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Abstract

We design, implement and test a tool for eliminating file descriptor (FD) leaks in
programs at run-time. Our tool monitors FD allocation and use. When the allocation
of a new FD would fail because a process's entire pool of FDs is already in use, our
tool "recycles" (forcibly closes) an FD. The FD to be recycled is chosen according to
three simple rules: 1) do not recycle FDs used within the last second, 2) do not recycle
"persistent" FDs (FDs allocated at sites that allocate few FDs) and 3) recycle the FD
that was least recently used. We tested our tool with nine applications (HTTP/FTP
servers, proxies and clients) that make extensive use of FDs. We first simulated
massive leaks by disabling all calls to close. Without recycling (and in the presence
of leaks), all applications malfunctioned. With FD recycling, applications continued
to execute normally despite massive FD leakage. Throughout our tests, our tool has
never attempted to close an FD that was still in use.
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Chapter 1

Introduction

Programs are becoming more complex each day. Tracking resource allocation and

deallocation is continually more difficult as resource ownership is passed around

among different components. Unless resources are properly tracked, programs can

"forget" to free resources that are no longer needed, or programs can attempt to

release the same resource multiple times.

The best known resource is memory. Memory leaks are the most common resource

leaks. If memory is not freed when it is no longer needed, a process might be unable

to allocate memory for other tasks. The effect of freeing the same memory location

multiple times depends on the language and compiler, but in the case of C (and gcc)

this leads to a segmentation fault. Some languages, such as Java and Scheme, lift the

burden of memory management off the shoulders of the programmers by providing

garbage collection.

Another resource that can be leaked is file descriptors (FDs). Like memory, the

Linux kernel frees all FDs of a process upon process termination. Because, typically

processes have a pool of 1024 FDs and most processes do not need many FDs, FD

leaks might go unnoticed. Unlike memory leaks, when a program running out of

memory crashes, programs that leak FDs usually do not crash. Instead, they stop

performing normal tasks, which might not be immediately noticeable.

People are not as aware of FD leaks as they are aware of memory leaks. In the

case where an FD leak is found in a program, the best solution is to fix the program.



In many instances, this is not possible because

* (a) the source code of the program is not available, or

* (b) the user does not have the technical expertise to fix the bug.

In these instances, a user would have to submit a bug report to the developer and

wait for the developer to fix the bug.

The purpose of this project is to design, implement, and test a mechanism of auto-

matically closing leaked FDs, thus allowing applications which leak FDs to continue

to operate normally. This mechanism should be used only in emergencies while a

patch that fixes the leak is being developed. The mechanism should not encourage

developers to become negligent with managing FDs.

In chapter 2, we present related work and background information needed for

a better understanding of this paper. We describe our approach in chapter 3 and

outline our implementation in chapter 4. We present our experiments in chapter 5

and the results in chapter 6. Finally, we conclude in chapter 7 and offer suggestions

for future improvements in chapter 8.



Chapter 2

Background Information

In section 2.1, we discuss related work in the field. Mechanisms used by our test

applications for concurrent IO are presented in section 2.2. Our test applications use

the HTTP and FTP protocols which are briefly described in section 2.3.

2.1 Related Work

We are not aware of any previous tools that attempt to correct at run-time the

execution of programs leaking FDs.

The major problem in fixing FD leaks is detecting which FDs will never be used

again, and which ones are still in use. A similar problem occurs when trying to

garbage collect an unsafe language. In [11], Boehm analyzes conservative garbage

collectors which treat each pattern of bits that could be a pointer as a pointer, in

order to prevent garbage collecting data still in use.

Our approach will also have to be conservative because we do not want to close an

FD that is still in use. However, unlike memory garbage collection, we cannot treat

each integer in memory as an FD because this approach would be too conservative.

We are going to use allocation sites as a criterion for recycling FDs. In [13],

Nguyen and Rinard manage memory leaks by setting a quota for each allocation site.

When a site exceeds its quota, its least recently allocated memory buffer is reused.

In our project, we will not set quotas. Instead we will monitor the number of FDs



created at each site. FDs originating from sites with many allocations are more likely

to be recycled than FDs originating from sites with few allocations.

2.2 Concurrent IO

HTTP and FTP servers and proxies must be able to handle multiple requests simulta-

neously. This can be difficult because Linux IO system calls are not asynchronous[15],

and a single read operation can block the entire application, thus preventing it from

handling any requests. Listening for data on multiple connections at the same time

is a problem. Although there exist other methods of dealing with this problem, most

applications use one of the following three techniques:

* (a) multiple processes,

* (b) multiple threads (or thread pools), or

* (c) select (or poll) to detect when data is available on an FD.

2.2.1 Multiple Processes

Applications using multiple processes for concurrent IO usually create one process

for each data connection and have each process block on each IO operation. The

main advantage of this method is simplicity. Some of the disadvantages are 1) the

large overhead for creating new processes and 2) difficult inter-process communication

(IPC).

A skeletal implementation of a server that uses fork to handle each connection is

presented in figure 2-1. The server creates a socket and listens for connections. In a

loop, the server uses accept' to create a socket for each new client connection. After

the main process creates the connection, it forks a child process. The parent process

closes the connection to the client, and goes to the beginning of the loop to wait for

new connections. The child process closes the listening socket and deals with the

client connection.
1accept is a blocking system call.



int main() {
int listening_fd, clientfd, pid;
listening-fd = socket(...);
bind(listening-fd, ...);
listen(listening.fd, ...);

for (;;) {
client_fd = accept(listening-fd, ...);
pid = fork();

if (!pid) { /* child process */
close(listeningfd);

/*

Handle connection in client_fd

exit(O);

if (pid) /* parent process */
close(clientfd);

Figure 2-1: Sample socket server that uses multiple processes

Page 1 of iFile: /mit/dumitran/thesis/code/fork.c



2.2.2 Multiple Threads

Using multiple threads for concurrent IO is very similar to using multiple processes;

after all, threads are processes running within the same address space. As opposed

to using multiple processes, using multiple threads is a little more difficult to imple-

ment and debug.2 In addition, it introduces the problem of thread synchronization.

However, creating threads has a significantly lower overhead than creating processes,

and communication between threads is trivial.

A skeletal implementation of a server that uses threads for concurrent IO is pre-

sented in figure 2-2. The main thread creates a socket for listening and waits for client

connections in a loop (the call to accept). When a client connects, the main thread

creates a new thread and goes to the beginning of the loop to wait for connections.

The new thread handles the connection and closes the connection FD at the end.

2.2.3 Thread Pools

Section 2.2.2 presents a server that creates a new thread for each connection. Once the

connection is closed, the thread terminates. When a new connection is established,

a new worker thread is created. In order to reduce the overhead of creating and

terminating threads, a well-known technique is to create a pool of workers. The main

thread listens for connections and puts the established connections in a queue. Idle

worker threads pick up connections from the queue and handle them. After handling

a connection, a worker thread does not die. Instead, it waits for another connection

to be placed on the queue.

A skeletal implementation of a server that uses a thread pool is presented in figure

2-3. This implementation is more complicated than the implementation in section

2.2.2 and requires some thread synchronization. The main thread creates a listening

socket and some worker threads. After that, the main thread enters a loop where it

waits for connections and, whenever a connection is established, it puts the connection

on a queue (this operation must be atomic, therefore it needs locks) and signals the

2 Since threads share the same address space, they have access to one another's data and they
can modify one another's data in ways that developers do not originally anticipate.



File: /mit/dumitran/thesis/code/thread.c

struct connection-data { int fd; };

void* handle.request(void *data) {
int fd = ((connection-data*)data)->fd;

/*

Handle the connection in fd

/* clean connection state */
close(fd);
free(data);

/* The thread is terminated when it exists this functions */

int main() {
int fd, client_fd, pid;
connection-data *data;
pthread-t tid;

fd = socket(...);
bind(fd, ...);
listen(fd, ...);

for (;;) {
data = malloc(sizeof(connectiondata));
data->fd = accept(fd, ...);
/* create new thread to handle request */
pthread-create(&tid, NULL, handlerequest, data);

Figure 2-2: Sample socket server that uses multiple threads

Page 1 of 1



File: /mit/dumitran/thesis/code/pool.c Page 1 of 1

struct workitem { int fd; };
queue workitems;

void *worker_threadmain(void*) {
work-item *data;
for (;;) {

pthreadnmutex-lock(&mutex);
while (queue-empty(&workitems))
pthreadcondrwait(&cond, &nutex);

data = queue-front(&workitems); queue-pop(&workitems);
pthreadmutexunlock(&mutex);

/*

Handle connection in data->fd

*/

/* clean connection state */
close(data->fd);
free(data);

int main() {
int fd, client_fd, pid, i;
work-item *data;
pthread-t tid;
pthreacdcondt cond = PTHREAD_CONDINITIALIZER;
pthreadcmutext mutex;

fd = socket(...);
bind(fd, ...);
listen(fd, ...);

pthread-mutex-init(&mutex, NULL);

for (i = 0; i < number_ofworker_threads; ++i)
pthreadcreate(&tid, NULL, workerthreadmain, NULL);

for (;;) {
data = malloc(sizeof(connectionLdata));
data->fd = accept(fd, ...);
pthreadmutexlock(&mutex);
queue-insert(&work_items, data);
pthread-mutex unlock(&mutex);
pthreadcond_signal(&cond);

Figure 2-3: Sample socket server that uses a thread pool

File: /mit/dumitran/thesis/code/pool.c Page 1 of 1



worker threads. Worker threads enter loops where they wait for connections to be

placed on the queue. When signalled, 3 a worker thread handles the connection,

cleans connection state and then goes back to wait for more connections to be placed

on the queue.

The implementation presented in figure 2-3 uses a constant number of threads,

but a dynamic number (i.e., adapted to the load) can also be used. Although this

approach is very suited for threads (sharing data is easy), a similar approach can be

used with processes. One idea would be to allow the listening socket to be shared by

multiple processes.

2.2.4 Synchronous I/O Multiplexing

Programs can handle concurrent IO in a single thread. The key is to make sure that

data is available on an FD before an operation on that FD is issued; otherwise the

thread will block, and all IO operations would be delayed. Linux provides the system

call select that monitors multiple FDs and returns when at least one FD has changed

status (i.e., data is available for reading, a write operation has completed, or an error

has occurred). The select system call is blocking; however, if data is already available

on one or more FDs when select is called then select completes immediately.4

A skeletal implementation of a server that uses select is presented in figure 2-4.

The program creates a listening socket and a list of connections which is empty in the

beginning. The program enters a loop where it waits for the change of status of one of

its FDs: the listening socket or one of the connection sockets. If a change is detected

on the listening socket, it means a new connection is available. Consequently, the

connection is established, and the corresponding FD is added to the connection list.

If a change of status is detected on a connection FD, it means data is available on

that connection and the program takes necessary measures.5 After a connection is

3When the main thread signals the condition variable, one worker thread that is waiting on the
condition variable is awakened.

4The select system call has a timeout option and it can complete after a given period of time
even if no FDs changed status.

SFor simplicity, the code does not write to any socket. If the code used the write system call,
then the target FDs should have been monitored with select to detect when the writes complete.



File: /mitjdumitran/thesis/code/select.c Page 1 of 1

int main() {
int fd;
int connfd[1024],
fdset rset;

len = 0, n, i; /* list of connection FDs */

fd = socket(...);
bind(fd, ...);
listen(fd, ...);

for (;;) {

n = fd;
FD_ZERO(&rset); FD_SET(fd, &rset);
for (i = 0; i < len; ++i) {

FD_SET(conn_fd[i], &rset);
if (conn_fd[i] > n) n = conn_fd[i];

}

select(n, &rset, NULL, NULL, NULL);

if (FD_ISSET(fd, &rset))
conn_fd[len++] = accept(fd, ...);

for (i = 0; i < len; ++i)
if (FD_ISSET(conn_fd[i], &rset)) {

read(conn_fd[i], ...);
/*

Handle read data from connection

Figure 2-4: Sample socket server that uses the select system call

File: /mit/dumitran/thesis/code/select.c Page 1 of 1



finished, the FD must be closed and removed from the list of connections.

The main advantage for this method is efficiency: there is no overhead for creating

threads or processes. Everything is implemented within the same process, so there is

no need for IPC and, unlike threads, there is no need for thread synchronization.

2.3 Internet Protocols

2.3.1 HTTP

Traffic flow in the HTTP protocol [12] is straight-forward. The HTTP sever listens

for connections on a port (traditionally port 80). A client connects to the server and

sends a request for a page. The server sends the page on the same socket used by the

client to make the request.

The early versions of the protocol required that the client connect to the server

for each request. Starting with version 1.1, connections can be "kept alive". After

responding to a request, the server can keep the connection open. If a client has

other requests, it can send the requests using the same socket, thus eliminating the

need to create additional connections. Both the server and the client must be able

to keep the connection alive. If at least one of the server or client cannot keep the

connection alive (i.e., the implementation dates from before the option was added

to the protocol, or the developer did not implement the feature for simplicity), the

connection is closed and new connections are created for each request.

HTTP proxies are applications that act as intermediaries between HTTP clients

and HTTP servers. The main purpose of an HTTP proxy was caching. However,

recently, proxies are being used for security reasons (i.e., restricting access from a

network to HTTP traffic only). Like a server, a proxy listens for connections on

a port. A client connects to the port and makes a request. The proxy reads the

request and forwards it to the server. When the server replies, the proxy forwards

the response to the client. To a server, a proxy behaves exactly like a client; in other

words, the server cannot tell the difference between a proxy and a non-proxy client.



2.3.2 FTP

FTP [14] is slightly more complicated than HTTP. The server listens for connections

(usually on port 21). A client connects to the server and opens a socket (control

stream) used to send commands to the server.6 File transfer does not occur on the

control stream. Instead, for each file, a new TCP connection is created.

FTP has two modes : active mode and passive mode. By default, servers are in

active mode. Servers switch to passive mode if clients issue the "PASV" command

through the control stream.

In active mode, before a client downloads or uploads a file, it opens a port and

sends the port number to the server over the control stream. The server connects to

the client on the specified port, and then the data transfer begins.

In passive mode, the server opens a port and sends the port to the client over the

control stream. The client connects to the server on the specified port, and then the

data transfer begins.

Unlike HTTP, FTP has a higher overhead and it allows clients to upload files to

the server.

6 Although it happens rarely, the server can also send commands to the client.



Chapter 3

Our Approach

Our goal is to mask FD leaks of an application and to keep the application running

normally (or at least with as few errors as possible) despite the fact that it is leaking

FDs.

An FD leak will interfere with the normal execution of a program when the pro-

gram will not be able to create a new FD because all the FDs in its pool are in use.

FD creation is the only moment when FD leaks may impede a running program. Our

basic approach will be to monitor FD creation. In the case where creating an FD

fails because the entire FD pool is used, we will choose one FD and close it. The

operation of forcibly closing an FD will be called recycling.

We want our recycling mechanism to be as conservative as possible. Therefore

recycling will be delayed as long as possible, and it will only be performed when

creating a new FD would fail because of the full occupancy of the FD pool.

The most difficult part of recycling is deciding which FD to close. We cannot

really be sure if an application will ever use an FD in the future; therefore, we must

devise a heuristic that will pick an FD that is least likely to be used.

There are three rules that we will use when deciding which FD to recycle:

* (1) Try to close an FD that was as least recently used as possible.

* (2) Do not close "persistent" FDs.

* (3) Never close an FD that was used within the last 1 second.



We are going to separate FDs into two categories : 1) persistent and 2) short-lived.

Persistent FDs are used for the entire execution of the program. They are usually

dormant and are used only sporadically. They are closed at the end of the program,

or, sometimes, not explicitly closed at all. The first example of persistent FDs are

listening sockets. For an HTTP server, a listening socket can be inactive for arbitrary

periods of time (i.e. no clients are connecting to the server), but the socket is used for

the entire lifespan of the process. FDs associated with log files are another example

of persistent FDs: applications can log some events (that occur rarely) or they can

write statistics after large periods of time. Short-lived FDs are used for a short period

of time immediately after creation and then closed. Examples of short-lived FDs are

1) connection sockets used for HTTP traffic, 2) FDs used to read files requested by

HTTP clients and 3) FDs used for name resolution (files for /etc/hosts or sockets for

UDP datagrams to DNS servers).

Differentiating persistent FDs from short-lived FDs is a difficult task. First of

all, our definition is not very accurate and it leaves plenty of room for interpretation.

Secondly, determining if a program will ever use an FD again is an undecidable

problem. For the rest of this paper, FDs allocated at sites that created fewer than

five FDs will be considered persistent FDs. All other FDs will be considered short-

lived. Therefore, our second rule1 means that FDs created at sites with fewer than

five FDs allocated are not to be closed.

Initially, we considered the allocation site of an FD to be the function that creates

the FD. We found that some applications have their own wrappers for functions

like open, close, read, write, and that, using the calling function as the definition

for allocation site would cause (for some applications) most FDs to have the same

allocation site. We decided instead to have the entire stack trace (prior to the system

call) be the allocation site.

Our algorithm for choosing an FD to recycle is the following:

* (1) maintain a LRU (Least Recently Used) list of FDs

1Do not close "persistent" FDs.



* (2) whenever an FD is used or created, move it to the front of the list

* (3) whenever an FD is closed, remove it from the list

* (4) when an FD needs to be recycled, traverse the list backwards (least recently

used FD is iterated first). If the current FD was used within the last second,

then stop without recycling any FD. If the current FD is "persistent" then move

to the next FD, otherwise recycle current FD.





Chapter 4

Implementation

We wanted to implement our tool as a kernel module. The advantage was that we

would trap all system calls, but the disadvantages were that we had to duplicate state

when fork was called (and, thus, keep state for multiple processes in the kernel) and

write kernel code which is very difficult to debug. One additional disadvantage was

that user would need superuser privileges to use our tool.

We decided against implementing a kernel module and opted for a shared library

instead. More details about the shared library are given in section 4.1. Section 4.2

describes how our implementation can cause FD overloading.

4.1 Shared Library

We ended up implementing our tool as a shared library that is loaded when appli-

cations start. This approach has its features, but it has serious limitations. It is

easier to implement and debug than a kernel module and state has to be kept for

only one process. The state is automatically replicated by the kernel on forks. One

big disadvantage is that our tool shares the fate of the monitored application. If

the application crashes, our library (along with all statistics) dies as well. In order

to make up for this inconvenience, we also implemented a small statistics server to

which our library connects to report statistics. The statistics server has two roles: (1)

it makes sure that data survives if an application crashes and (2) it collects data from



more processes (that would otherwise act independently and not share statistics).

The mechanism we used to trap functions is presented in figure 4-1. The sample

code traps only calls to "read". Our library is preloaded, which means that the

dynamic linker will forward the calls to "read" to our code, not to the original libc

"read" function. When the library is loaded, we initialize the pointer to the real

"read" function to NULL. The library containing "read" might not be loaded at this

time, so asking the loader to find symbol "read" at this point could be fruitless. When

"read" is called, we ask the linker to find the address for symbol "read" (the pointer

to the libc "read" function). We perform our monitoring tasks and call the original

"read" function in the end. For performance, the pointer to the original function is

saved, so the loader is queried only once. More details about shared libraries can be

found in [5].

Libc provides access to system calls via wrappers. Our hope was that by trapping

the calls to the libc wrapper functions, we would trap all system calls. For various

reasons, we were not able to trap all system calls, but we were able to trap all system

calls that create or close FDs and most FD system calls used by our test applications.

Because we are missing some system calls, our LRU list is not exact, so our heuristic

has to make decisions based on an approximation of the real LRU list. Our results

show that our heuristic functioned properly despite our library missing system calls.

The main reasons for missing systems calls are

* (a) there are libc functions that we do not trap

* (b) users issue system calls directly (without using libc wrappers)

* (c) user programs link the libc library statically

* (d) we cannot trap libc function calls made within libc itself (because of the way

libc is linked)

Table 4.1 lists the functions that our tool traps.



File: /mit/dumitran/thesis/code/shared.c Page 1 of 1

/* demo.c */
#include <unistd.h>
#include <stdio.h>

ssize-t (*origread)(int, void*, sizet);

void lib-init(void) -attribute__((constructor));
void lib.shutdown(void) -attribute_((destructor));

void lib-init(void) {
orig..ead = NULL; /* no value for the original function */

}

void libshutdown {
/* nothing needs to be cleaned up */

}

ssize-t read(int fd, void* buffer, size_t len) {
ssize_t result;

if (!origread)
/* find address for symbol "read" (the pointer for the

original read function */
origread = ssize_t(*)(int, void*, sizet)
dlsym(RTLDNEXT, "read");

/* Perform "pre-call" tasks */
printf("Starting a read operation\n");

/* Make the original call */
result = orig...read(fd, buffer, len);

/* Perform "post-call" tasks */
printf("Read operation ended\n");

/* Return nothing to the called */
return res;

Generating the library

gcc -fPIC -g -c -Wall demo.c

gcc -fPIC -g -c -Wall demo.c
gcc -shared -Wl,-soname,libdemo.so.l -o libdemo.so.1.0.1 demo.o -lc

Running a test program (using bash as a shell)

LDPRELOAD=libdemo.so.1.0.1 <test-program>

*/

Figure 4-1: Writing wrappers for system functions using a shared library

File: /mit/dumitran/thesis/code/shared.c Page 1 of 1



ID Function Description
1 open opens or creates a file
2 creat creates a file (particular case of "open")
3 close closes an FD
4 socket creates a socket
5 accept accepts a connection and creates a socket for it
6 socketpair creates a pair of connected sockets
7 dup duplicates an FD
8 dup2 duplicates an FD; the target FD is specified
9 pipe creates a FIFO pipe

10 fopen opens a file (the result is a stream, not an FD)
11 fclose closes a steam (also releases the associated FD)
12 bind binds a socket to a specific address and port
13 listen makes a socket to listen for connections
14 connect connects a socket to a specified address
15 read reads data from an FD
16 write writes data to an FD
17 readv reads data from an FD to multiple buffers
18 writev writes data from multiple buffers to an FD
19 recvfrom reads data from a socket (more functionality than read)
20 sendto writes data to a socket (more functionality than write)
21 send a special case of sendto
22 recv a special case of recvfrom
23 select waits for the change of status of a set of FDs
24 printf prints a formatted text to the "stdout" stream
25 fflush flushes the buffers of a stream
26 fprintf prints a formatted text to a given stream
27 vprintf similar to printf
28 fvprintf similar to fprintf
29 fread reads data from a stream
30 fwrite writes data to a stream
31 fputc writes a character to a stream
32 fputs writes a string to a stream
33 sendfile copies data between a file and a socket
34 sendfile64 similar to sendfile
35 pread reads data from a file at a given offset
36 pwrite writes data to a file at a given offset
37 poll similar to select

Table 4.1: Trapped functions



4.2 FD Overloading

Our strategy of recycling FDs can potentially close an FD that is still in use and lead

to FD overloading. Overloading occurs when an application uses the same physical

number to represent two or more FDs. Figure 4-2 shows a scenario that can lead

to FD overloading. Thread A executes instructions al, and obtains value x for fd.

Thread A than executes a2 and goes on performing computations that do not use

FDs. Meanwhile, all FDs are being allocated and x is the last FD in the LRU list.

Thread B starts and tries to execute bl. Since there are no FDs available, our library

recycles an FD which happens to be x. The call in instruction bl will return x. Right

now, x is an overloaded FD. Both thread A and thread B think they each have an

FD opened and mapped to x. In reality, only thread B has an FD mapped to x.

When thread A uses FD x, it will use thread B's FD. If, after bl, the kernel decides

to interrupt thread B and run thread A, then thread A will actually corrupt B's file

by writing inappropriate information. In addition, thread A will also close B's FD

without B knowing it.

Overloading can have unpredictable consequences. In order to avoid overloading

in our tests, we used the fact that our test applications do not actually leak FDs:

their leaks are just simulated by our library. Whenever an application calls close, we

mark the FD as closable and do not release the FD. When we recycle an FD, we first

check if it is closable. If it is not, we exit with an error message.



void threaLa() {
int fd;
/* al */ fd = open(some-file, OWRONLY);
/* a2 */ write(fd, "something", 9);

/*

Wait

/* a3 */ write(fd, "bad string", 10);
/* a4 */ close(fd);

void threadb() {
int fd;
/* bi */ fd = open(some_other.file, O_WRONLY);
/* b2 */ write(fd, "good string", 11);
/* b3 */ close(fd);

}

Figure 4-2: Code fragment that can lead to FD overload

File: /mit/dumitran/thesis/code/overload.c Page 1 of 1



Chapter 5

Experimental Design

Section 5.1 presents the applications that we used in our tests and section 5.2 discusses

the environment for the tests. Finally, section 5.3 describes our experiments.

5.1 Applications

We used HTTP/FTP applications (servers, proxies and clients) to test our library be-

cause these applications make extensive use of FDs, and a leak in such an application

will most likely cause malfunctions. The applications that we used are:

* (1) Apache version 2.2.0.[1] Apache is a very popular HTTP server. It is main-

tained and developed by an open community of developers working together

with the Apache Software Foundation. Apache is available for a variety of op-

erating systems including Windows NT, Linux and MacOS. Apache is free and

open software released under the Apache License.

* (2) OOPS version 1.5.23.[3] OOPS is an HTTP proxy server comparable to

Squid. The project was started in order to offer users an alternative to Squid

which (according to the authors of OOPS) has several shortcomings.

* (3) Squid version 2.5.6.[6] Squid is a very popular proxy server and web cache

daemon. Although it offers a lot more functionality, in our tests, we have used

Squid as an HTTP proxy server.



* (4) TinyProxy version 1.6.3.[8] TinyProxy is a lightweight HTTP proxy that

comes under GPL license. It is designed to be fast and small.

* (5) WGET-1.10.2.[10] WGET is a very popular download manager that is part

of the GNU project. Its features include recursive download which means that

WGET can also be used as a web crawler.

* (6) Hydra version 0.1.8.[2] Hydra is a small multi-threaded HTTP server. Hydra

is based on Boa version 0.94.13. Hydra is covered by the GNU GPL License.

* (7) Pure-FTPd version 1.0.20.[4] Pure-FTPd is a free, secure and ease to use

FTP server. It is popular and it can be compiled and run on most UNIX-like

operating systems including Linux.

* (8) Thttpd version 2.25b.[7] Thttpd is an open source HTTP server. The "t"

before HTTP stands for tiny, turbo or throttling. Thttpd is small and fast. It

can be compiled and run under most UNIX-like operating systems including

Linux.

* (9) WebFS version 1.20.[9] WebFS is a simple HTTP server that is used mostly

for static content. It is meant to be a quick way to share information. WebFS

does not have a configuration file; it only has a few command line options.

To the best of our knowledge, none of the applications used in our tests has bugs

that can lead to FD leaks.

5.2 Experiment Environment

We ran our experiments on a computer with two 3.20Ghz Intel(R) Pentium(R) 4

CPUs and a 300Gb hard disk. The operating system was a default Fedora Core

release 4 (Stentz) full installation (all packages installed).

During our experiments, we used our libraries in three different modes:



* (1) Monitor Mode. In Monitor Mode, our library monitors FD creation, closure

and use, but does not alter the original behavior of the program. Calls to close

are forwarded to the libc function close. The purpose of Monitor Mode is to

study programs' FD allocation and use.

* (2) Leak Mode. In Leak Mode, our library monitors FD creation and use and it

disables FD closure. In Leak Mode, our library does not attempt to recycle FDs.

The purpose of Leak Mode is to see how applications behave in the presence of

FD leaks.

* (3) Fix Mode. In Fix Mode, our library monitors FD creation and use and

it disables FD closure. Furthermore, our library recycles FDs when a process

exhausts its entire pool. In order to prevent FD overloading and unpredictable

behavior, our library monitors calls to close and exits with an error when it

tries to recycle an FD that was not closed.'

In order to trap as many system calls as possible, we recompiled our test applica-

tions and had the linker link everything dynamically.

We created a directory with 1024 small (14 byte) files, 2 big (64Mb) files and one

index file that contained links to all other files. In our tests, we had WGET create

a mirror of this directory by having WGET recursively download the contents of an

HTTP or FTP server serving files from out test directory.

5.3 Experiments

For each of our HTTP servers (Apache, Hydra, Thttpd and WebFS) we ran 24 ex-

periments. We ran 10 experiments with 1 through 10 WGET clients downloading

the site serially with the library in Monitor Mode. We then ran 10 more experiments

with the library in Monitor Mode, but this time the 1 through 10 WGET clients were

downloading the site concurrently. We ran 2 experiments with our library in Leak

'The FDs are not closed per say because our library disables FD closure. Instead the FDs are
closable meaning our library detected the program tried to close the FD.



Mode: 1) 10 WGET clients downloading serially and 2) 10 WGET clients download-

ing concurrently. We repeated the two experiments above with our library in Fix

Mode.

For each of our HTTP proxies (OOPS, Squid and TinyProxy), we ran the same 24

experiments, but we had the clients download the site from an Apache server (running

without our library loaded) using a test proxy (running with our library loaded).

For our FTP server (Pure-FTPd), we ran the same 24 experiments with WGET

downloading from a Pure-FTPd server using active mode.

For all the experiments above, only the application being tested had our library

loaded. Other applications used in the experiments (WGET and, for proxy servers

only, Apache) did not have our library loaded.

For WGET, we had WGET with our library loaded download the site from an

Apache server running without our library. We ran three experiments for WGET:

one in Monitor Mode, one in Leak Mode and one in Fix Mode.

Our hope is that most FD accesses occur to FDs that are towards the front of

the LRU list (this is another way of saying that a process does not need many FDs

at any given time). We built histograms that count how many times accesses have

been made to each position on the LRU list. These histograms are called backlists.

Ideally, most accesses occur at small positions in the LRU list, and the accesses that

occur at high position refer to persistent FDs.

Because we will use backlists to present our results, we would like to spend more

time explaining the concept. When building a backlist, we are not interested in

knowing what FD was used; we only need to know the location of the FD in the LRU

list. Imagine that at the beginning of the execution (when the LRU list is initially

empty), the following sequence of FDs is used : 0, 0, 1, 1, 2, 2, 0, 3, 3, 4, 4, 2, 5,

5. The LRU lists and backlists after each FD access are presented in table 5.1. In

the first step, 0 is inserted in the LRU list, but since it did not exist in the LRU list

before it was accessed, the backlist is not changed. In step 2, 0 is located on position

0 of the LRU list, so the count of 0 is increased in the backlist. 0 is moved to the

front of the LRU list (it is not actually moved, because it was already on the first



position). Steps 3, 5, 8, 10 and 13 insert previously non-existent elements in the LRU

list and they do not modify the backlist. Steps 4, 6, 9, 11 and 14 access the first

element of the LRU list, so the count for position 0 gets incremented in the backlist.

Step 7 accesses FD 0 which is on position 2 of the LRU list. The count for position 2

is incremented and FD 0 is moved to the front of the LRU list. Step 12 accesses FD

2 which is on position 3 of the LRU list, so the count for position 3 is incremented

and FD 2 is moved to the front of the LRU list.

We define the size of a backlist 2 to be the largest position in the LRU list that

has a non-zero count in the backlist. Notice that FDs that are not used tend to slide

back in the LRU list, but unless they are used again in the future, they do not affect

the length of the backlist.3

Another note worth mentioning is that backlists tend to spread out more in Fix

Mode than in Monitor Mode. The reason behind this phenomenon is the fact that

when an FD is closed, it is removed from the LRU list (so FDs move towards the

front). In Fix Mode, calls to close are ignored, so FDs are not removed from the LRU

list.

2Backlist is a poor choice for this term because our backlists are actually maps, so backmap would
be a better term. Originally, we wrote backlists as a list; for example (0:6; 2: 1; 3: 1) was written
as (6 0 1 1). We adopted the map notation because our backlists may contain isolated entries for
large positions. The definition for the length of a backlist makes more sense if we think about the
list notation as opposed to the map notation.

3 A good example is FD 1 in table 5.1.



Step FD used LRU list backlist
1 0 0 ()
2 0 0 (0: 1)
3 1 10 (0: 1)
4 1 10 (0: 2)
5 2 210 (0: 2)
6 2 2 1 0 (0: 3)
7 0 021 (0: 3; 2: 1)

8 3 3 02 1 (0: 3; 2: 1)
9 3 3 0 2 1 (0: 4; 2: 1)
10 4 43021 (0: 4; 2: 1)
11 4 43021 (0: 5; 2: 1)
12 2 24301 (0: 5; 2: 1; 3: 1)
13 5 524301 (0: 5; 2: 1; 3: 1)
14 5 524301 (0: 6; 2: 1; 3: 1)

Table 5.1: Backlist example



Chapter 6

Experimental Results

Each of the nine sections in this chapter describes the experimental results of one

application.

6.1 Apache

We first ran Apache in Monitor Mode to observe file descriptor usage patterns. After

that, we ran Apache in Leak Mode to observe how a massive FD leak would affect

clients. In the end, we ran Apache in Fix Mode to see if our library could improve

the performance in the presence of FD leaks.

6.1.1 Apache in Monitor Mode

Even before running our experiments, we noticed that Apache is a multi-process

application that has one thread per process. We observed that the first two processes

started by the application do not serve clients; instead they are just used to read the

configuration files and start worker processes.

We ran repeated experiments with different numbers of WGET clients serially

downloading our test site. We found that a total of 8 processes (2 starter processes

and 6 worker processes) are used regardless of the number of clients used. Obviously,

as the number of clients increases so does the number of FDs created by the worker
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Figure 6-1: Number of Apache processes

processes.

We ran repeated experiments with different numbers of WGET clients concur-

rently downloading our test site. We found that the number of processes created

by Apache increases as the number of clients increases. Furthermore, FD creation

is evenly distributed among the worker processes. Figure 6-1 shows the number of

processes as a function of the number of clients.

Table 6.1 presents a list of FD allocation sites together with the function used to

allocate FDs, the number of FDs created at the site and a brief description. The data

was obtained using 10 parallel WGET clients.

We created a backlist in order to see how Apache uses file descriptors. The backlist

was obtained using 10 parallel WGET clients. As figure 6-2 shows, most of the

accesses refer to recent file descriptors. All FDs that were accessed on positions 3 or

more in the backlist were either

* (a) a pipe,

* (b) a listening socket, or



ID Function Number Description
1 open 1 opened httpd.conf
2 socket 2 sockets for listening
3 fopen 1 opened /etc/passwd
4 fopen 1 opened /etc/group
5 fopen 1 opened /etc/hosts
6 fopen 1 opened /etc/hosts
7 fopen 1 opened /etc/hosts
8 pipe 2 pipe for IPC
9 open 1 opened logs/errorJog
10 dup2 1 dup for logs/errorJog
11 open 1 opened logs/access_log
12 open 1 opened conf/mime.types
13 open 1 opened conf/httpd.conf
14 fopen 1 opened /etc/passwd
15 fopen 1 opened /etc/group
16 fopen 1 opened /etc/hosts
17 fopen 1 opened /etc/hosts
18 fopen 1 opened /etc/hosts
19 pipe 2 pipe for IPC
20 open 1 opened logs/errorlog
21 dup2 1 dup for logs/errorJog
22 open 1 opened logs/accesslog
23 open 1 opened conf/mime.types
24 open 1 opened logs/httpd.pid
25 accept 65 sockets for handling connections
26 open 5310 reading user-requested files
27 accept 57 sockets for handling connections
28 open 4962 reading user-requested files
29 socket 2 sockets for self-connecting (used to unblock accept)

Table 6.1: FD Allocation Sites for Apache



* (c) a log file (accesslog or errorlog).
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Figure 6-2: Backlist of Apache in Monitor Mode

6.1.2 Apache in Leak Mode

We ran Apache in Leak Mode with 10 parallel clients, and, to our surprise, all clients

have successfully downloaded the entire site. The reason behind this is that Apache

creates many processes when receiving a lot of simultaneous connections. Apache

created 20 worker processes (each with a pool of around 1000 file descriptors) in

order to server around 10,000 requests. Overall, Apache had twice as many FDs as

it needed for the requests.

We tried to limit the total number of FDs that Apache can use by having clients

download serially, rather than in parallel. This way, Apache does not create a large

number of processes, so it does not have as many FDs at its disposal. We ran 10

serial clients, and Apache managed to perform admirably. All but 14 files (out of a



total of 10270) were downloaded successfully. Figure 6-3 shows how many files each

client managed to download. We noticed that some processes stopped functioning

(because no more FDs could be allocated), but Apache adapted and automatically

forked new processes. Instead of 6 worker processes (that were created for a similar

load under Monitor Mode), Apache needed 13 worker processes.
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Figure 6-3: Succesful downloads with Apache under Leak Mode

6.1.3 Apache in Fix Mode

We tested Apache in Fix Mode in two situations: 10 parallel clients and 10 serial

clients. In both cases, the clients have successfully managed to download all files,

and the number of worker processes created equaled the number of processes created

under Monitor Mode.

A backlist obtained from the experiment with parallel clients is presented in figure

6-4. Most accesses are recent (positions 0, 1 or 2 in the LRU list), however, some

accesses go as far as 722. Fortunately, all three accesses going to positions 722, 448

and 212 were FDs mapped to logs/error-log, which come from allocation sites that do
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not open a lot of file descriptors. For this reason,

FDs. The FDs accessed on positions 4 though 109

our heuristic does not close these

are either:

* (a) pipes

* (b) listening sockets, or

* (c) log files (access_log or error-log).

These FDs are not closed either because of their allocation site.

6.2 Squid

We first ran Squid in Monitor Mode to observe FD usage patterns. After that, we

ran Squid in Leak Mode to observe how a massive FD leak would affect clients. In

the end, we ran Squid in Fix Mode to see if our library could improve the behavior

of the application in the presence of FD leaks.
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6.2.1 Squid in Monitor Mode

We ran Squid in Monitor Mode with different numbers of clients downloading our site

using an Apache server and a Squid proxy. We ran the tests using clients running

concurrently and clients running serially. We noticed that Squid always creates four

processes, each process having one thread. One of the four processes serves all the

requests, while the other three are used just for reading configuration files and writing

statistics. The single-threaded process that handles all requests uses the libc function

poll for asynchronous IO.
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Figure 6-5: Backlist of Squid in Monitor Mode with 10 serial clients

A backlist obtained for 10 serial clients is presented in figure 6-5. Almost all

accesses are made to positions 0, 1, 2, 3 or 4. There is one access for each of the

following positions: 5, 6 and 9. These accesses, however, use file descriptors associated

with log files. While serving serial requests, Squid does not go back beyond position

4 for active connection FDs.

The backlist obtained for 10 parallel clients, presented in figure 6-5 is more spread

out than the backlist for serial clients. The access made for position 27 refers to an



FD bound to access.log, however, active connections can be found up to position 24.
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Figure 6-6: Backlist of Squid in Monitor Mode with 10 parallel clients

We looked at how far back in the LRU list active connections occur. Figure 6-7

shows the furthest occurrence of an active connection as a function of the number of

parallel clients. It is easy to observe that active connections tend to spread out into

the LRU list as a linear function of the number of clients.

Table 6.2 shows a list of allocation sites for Squid. The number of FDs created

by each site were recorded while Squid was used by 10 clients concurrently. Most

allocation sites only create one file descriptor (or two in the case of pipes). Allocation

site 27 reads 29 HTML pages, each page corresponding to an error message. When

an error occurs, Squid returns one of its 29 error pages. Allocation site 44 reads 25

icon files which Squid uses to embed in its pages. All HTML error pages and icon

files are opened only once, and their content is loaded into main memory. The FDs

allocated at sites 27 and 44 are used only immediately after their creation, so in the

case of a leak, it would be acceptable to close them. The other allocation sites that

create many file descriptors are 49, 50, 51, 52 and 54; all of these are short-lived FDs

that handle user requests.



ID Function Number Description
1 fopen 1 opened squid.conf
2 fopen 0 used by gethostbyname
3 fopen 0 used by gethostbyname
4 fopen 1 opened /etc/resolve.conf
5 socket 1 socket used by gethostbyname
6 socket 1 socket used by gethostbyname
7 fopen 1 opened /etc/hosts.conf
8 fopen 1 opened squid.pid
9 open 0 missing optional configuration file

10 open 1 opened /dev/null
11 dup 1 dup of /dev/null
12 dup 1 dup of /dev/null
13 dup 1 dup of /dev/null
14 fopen 1 opened squid.conf
15 fopen 0 used by gethostbyname
16 fopen 0 used by gethostbyname
17 fopen 1 opened /etc/resolv.conf
18 socket 1 used by gethostbyname
19 socket 1 used by gethostbyname
20 fopen 1 opened /etc/hosts
21 fopen 1 opened squid.pid
22 fopen 1 opened cache.log
23 socket 1 used by gethostbyname
24 fopen 1 opened /etc/hosts
25 socket 1 listening socket
26 fopen 1 opened /etc/resolv.conf
27 open 29 files used for reading error messages
28 open 1 opened access.log
29 pipe 2 pipe for IPC
30 pipe 2 pipe for IPC
31 open 1 opened /dev/null
32 dup 1 dup for reading end of a pipe
33 dup 1 dup for writing end of a pipe
34 dup 1 dup of cache.log
35 dup 1 dup for reading end of a pipe
36 dup 1 dup for writing end of a pipe
37 dup 1 dup of cache.log
38 open 1 opened store.log
39 open 1 opened /dev/null
40 open 1 opened swap.state
41 open 1 opened swap.state.new
42 fopen 1 opened swap.state
43 fopen 1 opened mime.conf
44 open 25 icon files
45 socket 1 listening socket
46 socket 1 listening socket
47 fopen 1 opened /etc/services
48 open 1 opened squid.pid
49 accept 5129 client connections
50 socket 104 connections to HTTP servers
51 accept 4961 client connections
52 accept 169 client connections
53 open 1 opened swap.state
54 accept 21 client connections

Table 6.2: FD Allocation Sites for Squid
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6.2.2 Squid in Leak Mode

We ran Squid in Leak Mode with 10 parallel clients, and then with 10 serial clients.

In the case of parallel clients, most clients managed to download the first 92 files (one

client downloaded 90 files, another client downloaded 91 files, and the remaining 8

clients downloaded 92 files each). For the serial clients, the first client downloaded 926

files and exhausted the entire file descriptor pool of the server. After Squid exhausted

its FD pool, clients would hang waiting for a response from Squid and Squid would

not return any reply because it could not create sockets to connect to the HTTP

server.

6.2.3 Squid in Fix Mode

We ran Squid in Fix Mode in the same two cases used for Leak Mode (10 parallel

clients and 10 serial clients). In both cases, all the clients successfully managed to

download all the files.

A backlist with 10 parallel clients is presented in figure 6-8. The accesses made



to positions 53, 59, 300, 978 and 980 refer to log files. Active connections spread out

only up to position 34 in the LRU list.

6.3 OOPS

We first ran OOPS in Monitor Mode to observe FD usage patterns. After that, we

ran OOPS in Leak Mode to observe how a massive FD leak would affect clients. In

the end, we ran OOPS in Fix Mode to see if our library could improve the behavior

of the application in the presence of FD leaks.

6.3.1 OOPS in Monitor Mode

We ran OOPS in Monitor Mode with different numbers of clients downloading our

site using an Apache server and an OOPS proxy. We ran the tests using clients

running concurrently and clients running serially. OOPS always creates a single

process, regardless of the workload. Moreover, in the case of serial clients, OOPS

uses 9 threads. When multiple clients make requests simultaneously, the number of

threads increases. As figure 6-9 shows, the number of threads is a linear function in

terms of the number of clients.

A backlist obtained for 10 serial clients is presented in figure 6-10. Active connec-

tions use FDs only on positions 0, 1 and 2. Accesses to positions 4 and 8 are made

by FDs linked to oops.log. The access to position 12 is made by an FD linked to

access. log.

The backlist obtained for 10 parallel clients, presented in figure 6-10 is more spread

out than the backlist for serial clients. The access made for position 20 refers to a

FD bound to access.log, however, active connections spread until position 18.

We looked at how far back in the LRU list active connections occur. Figure 6-12

shows the furthest occurrence of a active connection as a function of the number of

parallel clients. It is easy to observe that active connections tend to spread out into

the LRU list as a linear function of the number of clients.

Table 6.3 shows a list of allocation sites for OOPS. The number of FDs created
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Figure 6-9: Number of OOPS threads
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ID Function Number Description
open
fopen
fopen
open
open
open
open
fopen
open
open
fopen
open
open
fopen
open
fopen
socket.
socket
open

socket
socket
fopen
accept
socket
socket
fopen

reserved FDs (opened /dev/null)5
1
3
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
5
1
1
1

10280
1102
9178
169

oops.cfg
configuration files
error template file
oops/passwd
authentication template file
authentication template file
file with redirection rules
file with redirection templates
oops/logs/oops.pid
/etc/passwd
oops/logs/oops.log
oops/logs/access.log
/etc/passwd

FD for storage (not used)
opened /etc/passwd
listening socket
listening socket
reserved FDs (opened /dev/null)
listening socket
listening socket
opened /etc/passwd
accepted connections
connections to HTTP servers
connections to HTTP servers
opened oops/logs/oopsstatfile

Table 6.3: FD Allocation Sites for OOPS

by each site was recorded when OOPS was used by 10 clients concurrently. Most of

the sites open only one file descriptor which is associated with a configuration file.

Sites 23, 24 and 25 are used for active connections. Sites 17, 18, 20 and 21 create

sockets for listening for connections. Site 26 is always used to write statistics. Sites

1 and 19 are interesting. OOPS reserves a few FDs by opening /dev/null. Initially,

OOPS reserved 25 FDs at sites 1 and 19 (FDs are allocated at a site after the FDs

from the previous site are closed), but we had to change the value from 25 to 5 in

order for our heuristic to work. This issue will be discussed in more detail when we

analyze OOPS in Fix Mode.

opened
opened
opened
opened
opened
opened
opened
opened
opened
opened
opened
opened
opened



6.3.2 OOPS in Leak Mode

We ran OOPS in Leak Mode with 10 parallel clients, and then with 10 serial clients.

In the case of parallel clients, 8 clients downloaded 48 files and 2 clients downloaded

49 files. The total number of files successfully downloaded was 482. For serial clients,

the first client downloaded 491 files, and the other clients were not able to download

any files.

In Leak Mode, after the entire pool of file descriptors is used, the system calls to

accept fail and connections are dropped.

6.3.3 OOPS in Fix Mode

When we first ran OOPS in Fix Mode, our safety check caused the program to exit

because our heuristic was closing a file descriptor that was still in use. We traced the

file descriptor to allocation site 1. We analyzed the code of OOPS, and we concluded

that OOPS reserves FDs by mapping them to /dev/null. When OOPS needs some

FDs (for accessing logs), it closes its pool of reserved FDs. Basically, this measure is

taken in order to ensure that OOPS always has some file descriptor available. OOPS

would rather drop connections than not be able to read configuration files and write

logs. The interesting thing is that the file descriptors are never used (except for open

and close). Our heuristic would work correctly by closing the file descriptor sooner

and reusing it, and later ignoring the call to close. The problem is that we would

have a file descriptor that is overloaded. In a future version, we intend to deal with

this shortcoming by creating a virtual layer of file descriptors. In order to run the

experiments with the current setup, we changed the source code of OOPS to reserve

5 (as opposed to 25) file descriptors.

We ran OOPS in Fix Mode in the same two cases used for Leak Mode (10 parallel

clients and 10 serial clients). In both cases, all the clients successfully managed to

download all the files.

A backlist with 10 parallel clients is presented in figure 6-8. Active connections

spread out only to position 23 in the LRU list. Accesses to positions 25 though 568



refer only to FDs bound to oops.log.

6.4 TinyProxy

We first ran TinyProxy in Monitor Mode to observe FD usage patterns. After that,

we ran TinyProxy in Leak Mode to observe how a massive FD leak would affect

clients. In the end, we ran TinyProxy in Fix Mode to see if our library could improve

the behavior of the application in the presence of FD leaks.

6.4.1 TinyProxy in Monitor Mode

We ran TinyProxy in Monitor Mode with different numbers of clients downloading

our site using an Apache server and a TinyProxy proxy. We ran the tests using clients

running concurrently and clients running serially. We noticed that for serial clients,

TinyProxy always creates 12 processes: two setup processes that do not handle user

requests and 10 worker processes that serve user requests. In the case of parallel

clients, as shown in figure 6-14, the number of processes tends to grow linearly as the

number of clients increases.

Backlists, for both serial and parallel clients, go back only to position 2 in each

process. This is natural because each process handles one connection at a time, and

there are 3 file descriptor needed for each connection: the listening socket, the socket

created by accept when a client connects to the proxy and a socket used by the proxy

to connect to the HTTP server.

Table 6.4 shows a list of allocation sites for TinyProxy. Sites 1, 2 and 3 are

used for logging and reading configuration files. Site 4 is used to create the listening

socket. Sites 5, 7, 17 and 19 are used for accepting user connections and connecting

to HTTP servers. All the remaining sites open /etc/hosts and are called within the

gethostbyaddr function. Sites are listed separately because the library containing

gethostbyaddr is loaded at different addresses in different processes.
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ID Function Number Description
opened etc/tinyproxy/tinyproxy.conf
opened var/log/tinyproxy.log
opened var/run/tinyproxy.pid
listening socket
accepted client connections
opened /etc/hosts (by gethostbyaddr)
connections to HTTP server
opened
opened
opened
opened
opened
opened
opened
opened
opened

/etc/hosts
/etc/hosts
/etc/hosts
/etc/hosts
/etc/hosts
/etc/hosts
/etc/hosts
/etc/hosts
/etc/hosts

(by
(by
(by
(by
(by
(by
(by
(by
(by

gethostbyaddr)
gethostbyaddr)
gethostbyaddr)
gethostbyaddr)
gethostbyaddr)
gethostbyaddr)
gethostbyaddr)
gethostbyaddr)
gethostbyaddr)

fopen
open
open

socket
accept
fopen
socket
fopen
fopen
fopen.
fopen
fopen.
fopen.
fopen
fopen.
fopen
accept
fopen.
socket
fopen
fopen
fopen
fopen
fopen

1
1
1
1

7508
755

7508
730
749
758
774
752
771
736
743
740

2772 accepted client connections
670 opened /etc/hosts (by gethostbyaddr)
2772 connections to HTTP server
1117 opened /etc/hosts (by gethostbyaddr)
428 opened /etc/hosts (by gethostbyaddr)
371 opened /etc/hosts (by gethostbyaddr)
121 opened /etc/hosts (by gethostbyaddr)
65 opened /etc/hosts (by gethostbyaddr)

Table 6.4: FD Allocation Sites for TinyProxy
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Figure 6-14: Number of TinyProxy processes

6.4.2 TinyProxy in Leak Mode

We ran TinyProxy in Leak Mode with 10 parallel clients, and then with 10 serial

clients. The number of files downloaded by the parallel clients is displayed in figure

6-15. Clients managed to download around 400 files each, for a total of 4235. In the

case of serial clients, the number of downloaded files is presented in figure 6-16. The

first three clients managed to download all 1027 files. The fourth client downloaded

275 files and the rest of the clients did not download any files. The total number of

downloaded files was 3356. More files were downloaded with parallel clients because

TinyProxy forked more worker processes.

6.4.3 TinyProxy in Fix Mode

We ran TinyProxy in Fix Mode in the same two cases used for Leak Mode (10 parallel

clients and 10 serial clients). In both cases, all the clients successfully managed to

download all the files. All accesses were made to FDs on positions 0, 1, 2, 3 and 4 of

the LRU list.
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6.5 Hydra

We first ran Hydra in Monitor Mode to observe FD usage patterns. After that, we

ran Hydra in Leak Mode to observe how a massive FD leak would affect clients. In

the end, we ran Hydra in Fix Mode to see if our library could improve the behavior

of the application in the presence of FD leaks.

6.5.1 Hydra in Monitor Mode

We noticed that, regardless of the workload, Hydra always creates two processes.

The first process has a single thread and it does not serve client requests. The second

process always has 4 threads (regardless of the workload) that all serve client requests.

Hydra uses the poll libc function for asynchronous IO.

When serving serial clients, the backlist for Hydra always stops at position 3, re-

gardless of the number of clients used. In the case of concurrent clients, the position

of furthest access in the LRU list grows linearly with the number of clients, as illus-

trated in figure 6-17. For Hydra, the full length of backlists can be accounted for by

active connections.

Table 6.5 shows a list of allocation sites for Hydra. The number of FDs created at

each site was recorded when Hydra was used by 10 clients concurrently. Sites 1 and

2 are used to map standard output to /dev/null. Sites between 3 and 11 are used for

configuration and log files. Site 12 creates a socket for listening for client connections.

Sites 13, 14, 16 and 17 create sockets for handling user requests. Finally, sites 15 and

18 read files requests by clients.

6.5.2 Hydra in Leak Mode

We ran Hydra in Leak Mode with 10 parallel clients, and then with 10 serial clients.

The parallel clients managed to successfully download between 76 and 154 files each

(figure 6-18). The total number of files downloaded by the parallel clients is 998. In

the case of serial clients, the first client downloaded 1006 files while all other clients

did not download any files.
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ID Function Number Description
1 open 1 opened /dev/null
2 dup 1 dup of /dev/null
3 fopen 1 opened hydra.conf
4 fopen 1 opened /etc/passwd
5 fopen 1 opened /etc/group
6 fopen 1 opened /etc/mime.types
7 fopen 1 opened /etc/hosts
8 open 1 opened /var/log/hydra/errorlog
9 dup 1 dup of /var/log/hydra/errorilog
10 open 1 opened /var/log/hydra/accesslog
11 dup 1 dup of /var/log/hydra/accesslog
12 socket; 1 listening socket
13 accept 22 user requests
14 accept 7 user requests
15 open 10204 files for user requests
16 accept 2 user requests
17 accept 0 user requests
18 open 62 files for user requests

Table 6.5: FD Allocation Sites for Hydra
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Figure 6-18: Succesful downloads with Hydra under Leak Mode

In Leak Mode, after the entire pool of file descriptors is used, the system calls to

accept fail and connections are dropped.

6.5.3 Hydra in Fix Mode

We ran Hydra in Fix Mode in the same two cases used for Leak Mode (10 parallel

clients and 10 serial clients). In both cases, all the clients successfully managed to

download all the files.

A backlist with 10 parallel clients is presented in figure 6-19. Active connections

spread out as far as position 70.

6.6 Pure-FTPd

We first ran Pure-FTPd in Monitor Mode to observe FD usage patterns. After that,

we ran Pure-FTPd in Leak Mode to observe how a massive FD leak would affect

clients. In the end, we ran Pure-FTPd in Fix Mode to see if our library could improve

the behavior of the application in the presence of FD leaks.
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6.6.1 Pure-FTPd in Monitor Mode

Even before running our experiments, we noticed that Pure-FTPd is a multi-process

application that has one thread per process. The first process listens for connections,

and starts children processes to handle connections.

We ran repeated experiments with different numbers of WGET clients serially and

concurrently downloading our test site through a Pure-FTPd server. Unlike any pre-

vious application, for a fixed number of clients, Pure-FTPd created the same number

of processes regardless of whether the clients were running serially or concurrently.

The number of processes needed is shown in figure 6-20. As the figure shows, Pure-

FTPd has a main processes that listens for connections and starts a new process for

each connection.

1 2 3 4 5 6 7 8 9 10
Number of WGET clients

Figure 6-20: Number of Pure-FTPd processes

Table 6.6 presents a list of FD allocation sites together with the function used to

allocate the FDs, the number of FDs created at each site and a brief description of

what the FDs are used for. The data was obtained using 10 parallel WGET clients.

Under all workloads, the backlist for the first process is very short: accesses occur



ID Function Number Description
unused socket
listening socket
listening socket
opened etc/pure-ftpd.pid
client connection
dup of a client connection
dup of (a dup of) a client connection

socket
socket
socket
open
accept
dup
dup

fopen
fopen
fopen
open
open
fopen
fopen
fopen
fopen
fopen
fopen
socket
accept
fopen
open
accept
fopen

gethostbyaddr)
gethostbyaddr)
gethostbyaddr)

1
1
1
1
10
10
10
1
1
1
10
10
1
0
1
1
1
1

10280
10
1

10270
10270

1

Table 6.6: FD Allocation Sites for Pure-FTPd

opened /etc/hosts (used
opened /etc/hosts (used
opened /etc/hosts (used
opened /dev/urandom
opened /dev/urandom
opened /etc/hosts (used
failed fopen (looking for
opened /etc/hosts (used
opened /etc/hosts (used
opened /etc/hosts (used
opened /etc/hosts (used
sockets for FTP data co
sockets for FTP data col
opened /etc/hosts (used
used to read files request
sockets for FTP data coi
opened /etc/hosts (used

by gethostbyaddr)
banner file)
by gethostbyaddr)
by gethostbyaddr)
by gethostbyaddr)
by gethostbyaddr)

nnections
nnections
by gethostbyaddr)
ed by clients
nnections
by gethostbyaddr)



to FDs only in positions 0 and 1. The backlists for all worker clients were identical

among processes used in the same workload, but also among processes used in different

workloads. A sample backlist is presented in figure 6-21. As the figure shows, all

worker processes have very short backlists.

100000

10000

1000

100

0 1 2

Position in LRU list

Figure 6-21: Backlist of a Pure-FTPd process in Monitor Mode

6.6.2 Pure-FTPd in Leak Mode

We ran Pure-FTPd in Leak Mode with 10 parallel clients and with 10 serial clients.

To our surprize, all the clients downloaded almost all the files. The number of files

downloaded by each parallel client is shown is figure 6-23 and the number of files

downloaded by serial clients is presented in figure 6-22.

We looked at the number of processes created and we have noticed that, instead

of 25 processes created by Pure-FTPd in Monitor Mode, Pure-FTPd in Leak Mode

created 50 processes. We concluded that processes that ran out of file descriptors were

terminated. As each client lost its connection to the server and then reconnected to

the main process, that process created another worker process.
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Figure 6-22: Succesful downloads with Pure-FTPd under Leak Mode (serial clients)
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Figure 6-23: Succesful downloads with Pure-FTPd under Leak Mode (parallel clients)



6.6.3 Pure-FTPd in Fix Mode

We tested Pure-FTPd in Fix Mode in two situations: 10 parallel clients and 10 serial

clients. In both cases, the clients have successfully managed to download all files,

and the number of worker processes created equaled the number of processes created

under Monitor Mode.
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Figure 6-24: Backlist of a Pure-FTPd process in Fix Mode

We also noticed that backlists for all worker processes were identical. A sample

backlist is presented in figure 6-24. The backlist is very short. In fact, it is not longer

than the backlist for processes in Monitor Mode, however, the number of accesses to

further out position is greater under Fix Mode than under Monitor Mode.

Pure-FTPd is the only application that has identical behavior for both serial and

parallel clients. Most applications create a pool of worker threads or processes that

get reused, thus keeping the number of processes or threads small for serial clients.

Unlike other applications, Pure-FTPd terminates processes after they served their

clients. Terminating a child process after its connection is handled is easier than

keeping a pool of workers, but it is more costly because of the overhead associated
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with creating new processes.

6.7 Thttpd

We first ran Thttpd in Monitor Mode to observe FD usage patterns. After that, we

ran Thttpd in Leak Mode to observe how a massive FD leak would affect clients. In

the end, we ran Thttpd in Fix Mode to see if our library could improve the behavior

of the application in the presence of FD leaks.

6.7.1 Thttpd in Monitor Mode

We ran Thttpd in Monitor Mode with a different number of clients downloading our

site. We ran the tests using clients running concurrently and clients running serially.

Thttpd always creates exactly two processes. The first process just starts the

second process and exists. The main purpose of the first process is to prevent ap-

plications starting and waiting for Thttpd from blocking. The second process has a

single thread, listens for connections and handles all client requests. Thttpd uses the

libc function poll for asynchronous IO.

Thttpd had a very short backlist when it is used by serial clients. All FDs accessed

were on positions 0 and 1 of the LRU list. The size of the backlist is longer for parallel

clients. A backlist for 10 parallel clients is shown in figure 6-25. We looked at the

sizes of backlists for different number of clients, and we concluded that, as shown in

figure 6-26, the length of the backlist was equal to the number of clients. For other

single-process applications, the length of the backlist was linear in the number of

clients, but the proportionality constant was higher.

Table 6.7 shows a list of allocation sites for Thttpd. The number of FDs created at

each site was measured with 10 parallel clients. Thttpd is a very simple application

and it has a very small number of allocation sites. Thttpd created two listening

sockets: one for IPv4 and one for IPv6 (the two sockets are created at sites 1 and

2). Site 3 created 10280 sockets used to serve files to clients (we used 10 clients,
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Figure 6-25: Backlist of Thttpd in Monitor Mode with 10 parallel clients
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ID Function Number Description
1 socket 1 listening socket
2 socket 1 socket for IPv6
3 accept 10280 client connections
4 open 1027 files requested by clients
5 fopen 0 missing error file

Table 6.7: FD Allocation Sites for Thttpd

each downloading 1027 files'). Site 4 was used to read the files requested by clients.

Unlike other tested HTTP servers, Thttpd cached the contents of the files already

downloaded, so each file was read only once. The last site tried to open an error

file (which did not exist). The error was generated when WGET tried to download

robots. txt.

6.7.2 Thttpd in Leak Mode

We ran Thttpd in Leak Mode with 10 parallel clients, and then with 10 serial clients.

In the case of serial clients, the first client managed to download 506 files (roughly

102). For parallel clients, clients downloaded between 89 and 98 files each (the exact

number of files is presented in figure 6-27). The total number of files downloaded

by parallel clients is 916. This number is considerable larger (almost double) than

the number of files downloaded by the serial clients. The reason is that the parallel

clients downloaded the same files, so fewer FDs were needed to read files from disk.

In the case of serial clients, 506 FDs were created at site 4, while only 98 FDs were

created at site 4 for parallel clients.

In Leak Mode, after the entire pool of FDs is used, the system calls to accept fail

and connections are dropped.

6.7.3 Thttpd in Fix Mode

We ran Thttpd in Fix Mode in the same two cases used for Leak Mode (10 parallel

clients and 10 serial clients). In both cases, all the clients successfully managed to

'WGET also tries to retrieve robots.txt which cannot be found.
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Figure 6-27: Succesful downloads with Thttpd under Leak Mode

download all the files.

A backlist with 10 parallel clients is presented in figure 6-28. The backlist is only

one position longer than the backlist measured in Monitor Mode.

6.8 WebFS

We first ran WebFS in Monitor Mode to observe FD usage patterns. After that, we

ran WebFS in Leak Mode to observe how a massive FD leak would affect clients. In

the end, we ran WebFS in Fix Mode to see if our library could improve the behavior

of the application in the presence of FD leaks.

6.8.1 WebFS in Monitor Mode

We ran WebFS in Monitor Mode with different numbers of clients downloading our

site. We ran the tests using clients running concurrently and clients running serially.

We found that WebFS has many similarities with Thttpd.

hi
- ------- ---- . .....
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Figure 6-28: Backlist of Thttpd in Fix Mode with 10 parallel clients

WebFS always created exactly two processes. The first process just starts the

second process and exists. The second process has a single thread, it listens for

connections and handles all client requests. WebFS uses the libc function select for

asynchronous IO.

Like Thttpd, WebFS has a very short backlist when it is used by serial clients.

All FDs accessed are on positions 0 and 1 of the LRU list. The size of the backlist

is longer for parallel clients. A backlist for 10 parallel clients is shown in figure 6-29.

We looked at the sizes of backlists for different numbers of clients, and we concluded

that, as shown in figure 6-30, the length of the backlist is equal to (or slightly smaller

than) twice the number of clients.

Table 6.8 shows a list of allocation sites for Thttpd. The number of FDs created

at each site was measured with 10 parallel clients. Like Thttpd, WebFS is a simple

application with a low number of allocation sites. Site 1 is used by WebFS to obtain

information about the host computer. Sites 2 and 3 are used to get information

about clients. /etc/hosts is opened twice: once by gethostbyname2 and once by

gethostbyadd:. It is always a good policy to call gethostbyaddr before gethostbyname2
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ID
1

Function
fopen

2 fopen

3 fopen

socket
fopen
fopen
fopen
accept
open

Number Description
1 opened /etc/hosts (used by gethostbyname2)

to get HTTP host information
1 opened /etc/hosts (used by gethostbyname2)

to get client information
1 opened /etc/hosts (used by gethostbyaddr)

to get client information
1 listening socket
1 opened /etc/mime.type
1 opened /etc/passwd
1 opened /etc/group

20 client connections
10270 files requests by clients

Table 6.8: FD Allocation Sites for WebFS

even-though gethostbyname2 also works for addresses, because gethostbyname is much

slower.

Site 4 creates the listening socket, and sites 5, 6 and 7 are used to read configura-

tion files and information about the user running the WebFS daemon. Site 5 is used

to create sockets that handle user connections. The number of such sockets is twice

the number of clients and it is much smaller than the number of files requests. Unlike

Thttpd, WebFS keeps HTTP connections alive. Site 9 is used to read requested files.

It is easy to see that WebFS does not cache files.

6.8.2 WebFS in Leak Mode

We ran WebFS in Leak Mode with 10 parallel clients and with 10 serial clients. In the

case of serial clients, the first client managed to download 1008 files and the rest of the

clients did not download any files. For parallel clients, clients downloaded between

61 and 119 files each (the exact number of files is presented in figure 6-31). The total

number of files downloaded by parallel clients is 990, which is slightly less than the

number of files downloaded by the serial clients. The difference can be accounted for

by the fact that a single socket was used by WebFS for the first serial client, but

WebFS had to create one socket for each parallel client.

In Leak Mode, after the entire pool of file descriptors is used, the system calls to
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Figure 6-31: Succesful downloads with WebFS under Leak Mode

accept fail and connections are dropped.

6.8.3 WebFS in Fix Mode

We ran WebFS in Fix Mode in the same two cases used for Leak Mode (10 parallel

clients and 10 serial clients). In both cases, all the clients successfully managed to

download all the files.

A backlist with 10 parallel clients is presented in figure 6-28. The backlist is only

two positions longer than the backlist measured in Monitor Mode.

6.9 WGET

WGET is probably the application most suited to our library. WGET downloads a

single file at a time. It has a single process and a single thread and WGET handles

only a small constant number of file descriptors at a time (the actual number depends

on the protocol used).



100000

10000

S 1000

0

100E
z

10

1

0 1 2 3 4 5 6 7 8 9 1011 121314151617181920
Position in LRU list

Figure 6-32: Backlist of WebFS in Fix Mode with 10 parallel clients

ID Function Number Description
1 fopen 1 opened /etc/hosts (used by getaddrinfo)
2 fopen 1 opened /etc/hosts (used by getaddrinfo)
3 socket 11 socket used to connect to HTTP server
4 fopen 1027 used to downloaded write file to disk
5 fopen 1 used to read first downloaded file (for links)

Table 6.9: FD Allocation Sites for WGET

We tested WGET by having WGET download our test site from an Apache server.

WGET kept the HTTP connections alive. Table 6.9 contains a list of the traces

created by WGET. Both file descriptors created at sites 1 and 2 were created by the

same single call to getaddrinfo.

In Normal Mode, all FD accesses were made to positions 0 and 1 in the LRU list.

In Fix Mode, there were accesses to positions 0, 1 and 2. All accesses to position 2

were referring to the communication socket.

WGET in Leak Mode failed to download the entire site. WGET managed to

download the first 1004 files after which it could no longer write files to disk. This

caused WGET to disconnect from the server. Future connection attempts failed



because WGET could not open /etc/hosts. In Fix Mode, WGET downloaded the

entire site.



Chapter 7

Conclusion

We have analyzed nine applications that make extensive use of FDs: four HTTP

servers (Apache, Hydra, Thttpd and WebFS), three HTTP proxies (OOPS, Squid and

TinyProxy), one FTP server (Pure-FTPd) and one download manager (WGET). For

most of these applications, an FD leak is critical: the application eventually exhausts

its pool of FDs and can no longer function properly. Our heuristic of recycling unused

FDs helps the applications continue running despite leaking FDs.

Throughout our tests, our library has never tried to close an FD that was still

in use (with the exception of the reserved FDs in OOPS). While we are aware that

our tests cannot cover all possible scenarios, and that closing a FD that is still in

use is very dangerous, our tests were performed under extreme conditions: all file

descriptors were leaked. In reality, no application can leak that many FDs without

developers noticing and correcting the problem. In a real situation, the number of

leaked FDs is much smaller, and our library is not forced to close FDs too often, thus

further reducing the chance of recycling an FD that is still in use.

Section 7.1 discusses FD allocation, while sections 7.2, 7.3 and 7.4 group the

applications according to the their method of handling concurrent IO, and discuss

more on FD usage patterns.



7.1 Allocation Sites

Our tests have shown that our heuristic for separating persistent FDs from short-lived

FDs works. Most of the allocation sites in our test application either create one (or

two in the case of pipes) FDs, or they created a number of FDs proportional to the

number of client requests. Furthermore, we have seen that most FD accesses happen

to FDs close to the front of the LRU list. The few exceptions (accesses to FDs far

back in the LRU list) were always persistent FDs.

We have also seen that applications do not have a lot of allocation sites, so even

if we reserve' a small number of FDs for each site, the pool of recyclable FDs is still

large enough.

7.2 Applications with Multiple Processes

The tested applications that use multiple processes to handle concurrent IO are

Apache, TinyProxy and Pure-FTPd. Apache and TinyProxy fork more processes

while under heavy load, while keeping the number of processes small while under

light load. Pure-FTPd just forks another process for each incoming connection. The

child process is terminated when the connection is closed.

These applications have some innate immunity to FD leaks because the application

can fork more processes that have fresh pools of FDs. When a process leaks too many

FDs and becomes unserviceable, it crashes and the kernel closes all FDs. Multi-

process applications have a natural way of getting their FDs recycled.

Multi-process applications can still exhibit problems due to FD leaks because the

applications might not fork new worker processes when processes die or because the

application creates too many children that leak enough FDs to exhaust the kernel-

wide limit.

In multi-process applications, each process usually handles a single connection,

so the backlists are extremely short. Recycling FDs in a multi-process application is

almost risk-free.

'The reserved FDs are un-recyclable.



7.3 Multi-threaded Applications

The only tested application that uses multi-threading to handle concurrent IO is

OOPS. Unlike multi-process applications, multi-threaded applications have serious

problems in the presence of FD leaks because

* (a) they do not receive new pools of FDs when spawning a new thread,

* (b) all threads share fate (if one thread crashes, so do all the others).

The advantage of multi-threaded applications is that an FD leak is contained in a

single process and it does not threaten to destabilize the entire system by depleting

the kernel of all its resources.

In single-threaded applications, all connections are handled by the same process,

so backlists are considerably longer. The furthest position of an active connection FD

is linear in the number of connections. Recycling FDs in a single process application

has a higher chance of closing an FD that is still in use.

7.4 Single-threaded Applications

The tested applications that handle all IO in a single thread are Squid, Hydra, Thttpd

and WebFS. WebFS uses select while the other three applications use poll to han-

dle concurrent IO. Single-threaded applications have similar characteristics to multi-

threaded applications.

Single-threaded applications have a drawback. Imagine that no FD is available,

and, that all FDs were used within the last second. Right now, our library fails and

does not create a new FD. A better solution would be to wait for a while, recycle

an FD and create the new FD. This is easy to do for multi-threaded applications,

however, waiting in a single-threaded application blocks the entire application, so

other FDs cannot be used in the meanwhile. Because of POSIX semantics, there are

no asynchronous calls for creating FDs.





Chapter 8

Future Work

Our library has some limitations:

* (a) not all system calls are trapped

* (b) there is no communication between instances of the library running within

different processes of the same applications

* (c) the library can cause FDs to be overloaded

* (d) to trap as many system calls as possible, applications need to be recompiled

and linked dynamically

* (e) the library can be used only with C programs.

We propose a new implementation based on the ptrace system call that uses a layer

of virtual FDs to prevent overloading. The new implementation should translate all

system calls (such that the kernel sees only real FDs and the applications see only

virtual FDs).. We propose that the new implementation create one thread for each

thread or process monitored. The advantages of this new approach are:

* (a) this method is guaranteed to trap all system calls (thus allowing the use of

the virtual layer of FDs)

* (b) this method works with all applications (even non-C) and it does not require

recompilation of source code



* (c) all decisions are made within the same external process, so gathering statis-

tics and limiting the total number of FDs (across multiple processes) can be

done easily.

We think that some challenges in implementing the new prototype are:

* (a) the system calls fork, clone and exec cause races with ptrace. If a layer

of virtual FDs is used, no system call may be missed (all system calls must

have their parameters translated); however, there is no way to have ptrace

automatically attach to a child process after fork, so the child process might

issue system calls before ptrace can attach.

* (b) the select libc function uses a bitmap for passing in sets of FDs. The size

of the bitmap is fixed, so a larger space of virtual FDs cannot be created.

* (c) the program will be running in an external process, so it will be difficult to

inject code within the targeted process.
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