.23)

where x is the distance into the oxide and So can be estimated from published

data [97] relating the inversion layer mobility to the oxide charge by the procedure

described in 6.4.1. Brews [1431 defines the distance r,m, as the maximum distance

from the scattering charge for which the effect of image charges can be neglected.

For distance greater than r,a., the discreteness of a scattering charge is not apparent

and image terms cause the coulombic scattering potential to fall off more rapidly

than 1/r. The distance r,,a is given by,

(ECo + ES) (6.24)

(Co, + C,)
For oxide thicknesses ranging from 12 nm to 40 nm, r,a, ranges from - 50 nm to

- 150 nm. Since tunneling occurs within - 2 nm of the interface, x < r,, in all

cases and thus,

S(x) - 2So In (r,ma,/x) (6.25)

For calculations used in this thesis, we use a value of r,,. of 50 nm. Due to the

logarithmic dependence, the scattering rate is relatively insensitive to the choice of

rma,,. A more accurate relationship between the scattering rate and the distance of

the scattering charge from the interface has been theoretically treated by Sah, et.al.

[145]. In their work, the effect of oxide charges is treated as producing perturba-

tions in the surface potential and the scattering rate is determined using first order
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perturbation theory treating mobile electrons as plane wave states. For simplicity,

however, we use the above functional form which yields at least an approximate

dependence. The above scattering rate dependence has the effect of increasing

the contribution of mobility fluctuations for higher frequencies which correspond

to scattering sites nearer to the interface. Over the frequency range of interest in

this thesis (- 20 Hz to 50 kHz), the scattering rate varies by a factor of - 1.13 as

calculated from equation 6.2 and 6.23. The effect of the scattering dependence on

the exponent of the 1/fy noise spectrum is to make -y < 1 as discussed in section

6.3.1. The primary limitation of the above functional dependence is the presence

of the non-physical singularity at z = 0. To avoid infinite scattering due to this

singularity, we do not calculate the noise power due to traps at x = 0. The error

due to the neglect of traps at x = 0 is negligible as discussed in section 6.4.1.

Rearranging the equation 6.22, the fluctuation in mobility, 6b, is then

6 A = ln - AN = S( N (6.26)
1 + LNSbQ

where 5Q = 629N"Az . For small fluctuations,WL "

2 S(X)( WL ) (6.27)

Substituting the above equation into equation 6.21, the fluctuation in drain current

can now be expressed in terms of charge fluctuations alone.

W SQNAyAz(bID,AVAE = EANVDS(1 + S(x)ANQN)( ) (6.28)L

Or expressing in terms of the equivalent gate voltage fluctuation,

1
6VG,AVAE - WLC (1 + /NQNS(x))(6QNAYAZ) (6.29)

where we have approximated QN = CoQ(Vgs - VT). The power spectral density of

the equivalent gate voltage is
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Sv,AVAE 1 + 22NQNS() + AlQ2 S2(X))SQN,aa& (6.30)
W2L2C; (l

where we have previously shown that the noise power spectral density of the term

5QNAyAz is

q2rT
SQAVAN , 1 T NTfT( 1 - fT)AVAE (6.31)

1+ W2TT

Substituting 6.31 into 6.30, the power spectral density of the equivalent gate voltage

noise is

SV,&AVA&WE ,2 (1+ 2S(X)/NQN + S2 (X),Q2 )2 TT2 NtfT(1-fT)AVAEW2L2CO \~z N N 1 + W2rT2

(6.32)

The total noise spectrum is calculated by integrating over z, y, z, and E. The result

is expressed as the sum of three terms.

Sv = Svol + Svo2 + SvaS (6.33)

where

q2 NT(E!,) (6.34)Sval = (6.34)
8WLCO2 a f

q2 2S(z)IN(VGs - VT) rT(x)Sv2, • x)NT dx (6.35)

S. S'(x,)(Vcs - VT) -rT(x) NT dx (6.36)

W Sv LG 1 + w2

The first term yields the pure number fluctuation model derived in the previous

section, the second term represents a cross product between number fluctuations

and mobility fluctuations, and the final term represents pure mobility fluctuations.
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The integral over x of the second and third terms must be carried out numerically

as described in section 6.4.1.

The above model contains two parameters that might be considered adjustable:

the scattering rate constant, So, and the oxide trap density, NT. However, So can

be estimated from published data [97] relating the inversion layer mobility to oxide

charge, leaving NT as the single adjustable parameter.

6.3.1 Predictions of the model

For the case of uniform trap distributions, the model predicts that:

(1) 1/f noise decreases with increasing device area, WL.

(2) For gate voltages near the threshold voltage, 1/f noise is adequately modeled

by the pure number fluctuation term which shows an increase in the noise with the

square of the oxide thickness.

(3) For large gate oxide thicknesses, the cross-term dominates over the pure

mobility fluctuation term yielding a gate voltage dependence of 1/f noise that is

approximately linear with increasing gate drive with a slope proportional to 1/C"o

(figure 6.6).
(4) For thin oxides and large gate biases the pure mobility fluctuation term

becomes large relative to the cross-term yielding a gate voltage dependence of 1/f

noise that varies approximately as the square of the gate drive. This is illustrated

in figure 6.7.

(5) In the regime where the mobility fluctuation term and/or the cross term is

large, the noise varies as less than the square of the oxide thickness, in contrast to the

prediction of the pure number fluctuation model. Experimentally, the dependence

of the noise on oxide thickness has been observed to vary as Sv, - t" where n

varies from one to two [126,144].

(6) The noise depends on the inversion layer mobility which appears in the cross-

term and in the mobility fluctuation term. In addition, the normal field dependence
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Figure 6.6: Gate voltage dependence of the gate voltage noise power at a given

frequency in the regime where the cross term dominates.
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Figure 6.7: Gate voltage dependence of the gate voltage noise power at a given

frequency in the regime where the mobility fluctuation term dominates.
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of the mobility affects the dependence of the noise on gate drive.

(7) In the regime where the mobility fluctuation and cross terms are large relative

to the pure number fluctuation term, the noise can deviate from a pure 1/f spectrum.

In particular, the slope of the noise spectrum may be better approximated as 1/f'

where / < 1. The reason for this is that the magnitude of the mobility fluctuation

depends on the location of the scattering charge from the Si interface, e.g., the

scattering rate is larger for higher frequencies corresponding to charge scattering

sites nearer to the interface. Since noise due to mobility fluctuations is larger for

higher frequencies the slope of the noise spectrum is predicted to be slightly less

than one (y < 1) for a uniform trap distribution. The value of -y decreases as the

gate bias increases since both cross and pure mobility terms increase with gate bias.

6.3.2 Effect of oxide band bending, mobility fluctuations

and nonuniform trap distributions

In the previous sections, it was shown that within the context of the correlated

fluctuation model, mobility fluctuations give rise to a gate voltage dependence in

the magnitude and exponent of the 1/fr noise spectrum. With increasing gate

bias, the magnitude of 1/f noise increases whereas the exponent of the 1/f noise

spectrum decreases for the case of uniform trap distributions. It was also shown that

within the context of the number fluctuation model, a nonuniform trap distribution

gives rise to a gate voltage dependence in the magnitude and exponent of the 1/fP

noise spectrum. With increasing gate bias, the 1/f noise magnitude tracks the

trap distribution along a line of increasing energy above the conduction band of

Si. In addition, with increasing gate bias, the exponent of the 1/f noise spectrum

tracks the trap distribution along the length of the window accessed by 1/f noise

measurements. Putting together the effects of nonuniform trap distributions, oxide

band bending, and mobility fluctuations, the calculated noise can adjusted (by

adjusting NT(x, E)) to fit the measured noise.
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6.4 Experimental results and extraction of NT(x, E)

In this section, we present experimental results in two parts. In the first part,

1/f noise in n-channel MOSFETs with oxide thicknesses ranging from 14nm to

41nm are characterized. Measurements of the magnitude and exponent of the 1/rf

spectrum as a function of gate bias are reported. The number fluctuation and the

correlated fluctuation models are both used to extract NT(z, E). In the second

part, we investigate 1/f noise in n- and p-channel MOSFETs with 12nm dielectrics

which have undergone a nitridation/reoxidation treatment. Due to limitations in

the measurement system, we restrict our investigation to low gate biases where

mobility fluctuations can be neglected. We then use the model to extract NT(x, E)

for various nitridation/reoxidation conditions.

6.4.1 Procedure for numerical evaluation of the correlated

model

The correlated fluctuation model described by equation 6.33 requires the follow-

ing parameters: So, IAN, and NT(X, E). The scattering rate constant, So, is estimated

from the data of Sun and Plummer [97] which relates the measured inversion layer

mobility to the measured oxide charge. In order to estimate a value for So, we as-

sume that the intentionally introduced oxide charge in the experiments of Sun and

Plummer is uniformly distributed within 20 A of the interface. It is also assumed

that the scattering rate constant obtained from their experiments represent an ap-

propriately weighted average of the various scattering rate terms corresponding to

charges located at different distances from the interface. In other words, the average

scattering rates are equated to solve for So.

S(x) + 1 ' S(x)dx = Ss,p (6.37)
X2 X 1 1
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where the limits of the integral are chosen as zl = 0.5) and z 2 = 20A, the first

term on the LHS is the scattering contribution from the region x < 0.5), and Ss,p

is the average scattering rate obtained from the data of Sun and Plummer. Solving

for So yields a value of 2.56 x 102 V . s/coul. Due to the logarithmic dependence

of the scattering rate on x, the estimated value of So is relatively insensitive to the

choice of •1, X2, and rm, .

The calculation of the noise also requires the value of the inversion layer mobility,

IiN. The value of the surface mobility used in the calculation is the measured value

of 1N at the operating point of interest. This avoids the need for a model of the

gate voltage dependence of the surface mobility which would involve additional

parameters. NT(z, E) thus represents the only fitting parameter used in adjusting

the calculated noise to match the measured noise.

Note that the cross-term and pure mobility fluctuation terms involve an integral

over x which must be performed numerically. The procedure involves calculating

the noise magnitude for a given frequency by numerical integration using a step

size of 0.5 A and the evaluating the integral between 0.5 A and 20 A. For a given

frequency, f, the greatest contribution to the integral originates from a small region

within the dielectric. This is best illustrated in figure 6.8 where the integrand

S(X(z) rT
1 + W2rT2 ()

is plotted as a function of x, where we have assumed that the trap density is

spatially uniform. Due to the exponential dependence of the time constant on x, the

integrand is a sharply peaked function centered about a depth, z, corresponding to

a time constant of 1/f. The lower limit of the integral is chosen to be 0.5 A to avoid

the non-physical singularity introduced by the functional form of the scattering

rate. The choice of 0.5 A, in effect, places an upper bound on the scattering rate of

- 3.5 x 103 V . s/coul for charges located at the Si-SiO 2 interface. The contribution

of the integral from z = 0 to z = 0.51 to the total integral (assuming a constant

scattering rate equal to 3.5 x 10S V • 8acoul for x < 0.51) is less than 0.1 %. Thus
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Figure 6.8: Plot of the integrand appearing in the cross term of the correlated

fluctuation model. The peak of the function is centered on value of x corresponding

to a time constant of 1/f. The greatest contribution to the integral of the function

arises from a small region about z.

the use of lower limit of 0.5 A is a reasonable approximation.

6.4.2 Experimental methods

The experimental apparatus and the measurement technique are described in

section 3.4.4. Here, we discuss issues specific to extracting NT(z,E). The data

required for such a purpose includes a series of 1/f noise sweeps over a range of gate

biases where each sweep involves the measurement of the 1/f noise magnitude versus

frequency. The data is summarized by plotting (i) the noise magnitude versus gate

bias at a given frequency and by plotting (ii) the noise exponent versus gate bias

where the noise exponent is found by a least squares fit of the noise spectrum. The
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1/f noise measurement technique used in this thesis involves the measurement of the

drain voltage noise power in the triode region of operation and its conversion to the

equivalent gate voltage noise using the measured value of the small-signal voltage

gain of the device. The technique is limited by the fall off of the device voltage

gain at higher gate biases when the device is biased in the triode region. In order

to obtain a sufficiently broad frequency spectrum, the measurement is performed

from 20 Hz, the lower frequency limit of the HP3585 spectrum analyzer, to 50 kHz.

The measurement requires additional care at 20 Hz since the spectrum analyzer

itself begins to exhibit a small 1/f noise component for f < 100 Hz. This 1/f noise

component is subtracted from the raw noise data.

6.4.3 1/f noise data and extraction of NT(x, E)

In figure 6.9, the measured equivalent gate voltage noise power at a frequency

of 20 Hz is plotted against the gate drive, VGs - VT for devices with different oxide

thicknesses. At a single frequency, the noise originates from a small region within

the oxide, a specific distance from the interface. With increasing gate bias, the

noise originates from points of increasing energy as previously shown in figure 6.5.

Within the context of the number fluctuation model, this behavior is interpreted

as an increasing trap density with increasing energy above the conduction band of

silicon. Within the context of the correlated fluctuation model, the increasing noise

with gate bias can be interpreted as being due to an increasing trap density or due

to the increased effects of mobility fluctuations. The extracted trap density from the

number fluctuation and correlated fluctuation models are shown in figure 6.10. Note

that the extracted trap density from the correlated model increases more gradually

with energy than the extracted density from the number fluctuation model. This

is due to the effect of mobility fluctuations in the correlated model.

In figure 6.11, the extracted 1/f noise exponent is plotted against the gate drive

for devices with various oxide thicknesses. The considerable scatter in the data
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devices with various oxide thickness.

ise spectrum as a function of gate biases for

makes it difficult to make conclusive remarks, but it can be seen that the exponent

generally increases with gate drive. Both within the number fluctuation and cor-

related fluctuation models, the increasing value of the exponent is interpreted as a

trap distribution that increases along the length of the window probed by 1/f noise

measurements. Due to the considerable scatter in the data, we do not attempt to

extract the value of the trap density over the entire set of (x, E) values.

The scatter in the exponent values is due to the limited frequency range over

which the data can be fit. The frequency range becomes increasingly limited with

increasing gate bias due to a decrease in the measured drain voltage noise with

increasing gate bias. The problem is further accentuated in thin oxide devices

which have lower noise. Possible solutions to this problem are discussed in section

6.5.
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6.4.4 Effect of nitridation/reoxidation on 1/f noise.

In this section, we use the above noise models to understand the effect of nitridation

and reoxidation of Si02 on 1/f noise. In order to avoid the above stated difficulties

in measuring the exponent of the 1/f noise spectrum at higher gate biases and to

minimize the effect of mobility fluctuation terms, we restrict our measurements to

a gate bias near threshold. This allows us to isolate the effect of nitridation and

reoxidation on the oxide trap density along a line of increasing (x, E) values near

the conduction band of silicon as illustrated in figure 6.4. In these experiments,

therefore, n-channel and p-channel transistors were biased in the linear region

(VDs = ±0.2V) under strong inversion conditions (VGS - VT = +0.5V). The noise

magnitude is measured in the frequency range of 100 Hz to 50 kHz and the data used

to extract NT (x, E). The lower frequency limit of 100 Hz is used instead of the 20

Hz used in previous measurements to avoid correcting for the 1/f noise component

of the spectrum analyzer at low frequencies. Since the small signal voltage gain is

sufficient for gate biases near threshold, the use of 100 Hz instead of 20 Hz as the

lower frequency limit does not pose a serious limitation in terms of the available

frequency range that can be explored.

Figure 6.12 shows the data obtained on n-channel devices with various nitrida-

tion/reoxidation conditions. The data are fit with a least squares line to extract

the exponent of the 1/f noise spectrum. The estimated error in the value of the

exponent is +0.05. Given the 1/f noise magnitude and exponent information con-

tained in figure 6.12, the number fluctuation model is used to calculate the trap

density, NT (x, E), shown in figure 6.13. Since the effect of nitridation/reoxidation

is compared at constant gate drive, the oxide band bending within each device is

approximately the same. Thus, by examining the exponent of the noise spectrum

for various devices, we can compare the relative trap distribution along the length

of the window probed by 1/f noise.

Note that the 1/f noise in n-channel devices increases with nitridation. This is
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interpreted as an increase in the interfacial electron trap density near the conduc-

tion band of silicon. Note also that the noise spectrum of the oxide and nitrided

oxide devices have similar slopes. This implies that the trap distribution is not sig-

nificantly altered by nitridation though the trap density increases by as much as one

order of magnitude. In the case of the heavy nitridation, a reoxidation decreases the

1/f noise; that is, reoxidation appears to be effective in removing interfacial elec-

tron traps. This consistent with the observation of reduced electron trapping with

reoxidation during constant current stressing in capacitor structures. Reoxidized

nitrided oxide devices have a noise spectrum exponent that is less than for nitrided

oxide devices. Thus the reoxidation process appears to preferentially remove traps

that are located further from the interface and slightly higher in energy. In the

case of the light nitridation, however, a reoxidation does not appear to reduce the

1/f noise, within the resolution of the measurement. This appears to be inconsis-

tent with high-field constant current stressing results which indicate a reduction in

electron trapping with reoxidation even for the case of a light nitridation. How-

ever, high-field stressing experiments probe traps that are deep in the bulk of the

oxide whereas 1/f noise measurements probe near interfacial traps. Thus, the data

may be consistent with a reoxidation model which predicts a preferential removal

of traps located further from the interface.

Figure 6.14 shows the data obtained on p-channel devices. Again the infor-

mation contained in figure 6.14 is used to extract the oxide trap density near the

valence band of silicon assuming an hole effective mass of 0.5mo and a barrier height

of 4.7 eV (figure 6.15). Note that the 1/f noise in p-channel nitrided oxide devices

is higher and suggests an increase in the interfacial oxide hole trap density near the

valence band of Si as a result of nitridation. The process of reoxidation is effective

in removing interfacial hole traps and in the case of the light nitridation combined

within a reoxidation the noise is within 25% of the oxide device. Note that the

slope of the noise spectrums for the various p-channel devices are similar and -y > 1
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Figure 6.12: 1/f noise in n-channel devices as a function of nitridation and reoxida-

tion conditions. W/L = 20/5; Vas - VT =0.5V; VDs = 0.2V. The error bar indicates

the noise band within which most devices fall for a single wafer. The solid lines

indicate a least squares fit to the data and is used to extract the 1/f noise exponent

(shown in parenthesis). The error in the value of - is estimated to be ±0.05.
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Figure 6.14: 1/f noise spectrum of p-channel devices with various gate dielectrics.

W/L = 20/5; Vas - VT = -0.5V; VDS = -0.2V. The error bar indicates the noise

band within which most devices fall for a single wafer. The solid lines indicate a

least squares fit to the data and is used to extract the 1/f noise exponent (shown

in parenthesis). The error in the value of -y is estimated to be ±0.05.
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giving rise to trap distribution that increases along the line of increasing (x, E). It

should also be noted that an increase in hole traps near the valence band of Si due

to nitridation has not been previously observed. Constant current stress measure-

ments on capacitors would not detect these hole traps since the electron tunneling

current always dominates the hole tunneling current and hence, electron trapping

effects dominate hole trapping effects.

Comparing n-channel and p-channel devices, we find that nitridation increases

both electron and hole trap densities near the conduction and valence bands of Si,

respectively. Hole trap densities, however, are increased to a lesser extent by the

nitridation process. Reoxidation appears to be effective in reducing both electron

and hole trap densities near the conduction and valence bands, respectively. Elec-

tron trap distribution is changed by reoxidation whereas the hole trap distribution

does not appear to be affected.

From the viewpoint of improving noise performance, lighter nitridations coupled

with a reoxidation result in noise magnitudes approaching those of oxide devices

particularly in the case of p-channel devices.

6.4.5 Relationship between 1/f noise and inversion layer

mobility

Recall that in the discussion of the electron inversion layer mobility in section

5.1, the presence of acceptor-type electron traps located near the Si conduction

band was essential in explaining the observed mobility behavior. From 1/f noise

measurements, it is not possible to determine the donor or acceptor nature of traps.

However, if we assume that the traps observed in the 1/f noise measurements are

acceptor-type (negatively charged when filled) then the behavior of the n-channel

1/f noise is consistent with the mobility model of Schmidt, et. al. [38] which

attributed electron mobility degradation in nitrided oxides to the combined effects

of fixed charge and electron trap scattering.
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The 1/f noise measurements of p-channel devices indicate the presence of the

hole traps near the valence band of Si, whereas the mobility model of Schmidt, et.

al. assumes that the hole trap density near the valence band is not affected by

nitridation. The presence of hole traps near the valence band due to nitridation has

not been previously reported. In order to reconcile the 1/f noise measurements with

the hole mobility data, recall that the hole mobility appears to be explained by fixed

charge effects alone. The hole mobility decreases with nitridation (consistent with

increasing fixed charge) and is relatively insensitive to reoxidation (consistent with

constant fixed charge), whereas the p-channel noise increases with nitridation and

decreases with reoxidation. The discrepancy can be explained if we assume that hole

traps observed in the noise measurements are neutral when filled (acceptor-type).

Acceptor-type hole traps would not cause scattering of inversion layer holes but

would cause 1/f noise. Further modeling and independent confirmation of the donor

or acceptor nature of these traps is required to substantiate these speculations.

6.5 Problems and suggestions for future work

The primary problem encountered in the extraction of NT(x, E) arose from the

considerable scatter in the value of the 1/f noise exponent at high gate biases. This

was due to the measurement of the drain voltage noise spectrum which decreases

with increasing gate bias, limiting the frequency range over which the data could be

fit. A possible solution to this problem is to devise a measurement technique that

directly measures the gate voltage noise spectrum which increases with gate bias.

The extent to which mobility fluctuations are important to 1/f noise depends on

our estimate of the scattering rate constant, So. An additional weakness is the use

of a relationship between the inversion layer mobility and the location of the oxide

trapped charge which contains a singularity at x = 0. A more accurate relationship

between the surface mobility and oxide trapped charge is needed. In addition, an in-
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dependent means of confirming the importance of mobility fluctuations is required.

A possible experiment to explore the importance of mobility fluctuations is to cor-

relate the 1/f noise in MOSFETs with the charge transfer efficiency of similarly

processed MOS charge-coupled devices (CCDs). Whereas 1/f noise in MOSFETs

depends on both number and mobility fluctuation effects, the charge transfer effi-

ciency of CDDs depends only on the number of carriers trapped by oxide traps. An

additional experiment might include investigating the temperature dependence of

1/f noise. The variation of temperature would greatly affect the mobility without

affecting oxide band bending and tunneling parameters.

6.6 Summary

In this chapter, we investigated the use of 1/f noise measurements as a tool in

extracting the oxide trap density and distribution in space and energy near the

conduction and valence bands of silicon. We began by reviewing the number fluc-

tuation model of 1/f noise. It was shown that oxide band bending in devices with

nonuniform oxide trap distributions led to a gate voltage dependence in the mag-

nitude and exponent of the 1/P noise spectrum. We then explored an extension of

the 1/f noise theory based on the McWhorter tunneling model which included both

number fluctuations and correlated mobility fluctuations. The predictions of the

theory were discussed and compared to the predictions of the pure number fluctua-

tion model. It was shown that the correlated fluctuation model also predicts a gate

voltage dependence in the magnitude and exponent of the 1/f noise spectrum even

for uniform trap distributions. Both the number and correlated fluctuation models

were used to extract the oxide trap distribution in oxide devices with various oxide

thickness. However, due to difficulties in reliably measuring the exponent of the 1/f

noise spectrum, the method was limited in the (x, E) space that could be explored.

The model was then used to interpret the effects of gate oxide nitridation and re-
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oxidation on the 1/f noise properties of MOSFETs. It was found that nitridation

increases the interfacial electron trap density in the oxide near the conduction band

of silicon by a factor of 2-10. Reoxidation decreases the nitridation-induced interfa-

cial electron trap density. Nitridation was also found to increase the interfacial hole

trap density near the valence band of silicon by a factor of 2-6. Reoxidation reduces

the nitridation-induced hole trap density to values within 25% of oxide values for

light nitridations. In the final section, the limitations of the 1/f noise method and

suggestions for future improvements in the technique were discussed.
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Chapter 7

Conclusions

7.1 Summary

This thesis investigated the electrical properties of nitrided oxides and reoxidized

nitrided oxides as MOS gate dielectrics. The focus of the discussion was on the

reliability and 1/f noise properties of such devices.

The growth of the various dielectrics was accomplished in a special furnace

system constructed for operation at low pressure (0.01 - 0.1 atm.). Anneals were

performed at 950 *C in pure ammonia, oxygen, or inert (nitrogen or argon) ambients.

We used low pressure nitridation to explore the pre-turnaround regime of the

nitridation process. Nitrided oxides formed under low pressure conditions differed

from atmospheric pressure nitrided oxides in a number of respects. First, the fixed

charge and interface state exhibited a turnaround behavior with increasing nitrida-

tion similar to atmospheric nitridation, but this turnaround occurred more gradu-

ally. This suggested a sufficient process window in the early stages of the nitridation

process (pre-turnaround regime). Second, low pressure nitrided oxides typically did

not exhibit a suppression of interface state generation under electrical stress unless

a lengthy nitridation was performed. However, when coupled with a reoxidation,

short nitridations dramatically suppressed interface state generation. Moreover,
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reoxidation eliminated electron trapping, as expected from previous work. We ex-

ploited the above differences to develop a dielectric process which exhibited greatly

improved reliability over conventional silicon dioxide devices. The amount of inter-

face state generation under electrical stress was reduced by a factor of 25 compared

to silicon dioxide devices and charge trapping was virtually eliminated. In addi-

tion, the breakdown strength was somewhat improved compared to oxide and the

charge-to-breakdown was about one order of magnitude better than oxide. While

the nitridation/reoxidation process generally degrades the initial interfacial charac-

teristics of the oxide, we were able to achieve a fixed charge density as low as N 2-3

x 1011 cm - 2 and midgap interface state density as low as - 3 x 1010 cm -2 eV - 1.

The procedure by which we optimized the dielectric processing was described

and reliability-performance tradeoffs outlined. It was shown that lighter nitridation

result in better performance (lower fixed charge and interface state density) but at

the expense of reduced reliability improvement (less suppression of interface state

generation and less reduction in charge trapping).

The low pressure nitridation/reoxidation process also showed greater resistance

to ionizing radiation both in terms of interface state and fixed charge generation,

suggesting that even light nitridations can be used to achieve improved radiation

hardness.

Finally, the low pressure process was shown to have better control compared to a

dilute process under equivalent partial pressures of ammonia and oxygen. However,

the dilute process showed reduced fixed charge and interface state density. In ad-

dition, the dilute process exhibited reduced interface state generation and electron

trapping under high-field stressing, a result suggestive of the presence of oxygen

contamination during the nitridation process.

In order to demonstrate the viability of such gate dielectrics in scaled tran-

sistors, certain gate dielectrics were used in the fabrication of NMOS and PMOS

transistors. It was found that reoxidized nitrided oxide gate dielectrics improve
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the projected operating life of short-channel transistors by an order of magnitude

over oxide devices, with only a 20 % degradation in the inversion layer mobility of

devices.

We also investigated the use of 1/f noise measurements as a tool in extracting

the oxide trap density and distribution in space and energy near the conduction

and valence bands of silicon. We began by reviewing the McWhoeter number fluc-

tuation model of 1/f noise. It was shown that oxide band bending in devices with

nonuniform oxide trap distributions led to a gate voltage dependence in the mag-

nitude and exponent of the 1/f' noise spectrum. We then explored an extension of

the 1/f noise theory based on the McWhorter tunneling model which included both

number fluctuations and correlated mobility fluctuations. The predictions of the

theory were discussed and compared to the predictions of the pure number fluctua-

tion model. It was shown that the correlated fluctuation model also predicts a gate

voltage dependence in the magnitude and exponent of the 1/f noise spectrum even

for uniform trap distributions. Both the number and correlated fluctuation models

were used to extract the oxide trap distribution in oxide devices with various oxide

thickness. However, due to difficulties in reliably measuring the exponent of the 1/f

noise spectrum, the method was limited in the (x, E) space that could be explored.

The model was then used to interpret the effects of gate oxide nitridation and re-

oxidation on the 1/f noise properties of MOSFETs. It was found that nitridation

increases the interfacial electron trap density in the oxide near the conduction band

of silicon by a factor of 2-10. Reoxidation decreases the nitridation-induced inter-

facial electron trap density. Nitridation was also found to increase the interfacial

hole trap density near the valence band of silicon by a factor of 2-6. Reoxidation

reduces the nitridation-induced hole trap density to values within 25% of oxide val-

ues for light nitridations. The limitations of the 1/f noise method and suggestions

for future improvements in the technique were also discussed.
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7.2 Future Work

The fact that light, low pressure nitridations coupled with reoxidations result

in dramatic improvements in device reliability without significantly compromis-

ing performance, suggest that other techniques for achieving light nitridations and

reoxidations may behave similarly. As such, lower temperature (850 0C) nitrida-

tion/reoxidation processes as well as rapid thermal nitridation/reoxidation processes

may be worth investigating as alternatives to low pressure processing.

Our study of dilute nitridations showed that oxygen contamination results in

nitrided oxides that appear partially reoxidized with desirable but variable charac-

teristics. By controlling the level of oxygen contamination during the nitridation

cycle, it may be possible to develop a one-step nitridation/reoxidation process.

Clues to further improvement. in reliability might be obtained by developing

better models for the mechanisms responsible for reliability improvement in reoxi-

dized nitrided oxides. A possibly important component to such a model may be the

role of hydrogen which has received relatively scarce attention. Particularly helpful

would be to study correlations between the presence of hydrogen in the dielectric

and the reliability of devices.

The correlated 1/f noise model considered in this thesis suggests a wide range

of experiments that could be performed to verify its validity. Experiments over

temperature and over a range of bias conditions including subthreshold might be

used to separate the effects of number and mobility fluctuations. Other experiments

might include comparing 1/f noise in MOSFETs with the charge transfer efficiency

of charge coupled devices or comparing 1/f noise in MOSFETs with threshold volt-

age hysteresis in MOSFETs undergoing large voltage swings. While the correlated

model appears successful in extracting NT (x, E) over a limited range, it remains to

be seen whether it can extract oxide trap density and distribution from 1/f noise

data taken over a wide range of gate biases and oxide thicknesses.

Reoxidized nitrided oxides may also be applied to other device structures such
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as EEPROMs or polysilicon-emitter bipolar transistors.
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Appendix A

Process Flow For Etched Field

Oxide Capacitors

0) Label Wafers (I-N) n-type <100>, 10-40 ohm-cm

Wafer Thickness : --------- (.32 mm)

Water Rs : (500 ohms/square)

1) Field Oxidation

RCA Clean with HF dip

Oxidation (lower tube)

HC1 clean oxidation furnace

Field Oxidation dry 02 0950C for 30 min

wet 02 0950C for 200 min

dry 02 0950C for 30 min

N2 0950C for 30 min

Field Oxide : -------------- (5000 A)
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3) Define Gate Region

PRAP, Contact Aligner, Small Mask (Oxide - Dark Field)

Standard Resolution Aligner - channel 1 12 sec

Inspect Resist

Etch Gate Dielectric Areas

Etch in Buffered HF 7:1 NH4F/HF (1500A/min)

Inspect for etch completion

Resist strip A20 solution 080C for 5 min

DIH20 rinse and N2 blow dry

Field Isolation Complete

5) Gate Oxidation/Nitridation

RCA clean with HF dip (short "20sec 10:1 DIH20/HF)

See Oxidation/Nitridation Process Sheet

6) LPCVD Polysilicon Deposition

Immediately Deposit 5000A polysilicon (undoped)

7) Remove Backside Poly and Oxide

Protective Layer for Frontside of Wafer

Dehydrate 0200C for 30 min

Spin KTI1370 30 sec 5000 rpm
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Softbake 090C for 20 min

Plasma etch backside polysilicon

Day etcher SF6 0200W for 2-3min

loading = -------- (211)

tuning = -------- (245)

Etch backside oxide in BOE

7:1 NH4F/HF (1500A/min)

Strip frontside resist

acetone>methonal>DIH20 rinse

8) Dope Polysilicon

Organic clean (only)

6:1:1 DIH20/H202/NH40H 080C for 20min

DIH20 rinse and N2 blow dry

Phosphorous Predeposition (top tube)

N2, 925 C, 60min (40 rotameter scale)

02, 925 C, 10min (6.3 rotameter scale)

N2, 925 C, 15min (40 rotameter scale)

P-glass strip

Dip 10:1 DOH20/HF

DIH20 rinse and N2 blow dry

9) Polysilicon Gate

PRAP, Contact Aligner. Poly Mask (large - clear field)

Standard Resolution Aligner channel 1 12 sec

Inspect Resist

Plasma etch frontside polysilicon
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Day etcher SF6 0200W for 2-3min

loading =________ (211)

tuning = -------- (245)

Inspect for etch completion

Resist strip A20 solution 080C for 5 min

DIH20 rinse and N2 blow dry

10)Sinter

Forming Gas (20% H2 80% N2). 450 C. 50 min
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Appendix B

Process Flow For LOCOS-Isolated

Capacitors

STARTING MATERIAL: n-type 100

STEP # STEP DESCRIPTION1

1 Stress Relief Oxide

2 LPCVD Silicon Nitride

3 Active Area Pattern

4 Nitride Plasma Etch

5 Resist Ash

6 Field Oxide

7 Nitride Wet Etch

8 Stress Relief Oxide Wet Etch

9 Gate Oxide (Oxidation, Nitridation, and Reoxidation)

10 LPCVD Polysilicon

11 Resist Coat

'Detailed description of the these standard steps can be obtained from the MIT Integrated Circuit

Laboratory.
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12 Backside Oxide Wet Etch

13 Backside Poly Plasma Etc

14 Backside Oxide Wet Etch

15 Resist Ash

16 Phosphorus Deposition

17 Phosphorus Glass Wet Etch

18 Poly Pattern

19 Poly Plasma Etch

20 Resist Ash

21 Sinter Metal
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Appendix C

Process Flow For NMOS and

PMOS Runs

Wafer labels: (nm) nmos field implant

(pm) pmos field implant

20 product wafers

1. Label Wafers (20 product : 9 nmos, 11 pmos.)

p-type, < 100 >, 10-40 fl-cm

wafer thickness

wafer sheet resistivity :

(0.32mm)

(5000/ O)

2. Stress-Relief Oxidation (all)

RCA clean

oxidation (lower tube)

Dry 02, 950*C, 100 min

N2, 950 C, 30 min
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stress-relief oxide (nm,pm) :

3. Deposit LPCVD Nitride (all + nitride monitor)

RCA clean (No HF)

LPCVD nitride, 45 min

nitride thickness (monitor) : (150nm)

4. Pattern Nitride (all - nm,pm)

diffusion mask

HMDS, 1370 photoresist, prebake

GCA mask: SLG84ND

job: RAJ1ND

postbake

plasma etch nitride (all)

10:1 HF, 30 sec

LAM etch: 150sccm SF6 , 150sccm He

300mTorr, 250W, 1.5cm gap

-200 nm/min, endpoint detection

stress-relief oxide : (35nm)

5. Field Implant (all)

nmos implant : B+, 70KeV, 2 x 1013 cm - 2

pmos implant : P, 60KeV, 1 x 1013 cm - 2

strip resist
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Day etch: 02, 100mTorr, 200W, 5 min

all wafers at same time

Loading 13.8, Tuning 25.3

6. Field Oxidation (all)

RCA clean (No HF)

oxidation (lower tube)

Dry 02, 950*C, 30 min

Wet 02, 9500C, 200 min

Dry 02, 950 0C, 30 min

N2, 9500C, 30 min

field oxide : (500nm)

7. Nitride Strip (all)

10:1 HF, 30 sec

Transetch, 1800 C,

field oxide :

resistivity(nm) :

resistivity(pm) :

15 min, keep boiling

(490nm)

(n/c)Onrv

8. Gate Oxidation and Poly Deposition (all + 4 oxide monitors)

RCA clean

etch SR oxide: 10:1 HF, 90-150 sec, check sheeting

oxidation/nitridation
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Control oxide :950°C,

Nitrided-oxide :

control oxide(tox3)

nitrided-oxide(tno3) :

field oxide

deposit poly: 5000A

poly thickness (monitor) :

02, 76torr, 35 min

(10nm)
(10nm)
(440nm)

(500nm)

9. Dope Polysilicon (all)

RCA clean

phosphorus deposition (upper tube)

N2, 925*C, 60 min

02, 9250C, 15 min

N2 , 925*C, 10 min

strip phosphorus glass

10:1 HF, 30 sec, check sheeting

10. Pattern Poly (all - nm, pm)

poly mask

1370 photoresist, prebake

GCA mask SLG84NP

job RAJ1ND

postbake

plasma etch poly (all)

Day etch 02, 100mTorr, 100W, 60 sec (descum)

LAM etch: 130 sccm CCl 4, 20 sccm 02, 130 sccm He
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200 mTorr, 300W, 1.5 cm gap

-350 nm/min, endpoint detection

strip resist (Leave resist on pmos wafers)

Day etch: 02, 100mTorr, 200W, 5 min

all wafers at same time

Loading 13.8, Tuning 25.3

source/drain oxide: (20nm)

field oxide (430nm)

11. Source/Drain Implant (all)

nmos implant : As, 90KeV, 7 x 1015 cm - 2

pmos implant : BF2, 30KeV, 7 x 1015 cm - 2

em strip resist pmos wafers only

12. Backside Strip (all - nm, pm)

Coat front with KTI 732 resist and softbake

strip poly

30 sec in BOE

LAM etch: 130 sccm CC14 , 20 sccm 02, 130 sccm He

200 mTorr, 300W, 1.5 cm gap

-350 nm/min, endpoint detection

strip oxide

7:1 NH4/HF, 30 sec, check sheeting

strip resist

acetone, methonol, DI rinse
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13. CVD Oxide (all)

RCA clean (No HF)

oxidation (lower tube)

Dry 02, 900*C, 30 min

N2, 900 C, 30 min

deposit CVD oxide

preheat at 400*C, 30 min

deposit at 400*C, 6 min

source/drain oxide: (620nm)

field oxide (1030nm)

14. Densify CVD Oxide (all)

RCA clean (No HF)

oxidation (lower tube)

Dry 02, 9500C, 30 min

N2, 9500C, 15 min

source/drain oxide: (570nm)

field oxide (980nm)

15. Contacts (all - nm, prnm)

contact mask

HMDS, 1370 photoresist, prebake

GCA mask SLG84NC

job RAJ1ND

postbake
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two-step etch contacts

Descum: 02, 100mtorr, 200W, 30sec.

5 min. in BOE

strip resist

A-20, 900C, 5 min

source/drain R, : (30f/ 0)

16. Contact Plugs (nmos only)

RCA clean

phosphorus deposition (upper tube)

N2, 925*C, 60 min

02, 925°C, 15 min

N2, 925*C, 10 min

strip phosphorus glass

7:1 NH 4/HF, 5 sec, check sheeting

contact R, (1) : (20f/ 0)

field oxide (2) : (970nm)

17. Al-Si-Cu Deposition (all)

organic clean pmos

rinse in methanol, and blow dry

sputter Al-Si-Cu

1.8 kV, 5mTorr, 3 x 10- 6 Torr base pressure

clean target: 15 min at 600W

deposit: -60 min at 200W

Al-Si-Cu R. : (32mf1)
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18. Pattern Al-Si-Cu (all - nm, pm)

metal mask

1370 photoresist, prebake

GCA mask SLG84NM

job RAJ1NP

postbake

etch Al-Si-Cu

PAN etch, 5 min

Day etch: SF6 , 70mTorr, 50W, 2 min

four wafers at a time

loading 21.2, tuning 41.9

strip resist

A-20, 900C, 5 min

field oxide (2) : (970nm)

19. Contact Sinter (all - nm, pm)

rinse well in DH20O

sinter: 80% N2: 20% H2, 4500C, 30 min

Photoresist Application Procedure

Dehydration bake: 2000C, 30 min

Spin off particulates

Flood wafer with HMDS: 5000RPM, 30 sec
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Coat wafer with KTI1370: 5000RPM, 30 sec

Softbake: 10 min, room temperature

25 min, 900C

Expose: 0.3 sec for oxide, nitride

0.25 sec for poly, metal

Develop: 60 sec in MF312:DH 2 O, 1:1

Hardbake: 25 min, 1200C
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