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Abstract

The chaotic behavior of dynamical systems underlies the foundations of statistical mechanics
through ergodic theory. This putative connection is made more concrete in Part I of this
thesis, where we show how to quantify certain chaotic properties of a system that are of
relevance to statistical mechanics and kinetic theory. We consider the motion of a particle
trapped in a double-well potential coupled to a noisy environment. By use of the classic
Langevin and Fokker-Planck equations, we investigate Kramers' escape rate problem. We
show that there is a deep analogy between kinetic rate theory and stochastic chaos, for
which we propose a novel definition.

In Part II, we develop techniques based on Volterra series modeling and Bayesian non-
linear filtering to distinguish between dynamic noise and measurement noise. We quantify
how much of the system's ergodic behavior can be attributed to intrinsic deterministic
dynamical properties vis-a-vis inevitable extrinsic noise perturbations.
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Chapter 1

Introduction

The diversity of the phenomena of Nature is so great, and the treasure hidden

in the heavens so rich, precisely in order that the human mind shall never be

lacking in fresh nourishment.

-Johannes Kepler [154]

Statistical mechanics describes the macroscopic physical properties of a large system of

particles, in terms of the average properties of a large ensemble of mechanically identical

systems which satisfy the same macroscopic constraints as the particular system of inter-

est [233] [251]. It has been applied successfully to a wide variety of equilibrium systems,

from simple molecular gases to white dwarf stars [71]. In spite of its great success, nonequi-

librium statistical mechanics suffers from a lack of firm foundations especially concerning the

intrinsic dynamical properties which may justify the introduction of irreversible phenomeno-

logical equations. The paradox of irreversibility is well known, the macroscopic equations

are irreversible due to transport and other dissipative processes, while Hamiltonian equa-

tions (microscopic laws of mechanics) are time-reversal invariant. The recognition of the

second law of thermodynamics must be something more than a consequence of Newton's

laws led to the introduction of probabilistic ideas into this branch of physics.

1.1 Statistical mechanics, thermodynamics, and chaos

James Clerk Maxwell (1831-1879) and Ludwig Eduard Boltzmann (1844-1906) opened the
way to reconcile such paradoxes by their introduction of statistical ensembles of trajectories

in phase space [24] [191]. They were aware of the need to provide a better mechanical

foundation for the second law of thermodynamics beyond the stochastic arguments advanced
by Boltzmann. This gave rise to the notion of the ergodic behavior of a mechanical
system. Boltzmann argued that, for systems with a large number of degrees of freedom,



most of the phase space is taken up by regions where the macroscopic properties of systems

in them have values very close to those we associate with thermodynamic equilibrium.

Boltzmann then made the hypothesis that a mechanical system's trajectory in phase space

will spend equal times in regions of equal phase-space measure. Granting for the moment

the validity of Boltzmann's hypothesis, one can prove that the long-time average of some

property of the system is then equal to an ensemble average, taken with respect to the

so-called microcanonical distribution. From this, one can derive all of the results of

statistical thermodynamics for classical systems. Of course, the problem of proving the

ergodic character of a given mechanical system was left unsolved today.

After the work of Maxwell and Boltzmann, Josiah Willard Gibbs (1839-1903) [103]

introduced the notion of a mixing system. Using the idea of mixing a drop of oil in an

immiscible fluid, Gibbs argued that if one likened a small set of points in phase-space to

the "drop of oil", then the dynamical evolution of such a set would lead to its becoming

uniformly mixed over the entire phase space. That is, Gibbs argued that it's reasonable to

try to characterize the mixing property of a dynamical system by saying that infinitesimally

close points in any small set in phase space will separate so rapidly that the set becomes

"strung out" over a large region of phase-space in a short amount of time. If so, we will say

that the system is mixing. In later chapters, we will characterize the rate of separation of

nearby trajectories in phase-space by quantities called Lyapunov exponents. If a system

possesses trajectories that separate at an exponential rate, we call such systems chaotic.

The irregular behavior of dynamical systems which might allow for the mixing or ergodic

behavior is not typical of the simple linear or integrable systems that we usually study in

classical mechanics-such as harmonic oscillators or the two-body problems. Jules Henri

Poincard (1854-1912), in his analysis of the gravitational three-body problems, showed

that the motion of such systems can be very complicated indeed, and not easily described

by ordinary mathematical notions of continuity, differentiability and perturbation analysis.

These systems characteristically exhibit the phenomenon of a homoclinic tangle, which is

a complicated intersection of curves describing the system's motion in time, which remains

complicated on an infinitesimally fine scale. Thus, in the early part of the 20th century

there was a convergence of two lines of considerations for mechanical systems-one from

statistical mechanics, and one from celestial mechanics-both of which suggested that most

dynamical systems should have properties very different from linear systems. The advent

of modern computers has opened an era of systematic exploration of phase-space structures

that helped solidify our understanding of chaos in dynamical systems.

In the late 1930s and early 40s, visionaries like Norbert Wiener (1894-1964) [297],
Stanslaw Ulam (1909-1986) and John von Neumann (1903-1957) [283] paved the way to the

fusion of dynamical systems theory with probability theory. Major advances in the theory

of dynamical systems were made by the group in Russia around Andrei N. Kolmogorov

(1903-1987) [160], and including Dmitri V. Anosov [9], Yakov G. Sinai [261], Yakov B.



Pesin [221], and others. In the late 1940s, the connection between ergodic theory and in-

formation theory developed by Claude E. Shannon (1916-2001) [254] was a turning point

which led to the widespread recognition that deterministic dynamical systems may be as

random as a coin tossing process. Statistical formalism of dynamical chaos, elaborated in

particular by Rufus Bowen and David P. Ruelle [27] from the analogy between the time

randomness of chaotic trajectories and the space randomness of a system configuration in

equilibrium statistical mechanics. These authors developed the mathematical foundations

for a rigorous treatment of the properties of what are now known as hyperbolic dynamic

systems, which, very loosely speaking, are those which exhibit exponential separation of

phase-space trajectories. Moreover, Sinai, Ruelle, and Bowen were able to show that there

is a deep analogy between equilibrium statistical mechanics and methods used to charac-

terize the mathematical properties of hyperbolic dynamical systems. The formal results

suggested by this analogy, now called the thermodynamic formalism, have proved to be

very powerful in the applications of dynamical systems theory to statistical mechanics.

The chaotic behavior of dynamical systems underlies the foundations of statistical me-

chanics through ergodic theory. It is the purpose of this thesis to try to make these ideas

more concrete, and show how to quantify some of the chaotic properties that are of inter-

est for statistical mechanics and kinetic theory. We will see a number of deep connections

between the dynamical properties of a system, such as its Lyapunov exponents, and its

transport properties. We will discuss an even simpler dynamical system, namely the logis-

tic map, and show how to calculate dynamical quantities from kinetic theory.

1.1.1 Nonlinear time series analysis

Takens' Delay Embedding Theorem [274] forms the basis of virtually all approaches to

the analysis of time series generated by nonlinear deterministic dynamical systems. The

theorem gives the conditions under which a chaotic dynamical system can be reconstructed

from a sequence of observations of the state of a dynamical system. The reconstruction pre-

serves the properties of the dynamical system that do not change under smooth coordinate

changes, but it does not preserve the geometric shape of structures in phase space. This

provides the theoretical foundation for many popular techniques, including those for the

measurement of fractal dimensions and Lyapunov exponents, for the prediction of future

behavior, noise reduction and signal separation, control and targeting; it gives rise to a

virtually new branch of research of chaotic time series analysis. The original version of
Takens' theorem assume that the underlying system is autonomous and noise-free, which

has been recently extended to deterministically forced systems [268] as well as for arbitrarily
and stochastically forced systems [269].



1.1.2 So what is the benefits of knowing that a system is chaotic?

Chaos and noise are two different types of irregularities. In practice, it would be interesting

and important to distinguish between the two different sources of randomness. Philosophical

implications apart, such a distinction would enable us to use the most appropriate tools for

system analysis. If the source is from a chaotic system, then using techniques from nonlinear

dynamics can increase sensitivity and specificity in predicting outcome. The nonlinear

dynamics measure more accurately tracks output of the system because it is based on the

presumption that the variation is deterministic rather than being random. The control

of chaos in biological systems [296] may be important in the dynamics of gene expression

and translation [262], reaction-diffusion models of blood clotting [178] [294], human heart-

rate dynamics [108] and cardiac tissue [214], and nerve cells [33] [159]; see Ref. [105] for a

discussion on the origin and significance of complex physiological rhythms. On the other

hand, if the source is from a stochastic dynamical system, then such chaos-dynamics-based

approaches are often inappropriate unless we make suitable modifications.

1.2 Noise-induced phenomena

Noise in physical systems is like the well-known supervillain in the Batman comics-Two-

Face. Both halves of its face are relevant to the understanding of complex systems. The

ugly, destructive face of noise-based mainly on our day to day experience -corresponds

to the familiar blurring effect by random fluctuations of otherwise well-defined quantities,

the perturbation of ordered systems, and the destruction of fine detail in intricate patterns.

The ugly face of noise is often observed in relation to studies of chaotic phenomena in real

systems, where it is usually the effect of internal (e.g. temperature fluctuations) or external

noise that sets the practical lower limit on the range of coordinate scales over which, for

example, fractal effects can persist.

It is perhaps less well known-but it is one of the central themes of this thesis-that

noise can also exhibit a face that is beautiful, in the sense that its effect can also be positive

and constructive. In contrast to the notion that noise in physical systems dominated by

determinism has small effects, recent research has demonstrated otherwise. Recent studies

have shown that noise may greatly enrich dynamics of nonlinear systems [257] [303] [305].

Specifically, noise in deterministic dynamical systems plays prominent role in global behavior

due to large-scale effects governed by transport in phase space [20]. Examples of such

behavior appear as stochastic resonance [58] [87], and phenomena of the so-called noise-

induced order [189], of the noise-induced instability [34] [48], and of the noise-induced

chaos-order transitions [100]. One particular problem is the identification of the cause of

qualitatively new emergent dynamics that are not observable in deterministic systems, such

as stochastic chaos [59]. Such chaotic stochastic processes are likely to be ubiquitous,
especially in biological and chemical dynamics, because the ingredients of the underlying



mechanism are very common. Moreover, it is a more stable phenomenon than the existence

of a deterministic chaotic attractor [228].

Noise-induced transitions in nonlinear dynamics far from equilibrium has become a

rapidly growing area of modern statistical physics [95] [245] [302]. Practical complex systems

where noise is playing a critical role are: complex physiology rhythmic processes [105]; crit-

ical point phenomena in materials including supercooling and glass formation [85]. Sethna

et al. [253] show that the seemingly random, impulsive events by which many physical

systems evolve exhibit universal-and, to some extend, predictable--behavior. These few

examples illustrate the general observation that noise may indeed cause a global change in

real dynamical systems, thus making it clear that stochastic effects play a definitive role in

the dynamics and must be accounted for in our models and our analysis of them. Remark-

ably they amount to a symbiotic relationship of order and randomness in contrast to the

commonly held view that order and randomness form an antagonistic pair. The existence

of noise-induced transitions clearly forces us to reappraise the role of noise.

1.2.1 Models of dynamic noise and measurement noise

The study of the influence of noise on systems with purely temporal dependence was cul-

minated in 1984 by Horsthemke and Lefever [138]. In time series problems, noise can be

divided into two categories: dynamic noise that drives the process, and observation

noise, which is added in the measurement process. Observation noise of a high level can

pose a severe problem if it is not handled properly, leading to models that underestimate

the functional relation between past and future values. A typical example of such observa-

tion noise is when an electrocardiogram recorder that measurements the electric activity of

the heart over time: fluctuations in the electrode position, body movements, low-frequency

drifts, etc., will affect the value of the displayed output, but will not influence the dynamics

of the heart. In contrast, dynamic noise does influence future values of the system. For

example, in an autoregressive process, the noise drives the system. And subsequent values
are derived from that perturbed state. Fig. 1-1 illustrates how dynamic noise and measure-
ment noise interact with a nonlinear system: dynamic noise may alter the behavior of the
physical system, whereas measurement noise affects the observed signal without altering

the system dynamics itself.

Some interesting questions to be addressed are: In what way would dynamic noise
affect the characteristic of the nonlinear deterministic system? To what extent can dynamic
noise induce complex (chaos-like) behavior in the output of the system, even though the
underlying system is not chaotic by itself? How to distinguish deterministic chaos from
stochastic chaos induced by dynamic noise? This knowledge can be exploited to serve good
purposes, such as forecasting, control and better understanding of underlying mechanisms.
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Figure 1-1: Block diagram of a complex system comprising a nonlinear deterministic system per-
turbed by: (a) dynamic noise, 77k, at the input; and (b) measurement noise, vk, at the output.

1.3 Organization of thesis

The outline of the thesis is the following: Part I presents the formalism for the description

of noise-induced phenomena in dynamical systems coupled to a fluctuating environment

and gives a detailed study of stochastic chaos and noise-induced transitions. Following

this introduction, an overview of the noise-induced transitions is presented in Chapter 2

with a brief account of the mathematical tools which allow us to deal with fluctuations:

the Langevin equation and the Fokker-Planck equation. Chapter 3 establishes the con-

nection between kinetic rate theory and chaotic dynamics. In Chapter 4, we characterize

stochastically perturbed nonlinear systems using an array of tools from time series analysis.

Part II is completely methodological, with emphasis on numerical techniques from non-

linear state estimation theory for the characterization of systems that exhibit stochastic

chaos. Chapter 5 covers some nonlinear filtering techniques, including the Kalman filter

and its extensions, and the particle filter. In Chapter 6, we present some additional topics

in nonlinear filtering. Chapter 7 considers the problem of discriminating between dynamic

and measurement noise using the nonlinear filtering tools developed in the previous chap-

ters. Conclusions and future work are discussed in Chapter 8.

In Appendices A and B we give the derivation for some formulae and equations used in

this thesis. Appendix C gives a simple statistical test for white noise. An introduction to

support vector machine is presented in Appendix D.

Nonlinear system

(with deterministic
transition law)



Part I

Stochastic Chaos &
Thermodynamic Phase Transitions





Chapter 2

Noise-Induced Transitions

Thus we may say that all physical processes depending on the irregular motion

of molecules go in the direction of increasing probability and the state of equilib-

rium, when nothing more happens, corresponds to the maximum of probability.

-George Gamow [88]

The study of phase transitions is among the most fascinating fields in physics. Origi-

nally limited to transition phenomena in equilibrium systems, this field has outgrown its

classical confines during the last few decades. The behavior of far-from-equilibrium sys-

tems has received more and more attention and has been an extremely active subject of

research for physicists, chemists and biologists [101] [170]. The notion of phase transi-

tion has been proven fruitful in application to nonequilibrium instabilities known for about

eight decades, like certain hydrodynamic instabilities [179] [207], as systems such as the

laser [174]; in thermochemical bistabilities [361, as systems such as the Belousov-Zhabotinskii

reaction [117] [118] [299] [304]; and in biological systems [67].

Phase transition can be extended further to a new class of transition phenomena which

occur only in nonequilibrium systems subjected to a randomly fluctuating environment [140].

In other words, for these systems the environment is not constant in time as is usually as-

sumed in the study of nonequilibrium phenomena but displays random temporal variations,
also called external noise. These new transition phenomena present a fascinating subject of
investigation since, contrary to all intuition, the environment randomness induces a more

structured behavior of the system. This new type of nonequilibrium transition phenomena
is called noise-induced transitions in order to stress the essential role of the noise.

In this chapter, we present the formalism for the description of nonlinear systems coupled
to a random environment. Specifically, we examine systems whose dynamics is described
by stochastic partial differential equations (SPDEs) of the Langevin type in Sec. 2.1.
In Sec. 2.2, we study the Fokker-Planck equation, from which any averages of macroscopic



variables are obtained. Then finally in Sec. 2.3, we use the Fokker-Planck equation to solve

a class of problems involving a particle in a bistable potential.

2.1 The Langevin equation

The state of many physical, chemical, and biological systems can be described by a single

time-dependent variable. If we denote this variable by ((t), consider that the system is

autonomous (i.e., with no explicitly time-dependent forces) and neglect for the moment all

fluctuations, the dynamical behavior of the system can be described in a general way by

the ordinary differential equation

d= Vf( (2.1)
dt d'

where f(s) is the force that drives the system and V(s) is a "potential" function defined

in such a ways that its value always decreases along any trajectory followed by the system

(dV/ d( < 0). Therefore, the system evolves in time toward one of the minima of V(ý),
depending on the initial condition, but independently of whether these minima are relative

or global. Relative minima correspond to metastable states, from which any system is

well known to escape after a certain time. However, this situation is not described in

model eq. (2.1), for which when the system falls in a relative minimum, it remains there

forever afters. if we want the system to escape from metastable minima, we need to include

fluctuations in the dynamical description. But is that the only effect of those fluctuations?

2.1.1 Brownian motion of a free particle

In the studies on Brownian motion we are primarily concerned with the perpetual irregular

motions exhibited by small particles of colloidal size immersed in a fluid. The collision

frequency is too high and the changes in the particle's path caused by each single impact are

too fine to be discerned by the observer. But the superposition of many small interactions

produces an observable effect, which we can describe by the theory of stochastic processes.

The exact path of the particle cannot be followed in any detail and this is the only reason

why we have to consider this problem in stochastic way.

As in well known, this problem was first solved by Einstein [72]. The modern the-

ory of the Brownian motion of a free particle generally starts with the Langevin equa-

tion [96] [236] [282] [295]. From statistical mechanics, it was known that the mean kinetic

energy of the particle should, in equilibrium, reach a value

K 22) = kBT, (2.2)

where T is the absolute temperature, and kB is Boltzmann's constant. The influence of the



surrounding medium on the motion of the particle can be split into two parts:

1. a viscous drag: this is derived from macroscopic hydrodynamics; the drag force is

governed by Stokes' law which states that the frictional force decelerating a spherical

particle of radius a and mass m is given by 6rrnav/m, where v is the velocity of the

particle and r7 is the viscosity of the surrounding fluid.

2. a fluctuation force F(t) which represents the incessant impacts of the molecules of the

liquid on the particle. Since we expect this force to be positive and negative with

equal probability, we naturally assume that its mean, over an ensemble of particles, is

zero. In addition, we assume that there will be correlation between the value of F(t)

at different times t and t' only when It - t'J is very small. That is,

(r(t)) = 0,
(r(t)f(t')) = a26(t - t'). (2.3)

The equation of motion for the displacement of the particle is given by Newton's law as

d 2x -6iria dx
d+- (t). (2.4)dt 2  m dt

Langevin's equation was the first example of the stochastic differential equation-

a differential equation with a random term F. Each solution of the Langevin's equation

represents a different random trajectory and, and therefore the probability distribution is

the most general thing the theory can predict.

2.1.2 Nonlinear Langevin equation

For one stochastic variable ý, the general Langevin equation has the form

d(
d= h(- , t) + g((, t)F(t). (2.5)

The Langevin force F(t) is again assumed to be a Gaussian random variable with zero mean

and 5 correlation function. The constant a2 in eq. (2.3) describing the noise strength may

be absorbed into the function g.

For constant g, eq. (2.5) is called a Langevin equation with an additive noise force. For

g depending on ( one speaks of a Langevin equation with a multiplicative noise term [285].
This distinction between additive and multiplicative noise is not very significant because
for the one variable equation (2.5), for time-independent h and g and for g $ 0, the multi-

plicative noise always becomes an additive noise by a simple transformation of variables.

For i-dependent g the following difficulty arises. Because the noise F(t) has no correla-

tion time (2.3), it is not yet clear which ( value one has to use in the function g in eq. (2.5).



If, for instance, F(t) is an impulse train, the stochastic variable 4(t) will jump at every time

T when such a peaked function occurs. The question then arises: Which 4 value must one

use in g? One may use the value 4 just before 7 or just after T or some value between these

two values. From a purely mathematical point one cannot answer this question, but one

has to use some additional specification, for instance, the It6 or the Stratonovich definition.

Here we assume as it is usually done in physics that the 6(t) function is replaced by a

function & (t) with a very small finite width e. In the final result one then has to take the

limit E --+ 0. With this procedure we see that the average value of (g(6, t)F(t)) is no longer

zero if g depends on 4. The above average leads to the "spurious" or "noise-induced" drift.

Usually a formal general solution of eq. (2.5) cannot be obtained. As shown in Sec. (2.2),

we can set up a Fokker-Planck equation by which the probability density of the stochastic

variable can be calculated.

2.1.3 Internal noise

There are several types of internal fluctuations, but we will focus here on the one that

dominates in classical macroscopic systems: thermal fluctuations. Consider a particle that

satisfies the Langevin's equation:

d2 x dx
m dt2 =-67ra + mF(t). (2.6)

We multiply by x on both sides of the equation, we get

2 dt2  -- = -3dra + mxf(t), (2.7)

We now average over the ensemble of particles and use eq. (2.2) to obtain an equation for

(x2):
md 2(x2) d(x2
Sd 2 ()+ 37r7a () = kBT, (2.8)2 dt2 dt

The term (mxL(t)) vanishes because r is zero mean. One then finds the general solution

d(x2) kBT Tnat
dt - +a C e-  , (2.9)

where C is an arbitrary constant. Langevin estimated that the decaying exponential ap-

proaches zero with a time constant on the order of 10- 8 s. Thus, for practical purposes, we

can neglect this term and integrate once more to get

(X2 ) - ( 2 ) = kBt. (2.10)3r?7a



From this, we can show that the intensity of the fluctuations, measured by the parameter

a2, obeys the Einstein relation or the fluctuation-dissipation relation

2  kBT (2.11)
67rrla

This relation ensures that the steady probability distribution Pst (x, i) is the Boltzmann

equilibrium distribution,

Pst(x, i) - exp { X , (2.12)

where 7(x, ~i) is the classical Hamiltonian of the model

.2
"-(x, ) - - + V(x). (2.13)

2

As we will show in the Sec. 2.2, the temporal evolution of x is given by the Fokker-

Planck equation, which can be found to be [96] [239]

dP 8 82
= -i [f(x)p(x, t)] + •2 2 P(, t).  (2.14)

The maxima of the steady probability distribution pst (x) (i.e., the probability distribution

in the limit t -- oo) are assumed to correspond to the stable steady states of the system.

They are indeed the most probable states, those in which the system stays for more time.

The steady probability distribution is found by solving eq. (2.14) with the left-hand-side

term set equal to zero. Assuming natural boundaries, the solution is simply

pst(x) = Nexp dx' f (x') , (2.15)

where N is just a normalization constant. Taking into account the definition of the determin-

istic force f(x) given in eq. (2.1) and the fluctuation-dissipation relation given by eq. (2.11),

the steady-state probability distribution can be written in the following Boltzmann form:

Pst(x) -exp-kBT (2.16)

Taking this result into account, we can generalize the concept of internal noise to those

fluctuations that are measured by kBT, and that leads to a Boltzmann like steady-state

probability distribution with a suitable "potential."

The maxima of the probability distribution (2.16) correspond to the most probable
states of the system. Since the potential V(x) appearing in expression (2.16) coincides
with the deterministic potential (2.1), one can conclude that internal noise does not change
the deterministic steady state behavior of the system, its only effect being to broaden the
probability peaks, which in the deterministic case are just Dirac deltas. Therefore, this



kind of noise is not able to induce any transition in the behavior of the system, except for

trivial disordering transitions, such as the one that will be presented in what follows in the

context of the Landau model.

Landau model

Prior to studying the effect of internal additive noise in a particular zero-dimensional system,
namely, the Landau model, we present an example of a deterministic transition in this model.

Transitions in zero-dimensional stochastic systems are reflected in changes in the shape of

the probability distribution of the state variable (the number and position of its extrema

change as the transition point is surpassed). Therefore, even though the system runs over

the whole phase space in the ordered state (owing to the fluctuations), the shape of the

probability distribution reveals the different behavior of the system in its time evolution.

Let us consider a system defined in terms of a free-energy function F(x):

dx dF
-- = -- + 7 (t), (2.17)

with q(t) a Gaussian white noise. The Landau model is based on the assumption that the

free energy F can be expanded in a Taylor series around x = 0 in the following way:

F(x) = ao + a2x 2 + a4x4, (2.18)

where the odd terms are set equal to zero because we require F to be rest invariant under

a reversal in the sign of the variable. With this form of the free energy, and after a suitable

scale transformation, the evolution equation can be rewritten as

d3dx= ax - + 77(t). (2.19)

The linear coefficient a will be used as the control parameter of the system. The shape of

the Landau free energy changes from having a minimum at x = 0 for a < 0 to having two

minima (x = V/a/) for a > 0. The qualitative effect of the internal fluctuations consists of

broadening the probability peaks around these steady states.

The steady probability density of x can be calculated exactly from eq. (2.15):

1 a (2.20)

Pst (x) = N exp T- a (2.20)

whose maxima are Xm = 0 for a < 0 and Xm = /-a for a > 0, in agreement with

the free-energy analysis presented previously. Hence, this model describes a continuous

phase transition located at a = 0. This transition is properly characterized by means

of the probability density and its extrema. The value of the first-order statistical moment



(x) = f dxxpst(x), however, remains 0 for all a, due to the symmetric character of eq. (2.20).

It would be worth analyzing the effect of an increase in noise intensity (that is, in

temperature) on the system. Will an ordered state (a > 0) become disordered as expected

according to intuition? The mean value (x) is still 0, whereas the quantity (lx ) behaves with

an initial decrease showing the disordering character of the noise, followed by an increase

reflecting the enhancement of fluctuations. More representative is the variance a 2

S (2) (2 (2.21)

As shown, a2 presents a maximum for a positive value of the noise intensity a2, presumably

indicating the existence of a disordering transition. Nevertheless, this presumed transition

is intrinsically different from the previous transition controlled by a: here, unlike that case,

a variation in the noise intensity parameter does not lead to a change in the shape of the

stochastic potential, nor in the probability density and its extrema.

2.1.4 External noise

We have just seen that an additive noise is not able to modify the deterministic steady

states of a zero-dimensional system. It would be interesting to analyze what happens in

the case of an external noise, which consists of those fluctuations that are not of thermal

origin, and whose steady probability distribution is not Boltzmann like.

As a very common example, let us consider the particular case of a multiplicative white

noise. The Langevin equation is

dzdx = f(x) + g(x)7r(t). (2.22)
dt

And the corresponding Fokker-Planck equation, in the Stratonovich interpretation, can be

found to be [96] [239]

BP 8 _ _
S- f--f(x)p(, t) + a 2  g(x) g(x)p(x,t). (2.23)

The stationary solution of this equation with natural boundaries is

N f(z)
Pst(X) = g exp dx a2 g2(x) (2.24)

and a "stochastic potential" 4(x) can be defined in this case as

S(x) - - dx 2f(x) (2.25)

As in previous examples, the steady state of the system will be characterized by the minima



of this stochastic potential. But now, because g(x) is no longer a constant function, I(x)

is not directly proportional to the potential V(x), eq. (2.1), and therefore the stable steady

states can be different from the deterministic ones. Hence, external noise can be expected

to have an important influence in zero-dimensional systems.

2.2 The Fokker-Planck equation

In the case of Brownian motion, the complete solution of a macroscopic system would

consist in solving all the microscopic equations of the system. Because we cannot generally

do this we use instead a stochastic description, i.e., we describe the system by macroscopic

variables which fluctuate in a stochastic way. Macroscopically, for an ensemble of particles

or systems, the variations can be modeled by a diffusion process. The distribution function

of the random variables of the system will, therefore, fulfill a partial differential equation

of the diffusion type. The Fokker-Planck equation is just an equation of motion for the

distribution function of fluctuating macroscopic variables. Many books and reviews on the

Fokker-Planck equation now exist [47] [171] [172] [173].

By solving the Fokker-Planck equation one obtains distribution functions from which any

statistical moments of macroscopic variables are obtained by integration. Since the appli-

cation of the Fokker-Planck equation is not restricted to systems near thermal equilibrium,
we may as well apply it to systems far from thermal equilibrium [119]. The Fokker-Planck

equation not only describes stationary properties, but also the dynamics of systems, if the

appropriate time-dependent solution is used.

2.2.1 Kramers-Moyal expansion

We start with a Markov process W whose transition properties are dictated by Pr:

W(x,t+ T) = dx' P(x, t + Tx',t)W(x', t),  (2.26)

To derive an expression for the differential &W(x, t)/Ot, we must know the transition prob-

ability Pr(x, t + rIx', t) for small T. We first assume that all the moments of Pr are given

Mn(x',t, 7) = ([ý(t + 7) - (t)n) I~(t)]n )= = dx (- x')PT(x,t x',t). (2.27)

We now derive a general expansion of the transition probability by starting with

PT(X, t + rjx', t ) = dy 6(y - x)Pr(y, t - rlx', t) (2.28)



and using the formal Taylor series expansion of the 6 function in the form

6(y - x) = 6(x' - + y - x')

n! x'-n= o
(y - XT)n

r=O n!n=o

we get

(E nn=O

=n=i o

n=O n!

dy (y - x')nPT(y, t + 7lX', t)6(x' - x)

O)n

9a )

Mn(x', t, T)] 6(x' - x)

Mn(x, t, r)] 6(X - x').

In deriving the last line, we use the fact that 6(x' - x) = 6(x - x') and the sifting property

of the delta function. Inserting eq. (2.30) into eq. (2.26) leads to

W(x, t + T) - W(x, t)
= W(x, t)

= T+ O(7 2 )at

= (- ) dx'6(x - x')Mn (x, t,7 )W(x', t)

a naxc Mn(xt, t, 7) W(x, t).
n=1

We now assume that moments Mn can be expanded into a Taylor series with respect to T

(2.32)Mn(x, t, = D(n)(x, t)7 + O(72).n!
The term with t0 must vanish, because for 7 = 0 the transition probability PT has the

initial value

PT(X, tlx', t) = 6(x - X'). (2.33)

By taking into account only the linear terms in T we have

D(n) (x, t)W(x, t) = KMW(x,t),

Pr(x, t + 7(x', t) =

(2.29)

(2.30)

(2.31)

( \n
- x 09)n (XI _ X),

a 
n

aW 2, E _C a )nn

n=1
(2.34)



where the Kramers-Moyal operator £KM is defined by

£KM(Xt)= ' ( ) (n)(Xt). (2.35)

Eq. (2.34) is the Kramers-Moyal expansion.

2.2.2 Pawula theorem

Here we state the Pawula theorem [216], which states that for a positive transition proba-

bility PrT, the expansion (2.35) may stop either after the first term or after the second term;

if it does not stop after the second term, then it must contain an infinite number of terms.

If the expansion stops after the second term, then eq. (2.34) becomes the Fokker-Planck

equation.

To derive the Pawula theorem we need the generalized Schwarz inequality

Sdx f (x)g(x)P(x)) 2 ( dx f2(x)P(x)) (f dx g2(x)P(x)). (2.36)

where P(x) is a nonnegative function and f(x) and g(x) are arbitrary functions.

We now apply eq. (2.36) with

f(x) = (x - ')n
g(x) = (x - x')n+m;

P(x) = P(x, t + 7rx', t') (2.37)

and thus obtain for the moments in eq. (2.27) the inequality

M2n+m < M 2nM 2n+2m. (2.38)

For n = 0 we have M 2m < M 2m. This relation is obviously fulfilled for m = 0 (Mo = 1).

For m > 1 no restriction follows from this relation for the short time expansion coefficients

D(n ) of Mn. For m = 0, M22n - M22n, which is trivially fulfilled for every n. Thus we need to

consider eq. (2.38) only for n > 1 and m > 1. By inserting eq. (2.32) into eq. (2.38), dividing

the resulting inequality by 72 and taking the limit r -- 0 we then obtain the following

inequality for the expansion coefficients D(n):

[(2n + m)!D(2n+m)]2 • (2n)!(2n + 2m)!D(2n)D(2 n+ 2m). (2.39)

If D(2n) is zero, D(2n+m) must be zero, too, i.e.,

D( 2 n) = 0 = :D(2n+1) = )(2n+2) =-- .. 0 Vn > 1. (2.40)



Furthermore if D(2n+2m) is zero, /)( 2 n+m) must be zero, too, i.e.,

1)(2r) = 0 = D(r+n) = 0 for n = 1,..., r - 1;

D(2r-1) = .. , (r+l) = 0 for r > 1. (2.41)

From eq. (2.40) and the repeated use of eq. (2.41), one concludes that if any D(2r) = 0 for

r > 1, all coefficients D(n) with n > 3 must vanish, i.e.,

D(2r) = 0 == (3) = D(4) = ... = 0 Vr> 1. (2.42)

The Pawula theorem immediately follows from the last statement.

If the Kramers-Moyal expansion in eq. (2.34) truncates after the second term, we get

the general Fokker-Planck equation for one variable x has the form

OW(x,t) aD(1)(X) a2/( 2) () W(xt), (2.43)
t x a 2 t), (2.43)

where D(2) > 0 is called the diffusion coefficient and )(1) the drift coefficient.

2.2.3 Diffusion and drift coefficients for the Langevin equation

To derive the diffusion and drift coefficients for the nonlinear Langevin equation, we first

write the Langevin equation (2.5) as an integral equation

((t + 7) - x = ] dt' [h (x(t'), t') + g (x(t'), t') r(t')] (2.44)

and assume that h(.) and g(.) can be expanded according to

h (ý(t'), t') = h (x,t') t') [s(t') - x] + . .

g (((t'), t') = g (x, t') + ag(xt' [)(t') - x] + . (2.45)

Inserting eq. (2.45) into eq. (2.44) leads to

ft+T t+T Oh (xt')
((t + T) - x = dt' h (x, t') + dt' [ (t') - x] +.

+ dt' g (x, t') r(t') + r dt' [(t') - x] (t') +... (2.46)itx [ý(t') x] I(t') + (2.46)



For [ý(t') - x] in the integrand we iterate eq. (2.46), producing

(t + ) - x = t dt' h (x, t') +jt+7 dt" h(x, t")]

dt' [h (,t') ) t' dt" g (x, t) F(t")Jx t I

dt' g (x, t') r(t') +

dt' [

t+r dt' [ g (X, t')
t ILa

og (x, t')
9x

By repeated iterations, only Langevin forces and the known functions h(x, t) and g(x, t)

and their derivatives appear on the right-hand side of eq. (2.47). If we now take the average

of eq. (2.47), and use eq. (2.3), we get

dt' h(x, t') + I t+rdt' [h(x, t') dt h(x, t")] +

+ t+T dt, g ( JX, t') t' dt" g(x t")6(t" - t') + ---ft I x ft
dt' h(x, t') + jt+ dt" h(x, t") +

+ t+ g (x, t') +
It atx

We plug in the above expression into eq. (2.32), we get

D(1)(x, t)= lim7--+0 7 (t)=x

Og (x, t)
= h(x, t) + ffg(x,t).

Using similar procedures we obtain the second coefficient

1 1
(2 (, t) = 1 lim 12 7-r,0o 7

= g2(X, t).

t+ dt" [ t r

(2.48)

(2.49)

dt' g(x, t')g(x, t")J(t'

(2.50)

One can see that in addition to the deterministic drift h(x, t), v'1) contains a term

which is called the spurious drift or the noise-induced drift

(1) 1 g( , t) ) (:gspurious - g( • D(2 )(xat).spuios O 2 Ox

+ jt+r

+jt+r

+ jt+rti" f+7
ti

t' dt" h(x,t")F(t")

(2.47)

(2.51)

(((t + · ) - ) =

- t")]

dt, Oh (x,, t') '

d (x ft

t' dt" g(x, t")F(t")r(t') +

dt Ah (x, t') t'

d I' ax ft



It stems from the fact that when 1(t) varies, ý(t) changes with it, therefore (g(((t), t)r(t))

is no longer zero.

2.2.4 Method of solution

We now want to discuss methods for solving the one-variable Fokker-Planck equation with

time-independent drift and diffusion coefficients, assuming D(2)(x) > 0. The following

method is similar to the ones found in Refs. [47] [152]. There are several other ways of

solving the Fokker-Planck equation, for example, one method using the eigenfunctions of

the Fokker-Planck operator can be found in Ref. [236].

Normalization

By a suitable transformation x' _y = y(x) the x-dependent diffusion coefficient can be

transformed to an arbitrary constant ) > 0. For the one-variable case this transformation

according to

DI(2) = 1) = \d2 D(2) (x). (2.52)

Thus this transformation is given by

S= (x) = d . (2.53)

The transformation drift coefficient then takes the form

D'((y)= dy-D(1)(x)+ djD(2)(X)dz dx2
= [ () -1 dD (2) (X) (2.54)

- (2)(X) 2 dx

and the transformed Fokker-Planck equation reads (19 = constant)

OW'(y, t) [ 02 1w(yt [_0 - (y) D•+ W'(y,t), (2.55)ot =[ oy "y2

where W' is given by

W= W1  = W. (2.56)

Without loss of generality we may thus treat the equation with constant diffusion coefficient,
i.e.,

_W r 8 d2OW a f'(x) + W = J(x,t), (2.57)ot ax x 2 O w ox
where f(x) = - fx dx' D(1)(x') is the potential, and J is the probability current.



Because D is arbitrary, we may use V = 1. This normalization is, however, not very

convenient if the low-noise limit V) -+ 0 is considered and we therefore retained the constant

D. The transformation in eq. (2.53) can also be done in the Langevin equation.

Stationary solution

For stationary solutions the probability current in eq. (2.57) must be constant. Thus, if the

probability current vanishes at some x the current must be identically equal to 0. Then for

S=O

(1' )(x)Wst () • 2 •·) st= (2)(x)Wst (). (2.58)

We can integrate eq. (2.58), yielding

N o  (/x )(l)(x') 1Wst) = (o exp ' (2 )= Noe-(X), (2.59)

where No is the integration constant, which has to be chosen such that Wst is normalized.

In eq. (2.59) we introduced the potential

C(x) = log )D(2X) x)- dx' (2.60)

We may put D(x) = f(x)/D for eq. (2.57) since the potential ((x) is defined only up to

an additive constant and therefore the log D(2) (x) term may be omitted. Introducing this

potential the probability current may be written in the form

J(x, t) = D(2)(x)e- (x) [e(x) W(x, t) (2.61)

In the stationary case, where J is constant, we thus have for arbitrary J

r X e 1)(X ')

Wst - Ne - e (x ) - Je - (x) dx (2) ( )  (2.62)

One of the integration constants in eq. (2.62) is determined by the normalization condition

dx W,,t = 1, (2.63)

the other constant must be determined from the boundary conditions. For problems where

x extends to ±oo, we require that the integral in eq. (2.63) exists. In that case, W and J

must vanish at 0oo (natural boundary conditions) and therefore J = 0 for every x.

An important question is whether every initial distribution finally converges to the

stationary distribution. For some restrictions of the drift and diffusion coefficients and of

the boundary conditions one can prove that any two solutions of the Fokker-Planck equation



agree for large times. Thus if a stationary solution exist, every solution must finally converge

to that solution.

2.3 Bistability, metastability, and escape problems

This section is devoted to the asymptotic study of systems which can exist in at least

two stable states. The mean first-passage time, i.e., the average time that elapses until

a stochastic process switch spontaneously from prescribed domains, is an important char-

acteristic of the system [231]. It is widely used for describing various dynamic features

such as relative stability problems, exit problems, activation rates, relaxation times from

unstable states, lifetimes of metastable states. These properties underlie a wide range of

practical applications, such as neuron firing [104], gating transition of ion channels [112],
and magnetic relaxation of systems composed of ferromagnetic nanoparticles [62]. The cal-

culations in the subsequent sections closely follows the work of Hendrik Anthony Kramers

(1894-1952) [123] [167]. An alternative derivation can be found in Ref. [259].

2.3.1 Surmounting a potential barrier

We first apply the Fokker-Planck equation to calculate escape rates over a potential barrier.

We consider once again the model where the probability density p(x, t) of a particle obeys

the Fokker-Planck equation

Op(x, t) ['(x)p(x,t)] a 2p(x,t) (2.6)
9 + o 2 (2.64)Ot xz x22

The shape of D(x) is as shown in Fig. 2-1. There are two minima at a and c and in between, a

local maximum. We suppose that motion is on an infinite range, which means the stationary
solution is

Pst(X) = Ne - -  (2.65)

and it is this that demonstrates the bistability. Corresponding to a, c and b are two maxima,

and a central minimum as plotted in Fig. 2-1. There is a relatively high probability of being

on the left or the right of b, but not near b.

(a) Behavior for a2 = 0 In this case, x(t) obeys the differential equation

dx

x(0) = zo. (2.66)

Since
d()(x) dxdt = '(x) d) = - [('(x)] < 0, (2.67)-t dt



x

Figure 2-1: Plot of pst(x) and ((x) for a double well potential. In the potential 4(x), there are
two minima at x = a and x = c and in between, a local maximum. The stationary solution pst(x)
demonstrates the bistability: there is a relatively high probability of being on the left or the right
of b, but not near b.

x(t) always moves in such a way as to minimize ((x), and stops only when D'(x) is zero.

Thus, depending on whether x0o is greater than or less than b, the particle ends up at c or

a, respectively. The motion follows the arrows on the figure.

Once the particle is at a or c it stays there. If it starts exactly at b, it also stays there,
though the slightest perturbation drives it to a or c. Thus, b is an unstable stationary point

and a and c are stable. There is no question of relative stability of a and c.

(b) Behavior if a2 is very small With the addition of noise, the situation changes.

The stationary state can be approximated asymptotically as follows. Assuming p(x) is

everywhere sufficiently smooth, we can write

"(aC)(x - a)2

Pst(X) - Ne- •- 2, Ix - ci small; (2.69)

!0, elsewhere.

b,

xi'

a

pst(x)
------------------ ---



with

e + e(2.70)

Suppose, as drawn in the figure, D(a) > D(c). Then for small enough or2, the second term

is overwhelmingly larger than the first and 1/N can be approximated by the second term

alone. Substituting into eq. (2.69) we find

'(c) <I"(x)(x- l2e (2 or2 ix- a
st(X) 2 7re2 (2.71)

10, otherwise.

This means that in the limit of very small a 2, the deterministic stationary state at which

((x) has an absolute minimum is the more stable state in the sense that in the stochastic

stationary state, Pst (x) is very small everywhere except in its immediate vicinity. This means

that in the case of a and c, fluctuations take over and the motion is given approximately

by linearizing the stochastic differential equation around a or c. Around b, the linearized

stochastic differential equation is unstable. The particle, therefore, follows the Ornstein-

Uhlenbeck process [282] until it leaves the immediate neighborhood of x = b, at which

stage the asymptotic expansion in a takes over. The process that can occur is that of

escape over the central barrier. The noise dW(t) can cause the particle to climb the barrier

at b and reach the other side. This involves times of order exp(-const/a 2), which do not

contribute to an asymptotic expansion in powers of a2 since they go to zero faster than any

power of a2 as a 2 --0.

2.3.2 First passage times

What is the mean escape time from the left hand well? By this we mean, what is the mean

first passage time from a to x, where x is in the vicinity of b? The solution of this problem

can be achieved by use of the backward Fokker-Planck equation. For a more in depth

review of the backward-equation method, see Ref. [172].

(a) Two absorbing barriers Let the particle be initially at x at time t = 0 and let

us ask how long it remains in the interval (a, b) which is assumed to contain x. We set

absorbing barriers at x = a and x = b so that the particle is removed when it reaches a or

b. Hence, if the particle is still in the interval (a, b), it has never left that interval.

Under these conditions, the probability that at time t the particle is still in (a, b) is

bdx p(x', tlx, ) -- G(x,t). (2.72)



Let the time that the particle leaves (a, b) be T. Then we can rewrite eq. (2.72) as

Pr( t) bPr(T > t) = dx' p(x', tjx, 0),

which means that G(x, t) = Pr(T > t). Since the system is time homogeneous, we can write

p(x', tjx, 0) = p(X', 01, -t)

and the backward Fokker-Planck equation can be written as

0 0-p(x', tx, 0) = A(x) p(x', tlx, 0)19t (9x + - 2 B() 2 2P(X, tlx, 0)2 ax2
and hence, G(x, t) obeys the equation

G(x, t) = A(x) •-G(x, t)Ot ax 1 02
+ 1B(x) 2 G(x, t)2 (9 , )

The boundary conditions are clearly that

p(x', OIx, 0) = 6(x - x')

G(x, 0) =
0,1

(2.76)

(2.77)

(2.78)
a < x < b;

elsewhere,

and if x = a or x = b, the particle is absorbed immediately, so Pr(T > t) = 0 when x = a

or x = b, i.e., G(a, t) = G(b, t) = 0.

Since G(x, t) is the probability that T > t, the mean of any function of T is

(f(T)) = - dG(x,t) f(T). (2.79)

Thus, the mean first passage time T(x) = (T) is given by

T(x) = - dt t Ot

= -tG(x, t)I' + dt G(x, t)

= dtG(x,t). (2.80)

We can derive a simple ordinary differential equation for T(x) by using eq. (2.80) and

(2.73)

(2.74)

(2.75)

and hence,



integrating eq. (2.76) over (0, oo). Noting that

Jdt G(x, t)=dt = G(x, oo) - G(x, O) = -1,
at

we derive
AOT(x)

A(x) ,
1

+ B(x2

a2T(x) 1• X2

(2.81)

(2.82)

with the boundary condition T(a) = T(b) = 0.

Eq. (2.82) can be solved directly by integration. The solution, after some manipulation,
can be written as

dy'

(y')(X dy )
a C()

SI
dz b(z)

B(z) (I (dy)'0x(y) / ax

{L dy

,(x) = exp dx' 2A(') "

(2.83)

(2.84)

(b) One absorbing barrier We consider motion still in the interval (a, b) but suppose

the barrier at x = a to be reflecting. The boundary conditions then become

aG(x, t)
ax x=a

= G(x, t) x=b = 0. (2.85)

We solve eq. (2.82) with the corresponding boundary conditions and obtain

T(x) = 2 dy
JY dzo(z)

SB(z)

a reflecting

b absorbing

a < b.

(2.86)

Similarly, one finds

x dyT(x) = 2 Lx )

(c) Escape over a potential barrier

Sb
Y

dzo(z)

B(z)

b reflecting

a absorbing

a < b.

We use eq. (2.86) with the substitutions

b - ox0, a -- -oo, x -+a,

T(a -• zo) = 0 dy e dz e-±~
faJ a J

T(x) =

with

(2.87)

so that

(2.88)

(2.89)

dy' y' dz O(z)
0(y') Ja B(z)



/I I
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Figure 2-2: (a)Double well potential 4(x); (b) Stationary distribution pst(x); (c) Mean first passage
time from a to x, T(a -- x). The plot of T(a -+ x) shows that the mean first passage time is quite
small for x in the left well and quite large for x in the right well.

If the central maximum of ((x) is large and o2 is small, then exp[4(y)/a 2] is sharply peaked

at x = b, while exp[-i4(z)/a 2] is very small near z = b. Therefore, f.Yo dz exp[-4(z)/U2]

is a very slowing varying function of y near y = b. This means that the value of the integral

f! dz exp[- (z)/U2] will be approximately constant for those values of y which yield a

value of exp[p(y)/a 2 ] which is significantly different from zero. Hence, in the inner integral,
we can set y = b and remove the resulting constant factor from inside the integral with

respect to y. Hence, we can approximate eq. (2.89) by

T(a -xo) dy e- ±- dy e .- "

z (2.90)

Notice that by the definition of Pst in eq. (2.65), we can say that

dy elz = na
-0oo N

(2.91)

where na is the probability that the particle is to the left of b when the system is stationary.

A plot of T(a -- xo) against xo is shown in Fig. 2-2 and shows that the mean first passage

time to xo is quite small for x0 in the left well and quite large for xo in the right well. This

means that the particle, in going over the barrier to the right well, takes most of the time in

actually surmounting the barrier. It is quite meaningful to talk of the escape time as that

for the particle, initially at a, to reach a point near c, since this time is quite sensitive to

the exact location of the initial' and final points. We can evaluate this by further assuming

that near b we can write

((x P b) _ 4(b) - (x 6 (2.92)

and near a
a1 x-a
2 a )

C_

Q(x , a) - 4(a) (2.93)



The constant factor in eq. (2.90) is evaluated as

I dz e-- M dz e-ý2~

Sa -2 e- ±,y (2.94)

and the inner factor becomes, on assuming xo is far to the right of the central point b,

S dy e- dy e

Putting both of these in eq. (2.90), we get

T(a -- xo) - 2a6 e U. (2.95)

This is the classical Van't Hoff-Arrhenius law of chemical reaction theory [13]. In a

chemical reaction, we can model the reaction by introducing a coordinate such that x = a

is species A and x = c is species C. The reaction is modeled by the above diffusion process

and the two distinct chemical species are separated by the potential barrier at b. In the

chemical reaction, statistical mechanics gives the value ao2 = kBT, where kB is Boltzmann's

constant and T is the absolute temperature. We see that the most important dependence

on temperature comes from the exponential factor

exp (2.96)

and predicts a very characteristic dependence on temperature. Intuitively, the exponential

factor represents the probability that the energy will exceed that of the barrier when the

system is in thermal equilibrium. Those molecules that reach this energy then react. Aside

from chemical kinetic theory, the Arrhenius factor was also found in the switching rates in

magnetic spin-torque systems, where T is the effective spin temperature [10] [31].

2.3.3 Probability of exit through a particular end of the interval

What is the probability that the particle, initially at x in (a, b), exits through a, and what
is the mean exit time? The total probability that at time t the particle has exited through

a is given by the time integral of the probability current at a

ga(x, t) =- dt' J(a, t'lx, 0)

= dt' -A(a)p(a,t' x, 0) + 1a [B(a)p(a, t'x, 0)] , (2.97)



the negative sign is chosen since we need the current pointing to the left, and

9b(x,t) = tdt' -A(b)p(b,t'lx, 0) + a [B(a)p(b,t'x, 0)] . (2.98)

These quantities give the probabilities that the particle has exited through x = a or b at

time t, respectively. The probability that it existed before time t is

Pr(Ta < t) ga(x, t) (2.99)
ga(x, 00)

We now find an expression for ga(x,t). We use the fact that p(a,tlx,0) satisfies a

backward Fokker-Planck equation. Thus,

A( a(x,t) 1 B( 2ga(x,t) fdt, J(a,t'lx, 0)
A( x + -B(x) dtaz 2 822 0 t

= -J(a, t'Ix, 0)

ga((2.100)

The mean exit time, given that exit is through a, is

T(a, x) = dtt p  t  = dt .g (2.101)
o Ot a ga (X, 00)(2.101)

Simply integrating eq. (2.100) with respect to t, we get

S[ra(x)T(a, )] 1 2 [7ra(x)r(a, x)]
A(x) ax + B(x) = -Ira(x), (2.102)

where we define

7ra(x) = probability of exit through a = ga(x, oo). (2.103)

The boundary conditions on eq. (2.102) are

ira(a) T(a, a) = ra (b)T(a, b) = 0. (2.104)

In the first of these, clearly T(a, a) is zero (the time to reach a from a is zero) and in the

second, 7ra(b) is zero (the probability of existing through a, starting from b, is zero).

By letting t -+ o in eq. (2.100), we note that eventually the particle is no longer in

(a, b). Hence, the right-hand side tends to zero and we get

B7ra(x) 1 oa8ra()A(x) x ±2B(x) 02r = 0, (2.105)



with the boundary conditions

7ra(a) = 1,

ira(b) = 0. (2.106)

The solution of eq. (2.105) subject to this boundary condition and the conservation condition

ra(X) + ±fb(X) = 1 (2.107)

is

bdy (y) Idy (y)
ira(x) = b 'rib() = b (2.108)

Sdy 0(y) a dy (y)

with 0(x) as defined in eq. (2.84). These formulae find application in the problem of relax-

ation of a distribution initially concentrated at an unstable stationary point, which we will

present in the next section.

2.3.4 Splitting probability

Suppose we put the particle at xo: what is the probability that it reaches a before c, or c

before a? This can be related to the problem of exit through a particular end of an interval,

studies in Sec. 2.3.3. We put absorbing barriers at x = a and x = c, and using the results

of that section, find fra and 7r, the splitting probabilities for reaching a or c first. These
are:

7ra(XO) =

• dz Pst (x)( 1

, Tc(xo) = a (2.109)

odx pst(x) -

The splitting probabilities of 7ra and rc can be viewed more generally as simply the prob-

ability that the particle, started at xo, will fall into the left or right-hand well, since the

particle, having reached a, will remain on that side of the well for a time of the same order

as the mean exit time to b.

We nose consider two possible asymptotic forms as a2  0.

(a) xo a finite distance from b We first evaluate

ic N· (c =- (2.110)



This is dominated by the behavior at x - b. An asymptotic evaluation is correctly obtained

by setting
1 I|"(b)I(x) (b) - (b) (2.111)2 (b - X)2

As u 2 --4 0, the limits at x = a, c effectively recede to foo and we find

I dx Pst(X) 1 -l = e - . (2.112)

Now suppose xo < b. Then fax o dx p(x) - 1 can be evaluated by the substitution y = 4D(x)

with an inverse x = W(y) and is asymptotically
1 1( ) 21( 2 X )W'[ 4D bx

N (2_ dy e~W'(y) - N~ 2 e W'[c(xo)]

1 a2 e
S'(x) (2.113)

Thus,
1 |d1"(b)|o 2  

4(xp)-4(b)

rc 1 (bx0 1 u e (2.114)
-'(xo) 27

and

ra = 1 - 7rc. (2.115)

We see here that the splitting probability depends only on xo and b. thus, the probability

of reaching c in this limit is governed entirely by the probability of jumping the barrier at

b. The points at a and c are effectively infinitely distant.

(b) xo infinitesimally distant from b Suppose

xo = b - you. (2.116)

In this case, we can make the approximation in both integrals. Defining

erf(x) = dt e- t  (2.117)

we find

W ra {1- erf [yo VI"(b)lI]}TT = 1 - x)a " 1(:(218

S1 -erf (b Io) (b) (]
=2 - erf [(b- x) 2 If" (2.118)



Eq. (2.118) is the result that would be obtained if we replaced Q(x) by its quadratic ap-

proximation eq. (2.111) over the whole range.

(c) Comparison of two regions The two regions give different results, and we find that a

simple linearization of the SDE [which is what replacing I(x) by a quadratic approximation

amounts to] gives the correct result only in the limit of large a2 and in a region of order of

magnitude Va around the maximum b.

2.3.5 Decay from an unstable state

The mean time for a particle placed at a point on a potential to reach one well or the other

is an object capable of being measured experimentally. If we use eq. (2.14) for the process,

then the mean time to reach a or c from b can be computed exactly using the formulae of

Sec. 2.3.3. The mean time to reach a from b is the solution of

a [ira(x)T(a, x)] + o2 a2 [ra(x)T(a, x)] 7ra (2.119)
-i='(·) i + 2a(x) (2.119)

with the boundary conditions

7ra(a)T(a, a) = 7ra(c)T(a, c) = 0 (2.120)

and 7ra(x) is given by eq. (2.109).

The solution to eq. (2.119) is quite straightforward to obtain by direct integration, but it

is rather cumbersome. The solution technique is exactly the same as that used for eq. (2.83)

and the result is similar. Even the case covered by eq. (2.83) where we do not distinguish

between exit and the right or at the left, is very complicated.

For the record, however, we set down that

Tr) ( lrc(x) dx'Pt(x')L dzdzra(z)Pst(z) - 7ra(x) dx'pst(x')- 'dzra(z)pst(z)
T(a,x) = 27ra fa ,

(2.121)
where one considers that 7ra(X) is given by eq. (2.109) and pst(z) by eq. (2.69). It can be

seen that even for the simplest possible situation, namely,

1
4(x) = -- Ikx2 , (2.122)

the expression is almost impossible to comprehend. An asymptotic treatment is perhaps
required. Fortunately, in the cases where Pst (z) is sharply peaked at a and c with a sharp
minimum at b, the problem reduces essentially to the problem of relaxation of a or to c with
a reflecting barrier at b. To see this note that



1. the explicit solution for 7ra(X) in eq. (2.109) means

1, x < b;

7ra(X) - , x = b; (2.123)

0, x > b

and the transition takes place over a distance - Vr' , the width of the peak in pt (x)-1 .

2. In the integrals with integrand 7ra(z)Pst(z), we distinguish two cases.

z' > b: in this case the estimates allow us to say

x' dz 7ra(z)pst(z) 2 (2.124)

where na = fb dzPst(z) and represents the probability of being in the left-hand well.

However, when x' < a, we may still approximate 7ra(Z) by 1, so we get

X/dz 7ra(z)Pst(z) " dz Pst(z) = n j dz pt (z). (2.125)

Substituting these estimates into eq. (2.121) we obtain

T(a,b) V_ D- 1  dx' pst(x) - 1  dzpst(z), (2.126)

which is the exact mean exit time from b to a with a reflecting barrier at b. Similarly,

T(c, b) - j dx'pst(x)1  ' dz Pst (z). (2.127)
b bf

2.4 Summary

In this chapter we presented a first-principle derivation of the Fokker-Planck equation, from

which we obtained a complete probabilistic description of the motion of a Brownian particle

in a fluctuating environment. We further investigated the escape time problem; we have

shown that in the thermodynamical equilibrium limit, one can recover a host of interesting

results, such as the Arrhenius law. Other situations where noise can have a constructive

role in the behavior of a dynamical system is the phenomenon of stochastic resonance,
in which the response of the system to an external signal under the presence of fluctuations

can be enhanced by tuning the noise intensity to a particular value [43] [87] [195]. One

would be interested in estimating the mean first passage time for the response to reach a

target value. The dependence of the mean exit time on the noise intensity for metastable

and unstable systems was revealed to have resonance character [134].



Chapter 3

Stochastic chaos

The equations of dynamics completely express the laws of the historical method

as applied to matter, but the application of these equations implies a perfect

knowledge of all the data. But the smallest portion of matter which we can

subject to experiment consists of millions of molecules, not one of which ever

becomes individually sensible to us. We cannot, therefore, ascertain the actual

motion of any one of these molecules, so that we are obliged to abandon the

strict historical method, and to adopt the statistical method of dealing with

large groups of molecules.

-James Clerk Maxwell [190]

To model a physical system one route is to include, as realistically as possible, all the com-

plicated many-body interactions. The system is deterministic, and so in principle could

be completely described. Then we try to obtain a quantitative prediction of the behavior

by solving the resultant equations of motion. The challenge we face here is that usually

exact solution to the deterministic system is difficult, if not impossible to obtained. In

practice, we make approximation or assumptions to simplify the model. For example, we

can use stochastic processes as an approximate description of a deterministic system, which

has unknown initial conditions, and which may have the high sensitivity to initial condi-

tions. The theory of probability and stochastic processes was developed to describe such

complicated irregular phenomena. For example, a coin toss, the quintessential example of a

random system, could in principle be described adequately, if inconveniently, by Newton's

laws. Adopting a stochastic model to describe a system became viewed as a matter of con-
venience: absent a low-dimensional deterministic model of the system, a stochastic model
at least might provide the long-run frequency tendencies of the system states. Randomness
is chaos, but calling it "noise" is a strategic modeling decision amounting to an admission
that the system fluctuations remain high dimensional and unexplained.



The other extreme is to write down the simplest possible model that still includes the

essential physics. For example, we can ask what configurations are important to the thermo-

dynamic properties of a statistical mechanical system, and then include all configurations

that contribution to the statistical average in finite systems. In some cases, we add random

noise to our simple model and this noise represents nothing more than our lack of knowl-

edge of the system structure or inadequacy of the identification procedure. And then we

hope that it is tractable to analytic or precise numerical solution. The aim here is often

to study universal behavior or to gain a qualitative understanding of the physics governing

the behavior of the system.

In the previous chapter, we have started with the former approach, we solved the Brow-

nian motion problem using stochastic methods. We take the latter approach in this chapter,
namely, to study the same global effects in simpler models. Despite the apparent simplicity

of the models, they show a rich mathematical structure. Moreover, and perhaps surprisingly

at first sight, they do provide valid and useful representation of real world systems.

3.1 Thermodynamic and chaos

There are some ideas of transport and diffusion theory which have developed over the

past decade [65], and which are based on the notions of chaos theory. These methods are of

interest to us here since they directly relate macroscopic transport quantities, to microscopic

dynamical quantities such as Lyapunov exponents and Kolmogorov-Sinai entropies.

3.1.1 Initial-value sensitivity and the Lyapunov exponents

Even when the mathematical properties of deterministic chaos gradually become better

understood, the technicalities of chaos definition vary among textbooks, the property of

sensitivity to initial conditions was a nearly universal ingredient. Typical additional re-

quirements of chaos were that the attractor had to be bounded and densely embedded

with periodic solutions. Consider a general one-dimensional map defined by the formula

y = f(x). Iterating this formula, we get, for k = 1, 2, 3, ...

Xk+1 = f(xk). (3.1)

Also, we consider the simple and ideal case of two solutions with infinitesimally different

initial conditions xo = x and xo = x +dx so that dxo = dx. It follows from calculus that the

infinitesimal difference between the two solutions after one iterate equals dxl = f'(xo) dx,

where f' denotes the first derivative of f. After m iterates, the chain rule of differentiation

implies that the infinitesimal difference between the two solutions becomes

m-1 m-1
d kr=O dXk = 1 If'(Xk)1 (3.2)
dx, k= dxk k=O



The product f'(xo)f'(xi) ... f'(Xml) is the "amplifying" factor. It is more convenient to

study the average of the logarithm of the magnitude of this factor which becomes

N-1

A = lim E 1lo0g f'(Xk)l = (logf'(x)). (3.3)
k=O

This amounts to computing the temporal average of the logarithm of the modulus of the

derivative of the map over the time evolution. If the deterministic system is ergodic, then,
asympotically, this time average over one realization is the same as the ensemble average.

For the logistic map, it can be calculated that A = log 2. In other words, two logistic

trajectories with infinitesimally different initial conditions will diverge, on the average, at the

rate of 2m after m steps, with the averaging over a large number of iterates. The trajectory

becomes unpredictable very quickly. The constant A is called the Lyapunov exponent. If

it is positive, then the difference in the initial condition is amplified exponentially at the rate

of exp(Am) after m iterates, in which case we say that the dynamical system is sensitive

to initial conditions. On the other hand, a negative Lyapunov exponent means that the

effect of the initial condition is short lived and the dynamical system is not sensitive to

initial conditions. As a working definition for deterministic chaos, a dynamical system

is said to be chaotic if and only if it admits a positive Lyapunov exponent. The above

discussion can be generalized to the case of higher dimensional maps. In particular, A will

be generalized to an array of Lyapunov exponents.

It is almost impossible to give a precise mathematical definition of deterministic chaos

that encapsulates all the term implies in the diverse literature. We have seen, however,
that it is widely accepted that sensitivity to initial conditions is a typical feature of a

deterministic chaotic system. Similarly, there is no universally accepted definition of chaos

for a stochastic system. Some authors define stochastic chaos base on ideas motivated by

deterministic chaos, for example, initial-value sensitivities. We will defer this discussion to

later sections. And as for how to characterize a stochastic system, we will hold off this

discussion until the next chapter.

3.1.2 Kolmogorov-Sinai entropies

Now we give a brief discussion of the Kolmogorov-Sinai (KS) entropy, which is a
characteristic property of those deterministic dynamical systems with "randomness" prop-

erties. The KS entropy is essential for formulating the escape-rate expressions for transport

coefficients. As explained by Eckmann and Ruelle [70], dynamical systems with positive
Lyapunov exponents produce information. The KS entropy is an information theoretic mea-
sure to characterize the production of this information. Consider a phase space, Q2, which
we can partition into a non-trivial collection of non-overlapping sets {Wi} such that

{Wi : Q = UiWi, Wi n Wj = 0 for i : j, p(Wi) > 0} . (3.4)



Kolmogorov [160] and Sinai [261] define the entropy of a partition in terms of a normalized

invariant measure on the phase space as

H ({Wi}) = - l (Wi)log(,A(Wi)), (3.5)

with normalization Ei M(Wi) = 1. When the partition is the trivial partition, W = Q, then

H = 0. To get a number that indicates how much information is gained per step, define

h= lim -Hn. (3.6)
n--oo n

This quantity can be interpreted as a measure for the rate at which information is produced.

Numerically, it is found that a more useful, but equivalent, definition of h is given by

h = lim [Hn+l - Hn] . (3.7)
n--oo

These definitions depend on the choice of the partition, but the Kolmogorov-Sinai entropy,
hKS, is defined as the supremum of the above expression over all possible finite partitions

of the space at t = 0:

hKS = sup h. (3.8)

In bounded systems, the KS entropy per unit time is known to be given by Pesin's

theorem [221] as the sum of positive Lyapunov exponents:

hKS = At+ . (3.9)

3.1.3 The escape-rate formalism

One of the most interesting developments in the theory of irreversible processes is a connec-

tion between the dynamical properties of open systems and their hydrodynamic or transport

properties. Consider a Brownian particle diffusing in a fluid inside an interval with absorbing

boundaries. The motion of the particle is really deterministic and can be described, micro-

scopically, but Newton's laws of motion. If we were to describe the motion macroscopically,
we would solve the diffusion equation (the Fokker-Planck equation) for the probability den-

sity of the Brownian particle. The probability of finding the :particle inside the interval is

an exponentially decreasing function of time with decay rate depending on the mass and

size of the particle, the viscosity of the fluid, and the geometry of the boundaries.

Transport processes like diffusion can be conceived in terms of chaotic scattering, which

leads to the so-called escape-rate formulas relating the diffusion coefficient to the Lyapunov

exponents and the KS entropy or the fractal dimensions, characterizing chaos in dynamical



systems [99]:

S= > Ai(FR) - hKs(FR). (3.10)
Ai>0

The general derivations of the escape-rate formula are too involved to be presented here

in any detail, there is a nice simple argument that captures the general features of the

proofs. Let us imagine that we want to determine the rate of information production

by trajectories. The quantity we want is then exp [hKS(FR)t]. By the definition of the KS

entropy, we would expect that this information is generated, exponentially in time according

to exp {t -~A>o Ai(FR)}, by the stretching of phase-space regions. But at the same time,

it is reduced, exponentially in time according to exp(-yt), by the fact that most of the

trajectories escape from the system at the absorbing boundaries. We would then write

ehKs(FR)t e- t exp t 0 Ai(FR)}. (3.11)

The escape-rate formula follows immediately. More rigorous derivations of this formula are

given in Refs. [23] [98] [115] [147].

3.1.4 Thermodynamic formalism of chaos

The results for the escape rate, the Lyapunov exponent, and the KS entropy can be combined

conveniently into one expression from which all of the others can be derived. This expression

is called a dynamic partition function [16] [97]. We start with the set of intervals that

survive the first n iterations of the map, the dynamic partition function is defined by

2
n

Zn(p) = (ei) , (3.12)
i=1

where the ei are the lengths of the intervals, and 3 is a parameter. We can make this

expression look like a canonical partition function if we associate an "energy", ei, with

each interval fi, by fi = exp(-ei). In the same way as one defines a free energy from

the equilibrium canonical partition function, we define a quantity called the topological

pressure from the dynamical partition function. We write Zn(/3) as

Zn(3) = en 7(P ).  (3.13)

For large n we can formally compare n with the number of particles N in a canonical

ensemble. Then E(3) can be thought of as a kind of negative "free energy per particle times

0" and E is called the topological pressure, defined properly by the limit

1
() = lim - log(Zn(W)). (3.14)n-oo n



Now, all of the quantities discussed earlier can be expressed in terms of E(6). Specifically,

the Lyapunov exponent can be related to E(3) as:

Ai(FR)= d p=1  (3.15)

The escape rate, y, is

(3.16)

The Kolmogorov-Sinai entropy can be written as

hKS(FR) = -E'(1) + E(1). (3.17)

The thermodynamic formalism, created by Sinai, Ruelle, and Bowen, provides very deep

insights into the structure of chaos and into the connections of dynamical systems theory

with statistical mechanics.

3.2 Typical routes to chaos

Deterministic chaos is the behavior of a physical system whose time dependence is purely de-

terministic. As a prerequisite for the occurrence of deterministic chaos in physical systems,
the mathematical description of the time evolution has to be given by nonlinear equations

of motion. They need to be very sensitive to small variations of the initial conditions. Then

originally close phase space trajectories separate exponentially fast. Usually, chaotic solu-

tions are not found for the complete region of control parameters. The system approaches

the chaotic regime in a very characteristic manner. The mechanism of the transition to

chaos is of fundamental importance for understanding the phenomenon of chaotic behavior.

In the following we briefly describe three main routes to chaos which can be observed in

nonlinear oscillators. These are Feigenbaum's period-doubling route [74], the intermittency

route, and the Ruelle-Takens-Newhouse route. A detailed discussion of these mechanisms

would go far beyond the scope of this thesis.

In the context of optical bistability, deterministic chaos has been predicted first by

Ikeda [141] [142] for a ring resonator with a very long round-trip time. The obtained

solutions have been investigated in some detail, e.g., in Ref. [86]. They could be linked to

a multimodal instability of the Maxwell-Bloch equations for this system. In the meantime,

the Ikeda instability has been demonstrated experimentally in several devices [77] [300].

The study of the influence of noise in the route to chaos has direct practical implications,

for instance, it is useful in the interpretation of the dynamical behavior of semiconductor

laser diode [42] and optically injected semiconductor laser [93]; the unexpected dynamics

in epidemic outbreaks [21]; and the development of bursting neuron models [39].



3.2.1 Period doubling

In 1974, Princeton biologist Robert May published the first analysis of chaos in the logistic

equation, and introduced the term "chaos" for the first time [192]. Since then, the logistic

map became a classic example of the know routes to chaos: period-doubling, intermittency

and introduction of a new fundamental frequency [74] [193]. The bifurcation diagram of
the noise-free logistic map is shown in Fig. 3-1 along with the Lyapunov exponents as the
parameter p varies. The bifurcation of the randomly perturbed logistic map has been widely
studied, see for example, Ref. [227].
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Figure 3-1: Top: Bifurcation diagram and, Bottom: Lyapunov exponent plot for the noise-free
logistic map as the t varies from 2.5 to 4. We can see the period-doubling cascades of periodic states
for 1 < p < oo,, where the Lyapunov exponent is negative. At bifurcation points s1 = 3, P2 ý 3.4,
the Lyapunov exponent is zero. For chaotic domain, for i, < p < 4, the Lyapunov exponent is
mostly positive. We can also observe windows in the chaotic domain where the Lyapunov exponent
becomes negative.

As shown in the bifurcation diagram, the system undergoes a sequence of period-
doubling cascades until above a critical parameter value a chaotic regime begins. For
1 < p < Poo, where the Lyapunov exponent is negative. At bifurcation points pl = 3,
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#2 - 3.4, the Lyapunov exponent is zero. In 1978, Feigenbaum proved that the "period

doubling" pattern found in the logistic equation is not unique, and is in fact found in every

nonlinear system [74]; this had the effect of showing that chaos was universal, and not

limited to some small class of equations. For chaotic domain, the region 1 o < t < 4,
the Lyapunov exponent is mostly positive. We can also observe windows in the chaotic

domain where the Lyapunov exponent becomes negative. These "windows" have been seen

not only in one-dimensional models but also, e.g., in the two-dimensional discrete Henon

attractor [75] and even in the three-dimensional Lorenz attractor [256].

3.2.2 Intermittency

By intermittency we mean the occurrence of fluctuations that alternate "randomly" be-

tween long periods of regular behavior and relatively short irregular bursts. It has been

found that the density of chaotic bursts increases with an external control parameter, which

shows that intermittency presents a continuous route from periodic to chaotic behavior.

Fig. 3-2 shows a typical orbit for M = 3.8282. Part of the orbit looks like a stable 3-cycle,

but this is spooky since the 3-cycle no longer exists! We're seeing the ghost of the 3-cycle.

The theory of intermittency has bee established in a pioneering study of Pomeau and Man-

neville [224]. They connected intermittency with tangent bifurcations and distinguished

three types of intermittency basing on the mechanism of the loss of stability.

period-3 chaos period-3
L L

n

Figure 3-2: Typical orbit for logistic map (p = 3.8282) with intermittent chaos.

3.2.3 Break of torus

The third route to chaos is connected with Hopf bifurcation, which generates a limit cycle
starting from a fixed point. The Landau-Hopf theory of turbulence was until the mid 1970s
the accepted theory of how a fluid flow becomes turbulent [169]. The theory states that as

q



a fluid flows faster, it develops more and more Fourier modes, as shown in Fig. 3-3. In this

hypothesis the chaotic state is approached by an infinite sequence of Hopf bifurcations.
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Figure 3-3: Landau's model of turbulence.

The modification of this model which better describes the route observed in many exper-

iments was proposed by Newhouse, Ruelle and Takens [242], in which a much shorter route

was suggested. They showed that after three Hopf bifurcations regular motion becomes

highly unstable in favor of motion on a strange attractor as illustrated in Fig. 3-4. Ruelle

and Takens also coined the term "strange attractor" in their paper.

chaos
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Figure 3-4: Ruelle-Takens-Newhouse model of turbulence.

Experimental results suggest that direct transitions from quasiperiodicity to high-dimensional
chaos may be reached without the need of noise, but it's a particular type of global bifur-
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cation. This type of transition is not related by hyperchaos [217].

3.3 Noisy route to chaos

In the absence of noise the period-doubling route to chaos consists of an infinite number

of bifurcations which accumulate geometrically at some critical parameter value. Crutch-

field and Huberman [56] first studied the effect of random noise on a differential equation

known to possess a period-doubling cascade: a driven, damped oscillator in a quartic po-

tential. That study, carried out on an analog computer, showed that the noise truncates

the observable sequence after a finite number of bifurcations. To describe this phenomenon,
the authors introduced the notion of a "bifurcation gap" to describe the manner in which

noise washed out the fine structure of the deterministic bifurcation diagram. One way to

understanding the gap is to average the deterministic dynamical behavior over a window of

parameter values-this picture leads to good quantitative results. Fig. 3-5 showed evidence

that the size of the bifurcation gap on the logistic map scaled with the input noise level.

The windows in the intermittent chaotic regime, present in the noise-free case, disappear.

The bifurcation diagram is thus "smeared" horizontally and the narrow windows disappear.

In contrast, measurement noise corresponds a vertical smearing in the bifurcation diagram

rather than a horizontal one.

The literature reports that, of the three common scenarios, only the Ruelle-Takens sce-

nario is not affect by small noise. This surprising result is demonstrated by Kifer [155]

Kifer proves, roughly speaking, that for systems with an Axiom A attractor the stationary

probability of the system perturbed by colored external noise converges weakly to the in-

variant measure of the attractor as the intensity of the noise goes to zero. The influence of

noise on the Lorenz strange attractor has been studied numerically. The result indicate that

noise has the intuitively expected effect, namely it lowers the threshold of the transition

to turbulence. The road to chaos via period-doubling, the Feigenbaum scenario, and the

road via intermittency, the Pomeau-Manneville scenario, are both influenced even by small

noise. In the Feigenbaum scenario high periods are wiped out leading to a bifurcation gap.

For a detailed study of the influence of noise on a system with a period-doubling sequence,

namely the Verhulst or logistic model, see [194]. These authors also find that the behavior

of the system in a deterministic periodic environment differs markedly from that in a noisy

environment. For systems following the Feigenbaum scenario, scaling laws can be obtained

for the influence of external noise at the onset of chaos [54] [258]. In systems which display

intermittent behavior, the effect of noise was investigated by Mayer-Kress and Hakens [119],
Eckmann et al. [70], and Hirsch et al. [134]. We can summarize this by saying that in the

three commonly used scenarios for roads to chaos noise has either no influence or the ex-

pected effect of making the transition to turbulence easier. These scenarios offer therefore

not even a qualitative understanding of our experimental findings presented below.



Figure 3-5: Bifurcation diagrams for logistic map. Bifurcation of the noise-free model is plotted in
with red points; the same map in the presence of measurement noise is plotted with yellow points;
and in the presence of dynamic noise is plotted with blue points. Clearly, there is no interaction
between measurement noise and the nonlinear system dynamics and the combined effect is the simple
superposition of the intrinsic nonlinear dynamics and the extrinsic noise. In contract, dynamic noise
introduces far greater variability and complexity in the resulting dynamics.

3.3.1 Arrhenius formula and the logistic map

In this section we investigate the interference of noise and chaos in the simple logistic map

to demonstrate the connection between chaotic dynamics and kinetic rate theory. We shall

be concerned with a particle in a double-well potential and to understand its behavior in

time and to try to make quantitative statements about the motion of the trajectories in

the phase space that describe the particle. We consider the range of noise level where the

system develops fluctuations of sufficient size to overcome the potential barrier barring it

from equilibrium. As noted in Chapter 2, the studies of thermally activated escape from

metastable states or the rate of transition of a particle over a potential barrier are known

as the Kramers problem [167]. Our approach may be considered as a discrete-time variant

of the celebrated Kramers escape problem.

Consider the logistic map, including process noise, given by the difference equation:

(3.18)
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Figure 3-6: (a) Noise-free periodic logistic time series. (b) Periodic logistic time series with dynamic
noise. (c) Noise-free return map corresponding to the time series in (a). (d) Return map correspond
to the time series in (b).

where ,p is the bifurcation parameter, a is the standard deviation of the noisy and rq is

white, Gaussian-distributed random error with vanishing mean and unit variance. A noise-

free time series in the period-2 regime (p = 3.2) is plotted in Fig. 3-6 (a), the corresponding

return map is plotted in Fig. 3-6 (c). In the plots, we make the even samples with red circles

and the odd samples with black circles. We proceed to add dynamic noise to the time

series; we can begin to observe a "crossover" phenomenon of the red and black paths in

Fig. 3-6 (b), specifically, in the vicinity of k = 350, 420, and 475. We can interpret these

crossovers as the particle escaping from one well into the other (or in phase-space terms,

escaping from one stable fixed point to the other). The rate of crossovers should depend on

the intensity of the dynamic noise according to the Arrhenius factor we derived.

In order to verify this relationship, we wrote a simple program to count the number

of crossing in the logistic time series with varying levels of dynamic noise. Fig. 3-7 shows

the transition rate, k, plotted again the inverse of the standard deviation of the noise. In

kinetic rate theory, such a plotting scheme is known as an Arrhenius-plot. The idea is

that many thermally excited reactions are described by

y = yoe - EA/kBT, (3.19)
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Figure 3-7: Arrhenius plot for the logistic map with bifurcation values 3.05, 3.1, and 3.3. The
slope of the lines fitted at the low noise end indicate the value of the activation energy. Note that
for it = 3.3, the curve breaks down at before the inverse noise level gets to 70. This is because the
potential barrier is higher than the other two cases, therefore, at the low noise levels, zero crossover
was observed and thus from a calculation standpoint, the potential barrier is essential infinitely high
at those noise levels. Note that the probability of a reaction occurring in this case is still finite but
extremely small.

where EA is the activation energy (or enthalpy) of the process, and kBT is the noise

variance as given by statistical mechanics. An Arrhenius plot of this equation is simply a

plot of log y over 1/T (or 1/kBT). This produces a straight line:

EA
log y = logo - kBT (3.20)kBT*

The extrapolation of the straight line with the log y-axis gives directly the value of the

pre-exponential factor yo, and the slope of the straight line gives the activation energy. An

Arrhenius plot is extremely useful if data are determined experimentally. As seen in Fig. 3-

7, the transition rates fit on a straight line in the low noise limit, indicating an Arrhenius

relation. As we have seen in the previous chapter, the escape rate of such particle in

a potential well interacting with a heat bath of equilibrium fluctuations has the form of
an Arrhenius equation, but with a prefactor that depends on whether the interaction is
moderately to strongly coupled (strong friction regime) or weakly coupled to the heat bath.
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Figure 3-8: Top panel: Activation energy as a function of the bifurcation parameter p. The
activation energy peaks near y = 3.28, then falls for higher values of M. Bottom panel: Bifurcation
diagram of the logistic map, the distance between two branches is increasing as a function of M. The
height of the potential barrier is getting higher.

Note that the activation energy should increase as the bifurcation parameter increases.

This is because the two stable fixed point moves farther apart for increasing values of the

bifurcation parameter in the period-2 regime. The activation energy as a function of the

bifurcation parameter is plotted in Fig. 3-8. Notice that the activation energy reaches a

peak at around t = 3.28 before it falls in a linear fashion for the rest of the period-2 regime.

We suspect that the decrease in activation energy is a shadow effect from higher periods.

Fogedby and Jensen [76], who also treated Kramers' problem on the noise-driven discrete

logistic map, showed that the Arrhenius factor can be obtained from the dynamic parti-

tion function. In chemical reactors, Caroli et al. [40] indicated that for additive stochastic

processes in a bistable potential, two main physical behaviors occur. The first is the ex-

change of population between the two wells, which leads to a switch from local to global
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equilibrium. If the barrier is very high with respect to the diffusion coefficient, the Kramers'

relaxation time becomes extremely long. From the point of view of a chemist, a very high

barrier means that the corresponding chemical reaction does not, for practical purposes,
take place. The second effect is known as the activation process or the Suzuki enhance-

ment of fluctuation [273]. Starting from the top of the barrier, the time required to reach

equilibrium is called the decay time, and it is after this that the activation process begins.

A one-dimensional bistable map in the presence of multiplicative Gaussian white noise

was considered by Reimann and Talkner [235]. Recently, the additive noise case was ex-

plored by Fogedby and Jensen [76], who analyzed the structure of the noisy fixed points

of the logistic map. An exact expression for the escape rate for asymptotically small noise

strengths is derived consisting of an exponentially leading Arrhenius factor and a pre-

exponential factor that shows a nontrivial dependence on the noise strength. A similar

study was conducted by Reimann and Lootens [234] in which they considered the noise-

assisted escape from a metastable point attractor across an unstable fixed point in one-

dimensional dynamics, and found that the escape rate is dominated by an exponentially

leading Arrhenius-like factor in the weak-noise limit.

In addition to finding the Arrhenius-like dependence of escape rate on the noise strength,

what is more interesting is the observation that the dynamics of the stochastically perturbed

system is highly irregular and resembles chaotic behavior. It is useful to analyze the return

map in order to see if it verifies the existence of chaos. Return maps are plotted for the

system with dynamic noise in Fig. 3-6 (d). The return map for the dynamic noise case

appears more like the chaotic region of the noise-free map, in that the points spread out

along all the points accessible in the logistic equation. It appears that the noise causes the

system to undergo a bifurcation to chaos.

3.3.2 Nature of stochastic chaos

It is possible that there exists a different route to chaos: chaos induced by dynamic noise.

This type of chaos may be termed stochastic chaos. Note that since measurement noise

does not alter the system, and thus cannot be expected to induce chaotic behavior, it is

useful to compare the effects of the two types of noise on the system in order to determine

what part (if any) of the effect produced by the dynamic noise is indeed due to fundamentally

altering the system dynamics, and what part is of stochastic origin. From a physical point

of view it seems natural to ask how much of the qualitative behavior of these model systems
survives in nature, where small perturbations are permanently present [56] [306]. So one

can introduce noise, not in order to produce chaos but to check how stable a deterministic
dynamical system is against small perturbations.

First, from the bifurcation diagram of the logistic map with dynamic noise in Fig. 3-5,
vertical lines may be observed forming between the branches of the period-2 region. These
lines are reminiscent of the intermittent chaotic region of the noise-free bifurcation diagram.



In other words, dynamic noise truly interacts with the original nonlinear system to produce

a different system. Formation of the lines would seem to be related to the onset of chaos

due to dynamic noise. It was found that for the logistic system the stable periodic orbit

with periods not equal to 2n disappear much faster than orbits of stable period 2n and in

a way which is qualitatively different [194]. The threshold for the size of the fluctuations

for which, e.g., the Lyapunov exponents become positive is an order of magnitude smaller

in the first case. The transition to chaos manifests itself in a characteristic change of the

probability density, the Lyapunov exponents, and the power spectrum.

A stochastic model can also display behavior considerably different from its determin-

istic counterpart, the central tendency measures such as means or modes can bear little

resemblance to the deterministic dynamics. Differences in the dynamic behaviors of de-

terministic models and their stochastic versions, termed "noise-induced transitions," were

studied intensively in physics [138]. Deterministic chaos and stochastic chaos differ in their

statistical resemblance. Specifically, Fig. 3-9 (c) shows the histogram of the deterministic

trajectory of the chaotic logistic map (p = 3.7), which is noticeably different from Fig. 3-

9 (d), which shows stochastic perturbed limit cycle trajectory (A = 3.2, u2 = 0.05). Their

difference is clearly revealed by the non-straight-line-like appearance of the Q-Q plot shown

in Fig. 3-9 (e). The Q-Q plot is obtained by first sorting, separately, the data of each times

series in ascending order, and then plotting the scatter diagram of the two sets of ordered

data. In the ideal case of infinite sample size, the scatter diagram will fall on a straight line

if the two data sets are generated by the same marginal distribution.

The period-merging data was obtained by analyzing probability distributions of x values

as (dynamic) noise was increased [194]. For the noise-free case one obtains delta functions

for the probability distribution, with one delta function corresponding to each branch (in

the periodic region). As the noise level is increased the probability distribution functions

broaden, and eventually merge. This is illustrated in Fig. 3-10.

3.3.3 Existing definitions of stochastic chaos

An important component of the mathematical definition of deterministic chaos is sensitivity

to initial conditions. Some authors define stochastic chaos base on ideas motivated by

deterministic chaos, for example, the sensitivity measure has been extended to stochastic

models [55] [194]. It was noted that for simple models such as the logistic map perturbed

by noise, positive stochastic Lyapunov exponents (SLE) occurred at far lower values

of the control parameter than for positive Lyapunov exponents. Such dynamic phenomena

were referred to as "noise-induced chaos." Later, a formal mathematical definition of chaos

for stochastic systems was given by Eckmann and Ruelle [70]. They considered a system to

be chaotic if it exhibits sensitivity to initial condition and bounded fluctuations. However,

it is possible for the SLE to be positive when the Lyapunov exponents of the underlying

deterministic model is negative in the absence of noise, and vice versa [63]. This occurs
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Figure 3-9: (a) Time series plot of a deterministically chaotic trajectory of the logistic map with
p = 3.7. (b) Time series plot of a stochastically perturbed limit cycle trajectory with P = 3.74
and noise variance of 0.05. (c) Histogram of the deterministic trajectory. (d) Histogram of the
stochastically perturbed trajectory. (e) Q-Q plot of the two trajectories.

because the LE is a long-term average over the deterministic attractor while the SLE is the

long-term average over the stationary probability distribution.

Gao et al. [92] [94] taking issue with Crutchfield et al. suggested that the term "noise-

induced chaos" should refer only to such situations involving chaotic invariants. The idea is

that in a noisy system, a trajectory would often leave the deterministic attractor and come
under the influence of the manifold of the chaotic set. The trajectory would display a "fly
by" of the unstable chaotic set, and thus would sometimes appear to be under the influ-
ence of chaotic dynamics [57]. However, the SLE by itself cannot distinguish such chaotic
invariant set from other types of initial condition sensitivity. The property of sensitivity
to initial conditions, uniquely associated with chaotic dynamics in deterministic systems, is
widespread in stochastic systems because the time spent near repelling invariant sets. Such
sensitivity is due to a mechanism fundamentally different from deterministic chaos. Positive
SLEs should therefore not be viewed as a hallmark of chaos [229].

V _] I ,
V

Deterministically chaotic logistic bjectory ( Ip = 3.7) Stochastically chaotic logistic trajectory ( Ip 3.2)
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Figure 3-10: For the noise-free case one obtains delta functions for the probability distribution,
with one delta function corresponding to each branch (in the periodic region). As the noise level is
increased the probability distribution functions broaden, and eventually merge.

3.3.4 Novel definition for stochastic chaos

In our simulations of the logistic map in the period-2 regime, even though the bifurcation

diagram and power spectra analysis can show that the system is not periodic, no features

have yet arisen that would distinguish them as chaotic versus merely noisy. In order to

show the existence of chaos, we employ the numerical-titration method [225]. Numerical

titration produces a positive noise limit value for the period-2 logistic map perturbed by

dynamic noise, indicating the presence of chaotic dynamics. The origin of this chaos can be

thought of as follows. The perturbed system is given by sequences {ik}, where

X0 = X0,

Xk = f(ik-1) + lrk, for n > 0. (3.21)

The noise term is assumed to be independent of the state, x, independent identically dis-

tributed, which we tacitly presume to be relatively small, so that the deterministic part has

primary influence. The domain of the logistic map is restricted to the unit interval because

the iterations of starting values outside of [0, 1] diverge to minus infinity. That is also the
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Figure 3-11: (a) Time series plot of a deterministically chaotic trajectory of the logistic map with
1A = 3.7. (b) Time series plot of a stochastically perturbed limit cycle trajectory with / = 3.74
and noise variance of 0.05. (c) Histogram of the deterministic trajectory. (d) Histogram of the
stochastically perturbed trajectory. (e) Q-Q plot of the two trajectories.

reason why the fluctuations must have an upper bound, if the system should be confined

to a finite interval. The fact that we are not allowed to admit fluctuations of arbitrary

largeness is not in contradiction with intuition since we are dealing with a system which

corresponds, e.g., in ecology to a finite population which of course will die out if there is

a large enough fluctuation, i.e., a fatal catastrophe. The noise can also be interpreted as a

high-dimensional dynamical system with some deterministic generating function

g : 1I - 1,

7k ?k+1. (3.22)

In this way we are in fact considering a two-dimensional dynamical system

F: IB( /) x Ip• IB(/3 ) x I,

(Pk, 77k) ý 4 Pk+1, ?k+l). (3.23)
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Figure 3-12: (a) The periodic logistic map trajectory for Iu = 3.74. (b) Periodic logistic map
trajectory for p = 3.2. (c) The periodic logistic map trajectory for it = 3.74 with dynamic noise,
this is the noise-induced chaos case described by Gao et al. [94], who demonstrated initial value
sensitivity in this model. (d) The stochastic chaos case in the period-2 does not have sensitivity to
initial conditions, but yet titratable.

where Is(, 3 ) C [0, 1] is the basin of the system. This can also be interpreted as the interac-

tion of the two systems f and g. We speculate that the filtering of this high-dimensionally

chaotic noise by the low-dimensional nonlinear (non-chaotic) deterministic skeleton model

produces a low-dimensional chaotic projection which is detectable by the numerical-titration

algorithm. This comment is by no means mathematically rigorous.

The systems in the previous studies are chosen so that they are close to the parameter

where deterministic chaos occurs naturally [54] [55] [94]. Therefore, it is not surprising

that small noise induces chaos, effectively simulating the dynamics of a larger but nearby

parameter value (see Fig. 3-11). In our logistic map example presented above, we observed

irregular oscillations well into the period-2 region, away from the deterministic chaos pa-

rameters. Initial value sensitivity may not hold in the case of stochastic chaos, as shown in

Fig. 3-12. The chaotic motion generated is truly the effect of the dynamic noise and can only

be detectable by numerical titration. Therefore, we propose the use of another quantity

to characterize stochastic chaos, namely, the noise limit value from the numerical-titration
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technique, which we will derive in the next chapter. Our simulation results (we will also

show this in the next chapter) show that when dynamic is recycled through the nonlinear

deterministic evolution law, numerical titration yields a nonzero value for the noise limit,
which indicates the presence of chaotic dynamics. In contrast, when measurement noise is

added to the system, the noise tends to obscure the chaotic dynamics and the noise limit is

decreased. Hence, we propose a new definition for stochastic chaos: a dynamical system is

said to be stochastically chaotic if and only if it admits a positive noise limit, as produced

by the numerical-titration algorithm.

3.3.5 Connection between kinetic rate theory and stochastic chaos

In statistical physics, the popular view is that the evolution is given by the familiar de-

terministic macroscopic equations (such as Newton's equation of motion) and that if we

are interested in fluctuations, such as the systematic interaction force due to the thein-

tramolecular and intermolecular interactions of the Brownian particles, we should tag them

on somehow in the form of a Langevin term. Many interesting results can often be obtained

without solving the Langevin equation, from the fluctuation dissipation theorem. The main

method of solution if a solution is required is by use of the Fokker-Planck equation, which

provides a deterministic equation satisfied by the time dependent probability density. The

Fokker-Planck-Langevin method places heavy emphasis on the role of fluctuations. This

turns out to be very useful in dealing with diffusion and phase transition processes near

critical points, where fluctuations are of overwhelming importance.

We adopt a discrete form of the Langevin's equation that has a double-well potential

(the logistic map) so that we can derive the Arrhenius factor analytically and show the

interdependency between the nonlinear deterministic evolution law and the stochastic per-

turbation. Specifically, the geometry of the potential barrier is expressed as the activation

energy, which is determined deterministically; while the kBT dependence of the transi-

tion rate is effect of the thermal fluctuation. In this way, the Arrhenius formula expresses

the interplay between deterministic and stochastic properties of the system in one elegant

expression. This is precisely our concept of stochastic chaos: noise generated from a high-

dimensional chaotic system recycled through a low-dimensional deterministic "skeleton"

evolutionary law.

We did not derive an explicit function relationship between the escape rate and noise

limit in this thesis. However, we show that there is a positive correlation between noise

limit and transition rate, as shown in Fig. 3-13 (c). Upon closer inspection, we see that at

low noise levels, noise limit can still be positive when no transition occurs (transition rate
= 0). This implies that the motion of the particle can become complex way before it gains
enough energy to transition to another well. We believe the transition can contribute to
additional stochastic chaotic dynamics, but very slightly.

We have simulated a few trials for the logistic map, injecting the same level of dynamic



lOO

loo (a)
so-
so

40

20

0
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

02

Transition rate (number of crossings I length of time series)

Figure 3-13: (a) Noise limit vs. noise intensities a2. (b) Transition rate
Correlation between noise limit and transition rate.

vs. noise intensities. (c)

noise, then we counted the number of transitions in the series and finally computed the noise

limit. Table 3.1 shows that, at the same noise level, the transitions have only a marginally

effect on noise limit. Since these transitions are such rare events (at low noise levels anyway),
the effect on stochastic chaos is barely observable.

Table 3.1: Contribution of phase transition to stochastic chaos

Noise intensity a Length of time series Number of transitions Noise limit
0.28 10000 2 46.6
0.28 10000 3 48.2
0.3 10000 11 61.0
0.3 10000 17 62.4
0.3 10000 25 62.8

Since noise limit begins to become positive before the thermal agitation is large enough

to excite the particle to escape the local potential well, we conclude that motion of the

particle can be chaotic even when it's in a single-well potential. Indeed, numerical titration
outputs a positive noise limit for the logistic map in the stable fixed point regime, with
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level. Again, the effect of the noise is to smear the delta function.

bifurcation parameter value of, say, p = 2.7. The evolution of the distribution of the fixed-
point logistic map is shown in Fig. 3-14. The effect of the noise is to smear the single
delta function; yet the time series is still titratable. This phenomenon is to be investigated
further.

3.4 Summary

This chapter is an introduction to the applications in statistical mechanics of chaotic dynam-
ics, and also to the use of techniques in statistical mechanics important for an understanding
of the chaotic behavior of a dynamical system. We discussed the connections between kinetic
rate theory, needed to describe macroscopic properties, and quantities, such as Lyapunov
exponents and Kolmogorov-Sinai entropies, which describe the microscopic, chaotic behav-
ior of the system. Moreover, such chaos-like behavior could be analyzed in detail for simple
systems with just a few degrees of freedom. These simple model systems provide a great
deal of insight into how more complicated dynamical systems might actually behave, and
how one could then provide a more substantial foundation for the validity of the Boltzmann
equation and related chaos-like equations commonly used to treat nonequilibrium systems.
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With the logistic model, not only can we predict the Arrhenius-like exponential depen-

dence of the escape rate on temperature, we also see that the transitions play a critical role

in the chaotic dynamics of the time series. We have also discussed some differences between

our definition of stochastic chaos and the exist definition of noise-induced chaos, which is

really "near-deterministic" chaos. We showed that the phase transition phenomenon has a

minimal effect on the chaotic behavior of the system. It is a future task to quantify to what

extend do the transition affect stochastic chaotic dynamics at high noise levels.

Finally, one would also be interested in the quantum effects on our analysis of the

particle's transition from one potential well to another. Quantum mechanical effects such

as tunneling through a classically impenetrable potential energy barrier have long been

known to occur in chemical reactions [17]. A detail analysis of this effect is beyond the

scope of this thesis.



Chapter 4

Simulation Studies I

I have had my results for a long time: but I do not yet know how I am to arrive

at them.

-Carl Friedrich Gauss [11]

In the previous chapter, we have expounded on the interdependence between deterministic

and probabilistic properties of dynamical systems under the influence of stochastic pertur-

bations. Randomness may have several sources, including chaotic dynamics, temperature

fluctuations that are internal to the system, and random external perturbations. The aim

of this chapter is present theoretical methods which allow one to characterize such systems.

In deterministic dynamical systems there exist well-established ways to define the com-

plexity of a temporal evolution in terms of Lyapunov exponents [157] and Kolmogorov-

Sinai entropy [2861; see Ref. [255] for a review. However, the situation becomes much

more ambiguous in presence of a random perturbation, which are always present in physi-

cal systems as a consequence of thermal fluctuations, or uncontrollable changes of control

parameters, or in numerical experiments simply because of the roundoff errors. In the small

noise limit, the perturbation changes the stationary behavior by introducing the possibility

of jumps among different attractors (stable fixed points, stable limit cycles, or tori). An
example is the Langevin equation describing the motion of an overdamped particle in a

double well, as presented in Chapter 2. As we have seen, the combined effects of the noise

and of the deterministic part of the evolution law can produce highly intriguing behavior.

In Sec. 4.1, we present one approach to characterize stochastically perturbed systems by

calculating the Lyapunov exponent for the rate of divergence of two initially nearby tra-
jectories evolving under the same realization of the noise, in order to avoid the devastating
impact of noise on the calculation. Although the Lyapunov exponent is a well-defined quan-
tity, it is neither unique nor the most useful characterization of complexity. Furthermore, it
is practically impossible to extract the Lyapunov exponent from an analysis of experiment



data [181]. This chapter presents several other measures of complexity for stochastically

perturbed dynamical systems. In Sec. 4.2, we use the numerical-titration technique to

detect for the existence of chaos and give a quantitative measure of its intensity in the

stochastic system. In Sec. 4.3, we present a popular statistical index that quantifies the un-

predictability of fluctuations in a time series, a method known as approximate entropy.

The fractal scaling properties are quantified with the use of detrended fluctuation anal-

ysis in Sec. 4.4. Finally, we give a brief note on power spectral analysis and multifractal

analysis in Sec. 4.5 and Sec. 4.6, respectively.

4.1 Lyapunov exponent: identical-noise-realization approach

It is perhaps quite natural to try to retain the Lyapunov exponent even after we have clothed

the deterministic skeleton with dynamic noise. However, in the presence of dynamic noise,
the problem arises how to quantify the divergence of two realizations starting from two

nearby initial values. One proposed way is to use a device analogous to the well-known

coupling technique in probability theory by assuming that the two realizations share the

same noise sequence. This device was first used by Herzel et al. [132] in 1987 and later

adopted by Nychka et al. [209] and others [46] [152]. Clearly, if two nearby initial states

share the same realization of the dynamic noise, then the calculation and interpretation of

the Lyapunov exponent remain almost unchanged. Specifically, consider the model

Xk+1 = f(zk) + 1k+1 (4.1)

Let x0o and io denote two initial values such that x0o - i0 = 6. After one iteration of the

system dynamics we have

Ix1 -~4i = I(f(xo) + 1l) - (f (o) + C1)1. (4.2)

The assumption of identical dynamic noise realizations implies that ri1 = 1, and this gives

IlX - 4i| = If(xo) - f(Go)I. (4.3)

It is now clear that the assumption of identical dynamic noise realization allows us to obtain

the Lyapunov exponents in a similar way as in the deterministic case.

The Lyapunov exponent of a dynamical system can be determined without actually

knowing and solving the underlying evolution law explicitly. This occurs when we obtain

a chaotic time series from a dynamical system, reconstruct its strange attractor in the

corresponding pseudo-phase space, and then compute the Lyapunov exponent from the

reconstructed strange attractor directly, without its explicit mathematical model. Some

common methods for estimating the Lyapunov exponent are presented by Wolf et al. [298],



Rosenstein et al. [241], and Brown et al. [30]. Gottwald and Melbourne [111] proposed

a modification to the above methods for the detection of determinism in a noisy time

series. However, the problem remains when the analyzed signal contains a nontrivial noise

component, dimension and Lyapunov measure are unsuitable, since the Lyapunov exponent

of noise is infinite. Paladin et al. [212] devised an alternative characterization of complexity

in dynamical systems with a random perturbation by considering the rate K of divergence

of nearby orbits evolving under two different noise realizations. The meaning of K has some

physical relevance within the framework of information theory, and very different from the

Lyapunov exponent.

4.2 Numerical titration

Though the return maps and other forms of analysis seem to imply that dynamic noise

can in fact produce chaos, it is desirable to have a more quantitative measure of the exis-

tence of chaos and its intensity. This is provided by the numerical-titration method [225].

The numerical-titration technique offers a highly sensitive litmus test for chaotic dynamics

and a relative measure for tracking chaoticity in a noise-contaminated experimental time

series. Rather than filtering the noise before chaos analysis, which could risk "bleaching"

the chaotic dynamics [277], the numerical-titration technique is analogous to a chemical

titration: it measures chaos (acidity) by a control neutralization with added noise (base),

thus allowing a "litmus test" for chaos. Numerical titration has been applied to heart-rate

variability analysis in patients with congestive heart failure [226], in speech signal analy-

sis [275], and. more recently, in pediatric sleep state analysis [60], and in the detection of

obstructive sleep apnea syndrome in children [61].

4.2.1 Volterra autoregressive model

The heart of the numerical-titration algorithm is the Volterra autoregressive series

(VAR) nonlinear detection (NLD) algorithm. The development of Volterra models relies

on the mathematical notion of the Volterra series (a functional power series expansion) intro-

duced by the distinguished Italian mathematician Vito Volterra about a century ago [6]. The

term "Volterra series" is used to denote the functional expansion of an analytic functional

representing the input-output relation of an continuous and stable nonlinear dynamic sys-

tem with finite memory. The requirement of finite memory is necessary for the convergence

of the Volterra functional series expansion. Even non-analytic, but continuous, functionals

(corresponding to systems with non-differentiable continuous input-output relations) can be
approximated to any desired degree of accuracy by an analytic functional (and therefore a
Volterra series) in a matter akin to the Weierstrass polynomial approximation theorem for

non-analytic continuous functions. Thus, the applicability of the Volterra series expansion
to system modeling is very broad and requires a minimum of prior assumptions.



We can state that the output y(t) of a stationary stable causal system can be expressed

in terms of its input signal x(t) by means of the Volterra series expansion as [28] [243]:

y(t) = ho +jdr hi(7)x(t - 7) + dTr d 2 h2 (71, T2)(t - T2)

+ drTr... hr(T......Tr)X(t--r) ..Z(t - r) + (4.4)

where the range of integration (ri from 0 to oo) indicates that past and present values of

the input affect the output present value in a manner determined by the Volterra kernels

(i.e., the kernels should be viewed as weighting functions in this integration).

In discrete time, the Volterra expansion formulates the discrete time-invariant and causal

nonlinear input/output relationship as a polynomial expansion of the output yk in terms of

the input delays Xk, Xk-1, ..., Xk-,+l, where n is the memory of the system:

Yk = h0 + ho(m)Xn-m1 + E h2(ml,m2)Xn-miznm 2 + - (4.5)
ml=0 mi =0 m2=0

where {hr(mi, m2,..., mr)} is the rth Volterra kernel, which are analogous to the impulse

response of linear systems theory.

The Volterra autoregressive method recasts the moving-average Volterra expansion into

an autoregressive form to partially capture the dynamic behavior of the system [14]:

K-1 r-1 r-1

~n+1 = ho + hlr(ml)Xn-m, + h2(ml,m2)Xn-miXn-m 2 + (4.6)
ml ml=Om2=0

To convert the functional forms of the Volterra kernels into a set of scalar coefficients,

we reformulate the expansion as a weighted sum of functionals:

k(K, d) = ao + alXk-1 + a2xk-2 + ' + axk-K + a 2+lxk_l1
d

an+2Xk-lXk-2 + ... • aM-1xk

M-1

- amzm(k) (4.7)
m=O

where the functional basis {zm(k)} is composed of all the distinct polynomial combinations

of the embedding space coordinates (Xk-1, Xk-2, ... , Xk-r) up to a maximum delay K and

maximum order d, with total dimension

M = + d) (4.8)n!d!

The corresponding set of scalar coefficients {am} represent the set of Volterra kernel func-

tions, characterizing the autoregressive behavior of the dynamical system. Each model is



parameterized by K, the embedding dimension, and d, the degree of the nonlinearity of

the model (i.e., d = 1 for linear model and d > 1 for nonlinear model). The coefficients

am are recursively estimated from eq. (4.7) from the entire time series using the Korenberg

algorithm [162].

The conversion from the original representation to the modified representation is

1, m = 0;

zm(k) = Xk-m+l, 1 < m < l; (4.9)

Xk-jiXk-j 2, +1 2m < /2.

where ji = Lm/rJ and j2 = mod(m, r).

The kernels of the original representation can be recovered as follow:

ho = ao

hi(mi) = ami+1

h2 (ml, m 2 ) = h2 (m 2 , m) = amlK+m2, m = M2; (4.10)
,amlr+m2 /2, mi •# m2.

4.2.2 Goodness of fit

In the VAR algorithm the coefficient am for m = 1, 2,... (estimated by using the Korenberg

algorithm) are used to generate a predicted time series xk as follows:

M-1

4k(K, d) = 1:m im(n) (4.11)
m=O

The goodness of fit of a model is measured by the normalized residual sum-of-square errors:

N

(^n(,•, d) - Xk) 2

E2(K,d) n=l (4.12)

(Xk - (xn))2
n=1

where (xn) = (1/N) E• xi and E2(r, d) is in effect a normalized variance of the residual
error. An optimal model is one that minimized the following information criterion [5]:

C(r) = log e(r) + - (4.13)

where r E [1, M] is the number of polynomial terms of a truncated Volterra expansion.

Increasing the number of free parameters to be estimated improves the goodness of fit,
regardless of the number of free parameters in the data generating process. The Akaike



information criterion (AIC) not only rewards goodness of fit, but also includes a penalty

that is an increasing function of the number of estimated parameters. This penalty dis-

courages overfitting. The preferred model is the one with the lowest AIC value. The AIC

methodology attempts to find the model that best explains the data with a minimum of free

parameters (parsimony principle). Many researchers extended Akaike's original work to in-

clude bias correction to adjust for AIC's propensity to favor high-dimensional models when

the sample size is small relative to the maximum order of the models in the candidate class.

Such a variant, called the "improved" Akaike information criterion or AICi, is based on an

idea advanced by Hurvich et al. [139] in the context of univariate Gaussian autoregressive

models. The criterion involves the same goodness-of-fit term as AIC, yet features a penalty

term that arises via a simulated bias correction [18]. The resulting AIC variant has been

shown to be less bias than traditional AIC, that AICi does not exhibit a propensity to favor

grossly over-parameterized models, and that AICi generally outperforms its competitors in

terms of correct order selections.

4.2.3 Detection of chaotic dynamics in measurement noise

One may determine whether the underlying dynamics of the system under study are linear

(doptimal = 1) or nonlinear (doptimal > 1). For the closed-loop Korenberg series it is found

that the nonlinear Korenberg model is only superior when the system is not only nonlinear

but also chaotic. This is reasonable since a periodic (but nonlinear) system returns to the

same values and thus it should be possible to represent a given value as linear combination

of previous values. For example, in the period-two region the model is just xn+1 =- n-1
and doptimaI = 1. In contrast, a chaotic system never returns to the same value; thus, it

cannot be represented in such a simple fashion and doptimal > 1.

In addition to linear vs. nonlinear hypothesis testing, the VAR method provides a suffi-

cient test for chaotic dynamics when used in conjunction with a "noise titration" procedure:

the dynamics of nonlinearity are tested on the time series. If linearity is detected, then the

noise titration method rejects the null hypothesis of no chaotic behavior. If nonlinearity is

detected, small amounts of Gaussian noise are successively added until nonlinearity is no

longer detected (within a prescribed level of statistical confidence). Since pure noise is best

modeled by a linear model, this method can be used not only to determine the presence

of chaos, but its intensity. If enough measurement noise is added to a chaotic system, its

nonlinearity will no longer be apparent using the method described above. This is the basis

of the numerical-titration method: measurement noise "base" is added to the chaotic time

series ("acid") until it is neutralized. The point at which neutralization occurs is signified

by the transition of doptimal from a value great than one to unity. The maximum noise

added before nonlinearity goes undetected is called the noise limit. Under this scheme, a

noise limit greater than zero represents the detection of chaotic dynamics. In addition, the

noise limit mirrors the maximal Lyapunov exponent of the system dynamics [225].



4.2.4 Numerical titration results

The titration method was applied to the periodic limit cycles as well as the chaotic logistic

map. In Fig. 4-1, the noise-limit values are plotted against noise intensities for different

values of the bifurcation parameter, p.
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Figure 4-1: Titration of the logistic map. Top panel: Noise-limit values vs. noise intensities,
plotted for the different values of the bifurcation parameter, p. Bottom panel: Exponential fittings
of the data in the top panel. Evidence for stochastic chaos is clearly observed as the increasing noise
intensities drive the system to higher chaos levels.

From Fig. 4-1, we can clear observe the evidence for stochastic chaos as we have defined
it in Chapter 3. For the periodic trajectories driven by dynamic noise (A = 3.2, 3.5,
and 3.5688), the noise-limit values increase in a convex exponential fashion as the noise
intensities increase. Even the "shallow" chaotic orbit (i = 3.7 and 3.8282) was driven to
become slightly more chaotic. For the trajectories well into the chaotic regime (,a = 3.9), the
chaos level actually decreases slightly from it's intrinsic chaos level. This could correspond
to the case of "noise-induced order," as the noise kicks the system slightly out of the deep
chaos regime. Or it is more likely an artifact of our numerical procedure to keep the logistic
map out of bound when we add dynamic noise to it.

Curiously, the noise-limit curves all converge to approximately the same value at high
noise levels regardless of the value for the bifurcation parameter. This observation suggest

0
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that perhaps there is a natural, preferred induced-chaos level that is universal for the system.

4.3 Approximate entropy

Rooted in the work of Grassberger and Procaccia [113] and Eckman and Ruelle [70], ap-

proximate entropy (ApEn) is a "regularity statistic" closely related to the Kolmogorov

entropy that estimates the level of complexity and predictability of fluctuations in dynamical

systems [222]. ApEn provides quantitative information about the complexity of experimen-

tal data that are often short and noise contaminated, and in many cases, have inherent

dynamics that exhibit both deterministic and stochastic behaviors. ApEn reflects the loga-

rithmic likelihood that templates in the sequence that are similar (within a tolerance r) will

remain similar on next incremental comparisons. A time series that exhibits frequent and

similar epochs has a relatively small ApEn value, reflecting strong regularity. Alternatively,
large values of ApEn imply the presence of substantial fluctuation in the time series. This

method has been applied in physiological time-series analysis [2] [135] [223] [238].

4.3.1 Approximate entropy algorithm

The algorithm for computing ApEn is as follows:

1. Given an N-point time series , we form m-vectors, X(1) to X(N - m + 1) defined by:

X(i) = [x(i),x(i + 1),...,z(i+m- 1)], i = 1,...,N-m+ 1.

2. Define the distance d[X(i), X(j)] between vectors X(i) and X(j) as the maximum

absolute difference between their respective scalar components:

d[X(i),X(j)] = max [jx(i + k) - x(j + k)j. (4.14)
k=O...m-1

3. Define for each i, for i = 1,..., N - m + 1, let C(m)(i) = V(m)(i)/(N - m + 1), where

V(m)(i) = number of d[X(i),X(j)] < r, where r defines the criterion of similarity.

The quantity C(r) expresses the prevalence of repetitive patterns of length m in x(n).

4. Take the natural logarithm of each C( m) (i), and average it over i as defined in Step 3:

N-m+1
(m) (r) N 1 log Cm)(i). (4.15)

i=1

5. Increase the pattern dimension to m + 1 and repeat Steps 1 to 4.

6. Calculate ApEn value for a patterns of length m, and similarity criterion r:

ApEn(m, r, N) = 0(m) (r) - 0(m+l)(r). (4.16)



Pincus, who developed the ApEn method, suggested that r be 0.1 to 0.25 times the standard

deviation of the data, and that m be 1 or 2 for data lengths (N) ranging from 100 to 5000

data points. We chose m = 2 and r = 20% of the standard deviation of the time series.

4.3.2 Approximation entropy results

In Fig. 4-2, the approximate entropy values are plotted against noise intensities for different

values of the bifurcation parameter, J.l.
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Figure 4-2: Approximate entropy for the logistic map. Top panel: ApEn values vs. noise intensities,
plotted for the different values of the bifurcation parameter, Jl. Bottom panel: Exponential fittings
of the data in the top panel. The approximate entropy curves are increasing functions of noise
intensities in all cases, as expected.

Since approximate entropy measures the level of randomness in the time series, we

naturally expect the entropy values to rise with as level of noise increase. In this way, we

have little to infer about noise-induced complexity from approximate entropy calculations.

We make one more observation before we go on to another approach. And that is, noise

has a greater effect for the trajectories with smaller bifurcation parameter. Specifically, the

approximate entropy values change the most for the logistic map with J.l = 3.2 and least

for the map with J.l = 3.9. This result suggest that initially chaotic trajectories have some

"immunity" to noise, in the sense that their statistical behavior is not greatly affected by
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the addition of noise.

4.4 Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) was developed by Peng et al. [218] for the analy-

sis of DNA and soon applied to many dynamical phenomena including a wide range of phys-

iologic signals [127], particularly in the analysis of cardiac rhythm fluctuations [1] [2] [219],
and the identification of coding regions in DNA sequences [211]. DFA quantifies the fractal

scaling properties (the long-range power-law correlation exponents, or the Hurst expo-

nent) of a signal by computing the root-mean-square fluctuation of the integrated and

subtractive detrended series. This technique is a modification of root-mean-square analysis

of random walks applied to non-stationary data.

4.4.1 Detrended fluctuation analysis algorithm

The DFA algorithm is briefly described below:

1. The N-point time series x(n) = [x(1),x(2),...,zx(N)] is integrated,

k

y(k) = [x(i) - PM], (4.17)
i=1

where lzx = =l x(i)/N is the mean of the time series.

2. The integrated time series is divided into windows of equal length, n.

3. In each window, a least-squares line is fit to the data to represent the local trend and

is denoted yn(k). We detrend the integrated time series, y(k), by subtracting the local

trend, Yn(k), in each box.

4. The root-mean-square fluctuation of this integrated and detrended time series is cal-

culated by

F(n)= [y(k) - yn(k)]2 . (4.18)
i=1

5. The above computation is repeated over all time scales (window lengths) to charac-

terize the relationship between F(n), the average fluctuation, and the window length

n. Typically, F(n) will increase with n. A power-law relation between F(n) and n

indicates the presence of scaling F(n) - na . A linear relationship on a log-log plot

indicates the presence of power law (fractal) scaling. Under such conditions the fluc-

tuations can be characterized by the scaling exponent a, the slope of the line relating



log F(n) to log n. Note that since for n = O(N), only very few time windows consti-

tute the average in the F(n) equation, the results for large n become biased, therefore,
only n < N/4 was used. The trend removal also introduces bias when n is too small.

The scaling exponent can also be found in the power spectrum [185]. However, with the
detrending done in the time domain on time scales matching exactly the time scale on which
the fluctuations are analyzed, the scaling laws are typically better expressed by DFA than
by the power spectrum.

4.4.2 Detrended fluctuation analysis results

In Fig. 4-3, the scaling exponent a is plotted against noise intensities for different values of
the bifurcation parameter, p.
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Figure 4-3: Detrended fluctuation analysis of the logistic map. Top panel: Scaling exponent a
vs. noise intensities, plotted for the different values of the bifurcation parameter, it. Bottom panel:
Exponential fittings of the data in the top panel.

As shown in Fig. 4-4, when the calculated scaling exponent is equal to 0.5, it is indicative
of white noise. If the value of a lies between 0.5 and 1 then the time series exhibits
long-range correlations; a x 1.5 for Brownian noise. We can see from Fig. 4-3 that the
scaling exponent as a function of the noise intensity is approaching 0.5 for all values of



the bifurcation parameter. Again, as in the case of approximate entropy, calculation of the

scaling exponent using DFA merely reflects the presence of noise.

Power-law relation

a = 0.3949

10-

100 101

Figure 4-4: Power law relation of white noise.
equal to 0.5.

The calculated scaling exponent a is approximately

4.5 A note on power spectral analysis

Perez and Jeffries [220] analyzed the power spectral density for the logistic map and found

that the additive noise produces sudden aperiodicity at bifurcation windows; their exper-

imental findings are in agreement with the computed predicted behavior and are further

detailed evidence for universal chaotic behavior. Similar results were obtained by Testa et

al. [276] for a driven nonlinear oscillator. In this study, we compared the power spectra of

white noise, deterministic chaos, and stochastic chaos case, as shown in Fig. 4-5. The power

spectra for the noisy systems are broadband, as is the case for chaotic systems, in which

time correlations decay; however, such spectra are also obtained due to noise alone so these

results do not verify the existence of chaos.

4.6 A note on multifractal analysis

Scaling invariance plays a fundamental role in many natural phenomena and is often re-

lated to the appearance of irregular forms which cannot be described by the usual differential

geometry. A classical example is again given by Brownian motion. The necessity of intro-

ducing a new class of geometrical objects, namely, fractals, has subsequently arisen in
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(a) Power spectral density of white noise
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Figure 4-5: (a) Power spectral density of white noise; (b) Power spectral density of deterministic
chaos (logistic map with A = 4), which shows the same characteristic as the white noise spectrum;
(c) Power spectral density of stochastic chaos (logistic map with y = 3.2 with dynamic noise), which
also exhibits a broadband spectrum.

various different problems. The concept of "fractal object" was explicitly formulated and

popularized by Mandelbrot [184]. For a comprehensive review the multifractal formalism,
see, for example, Ref. [213].

The central idea consists in the characterization of the scaling structure of an object by

means of an index, the fractal dimension, DF, which coincides for "ordinary" shapes with

the usual topological dimension DT. We can define the fractal dimension as a "capacity"

measure by considering the number N(f) of hypercubes of edge f necessary to cover an
object embedded in a D-dimensional space in the limit --+ 0:

N(e) oc f-DF (4.19)

This pointwise dimension allows us to quantify the local variations in scaling. The object
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is called fractal if DF > DT. For chaotic time series analysis, the trajectory in the D-

dimensional phase space does not fill the space even when we have infinite number of

points. This is because the trajectory lies on a strange attractor of dimension DF < D.

Since we have divided the object with N spatially isolated regions of characteristic length

f, we ask how many times the time series visits the ith region. The number of times a takes

on a value between a' and a' + da' will be of the form

da'p(a')t-f(W'), (4.20)

where f(a') is a continuous function called the multifractal spectrum. The exponent

f(a') reflects the differing dimensions of the sets upon which the singularities of strength

a' may lie. This expression is roughly equivalent to eq. (4.19), except that now, instead

of the dimension DF, we have a fractal dimension f(a), which varies with a. It therefore

offers the global scaling information of the fractal object. In this way, the fractal measures

is modeled by interwoven sets of fractals of different dimensions a, where f(a) measures

their relative weights [120].

In order to determine the function f(a) for a given measure, we must relate it to

observable properties of the measure. We relate f(a) to a set of dimensions which have

been introduced by Hentschel and Procaccia [130], the set of "generalized dimensions" of

multifractility, is defined as:

Dq = lim lo ) (4.21)
to q - 1 log '

where x(q) is the generalized correlation sum

x(q) = Zp?. (4.22)

In the above equation, pi(f) is the weight associated with the number of points the region

i contains:
Ni

pi(f) = lima • (4.23)
N--+oo N

where Ni is the number of points in the ith region when we restrict to a randomly chosen

subset of N points.

As q varies, different subsets, which are associated with different scaling indices, become

dominant. Therefore, we get

x(q)= da' p(a')-f(a')eqa'. (4.24)

Since £ is very small, the integral in eq. (4.24) will be dominated by the value of a' which

makes qa' - f(a') smallest, provided that p(a') is nonzero. Thus, we. replace a' by a(q),



which is defined by the first order condition

d [qa' - f(a')] = 0. (4.25)
dal. a'=a(q)

We also have

da2=()

so that

df(a')
da' q,

d2f( ')
d2f(a')< 0. (4.27)

da'2

It then follows from eq. (4.21) that

1
Dq = [qa(q) - f (a(q))]. (4.28)

q-1

Thus, if we know f(a), and the spectrum of alpha values, we can find Dq. Alternatively,

given Dq, we can find a(q) since

d
a(q) = [(q - 1)Dq] . (4.29)

For monofractals (such as white noise) both a and f(a) are constant and identical; thus

the Dq - q plot is a horizontal straight line (with constant Dq - a = f(a)). For multifractals

(such as the Poincar6 plot of deterministic or stochastic chaos) the Dq - q plot is typically a

downward-sigmoid function, while f(a) is typically a concave-down parabolic function over

a wide range of a values. The range of spread of the Dq and a values indicate the degree of

complexity of the system. The maximum value of f(a) turns out to be the box dimension.

Equivalently, a r - q plot should be a straight line with constant slope Dq if the system is

monofractal, and a nonlinear curve with decreasing slope for multifractals. The degree of

nonlinearity of the graph indicates the degree of complexity of the system. The theory's

predictions have been checked for a variety of experimental systems at the onset of chaos,
with great success [106].

Multifractality has been useful to describe the natural irregularity of physiological sys-

tems because their fluctuation is not truly random and can be demonstrated to have spatial

or temporal correlation [107]. It was reported that heart rate fluctuations of healthy indi-
viduals are multifractal [145], and that a major life-threatening condition, congestive heart
failure, leads to loss of multifractality [109]. Hence it would be beneficial to uncover how
multifractality in the healthy heart dynamics arises, perhaps it is primarily a consequence of
the response of neuroautonomic control mechanisms to activity-related fractal stimuli. An



alternative possibility could be that the neuroautonomic control mechanisms endogenously

generate multifractal dynamics.

4.7 Summary

In this chapter, we have delineated several methods from nonlinear dynamics for charac-

terizing stochastically perturbed nonlinear systems. For approximate entropy, detrended

fluctuation analysis, and power spectral analysis, we could not extract information about

the induced effects of noise on the nonlinear system. Numerical titration proved to be

the only one that can provide a quantitative measure of the intensity of (deterministic or

stochastic) chaos. In the future, we should also employ multifractal analysis as a comple-

mentary procedure to gain some insight into the geometry of noise-induced complexity in

simulated data and empirical data.
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Chapter 5

Nonlinear State Estimation

What are Nonlinear problems? It has already been mentioned that practically

every problem in theoretical physics is governed by nonlinear mathematics ex-

cept quantum theory, and even in quantum theory it is a rather controversial

question whether it will finally be a linear or nonlinear theory... It has been

argued that every nonlinear problem is really individual; that is, it requires indi-

vidual methods, usually very complicated and difficult methods, and it is rather

improbable that one can learn from one nonlinear problem to solve another non-

linear problem. I have to emphasize that I am certainly not an expert in this

field, neither in nonlinear problems in mathematics, nor in physics; but I have...

actually come across a few nonlinear problem on my way through physics, so I

at least know some of the horrible difficulties and troubles which one meets in

these problems.

- Werner Karl Heisenberg [301]

Nonlinear filtering has been the focus of interest in the engineering community for more than

30 years [102] [146]. The problem is to estimate sequentially the state of a dynamic system

using a sequence of noisy measurements made on the system. This chapter is devoted to

the review the Kalman filter and the extended Kalman filter. Beyond the Kalman filter

framework, we focus on the tools of sequential Monte Carlo estimation, collectively

referred to as particle filters.

We adopt the state-space approach to modeling dynamic systems and we focus on the

discrete-time formulation of the problem. Thus, difference equations will be used to model

the evolution of the system over time, and measurements are assumed to be available at

discrete times. The state-space approach to time-series modeling focuses attention on the

state vector of a system. The state vector contains all relevant information required to

describe the system. For example, in the cardiovascular system this information could be



related to the characteristics of heart rate dynamics. The measurement vector represents

(noisy) observations that are related to the state vector. The state-space approach is conve-

nient for handling multivariate data and nonlinear/non-Gaussian processes and it provides

a significant advantage over traditional time-series techniques for these problems.

In order to analyze the make inferences about a dynamic system, at least two models are

required: first, a model describing the evolution of the state with time (the system model),
and second, a model relating the noisy measurements to the state (the measurement model).

We shall assume that these models are available in a probabilistic form. The probabilistic

state-space formulation and the requirement for the updating of information on receipt of

new measurements are ideally suited for the Bayesian approach. This provides a rigorous

general framework for dynamic state estimate problems.

In the Bayesian approach to dynamic state estimation one attempts to construct the

posterior probability density function (pdf) of the state, based on all available information,
including the sequence of received measurements. If either the system or measurement

model is nonlinear, the posterior pdf will be non-Gaussian. Since this pdf embodies all

available statistical information, it may be regarded to be the complete solution to the

estimation problem. In principle, an optimal estimate of the state may be obtained from

the posterior pdf. A measure of the accuracy of the estimate may also be obtained. For

many problems an estimate is required every time a measurement is received. In this case a

recursive filter is a convenient solution. A recursive filtering approach means that received

data can be processed sequentially rather than as a batch, so that it is not necessary to

store the complete data set nor to reprocess existing data if a new measurement becomes

available. Such a filter consists of essentially two stage: prediction and update. The predic-

tion stage uses the system model to predict the state pdf forward from one measurement

time to the next. Since the state is usually subject to unknown disturbances, prediction

generally translates, deforms, and broadens the state pdf. The update operation uses Bayes

theorem, which is the mechanism for updating knowledge about the state in the light extra

information from new data.

5.1 The Kalman filter

The Kalman filter is the best known filter, a simple and elegant algorithm formulated more

than 40 years ago [150], as an optimal recursive Bayesian estimator for a somewhat restricted

class of linear Gaussian problems. The filter is named after Rudolf E. Kalman. Stanley F.

Schmidt is generally credited with developing the first implementation of a Kalman filter. It

was during a visit to the NASA Ames Research Center that Kalman saw the applicability of

his ideas to the problem of trajectory estimation for the Apollo program. The Kalman filter

in its various forms is clearly established as a fundamental tool for analyzing and solving a

broad class of estimation problems.



5.1.1 The discrete time Kalman filter

Suppose we have a linear discrete-time system given as follows:

Zk = Fk-lk-1 + Gk-1Uk-1 ± ?7k-1,

Yk = Hkzk + Vk. (5.1)

Here Zk is the state, yk is the output. The vector Uk is a known, deterministic input. For

simplicity, we will only examine the case when uk - 0. If a nonzero input is present, we

can simply add in its effect by superposition.

The noise processes {(1k} and {vk} are white, zero-mean, uncorrelated, and have known

covariance matrices Qk and Rk, respectively:

(ukVf) = QkSkj,

(qkv ) = 0, (5.2)

where 6kj is the Kronecker delta function.

Our goal is to estimate the state Zk based on our knowledge of the system dynamics

and the availability of the noisy measurements {yk }. If we have all of the measurements

up to and including time k available for use in our estimate of zk, then we can form an a

posteriori estimate, which we denote as j^+. One way to form the a posteriori state estimate

is to compute the expected value of zk conditioned on all of the measurements up to and

including time k:

z k = (zkJY1,Y2, ... , Yk) = a posteriori estimate. (5.3)

If we have all of the measurement before (but not including) time k available for use in our

estimate of zk, then we can form an a priori estimate, which we denote as S-. One way to

form the a priori state estimate is to compute the expected value of zk conditioned on all

of the measurements before (but not including) time k:

2k = (Zk IY1, Y2, Yk-1) = a priori estimate. (5.4)

Both i- and i^ are estimates of zk. However, 2• is our estimate of Zk before the measure-
ment Yk is taken into account, and 2+ is our estimate of zk after we process the measurement

Yk at time k. We naturally expect ^4+ to be a better estimate than 2-, because we use more
information to compute z2.

We define Ak to be the covariance of the estimation error. Ak denotes the covariance
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Figure 5-1: Diagram of the model underlying the Kalman filter. The Kalman filter model assumes
the true state at time k is evolved from the state at time k - 1 according to Zk = Fk-lZk-1 +
Gk-lUk-i + 7lk-1, where Fk-1 is the state transition model which is applied to the previous state
zk-1. The matrix Gk-1 is the control-input model which is applied to the control vector uk-1.
The vector 7rk-1 is the process noise which is assumed to be drawn from a zero mean Gaussian
distribution with covariance Qk. At time k an observation Yk of the true state Zk is made according

to Yk = Hkzk + Vk, where Hk is the observation model and vk is the observation noise which is
assumed to be zero mean Gaussian white noise with covariance Rk. The time line also shows the a
priori and a posteriori state estimates and estimation error covariances.

of the estimation error of k, and At denotes the covariance of the estimation error of i+:

A = ((zk - -)(zk - k

A+ = ((zk - + )(zk - (5.5)

These relationships are depicted in Fig. 5-1. The figure shows that after we process the

measurement at time (k - 1), we have an estinmiate of zk-1 (denote i+ ) and the covariance

of that estimate (denoted A k_). When time k arrives, before we process the measurement

at time k we compute an estimate of zk (denote 2k) and the covariance of that estimate

(denote A k ). Then we process the measurement at time k to refine our estimate of zk. The

resulting estimate of Zk is denoted z , and its covariance is denoted A

We begin the estimation process with 4f+, our best estimate of the initial state zo before

any measurements are available. The first measurement is taken at time k = 1. Since we

do not have any measurements available to estimate z0o, it is reasonable to form 2+ as the



expected value of the initial state zo:

Zo = (zo) . (5.6)

The mean of z propagates with time as:

A- = Fk-1+ (5.7)
Zk -- Fk-l,

This is called the time-update equation for ^. From time (k - 1)+ to time k-, the state

estimate propagates the same way that the mean of the state propagates. This makes sense

intuitively. We do not have any additional measurements available to help us update our

state estimate between time (k - 1)+ and time k-, so we should just update the state

estimate based on our knowledge of the system dynamics.

Next we need to compute the time update equation for A, the covariance of the state

estimate error. We begin with A+ , which is the covariance of our initial estimate of zo. If

we know the initial state perfectly, then A+ = 0. If we have no idea of the value of zo, then

A+ = ool. In general, A+ represents the uncertainty in the initial estimate of zo:

Ao+ = ((so - z0)(z0 - io)T)
= ((zo - 2o)(so - 2o)T).

The covariance of the state of a linear discrete-time system propagates with time:

A- = Fk-lAt_ F -1 + Qk-1. (5.8)

This is called the time-update equation for A.

We have ,derived the time-update equations for ^ and A. Now we need to derive the

measurement-update equations for ^ and A. Given 2-, how should we compute ^+? Both

z k and zk are estimates of zk, the only difference between them is that 4+ takes the

measurement Yk into account. The availability of the measurement Yk changes the estimate
of a constant z as follows:

Kk = Ak-1H (HkAk-1H + Rk) - 1

= AkHTR ,

Zk = ^k-1 + Kk (Yk - Hk k-1),

Ak = (I - KkHk)Ak-l(I - KkHk) T + KkRkKk

= (A' 1 + HTR-1Hk) - 1

= (I - KkHk)Ak-1, (5.9)

where Zk-1 and Ak-1 are the estimate and its covariance before the measurement Yk is



processed, and ^k and Ak are the estimate and its covariance after the measurement Yk is
processed. These are the measurement-update equations for 2k and Ak.

The matrix Kk in the above equation is called the Kalman filter gain. The first ex-

pression for A+ above is called the Joseph stabilized version of the covariance measurement

update equation. It was formulated by Peter Joseph in the 1960s and can be shown to

be more stable and robust than the third expression for A+ [32] [52]. The first expression

for A+ guarantees that A+ will always be symmetric positive definite, as long as A- is

symmetric positive definite. The third expression for A+ is computationally simpler than

the first expression, but its form does not guarantee symmetric or positive definiteness for

A+. The second form for A+ is rarely implemented as written above but will be useful in

our derivation of the information filter in the next section.

The discrete-time Kalman filter

Here we summarize the discrete-time Kalman filter by combining the above equations.

1. The dynamic system is given by the following equations:

Zk = Fk-lZk-1 + k-1,

Yk = HkZk + Uk,

qk - NA(O, Qk),

vk d .'K(O, Rk). (5.10)

2. The Kalman filter is initialized as follows:

+ = (ZO),
Ao = ((zo - f)( - ) . (5.11)

3. For each time step k = 1, 2,..., compute:

Ak = Fk-1lA -1  + Qk-1,

Kk = A k Hk (HkA Hk + Rk) -

= kH R ,

z- = Fk-l=- 1 = a priori state estimate,

Z+ = ZI^ + Kk(Yk - HkL-l) = a posteriori state estimate,

A+ = (I- KkHk)A--(I- KkHk)T + KkRkK T

= [(A-) - ' + HR1'Hk] - 1

= (I - KkHk)A k . (5.12)



5.1.2 Infbrmation filtering

In this section, we discuss information filtering. This is an implementation of the Kalman

filter that propagates the inverse of A rather than propagating A; that is, information

filtering propagates the information matrix of the system. The A matrix represents the

uncertainty in the state estimate. If A is "large" then we have a lot of uncertainty in our

state estimate. In the limit as A --+ 0 we have perfect knowledge of z, and as A -+ ocI we

have zero knowledge. The information matrix is defined as

Z= A-1 . (5.13)

That is, I represents the certainty in the state estimate. If I is "large" then we have a

lot of confidence in our state estimate. In the limit as I -- 0 we have zero knowledge of

z, and as T -- coI we have perfect knowledge of z. If the initial uncertainty is infinite,

we cannot numerically set A+ = col, but we can numerically set XZ = 0. This makes the

information filter more mathematically precise for the zero initial certainty case. However,

if the initial uncertainty is zero, we can numerically set A+ = 0, but we cannot numerically

set = - ooI. This makes the standard Kalman filter more mathematically precise for the

zero initial uncertainty case.

From eq. (5.12), that the measurement update equation for A can be written as

(A = (A) + HTR'Hk. (5.14)

Substituting the definition of I into this equation gives the measurement-update equation
for the information matrix:

I T Z-I + HTR 1lHk. (5.15)

Recall from eq. (5.12) the time-update for A:

A = Fk-1 - 1  + Qk-1. (5.16)

This implies that

k= [Fk-1 k1 -1F 1 qk-1]- 1 . (5.17)

Now we can apply the matrix inversion lemma [see eq. (A.4)] to eq. (5.17) to obtain

Z- = Qk-1 - Qk-lFk-l(2 1 + Fk-Q k- 1 Fk-1)-1Fk-l k- 1. (5.18)

This gives the time-update equation for the information matrix. The information filter can
be summarized as follows.



The information filter

1. The dynamic system is given by the following equations:

Zk = Fk-lzk-1 + Yk-1,

Yk = HkZk + Uk,
77k A(0, Qk),

Vk An(0O, Rk). (5.19)

2. The information filter is initialized as follows:

~o+ = (zo),
o+ = (((0 -{(( )(ZO - i~0)- • }. (5.20)

3. The information filter is given by the following equations, which are computed for

each time step k = 1, 2, ..

"kj = Qk-i - Q- 1Fk-1 (Z- + F-1Qk-1Fk-1)- F-1 k-1,

Tk= 2-k + HRk Hk,

Kk (k+)-IHR ,

k = Fkl-1zk-1

2 = k + Kk(Yk - Hkzk). (5.21)

5.2 The extended Kalman filter

The extended Kalman filter (EKF) was originally proposed by Stanley Schmidt in order to

adopt the Kalman filter to nonlinear spacecraft navigation problems [246]. The EKF has

become one of the most widely used nonlinear filtering algorithms.

Consider the evolution of a discrete nonlinear system in the presence of noise according

to the following equations:

zk = F(zk-1, k-1),

Yk = H"k(Zk, Vk),

7k ~ .V(O, Qk),
vk AN(O, Rk). (5.22)

We linearize the nonlinear system around the Kalman filter estimate by performing a Taylor

series expansion of the state equation around zk-1 = k-1 and qk-1 = 0 to obtain the
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following:

zk = Fk-.1(l-l,) [VkFkiTT L (+k-1 - !-kFT1
k-1 k-1

- Fk-1 (k 1 , 0) + Fkl-1(zk• - +-) + Lk-1--k-1

Fk Zk--1 + [Fk-1 2 1 , 0) - Fk-l ] + Lk-1k-1

= Fk-lkl + Ik-1 + 7k-1, (5.23)

where Fk- 1 == [Vzk-_j T  and Lk-1 = [VkF pkl]T and Vzk = ZkN]
k-1 'k-1

with zki, being the ith component of vector zk. The signals Ak and ýk are defined as

-k Fk (Z, 0) - FkZk

k Af(0, LkQkL T). (5.24)

We linearize the measurement equation around zk = zk and Vk = 0 to obtain

Yk = Rk( 1 , 0) + [Vzkk]T (Zk •k) + T  Uk
k Zk

= "?ikk-1, 0) + Hk(zk - k) + Mkvk

= HkZk + [R-tk(ik, 0) - Hkik] + MkVk

= HkZk k+ F-k, (5.25)

where Hk [VZHT]T k _ _ and Mk = [V,, 1T _ The signals Rk and Pk are defined as
wzk .zk

k = lk(2k, O) - Hkz,
k ~ AN (0, MkRk M). (5.26)

We have a, linear state-space system in eq. (5.23) and a linear measurement in eq. (5.25).

That means we can use the standard Kalman filter equations to estimate the state. This

results in the following equations for the discrete-time extended Kalman filter.

A- Fk, A+ FT T

= Fk1Ak_lFk_1 + Lk-1Qk-1Lk_,

Kk = AH T (HkAk H + MkRkMT) - 1
"-=n __ (ZkTl, 0)7

Zk = Fk-1 - I0),

Zk = k k(k,O 0) -Hkk,

Z+ = 2k + Kk(Yk - Hkk - Zk)

= k + Kk [Yk - Flk(zk, 0)],

A+ = (I - KkHk)A k . (5.27)
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The discrete-time extended Kalman filter

1. The system and measurement equations are given as follows:

zk = -F(-k-1, k-1),

Yk = l"k (Zk, Vk),

7rk J (O, Qk),

vk , rf(O, Rk). (5.28)

2. Initialize the filter as follows:

0o+ = (zo),
A+ = ((ZO - So0)(Zo - Z0+)) . (5.29)

3. For k = 1, 2,..., perform the following.

(a) Compute the following partial derivative matrices:

Fk-1 = [VZkkTl]T _,
k-1

Lk-i [,kfT ]T . (5.30)
k-1

(b) Perform the time update of the state estimate and error covariance as follows:

A Fk-1A _FlT + Lk-1Qk-lLk-,
~+ = k-•4 , 0). (5.31)

(c) Compute the following partial derivative matrices:

Hk = [Vzk k] T -
zk

Mk = [vk T]T . (5.32)
k

(d) Perform the measurement update of the state estimate and error covariance:

Kk = AHT (HkA HT + MkRkM•) - 1 ,

2+= zk + Kk [Yk- 7-k (-, 0)]

A+ = (I - KkHk)AA. (5.33)

Note that other equivalent expressions can be used for Kk and A+-, as is apparent

from eq. (5.12).
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Taylor series approximation leading to the EKF makes gross simplification of the prob-

abilistic specification of the model. With nonlinear models, the probability distributions

of interest tend to be multimodal. Linear approximation in such cases could miss the rich

structure. We address this issue in the following section.

5.3 The particle filter

Particle filters had their origin in the work of Metropolis and Ulam in 1949 [199]1, in which

they proposed studying systems by investigating the properties of sets of particles (point

mass representation of probability densities) rather than the properties of the probability

densities. He used the analogy of the card game of solitaire. The probability of success in

a game of solitaire may be analytically intractable. Obviously a more practical approach

would be to produce a large number of experiments and then to examine the relative

proportion of successes.

In the automatic control community the ideas were introduced in the late 1960s by Hand-

schin and Mayne [122]; Handschin [121], but they were largely overlooked and ignored; only

since the 1980s has computational power been adequate in their implementation. Even now

it is the computational burden of the particle filter that is its primary obstacle to more

widespread use. The particle filter is a statistical, brute-force approach to estimation that

often works for problems that are difficult for the conventional Kalman filter (i.e., systems

that are highly nonlinear and non-Gaussian). Particle filtering goes by many other names,

including sequential importance sampling [66], bootstrap filtering [110], the condensation

algorithm [143] [144] [182], interacting particle approximation [201], Monte Carlo filter-

ing [158], sequential Monte Carlo (SMC) filtering [8] [53], and survival of the fittest [151].

The major contribution to the development of sequential Monte Carlo method was the

inclusion of the resampling step [110], which, coupled with ever faster computers, made

the particle filters useful in practice for the first time. Since then, the particle filters have

become one of the most popular methods for stochastic dynamic estimation problems, in-

cluding tracking problems [240], demodulation of communication signals [7], estimation of

ecological parameters and populations [25], image processing [22], neural network train-

ing [81], fault detection [80], speech recognition [292], pattern recognition [267], system

identification [148] [249], and separation of chaotic signals [116] [177]. Particle filtering is

a growing area of research with many unexplored avenues and applications. Some of the

more important areas of open research include the avoidance of sample impoverishment,

methods for determining how many particles are required for a given problem, convergence
results [53], application to control and parameter estimation [8] [201], connections with ge-

netic algorithms [133], real-time implementation issues [168], and hardware implementations

of parallel particle filters.
1Norbert Wiener suggested something much like particle filtering as early as 1940.
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This chapter presents the particle filter, which is a completely nonlinear state estimator.

Of course, there is no free lunch. The price that must be paid for the high performance of

the particle filter is an increased level of computational effort. The improved performance of

the particle filter may or may not be worth the increased computational effort. The trade-

offs are problem dependent. The particle filter is a probability-based estimator. Therefore,
in Sec. 5.3.1, we will discuss the Bayesian approach to state estimation. This will provide a

foundation for the derivation of the particle filter in Sec. 5.3.2.

5.3.1 Bayesian state estimation

In this section, we will briefly discuss the Bayesian approach to state estimation. This is

based on Bayes' Rule. This section is based on the presentation given in Ref. [110], which

is similar to many other books and papers on the subject of Bayesian estimation [66] [240].

A general parametric nonlinear state space model, with additive noise processes is given by:

zk+1= Fk (Zk, k),

Yk = 7 lk(zk, vk). (5.34)

The functions Fk(.) and hk(') are time-varying nonlinear system and measurement equa-

tions. The noise sequences {0k} and {vk} are assumed to be independent and white with

known pdf's. The goal of the estimator is to approximate the conditional pdf of Zk based

on measurements {Yk }. This conditional pdf is denoted as

p(zklYk) = pdf of zk conditioned on measurements Y1, Y2,. . Yk. (5.35)

The first measurement is obtained at k = 1, so the initial condition of the estimator is the

pdf of z0o, which can be written as

p(zo) = p(zo Yo), (5.36)

since Yo is defined as the set of no measurements. Once we compute p(zklYk) then we can

estimate zk in whatever way we think is most appropriate. The conditional pdf P(zklYk)

may be multimodal, in which case we may not want to use the mean of Zk as our estimate.

For example, suppose that the conditional pdf is computed as shown in Fig. 5-2. In this

case, the mean of z is zero, but there is zero probability that z is equal to zero, so we may

not want to use zero as our estimate of z. Instead we might want to use fuzzy logic and say

that i = ±2, each with a level of membership equal to 0.5 [175].

Our goal is to find a recursive way to compute the conditional pdf p(zk Yk). Before we

find this conditional pdf, we will find the conditional pdf p(zkIYk-1). This is the pdf of Zk
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Figure 5-2: An example of a multimodal probability density function. What single number should
be used as an estimate of z?

given all measurements prior to time k. We can write the pdf as

p(zklYk-1) = dzk-1 p(k, k- lYk-1)

= dzk-1 p(zk zk-1, Yk-l)(zk-1 lYk-1). (5.37)

But notice from our system description in eq. (5.34) that zk is entirely determined by Zk-1
and 7k-1; therefore p(zk, zk-lYk-1) = P(zklzk-1) and we that

p(zklYk-1) = j dzk-1 p(zk lzk-1)P(k-ll Yk-1). (5.38)

The second pdf on the right side of the above equation is not available yet, but it is available

at the initial time [see eq. (5.36)]. Later in this section we will see how to compute it

recursively. The first pdf on the right side of the above equation is available. The pdf

p(zklzk-1) is simply the pdf of the state a time k given a specific state at time (k - 1). We

know this pdf because we know the system equation Fk(-) and we know the pdf of the noise

7lk. For example, suppose that the system equation is given as zk+ 1 = Zk k r7k and suppose

that Zk-1 = 1 and ?7k-1 is uniformly distributed on [-1, 1]. Then the pdf p(zklzk-1) is
uniformly distributed on [0, 2].
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Now consider the a posteriori conditional pdf of Zk. We can write this pdf as

P(Yk zk)
p(zklYk) = p(- k)

p(Yk)

P(Yk,Yk-llZk) P(zkIYk-1)P(Yk-1)

P(YkYk-1) p(Yk-llZk)

P(Zk)

P(zk,Yk, Yk-1) p(zk,k-)P(Yk-1) (5.39)

P(zk)p(Yk, Yk-1) p(Yk-1)p(Yk-1 Zk) (

We can multiply both the numerator and denominator of this equation by p(zk,Yk) to
obtain

p(zk, Yk, Yk-l)p(zk, Yk-1)P(Yk-1) p(zk, Yk)
P(Zklk) p(zk)p(yk, Yk-1)(k-1)P(Yk-l Ik) p(zk, Yk) (5.40)

Now we use the ratios of various joint pdfs to marginal pdfs in the above equation to obtain

conditional pdfs. This gives

= (Yk-1zk, Yk)P(Yk lZk)P(kk-1) (5.41)
p(zk YIxk= (5.41)

P(YklYk-1)P(Yk-1 XZk)

Note that Yk is a function of zk, so p(Yk-lZk, Yk) = p(Ykllzk). These two terms cancel

in the above equation and we obtain

P(YklZk)P(zklYk-1)
p(zklYk) = (5.42)

p(yk ~k-1)

All of the pdf's on the right side of the above equation are available. The pdf p(yklzk) is

available from our knowledge of the measurement equation N7 k(') and our knowledge of the

pdf of the measurement noise vk. The pdf p(zkIYk-1) is available from eq. (5.38). Finally,
the pdf p(YkYk-1) is obtained as follows:

p(yk Yk-1) = dk P(Yk, klYk-1)

= dzk P(Yk Zk, Yk-1)P(zk Yk-1). (5.43)

But Yk is completely determined by zk and vk, so p(yklzk, Yk-1) = p(yk zk) and

P(Yk Yk-1) = J dzk P(Yk zk)P(zklYk-1) (5.44)

Both of the pdf's on the right side of the above equation are available as discussed above.

p(yklzk) is available from our knowledge of the measurement equation 7(.) and the pdf of

vk, and P(zklYk-1) is available from eq. (5.38).
Summarizing the development above, the recursive equations of the Bayesian state es-

timation filter can be summarized as follows.
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The recursive Bayesian state estimator

1. The system and measurement equations are given as follows:

Zk+1 k (Zk, lk),
Yk = k(Zk, rlk). (5.45)

2. Assuming that the pdf of the initial state p(zo) is known, initialize the estimator

follows:

p(zolYo) = p(zo). (5.46)

3. For k == 1, 2,..., perform the following.

(a) The a priori pdf is obtained from eq. (5.38).

P(zk Yk-1) = dzk-1 P(Zk Zk-1)P(Zk-1 Yk-1). (5.47)

(b) The a posteriori pdf is obtained from eq. (5.42) and (5.44).

p(zkYk) - P(YklZk)p(zklYk-1) (5.48)
f dzk P(Yk zk)P(zklYk-1)

Analytical solutions to these equations are available only for a few special cases. In

particular, if .c(.) and 7-1() are linear, and zo, {rk}, and {vk} are additive, independent,
and Gaussian, then the solution is the Kalman filter discussed in Sec. 5.1. The Bayesian

derivation of the Kalman filter can be found in many references [136] [237] [266]; they are

more complicated than the least squares approach that we used in Sec. 5.1. When the

Kalman filter is derived this way, then no conclusions can be drawn about the optimality

of the filter when the noise is not Gaussian. In fact, other optimal (non-Kalman) filters

have been derived for other noise distributions [252]. Nevertheless, the Bayesian derivation

proves that when the noise is Gaussian, the Kalman filter is the optimal filter. However, the

least squares derivation that we used in Sec. 5.1 shows that the Kalman filter is the optimal

linear filter, regardless of the pdf of the noise.

5.3.2 Particle filtering

The basic ideas behind particle filtering are intuitive and straightforward. Specifically, since
in general we can't carry around complete probability densities, instead we carry around

point masses, or particles, drawn from these distributions. The key, then, is to develop

methods for generating these particles and for propagating them through the two general
filtering equations: we use eq. (5.47) to simulate the Markov dynamics to generate samples of
the a priori pdf, p(zkIYk-1) at time k, given samples of the updated density p(zk-1IYk-1)
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at time k - 1; and we use eq. (5.48) to provide weights on the samples of the predicted

density p(Zk Yk-1) at time k, to produce a weighted set of samples for the updated density

P(zklYk) at time k.

To begin, we generate a given number, N, of particles, (1),z (2)...,(N), based on

the initial pdf p(zo) before any measurements are taken (here we assume that the first

observation is at time 1). This provides an approximate distribution p(zo), with equally

weighted particles. At each time step k = 1, 2,..., we propagate the particles to the next

time step using the process equation .F(.):

z = Fk-1 Z 1 1 for i = 1,2,... N, (5.49)

where each (i)1 noise vector is randomly generated on the basis of the know pdf of rlk-1.

The observations Yk at time k tells us something about how likely each of our predicted

particles is. Therefore, we use these likelihoods to put weights on these particles. Specifi-

cally, suppose the at time k we have N particles Z 1) , " , z)g , with associated weights,
(1) (2) (N)
, W W,., w). Using this approximation for the a priori pdf, p(zklYk-1) in eq. (5.47),

we find that we directly obtain an approximation for the updated density at time k with

the same particles but with updated weights:

N

5(z/cY/)= ZW 5 (Z - Za)) (5.50)
i=l

w) ip (ykIz M.() (5.51)

As discussed in the previous section, this can be done if we know the nonlinear measurement

equation and the pdf of the measurement noise. For example, if an m-dimensional mea-

surement equation is given as Yk = 7(zk) + vk and v'k -N(O, R) then a relative likelihood
I) that the measurement is equal to a specific measurement y*, given the premise that zk

is equal to the particle zM) , can be computed as follows:

w() = Pr [(Yk = Y*) (k = z(i))] = Pr [k = y*- (z)

1 - [y * - (z ( ))] T R -1 [y* - R (z ( ))
oC exp k k (5.52)

(27r)m/ 21R1/2 2

Now we normalize the relative likelihoods obtained in eq. (5.52) as follows.

(i) = wN W(5.53)

This ensures that the likelihoods sum to unity.

The problem encountered by this approach is that, as the filtering process proceeds,
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the distribution of the importance weights w(i) becomes more and more skewed, that is the

variance of the importance weights increases over time and thus the estimate will finally
diverge. Practically, after a few time steps, only one particle has a non-zero importance

weight. The algorithm, consequently, fails to represent the posterior distributions of interest

adequately. To avoid this degeneracy, one needs to introduce an additional selection step,

namely one that can be thought of as resampling from the approximation to the updated

density, thus obtaining a new set of N, equally weighted particles. If we use the point

approximation in eq. (5.50), this corresponds to making a set of N independent choices
from the set of particles zM , z(2) , z(N), where the ith of these is chosen with probability

w ) , which in turn implies that we will, mostly likely, replicate some of the particles and

not pick some of the others. One straightforward (but not necessarily efficient) way to do

this is the following [240]. For i = 1,... , N, perform the following two steps.

1. Generate a random number r that is uniformly distributed on [0, 1].

2. Accumulate the likelihoods w(i) into a sum, one at a time, until the accumulated sum
is greater than r. That is, Ej-ml w(m) < r but E = w(m) > r. The new particle z(

-M=m= 1 _ The new
is then set equal to the old particle (k)

This resampling idea is formally justified in [263], where it is shown that the ensemble pdf
of the new particles z i) tends to the pdf p(zklYk) as the number of samples N approaches

oo. The resampling step can be summarized as follows:

z ) = zk) with probability w) for i,j = 1,... ,N. (5.54)

This is illustrated in Fig. 5-3.

The drawback of this approach is sample impoverishment, that is, if we don't choose

some of the particles, we don't have the same amount of diversity right after resampling.

This occurs when the region of state space in which the pdf P(Yk zk) has significant values

does not overlap with the pdf p(zklYk-1). This means, that if all of our a priori particles are

distributed according to p(zk tYk-1), and we then use the computed pdf P(Yk zk) to resample

the particles, only a few particles will be resampled to become a posteriori particles. This

is because only a few of the a priori particles will be in a region of state space where the

computed pdf p(yk lk) has a significant value. Eventually, all of the particles will collapse

to the same value. Thus, we want to do this only when we have to, namely when the weights
begin to deviate drastically from the best case in which they are all equal (to 1/N). There
is a very simple measure of the degeneracy of the weights in the density approximation,
which can be thought of as the "effective" number of degrees of freedom in our samples:

1
Neff = (N (5.55)

Note that Ne = N in the best case scenario, and Ne( = 1 in the worst case in which one (iof 2

Note that Neff = N in the best case scenario, and Neff = 1 in the worst case in which one of
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Figure 5-3: Illustration of resampling in the particle filter. For example, if a random number
r = 0.3 is generated (from a distribution that is uniform on [0, 1]), the smallest value of j for which
Em=m 1w(m) > r is j = 3. Therefore the resampled particle is set equal to z.

the weights has value 1 and all others are zero. Thus we would like to keep 1/E = (w(i))2

as small as possible. Consequently, a widely used method is to set a threshold on this

quantity, to keep going without resampling as long as this quantity remains below the

threshold, and to resample (reset weights to 1/N) only when this quantity exceeds the

threshold. The particle-based recursive approximation of the pdf and resampling step is

illustrated in Fig. 5-4.

The computational effort of the particle filter is often a bottleneck to its implemen-

tation. With this in mind, more efficient resampling methods can be implemented, such

as order statistics [41], stratified sampling and residual sampling [176], and systematic re-

sampling [158]. Other ways of resampling have also been proposed [204]. In some cases,
additional logic must be incorporated to maintain a constant sample size.

Now we have a set of particles z() that are distributed according to

N

P(zklYk) = 6 (zk - . (5.56)
i=1

We can compute any desired statistical measure of this pdf. For example, if we want to

compute the expected value (f(zk)IYk) then we can approximate it as the algebraic mean

of the particles:

((f(zk) k)) ~ d( f(•(•) = i f (z i) , (5.57)

which, under fairly general conditions, converges to the true expectation as N --+ oo.
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The particle filter

1. The system and measurement equations are given as follows:

Zk+1 Fk (k, lk),

Yk = -k(Zk, Ok), (5.58)

where {/k}) and {vk} are independent white noise processes with known pdf's.

2. Assume that the pdf of the initial state p(zo) is known, randomly generate N initial

particles on the basis of the pdfp(zo). These particles are denoted z(i) . The parameter

N is chosen as a trade-off between computational effort and estimation accuracy.

3. For k == 1, 2,..., do the following.

(a) Perform the time propagation step to obtain a priori particles z~) using the

known process equation and the known pdf of the process noise:

z F Fk 1 ( ) 1(i) for i= 1,... N, (5.59)

where each 7(i) noise vector is randomly generated from the known pdf of ?k-1.

(b) Compute the relative likelihood w(i) of each particle z() conditioned on the

measurement Yk. This is done by evaluating the pdf p (yk4Izt)W on the basis of

the nonlinear measurement equation and the pdf of the measurement noise.

(c) Scale the relative likelihoods obtained in the previous step as follows:

(i) = (5.60)EN W(j)

Now the sum of all the likelihoods is equal to one.

(d) Generate a set of a posteriori particles z, on the basis of the relative likelihoods

w(). Then reset all the weights to 1/N. This is called Sampling Importance
Resampling (SIR). However, to prevent sample impoverishment, only resample

when the effective number of samples is less than a threshold Nth,

1
Neff = 2 < Nth. (5.61)SENI (w(i)) 2

The threshold can be chosen as Nth = 2N/3.

(e) Now that we have a set of particles (i ) that are distributed according to the

pdf P(zklYk), we can compute any desired statistical measure of this pdf. We
typically are most interested in computing the mean and the covariance.
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5.4 Summary

In this chapter, we gave a brief account of some common approaches to nonlinear filtering.

In a linear system with Gaussian noise, the Kalman filter is optimal. The extended Kalman

filter operate in the framework of Gaussian approximation for the posterior density. While

this makes it simple to implement and fast to execute, it suffers from an inherent inability to

model higher-order moments of truly non-Gaussian posterior densities. The particle filter

overcomes this limitation by approximating the entire posterior density. The Monte Carlo

estimation approach has a serious drawback: it is characterized by an exponentially growing

computational complexity that prevents their widespread use in practice.
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Figure 5-4: A particle filter starts at time k - 1 with an unweighted measure i(i , N - 1 , which

provides an approximation of p(zk-lIYk-2). For each particle we compute the importance weights

using the information at time k- 1. This results in the weighted measure (i) , - 1i) , which yields
an approximation of p(zk-1 IYk-1). Subsequently, a resampling step selects only the "fittest" parti-

cles to obtain the unweighted measure { z-l, N- . This yields an approximation of p(zk- IYk-1)
that is "concentrated" on the most likely hypothesis, thereby allowing for nonstationary tracking.

Finally, a prediction step introduces variety, resulting in the measure , N-1, which is an

approximation of p(zk IYk-1). Figure adopted from Ref. [80].
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Chapter 6

Additional Topics in Nonlinear

Filtering

The use of wrong a priori statistics in the design of a Kalman filter can lead to

large estimation errors or even to a divergence of errors.

- Raman Mehra [197]

The previous chapter covered the essentials of nonlinear filtering. This chapter discusses

some additional important topics related to nonlinear state estimation. Sec. 6.1 talks about

how to improve our state estimate via optimal smoothing. In fixed-interval smoothing we

seek an estimate of the state at some of the interior points of the time interval. Sec. 6.1.1

discusses the forward-backward approach to smoothing, which is perhaps the most straight-

forward smoothing algorithm. Sec. 6.1.2 discusses the RTS smoother, which is conceptually

more difficult but is computationally cheaper than forward-backward smoothing. Sec. 6.1.3

discusses the generalized fixed interval smoother.

Sec. 6.2 covers an important problem in system identification-parameter estimation.

System parameters are considered to be constant and a nonlinear state estimator can be

adapted to estimate the system state and parameters simultaneously. Sec. 6.3 discusses

how to verify that a filter is operating reliably. Sec. 6.4 discusses multiple-model estimation,
which is a way of estimating system states when we are not sure of which model is governing

the dynamics of the system.

6.1 Optimal smoothing

In the previous chapter, we discussed how to obtain the optimal a priori and a posteriori

state estimates. If we have measurements after time k available for use in our estimate of Zk,
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then we can form a smoothed estimate. We compute the expected value of zk conditioned

on all of the measurements that are available:

Zklk+N = (zklY1, Y2, Yk,. , Yk+N) = smoothed estimate, (6.1)

where N is some positive integer. Here we defined Zklj as the estimate of Zk given all

measurements up to and including time j. If we have more measurements, it stands to

reason that we should be able to get an even better estimate of Zk.

6.1.1 Forward-backward smoothing

The forward-backward approach obtains two estimates of Zm. The first estimate, If, is

based on the standard Kalman filter that operates from k = 1 to k = m. The second

estimate, ^b, is based on a Kalman filter that runs backward in time from k = N back to

k = m. The forward-backward approach to smoothing combines the two estimates to form

an optimal smoothed estimate. This approach was first suggested by Fraser and Potter [79].

Suppose that we combine a forward estimate If of the state and a backward estimate

Zb of the state to get a smoothed estimate of z as follows:

2 = Kf1 f + Kb 2 b, (6.2)

where Kf and Kb are constant matrix coefficients to be determined. Note that ~f and Zb

are both unbiased since they are both outputs from Kalman filters. Therefore, if 2 is to be

unbiased, we require Kf + Kb = I. This gives

2 = Kfif + (I - Kf)2b. (6.3)

The covariance of the estimate can then be found as

A = ((z - W)(z - ^)')
= ([z -- Kf - (I- Kf)b] [z - Kf f - (I - Kf)-b]T)

= [K (Ef - Eb) + Eb] [K (e1 - eb) + ET

= (Kf(cET + Ebeb )K + Eb• - KfbE - Ebe4 K ), (6.4)

where ef = z - z, Eb = Z - zb, and (e 1 E) = 0. The estimates rzf and ^b are both unbiased,

and Ef and 6 b are independent (since they depend on separate sets of measurements). We

can minimize the trace of A with respect to Kf:

- 2 (K (efe + EbE• ) - EbE)
= 2[K(A + ) - (6.5)
= 2[K 1 (A1 + Ab) - AbI, (6.5)
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where Af =(: (6! is the covariance of the forward estimate, and Ab = Ebe ) is the
covariance of the backward estimate. The optimality condition gives:

Kf = Ab(Af + Ab)-1,

Kb = Af(Af + Ab)- 1  (6.6)

We can substitute this result into eq. (6.4) to find the covariance of the fixed-interval

smoother (after some simplification) as follows:

A = (A + Ab) - 1  (6.7)

These results form the basis for the fixed-interval smoothing problem. Suppose we want a

smoothed estimate at time index m. First we run the forward Kalman filter normally, using

the measurements up to and including time m.

1. Initialize the forward filter as follows:

Sfo = (zo),
A = (ZO - ~fo)(zo - Tfo (6.8)

2. For k =1, ... , m, perform the following:

Ak = Fk-lAk-1 -1 + Qk-1,
- T = A- HT T

Kfk = kH (HkA kHk + Rk - 1

= A+ HTR-1fkA k k

-- Z+Zfk = k-1fk-1

Zik Zfk KkYk- Hk( fk)

Ank = (I- KfkHk)A .  (6.9)

At this point we have a forward estimate for Zm, along with its covariance.

The backward filter needs to run backwards in time, starting at the final time index N.

Since the forward and backward estimates must be independent, none of the information

that was used in the forward filter is allowed to be used in the backward filter. Therefore,
A-N must be infinite:

AbN = ooI. (6.10)

We are using the minus superscript on AbN to indicate the backward covariance at time

N before the measurement at time N is processed. (Recall that the filtering is performed

backward in time.) So AbN will be updated to obtain A+N after the measurement at time

N is processed. Then it will be extrapolated backward in time to obtain A,Nl, and so on.bN-1 Ion
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Now the question arises how to initialize the backward state estimate ^b at the final

time k = N. We can solve this problem by introducing the new variable

Ok = Abk'bk- (6.11)

A minus or plus superscript can be added on all the quantities in the above equation to

indicate values before or after the measurement at time k is taken into account. Since

AbN = oo it follows that

Ok = 0. (6.12)

The infinite boundary condition on Ab means that we cannot run the standard Kalman

filter backward in time because we have to begin with an infinite covariance. Instead we

run the information filter backward in time. This can be done by writing the system as

Zk-1 = FIklZk + F 1klrlk-1

k- 1 F Zk + b,k-1,

Yk = Hkzk + Vk,

r/bk - AK(0, Fk Qk FkT),

Vk ` Af(0, Rk). (6.13)

Note that FkI should always exist for a real system since Fk comes from a matrix expo-

nential that is always invertible. The backward information filter can be written as follows.

1. Initialize the filter as follows:

ON = 0,

2bN = 0. (6.14)

2. For k = N, N - 1,..., m + 1, perform the following:

-+bk =-_b + HT R-'Hk,
LO = zk + HTR-1y

bk bk+ kk ki,

= [F_,()-r+ -1Fk + Fk-1Q klF-]1

SFT1 1 [(b)-1 1+ k-] -1 -1Fkl

- [Q- 1 - + )-1 Q 1] Fk
= k- Qk- (bk 1 k- Ik-

k-1 -1 k1 1p (6.15)
,_ bk_jF _(b) o .+615
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3. Perform one final time update to obtain the backward estimate of zm:

= - 1 (I b,m+1 +- m m -1 m

=m -1

LO = mZb F•r - +

bm = (/ _)- '". (6.16)

Now we have the backward estimate -- and its covariance A-m . These quantities

are obtained from measurements m + 1, m + 2,... , N.

The first form for Tb k-1 above requires the inversion of Ib~k. Consider the first time step

for the backward filter (i.e., at k = N). The information matrix IbN is initialize to zero,

and then the first time through the loop we set 1+ = b + HTR-'Hk. If there are fewer

measurements than states, H T R -1 Hk will always be singular. Therefore, the first form

given above for Zb~k- 1 will not be computable. In practice we can initialize TbN- to a small

nonzero matrix. The third form for Zbk-1 above has its own problems. It does not require

the inversion of 2bk, but it does require the inversion of Qk-1. Again, in practice we can

make a small modification to Qk-1 so that it is numerically nonsingular.

After we obtain the backward quantities as outlined above, we combine them with the

forward quantities from eq. (6.9) to obtain the final state estimate and covariance:

Kf = A- (A m + A-)
- 1,

im = K fy m + (I- Kb)%bm

Am= (A m) + (A )1] (6.17)

We can obtain an alternative equation for im by manipulating the above equations. If we

substitute for Kf in the above expression, apply the matrix inversion lemma [eq. (A.4)],
and perform some other manipulation for Zm then we obtain

Zm = AmTmi m + Amzbm
=Am(2 EfmZim + 1•--). (6.18)fm fm bm bmz, 6-

Fig. 6-1 illustrates how the forward-backward smoother works.

6.1.2 RTS smoothing

The other common smoother was presented by Rauch, Tung, and Striebel, usually called
the RTS smoother [230]. the RTS smoother is more computationally efficient than the
smoother presented in the previous section because we do not need to directly compute the
backward estimate or covariance in order to get the smoothed estimate and covariance. In
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k=0 k=m k=N

Figure 6-1: This figure illustrates the concept of the forward-backward smoother. The forward
filter is run to obtain a posteriori estimates and covariances up to time m. Then the backward filter
is run to obtain a priori estimates and covariances back to time m (i.e., a priori from a reversed time
perspective). Then the forward and backward estimates and covariances at time m are combined to
obtain the final estimate iam and covariance Am.

order to obtain the RTS smoother, we will first look at the smoothed covariance given in

eq. (6.17) and obtain an equivalent expression that does not use Abm. Then we will look at

the smoothed estimate given in eq. (6.17), which uses the gain Kf, which depends on Abm,

and obtain an equivalent expression that does not use Abm or Zbm.

RTS covariance update

First consider the smoothed covariance given in eq. (6.17). This can be written as

Am = [(A+ )- + (Am)]
= Ai - Am(Am + Ab) - 1 A +m, (6.19)

fm fm fm fm)

where the second expression comes from an application of the matrix inversion lemma to

the first expression. From eq. (6.15) we see that

A = F- 1 Am+ + Q+ ] FmT. (6.20)AInn L b,m+l

Substituting this into the expression (A+m + Abm) - 1 gives the following:

(A+m + Abm)  = A-fm + F m (A+ m+ 1 + Qm)F

= F FmAmFFT+F (A m+ +Qm)F -] 1
_ 1 + Tm f T - +b,m

=- [F n(FmAmF T + A+,m+ + Qm)FT ] -1

Fm(FmA mFm + b,m+l + m)-Fm

= Fm(Af, m+ + bm+l)-1Fm. (6.21)
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From eq. (5.15) and (6.15) recall that

Izm = I + HmRn1 H m,

Ib+m = Ibm + HTR Hm. (6.22)

We can combine these two equations to obtain

I +  = Z- + I+  - 1- (6.23)

b,m+l = b,m+ f,m+l f,m+l (6.23)

Substituting this into eq. (6.17) gives

Am+, = [ Im+ + bm+l]1

= [bm+1 +Im+1]

m+ 1  b,m+l + f,m+1l

A-- [A,_ - m+]. (6.24)

Substituting this into eq. (6.21) and applying the matrix inversion lemma [eq. (A.4)] gives

(Afm + A-)- 1 = FmZTim+(A m+1 - Am+l)Zfm+lFm. (6.25)

Substituting this expression into eq. (6.19) gives

Am = A+m - Km(A-m+i - Am+l)Km, (6.26)

where the smoother gain Km is given as

KmA T FT -  (6.27)

Km = Afm m'fm+l'

The covariance update equation for Am is not a function of the backward covariance. The

smoother covariance Am can be solved by using only the forward covariance Afm, which

reduces the computational effort (compared to the algorithm presented in Sec. 6.1.1).

RTS state estimate update

Next we consider the smoothed estimate 2m given in eq. (6.17). We will find an equivalent

expression that does not use Abm or Zbm. Starting with the expression for k-1, in eq. (6.15),
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and substituting the expression for Ibk-1 in eq. (6.15) gives

"k-1 -b bk k

= F1 [Q1 1 - Q- bk 1 -1 Q-1] Fk-F Q

=T -1 [I -- 1 )- -1 A+ b= Fk- - (k + Qlll. (6.2k-bk8)

F Ab1(b 1 -1 -11 lk-1 11 - F 1  
. (6.29)= F-bk-k- k-l k "k -  kl - l Abk- k

+ -1 1k1 1 f Q Fk 1 1 ASFk-l(Abk + ) 1 - A k-1 1k-l 1A
(Ak + A•)F- 1 - k 1 k = Ae. (6.28)

Rearranging this equation, and premultiplying both sides by F gives

F-1 A+ F-T Lo- 1 + F -T L- -1 A+ (6.29)k-1 bk k--1 - k-1A-fk-k1 f kk =F A8g)

Substituting for -(A1 F - T) from eq. (B.61) gives

F-1 A+ F-T L- 1F-1 -- F-T 0- 1 A+  -1 A+ +

[ A + )-A F k +] A =F- k (A+ k 6 + FA-1AkLO +
F -lAbfk-1 k-lbk-1 k-l k- k-1 f k-1 k-l bk k

1 -+(6.32)

[(A +kA+1 --)1\ gives
0 k-1 -1F kAk - Ak) kk-1 f,(6.33)

NowSubstituting from eq. (B.14) we see that) gives[(A- + A+k-T - FkAk -l =f(Ak - Ak )Ijk. (6.34)So we can add the two sides of thisom equati. (B.6) on to the two sides of eq. (6.33) to getFk-1 (Af_ + A-kl- FklA k_ 1 ok_ 1  F A,k_ 1 + A,kl)Fk .- k(6.32)
Premultiplying both sides by (Aflfk_ 1 +A- A F,-11, and then substituting eq. (B.14) for
(Afk_l- + A,k_l) gives

F jljk Zflc(r - A k-lA - -- F lT jkAk6k .  (6.33)

Now from eq. (B. 14) we see that

-- (A+ +A,k-1] -- 1 -- FT -1( k -- Zfkf (6.34)

So we can add the two sides of this equation to the two sides of eq. (6.33) to get
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_1 - F-1ZT k(Ak - Ak)IZkFk-lAikl -1k1 - (Ak_1 + b,k-l)-1Fk-ll•k

=FT ZlkAkLt + FT jIZ (Ak - A-h)Tik,-. (6.35)=Fk_ kk k- fk fkf

Now use eq. (B.9) to substitute for AkQ+ in the above equation (after some rearranging)

and obtain

k-_1 -- FlZ k(Afk - Ak)-fkFk-Ak-1-l+6+ 1 F - IA)k-~k-11

±(A k- 1 + Ab7,k-l) 1 F-11 +FT IjAkk -R T  - T Hk-

=TT (6.36)

Fk-1IkAkIk] kf k -1"fk(2k - fk) (6.36)

From eq. (B.15) we see that I - -k = HTR - 1Hk. Also note that part of the coefficient

of Pfk on the left side of the above equation can be expressed as

(A+k_ + A-k_-'FF-1 =b,k-l(l + A= k-kl )-F-ll. (6.37)(A ,k-1 bk-1 -1 -,(I+ A k-1k-1-1 k1(6.37)

From eq. (6.9) we see that F =-1 fk f-1. Therefore eq. (6.36) can be written as

ok1 - F_1_1Zk(A-k - Ak)fTkFk-_Akn-1k-- -
_ (TI 1+ +

b,k fk-1Zbk-l) -1 k-1= FT-l Tik(k - fk)' (6.38)

Now substitute for Ak from eq. (6.26) and use eq. (6.27) in the above equation, and premul-

tiplying both sides by A,,kl gives

Ayk-1 A,k- lF-1-k(A-k - Ak + KkAlk+1K - KkAk+1Ki)KT] -1

-Afk-lb,k-l(I + k-b,k-I 1 k-1 = Kk-l(2 - ^k) (6.39)

Now use eq. (6.27) to notice that the coefficient of Lo-_ on the left side of the above equation

can be written as

A+,k - Kk-(A k - A k + KkA f,k+KT - KkAk+ )K 1. (6.40)f,k-1 fk 7k fk+ kc

Using eq. (6.26) to substitute for KkAk+1K T , we get

f,k- - Kk-1 (Ak -Afk + KkAf, k+ - Ak + A - KkAfk+1 K )K-_ 1

-= Ak-_ - Kk-1A kKk_ + Kk-1AkKTI

Ak - Kk-l1AkKl + Ak-1 , k-1 + Kk-1A-kKT-_

= Ak-1. (6.41)
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Since this is the coefficient of -_1 in eq. (6.39), we can write that equation as

S- A,k_1b,k1 (I + ,k-1 bk-1 -fk-1 = K_-1 (kk - Zfk). (6.42)

Now from eqs. (6.17) and (6.18) we see that

Zk = (-k +b Ij) - 11I-i- + AklbkZ

= (I + +Afkb)-1)fk AkLO. (6.43)

From this we see that

k - Zfk = [(I + AfkI-)' -] k + AkQ

S[I- (I + A+k-T)] (I + A+kzb)- k + AkQ-

= -Afk (I + A•f k) -1 Z)f + Ak . (6.44)

Rewriting the above equation with the time subscripts (k - 1) and then substituting for the

left side of eq. (6.42) gives
Zk = fkKk(k+1- Zf,k+1) (6.45)

This gives the smoothed estimate ^k without needing to explicitly calculate the backward

estimate. The RTS smoother is implemented by first running the standard Kalman filter

of eq. (6.9) forward in time to the final time, and then implementing eqs. (6.26), (6.27), and

(6.45) backward in time. The RTS smoother can be summarized as follows.

The RTS smoother

1. The system model is given as follows:

Zk = Fk-lZk-1 + k-1,

Yk = Hkzk + Vk,

qk - (A0, Qk),

Vk ". NA(0, Rk). (6.46)

2. Initialize the forward filter as follows:

2fo = (zo),
Ao = ((ZO - fo0)(ZO - f0)) . (6.47)
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3. For k 1= 1,..., N, execute the standard forward Kalman filter:

Af = Fk-lAk- 1F- 1 + Qk-1,

Kfk = Ah H k (Hk•iA HT + Rk)-1

= A+ HTR - 1

Zfk = Fk-1,k-1,

ffk fk + Kk(Yk - Hk fk)

Ak = (I - KfkHk)Afk(I - KfkHk) T + KfkRkK T

= (A)-1 + HTR H1••] -1
= (I - KfkHk)Afk. (6.48)

4. Initialize the RST smoother as follows:

ZN = •fN,

AN = A-N. (6.49)

5. For k = N - 1,..., 1,0, execute the following RTS smoother equations:

TZf,k+1 fk+1

Kk = A+kFTT"k+l,

Ak = Anf - Kk(Afk+l - Ak+1)K

2 = fk + Kk(ik+1 - Zf,k+l). (6.50)

6.1.3 Generalized fixed interval smoothing

Let us first take a look at the generalization of the RTS algorithm, i.e., a procedure that
involves a first filtering pass followed by a second, backward sweep. Specifically, we've

already described the filtering procedure, i.e., for the recursive computation of

Pklk(Z) = PzklYo:k (ZIYO:M), (6.51)

Pk+llk(z) = Pzk+lYO:k (ZYO:M). (6.52)

In particular, eqs. (5.47) and (5.48) indicate how these are computed recursively. As in

RTS, assume that during this forward sweep that we have stored these quantities.

The quantity we wish to compute at each point in time in the smoothing problem is the

smoothed density:

pS(z) pzklYo:M(Zk YO:M). (6.53)
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As in RTS, at the completion of the last step of the forward, filtering step we have this

quantity at the end point M. That is:

ps (z) = pMIM(z), (6.54)

and this quantity is used to initialize a backward sweep. The general step of this backward

sweep, going from time k + 1 to time k computes the smoothed density at that time, i.e.,

pS(z), by making used of the quantities (6.51) (6.52) that were stored in the forward pass

as well as the just-computed value of the smoothed density at time k + 1, i.e., ps(z).

By breaking up the full set of observations to those up to and after time k (i.e., by

writing YO:M = {YO:k,Yk+1:M}) and then applying Bayes' Rule to the conditioning on

Yk+1:M, we can write the smoothed density that we already have as follows:

pS (z = Pk+llk(Z)PYk+1:M IY 0 ,kzk+l (Yk+1:M IY:k, z)(6.55)
Pk+I(z) = (6.55)

where ik is a normalizing constant equal to:

ak = PYk+1:M IY:k (Yk+1:M IY:k). (6.56)

Using the Markovianity of zk and the conditional independence of the measurements, we

can simplify eq. (6.55), yielding

Spkl(z) = Pk+1|k(Z)PYk+l:M IIk+1 (Yk+1:MIZ) (6.57)Pk+l(s) = (6.57)
gk

Remember that we already have the quantity on the left-hand side and Pk+llk(Z), in the

numerator on the right hand side of eq. (6.57), so that we also can compute the ratio of the

second term in the numerator on the right-hand side divided by k-.
In a similar manner we can write the smoothed density that we now want to compute

as follows:
p (z) = (6.58)

Now, we do have the filtered density Pk+llk(z), so the remaining problem is computing the

ratio of the second term in the numerator on the right-hand side divided by qk, something

we will compute and what we can compute from eq. (6.57) and what we already know. the

key to this is the exploitation of Markovianity as follows:

Pyk+1:MZk (Yk+1z) = d( pyk+l:MZk+1 lk (Yk+l, ýIz)

= d(PYk+1:MI Z (Yk+1 )PT(Iz, k + 1). (6.59)

Combining this with eqs. (6.57) and (6.58), we can now write the backward step of the
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generalized IRTS recursion:

pS(z) = Pkjk(Z) Jd( p s+1Ik() pT(ýz, k + 1). (6.60)

The generalization of the two-filter approach to fixed-interval smoothing computes the un-

known quantity in relationships analogous to eqs. (6.57), (6.58) but does it in a more direct

manner. Specifically, let's look at eq. (6.57) but evaluated at time k rather than k + 1:

p(z) = Pklk-1(z)PYk:MIZk (Yk:MIZ) Pkk-1()k(z)(6.61)
/k-1 Kk-1

Since the denominator in this equation is simply a normalizing constant, the keys are

computing the two terms in the numerator. The first is obtained via the usual forward

filtering recursion, so we need to develop a backward recursion for £k(z). The measurement

density gives us the starting point for this recursion at time M:

£M(Z) = Pm(Yklz, M). (6.62)

Suppose that we have computed ek+l(z). Then, using Markovianity, conditional indepen-

dence of the measurements, as well as eq. (6.61), we obtain the following backward recursion:

£k(z) = PYk,M1 k (Yk,MIZ) = PYkIYk+1,Af (Yk, Yk+1,MIZ)
= Pm(Yk z, k)Pykl,M k (Yk+1,M Iz)

= Pm(YkI, k) J d £k+1 ()pT(1z, k + 1). (6.63)

It is worth noting that, as in the linear case, we can interpret this backward recursion as an

anticausal filter, in this case starting with a non-informative (i.e., flat) prior - as reflected

in the fact that the initialization of the recursion in eq. (6.62) uses the measurement at time

M but no weighting for a prior distribution on zM.

6.2 Parameter estimation

State estimation theory can be used to not only estimate the states of a system, but also

to estimate the unknown parameters of a system. This may have first been suggested by

Kopp in 1963 [161]. Suppose that we have a discrete-time system model, but the system

matrices depend in a nonlinear way on an unknown parameter vector O:

zk+1 = Fk(E)zk + Lk(O))lk,

Yk = HkZk + Vk,

0 = unknown parameter vector. (6.64)
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In this model, we are assuming that the measurement is independent of O. We further

assume that O is a constant parameter vector. In order to estimate the parameter O, we

first augment the state with the parameter to obtain an augmented state vector C:

(k = (6.65)

If 0 k is constant then we model 8k+1 = 0 k + rlek, where rlek is a small artificial noise

term that allows the Kalman filter to change its estimate of Ok. Our augmented system

model can be written as

I[Fk(Ek)zk + Lk(OkW1l%
Ck+1 =

L k + 77k

= F(zk, 7k, 7ek).

Yk = Hk 0 zk+ Uk. (6.66)

Note that F((zk, k, ?ek) is a nonlinear function of the augmented state (k. We can, for

example, use the particle filter to estimate simultaneously both the parameters and the

conditional distribution for the signal state [45].

6.3 Verifying filter performance

We can verify Kalman filter performance, or adjust the gain of the Kalman filter, using our

knowledge of the statistics of the innovations. The innovations is defined as (yk - Hk k-),

and in this section we will show that it is a zero mean white stochastic process with a

covariance of (HkAkHT + Rk).

Recall our original system model, along with the one-step a priori update equation for

the state estimate:

Zk = Fk-lZk-1 + ?7k-1,

Yk = Hkzk + Zk,

i- = FkX, + FkKk(Yk - Hkk). (6.67)

The innovations is defined as the quantity in parenthesis in the update equation. The

innovations can be thought of as the part of the measurement that contain new information

and that is therefore used to update the state estimate (apart from our knowledge of the

state transition matrix). If the innovations was zero then the state estimate would simply

by updated according to the state transition matrix. A nonzero innovations allows the
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measurement to affect the state estimate. The innovations 9 k can be written as

Ok = Yk - Hk k

= (Hkzk + Vk) - Hk•k

= Hk(Zk -- Zk) + Vk

= Hkfk + Vk, (6.68)

where Ek, the a priori estimation error, is defined as Zk - 2-. The covariance of the innova-

tions is given as

('k0T) = ((Hkfk + vk)(Hii + v)T). (6.69)

Let us see what the covariance is when k # i. We can assume without loss of generality

that k > i. We then obtain

(NkOT) = Hk (~T) HT + Hk (•kvT). (6.70)

Note that two of the cross terms reduced to zero because of the whiteness of vk, and the

fact that the estimation error qi is independent of vk for k > i. In order to evaluate this

covariance, we need to evaluate (WkeT) and (qkvT). First we will evaluate (kT). In order
to evaluate this term, notice that the a priori state estimate can be written as follows:

Zk-- = Fk + FkKk(Yk - Hki)

= FkZk + FkKk(Hkzk + Vk - Hk k)

= Fkik + FkKkHk(Zk - ik) + FkHkVk- (6.71)

The a priori estimation error can be written as

Ek+1 = Zk+1 - Zk+1

= Fk(zk - k) - FkKH(k - ) - FkKk

= Fk(I - KkHk)Ek + (rk - FkKkVk)

= 'kCk + Vk, (6.72)

where Ok and vi are defined by the above equation. This is a linear discrete-time system

for Ck with the state transition matrix

Vk, k-1 k-1 " " i, k > i;
ki = (6.73)(I, kk=i.
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The error Ck can be solved from the initial condition ei as follows:

k-1

Ck = •k,i6i + Z 4k,j+ly1. (6.74)

j=i

The covariance of EkWT can be written as

(~k,) = K , ii ý+ 2 ,j+1 i 6) (6.75)

We see that all of the vii terms in the above expression are zero-mean. This is because all

of the vg noise terms occur at time i or later and so do not affect ei. Note from eq. (6.72)

that Ei is affected only by the noise terms at time (i - 1) or earlier. Therefore,

(v •T) = 0 for j > i. (6.76)

We therefore see that eq. (6.75) can be written as

T "-L'k,j (EiET)

= 4kiA-. (6.77)

Now that we have computed (kET ), we need to solve for (eieT) in order to arrive at our
goal, which is the evaluation of eq. (6.70). (EkVT) can be written as

(EkVT) ( iii + kj+1Vj) VT (6.78)

The eiviT term in the above expression is zero-mean, and the v'vT terms are zero-mean for

j > i. The above covariance can therefore be written as

(Ek RT) = ki+1WisT

= (ki+(Di - FiKivi)vT)

= - k,i+lFiKiRi. (6.79)

Substituting this equation, along with eq. (6.77), into eq. (6.70) gives

(00kT) = Hk (ekT) HT + Hk (EkvT)
= Hkk,iA-nHT - Hk4'k,i+1FiKiR i

= Hkk,i+1 (ATHT - FiKiR ). (6.80)
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Now use the fact from eq. (6.72) that ij = Fi(I - KiHi) to obtain

(00kT) = Hkck,i+l (FiA-HT - FKiHijA-HT - FiKiRi)

= Hkbk,i+1 [FiA-HT - FiKj (HiA-HT + Ri)]. (6.81)

Now use the fact that Ki = A-HT (HiA-HT + Ri)-1 (the standard Kalman filter gain

equation) to obtain

(9ktT) = Hkck,i+l (FiA-HT - FiAiHT)

= 0 k > i. (6.82)

So we see that the innovations vk is white noise. Our next task is to determine its covariance.

In order to do this we write the covariance as

(k) ((Yk - Hk k-)(yk - Hkk)T)

= [Hk(Zk - i + Uk] [Hk(zk - ) + z k]T

= Hk ('Ek) HT + (vkVk)

= HkAkH T + Rk. (6.83)

We therefore see that the innovations is a white noise process with zero mean and a co-

variance of (HkA k H k + Rk). While the Kalman filter is operating, we can process the

innovations, compute its mean and covariance, and verify that it is white with the expected

mean and covariance. If it is colored, nonzero-mean, or has the wrong covariance, then

there is something wrong with the filter. The most likely reason for such a discrepancy is a

modeling error. In particular, an incorrect value of F, H, Q, or R could cause the innova-

tions to statistically deviate from its theoretically expected behavior. Statistical methods

can then be used to tune F, H, Q, and R in order to force the innovations to be white
zero-mean noise with a covariance of (HkA-HT + Rk) [196] [197].

Alternatively, if we are uncertain of the correct values of F, H, Q, and R, we can either

use an adaptive approach to estimate the state noise statistic [206], or run a bank of Kalman

filters in parallel, each Kalman filter with a value of F, H, Q, and R that we think may be

likely. Then the innovations can be inspected in each filter (see Appendix C), and the one

that matches theory is assumed to have the correct F, H, Q, and R, so the state estimate

that comes out of that filter is probably the most correct. The prediction errors whiteness

criterion is a common practice in time series modeling [124] [279] [280].

6.4 Multiple-model estimation

Suppose our system model is not known, or the system model changes depending on un-

known factors. We can use multiple filters (one for each possible system model) and combine
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the state estimates to obtain a refined state estimate. Suppose that a random vector z can

take on one of N mutually exclusive values z1,..., ZN. We can use Bayes' rule to write

Pr(y) = Pr(ylzi) Pr(zi) + ... + Pr(yIzN) Pr(zN),

Pr(zly) = p(ylz) Pr(z) (6.84)
-=i p(yjz) Pr(zi)

where we have used the fact that the probability of an event occurring is directly propor-

tional to the value of its pdf. Now suppose that we have the time-invariant system

zk = Fzk-1 + 7 k-1,

Yk = Hzk + Uk,

77k JA(0, Q),

vk ~ A(0, R). (6.85)

The parameter set Q is defined as the set (F, H, Q, R). Suppose that f can take one of

N possible values Q71,..., QN. The question that we want to answer in this section is as

follows: Given the measurements Yk, what is the probability that Q = Qj? From eq. (6.84)

this probability can be written as

Pr(Qjyk) p(yk IQj) Pr(fj) (6.86)
ENj= 1 P (Y k I i ) Pr(f2i)

Now think about the probability that measurement Yk is observed given the facts that

Q = 3j. If Q = - j then the state will take on some value zk that is determined by the

parameter set £2j. We therefore see that

Pr(yk lfj) = Pr(yklzk),

p(yk I j) = P(ykIZk). (6.87)

However, if our state estimate is accurate, then we know that zk ; zk. Therefore, the

above equation can be written as

P(Ykltj) ;Z P(Yk^k). (6.88)

The right side of the equation is the pdf of the measurement Yk given the fact that the state

is ik. But since yk x Hi + vk, this pdf is approximately equal to the pdf of (Yk - Hk).

We therefore have

P(Yk, j) w P(Yk - Hkk) = p(Vk). (6.89)

where vk is the residual defined in Sec. 6.3. From Sec. 6.3 we see that if 77k, vk, and z0o are

Gaussian, then the residual vk is a linear combination of Gaussian random variables. In
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Sec. 6.3 we found the mean and variance of Vk. The pdf of vk, which is approximated by

the pdf of Yk given fij, can therefore be approximated as

1 V k  k
p(Ykl 2j) (2)m/ 2 1Sk1/2 exp - S ], (6.90)

where vk = Yk - Hk^k, Sk = Hk k H k + Rk, and m is the number of measurements.

Now from Bayes' rule we can write the following equation for the probability that Q = f2j

given the fact that the measurements Yk-1 is observed.

Pr(yk-lj) Pr(Qj)
Pr( k-1) k ) Pr ) (6.91)

Pr(yk-1)

If we are presently at time k, then the measurement at time (k - 1) is a given. The value

of the measurement at time (k - 1) is a certain event with a probability equal to one.

Therefore, Pr(yk-1 Qj) = Pr(yk-1) = 1 and the above equation becomes

Pr(~jyYk-1) = Pr(F~j). (6.92)

Now in eq. (6.86) we can substitute this equation for Pr(Qj), and we substitute eq. (6.90) for

p(ykj •j). This gives a time-recursive equation for evaluating the probability that Q = f2j
given the fact; that the measurement was equal to Yk. The multiple-model estimator can be

summarized as follows.

The multiple-model estimator

1. For j = 1,..., N, initialize the probabilities of each parameter set before any mea-

surements are obtained. These probabilities are denoted as Pr(Q3j yo).

2. At each time step k we perform the following steps.

(a) Run N (extended) Kalman filters, one for each parameter set f2j for j = 1,..., N.

The a priori state estimate and covariance of the jth filter are denoted as zkj

and Aj.

(b) After the measurement at time k is received, for each parameter set approximate

the pdf of Yk given f2j as follows:

1 [vS1 vk]
p(yklwj) P (27r)m/2|Sk1 /2 exp R ,i (6.93)

where vk = Yk - Hk.j, Sk = HA-jHT + Rk, m is the number of observations.
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(c) Estimate the probability that Q = 2j as follows.

P(Yk I ) Pr(j lYk-1)
Pr(J lyk)= (6.94)

-I=1P(Ykl i) Pr(j2iYk-1)

(d) Now that each parameter set Qj has an associated probability, we can weight

each zkj and A-j accordingly to obtain

N

i- = EPr(Qj Jyk)O^,
j=1

N

A, = Pr(Qj Iyk)nA. (6.95)
j=1

(e) We can estimate the true parameter set in one of several ways, depending on the

application. For example, we can use the parameter set with the highest condi-

tional probability as our parameter estimate, or we can estimate the parameter

set as a weighted average of the parameter sets:

argmaxPr(~ jlyk), max-probability method;
pj N (6.96)

E Pr(QJylyk) J', weighted-average method.
j=1

6.5 Summary

In this chapter we discussed some important topics related to nonlinear state estimation. We

discussed how to obtain a smoothed estimate given all the available measurements. We have

seen how to use nonlinear filters to solve the parameter estimation problem. We have also

learned how to verify the performance of a filter, which gives us quantifiable confidence in

the accuracy of our filter estimates. Finally we discussed multiple-model estimation, which

is a way of estimating system states when we are not sure of which model is governing the

dynamics.
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Chapter 7

Simulation Studies II

Classifying the world into linear and nonlinear systems is like classifying the

world into bananas and nonbananas.

- Anonymous [188]

The quest to distinguish deterministic chaos from noise has resulted in a number of so-

phisticated algorithms. Sugihara and May [272] proposed a simplex time series forecasting

technique in which a flat distribution of the correlation coefficient between the original and

the predicted series indicates noise, whereas in case of chaos it would gradually fall. Such

approach may yield false results if a small amount of noise is added to the chaotic time

series [44]. Theiler et al. [278] proposed a test for detecting nonlinearity by comparing

particular characteristic-such as the correlation dimension, the forecasting error, or the

largest Lyapunov exponent-of the original series with those of the surrogate series, a phase

randomized version of the original time series. Kaplan and Glass [153] proposed a search for

the particular orientation of the phase-space trajectory and coarse-grained d-dimensional

embedding as tools for indicating underlying determinism. Schouten et al. [250] developed a

method based on the correlation integral to estimate the correlation dimension belonging to

the underlying dynamic phenomenon for a noisy attractor. Bhattacharya and Kanjilal [19]

proposed that the distribution profiles of the scaled and normalized singular values for the

data series can provide distinctive information concerning the deterministic and stochastic

dynamics. Finally, Poon and Barahona [225] developed the numerical-titration method for

the detection of chaos in short, noisy time series.

With these available techniques, a clear differentiation between chaotic and stochastic

processes seems possible. It does not seem to be an easy task, however, to distinguish

between the type of chaos that is purely deterministic and the type of chaos that is induced

by noise. Especially when the source of the dynamic noise is an intrinsic feature of the

system, one can even raise the question whether such a separation would be of great use
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in trying the understand the system. The point is, of course, whether the "skeleton," the

noiseless deterministic part is intrinsically chaotic, whether the dynamic noise has destroyed

the deterministic chaos, or whether the dynamic noise has induced chaotic dynamics in an

otherwise nonchaotic system. From a statistical mechanics view point, the more irregular

the motion, the more likely the system will be to wander about the phase-space and to

sample a large enough region. Furthermore, it is impossible to isolate any mechanical

system. Our laboratory system is constantly subjected to outside perturbations. These

perturbations may themselves make the system visit all regions of phase space, even if

the system, considered in isolation, is unable to do so. It is one of the tasks of modern

statistical mechanics to try to sort out for a given system, how much of its apparent ergodic

behavior can be attributed to its deterministic dynamical properties, how much is due to

the inevitable external perturbations, and to address the question of whether global ergodic

behavior is necessary at all for the foundations of statistical mechanics.

Algorithms exist to estimate the level of noise in a chaotic time series [284]. However,
such algorithm is not capable of distinguishing measurement noise from dynamic noise.

Strumik et al. [271] proposed a method to simultaneously estimate noise level and distinguish

between measurement and dynamic noise for chaotic time series. They showed that dynamic

noise corrupting these deterministic systems can be considered effectively as an additive

"pseudonoise" with the Cauchy distribution. That method has only been demonstrated for

the Henon and the Ikeda maps.

In this chapter, we will propose a method based on Volterra series modeling and non-

linear filtering for the purpose of differentiating between dynamic noise and measurement

noise (ultimately between deterministic chaos and stochastic chaos). Initially, we will use

relatively simple simulation models with well-known bifurcation routes (such as the logistic

map and the Henon map) in order to establish the feasibility of the proposed techniques.

Next, we will examine the effects of measurement noise and dynamic noise on the intrinsic

and noise-induced complexity of a variety of canonical models such as the Mackay-Glass

model of respiratory instability, and the ecological map. These simulation models have been

used for algorithmic testing in previous studies [225] and represent a wide range of complex

behaviors including all standard routes to chaos (period-doubling, intermittency, subcrit-

ical, quasiperiodicity, and non-chaotic fractal), high-dimensional and high-order nonlinear

systems, loosely coupled systems, and chaotic-periodic systems. By use of these simulation

models we plan to systematically evaluate the performance of the nonlinear filtering algo-

rithm. Note that the noise levels encountered in biomedical studies are generally orders of

magnitude higher than the finite precision of numerical computation, and hence the latter

source of error is neglected in these simulations. The proposed comprehensive agenda of

model simulations and algorithmic testing will allow us to delineate the capability of these

analytical tools and their limitations.
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7.1 Simulation setup

Following the same notation in Chapter 5, the plant model is given by

M-1

Xk = E amzm(k) +± T k
m=O

Yk = Xk + vk (7.1)

where Xk is the system state and Yk, 7rk and vk are Gaussian white noise uncorrelated with

each other and the system state.

Model I (Dynamic noise model, 77k # 0, vk = 0)-variability is due to stochastic chaos

induced by dynamic noise ijk:

2
Xk = ao + ak-1 + a2xk-2 + + an Xk-K + ar,+l2k-l1+

aK+2Xk-1Xk-2 "' a M-lxdk_ + rlk

M-1

S amzm(k) + k (7.2)
m=O

Yk = Xk (7.3)

Model II (measurement noise model, rin = 0, v,n 3 0)-variability is due to deterministic

chaos obscured by measurement noise vk:

Xk = ao + aik-1 a2xk-2 + '+ a±Xk-m + a+lXk_-1
d

aK+2Xk-lk-2 + ... aM-1k-

M-1

E amzm(n) (7.4)
m=O

Yk = Xk + Vk (7.5)

Suppose the time series y, has been found positive for chaotic dynamics by using the

numerical-titration algorithm described in Chapter 4. We wish to test whether the chaos is

stochastic or deterministic by determining whether Model I or Model II provides a better

statistical fit to the data. The Volterra autoregressive (VAR) algorithm previously used

to detect nonlinear dynamics cannot readily distinguish between these two models because

both of them conform to the Volterra series expansion. As shown previously, both deter-

ministic chaos (with measurement noise) and stochastic chaos (with dynamic noise) would

test positive under the VAR algorithm and thus would be classified non-discriminatively as
"chaotic dynamics" under the NL algorithm.

137



Despite this, careful examination of the VAR algorithm shows that it is in closer con-

formity with model I than Model II. Thus, although the VAR algorithm is responsive to

both models, it should demonstrate preferential selectivity for Model I compared to Model

II. By comparing the goodness-by-fit by the VAR algorithm with an alternative method

that shows preferential selectively for model II, one should be able to statistically discrim-

inate between these two models. To compare the goodness-of-fits, Model I is first exactly

identified by application of the VAR algorithm. Because the coefficients am of Model II

cannot be directly estimated by the VAR algorithm (since the system state Xk is unknown),

exact identification of Model II calls for a different approach than the VAR algorithm. We

propose two algorithms for this purpose.

7.1.1 Successive VAR algorithm

The identification of Model II can be divided into two sequential steps: estimation of the

system state xk, k = 1, ... , N and estimation of the model coefficients am, m = 1,... , M.

Each step is dependent on the other and thus the entire identification procedure cannot

be completed in one iteration. We propose the following iterative algorithm for successive

estimation of Xk and am:

Successive VAR algorithm

1. Given a time series Yk, set xk = Yk, k = 1,..., N.

2. Update am by applying the VAR algorithm to the time series Xk.

3. Update .k recursively (k = , + 1, n + 2,..., N) by substitute am into eq. (7.4).

4. Repeat Steps 2-3 until the estimates 4k, and am converge.

The above algorithm involves successive VAR estimation and polynomial expansion,
which are relatively straightforward computations. The algorithm will converge provided
71k is sufficiently small, i.e., the observed time series Yk is a reasonably good estimate of

Xk. In general, one may expect that the algorithm may diverge for large 77k, particularly

if the system is chaotic. Therefore, this approach may not be suitable for demanding

applications where the signal-to-noise ratio is low. We propose an alternative approach-

nonlinear filtering-which is computationally demanding but in theory should have better

convergence properties.

7.1.2 Nonlinear filtering

We start with a fixed order, fixed lag Volterra model. We augment the system state with the

parameter to obtain an augmented state vector (k = (Xk, Xk-1, .. . , k-+l ao, al,... , aM)T.
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The state space form now becomes

Ck+1 =

-E=mo amzm(k) + ?7k+l

Xk

Xk-.

ao

al

aM

with the observation
Xk

Xk-1

M+i, zeros
ykXkk- K+1

Yk =[1,O,' " ,] + -k. (7.7)
ao

Hk
al

aM

Since the augmented state vector (k evolves nonlinearly. We can, for example, use the par-

ticle filter to estimate simultaneously both the parameters and the conditional distribution

for the signal state. The parameter estimation techniques may not take the measurement

errors explicitly into account, like regression approaches, noisy measurements can produce

inaccurate parameter estimates [293].

The goal is to recover the system state x given the noisy signal y. Fig. 7-1 shows an

example of nonlinear state estimation of a dynamic-noise perturbed logistic map in the

period-doubling region. In the figure, the true state (the "skeleton" evolution law) displays

a period-2 oscillation. The noisy observations are plotted with green stars. Numerical

titration of the noisy observation gives a positive value for the noise limit. We can see that

the nonlinear filter state estimate gives a much closer representation to the unperturbed

state. Numerical titration of the state estimate gives a zero noise limit, indicating that the

underlying time transition law is not chaotic by itself, but that the chaos is induced by

dynamic noise.

Fig. 7-2 shows another example of a chaotic logistic map (p = 3.9) contaminated with
measurement noise. We can again see that the nonlinear filter was able to track the true
state quite well. In this case, the noise limit of the state estimate is higher than that of
the noisy observations. This suggests that the underlying dynamics is intrinsically chaotic
to begin with,, but measurement noise has masked some of the chaos. This explains why
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Nonlinear state estimation for the period-2 logistic map with dynamic noise
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Figure 7-1: State estimation of the logistic map with p = 3.2 perturbed with dynamic noise. The
true state displays a period-2 oscillation. The noisy observations are plotted with green stars and
would give rise to a positive noise limit. The state estimate recovers the system dynamics of the
unperturbed, nonchaotic state.

the recovered state estimate has a higher chaos level than the noisy observations. The

estimates of the system parameters (Volterra series coefficients) are shown in Fig. 7-3. The

expected behavior is clearly visible as the nonlinear filter correctly estimates the mean and

bifurcation parameter of the logistic map.

7.2 Results

We will present the results of the noise-discrimination method using the nonlinear filtering

technique. Results with the successive VAR approach will not be presented in this thesis.

7.2.1 The logistic map

We have already examined the logistic map in detail in Chapter 3 and Chapter 4. Recall

that the discrete-time population grow model is described by the following equation:

Xk+1 = -PXk(1 - Xk) VXk E [0, 1], (7.8)

In the simulation of the time series, the error term may cause xn+1 to be less than zero or
greater than one... reset procedure. This procedure is necessary to prevent the system from
diverging towards infinity. The first 300 points of the time series were discarded in order
to allow for transients to decay. The results do not appear to depend on the initial value
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Nonlinear state estimation for the chaotic logistic map with measurement noise

400 410 420 430 440 450 460 470 480 490 500

Figure 7-2: State estimation of the chaotic logistic map (IL
state estimate tracks the true state quite well.

= 3.9) with measurement noise. The

chosen for x or the seed value of the pseudorandom number generator used to produce the

error term. Times series of 1000 points were collected; no significant differences were noted

in the length of the generated series. The choice of parameter for the bifurcation parameter

I in eq. (7.8) is shown in Table 7.1:

Table 7.1: Choice of parameter for the logistic map

A Dynamic behavior
3.2 period-2 limit cycle
3.5 period-4 limit cycle
3.568759 period-16 limit cycle
3.7 low chaos
3.8282 intermittency
3.9 high chaos

Results for the logistic map

The results for the period-2 logistic map in the presence of dynamic noise are shown Fig. 7-
51. As we have discussed earlier, the state estimate should always show a lower noise limit
(chaos level) than the noisy time series.

'Figures attach at the back of the chapter for convenience.
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Parameter estimation for the chaotic logistic map
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Figure 7-3: Parameter estimation of the chaotic logistic map (p = 3.9) with measurement noise. The
red line is the estimate of the mean of the time series, which should be zero since we subtracted the
mean off before estimation. The blue line is the estimate of the bifurcation parameter a, = y = 3.9.

The results for the chaotic logistic map in the presence of measurement noise are shown

in in Fig. 7-6 (y = 3.7), Fig. 7-7 (/p = 3.8282), and Fig. 7-8 (/p = 3.9). The blue dots are the

noise limit values for the noisy time series. Ultimately the graph of the noise limit against

noise intensities must fall to zero since for very large values of the measurement noise the
original system dynamics will be completely obscured and there will just be noise. The

noise limit values of the state estimate, indicated by the red dots, are always higher than

the blue. This shows that our nonlinear filtering technique is capable of recovering at least

some chaotic dynamics.

7.2.2 The Henon map

The H6non map is a discrete-time dynamical system. The map was introduced by Michel
H6non [129] as a simplified model of the Poincard section of the Lorenz model [180]. It is
one of the most studied examples of dynamical systems that exhibit chaotic behavior. The
Henon map takes a point (x, y) in the plane and maps it to a new point according to

Xk+1 = Yk + 1 - ax2 ,

Yk+1 = bxk. (7.9)

The map depends on two adjustable parameters: a, which controls the type of the attractor
and determines whether the trajectories diverge to infinity; and b, which changes the visi-

142



bility of fine structure of the attractor by controlling the level of dissipation of the system.

For the canonical Henon map, a and b take on values of 1.4 and 0.3, respectively. For

these parameter values, the map is well into the chaotic region; an initial point of the plane

will either approach a set of points known as the Henon strange attractor, or diverge to

infinity [2707!. The H6non attractor is a fractal, smooth in one direction and a Cantor set

in another. Numerical estimates yield a correlation dimension of 1.42 ± 0.02 [1141, and a

Hausdorff dimension of 1.261 0.003 for the attractor of the canonical map [244]. For other

values of a and b the map may converge to a periodic orbit, exhibit intermittency, or chaotic

behavior. In Table 7.2, we show the parameters for a and b used in this study.

Table 7.2: Choice of parameters for the Henon map

a b Dynamic behavior
1 0.3 limit cycle
1.08 0.3 low chaos
1.25 0.3 nonchaotic
1.4 0.3 high chaos

Results for the Henon map

The results for the dynamically perturbed cases are shown in Fig. 7-9 (a = 1, b = 0.3),

Fig. 7-10 (a = 1.08, b = 0.3), and Fig. 7-11 (a = 1.25, b = 0.3). The results for the

measurement noise cases are shown in Fig. 7-12 (a = 1.08, b = 0.3), and Fig. 7-13 (a = 1.4,
b = 0.3). The interpretation of the results for the H6non map is the same as for the logistic

model. Specifically, after nonlinear filtering of a dynamic-noise-perturbed time series, the

noise limit of the state estimate should be lower than that of the noisy time series, indicating

the presence of chaotic dynamics induced by stochasticity. On the other hand, the noise

limit of the state estimate of a measurement noise perturbed time series show be higher

than that of the noisy time series. That is, the nonlinear filter has successfully countered

the blurring effect of measurement noise and has recovered the chaotic dynamic that was

obscured by measurement noise.

7.2.3 The Mackey-Glass equation

The Mackey-Glass equation models dynamics of white blood cell production in the human

body [183]. Because rates of stem cell proliferation entail a time delay, periodic dynamics
and chaos can obtain. Indeed, Mackey and Glass have suggested that long-term fluctuations

in cell counts observed in certain forms of leukemia are evidence for these behaviors in vivo.

It has been shown that the equation displays a broad diversity of dynamical behavior

including limit cycle oscillations, and chaotic solutions.
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dx ax(t - ) -bx(t). (7.10)
dt 1 + xC(t - T)

For a = 0.2, b = 0.1 c = 8, and T = 100, eq. (7.10) has an attractor whose estimated

dimension is 7.5 [113].

Results for the Mackey-Glass equation

Fig. 7-14 shows the noise limits of the noisy time series and of the state estimate as a

function of noise intensities. We see that noise limit values are not significantly different for

the two cases. In this case, the fixed-order Volterra structure was inadequate in capturing

the highly nonlinear behavior of the Mackey-Glass series.

7.2.4 The ecological map

The ecological map is a model of species dispersal in evolutionary ecology. It addresses

the important question of how does spatial movement of species in the environment affect

the population. The model exhibits bifurcation towards high-dimensional chaos [125] [126].

Strange attractors are split into several disconnected pieces. Such bifurcations are common

in ecological models.

In patch j at generation t, Nij (t) represents the density of population of clone i, where

i, j = 1, 2. Clones differ only in a fixed dispersal rate, ei, which is defined as the fraction

of individuals dispersing from their natal patch at each generation. Assume that the real-

ized fitness in patch j, Wj [NTj(t)], is identical for individuals of both clones and depends

functionally on the summed abundances, NTj(t) = Nij(t) + N 2j(t), of all clones in patch j.

The dynamics of clone i in patch j are governed by the following model [137]:

N 11 (t + 1) = (1 - el)W 1 [NT1(t)] NI (t) + me1 W2 [NT2(t)] N12 (t),

N 12 (t + 1) = (1 - el)W 2 [NT2(t)] N 12 (t) + me 1W1 [NTl(t)] N11(t), (7.11)

where m is the fraction of dispersers that survive to enter their nonnatal patch. Similar

equations describe clone 2. The fitness is given by the following relation:

Wi = exp r 1 ij , (7.12)

where Kj is the carrying capacity of patch j. Regarding the two interacting subsystems

{Nll(t), N 12 (t)} and {N 2 1(t), N 22 (t)}, where subsystem A is the low-dispersal clone and

subsystem B is the high-dispersal clone, the full system, which is a four-dimensional map,

becomes high-dimensionally chaotic. The ecological significance is that chaotic dynamics

in fact favor the evolution of dispersal. When the dynamics of clone 2 are not chaotic, the

population of clone 1 becomes zero asymptotically, indicating extinction of the species with
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high-dispersal rate. However, when the dynamics of clone 2 becomes chaotic, the dynamics

of clone 1 becomes chaotic as well, with nonzero population densities in both patches.

Physically, a subset of dynamical variables becomes chaotic via some known route to

low-dimensional chaos such as the period-doubling bifurcation route, after which the com-

plementary subset also becomes chaotic. As a consequence, the latter subset of dynamical

variables become chaotic in a relatively abrupt fashion.

Choice of parameters for the ecological map

Consider the following equations for the noisy density-dependent two age-class model:

Xk = Ayk-le-0.001(yk - 1+Xk - 1) + ?7x,k,

Yk = 0.2Xk-l e - 0.0 7 (y k - 1 Xk-1) + 0.8yk-le-0.05(yk - 1+0.5xk- 1) + rly,k (7.13)

where A is a parameter and 71, %, are independent white Gaussian noise with zero mean

and variance a2. Let us first examine the noise-free model. For A = 117, the motion is

periodic, as shown in Fig. 7-4. For A = 118, the trajectory evolves in an attractor comprised

of fractals in eight disconnected domains and visits each of them in a periodic manner

as indicated by the arrows in Fig. 7-4. This strong global periodicity makes detection of

the chaotic component difficult. In fact, if one tries to identify chaotic dynamics with the

method Sugihara and May [272], one finds that the chaos is hidden in the overall periodicity

of the attractor and it would be classified as "residual noise" [44].

Results for the ecological map

The results of the nonlinear filtering algorithm is shown in Fig. 7-15. The eight "islands"

of the ecological attractor are of very different size. In fact, the attractor located at the

lower left corner is very much like a single point. Magnification shows this is not really the

case, as shown in Fig. 7-4 (d), this nevertheless constitutes another dimension of difficulty
in successfully characterizing the global attractor [281].

7.3 Limitations and implementation considerations

We have seen that Volterra series expansion represent an important model for the represen-
tation, analysis and synthesis of weakly nonlinear dynamic systems. However, a significant

difficulty we have encountered with this approach to kernel identification is the complex-
ity due to the large number of coefficients that characterize such models. The number of
Volterra coefficients increases geometrically as the memory or order increases, which also
makes cumbersome the design and implementation based upon such models. Consequently,
practical implementations are limited to severely truncated Volterra models consisting of,
at most, second degree terms only [73]. It is therefore desired to reduce the filter scale
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Figure 7-4: Phase diagrams for the ecological map, (a) A = 117, (b) A = 118. The "island" located
at the lower left corner of the figure are replotted in (c) and (d). The map shows period motion
when A = 117 and fractal features when A = 118. (e) and (f) show the typical orbits associated with
the parameters above. The trajectory for A = 118 shows that even when the map is chaotic, there
is still a predominant periodic behavior.

without degrading the performance. The first approach transforms the Volterra model to

parallel-cascade structures by matrix decomposition techniques [163] [165]. Parallel-cascade

realizations implement higher order Volterra systems as a parallel connection of multiplica-

tive combinations of lower order truncated Volterra systems.

The method begins by approximating the system with first cascade of a dynamic linear

element followed by a static nonlinearity. The residual is treated as the output of a new

nonlinear system, driven by the same input, and a second cascade is found to approximate

the latter system. Each time, the static nonlinearities are best-fit to the latest residual.

Nonlinear dynamic systems with fading memory can be approximated to an arbitrary ac-

curacy, in the mean-square sense, by such truncated Volterra models. Furthermore, the

parallel-cascade model can readily be converted into a corresponding Volterra series [163].

The PCI is generally faster, particularly when longer memory lengths, or higher-degree

nonlinearities, are required. This approach has illustrated its utility for protein family pre-

diction [164] [166]. The parallel-cascade structure has been extended to adaptive structure

where the eigenvalues and vectors are adjusted adaptively [215].

The second approach exploits the idea of the reproducing kernel Hilbert spaces

(RKHS) [12], that is, to use a particular reproducing kernel to summarize the complete
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Volterra series in a linearized feature space, which leads to a more parsimonious estimation

problem [64]. The solution to approximation in the Volterra RKHS with respect to a large

class of loss functions was shown to be simply a linear combination of a set of kernel func-

tions. The main reason for using the RKHS approach is that the estimation complexity

of the implicit representation is linear in the input dimensionality and independent of the

degree of nonlinearity. Experiments show performance advantages in terms of convergence,
interpretability, and system sizes that can be handled [78]. This can therefore represent

a significant reduction over the standard Volterra series case. This computationally effi-

cient approach is related to support vector machine approach to nonlinear regression (see

Appendix D).

Recursive filter techniques can also enable great scale reduction. However, the main

problem associated with recursive nonlinear Volterra systems is that their stability is not

guaranteed. Moreover, the stability condition depends not only on their coefficients but

also on their input signals [149]. The filter design is consequently very difficult because the
stability condition varies. In this regard, some stabilization techniques of recursive nonlinear

filters have been reported [205].

7.4 Summary

With the nonlinear filtering method, we can answer the question: can the deterministic
skeleton of a complex nonlinear system be experimentally identified as equilibrium, peri-
odic, or chaotic? The main advantage of using nonlinear filters compared to the successive

VAR method is a better quantification of the underlying chaos level of the original unper-
turbed system, where as successive VAR can only produce a binary result (dynamic noise
or measurement noise). For example, in the measurement noise case, nonlinear filtering

improves the sensitivity for the numerical-titration technique. The nonlinear filters also
allows for the presence of both types of noise in the system specification. That means we
can readily apply this method to experimental data, since in the real-world setting, the col-
lected data is likely to contain a mixture of both dynamic noise and measurement artifacts.
But often we deal with one kind of predominant noise and the influence of the other kind
of noise on dynamics remains relatively small. In addition, nonlinear filtering has better
convergence properties than the successive VAR approach.
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Titration of logistic map (p = 3.2) with dynamic noise

E
i

Figure 7-5: Titration and filtering of the periodic logistic map (y = 3.2) with dynamic noise.

Titration of logistic map (p = 3.7) with measurement noise

Figure 7-6: Titration and filtering of the weakly chaotic logistic map
noise.

(y = 3.7) with measurement
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Titration of logistic map (p = 3.8282) with measurement noise

E
S
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C2

Figure 7-7: Titration and filtering of the intermittently chaotic logistic map (I = 3.8282) with
measurement noise.

Titration of logistic map (t = 3.9) with measurement noise

E
e
S

r2

Figure 7-8: Titration and filtering of the deeply chaotic logistic map (p = 3.9) with measurement
noise.
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Titration of the Henon map (a = 1, b = 0.3) with dynamic noise

z

U U.UU1 U.UUZ U.UU U.UU4 u.uuD u.uuO U.UUf U.uue u.UUV U.Ui
a 2

Figure 7-9: Titration and filtering of the periodic Henon map (a = 1) with dynamic noise.

Titration of the Henon map (a = 1.08, b = 0.3) with dynamic noise
40

NL of state estimate
* NL of noisy time series
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Figure 7-10: Titration and filtering of the weakly chaotic Henon map
noise.

(a = 1.08) with dynamic
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Titration of the Henon map (a = 1.25, b = 0.3) with dynamic noise

* NL of state estimate
* NI nf nniovtima s rian
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a 2

Figure 7-11: Titration and filtering of the nonchatic Henon map (a = 1.25) with dynamic noise.

Titration of the Henon map (a = 1.08, b = 0.3) with measurement noise
20 .
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Figure 7-12: Titration and filtering of the weakly chaotic Henon map (a = 1.08) with measurement
noise.
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Titration of the Henon map (a = 1.4, b = 0.3) with measurement noise

* NL of state estimate
* NL of noisy time series
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Figure 7-13: Titration
noise.

and filtering of the highly chaotic Henon map (a = 1.4) with measurement

Mackey-Glass (c = 8) with dynamic noise

62

Figure 7-14: Titration and filtering of the Mackey-Glass (c = 8) equation.
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(a) Ecological map (X = 118) with dynamic noise

0.2 0 4 0.5 0.6 0.7 0.8L
0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

or

(b) Ecological map (L = 118) with measurement noise

NL of noisy time series
I NL of state estimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x 10" x 10i

Figure 7-15: (a) Titration and filtering of the ecological map with dynamic noise, (b) Titration
and filtering of the ecological map with measurement noise.
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Chapter 8

Concluding Remarks

The Answer to the Ultimate Question of Life, the Universe and Everything

is......42.

-Deep Thought (after 7.5 million years of calculation) [3]

In this final chapter, we will highlight some key ideas presented in this thesis. We will

also discuss some of the challenges and outline some of the future prospects of this exciting

research area.

8.1 Conclusions

We close this thesis by summarizing the importance of the approach of using simple models

and discussing more generally why and to what extent they can give useful information

about real systems whose behavior is determined by complicated many-body interactions.

Frequently we encounter deterministic systems which we cannot fully describe, one could

make simplifying assumption and then try to solve the approximated system, or one could

start from much simpler model systems and generalize to more complicated systems. The

prime advantage of using model systems is that they can be chosen to be tractable theoret-

ically and therefore the details of their behavior can be understood with some confidence.

In particular, the aim is to extract a clear understanding of the physics leading to the

behavior which will be mirrored in the real system. Once the basic principle have been

established, various refinements can be included in the models. Often it is possible to go

further than this and obtain a quantitative fit to experimental data, rather than just a
qualitative understanding of it.

In this thesis, we have shown that a simple model such as the logistic map in the
period-2 limit cycle regime can be used to predict the correct temperature dependence of
the kinetic crossover rate of bistable systems in a fluctuating environment. By simulating
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the dynamics of the one-dimensional map, we found that the escape rate scales exponentially

as the Arrhenius factor, which shows a nontrivial dependence on the noise strength. This

result is consistent with first principal calculations based on the Fokker-Planck theory.

It goes beyond stability analysis, we have demonstrated that some of the properties of

thermodynamical systems can be understood by studying noise-induced complexity and

nonlinear dynamics. We have also given a new definition of stochastic chaos and developed

nonlinear-filtering techniques for its detection in physical nonlinear systems. Our analysis

and theoretical viewpoint are not only philosophically appealing, but also practical and

undoubtedly will become more applicable in the future.

8.2 Future prospects

Each kinetic equation necessarily involves a stochastic assumption such as Boltzmann's

Stosszahlansatz (molecular chaos), which is introduced by some truncation of the evo-

lution equation either in the low density limit or in the weak coupling limit. Recently,
adequate constructions have been proposed in the theory of chaotic dynamics, which over-

come the previous difficulties caused by the stochastic assumptions. Since 1990s, stochastic

Melnikov method has been applied to study the effect of noise on homoclinic or hetero-

clinic bifurcation and noise-induced chaos [35] [82] [83]. A simple criterion guaranteeing

the nonoccurrence of chaos was derived for continuous time systems using the stochas-

tic Melnikov approach [260]. Gan [89] characterized noise-induced chaotic response in the

quadratically nonlinear oscillator by demonstrating that the boundary of the safe basin of

the system can be incursively fractal when Gaussian white noise excitation is added to the

system [90] [91].

Systems driven by chaos are still relatively unexplored, especially with respect to the

Kramers problem, as most research on particle escape from stationary metastable nonequi-

librium systems are carried out based on stochastic noise. Recently, Chew et al. [49] [50]

studied the resonant effects of chaotic fluctuations on a strongly damped particle in a

bistable potential drive by weak sinusoidal perturbation. Their first-order analysis reveals

that the transition rate has the form of the Kramers escape rate except for a perturbed pref-

actor. This modification to the prefactor is found to arise from the statistical asymmetry

of the chaos-generated noise.

We have no touch on quantum version of the classical chaotic dynamics discussed in

this thesis. However, nature is fundamentally quantum mechanical. So in so far as this

material has any relevance for natural processes, a quantum version is certainly necessary.

Fundamental equation of quantum mechanics, the Schr6dinger equation

iha-w = NO, (8.1)
at

can be written as a system of hydrodynamic equations without additional assumptions.
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Other techniques of solving the Langevin's equation, such as path integration have also

been used, drawing on the analogy between statistical physics and quantum mechanics, for

example, the Fokker-Planck equation can be transformed into the Schr6dinger equation by

rescaling a few variables. One would very much like to know something about the quantum

mechanical quantities that play a role similar to that of Lyapunov exponents, Kolmogorov-

Sinai entropies, etc., in classical physics. The stochastic resonance behavior in a classical

system has also found to manifest itself in its quantum counterpart [156] [2321. It has been

shown that the dynamics of the Fokker-Planck equation governing the system is equivalent

to that of a quantum system governed by a Hamiltonian that can be obtained from the

FPE through an appropriate transformation. When the Hamiltonian system exhibits the

transition to chaos, the decay rates of the FPE show level repulsion [200]. This is all open

for investigation.
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Appendix A

Matrix Inversion Lemma

We will now derive the matrix inversion lemma, which we will use many times.

Suppose we have the partitioned matrix A BI where A and D are invertible squareCD
matrices (the B and C matrices may or may not be square). We define E and F matrices

as follows:

E = D - CA-1B,

F = A - BD-1C. (A.1)

Assume that E is invertible. Then we can show that

IA B] A-i+ A- 1 BE-1 CA -  -A- 1 BE - ] [I 0

SD -E-'CA- E- 1  ] [ (A.2)

Now assume that F is invertible. Then we can show that

A B ] F-  -A-1BE- 1] = [ (A.3)
C D -D-1CF-1 E 0

Since the two expressions in eqs. (A.2) and (A.3) are inverses of the same matrix, they must

be equal. We therefore conclude that the upper-left partitions of the matrices are equal.

Substituting for the definition of F, we obtain

(A - BD-1C) - 1 = A - ' + A-1BE-1CA - 1 . (A.4)

This is the matrix inversion lemma.
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Appendix B

RTS Smoother Lemmas

Here we prove several lemmas to aid the development of the RTS smoother in Sec. 6.1.2.

Lemma 1.

FIk Qk-IFk = Fi11A kF F 1 - A+,kn . (B.1)

Proof. From eq. (6.9) we see that

Afk = Fk-Afk- 1 k- 1 + Qk-1. (B.2)

Rearranging this equation gives

Qk-1 = Ak - Fk-Ak _F-1. (B.3)

Premultiplying both sides by F-1l and postmultiplying both sides by F T1 gives the desired

results. O

Lemma 2. The a posteriori covariance A+ of the backward filter satisfies the equation

A+= (Ak + A+)IZ-kAk. (B.4)
Ak fk bk

Proof. From eq. (6.17) we obtain

I = (Ib+ + zk)Ak,
A+ = (I + A+kzk)Ak

= Ak + A+fzkAk

= AT- I• k + A+ Z-~kAk

= (A-k + A+)I-,Ak. (B.5)

[]
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Lemma 3. The covariances of the forward and backward filters satisfy the equation

A- +A + = Fk_ (A+,_ 1 + A-k _)F _. (B.6)

Proof. From eqs. (6.9) and (6.15) we see that

A+ = F-1 A- F-T
fAk-1 k1 fAk l - Fk-1Qk-1F 1 7

A- = F-1 A+ F -T + Fk1lQk1,F -T (B.7)Ab, k-1 k-1 bk k-1 k- k-1 (B.7)

Adding these two equations and rearranging, after the smoke clears, we get

A+ + A-k = F 1 l(A +A + ) -TA~f,k-1 bk-1 k- (Ak + b k-11
Afk + A+ = Fk-1(A,k- 1 + Abk-1)F 1.  (B.8)

Lemma 4. The smoothed estimate Ak can be written as

Zk = Ak k+ fk - AkHTR Rk'Hkkk + AkQ. (B.9)

Proof. From eqs. (6.11) and (6.18) we have

Zk = AkI} i + Ak+i-
=Ak fk k "bkk

= Akfk fk + Ak bkk". (B.10)

From eq. (6.15) we see that

eg = e+ - HTR•1yk. (B.11)

Substitute this expression for o-, and the expression for ik from eq. (6.9), into eq. (B.10)

to obtain

lk = AkZ+,k- + AkZfkKfk(Yk - Hk fk) + Akk - AkHTR lyk. (B.12)

Now substitute A+kHT -R for Kfk (from eq. (6.9)), turn the page upside down and squint,

you obtain

Zk = AkT-+•k + Ak"zfkA kH R 1(yk - Hkf-k) + AkkQ - AkH R,-yk

= Ak k+i-k + AkHTRk'(yk - Hk~-k)+ Akko+ - AkHT Rl-lyk

= Ak-+i•f + AkHTR -Hki-k + Akp . (B.13)

kk
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Lemma 5.

(A+k- 1 + Ak-l)1 =F T - k(A/k - Ak) fkFk-1. (B.14)

Proof. Recall from eqs. (5.15) and (6.15) that

Ifk k- + HTRk'Hk,

= = 1 • + H TR'Hk. (B.15)

Combining these two equations gives

Ibk fbk + fk k fk

=(I + k+ -1 --1 _k

= A;1 -I k
Ab+  -k - k) - 1 .  

(B.16)

where we have used eq. (6.17) in the above derivation. Substitute this expression for A+

into eq. (B.6) to obtain

Fk-1 (Af,k_ 1 + ATk_ -1 T +1 k/l)Fk_1 - Ak + Abk

= Ak + (zk -Z)- 1. (B.17)

Invert both sides to obtain

F-l(A~k-1+Ab,k-)-1 = Ak(k-k) - 1 
1+-T (A+ + 1  [

(A f,k-1 + Abk-1) 1  
1 Ak + ( -- k)-1 -1

S Afk fk fk 1 Fk-1
= F k-I [I k + Z- kT k k - Ifk ]T kFk-1. (B.18)

Apply the matrix inversion lemma to the term (2Ik - 1 fk)- in the above equation

(Af,k-1 + A , k1 -1)

= F _ITk [-Tk + k (-Amk - Afk(-A- k + Ak)-1Afk) -h]- fikFk-1
= FT I-k k + (-I- (-A- + Ak)-A1A k] I kFk-1

= F 1 k - k - (Ak + Ak)- -1kFk-1

= Fk-lIf k(Ak - Ak)IfkFk-1. (B.19)
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Appendix C

Test for White Noise

The residuals of the filter output are expected to be a sequence of serially uncorrelated

random variables with zero mean and constant variance. One standard procedure to test

for white noise is to apply the Kolmogorov-Smirnov test to the modified cumulative peri-

odogram [69] [84]. The Bartlett's Kolmogorov-Smirnov test (BKS test) statistic [15] ad-

dresses the series of observations for a coded variable in the time domain and tests the

"goodness of fit" of an observed error series to a normally distributed error series.

The time series xn is decomposed by the Fourier transform

2,a-= + [ak cos(wkn)+ bk sin(wkn)]. (C.1)
k=1

The amplitude periodogram Ik is defined as follows [210]:

Ik = (ak + bk). (C.2)

The normalized cumulative periodogram, Lj, for j = 1, 2,..., mrn - 1, is

ZE= 1 Ik- k=l lIk (C.3)

where m = n/2 if n is even or m = (n - 1)/2 if n is odd.

Under the null hypothesis of Gaussian white noise, lo,..., In have the same distribution

function as a set of n + 1 spacings determined by n independent uniform random variables

U1 ,... ,Un. The spacings dkn, for 0 < k < n, are simply the differences between the

successive order statistics Uk:n and Uk+1:n, with Uo:n = 0, Un+l:n = 1. Thus testing for

white noise may be reduced to testing whether a random sample comes from a uniform

distribution over the unit interval. A natural test statistic for the latter problem is the

Kolmogorov-Smirnov statistic given by the largest deviation of the empirical distribution

function from the true distribution function.
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Appendix D

Support Vector Regression

Support vector machines (SVM) have become a subject of intensive study [26] [264] [287].

The SV algorithm is a nonlinear generalization of the Generalized Portrait technique

developed in Russia in the 1960s [289] [291]. Support vector machines are grounded in

the framework of statistical learning theory, or Vapnik-Chervonenkis theory, which

has been developed over the last three decades by Vapnik and Chervonenkis [287] [288].

Similar optimization approach using linear instead of quadratic programming was used in

pattern recognition by Mangasarian [186]. However, it was not until 1992 that the algorithm

evolved to form the maximal margin classifier, the basic support vector machine, and not

until 1995 that the soft margin version was introduced by Cortes and Vapnik [51]. After

introudction of the basic SVM, an increasing number of researchers have worked on both

the algorithmic and theoretical analysis of these systems, creating in just a few years a

new research direction, merging concepts from disciplines as distant as statistics, functional

analysis, optimization, as well as machine learning. These techniques have been recently

applied successfully on a number of practical applications-in optical character recognition

classification tasks [248] (for a comprehensive tutorial on SV pattern recognition, see [37]),
in fields as diverse of bioinformatics [29], computational linguistics [208] and computer

vision [128]. In addition, support vector machines have been applied to regression and time

series prediction with outstanding performance [68] [202] [203].

We review the basic concepts underlying support vector machines in the context of

function estimation. The goal is to explore the potential of SVM as a general regression

method for detecting the presence of nonlinearity in time series. For pedagogical reasons, our

treatment begin with the linear regression case in Sec. D.1. Then in Sec. D.2, we introduce

nonlinear mapping functions that transform the data into a high-dimensional feature space,
thus resulting in a nonlinear regression in the input space.
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D.1 Linear regression

Suppose we are given training data

D= {(zl,yl),...,(z , YN)} C Z x R, (D.1)

where Z denotes the space of the input patterns. In e-SV regression [287], our goal is to

find a function f(z) that has at most e deviation from the targets Yi for all the training

data, and at the same time be as flat as possible. In other words, we do not care about

errors as long as they are less than e, but will not accept any deviation larger than this.

We begin by describing the case of linear function f, taking the form

f(x) = vTzi + 0, (D.2)

with v E Z and 3 E R. We minimize the norm of the complexity term, v, to enforce flatness

in f. We can write this problem as a convex optimization problem:

minimize l v112,
2

subject to Y -v TZi - (D.3)
v Tzi +, - yi < E.

The tacit assumption in eq. (D.3) was that the convex optimization problem is feasible,
that is, a function f actually exists that approximates all pairs (zi, yi) with E precision.

However, this may not always be the case. Therefore, "soft margin" loss functions were

adopted by Cortes and Vapnik [51], which introduce slack variables +, - to cope with

the otherwise infeasible constraints of the optimization problem. Hence we arrive at the

formulation stated in [287]:

N
minimize +IvI2 +

i=l

yi -VTzi - 0 E + ,
subject to vTzi+P- Yi E + , (D.4)

_< 0.

The positive, prespecified constant A determines the trade-off between the flatness of f and

the amount up to which deviation larger than e are tolerated. This corresponds to using

the e-insensitive loss function |1( described by

O 0, if 1• _< E;
[E 1 - E, otherwise.
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Note that this cost function introduces a systematic bias, since we tend to underfit if e is

too large, for example, in the extreme case of very large e the resulting regression will be a

constant.

Fig. D-1 depicts the situation graphically. Only the points outside the shaded region

contribute to the cost, as the deviation are penalized in a linear fashion. It turns out that

in most cases the optimization problem can be solved more easily in its dual formulation.

Moreover, the dual formulation provides the key for extending SVM to nonlinear functions.

Hence we will use a standard dualization method utilizing Lagrange multipliers.

T 1

4I 

0

I I1

-g+c

Figure D-1: The soft margin loss setting for a linear support vector machine. Only the points
outside the shaded region contribute to the cost, as the deviation are penalized in a linear fashion.

D.1.1 Dual problem and quadratic programming

The key idea is to construct a Lagrange function form the primal objective function and the
corresponding constraints, by introducing a dual set of variables. It can be shown that this
function has a saddle point with respect to the primal and dual variables at the solution.
We proceed as follows:

S N N

2 IIVI12 +,\ Z(t + E7) - + 77T
i-=1 i=1

N N

- ~a~(e+ -+ y + vz + ) - ( + + y - V Zi - ), (D.6)
i=1 i=1

where C is the Lagrangian and mqi, a*, ti, 4o are Lagrange multipliers. Hence the dual
variables in eq. (D.6) have to satisfy positivity constraints, that is

7i,' 7 O ai Ž oi -> 0. (D.7)

It follows from the saddle point condition that the partial derivatives of C with respect
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to the primal variables (v, 3, +, -7) have to vanish for optimality.

L N

v9 = v - Z(ai - a)zi = 0, (D.8)
i=1

N

09 = -(aji - a*) = 0, (D.9)
i=1

-- = A -ci - i = 0, (D.10)

L= - 0. - •7' = 0. (D.11)

Substituting the conditions above into eq. (D.6) yields the dual optimization problem.

1 NN N N

maximize-- -aj -a)zTz- e Z(cai +4) + (ai- )yi,
i=1 j=1 i=1 i=1

N

subject to Z(ai - al) = 0 and ai, ac E [0, A]. (D.12)
i=1

In deriving eq. (D.12) we already eliminated the dual variables 77i, q}* through conditions

(D.10) and (D.11). Eq. (D.8) can be rewritten as follows

N

v = (oi - o)zi, (D.13)
i=1

N

f(z) = Z(ai - Of)zTz + P. (D.14)
i=1

This is the so-called support vector expansion; v can be completely described as a linear

combination of the training patterns zi. The Lagrange multipliers ai, af have an intuitive

interpretation as forces pushing and pulling the estimate f(zi) towards the measurements

yi. In a sense, the complexity of a function's representation by SVs is independent of the

dimensionality of the input space Z, and depends only on the number of SVs.

Moreover, note that the complete algorithm can be described in terms of inner products

between the data. Even when evaluating f(z) we need not compute v explicitly. These

observations will come in handy for the formulation of a nonlinear extension.

D.1.2 Computing the threshold

The constant / can be calculated by exploiting the Karush-Kuhn-Tucker (KKT) con-

ditions. These state that at the point of the solution the product between dual variables
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and constraints has to vanish.

ai(E $+ - Yi +,+ vT Z + 3) = 0, (D.15)

a*(e + (- - Yi + vT - 3) = 0, (D.16)

(A - ai)(+ = 0, (D.17)

(A - a* )i = 0. (D.18)

This allows us to make several useful conclusions. First, only samples (zi, yi) with corre-

sponding ai, ao = A lie outside the e-insensitive tube. Second, aiac = 0, that is, there can

never be a set of dual variables ai, af which are simultaneously nonzero. This allows us to

conclude that

e - yi + vTzi +•3 0 and ij = 0 if ai < A,

e- yi + vT i + < • 0 if ai > 0. (D.19)

In conjunction with an analogous analysis on a! we have

max{-e+yi-v T zila < A or af > 0} •/3 min{-e+yi-v T zilai > 0 or a* < A}. (D.20)

If some ai, af E (0, A) the inequalities become equalities.

In other words, we pick those values ai, a for which the prediction error =i f (zi) - yi

can be determined uniquely. In the e-insensitive case this means picking points zi on the

margin, by requiring that one of the corresponding ai or a* be in the open interval (0, A).

In that case we know the exact value

Ji = e sign(ai - a!), (D.21)

of the prediction error. For stability purposes it is recommended to take the average over

all points on the margin with

/3 = average 6i + Yi - (i - a )zTz (D.22)

We make a note regarding the sparsity of the SV expansion. From eqs. (D.15) and (D.16)

it follows that only for If(zi - yi) >Ž e the Lagrange multipliers may be nonzero, or in other

words, for all samples inside the e-tube (the shaded region in Fig. D-1) the ai, a* vanish;

for f (zi - yi)I < e the second factor in eqs. (D.15) and (D.16) is nonzero, hence ai, af has
to be zero such that the KKT conditions are satisfied. Therefore we do no need all zi in
the expansion of v, hence a sparse expansion. The samples that come with nonvanishing

coefficients are called support vectors.
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D.1.3 Huber's loss function

Other cost functions such as Huber's robust loss function can also be used. This cost

function has the advantage of not introducing additional bias (like the e-insensitive one

does), at the expense of sacrificing sparsity in the coefficients ai, al. The Huber's loss

function takes the form

(f (Z) - y)2 for If(z) - yJ < A;
LHuber(f() - Y) = 2 (D.23)

| f (z) - y - , otherwise.

The corresponding quadratic programming problem takes the following form

NN N
1 N N 1 2 *

minimize • (ai - a;)(0aj- a)zj + (a + af E(ai - a)yi,
i=1 j=1 i=1

N

subject to Z(ai - a!) = 0 and a i,( E [0, (D.24)
i=

All patterns become support vectors.

D.2 Nonlinear regression by implicit kernel mapping

This section discusses the method that can be used to construct a mapping of the training

patterns in the input space Z into a high dimensional feature space F via a nonlinear

mapping 9~, and do linear regression in this space

f(z) = v T xp(z) + /, (D.25)

with IF : Z --+ F, v E F and 3 E R. Thus, linear regression in a high dimensional feature

space corresponds to nonlinear regression in the low dimensional input space. The concept

of the nonlinear preprocessing of the data is depicted in Fig. D-2.

Note that the inner product vT@(z) would have to be computed in this high dimension

space, which is usually intractable. Therefore, we introduce the use of kernel functions that

leaves us with inner products that can be implicitly expressed in the low dimensional input

space Z.

D.2.1 Implicit mapping via kernels

As noted in the previous section, the SV algorithm only depends on inner products between

patterns zi. Hence it suffices to know K(z, z') = F(z)TTI/(z ' ) rather than I explicitly which
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Feature space F

Figure D-2: Nonlinear regression is achieved by simply preprocessing the training patterns by a
map T : Z --+ F into some high dimensional feature space F, and then applying the standard
SV regression algorithm. The solution of the linear regression in the feature space corresponds to
nonlinear regression in the input space f(z). By the use of a nonlinear kernel function, it is possible
to compute a hyperplane with maximum margin in a feature space without explicitly mapping into
that space.

allows us to restate the SV optimization problem:

1 NN N N
maximize - ( - a!)(a3 - a*)K(z, z) - (ao + a*) + (a± - a )y,

i=1 j=1 i=1 i=1

N

subject to -(a - a) = 0 and aai, E [0, A]. (D.26)
i.=1

Likewise the expansion of v and f in eqs. (D.13) and (D.14) may be written as

N

v = Z(as - a*J) (zi), (D.27)
i=1

N

f(z) = Z(ai - a!)K(zi, z) + 3; (D.28)
i=1

the difference to the linear case is that v is no longer given explicitly. Also note that in the
nonlinear case, the optimization problem corresponds to finding the flattest function in the
feature space, not in the input space.

D.2.2 Conditions for kernels

The functions K(z, z') corresponding to an inner product in some feature space F must
satisfy the following conditions:
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1. If K is a symmetric positive definite function, which satisfies Mercer's condition [198].

00

K(z,z') = E amm(z)m(z'), am > 0;
m=O

dzdz' K(z, z')f(z)f(z') > 0 for all f E L2 (Z), (D.29)

then K(z, z') represents a legitimate inner product in some feature space, F.

2. Let K 1 and K 2 be admissible SV kernels and cl, c2 > 0, then

K(z, z') = clKi (z, z') + c2K 2(z, z') (D.30)

is also an admissible kernel, by the virtue of the linearity of integrals.

3. Let 0(z, z') be a symmetric function on Z x Z such that

K(z, z') = J d( V(z, () (z', C) (D.31)

exists. Then K is an admissible SV kernel.

4. Let K 1 and K 2 be admissible SV kernels, then

K(z, z') = Ki(z, z')K 2(z, z') (D.32)

is an admissible kernel.

5. A translation invariant kernel K(z, z') = K(z - z') is an admissible SV kernel if and

only if the Fourier transform

F(w) = (2r)- fz dz K(z)e- iv  (D.33)

is nonnegative [265].

6. Any kernel of dot-product type K(z, z') = K(zTz ' ) has to satisfy

K(C) > 0,
K(C) > 0,

a Ž2
K(C) + (` - K(() > 0 (D.34)

for any Ž> 0, is a necessary (but not sufficient) condition for K to be an admissible

SV kernel [38].
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7. A kernel of dot-product type K(z, z') = K (zTz') defined on an infinite dimensional

Hilbert space, with a power series expansion

00

K(t) = E antn  (D.35)
n=O

is admissible if and only if all an > 0 [247].

D.2.3 Examples of kernel functions

Below are examples of some common kernel functions:

Polynomial A homogeneous polynomial mapping, with p E N, is a popular method for

nonlinear modeling

K(z, z') = (zTz')d. (D.36)

From this observation one can conclude that inhomogeneous polynomial kernels of the

type

K(z, z') = (zTz ' + c)d (D.37)

are also admissible. The second kernel is usually preferred as it avoids problems with

the Hessian becoming zero.

Gaussian radial basis function Radial basis functions have received significant atten-

tion. The most common one-the translationally invariant Gaussian,

K(z, z') = exp z - 2a112  (D.38)

has shown to be an admissible SV kernel [4,26,290].

Exponential radial basis function A radial basis function of the form

K(z, z') = exp - )2o2  (D.39)

produces a piecewise linear solution which can be attractive when discontinuities are

acceptable.

Multi-layer perception The long established MLP, with a single hidden layer, also has

a valid kernel representation,

K(z, z') = tanh(o + p zTz'), (D.40)

for certain values of the scale p, and offset, q, parameters. Here the SV correspond to

the first layer and the Lagrange multipliers to the weights. This hyperbolic tangent
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kernel is appealing due to its resemblance to neural networks. This kernel does not

actually satisfy Mercer's condition, yet it has been successfully applied in practice.

B-splines B-splines are a popular spline formulation. The kernel is defined on the interval

[-1, 1i], and has an attractive closed form,

k

K(z, z') = B2n+l(1z - z'll) with Bk = 0 1[A_,½, (D.41)
i=1

where & denote the convolution operation, and the 1x denotes the indicator function

on the set X.

Tensor product Kernels multidimensional kernels can be obtained by forming tensor

products of kernels [12]

K(z, z') = Kig(zi, z'). (D.42)
i

This is particularly useful in the construction of multidimensional spline kernels, which

are simply obtained from the product of the univariate kernels.

While there exists some experimental results and discussions about which kernel to choose

for a particular problem, the fact remains that kernel selection remains more of an art than

a precise procedure, often requiring trial and error to find one that works.

D.3 Summary

In this appendix we have reviewed some basic concepts of support vector machines. They are

a class of algorithms characterized by the use of kernels as inner products in a feature space,

the absence of local minima, the sparsity of the solution and the capacity control. SVM

also generalize well in high dimensions. Extensions of the SVM concept have been made

by several authors, for example Mangasarian's generalized support vector machines [187].

Particularly interesting is the development of the Bayes Point Machine [131], that enforces

another inductive principle, given by Bayesian generalization theory. The SVM algorithm

showed excellent performances on the database of chaotic time series, outperforming other

techniques including polynomial and rational approximation, local polynomial techniques,

and neural networks [2021. Support vector machines are indeed an attractive approach to

data modeling.
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