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ABSTRACT

Although most people agree that the use of information technology increases workplace productivity,
the exact relationship between productivity and different characteristics of information employees send
and receive, such as entropy, information rate and mutual information is not very well studied. By using
empirical data, this study develops methodologies to measure the entropy, information rate and mutual
information of the email content exchanged between information workers. Furthermore, the validity of
these methodologies is evaluated using comparable, publicly available datasets. The evaluation shows
that important informational characteristics of email messages, namely the entropy values, are
preserved even when messages undergo transformations that preserve privacy and anonymity.
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1. Introduction

In today’s business world, the use of information technology plays a major role in a company’s
success. Some firms build their entire business around business intelligence, information
gathering and classification for more in-depth analysis. Most people agree that use of IT
increases the effectiveness of workers and amplifies the level of productivity in workplace. Yet,
the exact manner in which the use of technology affects the productivity of the whole firm, and
groups and individuals within the firm is not well studied. Developing and analyzing metrics that
can quantify productivity and its relation to the use of different forms of technology can help

companies to quantitatively analyze, evaluate and optimize their use of IT.

The field of information theory and the study of the flow of information have attracted many
researchers since Claude Shannon published his famous paper “A Mathematical Theory of
Communication” in 1948. Shannon’s paper revolutionized the fields of communication and
computing by showing that the information content of a message could be measured using

statistical methods and quantified by parameters such as entropy and mutual information.

Each one of these variables signifies a different characteristic of the information contained in a
message. Entropy is a fundamental measure that quantifies the total amount of information
within the message. The information rate on the other hand describes the change in the total
amount of information over time in a series of time ordered messages. Finally, mutual
information shows the amount of information overlap between two or more messages and

provides a measure of similarity of the informational contents of these different messages.

Many would agree that the manner in which knowledge workers send, receive and share
information can have a great effect on their productivity. However, few describe such
relationships using a series of well specified equations. Shannon showed how to express the
informational content of a message in terms of numbers and various measures. Finding these
measures can provide new insight into understanding and quantifying such relationships. For
example, the higher values of mutual information between two individuals may correspond to

their higher productivity when working together as a team, due to their heightened ability to



communicate and collaborate effectively (of course, on the other hand, too much mutual
information may stifle innovation due to a lack of novel ideas). Also, in theory, receiving more
information from others may be related to the structure of the individual’s social networks,
while the production of more information by a knowledge worker may indicate higher levels of

productivity.

Understanding these relationships can help companies optimize their resources and restructure
their network in order to maximize productivity, improve their workers’ access to information
and increase the success rates. While analyzing correlations between information theoretic
measures, social network structure and productivity is beyond the scope of this thesis,

providing these essential measures can enable such studies in the future.

After about half a decade, it is not now possible to measure these different characteristics of a
message using the methods established by Shannon and refined by others. But when it comes
to quantifying such parameters within the boundaries of a firm or a social network environment
in a broader sense and relating those values to the productivity of the individuals, groups and
the whole firm, there has been very little research. Some exceptions include recent studies
focusing on the social network structure of information workers in order to understand the
flow of information between people in a network. These studies found correlations between
social network structure and the productivity of information workers (Aral, Brynjolfsson, & Van
Alstyne, 2006), network structure, information diversity and productivity (Aral & Van Alstyne,
2007), and productivity and the diffusion of information in networks (Aral, Brynjolfson, & Van

Alstyne, 2007).

The research presented in this thesis complements and extends this body of work by
introducing and analyzing methodologies for quantifying entropy, information rate and mutual
information values in a social network setting using empirical data gathered from the email
messages exchanged between knowledge workers in an executive recruiting firm. In addition to
thousands of email messages, the larger data sets contain measures of productivity for the

individuals in the firm such as the projects they worked on, team members in each project and



whether or not the project had a successful outcome. By having the entropy, information rate
and mutual information values from this research in addition to existing productivity measures
as described earlier, future studies will have a firm empirical basis for investigating and

analyzing the relationships between these variables.

In addition to a lack of empirical data, another major obstacle in performing studies involving
individuals and their communication patterns is privacy concerns arising from dealing with
personal messages. To address these concerns, some existing methods such as the EmailNet
algorithm (Van Alstyne & Zhang, 2003) apply a transformation to plain text messages. The
result of this transformation is a coded hashed version of the plain text message which in
addition to being unreadable cannot be converted back to the original plain text message. Since
all the entropy measurements are performed on the hashed version of messages, it is essential
to evaluate and verify whether the informational characteristics of messages are preserved
during the hashing process. Such validation can verify whether informational characteristics of
hashed versions of messages represent the informational characteristics of the original
messages (and if so how well), allowing us to make inferences about the content of the original

messages.

This thesis (i) develops measures of the entropy, mutual information and information rate of
messages, (ii) develops a method for deriving these measures from hashed, privacy protected
text, and (iii) analyzes the relationship between raw text message entropies and hashed
message entropies by using plain text messages from the publicly available Enron email data
set. Running the EmailNet algorithm on the raw text messages in the Enron data and measuring
both the raw text and hashed text entropies, shows that there is a strong correspondence
between information theoretic measures of hashed and raw text and that a relatively constant
linear relationship exists between the difference of plain text message and hashed message
entropies and the raw message size. Therefore, it can be concluded that the transformation
applied by EmailNet on raw emails does not result in any significant loss of informational values
and the original text message entropies can be retrieved using the parameter estimates of the

relationship between raw and hashed entropies.



2. Theory and Literature

2.1. Information Theory and Entropy

Founded by Claude Shannon in 1948, information theory is intended to address the problem of
transmitting information over a noisy channel. Although developing theories and solving
communication and transmission problems were Shannon’s main motivations, information
theory has since expanded into many different areas such as data structures, wireless
communications, machine learning and data mining. These areas, collectively known as modern
digital sciences or informatics, although very diverse in their applications have one major
fundamental attribute in common, they all study the informational characteristics of data and

apply the information theory’s principles to real world problems.

In order to quantify the amount of information contained in a message, Shannon used the
notion of a binary digit or bit as a basic unit of information storage. Taking one of two possible
values — zero or one, or true or false — a bit represents the quantity of information required to
distinguish two mutually exclusive states from each other. He also introduced two different but
related fundamental measures of a message’s informational content. The first was entropy, an

idea inherited from thermodynamics expressing the amount of information in a message.

The notion of entropy is based on the probability distribution of a random variable. For
example, if the variable X represents the possible set of words that may appear in an email
message, the probability of seeing a specific word such as {x; = “meeting”} is equal to the
likelihood of seeing that word in an email message and is denoted by p(x;) = Pr(X = x;) =
Pr(X = "meeting") . The entropy of the random variable X is usually denoted by H (X).
Shannon described the concept of entropy by using the idea of transmitting a message over a

communication channel (Shannon, 1949).

Shannon did this by proving a coding theorem showing that if one wishes to code a given
message into a sequence of binary symbols (zeros and ones) so that a receiver viewing the

binary sequence can reconstruct the original message perfectly, then the person needs at least
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H(X) binary symbols or bits. This coding theorem is known as the noiseless source coding

theorem (Shannon, 1949).

We can also describe entropy as the amount of information needed to resolve the uncertainty
associated with a random variable. In other words, entropy is a measure of the amount of
information the recipient is missing when they do not know the value of the random variable.
In a simple example if the random variableX stands for the outcome of fair coin toss, then the
possible outcomes are {head, tails} each with a probability of one half. Sending a message that
resolves the uncertainty of a fair coin toss requires only one bit of data (e.g. set it equal to zero
if the outcome is tails and one if the outcome is head). Therefore the entropy of that message
would be equal to 1. In mathematical terms entropy of random variable X represented by

H(x) is equal to

H(X)—Zp(x)zg( o) = Zp(x)zg () @

Where
p(x;) = Pr(X = x; ) is the probability mass function of X as described earlier.

The based two logarithm in this equation quantifies the amount of entropy in bits’. From this
model, it can be observed that the information content of a data set depends mainly on the
underlying probability distribution. In the case of a fair coin toss, selecting a random variable to
represent our outcomes and assigning the probabilities to each outcome was an easy and
straightforward process. Our model assumed that the probability distribution associated with
our random variable (fair coin toss) is already known. However, in many cases (i.e. transmitting

a message) the probability distribution is not known ahead of time.

When dealing with an email message for example, the choice of what our random variable

represents is less obvious. We can select the random variable X to represent a character. The

'So for example in our fair coin toss (a Bernoulli trial with p(success) = % ), the value of entropy would be equal

to2 (—%lg G)) — 1 bit.
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probability distribution will then be based on how many times we see that specific character in

our message. For instance if our message is “staff meeting today at 3pm”, then

PrX = 'a) number of instances of character ‘a’ 3
r =a)= - - = —
number of total characters in this message 26

And the total entropy of this message will be equal to the sum of entropies of all the characters

in the message or:

HOO = =) p() lg ()

= —p('s") lg (p('s")) —p(t) lg (p(t")) —--—p(3) Ig (p('3")
p('p") lg (p('P")

_ 1l<1) 41(4) 11(1) 11(1)—3671
~ " 269\26) " 269\26) T T 269\26) " 269\26) T~

Now if instead of characters we choose the random variable X' to represent a single word

rather than individual characters (and ignoring the spaces between the words), the value of

entropy would be different, here:

H(X') = —Zp(X’i) lg (p(x'))
i=1
= —p (staff’) lg (p(staff’)) —..—p (3pm )l g(p(3pm)) =

-1 (1) L (1)—2322
- 595 59\5) = ~

As shown in the example above, the choice of the random variable greatly affects the final
value of entropy. Additionally in our example, the probability distribution was not known in
advance and was calculated after seeing the entire message by counting the number of

instances of each character.

The main application of quantifying entropy that Shannon had in mind was compressing
messages in order to achieve higher transmission rates. Entropy in this context can also be
described as the amount of information (the number of bits) one needs to encode one single

token of the original message. The total compressed message size can then be calculated from
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multiplying the entropy value by the original message size (total number of characters or token
in the message). Therefore, lower entropy values result in fewer bits required to represent each

symbol, shorter compressed message sizes and higher compression rates.

The process of choosing the best random variable for minimizing the entropy value is the same
as finding different encoding patterns, comparing them and finding out which one summarizes
the message into the shortest possible size. In section 2.2 we will see how different
compression algorithms use different pattern matching methods to minimize the compressed

message size.

Kolmogorov complexity formalizes the same idea in a more theoretical manner (Wallace, 1999).
It states that in a fixed language L , the lower bound for the entropy value of a message s is the
length of the shortest program p that outputs s. L can be any programming or natural language
known by both sender and receiver, so they can use the rules of the language to reconstruct
the original message from the compressed message. Kolmogorov complexity provides a
conceptual theoretical lower bound for the entropy values in terms of p. As previously
explained, this is same as finding the best possible probability distribution X that minimizes the

entropy.

A complex theorem resulting from this description proves by contradiction that the Kolmogorov
complexity is not a computable function. The proof shows that if the shortest program p could
be in fact calculated, it then can be used to produce even a shorter program p’ capable of
outputting the same message s and so forth (Thomas & Cover, 1991). Intuitively, this is equal to
saying that one can never enumerate the set of all possible choices of probability distribution

X and that any list containing different choices of X (i.e. character frequencies, word
frequencies, etc... ) cannot be exhaustive and therefore the best choice of X can never be
identified. As an immediate result of this theorem, the absolute lower entropy value of a
message can never be computed in practice. In other words, one cannot prove that any
calculated lower entropy bound of a message is the absolute minimum value of entropy for

that specific message.
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The entropy measure, as explained earlier, provides a quantitative value for the average
amount of information contained in @ message. Information is in turn what is needed to resolve
uncertainties and higher values of entropy are indicative of higher values of uncertainty. Two
messages equal in size but different in entropy values, therefore, contain different amounts of
information. The one with a higher value of entropy contains more information and can be
used to resolve greater uncertainty, all else equal. Measuring the entropy of email messages
could therefore provide quantitative measures of the amount of information individuals send
or receive and potentially address many questions about the relationship between information

access and productivity in the work place.

2.2. Compressions Algorithms and Textual data

As described above, the lower bound for the entropy of a message can be equivalently
described and measured by the shortest sequence that can be used to reproduce the original
message. The most common methods of measuring entropy are also based on the same idea of
compressing a message into a smaller size. The term “compression rate” is usually used to
indicate the ratio of the compressed message size to the original message size. Usually,
compression algorithms differ from each other in their selection of the random variable and the

way they encode a message.

The choice of random variable usually remains the same in a given compression algorithm
when dealing with a specific format of data. For example, when dealing with text, one
algorithm may select characters as its random variables while another may choose
combinations of characters (i.e. 2 characters at a time) or even complete words as its
underlying variable. After the selection of the random variable(s), the compression mechanism

has to go through three other steps.

In the first step, also known as ‘frequency analysis’, the algorithm evaluates the probabilities
associated with the selected random variable in that message (i.e. how many times we observe
the character ‘a’). In the second step the algorithm compresses the message using the

probabilities found in the previous step and complex methods different from one algorithm to
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another. It also generates a “dictionary” which is basically a guide for deciphering the
compressed message and reconstructing the original one. The third step takes place on the
recipient side. In this step, the algorithm uses the dictionary to decompress the message and
reconstruct the original version. The total entropy of the source data is then equal to the total
amount of data transmitted over the communication channel. This transmitted message
consists of two parts, the compressed message itself plus the dictionary used to decipher the

message back to its original form.

Although most studies in this field focus on accomplishing better compression rates, some such
as Chen analyze the applications of message and mutual information in large bodies of text
(Chen, Francia, Li, McKinnon, & Seker, 2004). Chen proposes a metric based on Kolmogorov
complexity to measure the mutual information between two bodies of text. The study then
describes an algorithm using the amount of information overlap between the two messages for

plagiarism detection.

2.2.1. The Lempel-Ziv compression Algorithm

When dealing with textual data, the most widely used lossless compression algorithms are the
Lempel-Ziv and Huffman compression algorithms. Lempel-Ziv-Welch (LZW) is a universal
dynamic lossless compression method created by Abraham Lempel, Jacob Ziv, and Terry Welch
(Ziv & Lempel, 1978). The term “lossless” refers to the ability of the algorithm to perfectly
reconstruct the original message. It is usually contrasted with the term “lossy” that describes
algorithms that can reconstruct the data with some margin of error, such as the MP3 file format
for audio files. The Lempel-Ziv algorithm however is a lossless algorithm based on detection of

exact repetitions of strings of characters.

The first step for the algorithm is to create a dictionary mapping all the possible characters
based on the language to a bit value. The special character ‘# is a marker used to show that the
end of the message has been reached. If for simplicity we ignore the special symbols, number
and upper case characters, we will end up with 27 symbols in the English alphabet (the 26 lower

case letters a through z, plus the # character). A computer will render these as strings of bits; 5-
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bit strings are needed to give sufficient combinations to encompass the entire dictionary. As
the dictionary grows, the strings will need to grow in length to accommodate the additional
entries. A 5-bit string gives 2° = 32 possible combinations of bits, and so when the 33™
dictionary word is created, the algorithm will have to start using 6-bit strings. The initial

dictionary, then, is shown in Table 1.

CHARACTER # a b c d )
ENTRY NUMBER IN
THE DICTIONARY 1 2 3 4 5 27
GENERATED CODE
SEQUENCE

00000 00001 00010 00011 00100 11010

Table 1 — Lempel-Ziv algorithm, example of initial dictionary state

The algorithm works by processing the input data from the beginning of text. It reads the data
character by character, looking at the sequences of characters together and constructing a
dictionary of observed sequences. For instance if the text beings with the word “staff” the first
sequence is equal to “st” and the next sequence would be equal to “ta”. Each one of these
sequences will be added to the dictionary at position numbers 28 and 29 using the codewords

110171’ and ‘11100’ respectively.

The algorithm looks for repetitions as it proceeds. It encodes by writing strings to its output the
first time they are observed, but writing special codes when a repetition is encountered (e.g.,
the number of the dictionary entry). So the second time the algorithm encounters the sequence
“st” it will save space by adding the number 28 to its output (pointing to the position of the
sequence in its dictionary) instead of outputting the whole binary sequence representing the
string “st”. The output thus consists of appropriately labeled “new” data and references to

“old” data (repetitions) (Thomas & Cover, 1991).

The ordering of characters therefore is of great importance to the Lempel-Ziv algorithm as it
starts from the first character in the text and moves towards the end while adding new
sequences and updating its dictionary. The Huffman algorithm, which is discussed in the next
section, does not rely on the ordering of characters when building its dictionary. We will see

how this makes the Huffman algorithm a better choice for the purposes of our research.
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2.2.2. The Huffman compression Algorithm

The Huffman algorithm is another example of a lossless algorithm. This algorithm, introduced
by David Huffman in 1952, performs a static frequency analysis of the text for generating its
dictionary as describe in Section 2.1. The dictionary of the Huffman algorithm is not a simple
table like the one used by Lempel-Ziv, but rather a special type of binary tree invented by David
Huffman and known as a Huffman Tree (Huffman, 1952). Similar to the Lempel-Ziv dictionary
however, each character (or a token in general) will be represented by a code which is a

sequence of binary numbers (i.e. using ‘00001’ instead of character ‘a’).

The Huffman algorithm is based on the idea that the most common tokens should be encoded
with shorter sequences of code while less common tokens use longer sequences, therefore
reducing the final size of the compressed message. Huffman was able to design the most
efficient compression method of this type, no other mapping of individual source symbols to
unigue strings of bits will produce a smaller average output size when the actual symbol

frequencies agree with those used to create the code (Huffman, 1952).

The algorithm uses a method known as ‘prefix-free code’ which means that the code sequence
of one specific token is never a prefix of another sequence representing some other token. For
example if the sequence ‘00001’ is used to represent the character ‘a’, no other sequence in
the dictionary will start with binary numbers ‘00001” and all prefixes are therefore unique. This
method enables the algorithm to concatenate all the sequences together eliminating the need
to mark the beginning and end of each with a special symbol, therefore saving more space and

achieving a higher compression rate.

As mentioned earlier, the main data structure of the Huffman algorithm is known as a Huffman
Tree. A Huffman Tree serves two different purposes, it generates prefix-free code and it assigns
shorter sequences of code to the most common tokens. Explaining the exact details of how the
Huffman Trees are generated are beyond the scope of this research and are discussed in more

details in the original paper (Huffman, 1952).
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Figure 1 shows an example of a Huffman Tree on the input message “staff meeting today at
3pm.” The number in each node represents the total frequency of that node, for example the
number 3 in node ‘a’ indicates the number of instances of character ‘a’ in our input message. As
can be seen in the figure, only the leaf nodes contain the real characters, the parent nodes in a
Huffman tree contain the combined frequency of their children. The code in the leftmost node

(displayed by ” and a frequency of 4) represents the space character.

The code sequence for each symbol can be retrieved by traversing the tree from the root node
down to its leaves, adding a zero when selecting a left branch and a one when selecting the
right branch. For example the code for the‘t’ character can be retrieved by starting from the
root node and going right, right and left. Therefore the code representing the character ‘t’ is
binary sequence ‘101’. It can be observed that shorter binary sequences are generated for
more common tokens, for example the code for the character ‘n’ with a low probability (a
frequency of 1) is the binary sequence ‘10000’ with a total length of 5 bits compared to only 3

bits needed for coding the character ‘t’ with a much higher probability (frequency of 4).

o
o A -
O ()
0 g e 0 {}\_J&\ 1\/-
(. ;3 TR @ 78
Xy 0 i,/' .1 0 A/, A

3 . v | ).
ORI CTRCAO NN O}
(1) (2) (7 }F\) YD) (Y )
LG NS 0 g% 10 o7 1 LA .,»—*).1\5"/

Figure 1 - Example of a Huffman tree for the input sequence "staff meeting today at 3pm"
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2.3. Mutual Information

The results of this research also measure the information overlap between individuals in a
social network and in turn address how that overlap affects their productivity. Two individuals
that share a lot of information in common for example, may prove to act more efficiently in a
team and deliver better results. To quantify the amount of information overlap between the

individuals, we need a different metric from the information entropy values.

The second important concept introduced by Shannon was the concept of mutual information.
Mutual information represents the amount of information that one random variable reveals
about another one. Based on the statistical definition of the independence of random variables,
the mutual information between two random variables is zero if and only if they are
independent variables. In other words, the mutual information between variables x and y

represents the reduction of uncertainty in either variable by observing the other one.

For example, if we flip a coin eight times and variable X = {number of heads} and variable Y =
{last time we saw a head}, observing either variable gives additional information about the
other one. Here, before having any information about X we need 3 bits to represent all possible
values of Y (from O to 8). Now if observe an outcome of variable X , for instance (x; = 4), the
only possible values for Y will reduce to four values, or {5,6,7,8}. Therefore, we only need 2 bits
of data to represent the four possible values of Y (22 = 4) .The amount of mutual information
in this case would be equal to the number of bits we saved in representing Y by observing X
which is equalto 3 — 2 = 1 bit. The exact mathematical definition of mutual information can

be represented as follows:

o pxy)

Where

1(X;Y) is the mutual information of X and Y and
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p(x,y) is the joint probability density function of X and Y — the probability of events x and y

happening at the same time. In terms of information entropy
I(X;Y)=HX)— HX|Y)= HY)- HY|X)= HX)+ HY)-HX,Y) (3
Where
H(X) and H(Y) are the respective entropies of random variables X and Y
H(X|Y) and H(Y|X) are the conditional entropies, and

H(X,Y) is the joint entropy of X and Y, equal to the value of entropy measured when
considering the combination of all the possible outcomes (x;, y;) of the values for variables X

andY.

Going back to our coin toss example, H(Y|X) quantifies the remaining entropy of the random
variable Y, the last occurrence of a head, given that the value of random variable X, total
number of heads is known. We saw that after observing the value of 4 for variable X, the

remaining entropy of Y or H(Y|X) would be equal to 3.

Another method for describing mutual information generally used as a measure of the
difference between two probability distributions is the Kullback-Liebler also known as the KL
distance metric. Usually, the KL distance is used to measure the difference between a true
probability distribution P and an arbitrary distribution Q. In practice, P usually represents the
empirical data and actual observations while Q represents a theory or assumption. The KL
distance can be computed from the following equation
N, P@)

D (PIQ) = Z P(log 55 )
Where Dy, (P|Q)represents the KL distance and P and Q are the two probability distributions.
The KL divergence of the product P(XJP(Y) from the joint probability distribution P(X,Y)
represents the expected number of extra bits that must be transmitted to identify X and Y if the

joint probability P(X,Y) is known and therefore can be used to define the concept of mutual
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information. In other words, the KL distance in this case it is the expected number of extra bits

that must on average be sent to identify Y if the value of X is not already known by the receiver.

2.4. Novel Information and Information Rate

Just as the entropy value of an email message provides a measure of the information to which
an individual has access, the change of entropy over time indicates the change in the average
amount of information they receive (in their inbox), send (their outbox) or a combination of
both. Higher information rates therefore may indicate higher amounts of novel information
while zero or negative values for information rate may correspond to receiving old and
repetitive information. As workers rely on novel information to resolve uncertainties and make
decisions, higher amounts of novel information could be correlated with higher productivity. By
evaluating these values, we can identify the different patterns of information access for
individuals in the firm and possibly relate them to their productivity, average entropy values or

even the mutual information measures.

The concept of information rate is closely related to mutual information. It describes the
amount of entropy added to the system over time. For example, when dealing with a person’s
inbox messages, each state represents a point in time. The information rate of a person’s inbox
is the difference between the entropy value of all their inbox messages at time t and the
entropy value of all the same folder at time t — 1. More specifically, the information rate at
message I describes the difference in the entropy value of the messages in the inbox prior to
the receipt of message i and the entropy of the messages including message i. Conceptually,
this is equivalent to the value of novel information added to the inbox over the period of one
day or with the addition of the i*" message. In more exact terms the information rate is equal

to
IR(X;Y)= H(X,Y) — H(Y) (5)

Where [R(X;Y) is the information rate considering two random variables X and Y and H(X,Y)
is the joint entropy of X and Y as described in Section 2.3. Each one of these random variables
represents the probability distribution of the same type of data at two different points in time.
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In our case for example, X may represent the inbox of person p at time t (i.e. yesterday) while

Y represents the set of all the messages in their inbox at time t + 1 (today).

In summary, in this section we defined the measures that characterize the informational
content of a message. We also discussed the conceptual meaning of these variables in general
and their significance to our research in particular. In the next section, we will discuss various

aspects of our data, how it was acquired and prepared for our measurements.

3. Background and Data

3.1. Background

The data used in this study was collected from a medium-sized executive recruiting firm over
five years (Aral, Brynjolfsson, & Van Alstyne, 2006). The firm is headquartered in a large mid-
western city and has fourteen regional offices in the United States. It consists of employees
occupying one of three basic positions — partner, consultant, and researcher. While the projects
of the firm vary in detail and complexity, they all have a similar goal — to find and deliver
suitable candidates with specific qualifications for upper-level executive positions requested by
clients. Candidate selection follows a standard process. A partner secures a contract with a
client and assembles a team to work on the project. The team size ranges from one to five
employees with the average team size of 1.9, and the assignments are based on a number of

factors such as the availabilities of the employees, their experience, etc...

The project team identifies potential candidates based on the requested positions and their
requirements, and ranks them by their match with the job description. Based on the initial
research, the team conducts internal interviews with potential candidates. After detailed
evaluations, the team presents the final list of approximately six qualified candidates to the
client along with detailed background information. The client can then interview the candidates
and make offers to one or more candidates if satisfied. In each project, the client has specific
requirements about the skills and abilities of the candidates. In order to complete a contract,

the search team must be able to present candidates who meet the minimum requirements of
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the client, and the candidate quality should satisfy the client (Aral, Brynjolfsson, & Van Alstyne,
2006).

3.2. Data

3.2.1. Email Data Set

We have acquired four data sets related to the operation of the firm — three data sets from the
firm and one from outside the firm. The first data set is detailed internal accounting records
regarding revenues, costs, contracts, project duration and composition, positions of the
employees, etc. This data was collected during five years of operation and included more than
1,300 projects. The second data set consists of the survey responses about information seeking
behaviors traditional demographics such as experience, education, and time allocation. Due to
the incentive for completing the survey, participation exceeded 85%. This information helps us
establish the backgrounds of the employees. The third data set is a complete email history
captured from the corporate mail server during the period from August 2002 to February 2004.

The fourth data set is various independent controls for placement cities (Manoharn, 2006).

This information allows normalization for differences in the nature of different projects. The
data set that we are interested in for this thesis is the captured emails. The email data set
consists of 603,871 emails that are sent and received by the participating employees of the
firm. The contents of the emails are hashed to allow further studies of the email contents while
preserving the privacy of the firm and the employees. The further detail of the email data set is
described in Appendix B, and the full description of the whole data set is discussed by Aral et al.

(Aral, Brynjolfsson, & Van Alstyne, 2006).

3.2.2. Transforming Messages and the EmailNet Algorithm

EmailNet is a system that automatically mines organizational email traffic and generates
information on social networks for further analysis (Van Alstyne & Zhang, 2003). The most
important part of the EmailNet algorithm for this study is the email body transformation

mechanism. To protect participants’ privacy, each email message is hashed to make the
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contents of the email unreadable while still allowing the researchers to analyze the messages

through automatic information retrieval methods.

The hashing process involves a few steps. Initially, all the special symbols such as parentheses,
quotation marks and dashes in addition to common words are removed from the message.
Then all the words in the message undergo a process known as stemming where each word is
transformed back to its original basic form. For example the words “reported,” “reports” and
“reporting” are all reduced to “report”. Finally, the frequency of the resulting stemmed words
is measured and the whole text is hashed using a complex algorithm. Table 2 shows a sample
of input and output for the EmailNet hashing mechanism hashing the raw text phrase “Can you
email me the report this afternoon?” As shown in the table, the output only contains three
tokens, each representing one of the three words “email”, “report” and “afternoon” while all
the other words and symbols are marked as common and removed from the message. The

numbers in the brackets represent the frequency of each token within the message.

Raw text Can you email me the report this afternoon?

Hashed text | -5361703761484364991<1>;5878157904011066551<1>>;-2344724416803540147<1>

Table 2- Example of EmailNet Transformation Process
3.2.3. Enron Email Data Set

Since the original plain text messages in our data are not available due to privacy concerns, all
the measurements in this study have been performed on the hashed versions of messages.
However, it is not clear how processing the messages by using the EmailNet algorithm changes
their original entropy values. In order to verify whether the information entropies of the
original messages are preserved in our hashed data during this process, a source of data similar
to the email messages from the recruiting firm was needed. The data had to contain raw email
messages exchanged between the members of a social network and preferably from a

corporate environment.

We used the publicly available Enron email data set to validate the information theoretic

characterizations of our hashed email data. The Enron data contains the plain text version of
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email messages and was made public by the Federal Energy Regulatory Commission during its
investigations. It was later collected and prepared by Melinda Gervasio at SRI for the CALO (A

Cognitive Assistant that Learns and Organizes) project (Shetty & Adibi, 2005).

The version of the dataset used in this study contains around 517,431 emails from 151 users
distributed in 3500 folders (i.e. inboxes and outboxes of each person) and was acquired from
the website of Information Sciences Institute at University of Southern California (Shetty &
Adibi, 2005). The dataset contains the folder information for each of the 151 employees. Each
message contains the sender’s and the receivers’ email addresses, date and time, subject, body,
text and some other email specific technical information. The further detail of the Enron email
data set is described in Appendix D: Enron Email Data Set, and the full description of the whole

data set is discussed by Shetty (Shetty & Adibi, 2005).

4. Methods

4.1. Preparing and Normalizing the Data Set

Our Email data set contains over six hundred thousand emails. However, there exist some
duplicated emails with the same sender, recipients, timestamp, and content. The duplicated
emails sometimes possess different unique identification numbers, so they are identified as
being different in the data set. The duplicates were eliminated by removing emails with
duplicated sender, recipients, and timestamp. Additionally, there are duplicated emails that are
not entirely the same. One email may have fewer recipients than another email, but the
sender, timestamp, and the content are the same. Only one copy of these duplicated emails is
included in the analysis. In order to achieve this objective, emails with same sender and
timestamp as other emails and with the list of the recipients that is a subset of the list of the
recipients of the other emails are removed. This method allows us to include only one copy of
the duplicated email, which we choose as the copy which includes all the recipients. Out of
603,871 emails, there are 521,316 non-duplicated emails using this method of removing

duplicates (Choe, 2006).
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The entire email data set includes both internal and external emails. A good number of external
emails include mass emails sent by newsgroups or other sources, which may not be relevant to
our analysis. However, the information from external sources may be important to the workers.
Therefore, we would like to study the effect of including or excluding external emails in our
analysis. For simplicity, we define internal emails as emails sent by a person in the firm and the

recipients of the emails include at least one person in the firm.

Out of the 521,316 non-duplicated emails, there are 59,294 internal emails. The emails in the
email data set have been captured from the firm email server during the period between
August 2002 and February 2004. However, a failure in the data capture procedure during a
particular time period created some months during which statistically significantly fewer emails

were captured than the periods of “normal” traffic.

We suspect that the period with low numbers of emails is caused by a failure of the firm’s email
server which was reported to us during data collection. In order to reduce the effect of this
problem, the emails during the period are excluded from the analysis (Aral et al., 2006). We
therefore use emails collected during the period between 1 October 2002 and 3 March 2003
and between 1 October 2003 and 10 February 2004. During that period, there are 452,500 non-
duplicated emails and 45,217 non-duplicated internal emails. This is the same subset of emails
used in (Aral, Brynjolfsson, & Van Alstyne, 2006; 2007), (Aral & Van Alstyne, 2007), (Choe, 2006)
and (Manoharn, 2006).

It is also worth mentioning that the original data schema in the database was not normalized.
Some of the original tables included incorrect data types and duplicate values existed across
different tables. For example, the main table contained string values representing the
timestamp of emails instead of a date object. The recipients list was also stored as a string
within the same table instead of being separately maintained within a different table while
referencing back to the original table using a foreign key. The modified schema for the database
and the full description of tables can be found in Appendix B: Executive Recruiting Firm

Database Structure.
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4.2. Entropy Measurements

4.2.1. Theoretical Lower Bounds

In practice, a compression algorithm can rarely achieve the optimal entropy value calculated
from the actual probability distribution. This limitation is due to a number of different factors.
The data structures used by different algorithms such as the Huffman Trees have some intrinsic
inefficiency in terms of generating the code sequences for tokens. Also, in producing binary
sequences or code words algorithms are limited to use only integer values for the length of
binary sequences (the number of bits). So even if the number of bits required to encode a
character in the optimum case is equal to 6.1, in practice we still have to use 7 bits for encoding

that character.

As previously mentioned, to calculate the theoretical lower bound for entropy, instead of
looking at the length of the code words we use the actual probability distribution over the
words (in our case tokens) and use equation (1) to calculate the entropy. Here, we are only
looking at the probability distribution and ignoring the practical and achievable entropy values
resulting from applying the specific methods of the compression algorithms. In essence, this
lower bound removes the restriction of using bits in addition to any inherent inefficiency that

the code generating part of the algorithm introduces.

We also calculate the average value of entropy for individuals based on their different folders
(inbox, outbox and both). We average the entropy of messages in each set when the person is
the sender, one of the receivers or either the sender or the receiver of a message. The average
value of entropy for an individual could provide valuable insight when combined with other
metrics of the information content of messages. For example, a person with higher entropy
values related to their outbox might be more active in terms of the number of projects they are
involved in and the higher entropy values might have a correlation with higher productivity as

well.

The theoretical lower bounds provide us with a measure for validating our results and checking

the correctness of our specific implementation of the Huffman compression algorithm. Because
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of the internal intrinsic inefficiencies specific to each compression algorithm as discussed in
Section2.2, the calculated lower bound entropy values should always stay below the entropy
values resulting from the actual output of these compression algorithms. If not, the
implementation of the algorithm is definitely incorrect. In the next section we show how to
calculate the lower bound and the achievable entropy values of a message by using the

Huffman algorithm.

4.2.2. The Huffman Algorithm

In Section 2.2.2 we discussed that unlike LZW, the Huffman compression algorithm does not
rely on the ordering of tokens in the message. In the previous section, we also talked about the
transformations applied by the EmailNet algorithm. In essence, by removing the common
words and stemming the remaining tokens, the EmailNet algorithm changes the order of tokens
in the original message. Since the original order of tokens in not preserved in our data, selecting
a sequence agnostic compression algorithm such as Huffman for measuring the entropy of
messages appears to be a more reasonable choice over order dependent algorithms such as

Lempel-Ziv.

As described in Section 2.2.2, the existing implementations of the Huffman algorithm perform a
frequency analysis of all characters within the given text as a first step. In order to evaluate the
validity of our measurements and quantify the entropy values of both plain text and hashed

messages, two different versions of the Huffman compression algorithm were implemented.

The first version, used for plain text messages, recognizes characters as the main symbols and
carries out a frequency analysis. The second version of the algorithm is modified to take the
hashed version of words as input instead of characters. Instead of frequency analysis in the
modified algorithm and since the EmailNet algorithm already includes the frequencies of all the
hashed word, we simply use those frequencies to build the probability table and generate the
Huffman Tree. Table 3, taken from Wikipedia shows an example of the Huffman algorithm’s

output together with the theoretical optimal bounds for entropy. In this table:

A ={aq,a;,a;,...,a,} is the alphabet of size n consisting of characters a, to a,,.
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W = {wi,w,, ws, ..., w,} is the set of probabilities (or weights) associated with each character.
C(A, W) = {cy1,c3,¢3, ..., Cp} is the set of binary code words calculated by the Huffman

algorithm consisting of one specific codeword (binary sequence) for each character.

l Symbol (a;) H A “ b w C I d H e H Sum
Input
Weights (w,) 0.10 || 015 || 030 || 016 || 029 =1.00
] Codewords (c) [ oco ][ oo1 J[ 10 [ or [ 11 |
Output | Codeword length (in bits) {/)) j‘ 3 ” 3 —“ 2j| 2 Ir 2 —|
B Achievable Entropy (/; w;) [ 030 || 045 || 060 |[ 032 ][ 058 H(C) = 2.25
Information content (in bits) 332 274 174 264 1.79
Optimality Clgw) =
Lower Bound Entropy 0332 || 0.411 || 0.521 || 0.423 || 0518 || H(4)=2.205
(-w;lg w)

Table 3 - Huffman coding, optimal and achievable entropy bounds

After finding out the frequency w; of each character, the next step is to build the Huffman Tree
as described in Section 2.2.2. The Huffman Tree then outputs the code sequence c; for each
one of the tokens based on their weights w; and codeword lengths [; . Using these values, we

can compute the achievable entropy by summing over all the tokens in the message
H(achievable) = z w;l; (6)
i

Finally, the lower bound entropy is calculated by using equation (1), or in terms of the

parameters in this table:

H (lower bound) = Z —w; lg w; (7)
i

The implementation of the Huffman algorithm and the general structure of our software are

discussed in more details in Appendix C: The Implementation of the Huffman Algorithm.

4.2.3. Validation and Enron Email Data

To evaluate the appropriateness of our methods for calculating the entropy of hashed email
messages and to analyze the change in entropy values due to transformations exerted by the
EmailNet algorithm, we use the publicly available Enron email data set. The data set consists of
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email messages exchanged between the employees of one firm which makes it very similar in
terms of data to our data set. The fact that the data set consists of email messages, similar to
our data, makes it a much better choice over analyzing random bodies of text. For our

evaluation, we randomly select 1000 messages out of 252,759 emails.

First we used the Huffman algorithm to find the optimal and achievable entropy values for all
the plain text messages, using the character frequencies and their corresponding probability
distributions as the underlying model. Then we used the EmailNet algorithm to hash the body
of all selected email messages using the same methods applied to our executive recruiting data.
The modified version of the Huffman Algorithm was then used on the same set of messages
and the new entropy values were computed. Finally, to find the relationship between the two
entropy values, a regression analysis was applied to the entropy values of both plain text and
hashed version of messages. In the final regression analysis, some other characteristics of

messages such as the original length of emails were also taken into account.

4.3. Information Rate and Novel Information Measurements

As discussed in Section 2.4, calculating the information rate requires treating a set of messages
as one entity. We measured the information rate values for messages in each person’s inbox,
outbox and finally the combination of both folders. In each case, first the relevant messages

were identified and sorted in chronological order.

Starting from the first messages in a folder, the novel information associated with the first
message m; will always be equal to the entropy of that message simply because the previous
state contains no data. Since this cutoff introduces a bias towards the first message and results
in a much higher novel information value for those messages, we need a method for balancing
the results depending on the number of messages seen which will be discussed later on in this

section. For the second message m, however, the information rate is equal to

IR(m,) = H(my,my) — H(m,) (8)

Generalizing this to the set of all messages we have
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IR(m;) = H(my, my, ...,m;) — H(my,my, ..., m;_4) (9)

The entropy and mutual information values are as described in section 2.3. Again, we use the
Huffman compression algorithm, building a new Huffman Tree for each message and

calculating the entropies based on the frequencies of the tokens as described in Table 3.

The new frequencies are computed by concatenating all the messages together. As mentioned
earlier, in order to compare the information rates among individuals, we need to calculate the
average amount of novel information per individual per message, accounting for the bias

introduced when the set of messages is relatively small.

In order to compute an average value, therefore, the amount of novel information calculated
between one message and all previous messages should somehow be normalized to reflect the
growing size of the messages. We achieved this by multiplying the (usually decreasing) amount
of novel information by the number of the messages seen so far. If we represent the average

novel information of message i by NI(m;) , then we have
NI(m;) = i*IR(m;) (10)

Finally, to find the average value of novel information for an individual, we calculated the mean
of these values over all the messages in each one of their three folders. So if an individual p has
a total number of n messages, then their average amount of novel information would be equal

to

1 n
NI(p) = EZJ’(’"” (11)

Besides the average value of novel iméormation, when looking at subsequent messages flowing
into an individual’s folder overtime, we usually expect to see a decreasing trend in the total
amount of information, the reason being that higher amounts of information result in an
increase in the probability of observing higher values of mutual information between these

messages. In other words, as the universe containing all the messages seen so far grows in size,
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the probability of observing the same types of information also goes up. Finally, in order to
make the results comparable to previous studies performed on same data set, all the
information rate values for individuals were averaged over four-week periods as described in

Appendix A: Recruiting Firm Email Data Set.

4.4. Mutual Information Measurements

Mutual information provides a powerful measure representing the overlap of information
between two individuals. To determine the amount of mutual information between two
individuals, we have to calculate the entropy values associated with each person’s messages as
well as their joint entropy values. These values were computed for each set of folders

separately, namely the inbox, the outbox and a combination of both folders.

In the next step, we considered all the possible pairings of our 73 individuals. For each possible
pairing, we put all the messages of each individual in a bucket. We then calculated the entropy
value of each bucket separately and the entropy value of the two buckets combined. Finally,
the entropy of the mixed buckets was measured by using equation (3) from 2.3. These
computations were carried out separately for each one of the three folders mentioned earlier
(inbox, outbox and their combination). Our output therefore consists of the mutual information
values between (i) inbox folders of two individuals (ii) outbox folders of two individuals and (iii)

all the messages combined.

During the process of merging the messages and combining the folders, sometimes a single
message could be listed more than once. This could happen for instance when someone sends
a carbon copy of the message to themselves and are therefore listed under both the sender
and the receiver of a message. Here, the additional copies of a message do not provide

additional information to that individual. Therefore the message should be counted only once.

If both individuals receive a copy of the same message however, it means that they have access

to the same information. The information in this case is shared between them and should be
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considered as mutual information. Consequently, the message should be listed twice, once for

each individual.

5. Results

5.1. Entropy Measurements

5.1.1. Executive Recruiting Firm Data

In addition to theoretical lower bounds and achievable entropy values, our calculations also
include the compressed and the original message sizes. Table 4 summarizes all the variables
and the equations used for their calculation. A more comprehensive explanation of all these

variables can be found in Sections 2.1 and 4.2.

VARIABLE Raw TEXT HASHED TEXT
n n
OPTIMAL = =) P 106, (p(x) = =) PG 106, (p(x))
ENTROPY i=1 i=1
USING CHARACTER FREQUENCIES USING HASHED TOKEN FREQUENCIES
HUFFMAN = Z wil; = Z wil;
ENTROPY i i
USING CHARACTER FREQUENCIES USING HASHED TOKEN FREQUENCIES
ORIGINAL SIZE (NUMBER OF CHARACTERS IN THE ORIGINAL (SUM OF FREQUENCIES OF TOKENS IN THE
(BITS) MESSAGE*8) HASHED MESSAGE*8)
COMPRESSED = Zlifi = Zlifi
SIZE L i
(BITS) FOR EACH CHARACTER IN THE ORIGINAL TEXT FOR EACH TOKEN IN THE HASHED TEXT WHERE
WHERE f; IS THE FREQUENCY OF THAT CHARACTER THE f; IS THE FREQUENCY OF THAT TOKEN

Table 4 - Summary of metrics for the entropy measurements

Since each character in the ASCII standard takes 8 bits (one byte) of space, the original size of
messages is calculated by multiplying the number of characters in the message by 8. Hashed
tokens on the other hand are represented by a long integer value (see Table 2- Example of
EmailNet Transformation Process) and a frequency as described previously in Section 4.2. For
simplicity, we can assume that each one of these values (i.e. <5878157904011066551>) can be
represented by one character (8 bits in size) in an arbitrary alphabet made up from all the
hashed values in that message. Therefore the total size of the hashed message can be

computed by calculating the sum of frequencies of hashed tokens and multiply the result by 8.
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Table 5 contains the summary statistics of different variables for the set of 45217 email
messages. Compression rate is equal to the ratio of compressed message size to the estimated

original size as discussed earlier.

MEAN STANDARD DEVIATION MIN MAX
LOWER BOUND ENTROPY 5.591 1.606 0 11.149
HUFFMAN ENTROPY 5.638 1.61 0 11.207
ORIGINAL SIZE 1096.2 1876.4 0 154312
COMPRESSED SIZE 932.3 2007.8 0 170617
COMPRESSION RATE 0.7451 0.1497 0 1.4008

Table 5 - Summary statistics for the entropy measurements for all the messages

It must be noted that in our data, 1822 messages have a hashed body size (and therefore an
entropy of) zero. Empty messages are usually the result of someone sending a message with no
text in the body (i.e. using the subject line of the email for communication) or if the EmailNet
algorithm discards all the words in the message (for example when the message body contains

nothing but common words and special symbols) (Van Alstyne & Zhang, 2003).

Looking at the entropy values reveals that the lower bound and Huffman entropies in general
and their mean and standard deviations in particular are very close to each other. This is mostly
because of the efficiency of the Huffman Algorithm in using the optimum code sequences in

most cases. Also, the Huffman entropy always stays above the lower bound.

The distribution of both entropy measures for all 45217 email messages are shown in Figure 2.
For the most part, the distributions show a very similar behavior. Near the middle of the graph
and close to the mean values however, the total number of messages for the Huffman entropy
falls slightly below the lower bound at lower entropy values and rises slightly above it around
the peak value. This effect can be attributed to the internal inefficiency of the Huffman
algorithm at some specific thresholds in terms of the original message size and the limitation of

using an integer number of bits for code sequences.

In practice the difference between the entropies will be greater at certain thresholds. For
instance, after the algorithm used all possible 5-bit code sequences (i.e. for 90% of all the

symbols) it starts coding the rest of the symbols with 6-bit long binary sequences. At this point,
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the total efficiency of the Huffman algorithm will suddenly decrease resulting in a sudden
decrease of compression rate and therefore the entropy value. Here, while the theoretical
optimum bounds may indicate that the optimum number of bits at this certain threshold is
equal to 5.1, the Huffman algorithm is forced to use 6 bits of code for each of the remaining
tokens. This effect is more clearly seen in the middle parts of the plot due to the higher

concentration of data points.
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Figure 2 - Distribution of entropy values for messages, executive recruiting firm data

Looking at the compression rate shows a maximum value greater than one. More specifically,
out of 45217 data points, 618 points or 1.37 percent of them have a compression rate greater
than one. At first glance, it appears that this could be a result of the simple model we selected
for estimating the original message size. Looking more closely at the data however, reveals the

possible existence of a relationship between the compression rate and the original messages

size.

Figure 3 shows a graph of the compression rate plotted against the logarithm of the original
message size for a randomly selected sample of 4500 messages. Since the messages of size zero
provide no additional meaningful information for our regression analysis (the entropy,
compression rate and original size values are all zero), all data points with the entropy value of

zero were removed from the dataset.
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compression rate vs. log (original message size)
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Figure 3 - Plot of compression rate of hashed messages vs. the logarithm of original message size

With a linear regression analysis as shown on the plot, where x is the logarithm of the original

message size and y represents the compression rate, we find the following relationship:

y = 0.307x + 0.137 (12)
R? = 0.899

The compression rate depends on the entropy value of the messages and usually as we will see
in Section 5.1.2.1, the entropy of plain text messages is independent of the message size. But
that does not seem to be the case here. This behavior could be attributed to the way the

EmailNet algorithm handles the raw messages.

In general, as the message size increases, the Huffman algorithm has to use a larger alphabet
for encoding all the symbols. An increase in the alphabet size leads to a bigger Huffman Tree
and longer code sequences. Longer code sequences will result in worse compression rates and
lower entropy values. Earlier, when estimating the original hashed message size, we used 8 bits
for the size of each token, only allowing for an alphabet of size 22 = 256. However when the
number of tokens exceeds this threshold, the alphabet size has to grow accordingly, making
room for the newly added symbols. A more complete discussion of this behavior and why it can
be attributed to the hashing mechanism of the EmailNet algorithm can be found in Section

5.1.2.1.
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original and compressed message size distributions
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Figure 4 shows a distribution of the original and compressed message sizes in the hashed
emails. As can be seen in the graph, the difference between the original and compressed
message sizes diminishes as the messages size goes up, which is caused by the increasing

alphabet size and higher compression rates as described previously.

5.1.1.1. Entropy Values for the Individuals

In addition to calculating the entropy values for every single message, we also calculated the
average amount of entropy for each individual. Figure 5 displays the distribution of entropy
values for the inbox and outbox folders across all the employees while Figure 6 displays the

combination of inbox + outbox vs. the outbox folders.

To better visualize the results, the x intercept for each point represents the average entropy of

their outbox folder while the y intercept shows the average value of entropy corresponding to

the inbox of the same individual. All the values represent the achievable entropies; the lower
bound entropies were very close in value to the Huffman entropies and therefore are not

shown on the graph.
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Figure 6 - Entropy values for individuals - inbox+outbox vs. outbox

A person with higher values of entropy for both their inbox and outbox folders therefore would

be represented by a point closer to the top right corner of the graph. The high values of entropy

for an individual mean that the average amount of information they send and receive per

symbol is higher than their peers. For instance, if two individuals, A with a high entropy value

and B with a low entropy value, both compose a message (looking at outbox entropies) of
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size n, on average the informational content of the message sent by A would be higher than the
one sent by B. The same argument applies to the content of inbox and combination of both

folders.

Being capable of communicating more information in a shorter message can be an important
variable in the success of a knowledge worker. From the graph, we can also identify individuals
who have a high inbox but low outbox entropy (points on the top left corner of the plot). High
inbox entropy might be indicative of working with diverse information as a result of working on
several projects at the same time. The combination with low outbox entropy could possibly be
due to the fact that the person is incapable of keeping up with the flow of information to their

inbox, perhaps as a result of being involved in too many projects.
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Figure 7 - Entropy values for individuals across different folders

Figure 7 shows the distribution of entropy values for individuals sorted in decreasing order for
all three folders. The slope of all three curves remains relatively constant in the middle section
but there are a few drops at the head (maximum values) and tail sections of the graph.

Therefore, if the individuals are ranked based on their entropy values, there is a little difference
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between subsequent people in the list. The only exceptions are top individuals (in terms of

entropy) on the outbox list and bottom employees in the other two folders (especially inbox).

When receiving a message also, higher entropy values indicate that on average the person has
to deal with shorter messages that have the same amount of information when compared to
someone with lower entropy. If we the message sizes are equal however, on average the
message belonging to the individual with higher inbox entropy is richer in content. This may
lead to spending less time looking for the valuable pieces of information and the information
received may contribute to higher levels of uncertainty resolution per unit of information
received. Future studies will be able to confirm whether higher or lower entropy values can
predict the productivity of an individual by linking these data to detailed measures of individual

output.

5.1.2. Enron Data Set

5.1.2.1. Plain Text Entropies

Table 6 shows a sample output of the entropy values for plain text messages.

LOWER BOUND HUFFMAN ORIGINAL COMPRESSED COMPRESSION
EMAILID

ENTROPY ENTROPY MESSAGE SIZE SIZE RATE
1134 4.85 4.90 784 480 0.612
1272 4.81 4.84 22824 13818 0.605
1668 4.76 4.80 95536 57275 0.600
1719 4.92 4.96 351360 217738 0.620
1871 2.81 2.86 56 20 0.357
2116 4.47 4.50 13664 7688 0.563
2397 4.32 4.34 13296 7219 0.543
2900 5.16 5.19 4944 3206 0.648

Table 6 - Sample plain text entropy values

The achievable entropy values (referred to as Huffman entropy for simplicity) resulting from the
Huffman algorithm are a little higher but still very close to the lower entropy bounds which
shows that the Huffman algorithm is highly efficient in encoding the messages based on its

selected probability distribution (frequency of tokens).
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We can also observe that the entropy value is independent from the message size. For
example, the second message in the table (Email ID: 1272) is almost 30 times larger than the
first message (Email ID: 1134). However, their entropy values are almost identical. One has to

make a distinction between the entropy value and the total amount of information.

Here, entropy represents the average amount of information per symbol. Therefore, even
though the entropy values are similar, the total informational content of the larger message is
higher. In other words, if the total amount of information is held constant, someone with a
higher average entropy value would be able to convey the same amount of information in a
shorter message than someone with a low entropy value. Table 7 shows the summary statistics

of entropy measurements for plain text messages.

Number of observations | Mean Standard Deviation | Min Max
Lower bound entropy | 1000 4.691 0.4712 0 5.663
Huffman entropy 1000 4.655 0.4892 0 5.695
Original size 1000 16420.2 49170.8 0 524088
Compressed size 1000 9297.7 26339.3 0 309214
Compression rate 1000 0.5863 0.0589 0 0.7116

Table 7- Summary statistics of entropy measurements of plain text messages, Enron emails

In making important decisions or when dealing with large amounts of information, the amount
of data that a person has to process usually becomes a major bottleneck. Most knowledge
workers have to go through the process of extracting the meaningful and useful pieces of

information from the piles of data delivered to them.

Many times, an important piece of information can easily be neglected if the size of the data is
too much for the individual to efficiently process - they may not have the time or the capacity
to decipher the whole message (or set of messages). The individuals capable of expressing their
ideas more concisely and more efficiently, or those who receive concise efficient messages
from others, may have an advantage in the effectiveness of their communication with others
and with being more productive in workplace. Although it is beyond the scope of this research,
it seems that entropy values may be a good a proxy for this characteristic of individuals’

communication.
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Figure 8 shows the achievable and optimal entropy values for all 1000 randomly selected
messages. As described earlier the Huffman entropy value stays very close to the optimal
bound. The plot is very similar in shape to Figure 2, although the average entropy value is lower

for hashed text messages.

100
%0 |

80 ; g .................. ...........
: e HUHMaN entropy :

70 i
| ===~ lowerbound entropy

number of messages

entropy

Figure 8 - Plain text messages, achievable and optimal entropies

The steps in the graph can be attributed to the nature of our data, and also the rounding effect
of entropy values for the selected intervals each one containing the cumulative number of
messages in their range. Each step for lower bound entropy values near the middle represents

a difference of about 10 messages or one percent of the total data.

Figure 9 shows the distribution of compression rate against the logarithm of original messages
size similar to what we had before for the hashed executive recruiting firm messages.
Performing a regression analysis shows that unlike the relationship found in the previous
section between the hashed messages however, the plain text compression rate seem to be
independent of the original messages size. The analysis, shown in the figure, displays no
significant dependence between the variables, yielding an R? value of only 0.194 compared to

the value of 0.899 we obtained for the hashed messages in previous section.
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Figure 9 - Compression rate vs. raw message size, plain text messages

This result is not very surprising. As discussed earlier, the size of a message in general is
independent from its entropy. This however was not the case after the EmailNet algorithm
hashed the messages. Our observation that a relationship in fact exists between the
compression rate (and therefore the entropy) and the hashed message size (which is the output
of the EmailNet algorithm) suggests that the hashing transformation applied by the EmailNet
algorithm is somewhat similar to a compression algorithm, where the size of the compressed
message (the output of the compression algorithm) is directly related to the compression rate

(and therefore the entropy).

In a compression algorithm, the output, which is the compressed message, is not anymore
compressible, and if we tried to recompress the message, the compression rate would be equal
to one (same output as the input). The output of the EmailNet algorithm - a hashed message -
however, has only been compressed to a certain extent. That is why unlike the output of a
compression algorithm, we can still compress a hashed message. The resulting compression
rate although not constant, still maintains a relationship with the message size, which suggests
that the two methods (compression algorithm and the EmailNet) are somewhat similar in

nature.

In fact the stemming process in EmailNet is very similar to the frequency analysis performed by

the Huffman algorithm. What the Huffman algorithm does additionally is producing optimal
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varying length code sequences for each token while the EmailNet algorithm on the other hand
produces fixed length code sequences. As the message size increases and with greater number
of tokens, the compression applied by the EmailNet algorithm becomes less and less efficient
and has to pay more penalties for its fixed-length code sequences in comparison with the
Huffman algorithm. So even though EmailNet is not a real compression algorithm and its output
is not optimally compressed, it seems that it still maintains the entropy value of the original

message.

We still need to know the exact relationship between the hashed message and the plain text
entropies. In the next section, we will analyze this relationship by hashing the plain text

messages, measuring their entropies and comparing them with the plain text entropies.

5.1.2.2.Hashed Emails Entropies

Table 8 shows the summary statistics of entropy measurements for the hashed version of the
same 1000 randomly selected plain text messages used earlier. We hashed the plain text
messages using the EmailNet algorithm and measured the optimal and the Huffman entropy
values. All the variables in the section are similar to those used for plain text messages and the
executive recruiting firm email data. As can be seen in the table, the standard deviation of
hashed messages is much greater than the plain text messages. This could be attributed to the
fact that in the messages hashed by the EmailNet algorithm, the compression rates and
therefore the entropy values depend on the original message size, therefore as the message
size changes, EmailNet produces messages with a wider range of entropies while in a real

compression algorithm, entropy only depends on the content of the message.

NUMBER OF MESSAGES MEAN STANDARD DEVIATION MIN | MAX
LOWER BOUND ENTROPY 1000 5.4673 1.5214 0 10.1204
HUFFMAN ENTROPY 1000 5.5154 1.5182 0 10.1497
ORIGINAL SIZE 1000 1461.8550 | 5250.3187 0 67861
COMPRESSED SIZE 1000 1603.9040 | 4815.0161 0 64544
COMPRESSION RATE 1000 0.6914 0.1878 0 1.2687

Table 8- Summary statistics of entropy measurements of hashed text messages, Enron emails
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Performing a T-test on the Enron and the executive recruiting firm messages yields a very low
significance level as can be seen in Table 9. The T-test shows that the mean of these variables
are in fact very close to each other. Besides the similarity of data, this could also be attributed

to the fact that the same transformations were applied by the EmailNet algorithm on both set

of data.

ESTIMATE STANDARD ERROR P-VALUE
LOWER BOUND ENTROPY 3.5138 0.0487 0.0079
HUFFMAN ENTROPY 1.5573 0.0486 0.0084
ORIGINAL MESSAGE SIZE -3.3286 152.52 6.7E-16
COMPRESSED MESSAGE SIZE -3.1844 166.30 3.9E-15
COMPRESSION RATE 8.9771 0.0059 4E-29

Table 9- T-test results for hashed message metrics

Table 10 shows a sample output of the entropy values for a few messages.

ORIGINAL
EMAIL ID LOWER BOUND HUFFMAN MESSAGE COMPRESSED COMPRESSION
ENTROPY ENTROPY SIZE SIZE RATE
1134 3.222 3.170 72 9 0.403
1272 7.064 7.039 2264 283 0.883
1668 7.998 7.976 8920 8918 1.000
1719 5.063 5.014 49544 31354 0.633
1871 0.000 0.000 8 0 0.000
2116 7.093 7.014 1296 1149 0.887
2397 6.765 6.704 1224 1035 0.846
2900 5.630 5.562 648 456 0.704

Table 10 - Sample hashed text entropy values

Figure 10 shows the achievable and optimal entropy values for ail 1000 randomly selected
hashed messages. Again, the plot is very similar in shape to Figure 2 although the smaller
number of sample points (1000 vs. 45217) results in a rougher outline. The number of empty
messages (those with a size of zero) is significantly higher in the executive recruiting firm

dataset (4% of total messages as opposed to 0.8% for the Enron data).

Since the plain text messages from the executive recruiting firm data was not available, it is
difficult to see what may have caused this unusually high number of empty messages. One may

attribute this to the fact that the Enron email data set was selected from messages with
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important and valuable content to the investigators and thereby eliminating any empty
messages in the process. Also, if only just one of the employees within the executive recruiting
firm mainly uses email for sending attachments or as a backup mechanism for their local files
and therefore producing empty messages, the data will be heavily biased. Since there are only
73 individuals within the firm, one or two individuals using their emails in the described manner
would be enough to explain the 4% ratio of empty messages.
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Figure 10 - hashed text messages, achievable and optimal entropies, Enron data

5.1.2.3.Correlation between the Entropy Values
A regression analysis applied to the entropy values for the plain and hashed version of the same
messages shows a correlation between the entropy values and raw message size. If we define

the following variables:
AH, = Hpgsnea—text(achievable) — Hpjgin—texc(achievable)
AHp = Hpgshea—text(0ptimal) — Hpigin—text(0ptimal)
x = logyg(message — size)

Then with a linear regression analysis, as shown in Figure 11 and Figure 12, we find the

following relation between AH, ,AH, and x.
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confidence — levels = 99.0%
AH, = 2.047x — 6.851, R?=0.872, p —value =0, st.error = 0.4840 (13)
AHy, = 2.059x — 6,909, R*=0.874, p-—value=0,  st.error = 0.4840 (14)

The R?and p values show that there is a good fit between the proposed model and actual
data considering the high confidence level of 99%. Furthermore, the theoretical optimal bounds
and information entropy measures achieved by the Huffman algorithm show very similar
behaviors and the two coefficients are very close to each other. These results show that using
the EmailNet algorithm to code plain text messages does not affect the informational content
of the original text in any significant way, but also that the relationship between the theoretical

and achievable entropy values depends on the original size of the plain text message.
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Figure 11 - Correlation between messages size and achievable entropy values computed by Huffman algorithm

The first coefficient in Equation 13 (i.e. 2.047) indicates that an order of magnitude increase of
in original message size corresponds to multiplying the difference of the hashed message and

the original message entropies by 2.047. In other words, as messages get bigger, the plain text
probability distribution model (character frequencies) outperforms its hashed text counterpart

(hashed vector or stemmed word frequencies) by a greater margin.
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In messages of smaller size, the hashed messages have lower entropies which are represented
on the graph by the points with a negative value of difference between two entropies. When
message size is small, the hashed tokens are limited in number; the alphabet size (total number
of different hashed words) is small and the message is far shorter in number of distinct tokens

and their total frequencies than the original.

This is due to the fact that EmailNet discards many characters as it removes any special
symbols and common words within the text or when it stems the words. For instance, in a
message originally 200 characters and 40 words long, we might have 40 distinct characters
(including symbols, numbers, punctuation marks, etc...) but only 20 distinct hashed tokens.

Assuming a uniform probability distribution, more tokens usually lead to higher entropy values.

As the message size increase, the alphabet size for characters does not change significantly (a
maximum of 256 in ASCII standard), while the number of distinct words grows substantially.
Compared with the limited number of characters, we observed more than 91000 distinct
hashed tokens in the 45217 email messages of the executive recruiting firm data. Therefore, as
the message size grows, the character frequency model achieves better compression rates and

lower entropies, resulting in an increase in the difference between the two entropies.
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Figure 12 - Correlation between messages size and optimal lower bound entropy
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5.2. Calculating the Biased Corrected Plain Text Entropy

As we showed in the previous section, the hashed message entropy is a function of two
variables, the raw message entropy and the raw message size’. Since our data consists only of
the hashed messages and we do not have access to the plain text emails, we need to find a way
to estimate the plain text characteristics, its entropy H, and message size S, from the metrics

available to us, the hashed message entropy H;, and the hashed message size S}, .

Equations (13) and (14) show that the general form of the relationship between the difference

of entropies and the original message size is of the form,
(Hh - Hr) = ¢, log(5,) + ¢, (15)

Where ¢; and ¢, are some constants estimated in out regression from Equations 13 and 14. The
use of parameter estimates from either of the equations depends on whether we are looking
for the optimal or the Huffman entropy values. From the definition of entropy we also know

that

16

compressionrate = — =

Sy
This is simply due to the fact that entropy represents the average number of bits needed for
representing each token in the compressed message. In the plain text message however, the

number of bits required for each character is fixed and equal to 8. Therefore, the compression

rate is equal to entropy divided by 8. From Equation (16) we have,

S, = (17)

— log(5,) = log(8) + log(Sy) — log(H,)

? Equations {13) and (14).
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Substituting back into (15):

(Hp — H,) = c,{log(8) +1log(S,) — log(H,)} +c, -
H, — cilog(H,) = Hy —ci[log(8) +1og(Sp)] — ¢z (18)

Since all the values are known, we can substitute the right hand side of the Equation (18) with a

new constant ¢,
c3 = Hp — c4[log(8) +log(Sp)] — ¢z (19)
H, — ¢y logyo(H,) = c3 (20)

Equation (20) can be solved analytically by using the Lambert W function, also called the
Omega function or product log. The Omega function denoted by W is the inverse function of
f(z) = z » exp(z) where exp(z) is the natural exponential function and z is any complex
number. It can be used to solve various equations involving exponential terms>. Following its

definition, for every complex number z,
z=W(z)eW? (21)

To get the results in a cleaner way it is better to use the natural logarithm in Equation (20)

instead of the based ten logarithm.

T oy

And after defining a new constant ¢,

“= (10

(22)

We will have

* For a more comprehensive description of the Lambert W function please look at (Corless, Gonnet, Hare, Jeffrey,
& Knuth, 1996).
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H,— c,In(H,) = ¢; (23)

By applying the W function we can find the estimated value of the original raw text entropy H,,

—ex (- &)

Hr:_C4W C4

(24)

Or after substituting back the constants c; and c, we get the value of H, in terms of the

hashed text entropy Hj, and the hashed text message size Sy,

H,, — ¢,[log(8) + log(S,)]
R i
T _ln(lo)* ¢ /In (10) (25

Equation (25) allows us to calculate the value of raw text entropy based on the hashed text
entropy and the hashed text message size. The raw message size S, then can be simply

calculated by plugging in the values of H, and S}, into Equation (26).

8*Sh
S =
r Hr

(26)

Equation (25) can be used to measure both the optimal lower bound and the achievable
Huffman entropies simply by plugging in the corresponding constants. For the optimal lower
bound we had ¢; = 2.059 and ¢, = —6.851 while for the Huffman entropies, ¢, =

2.047and ¢, = —6.909.

It must be noted that the current results in this paper do not include the calculated raw text
entropies resulting from the equation (25), instead we used the actual hashed text entropies
computed by applying the Huffman algorithm. By using these equations however, future
studies will be able to recalculate the other informational measures of data such as novel and

mutual information and compare and contrast them with the hashed text measures.
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It is worth mentioning that if one has to decide between only one of two different entropy
measures for studying the relationships between the informational content and productivity of
the knowledge workers, the optimal lower bound value seems to be a more reasonable choice.
The optimal lower bound provides us with a pure measure of entropy free of any limitations
imposed by the compression algorithms and only dependent on the underlying probability
distribution. Since we are more interested in true informational content of the data rather than
compressing, transmitting or reconstructing the compressed messages, the optimal entropy
bounds appear to provide us with a more realistic measure. The practical bounds resulting from
compression algorithms such as Huffman on the other hand include some unnecessary bias due

to the restrictions and the inefficiencies of the algorithm.

5.3. Information Rate Measurements

Figure 13 shows an example of total entropy associated with an individual’s outbox increasing
over the period of 41 weeks. The entropy value initially shows a sharp rise and after a certain

threshold, the increase in total entropy is minimal and it merges to a final value of 10.237 in

this case.
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Figure 13 - Change in total information content of an individual’s outbox over time
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Figure 14 on the other hand shows the change in the amount of entropy over time or the
information rate. The function follows a natural pattern of decay, approaching zero as time
goes by. This valuable piece of information could provide insight into the pattern of access to
new information for each individual in the firm and could be analyzed for its relation with

entropy.
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Figure 14 — Chaﬁge‘ in‘ ent‘r(;;;\; (novel |nformat|on) .f.or the outbox of anlndwld ;al.
As described in Section 4.3, amount of novel information in a message is equal to the difference
between its entropy and the shared information between that message and all the previous
messages. To account for increasing size of messages in this case, we multiply the amount of
novel information calculated from this method by the total number of messages seen so far.
Finally, we calculate the average of this value for each person. Effectively, this provides us with

the amount of novel information per message. Figure 15 shows an example of the average

novel information of ten individuals based on the contents of their different folders.
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Figure 15 - Average amount of novel information for different individuals

In terms of average novel information per message, each individual exhibits different behaviors.
In our example, two employees (number 1 and 7) have negative novel information in their
collective boxes although the values of novel information for each one of their separate folders
are positive. Employees number 2 and 9 on the other hand exhibit higher values of novel
information for their outbox folder. Although it is beyond the scope of this research, one may
speculate about a direct relation between higher amounts of novel information in a person’s
outbox and their productivity. Another interesting question is whether the novel information

values are related to the concept of diffusion of information within the network.

In all of the graphs, there are a few data points with negative values of novel information for
one of both folders. A negative value for novel information is a result of a decrease in the
averagé total entropy of messages over time. This could-happen if the new messages someone
receives (or sends in case of outbox) are very similar to the past messages. Similar patterns
result in higher compression rate and lower entropy values. It must be noted that the total
amount of information is a monotonically increasing function in all cases. However, the amount
of information overlap between the new message and the set of old messages in this case is

very high.
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Figure 16 shows the distribution of novel information for all individuals with a folder size of at
least 50. At the beginning of the graph on the left side, a few individuals show a high value of
novel information for the combination of their folders, although none of the values are quite as
high as those corresponding to the inbox or the outbox folders. This could happen if the
information contained in the inbox are very different from those in the outbox, resulting in the

combination of two boxes having a greater entropy value than any of the individual folders.
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Figure 16 - Distribution of novel information for all individuals

Table 11 shows the summary statistics for the average novel information per message in
different folders and across individuals. Since some individuals only had a few messages in their
folders and based on the mean number of messages in the folders, the folders containing less
than 50 messages were not included in the calculations. Otherwise, the final measures such as
mean or range values would have been biased by the effect of these few individuals that hardly
have any messages in their folders and considering the fact that there are only 73 individuals in

the firm.
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FOLDER NUMBER OF INDIVIDUALS MEAN STANDARD DEVIATION | MIN MAX
INBOX 63 0.3764 0.1929 -0.6305 0.7502
OUTBOX 56 0.3913 0.1818 -0.466 0.737
INBOX+OUTBOX | 64 0.3526 0.216 -0.2104 1.1221

Table 11- Summary statistics for information rate measures across individuals

The standard deviation for the novel information values are large enough to speculate that

various patterns of communication exist across individuals, resulting in varying amounts of

novel information. Further research will be able to use these results in conjunction with the

productivity, information diversity and diffusion metrics to draw more accurate conclusions

about how this may be related to information worker productivity.
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Figure 17 - Average novel information per message, inbox and outbox folders

Figure 17 displays the distribution of novel information values for the inbox and outbox folders

across all the employees while Figure 18 displays the combination of inbox + outbox vs. the

outbox folders. In these figures we considered all the employees with folders containing at least

50 messages.

56




b

N4

Novel Information (inbox+outbox)

-4

0.2

J

3.2

Novel Information{outbox)

"anm
-1
my * . "
]
W
Uy ® ]
[
]
04 c6 cs

Figure 18 - Average novel information per message, inbox+outbox vs. the outbox folder

5.4. Mutual Information Measurements

We measured the amount of information overlap between all the individuals in the firm. Each

set of values for information overlap between each pair of individuals consists of three different

values, the amount of mutual information between their inboxes, the amount of mutual

information between their outbox folders and finally the amount of information overlap

between their collective inbox and outboxes.

ID NUMBER OVERLAP (INBOX) OVERLAP (OUTBOX) OVERLAP (INBOX +0UTBOX)
1 8.3222 5.7982 8.3347
2 10.010 7.9983 10.049
3 8.1740 0 8.1740
4 9.2657 7.8284 9.5169
5 9.8335 8.1183 9.9804
6 9.5023 7.9379 9.7593
7 9.9380 8.0214 10.0114
8 9.8697 8.0840 9.9240
9 9.3869 7.7714 9.3632
10 9.5783 7.9430 9.7832
11 8.9676 7.4094 9.0711
12 8.0647 0 8.0951

Table 12 - Sample mutual information values between one person and a few other employees
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Table 12 shows a sample of mutual information values for one of the employees. The id
number represents 12 other employees and each column represents the value of mutual

information between our individual and the employee number 1 through 12.

As can be seen from the sample points, some individuals such as employee number 2 have a
high average value of mutual information for their inbox folders, but a relatively lower value for
their outboxes. This individual probably observes the same type of information that others also
see, but creates messages that are more unique and specific in contents. Working on a fewer
number of projects than the average, working on very specific and less common projects or not
working on a team could be some of the possible reasons for observing this behavior. Further
studies however, need to verify such hypotheses. Table 13 shows the summary statistics for the

mutual information values across individuals and based on their respective folders.

FOLDER NUMBER OF INDIVIDUALS MEAN STANDARD DEVIATION | MIN MaAx

INBOX 72 7.9629 2.2337 0 8.9648
QUTBOX 72 6.4048 2.7606 0 7.9341
INBOX+QUTBOX | 72 8.2812 2.0560 0 9.1277

Table 13- summary statistics for the average mutual information across individuals

As expected, the mean value of mutual information of the inbox folder is relatively higher than
outbox and less than the combination of both folders. This is simply due to the fact that a
person usually receives much more messages than they send and therefore the probability of

having higher values of information overlap increases with the number of messages.

FOLDER OBSERVATIONS MEAN STANDARD DEVIATION | MIN Max

INBOX 2628 7.9629 3.2136 0 10.4501
OuUTBOX 2628 6.4048 4.0717 0 10.2603
INBOX+OUTBOX 2628 8.2812 2.9464 0 10.4892

Table 14 - Summary statistics for the dyadic mutual information measures

A more thorough examination of data reveals that in general the data points are either very
close to the average value or very close to zero. This happens mainly because some individuals
have very few messages in one or both of their folders. Consequently the amount of mutual

information will be based on only those messages. Table 14 contains the summary statistics for
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all the ( ) = 2628 overlap points and Figure 19 displays the distribution of the pair-wise

mutual information values for each one the three folders.
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Figure 19 - Mutual information distribution for overlap points
The amount of overlap between the outbox folders is the lowest value from the three folders
and a large portion of the overlap points lie either very close to maximum or the zero value of

information overlap (portions with extremely flat slopes). The values close to zero are mainly a

result of having folders containing very few, zero or only empty messages.

Figure 20 shows the distribution of mutual information values for all the employees across
different folders. As expected, the mutual information value for the combination of inbox and
outbox is greater than the mutual information values for the inbox or outbox of each pair.

There are a total of 15768 different overlap points for all the 73 employees in the firm.
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Interestingly, the shape of the curve corresponding to the inbox is much sharper than any of
the other two folders. This could be caused by the fact that many individuals receive copies of
the same messages, for instance those who work on the same team or belong to the same
group. The outbox on the other hand only contains the messages that an individual sends to
others which are fewer in number and could possibly be more specific in content. Therefore,
the inbox messages in general seem to be more homogenous in nature than the outbox
messages. If one is to focus on an individual’s behavior in terms of productivity then, looking at
the shared information between the outbox folders might provide a more specific indicator for

that person’s productive behavior rather than the contents of other folders.

6. Discussion and Conclusion

The objective of this study was to study, compare, analyze and implement different methods
for measuring several fundamental metrics that represent the informational content of email
messages. Also, we wanted to verify whether the value of quantities such as information
entropy are preserved in the context of hashed messages and if so to find the exact relationship
of these values to the original values extracted from plain text sources. Such verification could
indicate that privacy preserving, hashed email data collection can be used in studies of the
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informational content of email communication. Our results advance research in these areas by
demonstrating that the interests of privacy and research can be simultanecusly addressed. The
entropy, information rate and mutual information measurements derived from our email data
set will be used in future productivity studies along with the results from social network

analysis.

By using the publicly available Enron email dataset and randomly choosing a subset of those
messages, we observed that the fundamental information entropy of messages is slightly
changed after using the EmailNet algorithm, but that the true value could be found and that the

proposed relationship between the variables have a good fit with the actual data.

Moreover, we applied a modified version of the Huffman compression algorithm to compute
the entropy values for all the email messages. To verify the validity of our measurements, the
actual achieved entropy values computed by the Huffman algorithm were tested against the

theoretical optimal entropy bounds and shown to stay above the optimal bounds at all times.

Furthermore, by sorting the messages of each individual in chronological order, the novel
information of the messages were calculated. The outcome matched our expectations in the
sense that the value of the information rate over time tends to follow a natural decay rate and
converges to a final value for each individual. Finally, the study has provided several sets of
mutual information values between all the employees in firm based on the contents of their

various email folders.

7. Limitations and Future Work

A fundamental question when analyzing the information content of large sets of data by using
the Huffman compression algorithm is the selection of an appropriate probability model. In
almost all studies on plain text, the algorithm pre-analyzes the message for determining
probability. As noted by Shannon however, the information content of a word is the amount of
uncertainty resolved by that word and is directly related to the expected value of observing

that word.
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In the context of emails however, the reader is never aware of the contents of a message
beforehand. Therefore, it seems unreasonable to assume the expected value for seeing a word
is equal to its probability distribution within that specific message. A more realistic assumption
seems to be to calculate the probability of seeing a token in all email messages and to use it as
the basis for the underlying probability model. In the context of a user’s specific social network
which is obviously much broader and more general than a single email message, these new sets

of probabilities should better represent a recipient’s real expectation of seeing a new word.

The difficulty of adopting this approach however is in the lack of standard benchmarks for
validating the entropy values computed using this innovative model. For this study all the
entropy values have been calculated by using the original version of the Huffman algorithm and
its underlying probability model. But in the future, implementing different probability models
and comparing the outcomes of the two methods may prove to provide useful insight into the

true meaning of information content of email messages.
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Appendix A: Recruiting Firm Email Data Set

The email data set consists of 603,871 emails that are sent and received by the participating
employees of the firm. Due to the difference between the current data set and the data set
used at the time of the study, there is a clustering result for only 118,185 emails. The study was
conducted before the contents of the emails are hashed to preserve the privacy of the firm and
the employees. Table 15 confirms the existence of duplicated emails in the email data set.
However, the duplication can be removed by eliminating additional emails with the same
sender, recipients, and timestamps. Moreover, we also eliminate emails that share the same
sender and timestamps, while their recipient list is a subset of the recipient list of others

existing emails.

YEAR JAN FEB MAR | APR | MAY | JUN JuL AUG SEP OocT Nov DEC

2002 557 | 3481 | 4649 | 6020 | 5307

2003 | 6037 | 3592 | 647 | 636 | 977 | 1072 | 1501 | 1817 | 3428 | 3639 | 4149 | 4538

2004 | 5205 | 2011

Table 15 — The number of non-duplicated internal emails by month

This extra measure eliminates some additional duplicated emails with the special circumstance.
The elimination of duplicated emails reduces the number emails in the data set to 521,316 non-
duplicated emails, and the number of non-duplicated emails with bucket information is 110,979
emails. As suggested in section 3.2.1, we separate internal emails and external emails to study
the effect of the inclusion of external emails. Our criterion for an internal email is that it is sent
by an employee and is received by at least one employee. This way the information is circulated
within the firm, and the content of the internal email is likely to be related to the work of the

firm. In the email data set, there are 59,294 non-duplicated internal emails.

Table 15 shows the number of emails in each month from August 2002 to February 2004. The
period between March 2003 and September 2003 contains significantly fewer emails than the

other months. Both internal and external emails share the same trend, so it is not likely to be an
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effect of a decrease in external emails. This inconsistency is assumed to be caused by a failure
of the capturing software on the corporate email server. In order not to let this inconsistency
affect our analysis, the period of low email activities is excluded from the analysis. Specifically,
our analysis includes emails during the periods from 1 October 2002 to 3 March 2003 and from
1 October 2003 to 10 February 2004. During the time period, there are 452,500 non-duplicated

emails and 45,217 non-duplicated internal emails.
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Appendix B: Executive Recruiting Firm Database Structure

Originally, one table in the database contained the information for all the 603,871 email
messages. The structure of this table is shown in Table 16. Not only the correct data types for
different parameters were not used, but multiple values of data were also saved under just one
field. For example, the data type used for “dateStr” variable in original schema is text (varchar)
instead of the correct “datetime” format used by most databases. Each one of the “froms”,

“tos” and “ccs” fields may also contain multiple names instead of just one.

Field Type Null
emaillD | varchar(255) NO
dateStr | varchar{100) YES
subject varchar(255) YES
froms varchar(100) YES

tos varchar{255) YES

ccs varchar(255) YES
body text YES
size int{11) YES
attachNum int(11) YES
attachType | varchar(255) YES

Table 16 - Original table structure

In addition to these problems, in the ‘froms’, ‘tos’ and ‘ccs’ fields, several different aliases may
refer to the same person. For example “John Smith” could be identified as “John.Smith” in one
message, “Mr. Smith” in a second message, “john.smith@somefirm.com” in a third message,

“John S.” in a fourth message and so on. Although all these aliases refer to the same person, it

is very hard to distinguish the different aliases of the same individual.

In the new database structure, the correct data types are used for all the variables. Additional
tables are created for separating the multiple values previously stored in one field. The aliases
were removed so each sender or recipient is identified by a unique global name. New tables
were also added for the data contents gathered about the individuals from the previous

studies. The new table names and a summary of their contents is shown in Table 17.
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TABLE NAME

DESCRIPTION

DICTNEW GLOBAL FREQUENCIES OF HASHED VECTORS

EMAILS2 ORIGINAL TABLE CONTAINING BAD DATA TYPES AND ALIASES

MSGS NEW EMAILS TABLE WITH CORRECT DATE STRING BUT STILL BAD FROMS AND TOS

ENTROPY ENTROPY VALUES FOR ALL 45217 NON-DUPLICATED EMAIL MESSAGES USING THE GLOBAL
DICTIONARY

HUFFMAN ENTROPY VALUES FOR ALL EMAIL MESSAGES USING FREQUENCY ANALYSIS

INFO_RATE INFORMATION RATE FOR ALL THE INDIVIDUALS AND ALL THE EMAIL MESSAGES

MUTUAL_INFO MUTUAL INFORMATION VALUES CONTAINING 72*73 ROWS AND 4 COLUMNS

PROJECT_MEMBERS

PROJECT IDS AND THE INITIAL OF PEOPLE WORKING ON THAT PROJECT

PROJECTS VARIOUS SPEED AND DIFFUSION VALUES AND SUMMARY STATISTICS FOR PROJECTS

RECIPIENTS NORMALIZED, EACH ROW CONTAINS EMAIL ID, ONLY ONE SENDER AND ONE RECIPIENT
IDENTIFIED BY THEIR INITIALS FROM THE USER_NAMES TABLE

SPEED DIFFERENT SPEED VALUES FOR INDIVIDUALS (IDENTIFIED BY INTIIALS) AND SUMMARY STAT

UIDS NORMALIZED, SIMILAR TO RECIPIENTS, BUT CONTAINS THE SENT DATE AS WELL

USER_NAMES CONTAINS ALL THE ALIASES FOR AN INDIVIDUAL IN ADDITION TO THEIR UNIQUE NAME AND
INITIALS

VECTORS CONTAINS VECTOR SCORES FOR ALL PAIRS OF EMPLOYEES

WEEKS DATA FOR THE 41 DIFFERENT WEEKS, START AND END DATE AND A UNIQUE ID

Table 17 — Description of all the tables in the executive recruiting firm’s database
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Appendix C: The Implementation of the Huffman Algorithm

Implementing the Huffman compression algorithm can be summarized by the following steps:
We first have to create binary tree of nodes. These nodes are stored in a set, the size of which
depends on the number of symbols in the original message. A node can be either a leaf node or
an internal node. Initially, all nodes are leaf nodes, which contain the symbol itself, the weight
(frequency of appearance) of the symbol and links to their parent and children node which
makes it easy to read the code (in reverse) starting from a leaf node. Internal nodes contain
symbol weight, links to two child nodes and also link to a parent node. As a common
convention, bit '0' represents following the left child and bit '1' represents following the right
child. A finished tree has N leaf nodes and N-1 internal nodes (Wikipedia, Huffman coding,
2007).

A linear-time method to create a Huffman tree is used by creating two queues, the first one
containing the initial weights (along with pointers to the associated leaves), and combined
weights (along with pointers to the trees) being put in the back of the second queue. This
assures that the lowest weight is always kept at the front of one of the two queues. The

required steps for generating the Huffman Tree are as follows:

e Start with as many leaves as there are symbols.
e Enqueue all leaf nodes into the first queue
e Sort the first queue based on the probability of the tokens (lowest to highest)
o While there is more than one node in the queues
* Dequeue the two nodes with the lowest weight.
* Create a new internal node, with the two just-removed nodes as children
(either node can be either child) and the sum of their weights as the new
weight.
" Engueue the new node into the rear of the second queue.
¢ The last remaining node with the highest probability value (sum of all frequencies,

usually equal to one) is the root node; the tree has now been generated.
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It is generally beneficial to minimize the variance of codeword length. For example, a
communication buffer receiving Huffman-encoded data may need to be larger to deal with
especially long symbols if the tree is especially unbalanced. To minimize variance, we simply
break ties between queues by choosing the item in the first queue. This modification will retain
the mathematical optimality of the Huffman coding while both minimizing variance and
minimizing the length of the longest character code (Wikipedia, Huffman coding, 2007).

Four main classes were created for this implementation, namely

e HuffNode: the basic data structure for a Huffman Node, each Huffman node initially
contains a keyword(if it is a leaf node), the frequency(weight) of the node, flag
indicating whether it is a lead node or not and pointers to its parent and children nodes.
After the tree is populated and the codewords are assigned, each node carries extra
pieces of information, namely the codeword and its length.

o HuffTree: the fundamental data structure for a Huffman Tree, a Huffman Tree contains
a set of Huffman Nodes, it calculates the optimum codewords for each one of the
tokens within the tree. Additionally, it contains methods for calculating the lower bound
and achievable entropies.

o HuffPlainTextGenerator: executable file that creates a set of HuffNodes by using
character frequencies.

e HuffHashedTextGenerator: executable file that parses the hashed body messages and

uses the hashed vector frequencies for the weights.

Listing 1 contains the sample Java code for the classes mentioned earlier in addition to other
dependent classes containing methods for accessing the database, parsing the messages and

measuring the frequencies.

public class HuffTree {
private TreeSet<HuffNode> nodes;
private HuffNode root;
private Arraylist<HuffNode> output; // to represent the coded strings
private double messagelength = 0;
private double messageHuffEntropy = 0;
private double messageTheoreticalEntropy = 0;
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private double totalFreq = 0; // to use in probabilty and entropy measurements

public HuffTree(TreeSet<HuffNode> input){
nodes = input;
root = null;
output = new ArrayList<HuffNode>();
}

/{ returns the root element
public HuffNode buildTree(){
if (nodes.size()<1)
return null;
while (nodes.size() >1){ // loop ends when there's only one element left
Iterator<HuffNode> it = nodes.iterator();
HuffNode first = it.next();
it.remove();
HuffNode second = it.next();
it.remove();
HuffNode combinedNode = new HuffNode(first, second);
nodes.add(combinedNode);
)
assert nodes.size() == 1;
root = nodes.first();
return nodes.first(); // last node is the last element, only one node should be left in the tree at this point

b

public void generateCodes(){
if (root == null){
return;
¥

root.code ="";
generateCodesHelper(root);

h
private void generateCodesHelper(HuffNode node){
node.codelength = node.code.length();
if (node.codelength > 0)
assert node.codelength == node.parent.codeLength + 1;

if (node.isLeaf()){
output.add(node); // only add it to output if it's a leaf node
totalFreq = totalFreq + node.getCount();
return;

node.left.code = (node.code + "0");
node.right.code = (node.code+"1");
generateCodesHelper(node.right);
generateCodesHelper(node.left);

ks
public ArrayList<HuffNode> getLeaves(){
return this.output;

ks
public void caicEntropy() throws IOException{
if (root == null){
messageHuffEntropy = 0;
messagelength = 0;
return;
¥
Iterator<HuffNode> it = getLeaves().iterator();
while (it.hasNext()){
HuffNode current = it.next();
messagetength = messagelength + (current.codeLength * current.getCount());
double probabilityThisToken = ((double) current.getCount())/ ((double) totalFreq);
messageHuffEntropy = messageHuffEntropy +
((double){current.codeLength) * probabilityThisToken);
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messageTheoreticalEntropy = messageTheoreticalEntropy +
(-1 * probabilityThisToken * (Math.log10(probabilityThisToken)/Math.log10(2)));

b
public double getMsglLength(){
return messagelength;

b
public double getMsgHuffmanEntropy(){
return messageHuffEntropy;

b
public double getMsgTheoreticalEntropy(){
return this.messageTheoreticalEntropy;

}

public double getTotalFreq(){
return totalFreq;

¥

/*******************************************************************************************************/

public class HuffNode implements Comparable<HuffNode>{
private String keyword;
private boolean isLeaf;
public HuffNode left;
public HuffNode right;
public HuffNode parent;
public String code;
public int codelLength; // number of bits in the code
private int count;
public HuffNode(String content, int instances)
keyword = content;
count = instances;
left = null;
right = null;
parent = null;
isLeaf = true;

)
public HuffNode(HuffNode child1, HuffNode child2){
keyword = null;
isLeaf = false;
left = childl;
right = child2;
count = left.getCount() + right.getCount();
left.parent = this;
right.parent = this;

}
public int getCount(){
return this.count;

public boolean isLeaf(){
return this.isLeaf;

¥

public String getKeyword(){
return this.keyword;

¥

public int compareTo(HuffNode otherNode) {
if (this.getCount() == otherNode.getCount()){
return -1;
}else {

}

return this.getCount() - otherNode.getCount();

b
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public class Hasher {

public static TreeMap<Character, Integer> getFregs(String input){
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StringReader reader = new StringReader(input);
TreeMap<Character,Integer> ans = new TreeMap<Character, Integer>();

try {
int thisChar= reader.read();
while (thisChar >-1){
Character ¢ = new Character((char) thisChar);
if (fans.containsKey(c)){
ans.put(c,new Integer(1));
}else {
int oldValue = (new Integer (ans.get(c}).intValue());
ans.put(c, new Integer(oldValue+1));

thisChar = reader.read();

)4
} catch (I0Exception &) {
e.printStackTrace();
b

return ans;

public static void processMsg(String body, EmailConnector ec) throws SQLException{
StringTokenizer st = new StringTokenizer(body, ";™);
while (st.hasMoreTokens())}{
String word = st.nextToken();
int firstBracket = word.indexOf("<");
int lastBracket = word.indexOf(">");
if (firstBracket <1 || lastBracket <1)
break;
String hashed= word.substring(0, firstBracket).trim();
String instances = word.substring{firstBracket+1, lastBracket);
int insts = Integer.parselnt(instances);
updateWord(hashed, insts, ec);
¥
¥
private static boolean updateWord(String hashedWord, int numInstances, EmailConnector ec) throws SQLException{
// let's see first if the word is already in the table;
ResultSet rs = ec.executeQuery("SELECT * FROM "+dictTableName+ " WHERE hash =""+hashedWord+"");
/1 if it exists get the values and update them, otherwise just INSERT it into the table
boolean exists = rs.next();
if (lexists){
String insCmd = "INSERT INTO "+dictTableName+" (hash, total, totaldsc) VALUES
(\""+hashedword+"\", "+numlnstances+", 1);";
ec.executeCommand(insCmd);
rs.close();
rs = null;
return true;
} else { //if the word exists in the table
rs.close();
rs = nuli;
String updateCmd = "UPDATE "+dictTableName+" SET total=total+"+numiInstances+", totaldsc
=totaldsc+1 WHERE hash=\""+hashedWord+"\";";
ec.executeCommand(updateCmd);
return true;

/*******************************************************************************************************/

public class HuffmanHashedTextGenerator {
public static void main(String{] args) {
EmailConnector chicago = new EmailConnector(dbURL, dbName};
boolean mustCreateHuffTbl = true;
if (mustCreateHuffTbl){
String createHuffcommand = "CREATE TABLE "+huffTbiName+" (emailID varchar(255),
h_huffman double, h_theory double, compressed_size int, orig_size int, total_freq int,"
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+ " CONSTRAINT pk_huffman PRIMARY KEY (emaillD),"
+ " CONSTRAINT fk_emaillD FOREIGN KEY(emailID) references msgs(emaillD));";
if (chicago.tableExists(dbName, huffTbiIName)) {
System.out.printin("huffman table exists. dropping it...");
chicago.dropTable(huffTbIName);
}
chicago.executeCommand(createHuffcommand);
}
inti=0;
ResultSet hashedMails = chicago.executeQuery("SELECT emaillD, body FROM msgs ORDER BY
sentOn");

while (hashedMails.next()){// iterating over all mails
i++;
if (i%50 == 0) System.out.printin("processing email number "+i);
double messageSize = 0;
TreeSet<HuffNode> words = new TreeSet<HuffNode>();
String body = hashedMails.getString("body™);
String emaillD = hashedMails.getString("emailID™);
// get the frequencies of characters in this message (one email)
StringTokenizer st = new StringTokenizer(body, ";");
// looping over all the tokens in the message body for each email
while (st.hasMoreTokens()){
String word = st.nextToken();
int firstBracket = word.indexOf("<");
int lastBracket = word.indexOf(">");
if (firstBracket <1 || lastBracket <1)
break;
String hashed= word.substring(0, firstBracket).trim();
String instances = word.substring(firstBracket+1, lastBracket);
int insts = Integer.parselnt(instances);
HuffNode hf = new HuffNode(hashed, insts);
words.add(hf);
/! System.out.printin("words size = "+words.size()+ " the current word = "+

}

messageSize = words.size();

hashed + " # fregs = " +insts );

// now build the huffman tree
HuffTree hTree = new HuffTree(words);
hTree.buildTree(); // build the huffman binary tree
hTree.generateCodes(); // generate the codes (bits) and number of bits for each node,
also adds all the leaves to the output list in hTree
hTree.calcEntropy();
// now update the table;
String insertHuff = "insert into "+ huffTbIName + " (emaillD, h_huffman, h_theory,
compressed_size, orig_size, total_freq) values (\""+
emailID+"\", "+ hTree.getMsgHuffmanEntropy() + ©, "+
hTree.getMsgTheoreticalEntropy()+ ", "+ hTree.getMsgLength() + ", "+ messageSize +
", "+hTree.getTotalFreq()+");";
chicago.executeCommand(insertHuff);

Listing 1 - Sample code for the implementation of the Huffman compression algorithm
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Appendix D: Enron Email Data Set

In 2003, as part of an investigation into Enron's business dealings in California, the Federal
Energy Regulatory Commission made public a database containing more than 500,000 emails
sent by 151 Enron employees. Subjects ranged from corporate decisions to jokes to personal
matters. While the subject matter makes for intriguing reading, the entire database also proved
an interesting subject for a number of researchers around the country (Enron Email Database

Easy Pikcings for FastBit, 2006).

The raw Enron corpus contains 619,446 messages belonging to 158 users. Data contained large
numbers of duplicate emails, which were already present in the users’ other folders. In our
cleaned Enron corpus, there are a total of 252,759 messages belonging to 151 users with an
average of 757 messages per user. Table 18 shows the summary statistics of the messages for
the Enron Email data set. The compression is performed by the Huffman algorithm using

character frequencies on raw text and hashed token frequencies for hashed messages.

MEAN STANDARD MIN MAX
DEVIATION

LOWER BOUND ENTROPY 4.691 0.4712 0 5.663

pl\];lgg[:/;FGE}fsT HUFFMAN ENTROPY 4.655 0.4892 0 5.695
ORIGINAL SIZE 16420.2 49170.8 0 524088
COMPRESSED SIZE 9297.7 26339.3 0 309214
COMPRESSION RATE 0.5863 0.0589 0 0.7119

LOWER BOUND ENTROPY 5.4672 1.5206 0 10.12

HASHED HUFFMAN ENTROPY 5.5154 1.5174 0 10.15
MESSAGES ORIGINAL SIZE 1603.904 4812.6 0 64688
COMPRESSED SIZE 1461.855 5247.7 0 67681
COMPRESSION RATE 0.6908 0.1873 0 1.2687

Table 18 - Summary statistics for entropy measurements of Enron data
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Appendix E: Recruiting Firm Emails Entropy Measures

Table 19 contains the entropy measures for the outbox folder of all the employees in our firm.

For privacy reason, the names of the individuals are omitted from the data.

id Huffman entropy Lower bound Entropy Original message size Compressed message size Compression rate
{bits) {bits)
1 6.5372 6.5010 2146.0000 1966.7500 0.8172
2 5.3557 5.3083 779.8905 622.3054 0.7184
4 5.9284 5.8808 1278.6548 1121.4102 0.7664
5 5.9680 5.9220 1427.3867 1264.0833 0.7825
6 5.4955 5.4469 851.4639 684.8968 0.6966
7 5.6075 5.5564 888.3200 719.7018 0.7247
8 5.0067 4.9565 696.0000 539.6667 0.6258
9 6.0533 6.0069 1431.4661 1245.2048 0.7819
10 5.8590 5.8109 1120.6237 969.0161 0.7696
11 5.8721 5.8232 1018.6780 849.8480 0.7532
12 6.0632 6.0126 1246.1929 1076.2538 0.7598
13 7.2365 7.1876 22453333 2101.6667 0.9046
14 46758 4.6072 461.2179 347.7478 0.5947
15 5.2444 5.2048 2628.9183 2014.8833 0.6962
16 6.5356 6.4880 1527.0605 1350.2724 0.8215
17 5.1585 5.1186 1126.1138 817.7988 0.7019
18 6.4403 6.3943 1653.1940 1435.4521 0.8066
19 5.6523 5.6102 1267.9111 1116.9238 0.7728
20 5.4912 5.4443 876.2137 715.8140 0.7220
21 6.1982 6.1495 1314.2274 1149.2575 0.7778
22 5.4649 5.4178 1144.2595 994.1063 0.7047
23 6.2151 6.1683 1448.1797 1296.8514 0.7871
24 6.0547 6.0097 1812.9762 1625.4985 0.7885
25 6.3221 6.2732 1280.9844 1104.7638 0.7936
26 6.5279 6.4801 1647.4595 1467.2162 0.8160
27 6.1182 6.0723 1196.8642 1006.5648 0.7671
28 5.3889 5.3398 874.8725 725.5571 0.6787
30 6.0018 5.9249 820.0000 658.5000 0.7502
31 5.0267 4.9821 815.8412 678.1191 0.7153
32 5.5867 5.5434 1157.1903 975.8485 0.7672
33 6.0902 6.0451 975.1287 806.1584 0.7613
34 5.1419 5.0867 524.0000 404.0217 0.6427
37 6.1381 6.0899 1204.1271 1025.7863 0.7799
38 5.9770 5.9331 1360.2977 1186.4465 0.7760
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39 5.3672 5.3179 835.6326 679.9317 0.7174
40 5.4365 5.3902 1008.2902 846.8662 0.7418
41 5.6727 5.6243 1051.9407 887.9426 0.7449
42 4.8098 4.7628 711.3741 582.2489 0.6290
43 5.5259 5.4784 873.7518 708.3406 0.6958
44 4.5515 4,5052 686.4059 539,3173 0.6675
45 5.2010 5.1584 864.7705 719.0793 0.7427
46 5.5675 5.5176 799.3702 655.0021 0.7019
47 6.2801 6.2306 1305.8923 1128.6218 0.7878
48 5.8625 5.8133 1105.6375 927.2073 0.7474
49 5.5891 5.5428 1080.0324 907.8787 0.7205
50 4.6397 4.5985 838.6164 717.5854 0.7127
56 6.3737 6.3325 1365.8667 1160.7167 0.8102
57 6.0990 6.0521 1301.6552 1100.6379 0.7758
58 5.2838 5.2380 833.1659 690.6515 0.7073
59 5.2930 5.2478 998.0000 832.9369 0.6898
60 5.1990 5.1528 718.5536 572.5625 0.7118
61 5.9903 5.9422 1170.4685 1008.6194 0.7878
62 5.6909 5.6452 1062.4591 882.4833 0.7540
63 5.1985 5.1299 737.6000 585.0000 0.6498
66 58823 5.8409 1816.5455 1747.6970 0.7870
67 5.8409 5.7980 1997.4390 1890.2756 0.7544
68 6.1017 6.0541 1508.6777 1316.9452 0.7889
69 6.1905 6.1423 1363.1673 1183.6996 0.7784
70 4.8240 4.7751 723.7813 594.6414 0.6354
71 6.0941 6.0462 1367.0588 1183.9559 0.8062
72 6.2797 6.2339 1415.2395 1253.0076 0.8080
73 4.7074 46633 726.2136 577.8252 0.6966

Table 19- entropy values for individuals, outhox folder

Table 20 contains the entropy measures for the inbox folder of all the employees in our firm.

id Huffman entropy Lower bound entropy Original message size Compressed message size Compression rate

1 5.9711 5.9235 1361.6180 1186.1040 0.7546
2 5.7163 5.6669 941.7584 765.6178 0.7226
3 5.8264 5.7662 800.7273 661.5455 0.7283
4 6.0817 6.0332 1299.6730 1132.9620 0.7724
5 6.0872 6.0386 1557.5370 1454.2030 0.7609
6 5.5215 5.4733 882.7905 706.8515 0.6934
7 5.8182 5.7703 876.6022 702.2634 0.7312
8 4.7349 4.6762 513.0000 417.6250 0.5919
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9 6.1827 6.1366 1592.8140 1428.0780 0.7794
10 5.5998 5.5514 937.9896 789.4611 0.7342
11 6.1556 6.1061 1185.4720 1002.5610 0.7717
12 6.0109 5.9624 1243.2590 1078.1220 0.7514
13 4.3735 4.3086 400.6667 283.5833 0.5964
14 5.4174 5.3691 953.2033 801.4893 0.6956
15 5.4800 5.4366 2342.7070 1787.6900 0.6896
16 6.4117 6.3644 1628.8350 1468.3940 0.8026
17 5.3976 5.3533 1149.0670 827.5978 0.6885
18 6.1075 6.0593 1406.7160 1211.4080 0.7674
19 5.9013 5.8528 1163.5250 1013.1580 0.7416
20 5.7121 5.6642 1005.9680 844.3457 0.7376
21 6.2320 6.1849 1482.5270 1335.9100 0.7847
22 3.6717 3.6373 788.3990 699.1722 0.6864
23 6.2995 6.2522 1510.7020 1364.5570 0.7950
24 4.5848 4.5425 938.1997 810.9186 0.7230
25 6.1987 6.1489 1396.5850 1233.6290 0.7800
26 5.8942 5.8491 1183.2730 1020.5760 0.7598
27 6.0295 5.9833 1101.9740 921.6992 0.7557
28 5.5959 5.5467 958.1051 788.9678 0.7065
30 5.9633 5.8943 652.0000 493.2500 0.7454
31 5.0997 5.0557 879.3623 736.0163 0.7167
32 5.2557 5.1963 856.9159 715.6778 0.6776
33 5.6713 5.6216 880.2376 716.4356 0.7089
34 6.1379 6.0874 1186.0350 1033.7110 0.7695
37 6.0478 5.9990 1216.3530 1059.1510 0.7615
38 5.8052 5.7562 1101.3810 931.0468 0.7283
39 4.3583 4.3178 673.3155 530.8291 0.6667
40 5.5993 5.5521 963.8875 800.4061 0.7235
42 5.6318 55831 1136.9790 988.8347 0.7146
43 5.8357 5.7904 1039.4040 867.3784 0.7389
44 3.5349 3.5002 519.6101 407.0097 0.6589
45 5.8131 5.7620 991.0487 833.6140 0.7323
46 6.2390 6.1909 1448.7880 1298.1640 0.7823
47 6.3510 6.3026 1656.5790 1503.9260 0.7964
48 4.6656 4.6268 907.1106 758.2975 0.7387
49 5.5244 5.4792 1097.1890 931.0755 0.7488
50 5.9794 5.9302 1176.9130 1009.6810 0.7558
51 6.24397 6.2022 1458.1590 1286.4710 0.7823
52 6.1863 6.1404 1429.2990 1264.5100 0.7794
54 5.8128 5.7635 977.9782 815.9373 0.7319
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55 5.0867 5.0390 854.8649 708.2297 0.6819
56 6.0572 6.0078 1347.4420 1198.2440 0.7661
57 6.2442 6.1951 1446.4340 1301.5220 0.7814
58 5.5598 5.5063 823.9014 663.0884 0.7079
59 5.3956 5.3485 1047.5580 868.1350 0.7025
60 5.8530 5.9053 1251.7710 1105.2360 0.7563
61 5.8092 5.8610 1191.0280 1032.8420 0.7508
62 5.8760 5.8256 1087.6000 910.2983 0.7407
63 6.6017 6.5576 1972.5430 1746.1850 0.8252
64 6.2044 6.1543 1450.6060 1267.8260 0.7797
65 6.4310 6.3870 1066.2860 915.5714 0.8039
66 5.9080 5.8593 1197.8540 1011.0700 0.7484
67 5.6039 5.5552 1168.8500 1032.7600 0.7059
68 5.4096 5.3616 1060.2810 931.0242 0.6905
69 5.8441 5.7980 1288.1770 1116.3180 0.7483
70 5.2824 5.2344 958.6681 835.8857 0.6640
71 5.6996 5.6526 1005.0080 856.9504 0.7235
72 5.8600 5.8118 1113.4550 954.7289 0.7409
73 5.1449 5.0951 686.5257 535.6179 0.6484

Table 20 - entropy values for individuals, inbox folder

Finally, Table 21 shows the entropy values calculated by combining the contents of both outbox

and the inbox folders for each individual.

id Huffman entropy | Lower bound entropy | Original message size | Compressed message size | Compression rate
1 5.9711 5.9235 1361.6180 1186.1040 0.7546
2 5.5285 5.4801 860.4158 693.5477 0.7201
3 5.8264 5.7662 800.7273 661.5455 0.7283
4 6.0210 5.9729 1292.0610 1129.1790 0.7699
5 6.0291 5.9816 1501.9600 1372.0500 0.7703
6 5.5130 5.4646 869.6047 697.7628 0.6950
7 5.6871 5.6372 882.4615 711.2264 0.7269
8 4.8090 4.7526 562.9091 450.9091 0.6011
9 6.1629 6.1166 1540.6050 1366.2550 0.7817
10 5.7816 5.7335 1037.4470 885.2132 0.7538
11 6.0213 5.9720 1106.6350 930.3896 0.7630
12 6.0472 5.9978 1254.6110 1087.4750 0.7569
13 4.9461 4.8844 769.6000 647.2000 0.6624
14 4.9010 4.8385 612.5549 487.3463 0.6252
15 5.5011 5.4582 2177.9130 1762.3060 0.7156
16 6.4751 6.4276 1580.3850 1411.8100 0.8122
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17 5.3330 5.2907 1031.6170 777.2003 0.7095
18 6.3042 6.2573 1551.2070 1342.7290 0.7903
19 5.7802 5.7349 1201.8990 1051.3930 0.7540
20 5.6033 5.5559 937.5756 776.2237 0.7294
21 6.22594 6.1816 1400.3570 1240.8050 0.7830
22 4.4021 4.3635 878.2611 754.0801 0.7011
23 6.2864 6.2391 1468.8290 1316.5100 0.7917
24 5.3474 5.3035 1390.6400 1233.6400 0.7599
25 6.2434 6.1939 1355.4480 1192.0800 0.7851
26 6.1652 6.1190 1381.8270 1211.6240 0.7843
27 6.0701 6.0240 1146.4730 961.4972 0.7609
28 5.5072 5.4580 918.2584 758.5959 0.6932
30 5.9761 5.9045 708.0000 548.3333 0.7470
31 5.1200 5.0753 860.6660 718.2259 0.7168
32 5.3803 5.3278 973.2088 815.1484 0.7130
33 5.8766 5.8291 917.7889 752.9497 0.7346
34 6.0210 5.9699 1108.3470 959.8189 0.7545
37 6.0764 6.0281 1211.6100 1042.6870 0.7686
38 5.8555 5.9094 1254.9910 1083.1190 0.7598
39 4.8151 4.7709 750.6887 601.6794 0.6925
40 5.5438 5.4971 978.8860 816.1042 0.7293
41 5.6727 5.6243 1051.9410 887.9426 0.7449
42 5.1870 5.1392 900.5714 762.3509 0.6675
43 5.6653 5.6170 947.6836 779.3151 0.7149
44 3.8846 3.8464 585.2484 459.8049 0.6656
45 5.5625 5.5150 947.7069 794.7825 0.7371
46 5.9529 5.9041 1174.5660 1026.8640 0.7482
47 6.3175 6.2686 1490.9340 1326.6530 0.7923
48 5.2140 5.1705 999.8051 837.1468 0.7437
49 5.5814 5.5353 1091.3300 921.3171 0.7330
50 5.3715 5.3260 1023.4210 877.1509 0.7383
51 6.2497 6.2022 1458.1590 1286.4710 0.7823
52 6.1863 6.1404 1429.2990 1264.5100 0.7794
54 5.8128 5.7635 977.9782 815.9373 0.7319
55 5.0867 5.0390 854.8649 708.2297 0.6819
56 6.1932 6.1468 1368.2820 1197.3520 0.7852
57 6.2332 6.1843 1436.2520 1287.8960 0.7807
58 5.4296 5.3798 828.8880 676.8269 0.7075
59 5.3474 5.3012 994.8201 825.6054 0.6954
60 5.6953 5.6479 1050.1420 902.7090 0.7404
61 5.9486 5.9002 1194.3490 1034.5130 0.7690
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62 5.7747 5.7270 1075.8580 896.8342 0.7490
63 6.5201 6.4746 1500.7440 1678.6740 0.8150
64 6.2044 6.1543 1450.6060 1267.8260 0.7797
65 6.4310 6.3870 1066.2860 915.5714 0.8039
66 5.9442 5.8994 1562.9490 1442.0990 0.7722
67 5.7528 5.7076 1664.7920 1545.6050 0.7350
68 5.7872 5.7393 1294.5290 1132.7090 0.7404
69 6.0353 5.9880 1332.0530 1155.8430 0.7651
70 5.0450 5.0005 839.1819 713.1660 0.6497
71 5.5005 5.8531 1189.4230 1023.5150 0.7648
72 6.1269 6.0801 1298.3250 1136.7140 0.7826
73 4.9903 49425 691.1182 542.1323 0.6636

Table 21 — entropy values for individuals, inbox and outbox folders together
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Appendix F: Information Rate Measurements

Table 22 provides the novel information measures of the individuals in the firm. These data

points only contain individuals who had at least 50 messages in both of their main folders

(inbox and outbox).

id Novel info{Outbox) Novel info(Inbox} Novel info(Inbox+outbox)

1 0.2857 0.2568 0.2765
2 0.4355 0.3148 0.4282
3 0.5045 0.4830 0.3842
4 0.4450 0.2504 0.0645
5 0.2008 0.5527 0.3760
6 0.1859 0.0811 0.4214
7 0.5481 0.5575 0.6434
8 0.2176 0.2209 0.1250
S 0.3540 0.3718 0.4559
10 0.3374 0.2225 0.4263
11 -0.4660 -0.6305 -0.2104
12 0.2373 0.3030 0.2037
13 0.4182 0.2122 -0.0515
14 0.0872 0.1536 0.0221
15 0.3387 0.4790 1.0053
16 0.2221 0.3174 0.1871
17 0.2915 0.3784 0.1702
18 0.7370 0.6400 0.4358
19 0.2760 0.3575 0.3514
20 0.3709 0.5820 0.8219
21 0.3215 0.4095 0.2483
22 0.6872 0.7502 1.1221
23 0.4535 0.5248 0.3387
24 0.4511 0.3888 0.1976
25 0.5146 0.4103 0.4688
26 0.3990 0.4130 0.3303
27 0.6891 0.7281 0.4076
28 0.2425 0.2003 0.1488
29 0.3968 0.5731 0.4480
30 0.6166 0.4755 0.2700
31 0.5159 0.4008 0.3638
32 0.4349 0.2974 0.2627
33 0.4070 0.2614 0.2833
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34 0.2829 0.1261 0.0489
35 0.4801 0.3025 0.3433
36 0.4471 0.5930 0.3364
37 0.2214 0.2906 0.1931
38 0.4437 0.4352 0.3518
39 0.2846 0.2227 0.3000
40 0.6680 0.4193 0.3801
41 0.3927 0.5919 0.3431
42 0.5273 0.4081 0.2861
43 0.2832 0.3626 0.2775
44 0.3639 0.4243 0.2857
45 0.4514 0.6222 0.2444
46 0.2930 0.3153 0.3253
47 0.3997 0.3469 0.3340
48 0.41598 0.1855 0.2658
49 0.6135 0.4066 0.6105
50 0.3431 0.5121 0.4223
51 0.3157 0.3416 0.3029
52 0.5807 0.6720 0.6042
53 0.4055 0.3440 0.2845
54 0.5623 0.4235 0.4979
55 0.5039 0.3238 0.3204

Table 22 — The novel information measurements for individuals with at least 50 messages in each folder
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Appendix G: Mutual Information Measurements

Table 23 shows the average value of mutual information for a single individual and across their

different folders.

Average mutual information of

Average mutual information of

Average mutual information of

id (inbox) {outbox) {inbox+autbox)

1 8.7969 6.5175 9.0309
2 8.7203 7.7056 8.8818
3 7.3904 0 7.5458
4 8.8604 7.8893 9.0552
5 8.7896 7.7628 8.9570
6 8.5593 7.6045 8.7561
7 8.1754 7.5142 8.5200
8 7.2202 5.5225 7.5534
9 8.8303 7.7936 8.9857
10 8.6528 7.7201 8.8367
11 8.6975 7.7259 8.8751
12 8.7446 7.8072 8.9265
13 6.1055 6.6457 7.5422
14 8.5761 7.5963 8.7684
15 8.6247 7.5405 8.7792
16 8.9410 7.8634 9.1044
17 83228 7.3658 8.4730
18 8.7637 7.8636 8.9875
19 8.8693 7.9292 9.0571
20 8.7547 7.8061 8.9476
21 8.8577 7.8089 9.0054
22 8.5979 7.5306 8.7173
23 8.9197 7.9047 9.0942
24 8.8170 7.9341 9.0645
25 8.8549 7.7279 9.0162
26 8.4084 7.5202 8.6360
27 8.6013 7.6102 8.7409
28 8.8355 7.8739 9.0523
29 0 0 0
30 6.4165 5.2722 6.5791
31 8.7657 7.7313 8.9369
32 8.6811 7.6366 8.8149
33 8.3990 7.5768 8.6710
34 8.8021 7.2684 9.0319
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35

0 0 0
36 0 0 0
37 8.8266 7.8368 3.0068
38 8.5849 7.7835 8.8161
39 8.6402 7.6369 8.8241
40 8.7801 7.6723 8.9361
41 0 7.7430 8.8523
42 8.9648 7.8521 9.1277
43 8.6194 7.6798 8.8295
44 8.1122 7.0671 8.2573
45 8.6895 7.6646 8.8605
46 8.8801 7.7530 9.0545
47 8.9012 7.7612 9.0505
48 8.5665 7.6776 8.7760
49 8.7921 7.8051 8.9616
50 8.7414 7.7037 8.9003
51 8.7811 0 8.9717
52 8.8184 0 9.0122
53 0 0 0
54 8.7832 0 8.9563
55 8.6728 0 8.8949
56 8.1679 7.2411 8.3379
57 8.9057 7.0154 9.1011
58 8.7989 7.8486 9.0128
39 8.6466 7.8146 8.9065
60 8.8709 7.5915 9.0154
61 8.7526 7.7569 8.9133
62 8.5545 7.6197 8.7323
63 7.7494 5.8471 7.9578
64 8.8439 0 9.0500
65 7.5163 0 7.6682
66 8.4102 7.6586 8.7392
67 8.7834 7.8949 9.0656
68 8.6658 7.8656 8.9793
69 8.8210 7.8547 9.0094
70 8.8209 7.7839 8.9883
71 8.6021 7.6339 8.7529
72 8.6331 7.7538 8.8513
73 8.2394 7.1633 8.4159

Table 23 - Mutual Information measures for individuals
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