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Abstract

At high rate, a sparse signal is optimally encoded through an adaptive strategy that
finds and encodes the signal's representation in the sparsity-inducing basis. This
thesis examines how much the distortion rate (D(R)) performance of a nonadap-
tive encoder, one that is not allowed to explicitly specify the sparsity pattern, can
approach that of an adaptive encoder. Two methods are studied: first, optimizing
the number of nonadaptive measurements that must be encoded and second, using a
binned quantization strategy. Both methods are applicable to a setting in which the
decoder knows the sparsity basis and the sparsity level. Through small problem size
simulations, it is shown that a considerable performance gain can be achieved and
that the number of measurements controls a tradeoff between decoding complexity
and achievable D(R).
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Key to Notation

Signal parameters
Symbol Dimension Definition

N - signal space dimension
K - sparsity level
x N x 1 signal to be encoded

N Nx N orthonormal sparsity basis, x = (0
N x 1 sparsity basis vectors (columns of D)

6 N x 1 sparsity basis representation of x
O K x 1 nonzero coefficients of 0

Measurement parameters
Symbol Dimension Definition

M - number of nonadaptive measurements
F M x N nonadaptive measurement matrix

f*, M x 1 columns of F
fi,* 1 x N rows of F
F M x K columns of F corresponding to a given sparsity pattern

Quantization parameters
Symbol Dimension Definition

A - uniform scalar quantizer step size
L - # of (scalar) quantizer cells in a (scalar) bin
B - # of (scalar) quantizer cells between cells in same bin
R - rate in bits per source component (bpsc)
D - total mean squared error (MSE) distortion

Other Notation
Symbol Dimension Definition
H(z) - entropy of discrete random variable z (bits)

supp(z) - support of random variable z

IIzll0 - number of nonzero coefficients of vector z
IN N x N identity matrix
m - max. # of allowed iterations in truncated BPOS (Ch. 4.1)

Also note that for any variable z, i is either its quantized version or its reconstruction,
depending on context.





Chapter 1

Introduction

Recent enthusiasm about sparsity stems from two major areas of study. First, the

existence of good heuristics for solving a sparse approximation problem given a dictio-

nary and a signal to be approximated has been shown [14], [17], [4], [8], [18]. Second,

there has been a flurry of activity around the concept of "compressed sensing" for

sparse signals [2], [7], [3], by which this thesis is inspired.

In reality, signals are rarely exactly sparse, but in many cases of interest can be

well approximated as such. For example, piecewise smooth signals have good sparse

approximations in wavelet bases and this extends empirically to natural images. The

power of nonlinear approximation in sparsifying bases explains the success of wavelets

in image transform coding [6], [13].

In source coding, one wishes to represent a signal as accurately and as efficiently

as possible, two requirements which are at odds with one another. If a transform

concentrates the essential features of a class of signals in a few coefficients, encoding

only the significant coefficients in the transform domain may allow one to spend more

of the available bits on what is important. There are subtleties involved, however, due

to the nonlinearity of sparse approximations. Nonlinear means that instead of a fixed

set of coefficients which are optimal on average, the coefficients which participate in

the approximation are adapted to each signal realization. An important consequence

in the source coding context is that the positions of these signal-dependent significant

coefficients must be encoded as well [20], [19].



In this work, we study nonadaptive lossy encoding of exactly sparse signals. "Lossy"

simply refers to quantization. The key word is "nonadaptive": we study the encoding

of a signal which has an exact transform domain representation with a small number

of terms, but in a context where we cannot use this representation.

To be precise, consider a signal x E RN which has a sparse representation in an

orthonormal basis 4: x = 4W), C E RNxN is an orthogonal matrix, and 1[9110 = K <

N.' At high rate, an adaptive encoding strategy is optimal: transform x to its sparsity

basis representation 0, spend log2 (N) bits to losslessly encode the sparsity pattern

(the nonzero positions of 0), and spend the remaining bits on encoding the values

of the K nonzero coefficients. We will be studying nonadaptive encoding of sparse

signals, where by nonadaptive we mean that the encoder is not allowed to specify

the sparsity pattern. We assume in addition that the encoder is 4-blind, meaning

it does not use the sparsity basis, though this is not required by the definition of

nonadaptive. We assume that 4 is known to and can be used by the decoder.

Our nonadaptive encoder leans on compressed sensing theory, which states that

such a sparse signal x is recoverable from M - O(K log N) random measurements

(linear projections onto random vectors) with high probability using a tractable recov-

ery algorithm. However, in the same way that applying conventional approximation

theory to compression has its subtleties, so does applying the idea of compressed sens-

ing to compression. In a source coding framework, instead of counting measurements,

one must consider rate, and instead of probability of recovering the correct sparsity

pattern, one must consider some appropriate distortion metric. In particular, the

goal of this thesis is to explore how much the performance of nonadaptive encoding

can approach that of adaptive encoding. By performance, we mean not only the

fidelity of the reconstruction but the number of bits required to achieve that level of

fidelity. At first glance, the log N multiplicative penalty in number of measurements

is discouraging; we will see that finding a way to minimize M greatly improves the

performance of nonadaptive encoding.

'The to quasi-norm just counts the number of nonzero coefficients.



An outline of this thesis is as follows: Chapter 2 gives background on compressed

sensing and reviews some source coding basics. Chapter 3 discuss the problem setup

in detail. Chapters 4 and 5 present the main ideas and results of this work. Finally,

Chapter 6 discusses open questions and concludes.





Chapter 2

Background

2.1 Compressed Sensing

Theory. Consider a signal x E R' such that x = 49, where I191•o = K and 4)

is an orthogonal matrix. In a nutshell, compressed sensing (CS) theory states that

such a signal can be recovered with high probability from M - O(K log N) random

measurements (linear projections onto random vectors) using a tractable recovery

algorithm [2], [7], [3].

Compressed sensing results have their roots in generalizations of discrete time

uncertainty principles which state that a signal cannot be simultaneously localized

in time and frequency. The intuition is that if a signal is highly sparse in the time

domain, it cannot also be highly sparse in the frequency domain, and taking a large

enough subset of frequency samples should "see" enough of the signal to allow recon-

struction. In [1], the canonical time and frequency bases were studied, and it was

shown that for N prime and D = IN, x could be exactly recovered from any M fre-

quency measurements so long as M > 2K. However if M > 2(K - 1), M < N, then

M frequency measurements no longer guarantee exact recovery. Though this theorem

only holds for N prime, [1] argues that for nonprime N it holds with high probability

for sparsity patterns and frequency samples chosen uniformly at random. Moreover,

recovery continues to occur with high probability using a recovery heuristic discussed

below if O(K log N) measurements are taken.



x=~EIY y=FxeE I~M

lello = K
FERWMxN

Figure 2-1: Compressed sensing setup.

This last result was subsequently generalized to any pair of mutually incoherent

sparsity and measurement bases. The mutual coherence between two sets of vectors

is the largest magnitude inner product between vectors in these sets. Requiring

the mutual coherence between the measurement vectors {fi,})M1 and sparsity basis

vectors {~j) }= to be small essentially just says that the measurement vectors must

not "look like" the vectors of the sparsity basis. Note that here "small" depends on the

sparsity level K. To meet this requirement, randomness rather than explicit design

is the solution. In practice, independent, identically distributed (i.i.d.) Gaussian or

i.i.d. Bernoulli (+1) measurement matrices work well.

The compressed sensing "encoding" strategy is depicted in Figure 2-1, in which the

measurement values have been stacked into a vector y E RM and the corresponding

measurement vectors into a matrix F E RMxN, so that y = Fx.

To recover x from knowledge of y and F, one uses the sparsity model to combat

what is otherwise an underdetermined problem. That is to say, in theory one would

like to solve

x = arg min I(ITvllo such that y = Fv. (2.1)

In words, find the sparsest solution that is consistent with the observations y and

F. This is a sparse approximation problem: y E RM is a K-sparse signal with

respect to the N-element dictionary (overcomplete representation) for RM formed by

the columns of F'T. For large problem sizes and unstructured F, solving (2.1) is

not computationally feasible and one resorts to heuristics. There are two flavors of

z = ~8 E II~QN



such: greedy matching pursuit [14], [17] and convex relaxation to t1 minimization,

also known as basis pursuit [4], [8], [18]. Initial compressed sensing results focused

on basis pursuit. Instead of (2.1), one solves

S= arg min 11Vvll1 such that y = Fv. (2.2)
V

Results in sparse approximation theory give conditions for when a sparse representa-

tion of a signal with respect to a dictionary D) will be the unique sparsest representa-

tion with respect to 7D (i.e., the unique solution to (2.1)), and when basis pursuit will

find it (i.e., also the unique solution to (2.2)). These conditions involve the sparsity

level K and coherence M(D) of the dictionary. In particular, if a signal has a K-term

representation with respect to D, and K < (1 + + (D)-1), then this representation

is the unique sparsest representation with respect to 7D, and basis pursuit will find

it [17]. These conditions are sufficient but not necessary.

To summarize, basis pursuit recovers a signal with sparsity level K from M

O(K log N) random measurements with probability close to 1. It bears emphasizing

that the log N multiplicative penalty in number of measurements is the price paid for

the tractability of solving (2.2) instead of (2.1).

Toy Problem Illustration. Let us consider a toy problem which gives insight into

the compressed sensing idea. Let N = 3, K = 1, and M = 2. Then x E JR3 lies on

one of three lines, and we propose to recover it from its projection onto two vectors

in R3.

Assume that the measurement vectors fl,, and f2,* are linearly independent.

Then the span of fi,. define a plane in the signal space RN, the measurement sub-

space, as depicted in Figure 2-2a. For ease of illustration, we have assumed that

the realizations of fi,, are such that this plane coincides with the el-e2 plane, i.e.

span(fi,., f2,*) = span(el, e2).

There are two perspectives from which to regard the problem. From the point of

view of the signal space RN, x is in one of (NZ) K-dimensional sparsity subspaces (inKjI-IIC11I" VX~lr Ubirtb \1



signal space RN measurement space RM

f2,*)

XL:

(a) (b)

Figure 2-2: Toy problem illustration of compressed sensing idea.

this case on one of three lines), and we are projecting one of these subspaces onto the

measurement subspace, a random M-dimensional subspace of R•. The measurements

yi, i = 1i,..., M, are the coefficients of this projection. The second perspective arises

from considering the problem from the point of view of the measurement space RM.

As previously explained, y E RM is synthesized from K elements of the N-element

dictionary for RM formed by the columns of F(. Thus y lies in one of (N) K-

dimensional subspaces of RM.

Without the sparsity prior on x, two measurements leave the dimension orthogonal

to the measurement subspace unspecified. In particular, each measurement defines

a plane in R N: fi,1x 1 + fi,2 X2 + fi,3 X3 = Yi. The intersection of these two planes

specifies that x lies on a line which is parallel to the unspecified dimension e3. With

the sparsity prior, however, x can be uniquely determined by two measurements, since

this line is likely to intersect one of the sparsity subspaces at just one point.

Figure 2-2b depicts this from the perspective of the measurement space RM. The

three lines are the representations of the sparsity subspaces in the measurement space

(not quite their projections onto the measurement space, but what they would syn-

thesize in the measurement space). With this geometry, the transformation from x

to y is an invertible mapping.



A Fun Example. Compressed sensing is also the idea behind a brain teaser the

author was confronted with at an interview, which is modified here for entertainment

and analogy-drawing purposes. Suppose, for Bob knows what reason,' there are ten

people who are each obligated to bring you ten pieces of chocolate.2 Each piece is

supposed to weigh 100 grams. Suppose you know that one person is cheating: his

chocolate pieces are either all 99 grams or all 98 grams. Being a chocolaholic, you are

determined to find out who and how much he owes you. You have a scale which gives a

digital readout in grams of whatever quantity you might choose to measure. Consider

the compressed sensing approach to this problem: you would like to take much less

than ten measurements. In addition, the measurement vectors-the number of pieces

taken from each person-are to be drawn at random from some distribution. That

is, the general class of measurement vectors can be specified beforehand, but not the

specific realizations that will be used.

This being a brain teaser, we can use quizmanship to infer that the key to selecting

the measurement vector class lies in the fact that each of the ten people brings ten

chocolate pieces: each measurement should take a different number of pieces from

each person and weigh the resulting combination. A more careful analysis shows that

this strategy will catch the culprit with "high probability." For ease of discussion

consider the measurement values yi to be the amount by which the scale readout falls

short of what it should have been (yj = 5500 - the scale readout), and let 0 be the

amount by which each of the offending pieces is deficient (0 = 1 or 2). Essentially

what we have is a length 10, 1-sparse signal where the nonzero coefficient takes one of

two values. In addition to finding this value, we must find the identity of the culprit,

which is the same as finding the sparsity pattern. The measurement vectors to be

used are permutations of [1:10].

There are two cases in which the answer can be immediately determined by one

measurement alone. If the value of the first measurement yl is odd, then 0 = 1 and

the culprit is the person from whom you took yl pieces for the first measurement.

1See Douglas Adams' Mostly Harmless for an introduction to Bob.
2Dedicated to the many such which perished during the writing of this document.



If yl is even and yl > 10, then 0 = 2 and the culprit is the person from whom you

took -v pieces for the first measurement. Only when yi is even and yi • 10 is the

answer unclear from the first measurement alone. For any such value of yi, there

are two possibilities: 0 = 1 and the culprit contributed yl pieces or 0 = 2 and the

culprit contributed Y pieces. However, with high probability a second measurement

will distinguish between these two cases. Indeed, only when the second measurement

takes the same number of pieces from the two suspects as the first measurement will

the second measurement fail to resolve the answer. Thus if the two measurement

vectors are drawn uniformly at random from all the possible permutations of [1:10],

then the probability that two measurements will not resolve the answer is loosely

bounded by , -= • Adding a third measurement decreases this bound to (1)2

and so on.

The adaptive analogy in this problem is if you knew in advance who was cheating.

Then you would simply weigh his contributions alone to determine the value of 0.

In the above, slightly silly example, a considerable amount of prior information

makes much fewer measurements than would be needed in the most general case

possible (if every single person's chocolate pieces were allowed to be deficient one or

two grams, then to find the weight corresponding to each person, there is no other way

but to take ten measurements). Note also how the desired information is immediately

obvious without error from the one adaptive measurement, whereas some processing

is required in the nonadaptive case, which still contains a nonzero, though very small,

probability of error.

For the rest of this report, we assume for simplicity and without loss of generality

that x is sparse in the standard basis (4 = IN). We make this assumption for

the conceptual convenience of having F operate directly on the K-sparse 0. This

assumption can be made without contradicting the assumption that the encoder does

not use the sparsity basis because it is the same as having a general iD and the D-aware

decoder considering the effective measurement matrix to be Fef = F4.



2.2 Source Coding Basics

Entropy. The following is a very brief summary of the relevant material found

in [5]. Let X be a discrete random variable taking values on an alphabet X, and let

p(x), x E X, be the probability distribution of X. The entropy of X,

H(X) = - p(x) - log p(x), (2.3)
xEX

is a measure of the amount of uncertainty, or information, in X. Unless otherwise

stated, logarithms in this report are base 2 and thus H(X) is in bits. H(X) is the

minimum achievable rate for lossless encoding of a source which emits an infinitely

long sequence of independent realizations of X, where rate is defined as the expected

number of bits for encoding one realization. This is an asymptotic result; to approach

this rate in practice, one would use a variable length code in which more probable

elements of X are encoded with shorter codewords. There are systematic ways of

constructing lossless variable length codes with rate no larger than H(X) + 1. It is

conventional (and convenient) to use H(X) as a slightly optimistic estimate of the

rate of an entropy code.

Now consider a pair of correlated discrete random variables X and Y, drawn from

a distribution p(x, y), x E X, y E Y. One can consider the Cartesian product of X

and Y to be one random variable taking values on the alphabet X x y; then the joint

entropy H(X, Y) of X and Y is defined to be

H(X, Y) = - p(x, y) -logp(x, y). (2.4)
xEX yEY

The conditional entropy of Y given X, H(YIX), describes the amount of uncer-

tainty left in Y when one knows X. It is given as

H(YIX) = - p(x) p(ylx) - log p(ylx) (2.5)
xEX yEY

and is the minimum achievable rate for lossless encoding of Y given knowledge of X.



Note that

H(X, Y) = H(X) + H(YIX) = H(Y) + H(XIY), (2.6)

as expected. The Slepian-Wolf theorem states that in a scenario in which encoders

for X and Y are separated but X and Y are to be jointly decoded, lossless encoding

is achievable so long as the rate of the X-encoder is at least H(XIY), the rate of

the Y-encoder is at least H(YIX) and the total rate of both encoders is at least

H(X, Y) [16].

For a more detailed discussion of entropy and lossless source coding, the reader is

referred to [5].

Quantization. The following summarizes the relevant material in [11]. Consider

now a continuous random variable Z taking values on support supp(Z). In order

to encode Z, it is necessary to apply some form of quantization. That is to say, a

discrete set of reproduction values (also called levels or points) must be chosen, and

any realization z of Z must be represented with one of these values. A quantizer

is defined by the set of reproduction values and the partition which specifies the

mapping of supp(Z) onto this set. The set of all values which are quantized to the

same reproduction level is called a quantization "cell". If we are quantizing the output

of a source which emits an infinite sequence of i.i.d. realizations of Z, the resulting

discrete random variable Z = Q(Z) can then be entropy coded.

In this brief introduction, we have limited our attention to scalar quantization.

The most simple form of scalar quantization is uniform scalar quantization in which

the real line is partitioned into cells of the same step size A, each of which is quantized

to the center of the cell. Uniform scalar quantization comes in two common flavors,

midstep quantization and midrise quantization, as depicted in Figure 2-3.

With small step size A (in the high rate regime), uniform scalar quantization

results in rate

H() h(Z) - log A (2.7)
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Figure 2-3: Two types of uniform scalar quantization: (a) midrise (b) midstep.

where

h(Z) = - /zEsupp(Z)
p(z) -logp(z) dz

is the differential entropy of Z.

Quantization results in distortion; the most commonly used distortion metric is

mean squared error (MSE)

D(Z, Z) = E[(Z - Z) 2]. (2.9)

The question of interest boils down to this: for a given source and a given type of

quantization, what is the distortion-rate (D(R)) behavior? For a given source distri-

bution, what is the best achievable D(R) over all possible quantization schemes? With

increasing rate, the optimal entropy-constrained quantizer approaches uniform, and

at high rate entropy-constrained uniform quantization results in the "6 dB per bit"

rule:

D(R) 2 2h(Z) -2-2R
12

(2.10)

For more details, the reader is referred to [11].

(2.8)





Chapter 3

Problem Setup

Recall we are designing a nonadaptive encoder for a signal x E RN that has an exact

K-term representation with respect to a fixed orthonormal basis 4). By "nonadap-

tive," we mean the encoder does not use this K-term representation. We assume

the decoder knows and uses (. Our nonadaptive encoding scheme builds on the

compressed sensing paradigm of representing x with M < N random linear measure-

ments. The overarching aim is to explore how much nonadaptive D(R) performance

can approach the D(R) curve achieved by adaptive encoding.

Let us step back for a moment and consider the problem setup from a broader

perspective, which will allow us to then clarify the specific parameters on which we

intend to focus. Consider the classic compressed sensing scenario in which the decoder

has lossless access to the measurements y, but with the following generalizations:

* The only restriction on the measurement vectors is that M < N. In particular,

measurement vectors are not necessarily random. Denote the type of measure-

ment vectors by type(F).

* The recovery algorithm attempts to solve the problem

i = argmin I(4Tvllo such that y = Fv, (3.1)

but it may do so in any way (for example, combinatorial search through all (N)



ENCODER DECODER

y C- RM F- E R N
F-1

type(F - ')

Mcrit(N, K, type(F), type(F-'), D)

Figure 3-1: Generalized compressed sensing setup, where the only constraint is M <
N. In particular, type(F) is not restricted to certain classes of random matrices
and type(F - 1) is not restricted to basis pursuit. Mcrit is the minimal number of
measurements required to achieve distortion no greater than D.

sparsity patterns, convex relaxation, matching pursuit, maximum likelihood

estimation of the sparsity pattern). Denote the recovery strategy by type(F - 1).

This "generalized compressed sensing" setup discards the M - O(Klog N) basis

pursuit requirement and retains only the idea that it may be possible to recover a

sparse signal from M < N linear measurements, using the sparsity model to solve an

otherwise underdetermined system of equations. This setup is depicted in Figure 3-1.

Here the goal is to find and use Merit, the smallest number of measurements which

results in distortionI no greater than the allowed distortion level D. Note that Mcrit

may depend on type(F) and type(F-').

The complete nonadaptive lossy source coding setup is depicted in Figure 3-2, in

which an encoder and decoder for y have been added. The y-encoder is responsible for

turning y into bits; the y-decoder is responsible for taking these bits and producing a

reconstruction of y, ý = y + 71. The main component of interest in the y-encoder box

is the quantizer design; in the y-decoder, the associated recovery algorithm. From

the point of view of compressed sensing theory, the y-encoder and y-decoder can be

encompassed in a "black box" which simply reproduces y with some bounded additive

noise 71. Note that the encoder may or may not have knowledge of 1Ž. For a fixed

problem size (N, K), fixed type(F), fixed type(F-'), fixed target distortion D, and

1As defined in Section 2.2.
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M, 7maxx(N, K, F, F - , D)

Figure 3-2: Complete nonadaptive lossy source coding setup, assuming fixed problem
size (N, K), fixed type(F), fixed type(F-'), and fixed target distortion D.

depending on whether the encoder is P-aware, one might imagine there are different

allowable pairs of the parameters (M, rmax). In general, the goal is to find the pair

that results in the lowest rate R. If we in addition fix some allowable (M, 7max), then

the goal of the "black box" is even more clear-cut: encode and decode M numbers yi

such that ý = y + n, with r < ?max and R minimal.

Some points of information which will stay fixed throughout this work. Through-

out this work, we assume the encoder to be D-blind and we fix type(F) to be Gaussian.

That is, the entries of F are i.i.d. zero mean, unit variance Gaussian random vari-

ables, fi,j - N(O, 1). Our goal is to study choice of M coupled with quantizer design

within the encoder box and an associated decoding scheme in the decoder box for

optimal D(R) behavior. We do so through small problem size simulations. Unless

otherwise noted, we take as an example N = 16, K = 2. Each data point corresponds

to 1000 trials. For each trial, x is generated by drawing a sparsity pattern uniformly

at random from all (N) possible sparsity patterns. The K nonzero coefficients are

i.i.d. N(0, 1). (Recall that in Section 2.1 we assumed without loss of generality that

4 = IN.) For each x realization, a different F is generated.2 For each problem size,

different encoding experiments are run on the same set of x and corresponding F

realizations. Throughout this work, we stay within the framework of encoding each

2An associated assumption is that the encoder and decoder share a common seed, so that F is
known to both for each encoded signal.



measurement yi separately. At the encoder each measurement is scalar quantized,

then the quantizer outputs are individually losslessly entropy coded. Not only is this

a simple, practical design that allows distributed encoding of the measurements, but

it is justified by the fact that the measurements are unconditionally independent be-

cause of the randomness of F and of the sparsity pattern. Finally, uniform scalar

quantization is always midrise.

Consider applying uniform scalar quantization with step size A to each measure-

ment yi. This is a reasonable starting point; we are mainly interested in comparing

the performance achievable by nonadaptive encoding (in the framework of the above

assumptions) to that of adaptive encoding in the high rate region, as that is where

adaptive encoding is optimal. As discussed in Section 2.2, at high rate entropy-coded

uniform quantization is optimal. In addition, in the compressed sensing framework,

all measurements have equal importance (or unimportance), so there is no reason for

any one measurement dimension to be quantized more finely or coarsely than another.

Thus the information that the x-encoder sends is that the representation of x in

the measurement space RM lies within an M-dimensional A-hypercube. We will also

refer to this hypercube as the "quantizer cell," trusting that the difference between a

scalar quantizer cell and the resulting cell in IRM will be clear from context.

At the decoder, reconstruction from quantizer cell knowledge will use the simple

yet powerful concept of consistency: picking a reconstruction which agrees with the

available information about the original signal [10]. To do so, the decoder solves the

optimization

& = argmin I|vill such that (Fv)i E - -, 92 , i = 1,..., M. (3.2)

This quantization-aware version of basis pursuit (QABP) searches for a solution

within the quantizer cell instead of, for example, setting the constraint to be Fv = Y,

where 9 is the center of the cell. This facilitates picking a consistent reconstruction

because the center of the quantizer cell may not coincide with any of the (N) possible

sparsity patterns.
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Figure 3-3: Comparison of adaptive and nonadaptive D(R), where the nonadaptive
decoder uses quantization-aware basis pursuit and the optimal value of M has been
chosen for each rate.

Figure 3-3 compares the D(R) performance achieved by adaptive encoding and

this nonadaptive scheme. For nonadaptive, quantization-aware basis pursuit is used

at the decoder and the optimal value of M has been chosen at each rate. Note that

rate is given in bits per source component (bpsc) and distortion is given as signal to

noise ratio (SNR):
M

R = -. H(Q(yi)) bpsc (3.3)

SNR = 10 loglo0 (M dB (3.4)

MSE = E [ (x - i)2 (3.5)

As seen in Figure 3-3, there is a huge gap between the performance of the adaptive

and nonadaptive encoding schemes. In the adaptive case, the sparsity pattern is

losslessly encoded, whereas in the nonadaptive case, there is a nonzero probability

of failing to recover the sparsity pattern. In the adaptive case, all the available bits

except the log 2 (N ) allotted to the sparsity pattern are being spent to encode K

coefficients, which is considerably less than the M coefficients that the nonadaptive



scheme must encode.

In order to improve nonadaptive performance, it is desirable to minimize M while

maintaining a high probability of sparsity pattern recovery. A method for doing so

is described in the following chapter. This method takes advantage of the fact that

in this problem, there are two forms of consistency: quantizer-cell consistency and

sparsity-consistency.



Chapter 4

Nonadaptive Encoding with

Standard Quantization

4.1 Minimizing M in the Lossless Case

Chapter 3 concluded by explaining that for improved nonadaptive D(R) behavior,

it is desirable to minimize the number M of nonadaptive measurements while still

maintaining a high probability of recovering the sparsity pattern (SP). In theory, when

the measurements are losslessly known to the decoder, a brute force combinatorial

search through all (N) possibilities will recover the correct sparsity pattern from

M = K + 1 measurements for all K-sparse signals but a set of measure zero. Of

course, in practice this is computationally prohibitive. In this chapter we consider a

method for dealing with a known, fixed sparsity level K. In order to focus on how

much M can be minimized, in this chapter we remove the quantization component of

the problem. If a choice of M performs poorly in the lossless case for some problem

size (N, K), then it will not perform well when the measurements are quantized.

Before going further, a few definitions. Define 9 E -RK to be the "collapsed"

version of 0, that is, the vector containing only the nonzero coefficients of the sparsity

basis representation of x.1 For a given sparsity pattern {jk }, , define F to be the

matrix containing the columns f*,jk of F. The method we consider is an ordered

'Recall we have assumed without loss of generality that D = IN, and therefore 0 = x.



search through the possible sparsity patterns and is given in the following.

1. Run the standard basis pursuit recovery algorithm. That is to say, solve

w = argmin Ilvjll such that Fv = y. (4.1)

If M is large enough, M > Mcrit,BP, w will be K-sparse with probability almost

1. Assume M is not "large enough". Then w has more than K nonzeros with

high probability.

2. Generate an ordered list of the N possible nonzero positions by sorting Iwil in

descending order.

3. Pick the first K positions from this list as a candidate sparsity pattern (SP).

Call this the first iteration.

4. Given the sparsity pattern, knowledge of F and the M measurements yj form

an overdetermined representation of x (more precisely, an overdetermined rep-

resentation of d). For the given SP, reconstruct the associated 0 by using the

inverse frame operator:

S= Fty = (FT F)-1FT X. (4.2)

5. Check if the sparsity pattern candidate is consistent with the known measure-

ments by checking if FO - y. If yes, declare that the correct sparsity pattern

has been recovered.

6. If no, move on to the next iteration by picking the next position from the

ordered list. At the second iteration, (K K) new SP candidates are generated.

In general, at the nth iteration, there are (K 2) new SP candidates. (Any

new SP candidate must include the newly added position. This leaves K - 1

positions to be chosen from the K + n - 2 already active positions.)



7. Repeat steps 4 and 5 until a SP candidate consistent with the measurements

has been found. Stop at the first one, since the probability that there is more

than one is negligible.

Figure 4-1 shows simulation results for this basis pursuit facilitated ordered search

(BPOS) recovery method. Since BPOS is just an ordered combinatorial search, it is

not surprising that SP recovery with probability 1 occurs at M - K +1. The issue at

hand is computational feasibility. This is studied in parts (b) and (c) of Figure 4-1,

which present the same information from two different perspectives; (c) is a reminder

of how fast (N) grows. Note that the range of M prescribed by compressed sensing

theory corresponds to the range in which the average number of SP candidates tested

by BPOS is close to 1.

It is interesting to note from the available data that, at M = K + 1, the average

number of SP candidates tested before reaching the correct one is about a third of

the total number of SP candidates. Of course, for all but small toy problem sizes,

1 (K) is just as computationally prohibitive as (NK). However, the average number

of SP candidates tested decreases as M increases. Thus, as long as M > K + 1, the

sparsity pattern information is contained in M random measurements, but there is

a tradeoff between number of measurements and complexity of recovery. This is in

contrast with an unordered search, which has complexity independent of M.

One can also consider running BPOS with a specified maximum allowable number

of iterations m, where m can take values from 1 to N - K +1, the maximum possible

for a given problem size (N, K). With this truncated version of BPOS, a decrease in

recovery complexity is obtained at the cost of a decrease in performance, since one

no longer has 100% SP recovery.

Figures 4-2, 4-3, and 4-4 study the performance of truncated BPOS. Each data

point corresponds to a different value of m, from m = 1 to the smallest value of m

for probability 1 SP recovery. Percentage of total SP candidates tested is plotted

instead of number of iterations, as each iteration adds a different number of new SP

candidates.

To compare the average and worst case complexities of running untruncated BPOS



N = 16: K = 2, 3, 4. Number of trials: 200

Probability of SP recovery
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Figure 4-1: BPOS recovery performance. Note that the number of measurements is
plotted as M - K.
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for 100% SP recovery, compare Figure 4-1b with Figure 4-5. The worst case is very

bad for a large range of M. Referring again to Figures 4-2-4-4, we see why this is the

case. For a fixed M, consider two adjacent data points and denote their corresponding

percentage of SP candidate tests by pi and P2, where P2 > Pl. Consider the y-axis

difference between these data points, (pl, P2). When running untruncated BPOS,

6(pl,p2) percent of trials require P2 percent of SP candidates to be tested. At large

enough M, standard basis pursuit succeeds for almost all trials (only one iteration is

required by BPOS), but a small percentage of trials require testing almost all (N)
SP candidates. Thus, the average computational complexity for this range of M is

low, but the worst case is computationally prohibitive for larger problem sizes. For

these unlucky cases, the performance of truncated BPOS just degenerates to that

of standard basis pursuit. There are two conclusions to be drawn. First, for the

range of M prescribed by compressed sensing theory, taking the very small hit in SP

recovery probability incurred by just running standard basis pursuit and retaining

the K largest magnitude coefficients is a tradeoff very much worth making. Second,

truncated BPOS (with m > 1) is only a potentially useful idea for values of M much

smaller than this range.

Finally, note that in a source coding setting, we can expect both the untruncated

and truncated BPOS tradeoffs to translate into trading recovery complexity for im-

proved D(R) performance. For a fixed A > 0, plots with the same basic trend as

Figures 4-2-4-4 should be obtained, except that probability 1 SP recovery is no longer

the upper bound on performance. (With increasing A, the curves for each value of

M should shift downwards; for A large enough, some values of M will be too small

to be viable for any percentage of SP tests.) Since M and A together determine rate,

at a fixed A decreasing M decreases rate. The greater complexity of performing a

full search at the decoder will allow untruncated BPOS to achieve a given probability

of SP recovery with less measurements than needed by standard quantization-aware

basis pursuit, decreasing rate while possibly maintaining a comparable level of dis-

tortion. For truncated BPOS, at a fixed M and A, allowing more SP candidates to

be tested should decrease distortion. The trend in Figures 4-2-4-4 provides a nice il-
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Figure 4-2: Probability of SP recovery by truncated BPOS for N = 16, K = 2. Each
data point corresponds to a different number of maximum allowed iterations, from 1
to the smallest value for 100% SP recovery.

lustration of this main theme. Essentially what we have is a recovery complexity-rate

tuner: for the best possible reconstruction fidelity at a fixed value of A, the options

range from on one end using a large value of M with low recovery complexity to the

opposite end, using a very small value of M with high recovery complexity.
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Figure 4-4: Probability of SP recovery by truncated BPOS for N = 16, K = 4.
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Figure 4-5: BPOS minimum msp needed for 100% SP recovery, where msp is the
maximum allowed percent of SP candidate tests.

4.2 Standard Quantization

We now revisit the nonadaptive encoder in Chapter 3, which applies the same uniform

step size A scalar quantizer to each of the M measurements yi. However, instead of

merely using quantization-aware basis pursuit for signal recovery as in Chapter 3,

we now incorporate the ordered search method of Section 4.1. With the addition of

quantization, steps 1, 4 and 5 of the recovery procedure must be altered as follows:

1. Run quantization-aware basis pursuit:

w= argmin Ilvlll such that (Fv) E - A + , i= 1,...,M.
+ i=2 2,...,M.

(4.3)

For given values of (N,K), when M < Mcrit,BP, W iS even less likely to be K-

sparse than in the lossless case.

2. As in the lossless case, generate an ordered list of the N possible nonzero posi-

tions by sorting 1wi1 in descending order.

3. As in the lossless case, for the first iteration, pick the first K positions from this

list as a candidate sparsity pattern.
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Figure 4-6: Nonadaptive D(R) achieved by an ordered search recovery method.

4. Given a sparsity pattern candidate, in the lossy case, access to the quantized

measurements Y tells us that FO E [Y- a, • +  ]. If we attempt to reconstruct to

the center of the quantization cell in IRM defined by [ - , +A ], reconstruction

of 9 becomes:

0 = argmax jd|1 such that Fv +de - + - anddiE 0,2 2 2
(4.4)

5. In the lossy case, there may be no solution to (4.4), in which case the candidate

sparsity pattern cannot be the true sparsity pattern. This is the quantization

generalization of the measurement-consistency check.

6. As in the lossless case, if the existing SP candidate(s) are not consistent, move

to the next iteration by picking the next position from the ordered list; at the

nth iteration, this step generates (KKg -2) new candidate sparsity patterns.

7. As in the lossless case, repeat steps 4 and 5 until there is a solution to (4.4).
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Figure 4-7: Complexity of ordered search recovery method.

Figure 4-6 shows the resulting D(R) curves for a range of M. Note that the

data is for values of A E [10 - 4 , 1] so that for different values of M, different ranges

of R are obtained. An ordered search recovery procedure can correctly recover the

sparsity pattern under conditions in which quantization-aware basis pursuit will fail.

In addition, the enforcement of K-sparsity by the search procedure means that when

the sparsity pattern is correctly recovered, one has an overcomplete representation

of 9. Thus there is a large D(R) performance improvement across all values of M.

In particular, values of M too small to be admitted by compressed sensing theory

become, not only viable, but outperform larger values of M at high rate.

At high rate M = 4 clearly yields optimal D(R). However, Figure 4-7 shows

that there is a price paid for using such a small number of measurements in terms

of computation at the decoder. Figures 4-6 and 4-7 together illustrate the tradeoff

between achievable D(R) performance and recovery complexity introduced end of

Section 4.1. The value of M controls this tradeoff. Here it is of interest to note

that, for the larger values of M (M E [8 : 10], well within the range prescribed

by compressed sensing) testing no more than about two percent of the total SP

candidates on average results in a considerable D(R) improvement over that achieved



by quantization-aware basis pursuit alone.

Finally, consider probability of SP recovery as depicted in Figure 4-8. Figure 4-

8a shows that for a given value of M, decreasing A increases the probability of SP

recovery. For a given value of A, increasing M also increases the probability of SP

recovery. Both these trends are straightforward to understand from the compressed

sensing background given in Section 2.1. Figure 4-8b also plots probability of SP re-

covery, but as a function of rate instead of quantizer step size. Increasing rate is the

same as decreasing A. The interesting point is that above a certain rate, the trend

across M is the opposite from that at a fixed A. This underscores the difference

between compressed sensing in the presence of bounded noise in the conventional ap-

proximation setting and in a rate-distortion source coding setting. At any given rate,

the value of M constrains the finest possible resolution at which each measurement is

quantized, so that there is a choice to make between a larger number of more coarsely

quantized measurements or a smaller number of more finely quantized measurements.

Figure 4-8b shows that, above about 1.6 bpsc, M = 4 is also optimal in terms of SP

recovery-fewer, more finely quantized measurements wins over a larger number of

more coarsely quantized measurements when using an ordered search recovery. This

is not at all surprising considering the results of Section 4.1.

The optimality of M = 4 for SP recovery at high rate partly accounts for the

observed optimal D(R) behavior as recovering the sparsity pattern correctly is a large

component of nonadaptive encoding performance. However, it is worthwhile to note

that the mean squared error distortion metric is not exactly the same as probability

of SP recovery. This can be seen in the difference between Figure 4-6 and Figure 4-8b,

as M = 4 is optimal over different ranges of R for the two different criteria. At rates

where the optimal value of M for SP recovery is not optimal from the D(R) point of

view, it must be that the MSE conditioned on incorrect SP recovery for this value of

M is larger than for the value of M that results in lowest distortion.

The question now arises: can we do better than this, over any, or all, ranges

of R? In the next chapter, we explore a quantization strategy for improving D(R)

performance.
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Chapter 5

Nonadaptive Encoding with

Binned Quantization

In a multiple description (MD) source coding scenario, the encoder produces many

different encodings or "descriptions" of the signal to be communicated, and the key

assumption is that the encoder does not know whether the decoder will receive all

or only a subset of these descriptions. Thus it is desirable that each encoding alone

should produce an acceptable quality reproduction, while receiving and decoding more

than one description should give a better quality reproduction [9]. A quantization

strategy in MD coding is to bin disjoint quantizer cells. To illustrate, we take an

example from [9]. Suppose we wished to produce two MD encodings of a random

variable z uniformly distributed on [-1, 1]. We use the two binned quantizers depicted

in Figure 5-1. Say z = -, so that the first quantizer produces the index '100' and the

second quantizer the index '011.' If the decoder only receives the first description,

then it only knows that z E [I, -] U [I, 1]. If the second description is also received,

then it refines the existing information about z, narrowing down the interval in which

z lies to [1, 3]. Receiving both descriptions results in the effective reconstruction

quality of a 4-bit uniform quantizer with step size 1. This effect can also be achieved

with two uniform quantizers with step size 1 and overlapping quantization cells, but

each quantizer would have a rate of three bits. The disjoint quantizer cells allow the

rates of the individual quantizers to be reduced.
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Figure 5-1: Two complementary multiple description quantizers with binned quan-
tizer cells. Taken from [9].

Binning is a concept which generalizes to any source coding scenario in which

auxiliary information about the signal being encoded is available at the decoder. For

example, practical Slepian-Wolf codes for binary correlated sources (say X and Y)

use binning in the form of cosets of linear channel codes to achieve lossless distributed

encoding of X and Y at the joint entropy H(X, Y) [15].

Returning to the problem at hand, one can consider the sparsity model prior on the

signal x as side information which is definitely available at the decoder. Consider then

binning disjoint quantizer cells, and relying on the sparsity model to select the correct

cell at the decoder. In particular, in the previous chapter, uniform step size A scalar

quantization of each measurement yi produced M-cube quantization cells in RM.

What we propose now is to group many such cells together in a bin and to send as the

description of x the index of the bin which contains the quantization cell of y, as shown

in Figure 5-2. This strategy attempts to improve D(R) performance by reducing rate

while keeping the same level of distortion. Ideally, because of the restrictiveness

of the sparsity model, all but the correct cell within the bin will be inconsistent

with the sparsity prior. If the decoder can take advantage of this to recover the

correct cell, then binned quantization achieves the performance of standard uniform

A quantization at a lower rate. For an intuitive picture of why this should be possible,
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Figure 5-2: Encoder/decoder with binned quantization.

recall the toy problem of Section 2.1, in which N = 3, K = 1, and M = 2. Figure 5-3

illustrates binning for this example. In this chapter, we study the performance of

binned quantization for nonadaptive encoding of sparse x.

To keep things simple at the encoder, we restrict our design to the scalar quanti-

zation framework of encoding each measurement separately. After scalar quantizing

each measurement, the same binning pattern is applied across all measurement dimen-

sions. In particular: (a) the number of quantizer cells binned together in a dimension,

denoted by L, is the same for all measurement dimensions; and (b) the number of

quantizer cells between cells in the same bin, denoted by B, stays constant within

and across measurement dimensions. Thus there are two parameters involved in our

design, L and B. Figure 5-4 shows a sample binning pattern.

In this setup, the encoder sends M scalar bin indices, one for each measurement,

which are each scalar entropy coded. At the decoder, this information defines LM

possible quantization cells in RI . The decoder will attempt to jointly recover the

quantization cell and sparsity pattern by finding the "intersection" between the set

of possible quantization cells and the (Z) possible sparsity patterns.

Consider the specifics of signal recovery at the decoder. The brute force ap-

proach would be to perform LM. (N) consistency tests, one for every possible spar-

sity pattern and quantization cell combination. Even with toy problem sizes, this is

intractable. Our solution is to adapt the ordered search recovery to this binned quan-

•. • • -- I1,JI. -
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Figure 5-3: Toy problem illustration of binned quantization. x E IR3 is 1-sparse
and two measurements are taken. The blue lines depict the measurement space
representation of the sparsity subspaces for one particular realization of F. The
shaded quantization cells are the cells in the active bin.
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Figure 5-4: Sample binned quantizer pattern. L = 2, B = 2. QI : quantizer cell
index, BI : bin index.

tization setting. In RM, all the cells in a given bin lie within the coarse cell with side

[(L - 1) -(B + 1) + 1] -A, as shown in Figure 5-4. Our approach is to modify BPOS

by running basis pursuit with the coarse cell to generate the ordered list of sparsity

patterns. Then test the candidate sparsity patterns in order for consistency with the

actual cells within the bin. Stop at the first valid quantizer cell-sparsity pattern pair,

and declare the resulting reconstruction to be X. Again, as in the previous chapter,

what we are proposing is to search through the possible sparsity patterns for the

given values of N and K, but in an ordered fashion. The search in this case involves

much more computation because for each candidate SP tested, the decoder must also

search through the LM cells specified by the M bin indices. In practice, because most

of those cells (ideally, all but one) are inconsistent, the number of consistency tests

needed can be greatly reduced by using a group testing approach.

Before presenting the D(R) curves that result from binned quantization, consider

in more detail the issues in choosing the binning parameters L and B. L should be

made as large as possible in order to decrease the rate as much as possible. However,

since the number of cells in a bin in RM grows as LM, with increasing L, there is

also an increasing probability that greater than one cell in a bin will be consistent,

and so an increasing probability of recovering the wrong quantization cell. This is

particularly bad when greater than one sparsity pattern intersects the active cells, so

that recovering the wrong cell could mean recovering the wrong sparsity pattern. It is

not at all surprising, that decreasing rate should decrease performance. For the extra



computation at the decoder that it incurs, binning is a good strategy if the effect of

the former is greater than the effect of the latter.

Now consider fixing L and A. Then the only remaining design parameter is B,

or the distance in each measurement dimension between cells in a bin, B A. B

must be chosen such that binning actually occurs. In particular, B must not be so

large that some of the cells in some (or all) bins are outside the likely support of

yi. Thus the acceptable range of B depends on the distribution of yi, L, and A.

To illustrate, consider Figure 5-5a, which shows the entropy of the binned quantizer

output for a single measurement dimension, H(B(Q(yj))), as a function of quantizer

step size A for K = 2, L = 2 and different values of B. H(B(Q(yi))) was tabulated

from the distribution of yi, which, in our problem setup, is the sum of K products of

independent N(O, 1) random variables:

K

Y = fE •,~ (5.1)
j=1

For L = 2, an allowable binning pattern should reduce H(B(Q(yi))) by nearly one

full bit.' One sees that for A = 1, even B = 1 does not result in fully effective

binning. Instead, it results in an entropy reduction of about half a bit, which makes

sense since, for K = 2, supp(yi) ? [-2.5, 2.5].2 For small enough A, all values of B

plotted produce the expected 1 bit decrease in H(B(Q(yi))).

Besides being "small enough," B also must be "large enough" to allow effective

binning. Besides the obvious constraint that B be at least 1, it was found experi-

mentally that B must be larger than some critical value. To see this, consider how

performance for one specific choice of (M, L) varies with B, as shown in Figure 5-6.

For B < 4, increasing B improves performance. A possible explanation for this be-

havior is that when B is too small, instead of the resolution of the individual cells

within each bin, in some scenarios there is only the resolution of the coarse cell, since

incorrect sparsity patterns whose representations in the measurement space intersect

1A decrease of exactly one bit is only possible if yi is uniformly distributed.
2 See Appendix A for plot of P(yi).
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Figure 5-5: (a) Entropy of binned quantizer output for different values of B when
L = 2. (b) For different values of L when B = 5.
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the coarse cell are also likely to intersect the individual quantization cells.

So long as B is within the allowable range, for a given value of A, the choice of B

does not affect performance, as seen in Figure 5-6b. This behavior can be explained

by the fact that there is an element of randomness in how well any set of binned

quantization parameters (A, L, B) perform for any given realizations of x and F.

Since F is random, the representations of the sparsity subspaces in the measurement

space will be random. In the measurement space, representations yl and Y2 of two

different sparse signals x, and x2 will be at arbitrary orientations with respect to each

other, regardless of their relative orientations in the actual signal space. Thus there

is no way to design B, besides picking a value that allows binning to actually occur.

In the simulations that follow, B is fixed to be 5. Figure 5-5b plots H(B(Q(yi))) as

a function of A for different values of L when B = 5.

Note that Figures 5-5a and 5-6 break the effect of binning on D(R) into its com-

ponent effects on rate and distortion, respectively. They are the first clue that binning

may work for some values of (M, L).

We pause to note that, within the acceptable range, a smaller value of B results in

a smaller coarse cell, which translates to the ordered search being more effective for

reducing computation. In particular, a smaller number of inconsistent SP candidates

will be tested before reaching a consistent SP, where by "consistent" we now mean

consistency with the individual quantization cells in the given bin. That is to say,

there will be a smaller number of sparsity patterns whose representations in the mea-

surement space intersect the coarse cell but not the cells in the active bin. However,

this only affects computation and not D(R) performance.

Figure 5-7 presents the main result of this work: optimal D(R) behavior of non-

adaptive encoding over the two methods studied in this work, standard quantization

(L = 1) with an ordered search in the recovery algorithm and binned quantization

with its modified ordered search recovery. Each curve compares different ranges of

M for L = 1, 2, 3, and 4.

At high rate, (M=4, L=1) by far outperforms any other (M,L) pair. Denote

M = 4 by Mot. In general, at high rate the smallest value of M > Mopt under
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comparison produces optimal D(R) behavior. The corresponding optimal value of L

generally increases with M.

For a more in depth understanding of the results, consider the individual D(R)

curves for different values of L at each value of M as shown in Figures 5-8 and 5-9.

At M = Mopt, binning performs worse than no binning. As M increases, binning

starts to perform better over the range of R large enough for A to allow effective

binning. The value of M at which binning starts to consistently outperform no binning

increases with L. In the transition from Mopt to M large enough for consistent binning

performance, binning sporadically outperforms no binning. Because of the erratic

behavior for this range of (M, L), the optimal D(R) data points which correspond to

these (M, L) are not necessarily reliable. The erratic performance of binning in this

intermediate range is the reason the middle optimal D(R) curves contain a fluctuation

of (M, L) pairs, before settling down to (9,4) and (10,4) for the last two curves.

When (M, L) is such that binning consistently outperforms no binning, the effect

of binned quantization is to shift the D(R) curve to the left, as expected. Recall

that for given values of L and B and a given yi distribution, there is a range of A

small enough for the binning rate reduction to be fully effective. For a fixed A in this

range, every factor of 2 in L will result in a rate reduction of 1 bit per measurement.

This translates to a - bpsc decrease in R. If binning is completely successful at

a particular value of M, the same SNR will be achieved by binning at a value of R

which is -A bpsc smaller than that needed by L = 1 to achieve the same SNR. For

example, at M = 10 we see this behavior exactly for L = 2, 3, and 4.

It is not surprising that M must be at least some Mmin(L) for binning to be

consistently successful over valid ranges of A. Larger M means the representations

of the (N) sparsity patterns in the measurement space are more likely to be further

apart at each fixed distance from the origin. At a fixed (M, L), binning will shift the

2 N bpsc if it is highly improbable thatno binning D(R) curve to the left by a full ·. bpsc if it is highly improbable that
the quantization cells in a bin contain more than one sparsity pattern representation.

For these values of (M, L), the binned quantization scheme can be thought of as a

form of Slepian-Wolf code of {Y}Yi=l whose design is inferred from the geometry of



the sparsity model.

Thus binning is fully successful for large M. However, when M > Mopt, the

penalty for overly large M outweighs the binning gain; at high rate the (9,4) and

(10,4) curves do not even approach the (4,1) curve. Note also that for (9,4) and

(10,4), Figure 5-9 and Figure 4-6 show that the low rate data points in the optimal

D(R) plots of Figure 5-7 are misleading in that binning for the most part gets a

negligible gain over any no binning D(R) curve with M > Mopt.

To summarize, binning can significantly improve D(R) performance for a fixed,

large value of M, but this is by far not the global optimum. An encoder which does

not employ binning but uses Mopt measurements at high rate and any M > Mopt at

low rate will achieve optimal D(R).
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Chapter 6

Conclusion

6.1 Summary

This work has studied how much a nonadaptive encoder for sparse signals can ap-

proach the D(R) performance of an adaptive encoder through increased complexity

at the decoder. We have considered two strategies for nonadaptive encoding appli-

cable to a setting where the sparsity basis 4D and sparsity level K are known to the

decoder. The first strategy increases complexity at the decoder in the form of an

ordered search through possible sparsity patterns. This allows the number of non-

adaptive measurements to be reduced while maintaining a high level of SP recovery,

resulting in considerable D(R) improvement. Using an ordered search provides two

advantages over a brute force unordered search: one can tune the average computa-

tional complexity of the search through the choice of M, and it is possible to recognize

worst case scenarios and terminate early. The second strategy involves binning the

scalar quantizer output to reduce rate for a given quantizer step size A and taking

advantage of the restrictiveness of the sparsity model to maintain a reconstruction fi-

delity level comparable to that of standard quantization. The corresponding recovery

utilizes a modified ordered search through possible sparsity patterns.

Through small problem size simulations, we have shown that the encoding param-

eters for optimal D(R) are a small number of measurements Mopt with no binning. At

M = Mopt, binning performs worse than no binning, across all rates. For M > Mopt,



binning consistently outperforms no binning, but cannot make up the large D(R)

penalty incurred for using such a large value of M. However, the choice of M = Mopt

only takes into account achievable D(R) and not the amount of computational burden

placed on the decoder. Using standard quantization with an increased the number

of measurements worsens D(R) performance but decreases the amount of decoding

computation.

This work differs from the "classical" compressed sensing theory for sparse signals

in which y is available losslessly to the recovery algorithm and the performance cri-

terion is probability of sparsity pattern recovery. It also differs from the extension of

CS theory studied by [12], in which y is corrupted by unbounded, random noise, since

quantization adds bounded, signal-dependent noise. There are aspects of the problem

we have studied which are particular to the source coding context. In compressed

sensing, larger M can only mean better performance, because the measurements are

likely to "see" more of the signal. In a D(R) context, however, at a fixed rate, there

is a tradeoff between number of measurements and the amount of resolution with

which each measurement can be represented. In the case of a few finely quantized

measurements versus a larger number of more coarsely quantized measurements, the

verdict is that the former wins. Besides the difference between counting measure-

ments and having to account for rate, there is also the difference between MSE and

strict sparsity pattern recovery performance criterions. If I(il is small (relative to the

expected value of Iij, say), then the MSE penalty for incorrectly reconstructing it

may be relatively small, as opposed to the binary correct or incorrect SP criterion.

6.2 Possible Design Improvements

We have studied a very simple binned quantization design in this work. Whether there

are improvements to this design that would result in performance gains is yet to be

explored. In the encoding of any single measurement yi, there are two components:

the scalar quantizer and the binning pattern design. Throughout the simulation

results presented, a midrise quantizer was used. At low rates, a midstep quantizer



might be better; at high rates it should make no difference. There is, however, a

possible improvement to the binning pattern design. While the relative orientations

of the sparsity pattern representations in RM are random, they are closer together

near the origin and farther apart farther from the origin, irrespective of their relative

orientations (see Figure 5-3). For a fixed quantizer step size A, a possible improvement

might be to slightly vary B as a function of distance from the origin: make B larger

near the origin, and smaller far from the origin. At the end of Chapter 5, we mentioned

that for M large enough for successful binning, one could consider binned quantization

as a form of Slepian-Wolf code for {}ii=l. If the joint entropy of the quantized

measurements, H(~l,..., y^i) = H(y), could be calculated, it should give a bound on

binning performance.

6.3 Extensions

We have used small problem size simulations in order to study how much increased

complexity at the decoder can fill in the gap between nonadaptive and adaptive

encoding D(R) performance. For real world problem sizes, the ordered search, though

"smarter" than a straightforward search, would still be intractable. In Chapter 4.1

the idea of a truncated search was introduced. The resulting D(R) behavior has yet

to be studied.

In this work we have studied nonadaptive #-blind encoding. However, the former

characteristic does not necessarily imply the latter, and there might be performance

gains that would result from the encoder using QP. For example, a P-aware nonadap-

tive encoder could choose F such that the columns of Feff = F4 form a Grassmannian

(minimal maximum coherence) packing of RM. Synthesizing y from vectors that are

as far apart in the measurement space as possible should improve probability of spar-

sity pattern recovery from quantized measurements.

Most importantly, the ordered search recovery method requires exact K-sparsity,

with known K. In practice, however, a signal is more likely to be compressible than

exactly sparse. That is to say, its D representation coefficients ordered by decreasing



magnitude will have a fast decay. Perhaps the most significant extension to this work

is to adapt the ordered search method to compressible signals. A compressible signal

can be well-approximated by a sparse signal. Recall our toy problem illustration from

Section 2.1, in which we considered taking two measurements of a 1-sparse signal in

R3 . For an exactly 1-sparse x, y lies on one of three lines in R2 . If we have instead a

compressible x, y would be likely to be in an area in R2 immediately surrounding these

three lines. An adaptive encoder would use D to determine the K largest magnitude

coefficients in the compressibility basis, losslessly encode their positions, and spend

the remaining available bits on their values. (The encoder would choose K in some

appropriate fashion.) A possible, as yet untried strategy for adapting our method to a

compressible signal is to pretend that the signal is K-sparse and use the same recovery

algorithm at the decoder, but with a larger A than actually used at the encoder when

testing candidate sparsity patterns for quantization cell consistency. The hope would

be that the measurement space representation of the optimal K-term approximation

sparsity pattern would intersect the enlarged quantization cell. In that case, the

decoder would compute a reconstruction with the same compressibility basis support

as that of the optimal approximation that would have been found by an adaptive

encoder.



Appendix A

Distribution of yi for K

P(yi = a)
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