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Abstract

The accurate annotation of an organism's protein-coding genes is crucial for subse-
quent genomic analysis. The rapid advance of sequencing technology has created a gap
between genomic sequences and their annotations. Automated annotation methods
are needed to bridge this gap, but existing solutions based on hidden Markov models
cannot easily incorporate diverse evidence to make more accurate predictions. In
this thesis, I built upon the semi-Markov conditional random field framework cre-
ated by DeCaprio et al. to predict protein-coding genes in DNA sequences. Several
novel extensions were designed and implemented, including a 29-state model with
both semi-Markov and Markov states, an N-best Viterbi inference algorithm, several
classes of discriminative feature functions that incorporate diverse evidence, and par-
allelization of the training and inference algorithms. The extensions were tested on
the genomes of Phytophthora infestans, Culex pipiens, and Homo sapiens. The gene
predictions were analyzed and the benefits of discriminative methods were explored.
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Chapter 1

Introduction

The accurate annotation of an organism's protein-coding genes is crucial for subse-

quent genomic analysis. While the genomes of many different organisms have been

sequenced nearly completely to date, the annotations of these genomes are not nearly

so mature. There are many reasons that sequencing has outpaced annotation; among

them is that sequencing technology has rapidly advanced since the start of the 21st

century. In contrast, there has not been an increase in fast, accurate end-to-end an-

notation tools, and so this step in translating genomes into knowledge remains largely

a manual effort.

In this thesis, we address the problem of protein-coding gene annotation. A mod-

ern annotation pipeline for such a task consists first of predicting genes using mRNA,

protein, or other species' genome homologies [18]. In eukaryotes, these methods can

quickly find at least half the protein-coding genes, but this extrinsic evidence is ex-

pensive to procure, and its availability determines the sensitivity of predictions. Ab

iritio programs, which use the DNA sequence alone, are used to predict the remaining

genes. The extensions to the gene finding program described in this thesis aim to im-

prove the state-of-the-art in gene annotation by (i) increasing the number of correctly

identified genes found with extrinsic evidence and (ii) improving the reliability of ab

initio gene prediction to find the remaining genes.

In particular, we build upon the work of [34] and [7] to create conditional random

fields (CRFs) that are capable of predicting genes more accurately than their hidden
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Markov model (HMM) counterparts. We begin with an overview of the problem do-

main and existing solutions, and a thorough description of our CRF infrastructure.

We then describe the specific extensions developed in this thesis to address the prob-

lems inherent in scaling CRFs to larger, more complex genomes. Specifically, our

hybrid 29-state model reduces algorithmic complexity; parallelization and accurate

starting points for training decrease the time needed for a train/test cycle; an N-best

Viterbi algorithm helps us tune the CRFs by showing suboptimal predictions; and

a number of probabilistic and non-probabilistic features improve prediction accuracy

using the genome sequence, sequence alignments with other species, and experimental

evidence. We test our models on the genomes of Phytophthora infestans, Culex pipiens

quinquefasciatus, and Homo sapiens, comparing several CRF and HMM-equivalent

models using various and diverse sets of evidence. We conclude by analyzing the

results and proposing directions for future work.

1.1 Genomics

An organism's genome is the means by which it passes inheritable traits to its off-

spring. The genome is composed of deoxyribonucleic acid, or DNA, tightly wound

in a double helix. DNA can be viewed as a sequence of various discrete monomers

called nucleotides. There are four different nucleotides in DNA, each differing in its

base. These four bases are the purines, adenine and guanine, and the complementary

pyrimidines, thymine and cytosine. Adenine is the complement of thymine, and gua-

nine the complement of cytosine. The two strands' sequence bases are complements

of each other, where each pair of complementary bases forms a base-pair (bp).

The central dogma of transcription and translation is the process by which a cell

maps a set of instructions (encoded as nucleotides) from its genome to functional

macromolecules, called proteins, which play essential roles in every cell process and

structure. A protein-coding gene is a sequence of DNA bases from which one or more

RNA transcripts are created that are ultimately translated into proteins. In general,

a gene may not be ultimately translated into protein, but non-protein-coding genes
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are not the targets of the gene prediction methods presented in this thesis.

On the other hand, protein-coding genes are those genes that the cell decodes

to create a protein by the process shown in figure 1-1. In the first step of the de-

coding process, known as transcription, the cellular machinery creates a strand of

pre-messenger ribonucleic acid (pre-mRNA), which is a sequence of nucleotides com-

plementary to those in the DNA. The bases are the same complements as found in

the double-stranded DNA, except that adenine in DNA is complemented by uracil in

RNA.

In eukaryotes, which are the focus of our study, a typical pre-mRNA strand con-

sists of an alternating series of exons and introns. The pre-mRNA is cut at donor

and acceptor sites, excising the introns in a process known as splicing. The remaining

exons are glued together to form mRNA.

A protein is created from the finished mRNA in a process known as translation.

Translation reads codons, which are consecutive triplets of nucleotides, and by the

genetic code converts them into amino acids. Translation starts at a start codon,

and stops at a stop codon. The amino acids are the monomers that form a protein.

The regions between start and stop codons are translated, and the others (known as

untranslated region or UTR) are not. Finally, the protein folds in a variety of ways

into its final configuration, and is used by the cell.

1.2 Comparative Genomics

Genomes are not identical among individual organisms. There are many sources

of genetic variation, including recombination, errors made while copying DNA for

offspring, mutations that occur during an organism's development, or DNA damage

caused by chemical reactions from environmental factors. There are different types

of variation as well: point mutations are changes of a single base, and indels are

insertions or deletions of a tract of nucleotides. Variation is very common, and is

fairly evenly distributed throughout the genome. Changes to the functional regions

of the genome, including its genes, usually decrease the fitness of the organism, putting
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DNA transcription start transcription end

Intergenic Exon I ntron IExon I ntron Exon Intergenic

pre-mRNA splice sites

Exon Intron Exon 1ntrqn Exon

mRNA translation start (ATG ...) translation end (... TAA)
coding region

URExon Exon Exon rlTR.

Protein codons

Amino acids

Figure 1-1: Transcription, splicing, and translation.

pressure on its lineage that can gradually build up over generations. A less-fit lineage

will not as readily survive and reproduce to pass on its genome as a more fit lineage.

Thus, changes to functional regions are usually evolutionarily selected against. Much

less commonly, mutations to functional regions in the genome can actually increase

the fitness of the organism, and so its lineage will be selected for.

Because changes to functional regions usually decrease the organism's fitness, they

are not as commonly passed on from generation to generation. This means that

changes to nonfunctional regions are more likely to be passed on, and after many

generations the functional regions are conserved while the nonfunctional regions bear

little resemblance to the ancestors'. That is, the functional regions leave a footprint

of conservation in the genome.

Thus, a significant insight into genomics is that the genomes of evolutionarily-

related organisms are themselves related, especially in functional regions [15]. In

particular, the similarity between two species' genomes is correlated with the amount
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of time that has passed since the species branched from a common ancestor. A

multiple sequence alignment among evolutionarily-related organisms will bring to

light their genomes' regions of similarity, and provide evidence for the locations of

functional regions.

A number of multiple sequence alignment (MSA) tools, such as MULTIZ, MLA-

GAN, TBA, and MUSCLE, have been developed to find these regions of similarity

among genomes using sophisticated alignment algorithms [19]. Closely-related species

may show near-perfect sequence similarity, while genomes of distantly-related species

may bear little resemblance. But by choosing two species at an appropriate evolution-

ary distance (that is, the amount of genetic change that occurred since their common

ancestor), their sequence alignments can be used to identify conserved, and likely

functional, genomic regions. Thus, MSAs are immensely useful as extrinsic evidence

(evidence other than the DNA sequence) for the presence of protein-coding genes.

1.3 Gene Prediction using Hidden Markov Models

Gene prediction can be defined as a labeling problem. Given a sequence of nucleotides

X = {xt}, the sequence of annotating labels Y = {yt} must be populated to show

where the genes are located (e.g. yt = 1 if the nucleotide xt is part of a gene, or 0

otherwise). Currently, the most advanced gene prediction tools predict such labelings

using a probabilistic model.

In particular, the hidden Markov model (HMM) has proven to be an invaluable

resource for a variety of labeling tasks including gene prediction. It is where we begin

our research into improved gene finding methods. An HMM is a Markov model in

which the sequence of states (the labels) corresponding to a sequence of observations

must be determined. Therefore, the model emits the input nucleotide sequence X,

and the sequence of labels Y are the states corresponding to each emission. The

model is parameterized by initial probabilities rY, transition probabilities Tys, for all

states y' and y, and the probability Qy(x) of each emission x at each state y. Thus,

17



the HMM defines a probability distribution over observations and labels:

L-1 L

Pr(X, Y) = 7ry H TYJ,, 1 Q (xt).
t=1 t=1

Since this distribution can be sampled to generate an observation sequence, an HMM

is referred to as a generative model.

Y, Y2 Y3 YL

X1 X2 X3 XL

Figure 1-2: An HMM's graph.

In a generalized hidden Markov model, or GHMM, an emission is not an indi-

vidual nucleotide but rather a segment (a consecutive subsequence) of nucleotides

with the same label. Therefore, the length of the segment can be explicitly modeled.

GHMM's underlie many of the successful gene prediction tools available today, such

as AUGUSTUS [30], EHMM [22], Genscan [3], Fgenesh [24], and GeneID [21].

Several well-known algorithms operate on HMMs. The forward algorithm finds the

model's joint probability Pr(X, Y) of a sequence of observations and the states that

emitted them (or, for gene prediction, nucleotides and their labels). An HMM can be

used to solve the inference problem: given a sequence of observations X, find the most

likely corresponding sequence of labels Y. This problem is solved for HMMs with the

Viterbi algorithm, which finds maxy Pr(YjX), the most-likely Y given X. For gene

prediction, the model is trained with a straightforward supervised algorithm that

counts the occurrences of the various transitions and emissions to assign probabilities

to each.

It can be readily seen that an HMM is a roundabout solution to some problems,

18



such as gene prediction, that involve inference and diverse observed evidence. In-

deed, any generative model is a roundabout solution to a labeling problem. First,

in order to find Pr(YIX) = Pr(X, Y)/ Pr(X), generative models require a complete

and accurate joint probability distribution Pr(X, Y) of the observations and their

labels. In particular, because it must model the observation distributions, extrinsic

observations are difficult to incorporate. Moreover, all the effort used to find these

distributions is not even directly useful, as the distribution of concern is Pr(YIX).

Finally, in an HMM each observation is assumed to be independent of all others given

its label, which makes it difficult for the model to consider remote observations at

any particular position.

1.4 Linear-Chain Conditional Random Fields

A conditional random field (CRF) is an alternative probabilistic model. A CRF mod-

els the probability Pr(YIX) of a sequence of hidden variables Y (the labels) given

observations X with a weighted sum of feature functions evaluated over X and Y

[16]. Graphically, nodes represent the individual yt's, as well as all of X together.

The graph's edges represent dependencies among the observations and hidden vari-

ables, where features are defined over fully-connected subgraphs, or cliques. For gene

prediction, a specific case of the CRF called a linear-chain CRF finds use [7] [34].

In a linear-chain CRF, features are evaluated over all of X and consecutive hidden

variables (y', y).

Because a CRF directly models the conditional probability of a hidden sequence

Y given observations X, it is referred to as a discriminative model [31] [32].

In a CRF, this conditional probability can be written as

Pr(YIX) = Z (X ex F (Y, X)

19



Y1 Y2 Y3 yL

x

Figure 1-3: A linear-chain CRF's graph.

or in vector notation,

1
Pr(YIX) = Z exp (A -F(Y, X)) .

ZA(X) is the normalization factor,

Z(X)= exp AjF,(Y,X)
Y \ (

For a linear-chain CRF, the jth feature sum Fj is defined to be the feature function

f3 evaluated over the entire sequence:

L

F (Y, X) = f3 (yt-1, y, X, t).
t=1

A linear-chain CRF can reproduce the predictions of an HMM if several con-

straints are placed on the model and its features. First, the hidden variables Y can

be states from a Markov model where the edges indicate allowed transitions. For

gene prediction, the same state models as HMMs can be used. Furthermore, feature

functions can model the log-probability of a transition between particular consecutive

states (transition probabilities), as well as the log-probability of an emission corre-

sponding to a particular state (emission probabilities). When the weights are each set

to 1.0, the features each output a log-probability. By the equation for Pr(YIX), these

20



feature sums are exponentiated, ultimately yielding probabilities each corresponding

to an HMM property. Thus, when the model and feature functions are defined in this

way, the CRF exactly reproduces an HMM, so the HMM can be viewed as a special

case of the CRF [31].

But the linear-chain CRF can extend the above HMM-like model as well. The fea-

ture weights do not have to be set to 1.0; instead, they can be discriminatively trained

by maximizing a criterion of our choosing. In addition, because of the normalization

factor ZA, the features do not have to produce well-defined conditional probability

distributions. Instead, they can be arbitrary real-valued functions of the observa-

tions and hidden variables, which makes incorporating additional observed evidence

a much simpler task. Finally, distant observations do not have to be independent

of each other as assumed by an HMM. The similarities between linear-chain CRFs

and HMMs are readily apparent, and we will see this theme explored throughout this

thesis.

1.4.1 Semi-Markov Linear-Chain CRFs

The strict Markov model-like CRF described above is parameterized by emission and

transition probabilities. Let a segment of the sequence of hidden variables be defined

by a triplet of start position, stop position, and label (ti, ui, vi). When multiplied

over the length of a single segment (recall the Markov assumption), the transition

probabilities implicitly form an exponential (or, equivalently, geometric) probability

distribution over the possible lengths of that label. But for some problems we would

like to explicitly model this length using some other distribution.

Thus, while the goal is to assign labels yt at individual positions t, it is use-

ful to consider explicitly the different commonly-labeled segments in a labeling. A

sequence's segmentation Y into p segments can be written as

Y = (ti, U , vi)p p.

A Markov model assigns a distinct label yt at a particular position t. The semi-
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Markov CRF (SMCRF), analogous to a GHMM, assigns a label vi to a segment

(ti, ui, vi) [25]. Feature functions are now evaluated over the entire segment, not just

individual positions, so the sums are redefined to be

p

F (Y, X) = Zf (vi_1, vi, X, ti, u),
i=1

where each feature function is parameterized by the previous segment's state vi_1,

the current segment's state vi, the observation sequence X, and the segment's start

and end positions ti and ui. Since feature functions are given the segment length as

an input, they can explicitly model the length distributions.

1.4.2 Using an SMCRF

Traditionally, a CRF's weights are trained by maximizing the conditional log-likelihood

of the correct labeling Y0 given observations X 0, which are both provided in a training

set.

ACML = argmax,(log(Pr(Y 0jX0)))

This log-likelihood is a concave function of the weights because its Hessian is the

negative covariance matrix of the feature sums [7]. Thus, its only maximum is a global

maximum. It is typically maximized using a gradient-based optimization method.

For an SMCRF, the conditional maximum likelihood gradient is computed using a

dynamic programming algorithm consisting of a forward and backward pass in some

ways similar to that used by a GHMM to compute marginal probabilities.

Likewise, the inference problem is solved using a variant of the Viterbi algorithm

similar to a GHMM's [23], which consists of a forward pass to compute best partial

paths and a backward trace through the most-likely path.

1.4.3 'Training

The weights A of a linear-chain CRF are trained using a gradient descent algorithm.

Gradient descent algorithms use an objective function FA and its gradient with re-
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spect to A to iteratively increase the value of the objective function. L-BFGS, a

limited-memory variant of the traditional Broyden-Fletcher-Goldfarb-Shanno (BFGS)

method, is one such gradient descent algorithm [37]. The BFGS method computes

an approximate Hessian matrix at each step, using these second derivatives to find

a new set of feature weights which are used to compute the objective value and its

gradient. The L-BFGS algorithm was chosen because it has been shown to perform

well on CRFs [35].

Conditional Maximum-Likelihood (CML)

Traditionally, weights are found by maximum CML. Given training data (X 0, Y 0 )

consisting of a sequence of observations and corresponding labeling Y0 , the objective

function is the conditional probability Pr(Y0jX 0 ) of the labeling given the observa-

tions. The gradient of this objective function with respect to the feature weights

is found with a dynamic programming algorithm similar to that used by HMMs to

calculate marginal probabilities. The gradient Gj for each feature is

G = F - E[F].

The expected feature sums expand to

L

E[F] = fj(y', y, X, t) Pr(y', yX),
t=1

where Pr(y', yIX0) are the marginal probabilities of consecutive labels (y', y) in Y0 .

The marginal probabilities are found using a forward and backward pass. In

the forward pass, one computes the forward feature sums a(y, t) into the label y at

position t given the observations (x 1 , x 2 , ... , Xt) from X 0 . These are found by the

recurrence

a(y, t) = exp (A - f (y', y, X 0 , t)) a(y', t - 1)

using the vector notation from above. In the backward pass, one computes the back-
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ward feature sums #(y', t) out of the label y' at position t given the observations

(xt + 1, xt + 2, ... , XL). These are found by the similar recurrence

0(y', t) = exp (A - f (y', y, X 0, t)) 0(y, t + 1)
y

Once the a's and 13's have been computed, the marginals are

1
Pr(y', yJX 0 ) = Z (X)a(y', t - 1) exp (A - f(y', y, X 0 , t)) 0(y, t),

where

ZA(X0) = o(L, y).

The objective value and the feature gradients are normalized to per-position val-

ues, which keeps them all in roughly the same order of magnitude and allows standard

optimization tolerances and easier human debugging.

To extend the algorithm to handle semi-Markov states, the expectation of the

feature sums must include all possible segment lengths 1 E 1...L':

L L'

E[Fj] = E fj(v', v, X 0 , u - 1, u) Pr(v', t, u, vIX 0 ).
u=1 1=1

The new marginal probabilities are from a previous state v' to an entire segment

(t, u, v), and are found using modified a's and O's. Namely, let a(v, u) be the forward

feature sum over all lengths 1 into the label v ending at position u. Likewise, let

73(v', t) be the backward feature sum over all 1 into v' ending at t. They are found by

the recurrences

a(v, U) = exp (A -f (v', v, X 0, U - 1, u)) a(v', u -1-1)
1=1 v'

and

( = V
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Finally, the segment marginal probabilities are

Pr(v', t, u, vIX 0 ) 1 a(v', u - 1) exp (A. f(v', v, X 0, t,u)) (v, t),
Z,\(X 0 )

where

Z,\ (X) = Z (v, L).
V

Maximum Expected Accuracy (MEA)

The CML gradient optimizes gene prediction accuracy indirectly by maximizing the

likelihood of the correct labeling. Ideally, we would optimize the feature weights

by maximizing the model's performance using the same metrics we use to evaluate

real predictions: in particular, gene prediction tools are typically evaluated by their

nucleotide, splice site, and gene accuracies. But changing the feature weights causes

different labelings to be inferred, resulting in discontinuous jumps in the accuracy

with respect to the feature weights. This accuracy would would not be concave, and

since it is not continuous, it is not differentiable either. Thus, gradient-descent would

be impossible.

In MEA, we instead compute an alternative objective function that maximizes the

model's expected accuracy over the distribution of possible segmentations that can be

produced by the CRF [7]. Using a single training sequence (Y 0 , X 0 ) for simplicity, the

accuracy of the path Y is defined to be the similarity S between Y and Y 0 given X 0 .

In turn, the similarity function S is defined to be the sum of individual comparisons

of the edges taken by the hidden paths.

p

S(Y, YO, X 0 ) = s(y_1, y, y0 1, yO, X0, i).

The objective function A is the expected value of S given weights A.

AMEA = E\[S(YYO, X)].
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Finally, the weights A are found that maximize A:

AMEA = argmaxA(AMEA(A)).

This objective function is at least differentiable because it uses only local comparisons.

But since it is not concave, we first seed the weights by maximizing CML, and then

improve them using the MEA gradient. Thus, by construction, the new weights will

improve the expected accuracy compared to the weights found by CML alone.

The gradient is defined to be the covariance of F and S [34]:

Gj = E[FS(Y,Y, X0 )] - (E[Fj])(E[S(Y,YO,X)]).

The expectation of the product expands to

L L'

E[FS(Y, Y 0 , X 0 )] = EIE fj(y', y, X, u - 1, u) Pr(y', ylX)s(y', y, y0', y0, X 0, u),
u=1 1=1

which can be computed efficiently using an additional set of forward and backward

passes similar to those used to find E[F].

To date, we have tried two different scoring functions, both giving a single point

for each correct nucleotide, and one adding in various bonuses for correct splice sites.

Empirically [7], the most interesting scoring functions are those that give a significant

bonus to splice sites, and the most successful gives 1 point for a correct nucleotide

and a 200-point bonus for a correct splice site.

1.4.4 Inference

Viterbi

The Viterbi algorithm used for inference is a straightforward variant of that used

for HMMs. We iterate over all the positions t in the sequence. For each state y at

position t we find the most likely previous state by taking the evaluation of the best

partial path to each of the possible previous states y' with the evaluation of the edge
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(y', y). The value V(t, y) of the best partial path to y at position t is thus defined by

the recurrence

maxy V(t - 1, y') + A - F(y, y', X, t), if t > 0

V(t, y) = 0, if t = 0

-00, if t < 0

In the semi-Markov case, we must expand the search over possible segment lengths

1 E 1...L', where L' is the largest allowed segment length:

maxv ...y LV(u - 1 - 1, v') + A - F(v, v', X, U - 1 - 1, U), if t > 0

V(t,v) = 0 if t = 0

-00, if t < 0

v' then is the previous state that is part of the most likely partial path to the

segment (t, u, v) [25]. We store a back pointer from the segment to this most likely

previous state. When we reach the end of the sequence, we choose the ending segment

with the highest partial path probability (where the partial path is now the complete

path), and follow its back pointers to recover the Viterbi path.

1.5 Conrad

To research the application of CRFs to gene prediction, we developed Conrad (CON-

ditional RAnDom field), a modular and extensible software CRF framework imple-

mented in Java and gene caller built on top of this framework. The following com-

ponents were developed for gene prediction, but are all easily substituted with others

for use in different problem domains or to leverage future theoretical advances.
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1.5.1 Caching Feature Evaluations

During training, we use iterative algorithms that evaluate every feature at each posi-

tion many times. But in order to simplify the process of encoding evidence as feature

functions, we prefer not to have to spend time designing efficient feature function

implementations. So instead of evaluating the features each time their values are

needed by the algorithms, we use a cache to evaluate them once and store them in

one of several cache structures. At startup, a cache processor evaluates and caches

the feature evaluations for all their possible inputs, and then the features are never

evaluated again. Thus, feature caching simplifies the process of encoding new evi-

dence by abstracting away the evaluation of the features from the optimization of

their weights.

We distinguish between feature managers, or composite features, and their con-

stituent feature functions. Each feature manager handles a class of related feature

functions. At initialization, feature managers are each assigned a sequence of feature

indices {j} where each j corresponds a feature handled by the feature manager. A

single function call is made to the feature manager, which then evaluates all of the

features it manages.

Although a feature is always defined at edges of the model, if the previous state

is not used in a particular evaluation we can optimize by evaluating the feature only

at the current state. Therefore, since features can be evaluated at edges (using the

"from" and "to" states), and also at nodes (using only the current state), we use the

general term "potential" to refer to some state or transition between states. Thus, a

feature's evaluations for all potentials at a position fully describes its output for all

possible input states and transitions at that position.

The cache processor uses several different policies, and each policy corresponds

to a feature behavior that is optimized in a different way. Each feature manager

expressly informs the cache processor of its behavior. The different cache strategies

used are as follows.

The constant strategy is used for features that do not change over different posi-
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tions in the sequence. Thus, we can simply store for each feature a triplet consisting

of the potential, feature index, and feature value. The state transitions feature man-

ager, for example, uses this cache strategy. To cache P potentials, a feature function

using this cache strategy needs O(P) space.

The sparse strategy is used for features that do not have evaluations at every

position. We build upon the constant strategy by storing the evaluation's position

alongside its potential, value and feature index. To cache evaluations for P potentials

at S different positions, a feature function using this strategy needs O(SP) space.

In contrast, the dense strategy stores the feature's evaluation for every position in a

lookup table indexed by position. To cache evaluations for P potentials in a sequence

of length L, a feature function using this strategy needs O(LP) space. While this is

the same space complexity as the sparse strategy for L positions, the table structure

allows considerably faster lookups for densely-packed evaluations, and the constant

is smaller by four bytes per position.

The dense node boundary strategy is additionally parameterized with left and

right pad values 1 and r. These instruct the cache processor not to evaluate the

feature within I positions to the left of a state transition and r positions to the right.

The reference predictor feature manager uses this strategy because it is used in concert

with the boundary features: since we want only one emission probability per position,

the reference predictor features must not give any evaluations for the boundary region

handled by the boundary features. To cache evaluations for P potentials in a sequence

of length L with T transitions, a feature function using this strategy needs O(P(L -

T(l + r))) space.

Finally, the lengths strategy stores quadruplets consisting of a length, state, fea-

ture index and value. This strategy stores a feature's evaluations for different states

over all the possible lengths a segment of that state can take. This strategy is used

by the explicit lengths features to model state lengths' distributions explicitly. To

cache Q states of maximum duration L', each explicit lengths feature thus requires

O(QL') space.
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1.5.2 Engineering Concerns

The problem of representing small probabilities cannot be understated. In order to

find the probability of a label segment, the probabilities of that label at individual

positions (which are already small fractional quantities) must be multiplied along

the entire length of the segment. These prdocuts quickly go below the smallest

allowed value using a standard floating point representation. This problem is solved

by normalizing these values using a floating point-like data structure that uses two

integers, a base and an exponent, to represent extremely small values.

Second, forward and backward feature sums must be evaluated quickly and with

low overhead. For this problem we use a circular buffer that supports constant time

inserts, deletes, and array accesses while limiting the amount of storage space required

to hold the intermediate values of the gradient computation.

Finally, transitions must be invalidated whenever possible to prune the search

space. To determine which transitions are invalid as quickly as possible, we use a ID

lookup bit-array indexed by the sequence position and all the possible state transi-

tions. These software features keep the inference and gradient algorithms tractable

even when using semi-Markov states.

1.5.3 13-State Semi-Markov Model

The semi-Markov 13-state model Interval13 reproduces a GHMM's emission, transi-

tion, and length probabilities [7], and serves as a discriminative semi-Markov platform

for the incorporation of additional evidence. Conrad was first applied to gene pre-

diction on the fungus Cryptococcus neoformans [7] using Interval13. In this thesis,

the Interval13 model finds use for other relatively small eukaryotes as well, including

Phytophthora infestans and Culex pipiens. Its states and transitions are as follows.

The intergenic state has valid transitions to any of the six exonic states: three

exoni on the positive strand, and three exonmi on the negative strand. The exonic

states have transitions back to the intergenic state as well as to the intronic states

on their respective strands: three intron states introni on the positive strand, and
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three intronm, on the negative.

Given a position t, the indices i E {0, 1, 2} are used to preserve the reading frame

as follows. The indices of the positive strand exonic states are such that the first base

in a codon satisfies t i mod 3; for negative strand exonic states the last base of

the codon satisfies t i mod 3. Both positive and negative strand intronic states

put their 3' exon in frame i. The model's transitions are constrained so that these

requirements are always satisfied. While the model technically allows its states to

be either semi-Markov or Markov (self-transitions are implicitly allowed), combining

the two causes double-counting by emission probability features at state boundaries;

therefore, it is only useful as a semi-Markov model.

intron intronl Intron2

mxnO axon I exon2

intergpnic

exonmro exonm1i exonrm2

intronmO intronml lntronm2

Figure 1-4: The IntervaI13 model for gene prediction.
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Gene Constraints

In order to limit the inference search space, this module imposes constraints on the

reference sequence at state transitions. On the positive strand, the Pstart constraint

requires that the sequence ATG (indicating the start of an open reading frame, or

ORF) is present at the start of a gene. The Pstop constraint closes the ORF, requir-

ing the one of TAA, TAG, or TGA. Within the gene, this stop sequence appears only

at the end of the gene. Finally, the Pdon and Pacc constraints require the sequences

GT and AG to start and stop an intron, respectively. The constraints on the nega-

tive strand are analogous, using reverse-complementary nucleotide sequences. Thus,

this feature is designed to improve both compute time and accuracy by invalidating

uninteresting paths.

1.5.4 Generative Features

We define the generative features to be those that exactly reproduce the emission and

transition probabilities found by an HMM. Of course, the CRF can go a step farther

by discriminatively training these features, but the ability to compare the CRF to an

HMM directly is valuable. The following classes of feature functions encode various

information about the reference sequence and its labeling. They find widespread use

in a variety of problem domains with minimal tuning.

Explicit Lengths

As described above, traditional CRFs or HMMs model state lengths implicitly using

the probability of a self-transition or transition out at each node, resulting in an

exponential distribution of the state lengths. It is clear that for many applications

this distribution is inaccurate, but these models cannot use any other.

Like a GHMM, the SMCRF allows us to model the state lengths explicitly. Specif-

ically, the state lengths composite feature provides several feature functions that use

the state length as an explicit input. With this input, we can model arbitrary state

length distributions.
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We use a mixture of gamma distributions to model accurately a variety of state

length distributions. A gamma distribution, parameterized by 0Z and 3, represents

a sum of a exponential distributions with mean 1/3 (where 3 is known as the rate

constant). Its probability density function (PDF) is given by

Pr(l) = lai-
ri F(a )

The two-component mixture model consists of a distribution for the observations

1 parameterized by (a1, i1), a distribution for the background values parameterized

by (a 2 ,02), and a bias p toward distribution 1. Together, let

0 = (Ce 1, a2, /2, P).

It is trained using the usual expectation maximization algorithm for mixture mod-

els, finding

argmaxo Pr (116) = Prr1 (()
Mix p Prr 1 ) + ( - p) Prr2()

Then, the feature at 1 evaluates to the log probability the length 1 comes from the

distribution of observations:

fi = log PPr(l) + (1 - p) Pr(l)).
(ri r2

Transition Features

This feature models the probability distribution of per-gene exon count. First, we

compute the probability of transitioning from exon to intron states by finding the

average number of introns per gene,

Pr(intron I leaving exon) = 1/ S igntrons /Igenesj.
gEgenes

Next, we compute the probability that a given exon is the final exon in the gene,
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which is the same as the probability of a transition from an exon to intergenic space:

Pr(intergenic I leaving exon) = 1/ S gexons/jgenesj.
gEgenes

So on a positive-strand donor transition or negative-strand acceptor transition, the

feature evaluates to log Pr(intron I leaving exon). On a positive-strand start or negative-

strand stop, the feature evaluates to log Pr(intergenic I leaving exon). Note that these

probabilities sum to 1 because they describe all the possibilities given that the model

is exiting the exon state.

Reference Features

The reference features evaluate the probability of a particular nucleotide in the ob-

served sequence appearing in a certain state s given the k previous nucleotides (where

k is known as the lookback). In other words, the reference predictor is a kth order

Markov model of nucleotides. It is the CRF equivalent of an HMM's emission prob-

abilities. Conrad uses a lookback of three bases for gene prediction.

Boundary Features

The nucleotide context of start, stop, and splice sites is often well-conserved. The

boundary features learn a position weight matrix (PWM) describing the probability

of finding each of the four bases at each position in these contexts. We have eight

boundary features total: one feature each of the start and stop codons per strand,

and one feature for each of the donor and acceptor splice sites per strand. At the

appropriate state boundary, the feature outputs the evaluation of the PWM for the

context surround the transition.

Optionally, this feature can be parameterized with a threshold c, which is the

fraction of valid splice sites to invalidate. Let T be the number of scored transitions.

All transitions that score below the cTth lowest score will be invalidated. This option

is designed to eliminate less interesting search paths.
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Phylogenetic Features

The phylogenetic features evaluate to the log probability of a multiple alignment

column given a nucleotide in the reference sequence using a probabilistic model of

nucleotide evolution [26]. The Kimura-80 model is used by default, but others can be

substituted. The feature requires a multiple alignment and a phylogenetic tree, with

branch lengths, of all the species. Felsenstein's algorithm (a description of which can

be found in [27]) is used to train the overall length of the tree, keeping relative branch

lengths the same. Notably, the corresponding I/O components support the popular

Fasta multiple alignment and Newick tree formats.

1.5.5 Discriminative Features

SMCRFs allow us to encode arbitrary evidence as feature functions in order to extract

additional signal and so make better-informed predictions. Incorporating additional

evidence into a GHMM requires altering the existing emission and transition probabil-

ity functions modeling the joint probability Pr(X, Y) in order to find the conditional

probability Pr(YjX). But a SMCRF models this conditional probability directly. A

feature function can be a valid probability distribution, but this feature design is not

required. A discriminative feature function is an arbitrary real-valued function that

provides evidence that the solver can use to discriminate among possible paths.

In order to improve the model's performance, each feature must extract some cor-

relation of the observed sequence with the hidden sequence that is not extracted by

other features. Increased correlation leads directly to increased performance. This

requirement is often quite difficult to satisfy in practice, as is evident in the poor per-

formance of ab initio HMM gene finders compared to those that use extrinsic evidence.

Thus, the most effective use of discriminative features is to incorporate extrinsic or

non-probabilistic evidence, such as a multiple sequence alignment or experimental

data, which frequently contains information that cannot be found by looking only at

probabilistic models of the nucleotide sequence.
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Gaps

For each aligned species S, this composite feature manages two indicator feature func-

tions for the exon regions, two for introns, and two for intergenic regions . Each pair

consists of one indicator function that captures a frameshifting gap with a bound-

ary at the current position, and one that captures a non-frameshifting gap with a

boundary at the current position.

Gap features capture gaps in the genomic alignment of the query species with

an otherwise similar species. Gaps that would shift the reading frame (of length 1

or 2 (mod 3)) rarely occur conserved exons [15], but this information is not used

by the probabilistic phylogenetic features as their model interprets gaps as missing

information [261. Thus, this feature captures effects not used by the phylogenetic

features.

Footprints

For each informant species S, we have a footprint feature each for exon, intron, and

intergenic states. Each feature is an indicator function that captures the presence

of an alignment of S with the query species at each position. Exonic regions are

more likely to be aligned than nonexonic regions because they are less likely to have

changed over the evolution of the species and also because their conservation makes

them easier to align with MSA tools. Thus, this feature as well captures effects not

used by the phylogenetic features.

1.5.6 1/O

Conrad's input facilities permit the use of a variety of file formats to inform the feature

functions. The I/O abstraction allows us to convert domain-specific file formats, such

as Fasta and GTF, to a common internal sequence representation suitable for CRF

training and inference. We use two types of internal sequences: an input sequence

contains a sequence representing observations, while a training sequence contains

the observations' correct labeling as well. As such, training sequences are used for
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training, and input sequences for inference.
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Chapter 2

Extensions to Conrad

Several extensions to Conrad were developed in this thesis. First, the hybrid 29-state

model reduces the runtime complexity of the training and inference algorithms. Sec-

ond, an N-best Viterbi algorithm aids in feature function tuning. Third, combination

features allow existing features to be combined to increase specificity. Next, novel

feature functions increase overall gene prediction accuracy. Finally, parallelization

and accurate starting weights reduce the time per train/test cycle.

2.1 Hybrid 29-State Model

Predicting genes in mammalian genomes is a much different task than for many other

organisms. Mammalian genomes, especially the human's [8], contain many short ex-

ons and long introns within a gene as well as vast intergenic regions. Significant

changes were made to the model developed for small eukaryotes to maximize predic-

tion accuracy.

The first problem the SMCRF models had to overcome in order to predict genes

in mammals is that of scaling the solutions to the training and inference problems for

larger genomes. Both the gradient and Viterbi algorithms are linear in the size of the

data set L and length of the longest allowed segment L', which may be acceptable for

smaller genomes, but is intractable for 200-megabase mammalian chromosomes with

10-kilobase introns.
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To maintain tractability, we use a hybrid model that incorporates Markov self-

transitioning states for the long intergenic and intronic sequences, and semi-Markov

state segments for the relatively short exons. These state types give the training and

inference algorithms runtime complexity linear in LL' in the short exonic regions but

only L in the significantly longer intronic and intergenic regions.

2.1.1 Preventing Emission Collisions

In order to combine these two types of states, we considered the behavior of the

features at transitions between two states of different types. The boundary features

as well as the reference features find probabilities for the emission of a nucleotide given

a position and state. To maintain equivalence with the GHMM, it is ensured during

feature evaluation that only one of these emission probability features is evaluated

for any given position. The Interval13 model uses boundary pads within which the

reference features are inactive; by construction the boundary features will be active

exactly within these pads.

However, when the introns and intergenic regions are represented by Markov

states, the model has no notion of these states' durations. As a result, the solver

cannot keep track of the number of positions we are from a boundary in order to

check whether the current position is within a pad. If Markov and semi-Markov

states were to be combined within the Interval13 model, then emission probabilities

would be double-counted at state transitions. This double-counting misrepresents the

desired model, and strays from the GHMM equivalence that we use for benchmarking.

This is undesirable because the model must extract as much signal as possible from

these core features to be competitive with ab initio gene predictors. Furthermore,

it is helpful to be able to recreate the GHMM to demonstrate the benefits of the

discriminatively-trained SMCRF versus the generative GHMM,

The Interval29 model was developed to eliminate the double-counting at bound-

aries between Markov and semi-Markov states. This model incorporates several

boundary states of length two which act as pads for the emissions features. They

are intergenic-exonic (ig-e), exonic-intergenic (e-ig), three exonic-intronic (e-ij's), and

40



three intronic-exonic (i-ej's). These boundary states occur between Markov and semi-

Markov states where the boundary features are active, but during them the reference

features have no output. Essentially, we get higher-level behavior using additional

states. Figure 2-1 shows how the Interval29 and Interval13 state models map to donor

and acceptor splice sites GT and AG, respectively.

Interval29 States

____0 0 0 (0 i
s- IN G T N --- N A G N ---

Interval13 States

Figure 2-1: Mapping from reference nucleotide sequence to Interval29 and Interval13
state models at donor and acceptor splice sites GT and AG. (N is the IUPAC code
for any base.)

While not shown in figure, the exon-to-intron and intron-to-exon boundary states

must keep track of the reading frame. By encoding the reading frame in the state, the

model mimics behavior that could have been achieved by increasing its order, which

would severely hinder performance. Figure 2-2 shows the model's full positive strand.

This state model is crucial for inference and gradient tractability in large genomes.

2.1.2 Demonstrating Equivalence to the 13-State Model

We have two strong high-level tests to confirm equivalence of the Interval29 and

Interval13 models. For the first test, we configure an Interval13 model (with feature

sums F) to use all semi-Markov states. We find the sum of its reference features

FRef and boundary features FBdary. The test asserts that an Interval29 model (with

feature sums Fj) configured with Markov intronic and intergenic states and semi-

Markov exonic states has Fpef = Fif and FBdary = FBdary. To contrast, note that if

we configure another Interval13 model (with feature sums Fj') with Markov intronic

and intergenic states and semi-Markov exonic states, we find that FRef $ FRef and

FBdary $ FBdary-
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intronO intron 1 intron2

e-i ei e-i2 i-eO - i-e2

exonO exon1 exon2

Figure 2-2: The positive strand of the Interval29 model for gene prediction.

For the second test, we set an Interval13 model (with feature sums F) with state

lengths features to model intronic and intergenic lengths explicitly as exponential

distributions, and exonic lengths as a mixture of gammas. We configure an Inter-

val29 model (with feature sums Fj) with Markov intronic and intergenic states and

semi-Markov exonic states with lengths modeled by a mixture of gammas. Note that

Interval29's explicit length features cannot model durations for intronic or intergenic

states because they each necessarily have unit length. However, simply by outputting

self- and exit-transition probabilities, Interval29's implicit length features model in-

tronic and intergenic lengths as exponential distributions. Found within the package

calhoun.analysis.crf.test, Interval29BaselineTest asserts
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(1) FExpLens-exonic = FxpLens-exonic)

(2) FExpLens-intronic = F'mpLensintronic, and

(3) FExpLens-intergenic = FmpLens-intergenic-

Thus, Interval29 can find state duration probabilities corresponding to an expo-

nential distribution but at the same time eliminates linear dependence on intronic

and intergenic lengths.

2.2 N-Best Viterbi

Often, it is useful to examine not only the single most-likely path, but all of the N

most-likely paths. Such examination is useful for accuracy tuning because it allows

us to see how close the correct labeling was to the best, and from there to adjust the

feature functions to improve the likelihood of the correct labeling.

Existing N-best algorithms [4] [1] were developed in the context of real-time speech

recognition (and, in fact, [4] was implemented for CRF inference in [6]). They are

designed to fit into heuristic-based "beam" searches, wherein the algorithm throws

away paths that score poorly in a local region according to a set of heuristics. In

contrast to speech recognition, bioinformatics applications' state models are much

more tightly constrained, eliminating the need (at present time) for a beam search.

To meet the need for a simpler N-best algorithm that works well for few paths

and small N, we developed our own based on that for a beam search but that returns

optimal solutions. We present a novel N-best Viterbi algorithm that fits bioinformat-

ics more easily than existing N-best algorithms. In contrast to existing approaches

that find the N-best paths in backward passes or use a "grow and prune" strategy

[4], we keep track of the N-best paths during the forward pass.

As a result, the modifications to the traditional Viterbi algorithm are minor.

Basically, for every position t - 1, we know for each state y' at t - 1 the N-best paths

from position 1. To extend to t, we find the N-best paths to each state y at position t

by considering all the ISIN paths (where ISI is the number of states) to the possible

previous states y' in combination with edges (y', y) to the current state.
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In more detail, the algorithm works as follows. The base case, t = 1, is trivial.

By the invariant, at step t we have the N-best partial paths to each previous state

y'. As shown in 2-3, the traditional Viterbi algorithm uses the fact that the 1st best

path to each state y always comes from a previous 1 t best path to a y'.

1 t

bb

Legend

Previous sta

a

b

te under consideration

4 - Other possible previous states

Figure 2-3: The Viterbi algorithm considers each possible previous state in turn.

Now we show the extension to N-best. To find the N-best paths to y, we need to

look not at each possible previous state y', but at each of the N-best paths to each y'.

Namely, we define the set {P,} to be the set of size N of the N-best partial paths to

state y' at position t - 1-ultimately, the algorithm returns {JPy} for position L. We

define {Q,} to be the union over y' of all the sets {Py,}, with the edge (y, y'):

{Q} =U fP } + (W', y).

Then, the N-best partial paths to a state y are the N-best paths of length t, taken

from the set {Q,}. Thus, to find {Py}, we simply take the N-best scoring paths from

{Q,}. Let the function max f(v) be the value of f(v) of rank i over the different
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inputs v. Then the recurrence for the value of the ith-best Viterbi path is

max ,I=...N V(t - 1, y') + A -F(y,

Vi(ty) = 0,

t-2 t1 t

. a a

b - b b

Legend

-" * 1 g Best Path 4- Pr
co

- -- -* 2'Best Path

- - -.- 34 Best Path

y', X, t), if t > 0

if t = 0

if t < 0.

t+"1

a

b

0

C

evious state under
nsideration

Figure 2-4: N-Best Viterbi considers all paths to all possible previous states simulta-
neously.

For example, in figure 2-4, the N-best paths to the state at come from the N-

best paths to at_1 , bt_ 1, and ct_ 1. Where the Viterbi algorithm considers only each

previous state, the N-best Viterbi algorithm considers all N paths to all previous

states together. The ati state is highlighted for clarity, but the algorithm considers

all the paths to all previous states together.

The semi-Markov extension is identical to that for the traditional Viterbi algo-
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rithm. We expand the search over possible lengths 1 = I...L':

max_ (u - , y') + A -F(y, y', X, u-i, u), if t > 0

Vi(t, y) = 0, if t = 0

-00, if t < 0.

The backward trace is somewhat more sophisticated than in the traditional Viterbi

algorithm. First, we define an end state that has edges into it from all the states at

the last position. To find the ith best path, we begin the back trace with y = end

and j = i. Let y' be the state pointed to by y's jth back pointer. We compute j', the

number of paths of rank 1...j - 1 that end in state y'. Then we set y = y' and j =j'

and repeat the process until we have traced all the y's back to the start state. The

ith best path is this set of y's that we traced back.

Correctness

We now prove the invariant, that the correct set {Py} at any position t is a subset

of {Q,}, and so can be found from the N-best partial paths {Py,} to each previous

state y'. Let PY, a the partial path that coincides with a Py until its terminal state y'

at position t - 1. If Py is among the N-best to y, then it must be the case that P' is

among the N-best to y'; otherwise, we would have at least N better paths to y that

traverse y', so Py could not be among of them. Thus, each of the N-best paths Py is

a strict (trivial) super-path of one of the N-best paths Py,. Each trivial super-path is

included in {Q,}, so we have shown that the N-best paths {PY} must be a subset of

{Q}.

Runtime Analysis

The runtime analysis can be extended from the traditional Viterbi algorithm. The

key to maintaining a runtime linear in N is to store each {Qy} and {Py} not as

sets, but as sorted lists Qy, and Py. Let S be the set of all states, and let L be the

length of the sequence. The traditional Viterbi algorithm has a time complexity of
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O(LISI2). In this algorithm, for each y' that we want to check, we cannot just look

at the value of its best partial path and the edge to y as Viterbi does. Instead, we

must look at the probabilities of all the N-best partial paths to y', combined with

the edge to y. Assembling the sorted list Qy, from the individual sorted N-best lists

PYz requires O(NISI) time, where the step takes just O(IS) time in the traditional

Viterbi algorithm. Then extracting the N-best from Qy, can be done in constant

time. So the new runtime complexity has an additional factor linear in N, giving an

overall runtime of O(NLIS 2). In the semi-Markov case, we must search over possible

segment lengths as well, so the algorithm has a runtime complexity of O(L'NLIS12 ).

Discussion

To store the N-best partial paths, we keep N back pointers from each state at each

position. The key insight is that more than one of the N back pointers from a state

can actually point to the same previous state. Although the paths can be identical

locally, over the entire sequence they will be different.

This runtime complexity is better than the worst case for [4], but worse than

their empirically-found runtime complexity. But our existing Viterbi algorithm does

not use a beam search in the forward pass anyway, so it is useful that the new N-

best algorithm does not need one either. Thus, this algorithm is a better fit for our

applications. However, this method was implemented but never used in this thesis.

2.3 Combining Signals To Increase Specificity

Combinatorial features multiply two or more traditional features to find stronger cor-

relation between the features' evaluations and the hidden sequence. They are useful

because the optimizer considers each feature sum independently, but this assumption

can be limiting. This class of features was implemented but not used. As a simple
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example, consider the hidden sequence

0( ,0<t<a

Yt 1 ,a<t<b

0 ,b<t<c

Now suppose we have two features, fi and f2, which evaluate to

1 ,0<t<a

f= {1 ,a<t<b

and

0 ,0< t <a

f2= 1 ,a<t<b

1 ,b<t<c

Clearly, neither feature is particularly well-correlated with the hidden sequence.

Both are sensitive, but neither is specific. But their product is both sensitive and

specific:

0 ,0<t<a

flf2= a<t<b

0 ,b< t< c

The combination features that we support are each the product of k features where

2 < k < Iff. For each product size k, there are If choose k possible combination

features. These features were implemented but never used in this thesis.
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2.4 Generative Features: Implicit Lengths

The implicit lengths features are the CRF-equivalent of the transition probabilities

inherently modeled by an HMM. While explicit state length models yield more accu-

rate predictions, they come at significant computational cost. For long segments the

model must assume Markov independence among its positions even though doing so

prevents the use of explicit state lengths. The implicit length features measure state

length implicitly using the probability of various state transitions.

In particular, this feature finds probabilities of self-transitions and exit-transitions

for intronic and intergenic states. The probability of a self-transition s -+ s is the ratio

of the count of transitions s - s to the count of all transitions Vs', s -+ s'. Similarly,

the probability of an exit-transition from s -+ s', s = s', is the ratio of the count

of transitions Vs' s.t. s # s', s - s' to the count of all transitions from Vs', s -+ s'.

By giving these probabilities at the corresponding transitions, the features effectively

create implicit exponential distributions over the state lengths.

2.5 Discriminative Features

There are a number of additional signals that we can consider to improve ab initio

gene prediction performance, as well as performance with extrinsic evidence. We use

discriminative features to exploit them.

2.5.1 Sequence Edges

As the continuity of a genome assembly increases, so does the likelihood that each

sequence begins and ends in an intergenic state. So for many of the genomes we

study, it would make little sense for the gene predictor to try to start in a genic state,

but by default Conrad has an equal probability of starting in any state. Therefore,

we would like to bias the beginning and end of each sequence to be intergenic. The

sequence edges feature, parameterized by k, returns 1 for each position in [1, k] and

[L - k, L] whose state is intergenic, and 0 otherwise. k is chosen by taking the mean
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of the lengths of the intergenic tracts at the beginning and end of each sequence, then

dividing by two to be more conservative.

2.5.2 GC Content

GC content is defined to be the average number of G or C bases per position over

a sequence or region. It has been observed that GC content tends to be higher in

exonic regions than surrounding intergenic and intronic regions [33J. For example, the

following figure shows the GC content of transcript RP 1 1-328M4.1-003 (Forkhead box

P4, isoform 3) from ENCODE sequence ENr334 averaged over each exonic, intronic,

and intergenic region, with exonic regions shaded.
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Figure 2-5:
region of an

GC content averaged over intergenic, exonic, and intronic regions in a
ENCODE sequence. Shaded regions are exonic.

Figure 2-5 shows that we can use GC content as an indicator of exonic regions.

The simplest approach to encoding this signal in a feature function is to average GC

content over a relatively small window (say, 200 bases, the average exon length). But
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there are a number of problems with this approach. First, while this sequence does

not show it, an exon's GC content is typically only higher than that of its neighboring

introns, not all of the introns across every sequence. Second, a windowed average will

peak at the middle of the exon, which is not where we want it; we would prefer the

feature's output to correlate with the start and end of exons so we can more accurately

identify the entire exon.

To resolve these problems, we take the ratio of two windowed averages of GC

content, finding the GC content's rate of change. Specifically, we average the GC

content over a leading window of 200 bases (approximately the length of an exon)

and the average over a trailing window of 1000 bases (approximately the length of

an intron), and divide the two. This ratio effectively gives us the rate of change of

GC content, which correlates well with the start of an exon. A similar argument

shows that we can find exon stops by taking the ratio of a 200-base tailing window

and a 1000-base leading window. The GC content features output these ratios. We

have one feature for nonexonic to exonic transitions, and another for the exonic to

nonexonic transitions.

Figure 2-6 shows that in this sequence the rate of change of GC content is generally

well-correlated with exon starts. The GC content peak in the leading intergenic region

is worth noting as well, as it may indicate a number of genetic features, including

promoters or an exon from an alternative transcript or nearby gene.

2.5.3 Branch Sites

A number of signals are necessary for cellular machinery to recognize and to splice

introns from pre-mRNA. An individual intron is spliced between its 5' donor site and

3' acceptor site by a spliceosome protein/RNA complex, which consists of several

small nuclear ribonucleic proteins (snRNPs). The spliceosome's snRNPs recognize

three major pre-mRNA sequence components: the Ul snRNP binds to the 5' donor

site, U2 binds to the branch site, and U5 binds to the 3' acceptor site.

This feature detects branch sites, which are a major mRNA sequence component

(along with the 5' and 3' splice junctions) needed for splicing to occur [13]. (Recall that
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Figure 2-6: Ratio of GC content in leading [0, 200} window over GC content in trailing
[-1000, -1] window in a region of an ENCODE sequence. Shaded regions are exonic.

the 5' and 3' splice junction consensus sequences are enforced by the gene constraints,

and their contexts are scored with the boundary features.)

Branch sites, which have the consensus sequence CU{AIG}AC in vertebrates [11],

generally occur 18-40 bases upstream of the acceptor site. The branch site feature

scores the region 18-40 bases upstream of the acceptor site by summing PWM eval-

uations of the branch site consensus sequence along this segment.

Figure 2-7 shows evaluations of a branch site PWM summed over a trailing window

in the same sequence of ENr334. If the introns had well-conserved branch sites, we

would see that the peaks were correlated with exon starts. However, instead we see

that branch sites are almost entirely not present in this ENCODE region. This is

an expected result, as it has been shown that vertebrate branch sites are generally

poorly-conserved [11]. Still, as the later results show, this feature can improve gene

prediction accuracy.
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Figure 2-7: Sum over reverse window [-40, -18] of branch site PWM evaluations in
a region of an ENCODE sequence. Shaded regions are exonic. The peaks do not
correspond with anything useful.

2.5.4 Polypyrimidine Tracts

As it has been shown that branch sites in vertebrates are not always well-conserved, we

must consider other splicing signals as well. In cases where the branch site is degener-

ate or occurs more than 40 bases upstream of the 3' splice junction, a polypyrimidine

(poly(Y), where Y is the IUPAC ambiguity code for a pyrimidine) tract is often lo-

cated in its place [5]. A poly(Y) tract is an mRNA sequence of approximately 15-20

bases consisting of a large proportion of pyrimidines, cytosine and uracil, located 5-40

bases upstream of the acceptor site.

There are two poly(Y) tract features. The first measures pyrimidine content in

the region 5-40 bases upstream of the acceptor site on the positive strand, and the

second measures purine content in the reverse region on the negative strand. Both

features measure nucleotide content in a manner similar to that in which GC content is

measured. It uses a sliding window that counts the occurrences of C and T bases 5-40
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bases upstream, then divides by the number of occurrences for 35 bases downstream.
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Figure 2-8: Average pyrimidine content over trailing window [-40, 51. Shaded regions

are exonic.

In figure 2-8, we expect peaks to correlate with exon starts becasue the feature

is averaging over a trailing window. The figure corroborates previous results [5] [201

that show that poly(Y) tracts are often found in place of branch sites in vertebrates.

Although there are many false positives, we do generally see that exon starts occur

at higher values.

2.5.5 Information Content

It has been shown that regions of high information content tend to be associated with

exons [9]. We measure the information content of a region using Fisher's measure,

I = 1/ Var(ni), where ni is a random variable indicating the proportion of base

i E {A, C, G, T}. We approximate the variance due to a sliding window of 200 bases
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with

Var(ni) ~ (n - E[n])2,
iE{A,C,G,T}

where E[ni] is found for each sequence.
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Since we are summing information content over a window centered at each posi-

tion, we expect values to be higher for exonic states, and indeed figure 2-9 shows that

this is true for the ENCODE sequence. Note that not all sequences behave as well as

this one.

2.5.6 DNAase Hypersensitive Sites

DNAase hypersensitive sites are short regions of DNA found upstream of an expressed

gene that are sensitive to cleavage by DNAase enzymes. This sensitivity is due to the

arrangement of the structural elements of chromatin, which also enables binding of

transcription factors in the region. The data consists of ranges of sequence positions
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that the experiments showed to be sensitive to DNAase cleavage and the correspond-

ing p-value for each experiment. These sites tend to occur upstream of promoters,

which are upstream of the start of transcription, so to prepare this data for Conrad

we translated the data downstream 2,000 bases.

By giving the p-values of the DNAse hypersensitive site experiments, we have a

discriminative feature that marks the regions of high DNAase sensitivity according

to the probability that the experiment gave a positive result. Specifically, we have

one feature that outputs the log of the translated p-value at an intergenic to positive-

stranded exonic transition, and another that outputs the log of the translated p-value

at an intergenic to negative-stranded exonic transition.
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2-10: Translated DNAase hypersensitive site p-values. Shaded regions are

Figure 2-10 shows that this transcript's start codon occurs in the middle of a

DNAase hypersensitive site. The second and third DNAase hypersensitive sites are

either false positives, or may be related to another transcript. This feature is a very

reliable indicator of a nearby gene start, and so is especially useful for prediction in
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mammalian genomes with vast intergenic spaces.

2.6 Rapid Iteration

Conrad encourages rapid iteration because evidence is so easy to encode. However,

some useful training and testing sets are expansive, requiring hundreds of CPU hours

to train the model and test it. The following methods were developed to test im-

provements to Conrad much more quickly.

2.6.1 Parallelization

As is typical in computational biology [17], the algorithms used by Conrad are very

parallelizable. Running different sets of sequences on different machines requires no

communication among execution paths in either the gradient or inference algorithm.

Smaller data sets reduce compute time directly because there is less data to process

as shown in figure 2-11. Since the algorithms are linear in the length of the sequence,

parallelization provides linear speedup. In some cases, parallelization can make prob-

lems tractable that were not before because memory requirements are split among

the slaves.

Both training and inference parallelization were used heavily in developing the

gene prediction models. In particular, for prediction of human genes the gradient

descent algorithm is unmanageable on a single commodity machine when run on

all 1,000 known coding genes from GenBank in the ENCODE region, but can be

completed in a few hours when run in parallel on several machines. Since it was shown

in [12] that 800 training genes are needed for a well-generalized model, parallelization

is crucial to meet the end goal of accurately predicting new genes.

Training

To parallelize training onto n machines (plus one master host), the sequences are

divided into n sets where the sum of positions of the sequences in each set are roughly

equal. Load balancing is performed using the obvious greedy algorithm: first, we sort
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the sequences from longest to shortest; then, we assign to the least-loaded machine

each sequence in this decreasing order.

For each iteration, the master host sends to the n slaves a set of weights A for

which they calculate the gradient for their assigned sequences. After the slave finds

the gradient, it simply reports it to the master, which aggregates all of the results.

The communication overhead of the parallelized training method is minimal, as each

server must send to the master only a few bytes per feature per iteration.
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Figure 2-11: Time per training iteration for 100 human genes.

Since we expect the slaves to find the gradient using the same function as in the

serial case, we need to renormalize the output. Let Le be the total length of the

sequences considered by slave i, and so the total length of sequences is >1 L2 . The

master aggregates these gradients, renormalizing the values for slave i by multiplying

by the sum of the lengths of the sequences used by slave i and then dividing again
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by the sum of the lengths of all sequences:

G 3 =ZGj. Li
ZkLk

The master then proceeds with L-BFGS in the usual manner, obtaining from L-

BFGS a new set of weights to send to the slaves next, and so on, until convergence

is reached. Since the runtime of L-BFGS is insignificant compared to that of the

gradient computation, training parallelizes very well.

Inference

The algorithm is identical to parallel training, except the slaves send back only a dense

representation of the most likely hidden states for the sequences that they were each

assigned (and there is no back-and-forth iteration). The communication overhead in

this case is minimal as well, as the master sends only the indices of the sequences

each host will analyze, and the servers send only the exon starts and stops for each

sequence back to the master.

2.6.2 Finding Accurate Starting Points

When starting the training from Vj, A3 = 1.0, the number of iterations required for

L-BFGS convergence rapidly increases with the number of features. This starting

point can be improved for the CML gradient.

If a model's core features do not often change, but other features are added or

changed, then we can reuse the old feature weights and expect that the optimizer

will converge more quickly. A simple script was developed to generate new Conrad

configurations based on a template, the previous optimal weights, and a new set of

features. In practice, this technique reduces the number of iterations required for

convergence by 80-90%, thus reducing the overall runtime of the training algorithm

by the same amount. It is worth noting that the optimizer will always converge to

the same set of weights regardless of its starting points because the CML gradient is

globally convex.
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Chapter 3

Results

We trained and tested various models, features, and gradients on the organisms Phy-

tophthora infestans, Culex pipiens, and the ENCODE regions of Homo sapiens. Our

results show with success that Conrad can be extended to use a different state model

(Interval29) and many new feature functions incorporating diverse genic evidence.

3.0.3 Data Format

All models use a naming scheme similar to [7]. The format is

Conrad [number of states] ([gradient]) [discriminative features]- [number aligned species],

e.g. Conrad29(MEA)SCBPI-2. Following are possibilities for each field and their ex-

planations.

Number of states

13 The Intervall3 model was used.

29 The Interval29 model was used.

Gradient

CML Weights were trained using the CML gradient.

MEA Weights were seeded using CML, then improved upon using MEA.

Gen Weights were fixed at 1.0.
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Discriminative features

G Gap features

F Footprint features

S Sequence edge features

C GC content features

B Branch site features

P Polypyrimidine tract features

I Information content feature

D DNAase hypersensitive site features

Number of aligned species

2 One informant species

3 Two informant species

Raining set size refers to the number of transcripts used for training. It is assumed

that testing is performed on all other transcripts available in the curated reference

set. All transcripts in the curated set are flanked by 200bp of intergenic space on

either end. Nucleotide (NT) and exon (Ex) sensitivity (Sn) and specificity (Sp) are

as defined in [12]. Correct transcripts (CT) is the fraction of complete transcripts

that were predicted correctly. Finally, since all scores are fractions, they are shown

as percentages for easier viewing.

3.1 Gene Prediction in Small Eukaryotes

3.1.1 Phytophthora infestans

P. infestans is an oomycete (a fungus-like organism) responsible for the potato disease

that caused the Irish potato famines of the mid-18th century. We tested Conrad on

the genome of this organism using comparative and ab initio models. We randomly

selected a specific number of genes for training and tested against the rest of the

curated set of 536 transcripts. For each model, we did ten replicates each of 50, 100,

200, 300, 400 and 500 training transcripts.
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All CRF models use the Interval13 state model. The comparative models use

MSAs with P. ramorum (strains of which are responsible for Sudden Oak Death

[10]) and P. sojae. The MSAs were created with MUSCLE, and the Newick tree was

created from the results in [10]. The ab initio discriminative models (Conradl3(MEA)

and Conradl3(CML)) use all of Intervall3's log-likelihood ab initio features with the

specified discriminative training method. The generative model again uses all of the

ab initio features, but weights are tied to 1.0 to reproduce an equivalent GHMM.

Figure 3-1 shows transcript accuracies for the cross-validation experiments on all

models. Table 3.1 shows scores for the best training set size for eaech model.

The high P. infestans accuracy results are not surprising given the models' im-

pressive performance on the similar Cryptococcus neoformans [7]. It is clear that

SMCRFs perform well for gene prediction on small eukaryotes. Specifically, the re-

sults show that discriminative training of equivalent GHMM features improves the

full transcript accuracy by over 10%. Furthermore, the incorporation of multiple

alignment data improves it another 3%, and training with MEA or using GC content

improves accuracy 2% more. With these experiments, the theoretical advantages of

an SMCRF over an equivalent GHMM are shown to be effective in practice.

Model NT Sn NT Sp Ex Sn Ex Sp CT
Conrad13(CML)GFC-3 97.9 94.4 78.1 80.6 58.3
Conradl3(MEA)GF-3 96.7 93.6 76.8 81.7 55.5
Conradl3(CML)GF-3 94.9 94.0 69.6 80.2 52.7
Conrad13(CML) 92.5 93.2 61.7 80.0 50.0
Conrad13(Gen) 95.5 87.9 77.1 76.7 40.9

Table 3.1: Best accuracy scores of various models and training methods for gene
prediction on P. infestans.
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Figure 3-1: Transcript accuracy on P. infestans.

3.1.2 Culex pipiens quinquefasciatus

C. pipiens is a household mosquito that serves as a vector for a number of infections

diseases including West Nile Virus. It features genes up to 32 kb in length with a

mean of 2.5 kb. For this set of experiments, we used discriminative and generative

Interval13 models as well as a discriminative Interval29 model. For Conradl3(Gen),

Conradl3(CML), and Conrad29(CML) we did ten replicates each of 50, 100, 200,

300, 400, and 500 training transcripts randomly selected from the curated set of 613

transcripts. For the additional Conrad29(CML) models, we did only 10 replicates

at 500 training transcripts because the model clearly overfits for smaller training set

sizes (as shown in figure 3-2).

The discriminative Interval13 model (Conrad13(CML)) uses all available ab ini-

tio Interval13 features with weights trained using CML. The Interval29 model Con-

rad29(CML)'s features are equivalent or as close to equivalent as possible to those

used by Conradl3(CML), and its weights are trained using CML as well. The gen-

64



erative Interval13 model Conrad13(Gen) again uses the same features, but weights

are fixed at 1.0 to reproduce an equivalent GHMM. Figure 3-2 shows the accuracy

scores from the cross-validation experiments over different training set sizes. Table

3.2 shows the best accuracy scores over the training set sizes for each model.

While the C. pipiens results indeed show that an SMCRF can accurately predict

genes in insects, they are also notable for their direct comparison of the different

Interval13 and Interval29 models. In particular, we see that the discriminatively-

trained Interval29 model performs comparably to the generative Interval13 model

given enough data to avoid overfitting, but the discriminative Interval13 model out-

performs both. There are a few reasons that we expect Interval13 to outperform

Interval29. First, Interval29 uses an implicit exponential probabilistic model of state

lengths, which is limiting compared to Intervall3's mixture of gamma distributions.

Second, splice site contexts are modeled using shorter PWM in Interval29 than the

Interval13, which further limits accuracy. Later analysis in chapter 4 discusses this

accuracy gap. The tradeoff is that the entire cross-validation experiment across all

replicates and training set sizes required just four hours with Interval29 but nearly

two days with Interval13.

In addition, we see that adding discriminative features incrementally improves

accuracy in the Interval29 model. The GC content features show improvement beyond

the noise floor, but the improvement due to the others is unclear. The improvement

due to these ab initio features tails off as we add more of them, suggesting either (i)

that there is limited remaining signal in the raw nucleotide sequence that can be used

to improve accuracy further, or (ii) the features have little value. Further testing is

required to make this determination.
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Figure 3-2: Transcript accuracy on C. pipiens.

Model NT Sn NT Sp Ex Sn Ex Sp CT

Conrad29(CML)-CBPI 94.4 95.6 66.4 76.2 51.6
Conrad29(CML)-CBP 95.3 95.4 66.8 75.2 50.8
Conrad29(CML)-CB 94.0 95.3 65.5 75.8 50.5
Conrad29(CML)-C 95.2 95.4 65.4 75.5 50.1
Conrad29(CML) 93.7 95.1 62.4 73.4 43.4

Conradl3(CML) 95.1 98.2 63.0 81.8 55.6
Conradl3(Gen) 94.9 97.4 66.7 71.2 44.3

Table 3.2: Best accuracy scores for ab initio gene prediction on C. pipiens for a variety

of models.

3.2 Gene Prediction in the Homo sapiens EN-

CODE Regions

The ENCODE (ENCyclopedia of DNA Elements) project aims to annotate the func-

tional elements of the human genome in a comprehensive manner. The project uses
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a standard set of 44 regions of 1% of the Homo sapiens (human) genome to focus

researchers' efforts.

EGASP (ENCODE Genome Annotation aSsessment Project) was a gene predic-

tion competition held in 2005. [12] The goal of the project was to test gene predictors

head-to-head. For this set of experiments, we tested Conrad on transcripts from

EGASP. In particular, we train on 364 transcripts from the 11 regions specified by

the competition, and test on the remaining 33 used for evaluation of the participants'

submitted predictions. All the CRF models use the Interval29 state model. We used

one model that incorporates DNAase hypersensitive sites, several different ab initio

models, and one comparative model with several different percentages of homology

support. Each was trained with both CML and MEA gradients for comparison. The

average transcript length is 30kb, while the longest transcript length is 804 kb . Most

of this length occurs in intronic regions, which have an average length of 3.4 kb but

can be up to 272 kb long. Table 3.3 shows accuracy scores for the different training

methods and feature sets. Figure 3-3 and table 3.4 show the effects of increased CF1

homology support in the training and test data.

Because the Interval29 model is so much faster than the equivalent Interval13

model, it was necessary for the H. sapiens experiments to be performed only with

variants of the former. The low accuracy scores are expected, as gene prediction in

mammals, and human in particular, is a much different task than gene prediction in

small eukaryotes. There are many reasons for this, including the human genome's

extremely long introns and highly-variable transcription and splicing signals. Still, as

expected from the Phytophthora and Culex experiments, we see improved accuracy

by adding discriminative features and training with MEA. The increases due to the

MEA gradient are especially noteworthy, as the MEA gradient used in [7] shows

mixed results. Incorporating DNAase hypersensitive site evidence improves accuracy

as well. Perhaps most interesting is the improvement due to increased proportions

of CF1 alignment, which strongly indicates that additional alignments will improve

accuracy even further.
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Table 3.3: Accuracy scores for gene prediction on
variety of models and training methods.

the ENCODE regions using a

Model CF1 Support NT Sn NT Sp Ex Sn Ex Sp CT
Conrad29(MEA) 0 62.8 73.1 28.3 58.0 10.2
GFSCBPI-2 20 59.2 69.3 21.9 54.4 11.2

40 68.5 75.2 31.1 57.4 15.2
60 73.6 81.7 36.4 61.5 18.5
80 78.4 86.4 41.6 64.3 21.0

100 91.0 87.9 57.5 71.1 30.7
Conrad29(CML) 0 50.1 81.8 22.4 61.0 6.6
GFSCBPI-2 20 56.2 79.9 24.3 60.7 12.6

40 61.8 84.9 26.5 61.0 14.5
60 60.7 85.6 22.8 61.1 16.0
80 60.5 89.0 18.6 59.2 19.8

100 64.4 92.7 20.1 66.0 27.4

Table 3.4: Accuracy scores for best comparative model on ENCODE transcripts
versus proportion of sequences supported by CF1 homology.
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Model NT Sn NT Sp Ex Sn Ex Sp CT
Conrad29(MEA)SCBPID 60.3 72.9 26.7 60.1 11.1
Conrad29(CML)SCBPID 52.8 83.6 26.7 65.0 8.2
Conrad29(MEA)SCBPI 62.0 73.5 26.6 58.2 9.8
Conrad29(CML)SCBPI 50.1 81.8 22.4 61.0 6.6
Conrad29(MEA) 56.9 70.1 22.2 52.4 6.1
Conrad29(CML) 42.6 78.1 15.8 55.3 5.5
Conrad29(Gen) 47.0 58.5 9.1 37.2 1.8
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Figure 3-3: Transcript accuracy on ENCODE regions versus percent of sequences
supported by CF1 homology. Sequences with CF1 alignments are three times more
likely to be predicted correctly.
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Chapter 4

Discussion

We showed that a CRF can reproduce the results of an HMM, and that it can improve

these results by training its weights. Moreover, the CRF is useful in incorporating

diverse evidence with no known probabilistic interpretation encoded as feature func-

tions. We have used a wide variety of methods to extract signal from this data in the

feature functions.

1. We can find a probability distribution for the data (as an HMM does) using a

Markov model over the reference sequence, a trained PWM at state boundaries,

or a phylogenetic model.

2. We can pass the data through a simple filter, as we did for GC content and

others.

3. We can evaluate the output of other programs or methods, as we did for DNAase

hypersensitive sites' p-values.

Although not explored in this thesis, we can also combine sets of feature functions

using combination features. There is preliminary evidence that these features improve

performance, but the current weight optimization methods do not scale well for the

exponential number of combination features. To measure the combination features'

usefulness, we will either have to try other training methods (as suggested in [7] and

[31]) or choose these features very specifically.
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There remain many other questions to be answered as well. First, the perfor-

mance gap between the Interval13 and Interval29 models needs to be fully explained.

Although the implemented tests appear to demonstrate high-level equivalence, it is

not clear that this is the case. The two proposed differences, the differing state length

distributions and splice site models, may not fully explain the gap. Instead, it is pos-

sible that bugs exist either in the solver or model that are preventing Interval29 from

attaining better accuracy scores. Before the model is extended further, it is necessary

to explore these issues.

The limited cross-validation results prevent us from directly determining the

marginal value of particular models and features. The GC content features, for in-

stance, clearly add value, but the branch sites, polypyrimidine tracts, and information

content features may not. We must test additional combinations of these features to

determine the value of each. The limited results are due to compute time limitations,

but they will be expanded as the parallelization code is improved.

It is interesting that the MEA gradient consistently improves accuracy scores, as

the results for this gradient in [7] are mixed. One possible explanation is that, for

the tests performed in this thesis, the L-BFGS algorithm was allowed to iterate until

floating point precision prevented it from improving the objective value any further.

This method was made possible by the training parallelization, as the number of

iterations it requires is much larger than is needed to meet the obtainable eps value

used in [7]. Another possible explanation is that the objective function's "landscape"

is significantly different for varying organisms. These explanations are speculative

until comprehensive tests can be performed.

The difference in accuracy due to comparative data in H. sapiens and P. infestans

is noteworthy. Transcripts are three times more likely to be correctly predicted with

full alignment support on H. sapiens. But on P. infestans, with 1.5x support from

two different species, the comparative models improve transcript accuracy only 3%.

We are unsure of the cause of this, and need to examine the properties (especially

the homology support) of the individual train and test sets to find an explanation.
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In addition, a number of future directions for CRF gene prediction stem from

results presented in this thesis. First, it would be interesting to develop a long intron

state model similar to that used by AUGUSTUS. [30] Since the long introns in human

genes are difficult to model probabilistically, such a state model should improve ac-

curacy. It will also be interesting to compare the performance of Intervall3's mixture

of gamma distributions versus the AUGUSTUS distribution.

Second, it would be useful to parameterize features using properties of the se-

quence. For instance, it was found in [36] that genes with higher GC content tend to

have more and longer exons. Such properties are trivial to encode in feature functions,

and there is substantial evidence that they will improve gene calling accuracy.

While the signals extracted in the discriminative feature functions were found

using custom solutions, results from external programs can be used as well. For

example, we use the information content feature to detect repeats and other regions

of low complexity, but this signal could easily be incorporated using the output from

a program such as RepeatMasker [28]. In this way, we can use discriminative features

to leverage the wealth of available programs that produce evidence for the presence

of genes.

Indeed, gene prediction is not the only application that would benefit from com-

bining output from external programs. Motif-finding is a rapidly maturing problem

for which a vast number of programs have been written. Conveniently, these motif-

finding programs generally output their predictions as consensus sequences or PWMs,

which can be easily incorporated into a CRF simply by evaluating them. The CRF's

supervised discriminative training algorithm will then evaluate them each for signifi-

cance as a theoretically-sound "ensemble" algorithm [14]. We hypothesize that such

a CRF-based prediction model would be at least as accurate as its most accurate

constituent motif-finding program.

CRFs can go even farther for motif-finding. A skip-chain CRF (SCCRF) extends

the linear-chain CRF by including skip edges between remote hidden variables [31].

These skip edges allow one to define features on multiple instances of a single label,

such as, for instance, "motif." Motifs are notoriously difficult to find because there
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is such little apparent signal available that we can use to detect their presence. By

combining evidence from multiple instances of the same motif, we can more accurately

label it. However, there is no polynomial-time exact solution to the inference problem

for SCCRFs, so it requires approximation algorithms to solve efficiently. Still, this is

an interesting path for future work.

Finally, predicting alternative transcript poses problems for gene prediction tools,

which typically predict only to make one transcript per gene. However, evidence

indicates that returning suboptimal solutions to the inference problem can accurately

predict alternative transcripts [21 [29]. Since this is exactly what the N-best Viterbi

algorithm is designed to do, this is a worthwhile application to explore.

We have demonstrated the ability to extend Conrad and therefore validated its

use as a platform for research in gene prediction. These results, as well as those

from [7] and [34], show that many applications of CRFs and related models are

likely to appear in the near future. Conrad is one of the first in what will be a

wave of discriminative approaches to varied and interesting problems in the field of

bioinformatics and beyond.
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