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Abstract

This thesis presents an ab initio study of biological molecules using first-principles
molecular dynamics. Density functional theory and Car-Parrinello molecular dynam-
ics are used in the computational modeling of the water molecules and the amyloid-
forming peptide GNNQQNY derived from the yeast prion protein Sup35. The Young's
modulus of the fibril obtained from the ab initio method is larger than the experi-
mentally reported value, which can be improved with a more complete understanding
of the physical properties of the fibril.
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Chapter 1

Introduction

Understanding the electronic structures of complex biological molecules is essential in

the modeling of biocatalytic systems. Early studies of biological molecules is based on

the classical molecular dynamics, which assumes that the atoms follow the Newton's

equations of motion under empirical potentials. The classical description fails to

capture the quantum behaviors of the system arising from the many-body electronic

wavefunctions. An accurate modeling must incorporate the quantum mechanical

interactions.

Density functional theory describes the essential quantum mechanical interactions

of a system through its electronic distribution. Density functional theory provides

a good compromise between accuracy and computational cost [1]. It is capable of

describing diverse interactions and has been successfully applied to the study of many-

body systems, including complex protein peptides. It yields good agreement with the

experimental studies of lattice vibrations, bulk moduli, equilibrium geometries, and

binding energies of large systems [2]. Using density functional theory, we wish to

study water molecules, which is the typical medium of most biological molecules, and

the amyloid-forming peptide GNNQQNY that is essential to the understanding of

amyloid related diseases.

Amyloid-like fibrils are unbranched protein peptides formed from different types

of protein monomer. They are the causes of many amyloid-related diseases includ-

ing Alzheimer's disease and Type II diabetes. Amyloid fibrils of different proteins



have a common structural pattern that suggests the existence of a common molecu-

lar structure [3]. Much experiments have been done on the amyloid-forming peptide

GNNQQNY. They showed that the formation of the fibril depends on the nucle-

ation. Their strength and stiffness are believed to be important to the growth and

propagation of amyloid fibrils in disease [4].

The paper is organized as follows: In Chap. II, the density functional theory and

Car-Parrinello molecular dynamics are presented. Kohn-Sham equations and Perdew-

Burke-Ernzerhof exchange-correlation potentials are also described. In Chap. III, the

computational methods used in the modeling are introduced. Chapter IV contains

a study of the water molecules and amyloid-forming peptide GNNQQNY using Car-

Parrinello molecular dynamics.



Chapter 2

Theory

2.1 Many-body Schrodinger Equation

A many-body system containing N particles is fully characterized by the solutions to

the Schrodinger equation. Once the many-body wavefunctions that are solutions to

the Schr6dinger equation are known, all macroscopic properties of the system can be

calculated.

A neutral system of atoms contains the electrons and the ionic cores. The Hamil-

tonian of the entire system includes the kinetic energy of the electrons (Te), the kinetic

energy of the ions (TN), the electron-electron interaction (Ve-e), the electron-ion in-

teraction (Ve-N), and the ion-ion interaction (VN-N):

H = TT e + TN +Ve-N +Ve-e + VN-N (2.1)

The first simplification to Eq. (2.1) is the Born-Oppenheimer approximation. Assum-

ing that the time scale of the electronic motion is magnitudes smaller than the time

scale of the ionic motion, it is to a good degree of accuracy that the ionic motion

is treated classically, such that the time-average of the sum Te + VN-N is constant

over the time scale of the electronic motion. The ionic kinetic energy is determined

by Newton's equation, and the ionic potential energy is determined by Coulomb's

law. As a result, solving the Schridinger equation is reduced to finding the electronic



many-body wavefunctions in the presence of an external potential E, V(RI - r'),

H Te +VeN +Ve-e ==

H h V2 + [ V(fl -Ps]+ 22Hh2 1 (2.2)
i i I " j>i

The summation of index I is performed over all the ions, and the summation of index

i is performed over all the electrons in the system. For the rest of this paper, we will

set e = h = me = 4o = 1.

If the system has N electrons existing in 3-dimensional space, solving the eigen-

problem of Eq. (2.2) would require simultaneous variation of 3N variables. This ap-

proach is nriot computationally feasible for dealing with large systems such as crystals

or biological molecules. A more feasible approach is accomplished through density

functional theory.

2.2 Density Functional Theory

The density functional theory was developed following the Thomas-Fermi model [5].

The key idea to density functional theory is the first Hohenberg-Kohn theorem [6],

which is derived from variational principle1 . The theorem states that an interacting

system of fermions (in most systems, electrons) is completely and uniquely charac-

terized by its density. This implies that if the external potential and the number of

electrons are known, all system properties can be formulated as functionals of the

charge density. Following this idea, the complexity of the problem is greatly reduced

because the system now depends on only three parameters, the spatial x, y, and z.

The first Hohenberg-Kohn theorem allows the Hamiltonian in Eq. (2.2) to be re-

written as a functional of the charge density of the system po(r) = po(r 1 , r 2, ... , rN),

in an external potential v(r)

Ett[po(r)] = F[po(r)] + J drpo(r)v(r) , (2.3)

isee Parr [5] for the (short) derivation



ri is the coordinate vector of i-th electron. F[po(r)] is a functional that is the same for

all systems with the same number of electrons, and is the sum of the kinetic energy

T[po(r)] and Hartree energy EH[po],

F[po(r)] = T[po(r)] + EH[po(r)]. (2.4)

The Hartree energy describes the electron-electron interaction and is given by

EH[PO] = - [ drdr' po(r)p° (r') (2.5)
2]] Ir-r'I

The second Hohenberg-Kohn theorem states that the minimum of Eto&[p] occurs
at the ground state density po(r) [5]. Therefore, if po(r) is known, 6Et = 0. Let 7

6po(r)

be the Lagrange multiplier associated with the constraint that there are N electrons

in the system,

Sdrpo(r) = N (2.6)

then the density is related to the external potential through

= v(r) + 6(T[po(r)] + Vee[po(r)]) (2.7)
6po(r)

Let { i(ri, si)} be the one-electron wavefunction to Eq. (2.2), where ni (0 < ni •

1) is their occupation numbers, ri is the three spatial coordinates, and si is the spin.

The density and the kinetic energy of the N electron system are

po(r) = I (r, s)l2 = Z I Ii(ri, si)l2  (2.8)
i s8

T[po(r)] = ni I - 1V2 10i) , (2.9)

where the sum is performed over N one-body wavefunctions that are occupied [5].

The many-body wavefunction I(r, s), where r = {ri} and s = {si}, is a solution to



Eq. (2.2). The one-body wavefunction is the solution to the equation

h2

Hi = V + veff (2.10)
2me

where Veff is the potential seen by an electron. The problem still difficult to solve

because there are infinitely many number of terms in Eq. (2.9).

2.3 Kohn-Sham Equations

Kohn and Sham showed that it is possible construct a system of non-interacting elec-

trons such that the ground state density p is equal the ground state of the interacting

system Po [7]. Let {Joi(r, s)} be the one-body, spin-orbital wavefunctions of the non-

interacting system where r is the three spatial coordinates. The density and the

kinetic energy from Eq. (2.9) can be simplified

p(r) = 4,i(r, s)12 (2.11)
i s

T[p(r)] 7 - 1V2 1'i) • (2.12)
2

i S

The single-body orbitals {i$(r,s)} satisfy the Kohn-Sham equations, in which the

Hamiltonian from Eq. (2.2) reduces to that of a single-particle Schr6dinger equation

with an effective potential v5 ,

HKS+i 1 ,2 + VKS)4i (2.13)
2

where

VKS = VH + Vxc + Vions . (2.14)

The kinetic energy and the Hartree energy of the non-interacting system are known

functionals, but they do not capture all the correlation and exhange of the fully

interacting system. The total energy of the non-interacting system must have an

additional term, the exchange-correlation energy Ex that takes into account the



difference between the kinetic energies, T[po] and T[p].

E,[p] = T[p] + drv(r)p(r) + 1 drdr p(r) ') + Exc[p] . (2.15)
21 Ir - r'I

The effective potential v, is the sum of the external potential, the Hartree potential,

and the exchange correlation potential,

Ip(r') 6Ec [p]

v,(r) = v(r) + dr' +-r') ± 6E .[p] (2.16)
|ir - r| J6p(r)

If Exe is known exactly, then solving Kohn-Sham equations self-consistently would

give us the exact many-body density and energy of the ground state. In practice, we

approximate Exc using local density approximation or generalized gradient approxi-

mation.

2.4 Car-Parrinello Molecular Dynamics

We want to find the global minimized energy Etot&[{'}, {RI}]. This is done by

solving Kohn-Sham equations from the previous section self-consistently. We be-

gin with an initial value of p(r), calculate the potential v. using Eq. (2.16). Next

we use v8 to diagonalize the Hamiltonian in Eq. (2.13) in a chosen basis to find the

eigenvectors {4i}. The local minimization is performed on the potential energy,

E0 (RI) = minrEto[{f }, {RI}], by varying {f } at the fixed ionic positions. From

them, a new p(r) is calculated, and the process repeats until self-consistency [13].

In this way, the minimization of energy functional with respect to charge density

is reduced to the minimization with respect to the one-body wavefunctions. Once the

ground state p is found, the electrons and the ions are allowed to move. Electronic and

ionic motions can be described in a single Lagrangian [2]. This is done by introducing

a fictitious dynamics that describes the electronic motion.

To begin, let A be the Lagrange multiplier similar to the one defined in Eq. (2.6).

The holonomic constraint is due to the orthonormality of the one-body wavefunctions,



which requires
6Eit ZAij, 3 . (2.17)60*(r, t)

Since ions are treated classically, their dynamics can be formulated using the classical

Lagrangian,

£c = MIRA - V[RI] (2.18)
I

Car-Parrinello technique allows the minimization on {fb} and RI to be performed

simultaneously by introducing a fictitious mass parameter ji. A new classical La-

grangian is defined to include both ionic and electronic dynamics. The Lagrangian is

the sum of the electronic kinetic energy, ionic kinetic energy, potential energy of the

coupled electron-ion fictitious system,

£ = drp•I IP(r)12 + M1R~ - E[{jo}, {RI}]. (2.19)
2 I

The holonomic constraint is the orthonormality condition

j drio (r)j (r) = ij . (2.20)

and the Euler equations are

SE6E Ahjoj (2.21)
Wi

SOE
MIR, = R . (2.22)

Diagonalizing A yields the eigenstates and eigenvalues of the KS equations. In this

way, the energy is optimization with respect to the electronic wavefunctions and all

the interactions in the system. /i is chosen such that Born-Oppenheimer condition is

satisfied: The fluctuation in the electronic kinetic energy is smaller than the energy

gap between the ground state and the first excited state. This allows electrons to

follow adiabatically the ionic motion, while remaining close to the ground states.



The constant of motion of the CP Lagrangian in Eq. (2.19) is defined to be

U, = K-, + Ke + E[{ap}, {RI}] . (2.23)

If the electronic kinetic energy is small, E[{4'}, {Ri}] a V[{Rs}], and U, is conserved

approximately [13].

2.5 Kohn-Sham Equations with Ultrasoft Vander-

bilt Pseudopotentials

It is useful to expand the single-particle wavefunctions {~i} of the Car-Parrinello

method in a plane-wave basis. This allows the use of fast Fourier transform (FFT)

in the calculation of the total energy and the forces on the ions. A disadvantage

of using the plane-wave basis is its slow convergence in approximating the parts of

the electronic wavefunctions that are close to the ions. This is dealt with using

norm-conserving or ultrasoft Vanderbilt pseudopotentials that separately describes

the valence electrons, the ionic core (the nucleus plus the core electrons), and their

interactions [10].

Let Oi be the single-electron wavefunction of the Kohn-Sham Hamiltonian. The

ultrasoft pseudopotential separates into two parts, a nonlocal part VNL and a local

part VViHn

Etot[{#il}, {R1 }] + ( i 2 VNL 10i) +EH[p] + Exc[P]

drVj on(r)p(r) + U(Rs) . (2.24)

As in the previous section, Exc [p] is the exchange correlation energy, U(RI) is the ion-

ion interaction energy, and EH[p] is the Hartree energy. The ultrasoft pseudopotential

is fully specified by V (r), D(O), Qnm (r), and 0,(r). The local part Vin' is a sum of



atom-centered radial potentials,

(2.25)

The nonlocal part,

VNL = ED( ) (Pn'
nm,I

(2.26)

act as an augmented charge in the Hamiltonian. On depends on the displacement

from the ionic positions,

)3'(r) = in(r - RI) (2.27)

/3n(r) and D(° ) specify the atomic species. The single-electron wavefunction obeys

the generalized orthonormality condition on 0j,

(2.28)

and S is given by

nm,I

qnm = drQnm(r)

(2.29)

(2.30)

The electron density is related to S through

(2.31)

2.6 Car-Parrinello Molecular Dyanmics with Ul-

trasoft Vanderbilt Pseudopotentials

The Lagrangian is the same as Eq. (2.19). The modified holonomic orthonormality

constraint is the generalized orthonormality condition given by Eq.

Vocn(r) = Vc(|r - RI1),

(ViIS I O) = -6 I

p(r) = ( i•, (S O) .

The modified



Euler equations are

i -= --- + Z Ai3Sj (2.32)

MIA, - aR--- + K- L'AIj (oR a Ij)• (2.33)
ii

Similarly, the equilibrium is achieved when the ionic acceleration R1 and electronic

acceleration 5i both vanish [10].

2.7 Perdew-Burke-Ernzerhof Exchange-Correlation

Functional

The exchange-correlation energy Exc is approximated using local density approxi-

mation (LDA). Exc is given by weighting the exchange-correlation functional of the

electron gas exc[p(r)] with the density p(r) of the non-interacting system,

Exc = drp(r)exc[p(r)] . (2.34)

PerdewBurkeErnzerhof (PBE or General Gradient Approximation) exchange-correlation

functional is frequently used in the CP simulations [11] [12], and will be used in this

paper. PBE functional depends on the electronic density p, the reduced density

gradient s, and the spin-polarization ( [8]:

jVp|s = Vp (2.35)
2kFp

PT - P (2.36)
P

kF is the Fermi radius (3r 2p)3. The Wigner-Seitz radius r = ()•-) is used to

perform calculation in the r-space using

E BE 3 PBEs(rs(r),(r)) . (2.37)

x,= j d rp(r) Cc (rs (r, s(r), ý(r)) (2.37)





Chapter 3

Computational Physics

3.1 Plane-wave Expansion

The system studied under the CP simulation can be a single unit of structure or a

periodic structure. A single structure may be one water molecule. A 3-D periodic

structure includes silicon crystals with long-range interactions, or water molecules in

a large container. An example of a 1-D periodic structure is a one-branch polypeptide

constructed from a single self-repeating unit of monomer. The interactions among

many such monomers include the long-range hydrogen bonding. The short-range

interactions include the covalent bonds.

The plane-wave basis introduces periodic boundary conditions in all cases. The

system studied is defined in a computational supercell through the positions of the

ions. The atoms are positioned such that the structure is close to the system in

equilibrium. For the study of single-unit systems, the potential at the edges of the

supercell must be small enough such that the system is prevented from interacting

with its periodic images. This can be done by introducing a vacuum region a few-

angstroms thick wrapped around the cell boundaries. For the study of the periodic

structures, the periodic boundary conditions guarentee that the atoms will never

wander out of the cell.

The Hamiltonian from Eq. (2.13) satisfies the Bloch theorem. The single-particle



wavefunction expanded in the plane-wave basis is

Oi (r) = ikr k g),igr

g

The kinetic energy Ek is evaluated in the reciprocal space,

1
Ek= 92C (g)Ci(g) (3.2)

i,g

Assuming that the electronic wavefunctions are close to the ground states, the com-

putation is truncated for the plane waves with a kinetic energy Ek = f (k + g)2 less

than the threshold energy Ecut. Given a kinetic energy cutoff E''f on the wavefunc-

tions, the charge density cutoff Ecut is usually made 2-3 times larger than 4EJ. The

three-dimensional FFT grid for charge density, the exchange-correlation, and Hartree

potential calculations are determined by Eu t.

Convergence of the calculation depends on the cutoff wavelength, the fictitious

electronic mass, and the time steps of integration. The accuracy of the calculation

depends on Ecut, which is determined by the pseudopotential of the system. Norm-

conserving, soft pseudopotentials require a Ecut of more than 70 Ry when elements

such as O, N, F, and transition metals are used. Ultrasoft Vanderbilt pseudopotentials

allow the electronic structures of O and N to converge efficiently (Ecut - 25 Ry) [8].

Ultrasoft pseudopotentials are used in our study of the protein molecules.

3.2 Electrostatic Energy of the Ions

The ion-ion energy is evaluated using Ewald summation [9]1. Together with the KS

energy, this completely characterizes the total energy of the system. Computational

ab initio DFT is able to accurately and efficiently characterize the system properties

such as chemical bonds, regardless whether they are metallic or covalent, or in the

case of covalent bonds, whether they are single, double, or hybrid.

1see Mareschal [14] for a (complete) derivation



3.3 Molecular dynamics

3.3.1 Ion Dynamics

When the ions are allowed to move, the velocity is drawn from the Boltzmann distri-

bution. Using the accelerations obtained from Eq. (2.33), Verlet algorithm performs

the integration by expanding the ion position in power series one forward and one

backward in time [13]:

1 21r(t + ±6t) =r(t) + v(t)6t + -a(t)St&  + b(t)&t + O(6t4)  (3.3)
2 6

1 1l~)t3O64
r(t - 6t) = r(t) - v(t)6t + -a(t)6t2 - b(t)t3 + O(6t4) . (3.4)

2 6

Substituting Eq. (3.3) into Eq. (3.4) gives

r(t + 6t) = 2r(t) - r(t - 6t) + a(t)6t2 + O(6t4), (3.5)

Verlet algorithm generates an accuracy of O(6t4) in position and O(6t2 ) in velocity.

The accuracy depends on the size of the discrete time steps.

3.3.2 Electron Dynamics

If the energy gap between the ground state and the first excited state is large enough,

the kinetic energy of the electronic energy is proportional to p. We can choose a large

value of t and dt for the integration. The previous section indicates that dt should be

chosen as large as possible, so that the computation can proceed quickly. In our CP

simulation, each time step is 0.024189 fs. However, the atoms should not be moving

so quickly that the adiabatic condition, in which the electronic density always remains

in its ground state, is no longer satisfied. This might result in a diagonalization error

on A.

In this case, dt needs to be decreased and electronic mass increased. Smaller dt

improves the accuracy of the ion dynamics and ensures that the constant of motion of



the CP Lagrangian is conserved. The adiabaticity is better conserved in systems with

a large electronic energy gap. When the dynamics is adiabatic, there is no transfer

of energy between electronic and ionic degrees of freedom.

3.3.3 Damping

Stable biological molecules are often found at the minimum of the potential energy

landscape. If they are not at the minimum, there are nonzero kinetic energy associated

with both electronic and ionic motions. The system can be relaxed to attain a minimal

potential energy through damping. Damping rate is applied externally to the system

by taking the energy out of the system. There is a unique configuration of the system

such that the potential energy is at the minimum, and none of the ions experience

acceleration. At other configurations of the ions, the ions have acceleration, which

results in velocity that change the the configuration at the next iteration in the CP

molecular dynamics simulation.

A damping term can be added to either the ionic equation of motion or the

electronic equation of motion. The damp force is proportional to the damping rate

and the velocities. An initial estimate of the damping rate can be calculated according

to
1 El - E2rate= ~log 'E 2 3

1 , (3.6)Pg E2 _ E31
where El, E2, E3 are the successive values of the energy.

3.4 Car-Parrinello Simulation

To introduce the external stimuli to the systems such as a group of biomolecules,

the thermodynamical properties of the biomolecules can be better described using

statistical ensemble. External stimuli such as temperature can be incorporated into

the CP Lagrangian [16].

A Nose thermostat can be used to maintain the ions in the desired temperature and

the electrons in the ground states. It uses velocity-dependent forces in the electronic



motion. The temperature we use is a Nose thermostat that is applied to the system

at a fixed frequency. The frequency is set at the vibrational spectrum of the system.

All four atomic species (H, O, N, C) in our simulation are described using ultrasoft

pseudopotential. To satisfy the orthonormality condition, the tolerance for iterative

orthonormalization is set to 10- , and the maximum number of iterations is set be-

tween 250-350. E'f is set to 25 Ry, and Eut is set to 200 Ry. The pseudo-atomic

radius of the atomic species used in Ewald summation are all set to 1. All generated

by CP technique is measured in the atomic units: energy (1 Hartree energy or 1 Hh

= 4.35974 x 10- 18 Joule), electronic mass in a.u. and ionic mass in a.m.u. (1 a.u.

of mass = 1/1822.9 a.m.u. = 9.10939 x 10- 31 kg), length (1 bohr radius = 1 a0 =

5.29177 A), and temperature (Kelvin).

The time needed for the systems to reach equilibrium in the presence of damping is

controlled by the damping of the electrons and the damping of the ions. To accelerate

the process, the initial configurations of the systems are made as close to the real

physical systems as possible. Tangney et al. [17] showed that an exact adiabatic

separation in a Car-Parrinello simulation can never be achieved even for small values

of A because the high frequency components in the ionic spectra that leads to direct

coupling between the ionic and electronic degrees of freedom and the A-dependent

errors associated with the low-frequency components of the ionic motion.





Chapter 4

Simulations

4.1 Water

4.1.1 Motivation

Biological systems such as amyloid fibrils are often found in aqueous media, where

they interact with the water molecules through hydrogen bonding. Therefore, un-

derstanding the properties and the dynamics of the liquid water is important in the

study of the biological systems in an aqueous environment. Computational studies

of water molecules using first principles molecular dynamics such as Car-Parrinello

technique are found to be in good agreement with the experimental data [19].

We study the dynamical properties of liquid water using Car-Parrinello technique

and PBE pseudopotentials. It is shown that a system of 32 water molecules per

computational cell is sufficient to simulate the liquid state of water [19], and the

electronic ground state can be accurately described in microcanonical CP simulations

with a ratio of the electronic mass to ionic mass of - < 1. The radial distributions ofM 5

the wavefunctions and the behaviors of the water molecules were investigated using

different pseudopotentials including PBE [18]. It is shown that the liquidlike state

occurs at the elevated temperature of 400 K and above, and the computation time is

approximately 50 ps to achieve well-converged thermal averages. A small cutoff for

the plane-wave basis is sufficient for obtaining good results [19].
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Figure 4-3: (a) Constant of motion and (b) Total energy when the Nosd thermostat
is applied. A comparison of the data shows that the larger values of dt yield a faster
convergence, but smaller values are better at preserving the adiabatic condition.
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Figure 4-5: (a) Total energy (b) Constant of motion. The convergence of different
electronic masses, under no external damping or temperature. The constant of motion
are approximately constant.

4.2 Amyloid-Forming Peptide

4.2.1 Motivation

The amyloid-forming peptide GNNQQNY is a seven-residue, fibril-forming peptide

from yeast prion. It is soluble in water at a low concentration, in which the interaction

between the monomers and the water molecules is predominantly hydrogen bonding.

A pair of GNNQQNY molecules bind together through the Asn and Gln side chains

and form a basic unit called the steric zipper. At a high concentration, the steric

zippers form insoluble amyloid-like fibrils that are the causes of amyloid-related dis-

eases [4]. The neighboring steric zippers interact through weak van der Waals forces

as shown in Figure 4-7.

Many experiments have been done in the study of the structure and the prop-

erties of the amyloid fibrils including the amyloid-forming peptide GNNQQNY. X-

ray microscrystalllography shows that the amyloid fibrils formed from different pro-



teins share a structural cross-0 pattern that suggests a common molecular structure.

Nuclear mangetic resonance (NMR) spectroscopy shows that there are four atomic

species (H, O, N, C) totaling 214 atoms in a steric zipper. The micromechanical

experiments on the fibril suggest that the fibril has a strength comparable to that

of steel and a stiffness comparable to that of silk. In particular, Smith et. al. have

shown experimentally that the fibril has a strength of 0.6 ± 0.4 GPa and a Young's

modulus of 3.3 + 0.4 GPa [4].

The amyloid formation has been studied using classcial molecular dyanimcs, and

recently Tsemekhman et. al. showed that CP technique is in good agreement with

the classical technique. Although a fibril contains a finite number of GNNQQNY

molecules, it is well-approximated if assumed to be infinite in length [20]. We wish

to use first principles molecular dynamics to estimate the Young's modulus of the

GNNQQNY fibril-forming peptide. The objective is to estimate the Young's modulus

and check its agreement with the experimentally measured values [21].

4.2.2 Structure of the Cross-/ Spine

We use the experimentally determined parameters of the cross-f spine of given by

Nelson et. al. [21]. The supercell is defined to be a monoclinic lattice of 21.94 A x

23.48 A x 4.87 A. The monomer has 1800 rotation symmetry in the plane spanned

by two lattice vectors that are perpendicular to the axis of elongation, as shown in

Figure 4-7. The angle between the two lattice vectors is 107.08'.

The computational cell size along the axial direction is changed to simulate the

stretching of the fibril. The stretching increases or decreases the distances between

two neighboring GNNQQNY molecules, leaving the bonding within a GNNQQNY

molecule unchanged. Based on the experimental studies of the fibril's micromechani-

cal properties, we expect that there is an optimal cell size for which the total energy

is the minimum.

The total energy as a function of the elongation can be expanded in a power series

about the minimum of the total energy. Young's modulus is related to the second

derivative through a constant. To estimate the precision required of the total energy,



Figure 4-6: The initial configuration of a pair of GNNQQNY confined in a computa-
tional supercell.

d2E

let 6E be the change in total energy, A be the change in

ld 2E
E = Eo + (c - co) (4.1)

1 d2E
E + E = Eo + (- + A)(c - co). (4.2)2 d c-2+A)( CO

This implies that 6E = A(c - co).

Using CP molecular dynamics, the electron density of the GNNQQNY molecules

is first relaxed to the ground state by fixing the ionic positions and setting the electron

damping rate to a finite value. The CP simulation of the water molecules suggests

an electronic damping rate between 0.5 and 1. With the fictitious electronic mass i

set to 350 a.u., the CP technique converges when dt is 2. The relaxation takes less

than 700 time steps.

After electronic relaxation, the damping rate of ion and the electrons are set to



Figure 4-7: The periodic images of a pair of GNNQQNY molecule. The direction of
elongation is perpendicular to the page.

non-zero values. The computational medium is T = 0 K in vacuum. The initial guess

of the damping rate is estimated from the CP simulation of the water molecules, and

after a hundred time steps, from Eq. (3.6). Different rates of convergence are found

after a few thousand times steps by trying out different combinations of electronic

and ionic damping rates about the intial estimated values. To generate the fastest

convergence, the combinations of the electronic and ionic damping rates are found

such that the energy is critically damped. Figure 4-9(b) shows that the combination

of electron rate of 0.03 and and ion rate of 0.001 gives the fastest convergence.

4.2.3 Relaxation

The constant of motion always has a higher energy since it is the sum of the electronic

kinetic energy and the total energy of the Kohn-Sham Hamiltonian.

Damping rates are optimized when the system is critically damped. The damping

rate of the electrons is varied between 0.01 and 0.1. The damping rate of ions is varied

between 0.001 and 0.01. The damping rates might be too high such that forces and

accelerations of the ions become zero. In this case, the system has the apparance of

having converged. To check if it is truly converged, the damping rates on both the



Figure 4-8: The configuration of the peptide after being relaxed to the minimum of
the potential well. Since the initial configuration of the GNNQQNY molecule is well
chosen, the final configuration is very close to the initial configuration. Atoms that
follow random motion and wander out of a side of the cell re-appear at the other side.

ions and electrons must be removed. The energy is at the minimum of the energy

landscape if the ions do not accelerate (above 10-i). When the system is converged,

the forces, the acceleration, the temperature of the ions, the kinetic energy of the

electrons, and the mean square displacement are below 10- 4. The masses of the

ions are given the same value of 12 a.u., which does not influence the total energy

and makes the assessment on the magnitudes of the ionic acceleration easier. In the

absence of a thermostat, the total energy of the Kohn-Sham Hamiltonian is equal to

the constant of motion of the CP Lagrangian. The variation in total energy should be

less than 10- 5. The mean square displacement and temperature are zero. The force

is below 10- 4. As shown in Figure 4-10, the system is underdamped and critically

damped.
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Figure 4-9: A comparison of different damping rates with c = 4.87 Ai. (a) Tion = 0
with ye = 0.05, 0. (b) ye = 0.03 with 7'o, = 0.001, 0. The energy that is overdamped is
exponentially decaying. The energy that is underdamped is exponentially oscillatory.

4.2.4 Young's Modulus

Once the system is converged, we want to simulate the elongation of the fibril. For

the purpose of computational efficiency, the supercell size is increased by a small

percentage and the initial positions of the ions are the equilibrium positions from a

previous simulation. Since the cell is stretched by a small amount, the system is not

too far away from its minimal configuration. Same damping rates of 0.03 for the ions

and 0.001 for the electrons are used in all the simulations.

Let c be the size of the computationl cell in the direction of elongation. If CP

technique is precise and c corresponds to an energy that is close to the minimum of the

potential well, it is possible to estimate the Young's modulus well enough with only a

few data points. The three points are selected about 4.87A, which is experimentally

found by Nelson et. al. [21]. The converged values of the total energy is shown in

Table 4.1.

Let Y be Young's modulus, which is also the elastic constant of the potential

energy of the system. Let co be the size of the cell at the minimum potential energy,

and A the cross sectional area of the fibril. Young's modulus is defined as

S2Etot co
Y 0 (4.3)

co41 A
41

________ ... ____
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Table 4.1: The system is consider to be converged
below 10- 4.

c Etot (Hh) Econs (Hh)

when the forces on the ions are

Ekinc(Hh)

-1117.75212
-1117.71290
-1117.68522

-1117.75212
-1117.71290
-1117.68522

For our system, the total energy equals the potential energy. According to Figure 4-

12, co is close to 4.405A. The area of the fibril is approximately the area of the

monoclinic computational cell that is perpendicular to the direction of elongation.

This yields a Young's modulus of 20.0 GPa.

4.67
4.87
4.97

0.0000
0.0000
0.0000

· · · · I· · · · · · 1 · · · · · I····I····I

m



- 4.97
4.81
4.67

- - - 4.48

0 1000 2000 3000
time steps [per 0.024189 fs]

4000 5000

Figure 4-11: A comparison of the convergence of the total energy with different cell
sizes c. The larger the difference between the initial energy and the final energy, the
longer it takes the system to converge.
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Chapter 5

Conclusion

Car-Parrinello molecular dynamics are shown to be computationally efficient in the

simulation of the structural and dynamical properties of complex biomolecules. Macro-

scopic properties such as Young's modulus are shown to be derived from first prin-

ciples molecular dynamics. In particular, the study of the amyloid-forming peptide

GNNQQNY using first-principles molecular dynamics generates a Young's modulus

that is six times larger than the experimentally reported value. A good estimation of

the cross sectional area of the fibril is needed for better estimations of the mechanical

properties.

The study of water molecules and the amyloid-forming peptide GNNQQNY in this

thesis demonstrates the effectiveness of using Car-Parrinello molecular dynamics to

obtain the macroscopic properties of large, complex systems. Although Car-Parrinello

molecular dynamics is not limited to the descriptions of biological molecules, an

understanding of the electronic properties of such systems and a control over the

systems' constituents can potentially aid the experimental studies. For example, it

is very simple to introduce water molecules or transition metal atoms to the fibril.

Their interactions might influence the fibril's micromechanical properties that can be

medically beneficial. Such possibilities are endless and suggests that there is much

promising research work to be done using first principle molecular dynamics.
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