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Abstract

Some efficient new classes of algorithms for compensating for fading in wireless systems
are introduced. For single-user or frequency-division multiplexed wireless systems, we de-
velop a technique we refer to as spread-response precoding which replaces the interleaver
traditionally used in conjunction with coding in such systems. From the perspective of
the coded symbol stream, spread-response precoding effectively transforms an arbitrary
Rayleigh fading channel into a nonfading, simple white marginally Gaussian noise chan-
nel with no intersymbol interference. Furthermore, spread-response precoding requires no
additional power or bandwidth, and is attractive in terms of computational complexity,
robustness, and delay considerations.

In the multiuser case, spread-response precoding generalizes to a new class of orthogonal
code-division multiple-access (CDMA) systems for efficient communication in environments
subject to multipath fading phenomena. The key characteristic of these new systems,
which we refer to as “spread-signature CDMA” systems, is that the associated signature
sequences are significantly longer than the interval between symbols. Using this approach,
the transmission of each symbol of each user is, in effect, spread over a wide temporal and
spectral extent, which is efficiently exploited to combat the effects of fading.

Both efficient signature sets and efficient receiver structures for such systems are devel-
oped. Several aspects of the performance of the resulting spread-signature CDMA systems
are presented, including both the achievable bit error rate characteristics as well as the
effective capacity of such systems. The results suggest that spread-signature CDMA may
be an attractive alternative to conventional CDMA in a variety of application scenarios.
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Part 1

Spread-Response Precoding

I.1 Introduction

The need to reliably transmit analog and digital data over channels subject to fading arises
in a wide range of applications including mobile radio and personal wireless systems, and
audio and television broadcasting. Generally, the fading characteristics of the channel,
which are a function of both the nature of the transmission media and the relative motions
of the transmitter and receiver in a given system, lead to variations in the quality of channel
both in time and in frequency.

Diversity techniques are widely used in communication systems to compensate for these
variations [1] [2]. These range from simple multiple transmission strategies in time, fre-
quency, and space, to more sophisticated diversity techniques based on the use of coding.
In such scenarios, coding is used to combat both the effects of fading and the effects of
stationary additive noise.

In order for coding to be effective against fading in particular, it is generally necessary
to combine coding with interleaving, a simple but nevertheless useful form of precoding.
The purpose of interleaving is to scramble the coded data stream so that fading channel
effectively seen by this stream is uncorrelated from time-sample to time-sample. This sub-
stantially reduces the coding complexity required to achieve a given level of fidelity, allowing
shorter lengths in the case of block codes, or fewer states in the case of convolutional codes.

In this part of the report, we develop an attractive alternative to interleaving which we
term “spread-response precoding.” With spread-response precoding, the fading channel as
seen by the coded data stream is effectively transformed into a simple additive white noise
channel. As a result, when combined with coding techniques such as trellis-coded mod-
ulation, the precoding stage combats any fading effects, while the coding stage combats
the remaining additive noise. This partitioning appears to be rather attractive in terms
of system complexity considerations. Indeed, spread-response precoding, in requiring com-
paratively simple linear signal processing at transmitter and receiver, is significantly less
demanding computationally than error-correcting coding and decoding algorithms. More-
over, precoding constitutes a diversity strategy that incurs no additional cost in terms of
bandwidth or power, and is competitive with traditional approaches in terms of robustness
and delay considerations.

While it has generally been understood in the communications community that inter-
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Figure 1.1: Precoding system.

leaving is not generally the most efficient of precoding strategies (see, e.g., [3]), the literature
has offered surprisingly few alternatives to date. Perhaps the work closest in spirit to the
ideas presented here is contained in [4], although in this case the author developed a form
of precoding for use in conjunction with interleaving rather than as an alternative to inter-
leaving.

This part of the report is organized as follows. In Section 1.2, we outline the Rayleigh
fading channel model we consider. In Section 1.3, we develop the transmitter portion of
the system, and discuss fundamental design and implementation tradeoffs. In Section 1.4,
we turn our attention to the receiver portion of the system, developing optimum designs.
In Section 1.5, we explore aspects of the performance of systems using precoding, including
theoretical capacity and attainable bit error rate calculations. Finally, Section 1.6 contains
some concluding remarks.

I.2 System Model

Fig. 1.1 depicts a block diagram of the overall system we consider. In this figure, z[n] is
the complex-valued M-ary symbol sequence representing the coded bit stream, and y[n]
is the precoded symbol stream to be transmitted. The transmitted data y[n] is corrupted
by complex-valued fading and additive noise, producing r[n] at the receiver. The received
data is first processed by an equalizer to produce §[n], then by a postcoder to produce &{n].
Finally, a decoder (not shown) processes Z[n] to produce an estimate of the original bit
stream.

The channel in Fig. 1.1 is the equivalent discrete-time baseband model of a fairly general
stationary Rayleigh fading channel with uncorrelated scattering and bandwidth Wy. The
channel consists of two components, a linear time-varying filter which captures the effects
of multipath fading due to multiple scatters in the transmission medium, and an additive
noise term representing both receiver noise and, more significantly, co-channel interference.

More specifically, the response of the channel to an input sequence y[n] is given by

rin] = aln; k] yln — k] + win] (I.1)
k

where wn] is a zero-mean complex stationary white Gaussian sequence with variance
E [jwn]?] = NoW,

and a[n; k], the response of the channel at time n to a unit-sample at time n — k, is a
complex Gaussian fading process. For fixed values of &, the a[n; k] are zero-mean complex
jointly stationary and Gaussian sequences. Furthermore, uncorrelated scattering implies




sequences corresponding to distinct values of k are statistically independent. Hence,
E[a[n; k] a*[n — m;l]] = Ry[m; k] 8]k — ]

where d[n] is the unit-sample, i.e.,

Al 1l n=0
Oln] _{ 0 otherwise ° (L.2)

With uncorrelated scattering, the time-variant channel frequency response!
A(w;n] = an; k] eIk (13)
k

is then stationary in both n and w and satisfies

E[A(w;n]] = 0 (I.4a)
E[lAwnl?] = o2 (L4b)

Both w(n| and a[n; k] are assumed to be statistically independent of the input to the channel.

Finally, we assume that while the transmitter does not have access to the fading channel
kernel a[n; k] or its statistics, these parameters are known, or, more typically, can be reliably
measured at the receiver.

1.3 Spread-Response Precoding

In this section, we consider, specifically, the transmitter portion of the system in Fig. 1.1. We
begin by observing that although the detailed characteristics of a fading channel fluctuate
from time sample to time sample, the performance of communication systems using such
channels is generally dictated by the average characteristics of that channel over time.
Certainly most capacity estimates for such channels involve averaging of this type; see, e.g.,
[6] and the references therein. As a consequence, in principle an efficient communication
strategy for such channels would, in some sense, “spread” the transmission of each symbol
over a large number of time samples.

Conveniently, spreading of this type can be achieved through simple linear time-invariant
(LTI) filtering of the coded symbol stream—a form of precoding. Specifically, denoting
the unit-sample response of the precoding filter by h[n], the transmitted sequence is? (cf.
Fig. 1.1)

y[n] = z[n] x h[n] = Zz[k] h[n — k. (L.5)
k

'We adopt the useful convention of using parentheses (-) to denote continuous-valued arguments and
brackets [-] to denote discrete-valued arguments. For functions of two arguments where the first is continuous
and the second is discrete (as in the case of time-variant frequency responses) we use the convenient mixed
notation (-;-]. The notation [-;-) is used in a similar manner.

*We use operator * to denote convolution, and the superscript * to denote complex conjugation.




For convenience, we restrict our attention to the case in which h[n] is a real-valued sequence.
It is also highly desirable for the precoding to be lossless, in which case y[n] constitutes
an orthonormal transformation of the data symbols z[n]. Lossless LTI filters satisfy the

time-domain constraint
> hin— k] hln — 1] = 6k — 1]. (1.6)
n
In the frequency domain, the condition (I.6) corresponds to
|H(w)? =1, (1.7)

and, for this reason, lossless filters are frequently referred to as alipass filters in the signal
processing literature [6]. An important property of such filters which follows immediately
from (1.6) is that

h~t[n] = h[-n).
Accordingly, we may conveniently and stably recompute z[n] from y[n] according to
z[n] = y[n] * h[-n] = Zy (L8)

From a practical standpoint, it is generally necessary to restrict our attention to finite
impulse response (FIR) precoders. However, as is well known, the only lossless FIR filters
are the shifted unit-samples, i.e., h[n] = §[n— k] for arbitrary k. Nevertheless, many infinite
impulse response (IIR) lossless filters have strongly localized temporal support and can be
therefore be truncated without significantly altering their characteristics. More generally,
there are a wide variety of FIR filters that closely approximate the losslessness condition
(1.6).

To make this notion of approximation more precise, consider the class of LTI filters h[n]

with unit-energy, i.e.,
> rn]=1, ‘ (1.9)
n

and let
®p[n] = h[n] x h[-n] = Zh[k hlk — n]

denote the autocorrelation function. Then, since the autocorrelation of a perfectly lossless
filter is the unit-sample, a useful measure of the deviation from losslessness is the reciprocal
of the total sidelobe energy in the autocorrelation function. Specifically, we may define the
following convenient losslessness merit factor £* for a unit-energy filter hfn]:

-1 00 -1
£h = (Z (@n[n] —6[n])2) = (2 Z@%{n}) (L.10)

n

with large £ corresponding to filters that are nearly lossless. More specifically, we have
0 < L£" < oo with the right-hand equality if and only if the filter is perfectly lossless. This
merit factor is, in fact, identical to that introduced by Golay to evaluate the quality of low
autocorrelation binary sequences [7], and we note that it is sometimes useful to exploit an




equivalent frequency-domain definition for £, viz.,

-1

(k[ (ot - )

which can be verified by applying Parseval’s theorem to (I1.10).

While losslessness is an important attribute of a precoding filter, a second important
attribute concerns their effectiveness in their primary function: spreading the transmission
of each symbol over a large number of time samples. This is achieved when the precoder’s
unit-sample response energy is widely dispersed in time, or, equivalently, when the precoding
system has strong partial response characteristics. Indeed, one can interpret spread-response
precoding as a form of partial-response precoding, although the objectives of traditional
partial-response precoding are markedly different.

A useful measure of dispersion for an arbitrary unit-energy filter h[n] in the context of
this work is given by

-1
Dy = (Z h4[n]> (1.11)

with large Dy, corresponding to good spreading characteristics. Using (1.9), it follows that
for unit-energy filters
Dp21 (L.12)

with equality when h[n] = §[n]. However, for FIR filters of length N with unit-energy, (I1.9)

also implies that
Dp <N

with equality precisely when
|h[n)) =1/VN, all0<n< N -—1.

Consequently, for FIR precoders maximum dispersion (i.e., D, = N) is obtained when h[n]
is an antipodal (binary) sequence. Conveniently, binary sequences are also highly attractive
in terms of both computational efficiency and numerical sensitivity.

While both good losslessness and spreading characteristics are desirable in design of FIR
precoders, they are competing objectives. Based on the preceding discussion, at one extreme
the precoder h[n] = é[n] corresponds to the best possible L" but the worst possible Dy. At
the opposite extreme, precoders with binary-valued unit-sample responses provide the best
possible Dy, for a given length constraint, but poor values of L". Indeed, a conjecture of
Golay [8] based on an ergodicity postulate suggests that for such binary sequences

mfxﬁh — 12.3247--- as N — oo.

Consequently, as we will discuss later, for a fixed filter length prescribed by external delay
constraints imposed on the overall system, the precoder design process requires a compro-
mise between the two components.3

3 Actually, as we’ll discuss in Section I1.5.1, this problem can be circumvented by using only a slightly more




When spread-response precoding is used in a system, the transmitted data have some
rather special asymptotic characteristics. First, we note that with lossless precoding we get,
via (1.7), that the transmitted stream y[n] will have same power spectrum as the original
coded data z[n], i.e.,

Sy(w) = Sa(w)-

In particular, when z[n] is a sequence of statistically independent complex-valued symbols
each with energy &;, then y[n] is a complex wide-sense stationary white sequence with vari-
ance &;. In addition, it can be shown that in the limit of infinite dispersion (Dj, — o0) the
transmitted stream is marginally Gaussian, i.e., that each transmitted sample y[n] has a
Gaussian distribution. This follows from a straightforward Central Limit Theorem argu-
ment: using (I.5) we see each y[n] is the balanced sum of a large number of independent
random variables. From the point of view of transmission security and capacity consider-
ations, such characteristics are rather appealing. However, we should also note that from
the point of view of peak-to-average power and receiver synchronization requirements, these
characteristics present important practical challenges in terms of system design. However,
such considerations are beyond the scope of the present report.

I1.3.1 Precoder Design

As will become apparent, the overall system performance depends in a rather complicated
manner on the loss and dispersion characteristics of the precoding filter. Furthermore, even
if a weighted combination of the losslessness and dispersion factors were to correspond to
some reasonable measure of ultimate system performance, optimizing such a criterion is an
intrinsically difficult numerical problem.

Nevertheless, there are a number of approaches that work well in practice for obtaining
precoding filters corresponding to a reasonable compromise between losslessness and dis-
persion factors, and providing good overall system performance. In fact, design techniques
are suggested from a variety of sources, largely because such filters find application in a
number of distinct communication problems ranging from the mitigation of impulse noise
in communication systems [9] to robust quantization of non-Gaussian sources {10]. Those
we discuss here are closely related to the techniques which have proven useful in these
problems.

As discussed earlier, binary precoders have attractive computational properties and op-
timal dispersion factors but poor losslessness factors. The binary sequences having optimal
losslessness factors for a given length constraint N are tabulated* in [11] for N < 71. For
length N = 13, the corresponding sequence is, for example, the well-known Barker sequence
for which £* ~ 14.08. Likewise, for length N = 27, the optimum sequence has £* ~ 9.85.
Another class of binary sequences with better-than-average losslessness characteristics are
the maximal length shift register sequences (or m-sequences) [12], for which £* ~ 3 for
large N as shown in [13].

complicated linear precoder structure—in particular, one that is not time-invariant but rather periodically
time-varying.

4Actually, to simplify the search for such sequences, typically only skew-symmetric binary sequences
are considered. This restriction is not severe however, since this class generally includes many of the best
sequences even when the restriction is removed.




In practice, the losslessness characteristic: of these sequences can be markedly improved
while largely preserving their dispersion prorerties by relaxing their binary amplitude con-
straints in a controlled manner. One way to o:complish this is to apply the following simple
heuristic algorithm. Beginning with an initial binary sequence hg[n], we proceed to maxi-
mize £* in the form (I.10) via an iterative ascent algorithm (such as the Simplex method)
subject to the unit-energy constraint (1.9). Naturally, a global optimization would result in
the trivial solution d[n]. However, the objective function typically has many local maxima,
and in practice, the algorithm generally converges to such a fixed point, and results in a
filter with substantially improved £ at a relatively modest cost in Dj,.

Other filters with reasonable dispersion factors are also suitable as an initialization for
this type of algorithm. For instance, in [10] a chirp sequence of the form

m{n —1)

ho[n] =ﬁsin[ o ] , forn=0,1,...,N—1

is used with good results. This initialization is especially useful in the design of very long
precoders, in which case the corresponding optimal binary sequences are unknown. However,
depending on the specific value of NV and on the specific iterative descent algorithm, certain
initializations lead to better precoders than others in terms of overall system performance.

Consequently, trial and error is invariably involved.

I.4 System Characteristics and Receiver Design

In this section, we turn our attention to the receiver portion of the system in Fig. I1.1. We
begin by noting that the receiver for decoding the bit stream can be partitioned into two
stages. The first is the equalization stage, which, as depicted in Fig. I.1 and without loss
of generality, can be described as the cascade of an equalizer and postcoder. The second
is the decoding stage (not shown in Fig. 1.1), typically consists of some form of Maximum
Likelihood (ML) sequence detection. As will become apparent, when no coding is employed,
simpie symbol-by-symbol detection generally suffices at the decoder. However, in the sequel
we restrict our attention to the equalization and postcoding stages.

In general, the equalizer, which compensates for the fading, is a linear time-varying filter
whose kernel is b[n; k], so that

g[n] = Z b[n; k] r[n — k.
k

Typically, this kernel is a function of the fading channel kernel a[n; k] and the noise statistics,
both of which are assumed to be available at the receiver.

In turn, the postcoder inverts the transformation of input symbols that takes place
during precoding, and is simply a linear filter whose unit-sample response is (¢f. (1.8)) a
time-reversed version of the lossless precoding filter h[n], i.e.,

Z[n] = h[—n] * g[n]. (I.13)

The overall system consisting of the channel with precoding, equalization, and post-
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coding, we refer to, for convenience, as the “composite channel.” In the remainder of this
section we first derive the key properties of this composite channel, then optimize them
through judicious choice of the equalizer parameters.

Our main result is that subject to only relatively mild ergodicity constraints on channel
the use of lossless precoding with a large dispersion factor leads asymptotically to an addi-
tive white noise composite channel that is not only free of fading, but has no intersymbol
interference. In order to make our result precise, we first define a sufficiently realistic class
of ergodic kernels for our purposes, which, for convenience, we term “admissibly ergodic.”

Definition 1 Let f[n;k] be the kernel of a linear system, and define

fln; k] = fln; k] — E(fln; k)] (1.14)
Furthermore, let 5 3
K=Y fin;ll fn— ksl k] (L.15)
!
and define 5
dln; k] = d[n; k] — E [d[n; k]] . (1.16)

Then f[n;k] is an admissibly ergodic kernel if the following conditions are satisfied:

E[fln;k]] = pélk] for every k,n (I17a)
[f[nk [n —m; ] = R[m;k|é[k -] for every k,l,m,n (I.17b)
E[ [n; k] d*[n — m; 1] ] = Tlm;k,1] for every k,l,n,m (L17c)
= > > |R[n;k]| < 00 (1.17d)

k n
Sr = Y. ITm;k,1]| < co. (1.17e)

kL m

Before proceeding, we adopt some convenient nomenclature. In general it will be conve-
nient to view a generic linear kernel such as f[n; k] as a collection of sequences in n indexed
by k. Hence, when we refer to “the sequence f[n;k]” we specifically mean the sequence in
n corresponding to a fixed (but generally arbitrary) value of k. From this viewpoint, the
conditions in Definition 1 are straightforward to interpret. Conditions (1.17a), (1.17b), and
(I.17c) are essentially stationarity constraints. They ensure, specifically, that the kernel se-
quences f[n; k] and the correlation sequences d[n; k] are each jointly wide-sense stationary.
The condition (I.17b) also ensures that sequences f[n;k] corresponding to distinct values
of k are uncorrelated. Finally, conditions (I.17d) and (I.17e) in effect ensure that linear
combinations of the kernel sequences f[n;k] are mean- and correlation-ergodic.

Equivalently, the conditions in Definition 1 can be interpreted in terms of stationarity
and ergodicity constraints on the time-variant system frequency response

F(wyn] = Zf[n; k] e~Iwk, (1.18)
k
We note, in particular, that (I.17a) and (I.17b) imply that F(w;n] is wide sense-stationary
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in both n and w and satisfies
E [F(w;n]] = u. (I.19)

Furthermore, with 3
F(w;n] = F(w;n] — E[F(w;n]]

we have _
E [F(H; n) F*(0 — w;n — m]] = ¥(w;m], (1.20)

where ¥(w;m] is the spaced-frequency spaced-time correlation function of the system and
satisfies .
(w;m] = _ R[m;k] eIk, (I.21)
k

Finally, for completeness, we note that

S(X\; k] =" Rlm; ke~ (1.22)

is the system’s scattering function,

T(A) =) T(0;m]e?™ (1.23)

is the system’s Doppler power spectrum, and
0% = R[0; k] = var f[n; k] (1.24)

is the multipath intensity profile or delay power spectrum of the system. Hence, the total
power is given by
0% £ var [F(w;n]] = ©(0;0] = ) _ oF. (1.25)
k

We can now present our main theorem concerning the composite system depicted in

Fig. I.1. A proof is presented in Appendix III.A.

Theorem 1 Let z[n] be a sequence of zero-mean, uncorrelated symbols, each with energy
Es; let aln; k] and wn] be as defined in (1.1); and let c[n; k] denote the kernel of the com-
posite linear system formed by cascading the channel corresponding to kernel aln; k] with
the equalizer corresponding to kernel b[n; k], i.e.,

cln; k] =Y b[nillaln — Lk — 1. (1.26)
]
Finally, suppose c[n;k] and b[n; k] are both admissibly ergodic kernels in the sense of Defi-
nition 1. Then, as Dy — oo, we have®, for each n,
z[n] = pezln] + vin], (1.27)

where v[n] is a complez-valued, marginally Gaussian, zero-mean white noise sequence, un-

5We use the notation = to denote, specifically, convergence in the mean-square sense.
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correlated with the input symbol sequence z[n] and having variance

varv[n] = €507 + NoWo(o? + |usl?). (1.28)

Effectively, Theorem 1 asserts that the use of sufficient precoding transforms the channel
“seen” by the coded symbol stream from a fading channel into a marginally Gaussian
white noise channel with no intersymbol interference. As a result, the characteristics of the
composite channel depend only on the statistics of the fading channel parameters a[n; k]
and w[n] but not on the values of the parameters themselves. Not surprisingly, this is a
natural consequence of the time averaging induced by precoding being applied to an ergodic
fading process.

A few additional remarks regarding Theorem 1 are appropriate. First, as can be readily
verified from the proof in Appendix IIT.A, Theorem 1 is in fact true even when the kernel
a[n; k] and receiver noise w[n| are not Gaussian. This observation is important in terms of
robustness, since these processes are of course at most approximately Gaussian in practice.

Second, we emphasize that v[n] in Theorem 1 is a marginally Gaussian process. Specif-
ically, this means that v[n] is a sequence of uncorrelated random variables each having a
Gaussian distribution, but that the random variables are not necessarily jointly Gaussian.
Hence, v[n] is not necessarily a Gaussian random process, and, as a result, there may exist
at least some statistical dependence among the noise samples. However, we shall assume
that, in practice, v[n] is an at least approximately Gaussian process, so that the statistical
dependency among samples is, in some sense, negligible.

The noise v[n] has other special characteristics as well. As is apparent from (I1.28),
the noise consists of the sum of two uncorrelated components. The first component has
power NoWy(0oZ + |us|?) and is due to the noise in the original fading channel. The second
component has power £02 and is inherently generated in the precoding process. The
existence of this second noise component means that boosting the transmitter power in the
system also leads to an increase in noise power in the composite channel. For this reason,
we shall find that the familiar matched-filter equalizer {14] is not best suited for use with
precoding.

Finally, we point out that although Theorem 1 establishes only an asymptotic result
valid for perfectly lossless precoding with infinite dispersion (implying, for example, infi-
nite delay), the asymptotic behavior can be approximated arbitrarily closely with realizable
precoders. In particular, with suitably chosen finite length precoders, the white marginally
Gaussian channel model is an excellent approximation to the actual composite channel.
Furthermore, the delay requirements in this case are comparable to those of conventional
interleaving. Specifically, the filter length N required to effectively converge to the equiva-
lent model is given by

N =N (1, +1) (1.29)

where N’ is the length required in the case of memoryless fading, and where 7, is the
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coherence time of the fading channel (in samples). Specifically,

=_1§§ T,(0;m) = ( Z‘I’aOm])——l (1.30)

a. m=0

where, defined according to (I.20), ¥,(w;m] is the original channel’s spaced-frequency
spaced-time correlation function. We can alternatively express 7, in terms of the (double-
sided) Doppler spread of the fading channel d,, which we define as

o0
/ Yo (V) dA
=
T (0)
where, defined according to (1.23), To()) is the Doppler power spectrum of the channel. In -

particular, comparing (I.31) with (1.30) we see that our definitions of coherence time and
Doppler spread are related according to

8o = (1.31)

1427, =27/d,.

Later we discuss appropriate values for N’ in practice.

It is important to note that while large coherence times (or, equivalently, small Doppler
spreads) correspond to larger inherent delays in the system, they need not incur addi-
tional computational complexity either at the transmitter or receiver. In fact, from a single
prototype precoder h[n] one can derive an entire family of precoders with the same loss, dis-
persion, energy, and computational characteristics but suitable for scenarios corresponding
to different coherence-time/Doppler-spread parameters. Specifically, if A[n] is a precoder
designed for memoryless fading (7, = 0), then the corresponding precoder h,[n] for the
case in which the fading has coherence time 7, is obtained by simply upsampling h[n], i.e.,

_ ) Ap/M] n=---,-M,0, M, 2M, ---
hr,[n) = { 0 otherwise (1.32)
where®
M = [1,+1]

is the upsampling factor. Equivalently, this upsampling relationship can be described in
the frequency domain as
H, (w) = H(Mw). (1.33)

Using both (1.32) and (1.33) one can verify that the energy, loss, dispersion, and computa-
tional characteristics are unaffected by such upsampling.

Let us now consider the design of the equalizer. We begin by observing that Theorem 1
implicitly imposes certain constraints on the equalizer kernel b[n; k] in order that the equiv-
alent channel model structure is attained asymptotically. These constraints are, from a
practical standpoint, in fact relatively mild. Specifically, it suffices that b[n; k] be chosen so

5The ceiling function [z] denotes the smallest integer greater than or equal to z.
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that both b[n; k] and the cascade of a[n; k] with b[n; k], (i.e., (1.26)) are admissibly ergodic.
For convenience, let us refer to kernels bn; k] with this property as admissible equalizers.

Among the class of admissible equalizers, some yield better composite channels than
others. One useful measure of the quality of the composite channel is the signal-to-noise ratio
(SNR). Certainly when v[n] is Gaussian the both the theoretical capacity and achievable bit
error rates increase monotonically with the channel SNR. Consequently, a useful criterion
for equalizer design is to select among the admissible equalizers that yielding the largest
SNR in the composite channel. Conveniently, when b[n; k] is an admissible equalizer, the
SNR in the composite channel follows directly from Theorem 1 as

_ il‘c‘z
0= 0f + 6o (0 + pel?) (134

where
o = NoWo/Es. (1.35)

In Sections 1.4.1 and 1.4.2, we proceed to derive these optimum equalizers in the two cases
of perhaps greatest interest in practice, corresponding to frequency-nonselective fading and
frequency-selective slow fading, respectively.

I1.4.1 Frequency-Nonselective Fading

In this section, we restrict our attention to the Rayleigh fading channel model of (I.1) with
a[n; k] = a[n] d[k].

in which case, as is straightforward to show, the admissible equalizers are also of the form
b[n; k] = bin] d[k].

Accordingly, we may rewrite (1.34) in this scenario as

_ By
"= et + B TP

(1.36)

where &g is as defined in (I1.35) and where we have omitted a specification of the time sample
n due to stationarity.
To derive the optimum equalizer, we begin by rewriting (1.36) as

v(b) = I/Wiﬁ (1.37)
where )
| £ [ab]| (1.38)

?O) = BT1aP + &) o’

and where we have exploited the identity

varfab] = E [[ablz] —|E[ab]%.
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Then, by the Schwarz inequality we have

2 2
| [ab]|? = ‘E {——-———m;;g -by/laf2 + fo] <E [IQ’LGL 50] E[(laf? + &)1b]
with equality if and only if
a*
Y

Hence, (1.38), and, in turn, (I.36) are maximized when

a*[n]
* el + &’

b[n] (1.39)
where the (complex) constant of proportionality is arbitrary.

Not surprisingly, the optimum equalizer is specified only to within an arbitrary gain
factor, since such factors do not affect the resulting SNR. In addition, it is interesting to
note (and can be readily verified) that the equalizer yielding optimum SNR in the composite
channel, i.e., (1.39), also corresponds, when suitably normalized, to a minimum mean-
square error linear equalizer for the fading channel. Specifically, §[n] and, in turn, #[n] are
minimum mean-square error linear estimates of y[n] and z[n], respectively. Although he
did not establish its optimality, it was Wittneben [4] in his preliminary work on precoding
for the nonselective fading channel with interleaving who first suggested that a minimum
mean-square error type equalizer was well-suited to this scenario.

1.4.2 Frequency-Selective Fading

In this section, we consider the more general channel model (I.1) for which the fading is, in
general, frequency selective. This scenario generally arises when larger transmission band-
widths are used, as is often desirable to achieve additional diversity benefit. Furthermore,
in deriving the corresponding optimum equalizers, we exploit the fact that in this case the
fading process becomes increasingly slowly-varying as the bandwidth is expanded.

Accordingly, we begin by assuming that the coherence time in the channel is large, so
that the fading coefficients are effectively constant over a several time samples. Then the
time-variant channel frequency response A(w;n] will vary slowly with n, and admissible
equalizers will also have a slowly-varying time-variant frequency response B(w;n]. Further-
more, we have

C(w;n] = A(w;n] B(w;n]. (1.40)
Now (I.19) and (I.25) imply
pe = E[C(win]] (L4la)
02 = var[C(w;n]] (1.41b)
and
ot + |mf* = B || Blwin)l’]. (141c)

Hence, using (1.41) with (1.40) in (I.34), we get that the channel SNR is effectively given
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by )
() ~ —|EL4B]
var [AB] + &E (| B’

where, again, £ is as given by (I.35), and where we have omitted specification of both the
time sample n and frequency value w due to stationarity. Clearly, (1.42) is identical in form
to (1.36), and, consequently, the equalizer providing the best SNR for the composite channel
follows analogously as

(L42)

A*(w;n]
|A(w; n]|2 + &

where, again, the (complex) constant of proportionality is arbitrary. As in the nonselective
fading case, we remark that this equalizer not only maximizes the channel SNR but also,
when suitably normalized, makes £[n] a minimum mean-square error linear estimate of z[n].

The receiver structure in this frequency-selective scenario warrants some additional dis-
cussion. With b[n; k] varying slowly with n, let us denote by b[k] the nominal value of b[n; k]
over some sufficiently long generic time interval. To implement the unit-sample response
blk], it is useful, at least conceptually, to view the equalization process in two stages. The
first stage implements the numerator of (1.43), and corresponds to the appropriate matched-
filter equalizer, and, hence, is a conventional RAKE receiver [1]. The unit-sample response
of this stage is, therefore, a*{—k]. The second stage, which implements the denominator of
(1.43), then performs additional compensation, taking into account the SNR in the channel.
The unit-sample response corresponding to this second stage, which we denote by e[k], is
symmetric and, in general, infinite in extent (hence, two-sided), precluding any recursive
implementation. However, typically, the tails of the unit-sample response fall off quickly. In
particular, when a[k] is non-zero for only finitely many values of & as is frequently assumed
in practice, e[k] decays exponentially quickly with k. Hence, using truncation e[k] may be
effectively approximated as a symmetric FIR filter. As an example, Fig. 1.2 depicts the
normalized RMS value of the coefficient e[k}, viz.,

B(w;n] o (1.43)

VEllelk12] /E e[0]]?],
as a function of k, where
E []a[k][z] ={ (1)/2 I;t:ex(‘);vlise ) (144)

2

and where &, = o;.

1.5 Performance

In this section, we explore the potential performance achievable through the use of spread-
response precoding with optimized receivers. We begin by observing that with the optimum
equalizer, i.e., (1.39) in the case of frequency nonselective fading or (1.43) in the case of
frequency selective fading, we readily obtain that the corresponding SNR in the composite

17




1 T T
0.9.. .............................................................................................. .
0.8_ .................................................................................................
w0-7_ ................................................................................................ -
=
©
> :
mo.e_ ................................................................................................
=
_00.5_ ................................................................................................ -
(]
N
© g -
§O.4
Q
CO.3' .......................................... Q L -
0.2_ .......................................... T P P -
O.1F - .......... T T .............. ....................... .
af o Q (D 8 T T (? (D Q o) o 7))

-10 -5 0 5 10
index k

Figure 1.2: A typical RMS unit-sample response of the second stage of equalizer. In this
example, the variances of the fading coefficients a[k] were chosen according to (1.44), and
the SNR was chosen so that £y = o2.
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channel is given by .

B[R]

Yo+1

~1 (1.45)

where®

_ A(wsn]PEs
0= NoWp
denotes the SNR in the original fading channel at a particular time instant n and frequency

w. A useful notion of the capacity of the composite channel is given by the equivalent
Gaussian capacity’, i.e., using (1.45),

(L46)

1
C/Wy = —log(1 = -] (E[———-D 1.47
/Wo og(1 + o) og p— (1.47)
Exploiting the readily verified identity
1 1
Ellog(v+1)]= —E [————] =eFE 1.48
[log(o + 1)] 2 b 1(¢o) (1.48)
where 2
A o2&,
1/(o=F = -2 4
/CO [’70] NOWO (I g)

denotes the average SNR in the original fading channel (cf. (I.4b)), and E;(-) denotes the
exponential integral [15]

Ey(v) = / -, (L50)
we get that (1.51) can be expressed more conveniently as
C/Wo = ~log (Goe® E1((o)) - (151)

The capacity estimate (1.51) can be compared to some related capacity calculations. In
particular, by the Schwarz inequality we get

{ 1 ] 1 1
> = ,
Yo+1] T Elyv+1] 1+1/¢

so that, as expected, (I.51) is upper bounded by the capacity of the Gaussian channel or,
equivalently, the fading channel with infinite spatial diversity, i.e.,

Coo/Wo = log (1 + E o] = log (1 +1/¢o) - (1.52)

More generally, there have been a variety of attempts to estimate the capacity of fading
channels in the literature [5]. As an example, between C and Co lies the estimate of fading

80f course, in the case of nonselective fading A(w;n] = a[n; 0] = a[n] using the notation of Section 1.4.1.

"More precisely, this can be interpreted as a constrained capacity—specifically the bit rate that can be
achieved when the remaining higher-order statistical dependencies in the composite channel model are not
exploited.
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Figure 1.3: Capacity estimates, Rayleigh fading channel. The solid curve is the capacity
estimate C determined using precoding. For comparison, the dotted curve is the capacity Co
when infinite spatial diversity is available, while the dashed curve is the capacity estimate
Co due to Lee [16].

channel capacity without spatial diversity derived by Lee [16], i.e.,
Co/Wa = E [log (1 + 70)] = €% E1(¢o), (1.53)

where the second equality follows from (1.48). In Fig. 1.3, these capacity estimates (in
bits/sec/Hz) are plotted as a function of the average available SNR. The capacities C, Co,
and Co, are represented by the solid, dashed, and dotted curves, respectively.

At high SNR (i.e., small {p), we can use the series expansion [15]

Ey(v) = —To — logw — 3~ T 1.54
1(¥) = =T —logv Z_ﬁﬁ_" (1.54)
k=1 .
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where I’y = 0.57721- - - is Euler’s constant, to show that (I.51) is given asymptotically by

1/¢
C/Wy ~ log (EE(—I/ECU) . (1.55)

By contrast, in the same regime (I.52) behaves like

Coo/Wo ~ log(1/¢o) (L.56)

while (1.53), as can be shown via (1.54), satisfies
Co/Wo ~ Ty + log(1/¢o)- (1.57)

Hence, comparing (1.57) with (1.56) and (1.55) we can verify that at high SNR the difference
between C, and C is approximately 2.506 dB while the difference between Cy and C diverges
to infinity.

We stress that these capacity estimates correspond to the case in which the transmitter
has no knowledge of the state of the fading channel or its statistics at any point in time,
i.e., there is no side-channel for feedback from the receiver to the transmitter. We note,
however, because of memory in the fading channel, the availability of a feedback path would
naturally lead to higher capacity [17].

We also remark that to approach the capacity C of the composite channel requires, of
course, that coding be applied to the data stream prior to precoding. However, because
the composite channel is effectively an additive white Gaussian noise channel, any of the
traditional forms of coding for this channel would be appropriate. In particular, we note
that conventional implementations of trellis-coded modulation appear to be well-suited to
this scenario.

Nevertheless, even without coding significant improvements in bit error rate performance
can be achieved from the inherent diversity benefit of using spread-response precoding.
We emphasize that this is in marked contrast to the use of interleaving, which offers no
improvement in bit error rate performance without coding. For the purposes of illustration,
let us consider the case in which z[n] is an uncoded QPSK (quadrature phase-shift keying)
stream. When precoding is used, the bit error probability as a function of the SNR per bit,
i.e.,

Epo? _ Esa?
NoWo — 2NoWy’
is given by
P=0(/7) (1.58)
where ] o
=— —/2 gy
QW) = o= [ Pa,
and where 7, via (1.45) with (1.46), is given by
— 1 -1
7= Coe% Br(Go)
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with (o given by (1.49). For comparison, without precoding the QPSK bit error probability
using L-fold spatial diversity and maximal ratio combining is given by [1]

1 ¢oL k
‘2‘{1 TTI Z( )( Tt 7D) } 159

Furthermore, (I.59) specializes to

PolL] =

Pl = 3 (1- —_27(1,—“)

when there is no spatial diversity, and to

Poloo] = 2 (y/El) = @ (1) (1.60)

when there is infinite spatial diversity. In Fig. 1.4, we plot bit error probability as a function
of SNR per bit (z.e., 1/(2{y)) with and without precoding. The solid curve in Fig. 1.4
corresponds to the use of precoding (with infinite dispersion) but no spatial diversity. The
dashed curves correspond to the use of no precoding but L-fold diversity for L =1, 2, ..., 5.
Finally, the dotted curve corresponds to the use of no precoding but infinite spatial diversity,
L — oo.

Comparing P with Py[1] we see that precoding markedly improves bit error rate per-
formance in the channel. We can further show, by applying (1.54) and the asymptotic
expansion [15]

-V2 2 ( ) -2
Q(v) ~ J— / Z 2m m, ™ (L61)
to (I.58), that at high SNR (i.e., small {g) the bit error rate with precoding is given by
log(1/¢o) ( 1/(260) )
P~y ———ex 1.62
76 P\ log1/c) (162

By contrast, in the high SNR regime, Py[L] is well-approximated as [1]
PolL] ~ (5
while (1.60), via (I1.61), takes the form
Pofoo] ~ +/CoeH/(%0),

Thus, we note that the while P falls off at a slower rate than Py[oc], it falls off faster
than Py[L] for any fixed L. This implies that, asymptotically, precoding provides higher
“effective diversity” than can be achieved using spatial diversity with any L < oo, but less
than can be achieved with infinite spatial diversity.

While the solid curve in Fig. 1.4 is obviously a lower bound on the bit error rate per-
formance achievable in practice using finite length precoders, it is quite realistic when the
precoding filter has length N given by (1.29) for N’ ~ 100. In Fig. 1.5, we plot bit error
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Figure 1.4: Bit error probabilities using uncoded QPSK on the Rayleigh fading channel.
The solid curve represents the performance achievable with precoding. For comparison,
also depicted is the attainable performance without precoding but, instead, with spatial
diversity and maximal ratio combining. The dotted curve corresponds to the performance
with infinite spatial diversity, while the successively lower dashed curves correspond to the
performance with L =1, 2, ..., 5 branches of spatial diversity, respectively.
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probability for uncoded QPSK as a function of SNR per bit using realizable precoders.
The solid curve indicates the infinite dispersion bound, while the successively lower broken
curves indicate the performance with practical precoders corresponding to N’ = 27 and
N’ = 200, respectively.

Finally, we remark that experiments exploring the sensitivity of system performance to
the parameters of the equalizer, while beyond the scope of this report, are clearly warranted
in the future. In the meantime, preliminary simulations reported in [4] involving minimum
mean-square error type equalizers lend at least some insight into what kind of behavior
may be expected. Specifically, the results suggest that performance ought to depend only
weakly on the estimate of £;/(Npwp) used in the equalizer, and that the performance can be
expected to degrade fairly gracefully with errors in estimates of the magnitude and phase
of the fading coefficients.

1.6 Summary

Spread-response precoding as developed in this part of the report constitutes a potentially
attractive alternative to interleaving in a wide range of communication systems designed for
use with multipath fading channels. Even when no additional coding is used, precoding can
significantly improve system performance over other uncoded systems. Similarly, the use
of precoding in conjunction with coding has the potential to substantially reduce computa-
tional complexity at both the transmitter and the receiver for a given level of performance.
This is because the effects of fading are entirely controlled by the precoding, which requires
only low-complexity signal processing. Thus, only additive noise remains for coding to con-
trol, which can in turn be achieved with comparatively shorter codes. As an additional
potential feature, the noise-like characteristics of the transmitted stream resulting from the
use of precoding appears to be well-suited for applications involving secure communication.
Nevertheless, several technical issues remain to be explored. For example, a detailed
investigation of the complexity benefits that can be realized through the use of precoding
with coding is clearly warranted. The development of techniques for adequately synchro-
nizing the receiver in such systems as well as for managing the inherent peak-to-average
power requirements is also an important avenue for future research. Furthermore, in order
for precoding to be effective, reliable estimates of the fading channel parameters and statis-
tics must be available at the receiver. It appears that this can be accomplished in practice
through the use of training sequences or decision feedback techniques. However, such issues
remain to be explored in detail. Finally, as remarked earlier, regardless of the technique
used, any such parameter estimates are imperfect and, as a result, sensitivity analysis would
ultimately be important in further verifying the viability of spread-response precoding.
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Figure 1.5: Bit error probabilities using uncoded QPSK on the Rayleigh fading channel
with realizable precoders. The dash-dotted and dashed curves represent the performance
obtained using FIR precoders with N' = 27 and N’ = 200, respectively. The solid curve
represents the ideal precoder performance bound (N’ — o).
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Part 11

Spread-Signature Code-Division
Multiple Access

I1.1 Introduction

Systems for efficiently coordinating communication among multiple users in multipath fad-
ing environments are important in a wide range of applications. Indeed, such systems are
essential in proposed digital mobile radio communications, personal wireless systems, indoor
wireless networks, and digital audio and television broadcasting systems. However, rapidly
escalating demand for both wider availability of such services and increasingly sophisticated
capabilities has put great pressure on the limited available bandwidth within the radio spec-
trum. Given such constraints, it is clear that the use of increasingly sophisticated signal
processing in wireless modems will be critical to accommodating large numbers of services
and users within the available spectrum.

In Part I, we explored the use of spread-response precoding for mitigating the effects of
fading in single-user or frequency-division multiplexed data transmission systems used in
multipath fading environments. From the perspective of the coded symbol stream, this pre-
coding effectively transforms a fairly general Rayleigh fading channel into a nonfading, sim-
ple white marginally Gaussian additive noise channel with no intersymbol interference. By
using such precoding to combat fading while reserving coding to combat only the remaining
additive noise, substantial reductions in system complexity appear possible. Furthermore,
although spread-response precoding represents a form of time-diversity, it is efficient in the
sense that it requires no additional power or bandwidth.

In this part of the report, we develop a natural generalization of the precoding con-
cept for general multiuser communication problems in multipath fading environments. The
result is a code-division multiple-access (CDMA) system in which, in effect, precoding is em-
bedded directly into each user’s signature sequence while maintaining orthogonality among
users. We term the resulting system “spread-signature CDMA.” These signature sequences
have some very special characteristics as we will show, most notable of which is that their
temporal extent significantly exceeds the intersymbol (baud) duration.

In a manner analogous to spread-response precoding, using such signature sets in mul-
tipath fading environments has the effect of transforming the collection of channels seen by
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the individual symbol streams from a collection of coupled Rayleigh fading channels into
a uncorrelated collection of identical nonfading simple white marginally-Gaussian additive
noise channels. In essence, spread-signature CDMA converts various degradations due to
fading, co-channel interference, and receiver noise into a single, comparatively more benign
form of uncorrelated additive noise that is white and quasi-Gaussian.

Transformations of this type are, in general, highly desirable in multiuser systems; see,
e.g., [18]. As we will see, spread-signature CDMA systems provides some important poten-
tial performance advantages over traditional CDMA systems. Furthermore, we will see that
spread-signature CDMA systems achieve this benefit without requiring additional power or
bandwidth, and are attractive in terms of computational complexity, robustness, and delay
considerations.

Our model consists of a fairly general cellular multiple-access scenario in which each
cell contains a single base station (sometimes referred to as a “cell site”) and a number
of mobiles (or, more generally, “subscribers”). We assume that both forward link (base-
to-mobile) and reverse link (mobile-to-base) communication is required, but takes place on
separate (i.e., non-interfering) channels. Between each transmitter-receiver pair is a fairly
general Rayleigh fading channel, which may be frequency selective or non-selective.

The outline of the Part I is as follows. In Section I1.2, we develop the equivalent discrete-
time baseband model for our multiuser system and some basic notation. In Section II.3,
we then develop a useful framework for characterizing the generalized orthogonal CDMA
signature sets of interest in this work, and use this framework to develop an efficient family
of spread-signature sets. Section I1.4 develops some important aspects of spread-signature
CDMA systems, ranging from transmission characteristics to channel-transformation prop-
erties of such systems. We then exploit these properties to develop efficient spread-signature
CDMA receivers. Section I1.5 explores the potential performance of such optimized systems
both in terms of capacity and bit error rate characteristics, and Section I1.6 contains some
concluding remarks.

II.2 System Model

Consider a single cell of a multiple-access system, in which there are M users, all sharing
a total fixed bandwidth MWj, so that W, is the effective bandwidth per user. In the
equivalent discrete-time baseband model for the system, the modulation process can be
viewed as follows. The coded symbol stream of the mth user (1<m < M), which we denote
by Zm[n], is modulated onto a unique signature sequence hp,[n] to produce ym,[n] which is
transmitted within the total available bandwidth.

Conceptually, it is convenient to view the modulation process in two stages. As depicted
in Fig. IL.1, these stages correspond to upsampling (i.e., zero-insertion) by a factor M,
followed by linear time-invariant filtering with the signature sequence, i.e.,

Ym[n) =Y Tm[k) hm[n — kM. (IL1)
k

The multiuser channel we consider, which is depicted in Fig. I1.2, is a rather general sta-
tionary Raleigh fading environment with uncorrelated scattering. More specifically, an,[n; k]
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Xp[n]—= 4 M —= hy[n] =y, [n]

Figure I1.1: Modulation of the the mth user’s coded symbol stream z,[n] onto a signature
sequence hpy,[n] for transmission.

represents the zero-mean, complex-valued Gaussian kernel of the fading channel seen by that
user. Hence, the sequence obtained at the receiver is

r[n] = Z Z am[n; k] ym[n — k] + win) (1I1.2)

m k

where w[n] is a zero-mean, complex-valued stationary white Gaussian sequence with variance'

E [lwln]?] = oW (IL.3)

that is statistically independent of both the an,[n; k] and the y,,[n]. In general, the randomly
time-varying kernels an,[n; k] capture the effects of multipath fading due to both fluctua-
tions in the media and the relative motions of transmitters and receivers in the system.
Meanwhile, w[n] captures both receiver noise and any sources of co-channel interference not
otherwise taken into account. We use A, (w;n] to denote the (stationary) time-variant fre-
quency response corresponding to the mth channel. Our notation for characterizing other
aspects of this class of linear randomly time-varying systems, which is essentially the same
as was used in Part I, is summarized for convenience in Appendix II1.B.

Two special cases of this general channel model are of primary interest. The first,
corresponding to base-to-mobile transmission, is referred to as the forward link. In this
case, the messages to the individual mobiles are multiplexed together before being broadcast
over the channel. From the perspective of a particular receiver all messages are transmitted
through the same channel, i.e.,

arfns K] = agfns K] = - = anrln; K] £ a[n; k). (IL4)

The second case, corresponding to mobile-to-base transmission, is referred to as the
reverse link. In this case, the messages are transmitted through separate channels to the
base station. With reasonable physical separation among mobiles, as we will assume, the
kernels of the individual mobile-to-base channels may be modeled as mutually independent.
We shall further assume that no base-to-mobile feedback channel is available to provide
synchronization information to the mobiles. Accordingly, the kernels am,[n; k] in our model
capture the effects of both multipath fading and asynchronism among users.

1Note that, for convenience, in our equivalent model the channel parameters are bandwidth-normalized,
i.e., the statistics of both an[n; k] and w[n] are independent of the bandwidth parameter M. To maintain
the proper dependence of signal-to-noise ratio on M, we therefore bandwidth-normalize the transmitted
power as well. Indeed, as we will establish in Section II.4.1, when the coded stream zm[n] has power &m,
the transmitted stream ym[n] has power Em /M.
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y][n] ™ a][n;k]

ya[n] —= ay[mk]

rin]

yuln] — ay [nk]

Figure I1.2: General multiuser fading channel model, where an,[n; k] denotes the randomly
time-varying linear kernel corresponding to the mth user.

Finally, we make the reasonable assumption that, in both forward and reverse link
cases, while the transmitters have no knowledge of the channel kernels an[n;k] or their
statistics, these parameters are known—or, more typically, can be reliably measured—at
the corresponding receivers in the system.

I1.3 Orthogonal Multiuser Modulation

In traditional CDMA systems, the signature sequences hy,[n] used in the modulation (II.1)
have length equal to the upsampling rate or intersymbol period M. In this way the signa-
tures are used in a nonoverlapping manner. However, in this section we consider signatures
of arbitrary length N. When N > M, the resulting sequences have valuable partial response
characteristics akin to those of spread-response precoding, and we refer to these sequences
as “spread-signature” sequences.

A useful mathematical framework for representing such signature sets arises out of mul-
tirate system theory [19], as we now show. To begin, we first express the signature set as
the vector sequence, i.e.,>

- b= mln) holn] - hufn] ], (IL5)

and, for convenience, let us restrict our attention to real-valued signature sets. When each

2The superscript * denotes transposition.
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of the component signatures hn,[n] has only finitely many non-zero values, we shall refer to
the signature set as having finite-spread. Specifically, when

h[n] = 0, n<0,n>N

we say that the signature set has temporal spread N.

Although the theory can accommodate more general classes of signature sets, we restrict
our attention to those satisfying certain convenient orthogonality conditions, which facilitate
both analysis and implementation. Specifically, we require that the signature sequences
together with all translates by integer multiple of M constitute an orthonormal set, i.e.,

> h[k — nM]bT[k — mM)] = é[n — m]1 (IL.6)
k

where I denotes the identity matrix of appropriate size, and where §[n] denotes the unit
sample, viz.,

2] 1 n=0
o] _{ 0 otherwise ° (IL.7)

In turn, the corresponding completeness condition for this orthonormal set can be expressed
as
S bT[n — kMhim — kM) = kifn — kM| hy[m — kM] = 8[n — m], (IL.8)
k ki

and, in fact, (I1.8) can be interpreted as a special instance of Mercer’s Theorem [20).

It is important to emphasize that orthonormal signature sets,i.e., sets satisfying (11.6)
and (IL.8), correspond to lossless systems. As a result, demodulation in the absense of
distortion is particularly simple. To illustrate, if the input symbol streams are z.,[n] and
the superimposed output is the sequence y[n], i.e., via (IL.1),

ylnl =Y ymln] = hmln — ME] zp[k], (1L9)

m,k

then the sequences z,[n] can be reconstructed from y[n| via

Zmln] = Y henll — nM]y[R]. (IL10)
g |

As we shall see, the discrete-time matched-filter and downsample operation (I1.10) is also
a key component of the demodulation process when distortion is present as well.

For M > 2, there is a rich collection of signature sets satisfying (I1.6) and (II1.8), even
when we restrict our attention to signatures with finite-spread. For M = 1, however, the
modulation process (I1.1) is equivalent to prefiltering with a linear time-invariant filter whose
unit-sample response is the signature sequence hj[n]. In this case, which was extensively
developed in Part I, the condition (II.6) is equivalent to requiring that h;[n] be an allpass
filter, and it is well-known that non-trivial finite-length allpass filters do not exist.

3Note that (II.6) directly incorporates the natural requirement that each signature sequence k., [n] have
unit energy.

30




Several aspects of orthogonal signature sets are more conveniently viewed in the fre-

quency domain. Accordingly, we express the set of Fourier transforms corresponding to
(IL.5) in the form

® —jwn A T

H(w) = / hinle " do £ [ Hyw) Haw) - Hu(@)| . (L1
-0

For example, the orthogonality properties (I1.6) and (I1.8) are frequently more conveniently

viewed in the frequency domain—as an illustration, (I11.8) is equivalent to*

Hi(w) H(w) = 3 [Hy(w) = M, (L12)
k

which is sometimes referred to as a (power) complementarity condition.
More importantly, the frequency domain representation (1I.11) leads to the efficient
factorization
H(w) = Q(Mw) A(w), (I1.13)

where Q(w) is a square matrix and A(w) is the Fourier transform of the delay chain of
order M, i.e.,

o) = [ oln] dn-1) - dn-M+1)]", (IL14)

whence T
A(w)=[1 e—iv ... e—jw(M—l)] ) (I1.15)

The decomposition (I1.13) is referred to as the polyphase representation of the set, and Q(w)
is termed the associated polyphase matrix. As is true for multirate systems in general [19],
polyphase representations of signature sequences are not only conceptually useful, but lead
to computationally efficient modem implementations as well.
For specifically orthonormal signature sets, the associated polyphase matrix satisfies the
special property
QW) QW) =1, (IL.16)

and we remark that matrices satisfying (II.16) are termed paraunitary. Furthermore, it is
straightforward to verify that Q(w) is independent of w if and only if the signature set is
not spread (i.e., N = M).

The polyphase matrices associated with some familiar orthogonal signature sets provide
useful insight. For example, the polyphase matrix corresponding to time-division multiple-
access (TDMA) systems is

Qw) =1,

while that corresponding to ideal frequency-division multiple-access (FDMA) systems has
(k,1)th element® .
[Q<w)]k,l = eJ(w—Zvrk)l/M, O<w<m

In contrast, for discrete Fourier transform (DFT) multiplexing, Q(w) is the DFT matrix,

4The superscript | denotes the conjugate-transpose operation.
®Note that Q(w) is both conjugate symmetric, i.e., Q*(w) = Q(—w), and 2m-periodic.
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i.e., _
[Qw))y,, = e/,

For Hadamard sequence based CDMA systems, for which we will develop a powerful
generalization in Section I1.3.1, we have

Q) =,

where E is the Hadamard matrix of appropriate dimension. Recall that the Hadamard
matrix of dimension M, viz., 27, where M is a power of two, is defined recursively: for
M=24,...,
=y = 1 [ Epmre Emye ]
V2| Emz —Enmyp
where Z; = 1.

CDMA system designers are frequently interested in the auto- and cross-correlation
characteristics of the signature sequences. Indeed, the autocorrelation characteristics gen-
erally affect, for example, the ability of a receiver to synchronize to the transmission, while
the cross-correlation characteristics generally affect the degree and nature of co-channel in-
terference. Ideally, therefore, one would like the autocorrelation of each signature hg[n] to

satisfy
hi[n] * hy|—n] = d[n], (I1.17)

and the cross-correlation between distinct signatures hy[n] and hi[n] to satisfy
hg[n] * y[-n] =0  k#L (I1.18)

It is well-known that (I1.17) and (I1.18) are conflicting objectives for traditional signature
sets (see, e.g., Welch [21] or Sarwate and Pursley [12]). In fact, this is also true for spread-
signature sets. To see this, let us define quadratic auto- or cross-correlation merit factors
which penalize deviations from (I1.17) and (I1.18), respectively. Specifically, analogous to
the merit factors defined by Golay [7], let

1/l =5 [ 1) B )] - olk ~ ) do (1L19)

Then, using (I1.12), it is straightforward to verify that, for any M > 2,

1 1 1 &
W%Ef{ = 5P /_ ) [; (IHe(w)[* - 21 He(w)2 +1) +k§k (1HR ()P H(@)P) | dw
- 51;/_7; (—ALIA;—I)dw - ———(MA; b, (I1.20)

Hence, from (I1.20) we see that good autocorrelation characteristics can only be obtained at
the expense of cross correlation characteristics, and vice versa. At one extreme the trivial
signature set corresponding to TDMA systems has perfect autocorrelation characteristics,

32




but the worst possible cross-correlation characteristics®, i.e.,

h o x k=1
‘:kl‘{1 k#1

At the opposite extreme we have the signature set corresponding to ideal FDMA systems.
This set has perfect cross-correlation characteristics but poor autocorrelation characteris-
tics; in particular,
L’Z‘z={ 1/(M—1) k=1
00 k#l1

In practical CDMA systems, a compromise between these extremes is generally sought.
The auto- and cross-correlation characteristics constitute only one of the important
issues in the design of good spread signature sets. For example, it is also important that
the signature sets we develop are effective in spreading the transmission of each symbol
of a user’s transmission over a large range of time samples in order to mitigate the effects
of fading. This is, of course, analogous to the objectives of spread-response precoding
as developed in Part I. Accordingly, we define a dispersion factor D, which measures a
signature set’s spreading capability via
1 1 1
i ; D (I1.21)

where D, represents the dispersion in the sequence hp,[n], i.e.,

-1
Dp,, = (Z hfn[n]> ) (11.22)

Note from (I11.21) that, as we would expect from any reasonable definition of dispersion, the
set has perfect spreading, <.e., D — 00, if and only if every signature in the set is perfectly
spread, i.e., Dp,, — oo for every 1 <m < M.

Important insights are obtained by examining what values D, can take. It is straight-
forward to verify, for instance, that for all orthonormal signature sets

Dy > 1, (11.23)

and that this bound is attained when h(n] is the TDMA signature set. More importantly,
at another extreme we have, for finite-spread signature sets with temporal spread N,

Dp <N, (I1.24)
with equality precisely when, for each 1 <m < M,

lhm[n)] =1/VN, 0<n<N-1

SIn fact, as can be verified from (I1.19) and (I1.20), this is true for any orthogonal signature set whose
sequences have allpass Fourier transforms.
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Hence, for finite-spread signature sets, maximum dispersion is achieved when the signature
sequences are antipodal (binary-valued). For this reason, we refer to the corresponding
signature sets as “maximally-spread.” Note, too, that because they are discrete-valued,
maximally-spread signature sets are especially attractive in terms of computational effi-
ciency and numerical stability.

As another important design issue, it will also be important that the spread-signature
sets we use possess what we refer to as a good “partitioning” characteristics. In particular, as
we will see, good partitioning results in more uniform distribution of co-channel interference
among users in the system. To develop this concept, we define the following modified
correlation function

On;[n,m) =Y hiln — Mk hilm — MK) (11.25)
k

which corresponds to correlating h;[n] with a version of h;[n] in which all but every Mth
sample is replaced with zero. While the complementarity condition (II.8) directly implies
that

> On,[n,m] = §[n — mj, (I1.26)

this condition says nothing about the properties of each of the M terms in the summation
of (I1.26). However, as will become apparent in Section II.4, the set has good partitioning
characteristics when the unit-sample in (II.26) is, in some sense, distributed uniformly
among the M modified correlation functions.

To make the notion of good partitioning characteristics more precise, we let

On.[n,m] = On,[n, m] — I‘}a[n —m] (IL27)

denote the deviation from ideal partitioning in each component. It is straightforward to
show that ©y,[n, m] is the following symmetry, periodicity, and finite energy characteristics:

éhi [na m] = éhi [m’ n], (I1.28a)
On.[n,m] = Op,[n + kM, m + kM),  any k, (I1.28b)

and ;
1/M? <Y 63 .[n,m] < (1—1/M)>. (I1.28¢)

A signature set has asymptotically perfect partioning if éhi [n,m] can be made arbitrarily
small using sufficiently long signatures. Accordingly, we define the following partitioning
factor:

=== (I1.29)

where

1 ~
— =su 6% [n,m], 11.30
o up ; AL (I1.30)

and note that good partitioning corresponds to large partitioning factors, and vice versa.
It is important to note, however, that signature sets with good dispersion factors do not
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necessarily have good partitioning characteristics’. Nevertheless, we emphasize that we

shall be primarily interested in signature sets which have both good dispersion and good
partitioning characteristics.

I1.3.1 An Optimum Class of Spread-Signature Sets

In this section, we develop a family of orthogonal signature sets that are optimal in the sense
of being maximally-spread, i.e., having the best dispersion characteristics for a given length
(or, equivalently, delay) constraint. As we discussed earlier, the maximally-spread condition
is achieved precisely when the signature sequences are binary-valued. The signatures we
construct are conveniently obtained out of a powerful paraunitary generalization of the
Hadamard matrix, and have a computationally efficient recursive synthesis that is attractive
in terms of modem implementation.

Our construction is based on the polyphase decomposition of a signature set (I1.13). In
particular, we rephrase the problem of designing a suitable orthogonal signature set H(w)
into problem of designing a suitable paraunitary polyphase matrix Q(w). Thus, requiring
that the desired H(w) correspond to a maximally-spread signature set is equivalent to
requiring that polyphase matrix sequence g[n] whose transform is Q(w) be binary-valued.

We begin by observing that the Hadamard matrix = is one matrix satisfying these
properties. Accordingly, we let our zero-th order polyphase matrix be?

QO(w) =&, (IL.31)

and note that the spread of the corresponding signature set is N = M.
To obtain signature sets for which NV > M, we exploit a recursion that preserves the
binary sequence requirement; specifically, we let

QW) = EAM W) Qi D(w), i=1,2,... (IL.32)

where A(w) is the diagonal delay matrix whose diagonal is constructed from the elements
of A(w), i.e., with A(w) as defined in (I1.15),

A(w) = diag A(w).

We see immediately that the paraunitary property (11.16) is preserved by the recursion
(I1.32) because the product of paraunitary matrices is also paraunitary. It is similarly
straightforward to verify that the recursion (I1.32) preserves binary sequence property—

"To verify this, it suffices to note that from any orthogonal signature set hm[n], we can construct a new
orthogonal signature set gm(n] via

gmln] = emlk] hmn — kM]
k

where the en[n] are any set of nontrivial lossless (allpass) filters. However, while this new system generally
has greater dispersion Dy > Dy, it is straightforward to show that the partitioning factor is unchanged, ¢.e.,
Xg = Xh-

8For convenience, we restrict our attention to orders M for which Hadamard matrices exist. These
include, for example, all integers M that are powers of two.
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indeed, in the time domain one can interpret (I1.32) and (II.31) as implementing a succession
of simple sequence concatenations initiated with Hadamard sequences.

Using (I1.13), we can also express the recursion (I1.32) directly in terms of the signature
set vector Fourier transform; specifically, we have, fori =1, 2, ...,

HO () = EAMw)H D (). (I1.33)

From (I1.33) we can verify that the spread of the signature set grows by a factor of M with
each application of the recursion, so that, in particular, H® has spread N = Mi*! for i =
0, 1, 2, .... For convenience, several sets of signature sequences obtained by the recursion
(I1.32) with (I1.31), and corresponding to different values of M and N, are tabulated in
Appendix III.C.

As a historical aside, it is interesting to note that orthogonal systems of the type con-
structed in this section have been reinvented numerous times over the last several decades,
particularly for the case corresponding to M = 2. However, it would appear that this work
is the first to attempt to exploit such systems in multiuser communication problems.

Using a variety of constructions, such systems emerged independently in a variety of
unrelated communities within mathematics, physics, and engineering. Work within the
engineering community dates traced back to 1950 when Golay constructed pairs of pseu-
dorandom sequences which he referred to as “complementary sequences” [22] [23]. These
sequences—now frequently referred to as Golay sequences—were defined as binary-valued
sequences satisfying the frequency-domain complementarity condition (I1.12) for M = 2.°
These Golay sequences have subsequently been explored extensively, though the focus has
been primarily on issues of existence of such pairs for various values of N; see, e.g., [24] and
[25].

From (11.12) it is apparent that binary-valued orthogonal sequences are a subset of com-
plementary sequences. However, more importantly, complementary sequences also useful in
the construction of orthogonal sequences, which both Golay and Turyn [26], and later Taki,
et al. [27] observed in the case!® M = 2. The corresponding generalizations for M > 2
appear in, e.g., Tseng and Liu [28].

Within the mathematics community, binary-valued, pseudorandom, orthogonal sequence
pairs (and, in particular, a time-domain version of the recursion (I1.33) for M = 2) were
also discovered independently by both Shapiro [29] and, later, Rudin[30]. As a result, the
frequency domain representations for such sequences are sometimes referred to as Rudin-
Shapiro polynomials.

As discussed in, e.g., Odlyzko [31], several useful properties of such sequences, as well as
their connections to other families of binary pseudorandom sequences, have been developed.

®As such, there is a natural correspondence between such complementary pairs and power complementary
filters as developed in the multirate signal processing literature [19].
10To see this, it suffices to verify using (II.16) with (I1.12) that

A(w) B(w)

Q) = [ B'(W) -A"(w) (11.34)

is a paraunitary matrix whenever the corresponding sequences a[n] and bfn] constitute a complementary
pair.
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For example, the asymptotic auto- and cross-correlation characteristics of our maximally-
spread orthogonal signature sets for the case M = 2 follow immediately from the results of
Newman and Byrnes [32]. In particular, we have that

L =3, N - oo, (I1.35)
which, using (I1.20), implies that for & # I,
Ly —=3/2, N - o (11.36)

Based on earlier discussion in Section II.3, (I1.35) and (I1.36) suggest that our maximally-
spread signature sets are localized in neither time nor frequency. In fact, not only is this the
case, but such strong spreading in both time and frequency is critical to good performance in
our intended application. Furthermore, in addition to their good spreading characteristics,
our maximally-spread signature sets have good asymptotic partitioning characteristics as
well; specifically, x, — 00 as N — oo.

I1.4 System Characteristics

In this section, we develop the key characteristics of spread-signature CDMA systems, and
then apply these results in developing efficient receivers for such systems. We begin with a
general discussion of transmission characteristics.

I1.4.1 Transmission Characteristics

Spread-signature CDMA systems give rise to transmissions with some rather special spectral
and temporal characteristics, only some of which are shared by conventional CDMA systems.
To illustrate the spectral features, we begin by observing from (II.1) that, provided the
coded symbol stream of the mth user is stationary, the corresponding transmitted stream
is cyclostationary with a time-averaged power spectrum given by

Sym (@) = | Hm(w)[? Sa,,,(Mw) /M,

where S;,,(w) is the power spectrum of the coded symbols of the mth user. When z,,[n]
consists of uncorrelated symbols of energy £,,, as we shall generally assume in practice, the
transmitted power spectrum associated with the mth user further simplifies to

Sym (W) = |Hm (W) Em/M. (IL37)

From (I1.37) several observations can be made. First, we immediately note that since
Hy(w) has unit-energy the total transmitted power in this case is £, /M. When compared
with (I1.3) we see that this appropriately results in a signal-to-noise ratio (SNR) that
decreases inversely with system bandwidth.

We also note from (I1.37) that, in general, the transmitted power spectrum, is not,
strictly-speaking, white. However, when the maximally-spread signature sets of Section 11.3.1
are used, the transmitted power spectrum is broadband and, in a particular sense, asymp-
totically white. More specifically, as N — oo, each Hy,(w) “converges” to a highly irregular
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function whose energy is effectively uniformly-distributed over frequency. Furthermore, the
transmitted spectrum corresponding to forward link transmission is typically truly white.
Indeed, when the component coded symbol streams are mutually uncorrelated and of equal
energy £y = £, it is straightforward to verify using (I1.12) that the aggregate transmitted
power spectrum is

Sy(w) =€, (I1.38)

where y[n| is the aggregate transmission, i.e.,
yln) = ymln). (I1.39)
m

~The temporal characteristics of spread-signature CDMA transmissions are noteworthy
as well. In traditional CDMA systems the individual (baseband) transmissions are gener-
ally binary-valued. However, in spread-signature CDMA systems, although the signature
sequences and coded streams may be binary-valued (if, e.g., the signature sequences of Sec-
tion I1.3.1 are used), the transmitted streams generated via the modulation (II.1) generally
are not. This is, of course, a consequence of the overlap between modulated symbols than
invariably results from choosing signature sequence lengths NV that exceed the intersymbol
epoch M. In fact, as N — oo, a simple Central Limit Theorem argument suggests that
each ym,[n] is a marginally Gaussian process.

This quasi-Gaussian behavior is generally rather appealing from the point of view of
certain transmission security and capacity considerations. However, it is important to point
out that, as was true in the case of spread-response precoding systems, these characteristics
also pose significant engineering challenges in terms of managing peak-to-average power
and receiver synchronization requirements. While such issues certainly warrant further
investigation, they are beyond the scope of the present report.

I1.4.2 Receiver Characteristics and Design

In Section II.4.1 we explored the transmission characteristics of spread-signature CDMA
by examining what the coded symbol streams look like (after modulation) from the per-
spective of the channel. In this section, we develop efficient receivers for such systems by
examining what the channel looks like from the perspective of the coded symbol stream
(before modulation).

We begin by observing that what the coded symbol stream, in effect, “sees” is the
cumulative effect of modulation, followed by distortion introduced by the channel, followed
by processing performed at the receiver. Accordingly, we refer to what the coded symbol
stream sees, then, as the “composite channel.”

Before we explore the key properties of this composite channel, we must first develop an
appropriate receiver structure for these systems. In general, the receiver processing required
to recover the mth transmitted message is comprised of three stages. First, the received
data r[n] is equalized according to

Imln) = bm[n; k] r[n — k. (I1.40)
k
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| Ym ]
r[n] —= b, [nk] > hp[-n]

Y

M —=3,[n]

Figure I1.3: Receiver structure for extracting the symbol stream of the mth user. The first
stage is equalization, producing §m[n], while the second stage is demodulation, producing
Zm[n]. A final stage (not shown) is decoding.

As is apparent from (I1.40) and as is depicted in Fig. I1.3, the corresponding equalizer is, in
general, a linear time-varying filter whose kernel we denote by b, [n; k]. Because the fading
channel coefficients and statistics are assumed to be available to the receiver, the equalizer
kernel bp[-;-] is generally a function of all the channel kernels ag[-;-], ¥ = 1,2,... M,
although the dependence is often simpler in certain special cases of interest.

In the second stage, also depicted in Fig. I1.3, the equalized data is demodulated from
the corresponding signature sequence, viz.,

Em[n] =Y Jmlk] hmlk — Mn).
k

This is conveniently interpreted as a discrete-time matched-filter and downsample operation.

Finally, the last stage of the message recovery, which is not depicted in Fig. I1.3, con-
sists of decoding the demodulated stream Z,,[n] (using, for example, maximum likelihood
methods). It is important to point out, however, that while we will not consider the actual
implementation of the decoder in this report, we will discuss in Section II.5 what kinds of
coding and decoding strategies are appropriate for spread-signature CDMA, and their effect
on system performance.

The composite system consisting of modulation, the channel, equalization, and demod-
ulation has some appealing characteristics provided the channel, and, in turn, the corre-
sponding equalizers, have some reasonable ergodicity properties. In effect, these ergodic
properties are required to ensure that spreading the transmission of each symbol over a
sufficiently long time interval by modulation allows these symbols to see the average char-
acteristics of the fading channel—i.e., that the time-averaging implicit in the modulation
is equivalent to ensemble-averaging. The following technical definition will prove to be
sufficient for our purposes.

Definition 2 Let f;[n; k] be the kernels of a family of linear systems, and define

filns k) = £;ln; K] — E [f;[n; k). (IL.41)
Furthermore, let .
d [n,m; k1) = f[n; k) f[ms 1) (IL42)

and define . ' _
& fn,m; k,1] = & [n,m; k,1) — E [dg. [n, m; k, l]] : (11.43)
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Then the family fj[n; k] is admissibly ergodic if the following conditions are satisfied:

E(fjln;k]] = E[F}] (K] (I1.44a)
E [fj[n; k] f}*r[m;l]] = RJ[n—m;k|o[k —1] (I1.44b)
E[& [m k)& [0, mi kK 1) = T ln—mn' —m';n—a';k,LK, 1] (IL4do)
Sp = >3 B nsk]| < oo (IL.44d)
n k

STJ?" = > > 'Tf[nl,ng,n3;k1,k2,k3,k4]| < oo (I1.44e)

7112 ky,ko

"3 k3,kq

Definition 2, in fact, represents a straightforward generalization of the corresponding
definitions constructed in Part I. In particular, conditions (I1.44a), (I1.44b) and (II.44c) are
essentially stationarity constraints, while (II.44d) and (11.44e) are ergodicity constraints.
Note, too, that for convenience we have omitted specification of the frequency w and time
n from E [Fj(w;n]] in (IL.44a) due to stationarity.

The key properties of the composite channels, which we now develop, represent a nat-
ural generalization of those developed for single-user systems in Part I. In particular, we
show that subject to only relatively mild ergodicity constraints, the use of spread-signature
modulation with sufficiently long signatures leads to composite channels that are effectively
a collection of uncorrelated additive white noise channels, each of which is not only free
of fading, but has no intersymbol interference. In developing our detailed results, we con-
sider the forward link and reverse link systems separately since there are some fundamental
differences in behavior.

The Forward Link

The characteristics of the composite system for the forward link are summarized in the
following theorem. A proof is provided in Appendix IIL.D.

Theorem 2 (Forward Link) Let zp,[n]| be mutually uncorrelated sequences of zero-mean,
uncorrelated symbols, each with energy En, and let am[n; k] and win] be as defined in (11.2)
and (II.4). Furthermore, let the common equalizer be

bi[n; k] = ba[n; k] = - - = bag[n; k] £ blns K],

and let c[n; k] denote the kernel of the linear system formed by cascading the channel whose
kernel is a[n; k], with the equalizer whose kernel is bn; k], i.e.,

c[n; k] = Z b[n;l]a[n — ;K —1]. (I1.45)
1
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Finally, suppose the c[n; k] and b[n; k] are both admissibly ergodic kernels in the sense of
Definition 2. Then, as Dy, — oo (infinite dispersion) and Xy — oo (perfect partitioning'!),
we have, for each n,

Em[n] = E[C] Zm[n] + vm(n), (I1.46)

where the vy[n] are mutually uncorrelated, zero-mean, complez-valued, marginally Gaus-
sian white noise sequences that are uncorrelated with the input symbol sequences Tm[n].
Furthermore, the variance of the noise vy[n] is independent of both m and n, and is given

by

var vm[n] = NoWo B [|BI?| + var [C)Z, (IL.47)
where
F-Lse (1L48)
B M k=1 ¢ .

is the average transmitted power. In both (II.46) and (I1.47) we have, for convenience,
again omitted specification of the time sample n and frequency w corresponding to B and C
due to stationarity.

While we postpone more general remarks until Section I1.4.2, we emphasize that The-
orem 2 implies that the composite forward link channels are asymptotically mutually un-
correlated, identical, nonfading, quasi-Gaussian channels with no intersymbol interference.
Moreover, from Theorem 2 we also note that the SNR on the mth of these composite
channels is
_ Em|E[C]?

— NoWoE[|B|2] + Evar [C]

The design of a suitable equalizer for the receiver in this case is straightforward. In
particular, for sufficiently slow fading we have

(11.49)

Ym

C(w;n] = A(w;n] B(w;n].

so that (II.49) becomes

Em {( |E[AB] |2 (1L.50)

Tm = | NoWe/E)E(|BI?] + ver [AB] |

Then, recognizing that the term in brackets in (I1.50) is identical in form to an SNR ex-
pression that was maximized in Part I, we immediately deduce that (II.49) is maximized

when A*(win]
win
. e i § 1L
B(w;n] « Txa (IL.51)

where -
_ E|A(w;n])?

a(w;n] = NoWe (11.52)

1 Actually, perfect partitioning is strictly speaking not required for the forward link theorem to hold,
although this is not apparent in our proof. However, it is necessary for the reverse link theorem to hold.
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Furthermore, in this case the corresponding SNR can be expressed as

_&m
7m—g

1
— 1], (I1.53)
E 141-5] }

which may be further simplified using methods used in Part I. In fact, as we will discuss
further in Section II.5.1, when &, = £, these results specialize to precisely those obtained
in Part 1.

The Reverse Link

The following theorem summarizes the characteristics of the composite channel on the
reverse link. We emphasize that in this scenario we are assuming completely uncoordinated
(i.e., fully asynchronous) transmissions from mobiles to the base. A proof is again provided
in Appendix II1.D.

Theorem 3 (Reverse Link) Let z,,[n] be mutually uncorrelated sequences of zero-mean,
uncorrelated symbols, each with energy En, and let am[n; k] and win] be as defined in (I1.2)
with the channel kernels being statistically independent. Furthermore, let cqmi[n; k] denote
the kernel of the linear system formed by cascading the channel seen by user m whose
kernel is am[n; k], with the equalizer corresponding to the detection of user i, whose kernel
is bi[n; k], i.e.,

emilni k] =Y bin;lam[n — Ik = 1. (IL.54)

l

Finally, suppose the cm;i[n; k] and by[n; k] are admissibly ergodic kernels in the sense of
Definition 2. Then, as D — oo (infinite dispersion) and x, — oo (perfect partitioning),
we have, for each n,

Em[n] =3 E[Cmm] Tm[n] + vim[n], (11.55)

where the vy,[n] are mutually uncorrelated, zero-mean, complez-valued, marginally Gaus-
sian white noise sequences that are uncorrelated with the input symbol sequences zm[n].
Furthermore, the variance of the noise samples vy[n] is independent of n and satisfies

1 4 :
var vy [n] = NoWoE [|Bmlz] + Vi Z Ervar [Cim)]. (I1.56)
k=1

Again, in both (I1.55) and (I1.56) we have omitted specification of the time sample n and
frequency w corresponding to By, and Ci,, due to stationarity.

Again, although we defer further more general remarks until Section II.4.2, we empha-
size that, as in the forward link case, Theorem 3 implies that the composite reverse link
channels are asymptotically mutually uncorrelated, nonfading quasi-Gaussian channels with
no intersymbol interference.
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From Theorem 3, we observe that the SNR of the composite channel seen by the mth
user is

Em|E [Crnm]

(IL57)

Tm =

1 M '
NoWoE [|Bml?) + <= > &k var [Cim]
M k=1

As in the forward link, it is possible to develop equalizers yielding the best possible SNR
in the composite channels for the reverse link. In particular, given sufficiently slow fading
that

Cii(w;n] = Ag(w;n] Bi{w;n],

we can re-express (I1.57) in the form

2
'Ym(Bm) — Sm [E [Am B’m“

S (IL58)
NoWoE [le|2] +37 > &k var (A Bp)
k=1

In turn, the following lemma directly establishes the optimum equalizer for the mth user,
viZ.,

B(w;n] « AmA(/Iw; ] , (I1.59)
1
14+ — Z ag(w;n]
M k=1
where £ 14 )
am(w;n] = i'Nlo(V‘:}’T"”— (IL.60)

is the SNR at the receiver corresponding to the mth user. A proof of the lemma is provided
in Appendix IILE.

Lemma 1 Let A, As,...,Apn denote a collection of statistically-independent, complez-
valued, zero-mean Gaussian random variables, each with finite variance, and let NoWy and
&1,E9,...,EM be arbitrary real, non-negative weights. Then the function ym(Bm) defined
in (I1.58) satisfies

1 -1
1+ 1Y Z Qg
Ym(Bm) k#m
—— X< || ——— -1 (11.61)
M 1+ iZa
M

where the oy are as defined in (I1.60). Furthermore, equality in (I1.61) holds when

Bu—2m__

1 M
1 -
+Mk2=:1ak




General Remarks

Several aspects of both the interpretation and the implications of Theorems 2 and 3 are
worth developing in more detail.

First, it is important to emphasize that these theorems do not establish that the compos-
ite channels are truly Gaussian channels. For example, although we argue that the additive
noise sequence in the composite channel models is marginally Gaussian, we do not assert
that these noise samples are actually jointly Gaussian. More generally, while these theo-
rems describe the second-order properties of the composite channels, it should be stressed
that they say very little about higher-order statistical dependencies.!? Indeed, while they
establish that the collection of noises and coded streams are mutually uncorrelated, there
is no claim of full mutual independence. Nevertheless, as we will see in Section I1.5, use-
ful approximations are obtained by modeling the composite channel as truly Gaussian and
thereby ignoring these residual statistical dependencies.

It is also useful to note that the additive noise in the composite channel model can be
viewed as consisting of three components. Indeed, from both (I1.47) and (I1.56) we see that
one component is due to the receiver noise in the original fading channel, while another is
due to co-channel interference from other users. However, the third component is a form
of self-interference generated as a by-product of the modulation, and thus the total noise
power has a term that depends on the transmitted signal power. Collectively, these factors,
in turn, give rise to the rather special equalizer structure which is optimum for such systems.
In particular, we note that the optimum equalizers for these systems are minimum mean-
square error type equalizers in contrast to the matched filter type equalizers associated with
traditional CDMA systems.

It should also be emphasized that in establishing Theorems 2 and 3, both the dispersion
and partitioning characteristics of the signature set are important, as the proofs of these
theorems reveal. In particular, it is perfect dispersion that leads to the absence of fading and
intersymbol interference in the composite channels, while it is perfect partitioning that leads
to mutually uncorrelated, identical white noise characteristics in the composite channels.

In addition, while Theorems 2 and 3 establish asymptotic results which involve signature
sequences having infinite temporal spread (N — o0), it is important to note that the
asymptotic behavior can, in fact, be approximated arbitrarily closely with realizable, finite-
spread signature sets. In fact, it this approximation property that underlies the practical
importance of these theorems.

In general, the temporal spread required to achieve a given level of approximation to
the results of the theorems depends on the coherence time characteristics of the fading.
Specifically, analogous to the results for spread-response precoding, if N’ is the spread
required in the case of memoryless fading, then the spread required when the coherence
time (in samples) is 7, is

N =N'(r, +1).

Thus, a larger coherence time implies that greater delay must be incurred to achieve a
given level of performance. This, of course, is true of communication over fading channels

121n fact, because of the emphasis on second-order properties, versions of these theorems hold even when
the original channel noises and kernels are not Gaussian.
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in general. However, it is important to recognize that the delay constraints in spread-
signature CDMA are no worse than in other systems employing, for example, interleaving.

Although greater coherence times require longer signature sequences, it is important to
note that the computational requirements need not grow with coherence time. In fact, the
required number of non-zero coefficients in each signature sequence is independent of the
coherence time. In particular, to match the coherence time characteristics of a channel of
interest, it suffices to upsample some prototype set of signature sequences (such as those
developed in Section I1.3.1) to achieve the necessary temporal spread. Furthermore, we
note that the /energy, dispersion, partitioning, and computational characteristics are all
unaffected by such upsampling.

While this upsampling approach to coherence time matching is also used with spread-
response precoding, an important difference in the case of spread-signature CDMA is that
the upsampling factor K cannot be freely chosen. In particular, in order to preserve or-
thogonality among the signatures, we may only upsample the signatures by an integer K
that is not a multiple of a prime factor of the number of users M.13 Hence, if the h,[n] are
a set of prototype maximally-spread signature sequences applicable to memoryless fading,
the signature sequences applicable when the coherence time is 7, are given by

(7a) — hm[n/KU] n=---, _KOa 0, KO’ 2K0, o
an' ] { 0 otherwise (11.62)
where K denotes the smallest integer that is not less than 7, + 1 and is not a multiple of
a prime factor of M.

I1.5 Performance

In this section we explore both the effective capacity and bit-error rate characteristics
of spread-signature CDMA systems. Again, we examine the forward and reverse links
separately so as to emphasize some important differences between these cases.

I1.5.1 The Forward Link

Due to the coordinated nature of the transmission, performance on the forward link gener-
ally follows immediately from the results presented for single-user systems in Part I. Indeed,
on the forward link, it is typical to choose

>

E1=&=--=Ey=E=E,

in which case the optimum equalizer (II.51) and the optimum SNR (I1.53) both specialize
to precisely those derived in the single-user scenario. Furthermore, since forward link per-
formance for any M coincides with reverse link performance for M = 1, we will ultimately
rederive these results as special cases in Section I1.5.2.

13This implies, for instance, that when the number of users M is a power of two, i.e., M = 27, we can use
any odd K. Likewise, for M = 3”, we can use any K which is not a multiple of 3, and for M = 67, we can
use any K which is not a multiple of 2 or 3, i.e., K =5,7,11,.. ., etc.
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Figure I1.4: Bit error probabilities using uncoded QPSK in Rayleigh fading on the for-
ward link. The dash-dotted and dashed curves represent the performance obtained using
maximally-spread signature sets with N' = 32 and N’ = 128, respectively. The solid line
represents the ideal performance bound (N’ — 00).

While many of the performance characteristics on the forward link may be directly ex-
tracted from the corresponding results in Part I, those concerning performance with realiz-
able (finite-spread) signature sets cannot. Accordingly, we depict forward link performance
obtained with realizable signature sets in Fig. I1.4. Specifically, we plot realizable uncoded
quadrature phase-shift keying (QPSK) bit error rate performance in Rayleigh fading as a
function of SNR per bit as measured through Monte Carlo simulations. In these simulations
we use the maximally-spread signature sets of dimension M = 2 developed in Section II.3.1,
and the dash-dotted and dashed curves indicate the performance corresponding to N’ = 32
and N’ = 128, respectively. For comparison, the solid curve corresponds to the asymptotic
performance obtained with infinite temporal spread (N’ — 00).

More generally, the single-user scenario (M = 1) warrants further discussion. As re-
marked earlier, no nontrivial finite-spread orthogonal signatures for M = 1 exist. As a
result, in Part I the orthogonality (losslessness) constraint had to be relaxed in develop-
ing realizable precoders. In turn, this led to a corresponding degradation in the precoder
performance. However, from within the broader framework of this report, we can see that
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orthogonal signature sets corresponding to M > 2 can also be usefully applied to single-user
precoding problems. In particular, we may distribute successive symbols in a stream z[n]
among M different substreams zm,[n] by periodic subsampling, i.e.,

Zm[n] = z[nM +m —1].

and then use an orthogonal spread signature set of order M to implement perfectly loss-
less precoding. At the receiver, the substreams may be demodulated from the signature
sequences, and appropriately reintegrated into the single stream Z[n].

This strategy for implementing lossless precoding has a conceptually rather useful in-
terpretation. Specifically, the cyclic distribution of symbols among substreams may, itself,
be interpreted as a lossless system, and, hence, in effect what we construct in this manner
is a linear periodically time-varying precoder!4. Hence, we see that by adopting this more
general precoder structure we are able to achieve lossless spread-response precoding with
finite-length filters.

In light of these observations, we see that the curves in Fig. I1.4 also correspond to the
single-user performance that is achievable using the improved precoders. And, comparing
Fig. I1.4 to Fig. 1.5, we see that significantly better performance is achieved for a given
length constraint (N') when we have perfect orthogonality (losslessness).

11.5.2 The Reverse Link

The performance characteristics on the reverse link are dramatically different than those on
the forward link due the the uncoordinated nature of the transmissions, as we now illustrate.
We begin by noting that, in practice, on the reverse link power control is generally employed
to adjust the transmitter power for each user so that the average received power from each
user is the same, i.e., for all users m, the SNR in the corresponding original channel is

E [om(w; ]} £ 1/¢o. (IL63)

where am(w;n] is as defined in (I1.60). Indeed, such power control is a practical technique
for mitigating the vulnerability of CDMA systems to, among other problems, near-far effects
[18].

- Some important insights into the potential capacity of spread-signature CDMA systems
arise out of the theorems of Section 11.4.2. Theorem 3, in particular, suggests that the
composite quasi-Gaussian channel seen by the mth user has a “capacity” given by

Cm = Wolog(1l + vm) (I1.64)

where 7, is the SNR in the composite channel of the mth user. However, we emphasize
that caution must be exercised in interpreting this notion of capacity. In particular, we note
that this measure of capacity ignores all statistical effects of greater than second order in
the composite channels—despite the fact that such effects can in principle be exploited to

14We remark as an aside that traditional interleavers are essentially trivial examples of such linear peri-
odically time-varying systems.
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yield still higher throughputs. Nevertheless, the particular concept of constrained capacity
defined here has a useful interpretation as we will develop. In particular, it provides a mea-
sure of throughput that can be achieved when traditional forms of coding are superimposed
on our CDMA system.

Convenient expressions can be obtained for the composite channel SNR which maximizes
this effective capacity. In particular, from Lemma 1, we have that when we use optimum
equalization, -, can be expressed as

Ym _ 1
-, 11.65
M " (I1.65)
where 1
1+ — Z oy
M k#m
bn=E|——|- (11.66)
1+ M Xk:ak

Under our power control assumption, 3, as defined in (I1.66) is independent of m, and thus
we simply use fg, Yo, and C to denote the quantities (11.65), (I1.66), and (I1.64) respectively.
Furthermore, in this case, by exploiting symmetry (II.66) can be expressed in closed form
in terms of the exponential integral. In particular, we have the following Lemma, whose
proof is provided in Appendix IILF.

Lemma 2 Let v1,v2,...,Un be independent, identically-distributed exponential random
variables with mean 1/u. Then for any1 <m < M,
1+ v,
k%’l ¢ _ M-1 + /iﬂi (_1)M+1ep,E (/J) +IWZ-2(_1)M—]; k! (II 67)
1+ M M! 1 = G| .
k
where
0 ot
By(v) = ] . (IL68)
14

is the exponential integral [15].

Thus, using Lemma 2 with vy = ax/M we immediately obtain that (I.66) can be
expressed as

_ M M-2 |
fo = MM 1 i (MAC;') [(_1)M+16MC0E1(MCO) + 162:% (_1)M_k(ﬂ%m . (11.69)

Hence, evaluating (I11.64) via (I11.65) and (11.69), we obtain relationships for the capacity
per user as a function of the number of users M, the SNR, and the bandwidth per user.
In Fig. I1.5 we plot capacity per user as a function of M at various levels of SNR, while in
Fig. I1.6 we plot capacity per user as a function of SNR for various values of M, with the
Gaussian channel capacity included for comparison.

Note from Fig. I1.6 that for M > 2 the reverse link capacity appears to saturate at
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Figure I1.5: Reverse link capacity per user as a function of the number of users M. The
successively higher curves correspond to SNRs of -5, 5, 15, and 25 dB. Note that the
capacities corresponding to M = 1 also coincide with forward link performance with any
number of users. The connecting dashed lines have no special interpretation; they are
provided as visual aides only.
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Figure 11.6: Capacity per user as a function of SNR. The successively lower solid curves
correspond to reverse link transmission with M =1, M =2, M = 4, and M — oo users.
Note that the curve for M = 1 also coincides with forward link capacity with any number
of users. The dashed line indicates the capacity of the corresponding Gaussian channel.
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high SNR, with the saturation level depending on the number of users. This is, in fact,
the case, and it reflects the fact that reverse link performance is fundamentally interference
limited rather than noise limited. This phenomenon, which is a direct consequence of the
constrained receiver structure we employ, is well known; see, e.g., Verdu [33]. While it
is possible to design multiple-access systems that are strictly noise limited, this requires
the use of receivers employing joint detection strategies. Unfortunately, joint detection is,
in general, computationally very intensive, particularly when the number of users in the
system is large [34]. For these reasons, such receivers are often considered impractical.

To verify the interference-limited behavior, let us consider the high SNR regime perfor-
mance in more detail. In this case, we may use the series expansion [15]

1)k vk

o (=1)
Ei(w)=-To—lnv-S 2 11.70
() = ~To—tav = 3 S (11.70)

with I'g = 0.57721 - - - denoting Euler’s constant, to show that at high SNR ({, — 0), (I1.69)
satisfies M—1

- —. 1.71
Bo i (I11.71)
Thus the asymptotic capacity on the reverse link in this regime is
2M -1
C~log(M*1>. (I1.72)

Hence, (I1.72) implies that the resulting capacity is finite, consistent with the saturation
behavior apparent in Fig. I1.6.

Another important asymptotic regime to explore is the large number of user scenario.
Fortunately, as M — oo, convenient closed form expressions are possible. In particular,
since the oy are independent, identically-distributed random variables, we have, by the law
of large numbers

L M
—MZak—u/@ as M — 0.
k=1

Hence, we get

- I1.73
* TG (IL.73)
and, in turn, (I11.64) becomes
2+ Co)
C—>Wyl . 11.74
b log (1 o (IL.74)

Note from (I1.74) that when the system contains large numbers of users, we have, regardless
of the transmitter power used, C/W; < 1 bit/sec/Hz with C/Wy — 1 bit/sec/Hz as {, — 0.

It is also significant that in this case, the equalizer structure simplifies substantially as
well. Again, via the law of large numbers we get

B A%, (I1.75)

the familiar matched filter equalizer, which we note is substantially easier to implement than
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Figure I1.7: Capacity per user as a function of bandwidth. The successively lower solid
curves correspond to reverse link transmission with M =1, M =2, M =4, and M — oo
users, respectively. Note that the M = 1 curve for the reverse link coincides the performance
of the forward link with any number of users. The dashed line corresponds to the capacity
of the Gaussian channel.

the optimum equalizer for finite M. Fortunately, the asymptotic performance is achieved
for fairly moderate values of M as Fig. IL.5 reveals, so that in practice this simpler equalizer
can frequently be used.

Let us now turn our attention to the SNR-limited setting, and consider the large band-
width behavior. In Fig. IL.7 we plot normalized capacity as a function of bandwidth per
user for various values of M, with the Gaussian channel capacity included for comparison.
Several general remarks regarding Fig. II.7 are appropriate. First, as in the case of the
Gaussian channel, the capacity in our multiuser fading environment increases monotoni-
cally with bandwidth per user. Second, the horizontal distance between the M = 1 and
M > 2 curves quantifies how much additional bandwidth is required to compensate for the
absence of coordination on the reverse link.

Perhaps the most important observation from Fig. II.7, however, is that the infinite
bandwidth capacity is identical to that of the Gaussian channel. To verify this property,
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we note that using the asymptotic series expansion [15]
= k!
Ei(v)y=¢e" Z("l)k,/_ki-‘f’ large v, (I1.76)
k=0 )

we have that for large Wy (i.e., large (o),

O (k+ M)! (—1)k+L

~ . I
Bo 1+’§) M OIG)F (IL.77)
Using (I1.77) in (I1.65), we see that for large W,
M
Yo ~ Meo—1 (I1.78)
However, since 7 in (I1.78) is small, (I1.64) can be expressed asymptotically as
MW,
~ = — IL.7
C ~Wavo Mo -1 (IL.79)
Using the fact that (I1.60) and (I1.63) imply
EmE [|Am|*]
Wy /(o = ————,
0/So A
we verify from (I1.79) that
2
¢ — EnE lAm] (IL.80)
No

which we emphasize is independent of m by our power control assumption. Finally, we note
that (IL1.80) is, of course, the capacity of the infinite-bandwidth Gaussian channel.
I1.5.3 Exploiting Additional Processing Gain

For reverse link communication, co-channel interference is such that even at high SNR, the
SNR ~g of the composite quasi-Gaussian channel for each user is low. In particular, using
(I1.71) in (I1.65) we see that regardless of the available bandwidth or power we have

O0< 1<

M-1

for M > 2. This means that in order to achieve a throughput per user anywhere near that
predicted by the capacity calculations in Section I1.5.2, an enormous amount of coding is
required. Conversely, without the use of coding, bit error rate performance on the reverse
link will be invariably poor.

As an alternative to coding, one can consider exploiting simple spread-spectrum process-
ing gain to raise v to a level sufficient for acceptable bit error rate performance. Although,
as we shall see, direct coding is always preferable in terms of efficiency, using simple pro-
cessing gain is appealing in terms of its substantial ease of implementation and reduced

53




computational complexity.

Augmenting our M-user system model to incorporate such processing gain is straight-
forward. In essence, we expand the bandwidth per user while fixing the symbol rate by
replacing the up- and down-sampling rates in Figs. II.1 and I1.3 with an integer L satisfying
L > M. The resulting bandwidth expansion factor or processing gain is then

p=L/M. (IL.81)

With this change, the SNR 4, of the composite channel becomes

m 1
L Bn 7
where
_ 1 M -
14+ = Z ay
k=1
1+ I Z ag
k=1

and with oy as in (I1.60). Again, using Lemma 2 with vx = ax/L we can express (I1.82) in
closed form as

o M=-1 (M ML M2 g
fo=—/—+" |V +1, El(Lco)+’§)(-1) T (IL.83)

In the remainder of this section, we focus on the large number of user (M — o) scenario.
In this case, again using the law of large numbers, we get

1
Go+1/p’

where p is as given by (II.81). At high SNR (i.e., when the receiver noise is negligible),
(11.84) further simplifies to

Yo (11.84)

Yo ~ p-

The use of processing gain permits a tradeoff between bit error rate and bandwidth. In
particular, from (11.84) we see that larger processing gains invariably give rise to improved
bit error rate performance. However, this improvement is obtained at the expense of band-
width. From an information theoretic point of view, this particular tradeoff is not efficient.
Too see this, note that if we apply coding on top of this new system that exploits processing
gain, the apparent capacity per user per unit bandwidth is

c 1

1 1
C gl 4m0) = Lo (1+—) 1185
Wop p g(1+) P & Co+1/p ( )

where the last equality follows from (I1.84). In Fig. IL.8, we use (II.85) to plot capacity per
user per unit bandwidth as a function of the processing gain p in the large number of users
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Figure I1.8: Capacity per user per unit bandwidth as a function of processing gain p, where
the number of users satisfies M — co. The successively higher curves correspond to SNRs
of -5, 5, 15, and 25 dB. ‘

limit M — oo. We note that the effective capacity achievable with additional coding falls
monotonically with p, and that the case p = 1 corresponds to our original system, i.e., the
system without processing gain. This is because the bandwidth expansion incurred by using
a larger processing gain p more than offsets the increase in the SNR per symbol achieved.
In fact, it is straightforward to show from (I1.85) that C — 0 as p — oo.

Despite the inherent bandwidth inefficiency, exploiting processing gain is highly prac-
tical technique and enjoys widespread use. Let us consider, for example, the bit error
rate performance of uncoded QPSK (quadrature phase-shift keying) using spread-signature
CDMA with M users and processing gain p = L/M, some integer L. In this case, again
assuming the use of power control, the bit error probability is given by

P =0 (v7) (I1.86)

where

QW) = # / /2 gy
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and where g is given by (I1.5.3) with (II.83), or, in the case of large numbers of users,
(I1.84).

In Fig. I1.9 we plot bit error probability as a function SNR per bit for several processing
gains in the large number of user scenario, and include comparisons to conventional CDMA.
In both the spread-signature and conventional CDMA systems, no channel coding is used.
From this plot, it is apparent that there is an enormous advantage in using spread-signature
CDMA over conventional CDMA in such uncoded systems. This is due to the fact that
spread-signature CDMA is much more effective than conventional CDMA at mitigating the
effects of fading even without additional coding. In particular, at high SNR and for large
numbers of users, the bit error probability of spread-signature CDMA saturates at

P~ Q(/p), (I1.87)

while for conventional CDMA the bit error probability saturates at

1 1
Py ~ 5 (1 BVIES) +__1) . (11.88)

Finally, in Fig. 11.10 we plot bit error probability as a function of processing gain for
several SNR values, again in the large number of users scenario. For comparison, we also
plot the performance of conventional CDMA, using (I1.88).

I1.6 Summary

Spread-signature CDMA as developed in this part of the report constitutes a potentially
attractive alternative to conventional CDMA for general multiuser communication in fad-
ing environments. Indeed, the performance results suggest that by effectively combining
modulation and precoding, such systems appear to offer significantly better performance.

Nevertheless numerous issues remain to be explored. In traditional CDMA systems,
coding is used to combat the effects of fading, co-channel interference, and receiver noise.
However, in spread-signature CDMA systems, the effects of fading are mitigated by the
precoding implicit in the modulation, leaving coding to handle only the remaining interfer-
ence and noise effects. This would appear to be a favorable computational tradeoff, since
in general demodulation is computationally much cheaper than decoding. However, further
simulations are required to verify these computational advantages. In addition, while we
have restricted our attention to single-user detector receivers, the possibility of developing
viable joint detector receivers is also worth pursuing.

Other issues, both technical and practical, also warrant further investigation. Among
the technical issues, an obvious question that arises concerns the extent to which the capac-
ity expressions developed in this report can be interpreted in a strict Shannon sense. Some
of the more important practical issues which remain to be explored include receiver syn-
chronization and peak-to-average transmitter power requirements, and equalizer sensitivity
characteristics.
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Figure 11.9: Bit error probability as a function of SNR per bit for uncoded QPSK on reverse
link with M — oo users. The successively lower solid curves correspond to the performance
of spread-signature CDMA with processing gains of p = 1,7,13,19. For comparison, the
successively lower dashed curves correspond to the performance of conventional CDMA
with the same series of processing gains. For these comparisons, no coding is used in either
system.
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Figure I1.10: Bit error probability as a function of processing gain for uncoded QPSK on
reverse link with M — oo users. The successively lower solid curves correspond to the
performance of spread-signature CDMA with SNRs of -5, 5, 15, and 25 dB/bit. For com-
parison, the successively lower dashed curves correspond to the performance of conventional
CDMA with the same series of SNRs. For these comparisons, no coding is used in either
system.
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Part I11

Appendices

ITII.A Proof of Theorem 1

As an intermediate step, we obtain results concerning the following related system. Let S {-}
denote a linear system which is the cascade of an LTI system whose unit-sample response
91[n], followed by a linear system whose response at time » to an unit-sample at time n —k
is f[n; k], followed by another LTI system whose unit sample response is gz[n]. Hence,

gln] = S {p[nl} = 3" 9l Y fln — 1> _aulllpln — i — k= 1] (IIL1)
i k !

Furthermore, let u[n; k] denote the kernel of the overall linear system, i.e., its response at
time n to a unit-sample at time n — k.
We begin with a useful lemma regarding such systems.

Lemma 3 Let g1[n] and g2[n] be lossless, and let f[n;k] be the kernel of an admissibly
ergodic system. Then as

-1
Dy = (Z g5 [i]) — 00, (I1L.2)
the kernel uln; k] defined above obeys
uln; K] 25 s (1[K] * 2 [K]) 2wl (IIL3)
and
> afn;n — k] @*[m;m — k] =5 0%6[n — m] (I11.4)
k
where
@[n; k] = uln; k] — ulk).
Proof:
From (II1.1) we get
uln;ik] = goli] Y fln— 4l gk —i = 1]. (I11.5)
i !
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Then
E[u[n; k]] = #Zgz[i] g1[k — 3] = pe - g1[k] * ga[K]

and

K = S ol Fin—islonts ~i -1
where, consistent with (1.14),
Fln; k] = fln; k] — p S[K].

Hence,

[lu[n K] ] ZZgz[z @[] Rl — il g1k — 1 — ) g1k — 1 — '] (111.6)

3,0 1

where R[m; k] is as defined in (I1.17b). Applying, in order, the triangle inequality and the
Cauchy inequality, we are able to bound (IIL.6) by

E [[afn, k]| < o(91) #(92) (11L7)
where
©*(9) = Y |Rl' — 41| g°li] 6°[¢'] < Sr
2,4 ,0
provided

Zgz[n] <1

Applying the Cauchy inequality again to ?(gs), however, gives, after some simplification
and using (1I1.2),
©*(g2) < Sr/D2. (IIL8)

Hence, (111.8) and, in turn, (IIL.6) tend to zero as Dy — co, which verifies (IIL.3).
To show (I11.4), we begin by noting that since g;[n] is lossless, we get, using (1.15),

pln,m) & S diln;n — K@t fm;m — k] = 3 gon — 1] galm — ¢ + 1] d[s; .
k 0

Then, since by (1.17b)
E [d[n; k] = o 8[K],

we get, using (1.25),
E [p[n, m]] = o2 §[n — m].

Next, we write, using (1.16),

pln, m] £ pln,m] = 0?8[n — m] = >_goln —ilga[m — i+ ] dfis1)
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and, using (I1.17¢)

E [loin,miP] = 3 galn— il galm — i + U galn — ] galm — & + 11Tl — ;1,1).  (IIL9)

a4t Ll
However, applying the triangle and Cauchy inequalities, in order, and noting
T[m; k’ l] = T*[_m; l, k]
we can bound (II1.9) by

E [loin,mlP] < 3 ghln— il gdlm —i +1] Tl - 51,11 (I1L.10)

R
3,3’ 1,1

Applying the triangle and Cauchy inequalities, in order, again, to the right side of (II1.10),
and changing variables, we get

E[lglnml?] < Y gli] T 4,V]] = Sr/D». (ITL.11)

RN

which approaches zero as Ds — co. i
Using Lemma 3, we obtain the following theorem:

Theorem 4 Let gi[n] and g2[n] be lossless, and let fn;k] be an admissibly ergodic system
kernel. Further, and suppose p[n] is a wide-sense stationary, white random process with
mean zero and variance o2, and that p[n] and the channel kernel fn;k] are statistically
independent. Then, as Dy — o0, g[n| as defined by (II1.1) satisfies, with u[n] as defined in
(IIL.3),

gln] =3 u[n] * p[n] + z[n], (111.12)

where z[n] 1s a marginally Gaussian wide-sense stationary, white random process with mean
zero and variance 0202, and where z[n] is uncorrelated with p[n).

Proof:
By superposition,

gln] = > u[n; k] pln — kJ;

k

hence,

z[n] = q[n] — u[n] * p[n] = Y _ ii[n; k] p[n — k). (II1.13)
k

From (II1.13) we get immediately, since p[n] is zero-mean,
Ep [2[n]] = 0,

where we use Ej [-] to denote expectation with respect to p[n] given a fixed but arbitrary
realization of the kernel f[n;k].
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In addition, from (IT1.13) we get

By [z[n)p*[m]] = 3 dln; k] B, [p[n — k] p*[m]] = o*@[n;n — m]. (IT1.14)
k

Hence, since (III.3) in Lemma 3 implies
a[n; k] =3 0,

we get, from (II1.14),
E,[2[n]p*[m]] =5 0 as Dy — oo.

Finally, using (II1.13) we also obtain

Ep[eln]2*[m]] = ) aln; k] 4 [m; B, [pln — k] p*[m — 1]]
k,l

= o2 afn;n — k@ [m;m — k. (I11.15)
k
Applying (II1.4) in Lemma 3 to (IIL.15), we see immediately
E, [2[n] 2*[m]] =5 0%026[n — m] as Dy — cc.

Finally, to show that z[n] is marginally Gaussian requires a straightforward Central
Limit Theorem argument. Bl
The following pair of corollaries lead directly to a proof of our main theorem.

Corollary 1 Suppose g1[n] = ga[—n] in Theorem 4. Then as Dy — o0,

g[n] =3 upln] + 2[n]. (II1.16)

Proof:
It suffices to note that, since go[n] is lossless

g1[n] * g2[n] = g2[n] * g2[~n] = d[n].
]

Corollary 2 Suppose g1[n] = é[n]. Then q[n] is white and has variance

vary g[n] = E, [lg[n]?] = o?|uf? + 6%0® = 0?E | F(w;n)|?] . (IIL.17)

Proof:
Since p[n] and z[n] are uncorrelated in Theorem 4,

varp g[n] = varp (ugz[n] * pln]) + varp 2[n]. (IIL.18)
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Furthermore, since g2[n] is lossless, p[n] and p[n] * g2[n] have the same spectrum and thus

vary (pgaln] * pln]) = |pl*c?.

Applying (1.25) and (I.19) we then verify (I111.17). B
Finally, to establish Theorem 1 we need only recognize that Z[n] can be divided into
two uncorrelated components:
£[n] = 21[n] + &2[n],

where £1[n] is the component due to z[n] and where Z2[n] is due to win]. Using Theorem 4
and Corollary 1 with p[n] = z[n], ¢[n] = Z1[n], and f[n; k] = c[n; k], we see

&1n] =% pex(n] + 2[n]

where the white noise z[n| has variance £502. Similarly, using Theorem 4 and Corollary 2
with p[n] = win], q[n] = &2[n], and f[n; k] = b[n; k] we get that

var z5[n] = NoWo B [|B(w; n]|2] .

III.B Linear Randomly Time-Varying Systems

We adopt the following notation for linear randomly time-varying systems corresponding
to wide-sense stationary uncorrelated scattering. We begin by using f[n; k] to denote the
kernel of a discrete-time linear system, corresponding to the response of the system at time
n to a unit sample at time n — k. Hence, the response of the system to an input z[n] is

ylnl =Y fln;klz[n — k).
k

The time-variant system frequency response associated with this system is denoted by
F(win] =Y fln; ke, (I11.19)
k
and represents the response of the system to complex exponential e/“™. For stationary
systems, we define the system correlation function by
Rlm; K] = E [f[n; K] f*[n — m; £]]

where _
fln; k] = fln; k] — E[f[n; k]|,

and the system scattering function by

S(\;k] =" Rlm; k) e™ ™,
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When the system is characterized by uncorrelated scattering we have both
E[f[n; k)] = E[f[n; 0] 4[]

and _ _
E [f{ns K] f*fn — mi )] = Rlm; k] 6k — 1]

This makes D(w;n] defined in (II1.19) wide-sense stationary in both w and n, a property
we exploit extensively.

Another useful characterization of such systems is in terms of the associated spaced-
frequency spaced-time correlation function, which is given by

¥(w;m] =Y _ R[m; k] ek = F [17"(9; n] F*(8 — w;n — m]]
k

where

F(w;n] = F(w;n] — E[F(w;n]].

In turn, we define the system Doppler power spectrum by
TA) =) ¥(0;m] ™.
m
Finally, the multipath intensity profile or delay power spectrum of the system is
II[k] = R[0; k] = var f[n; k],
so the total power is

var F(w;n] = ¥(0;0] = Zﬂ[k].
k

III.C Maximally Spread Signature Sequences

Coefficients are first converted to a binary sequence, with 1/v/N represented by ’1’ and
—1/+V/N represented by ’0’, then replaced with the hexidecimal equivalent.
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w2

16

16

32

64

64

64

128

256

256

96

EDE2

ED1D

FAC9O

F5C6

FA36

F539

EDE2ED1D

EDE212E2

EDE2ED1DEDE212E2

EDE2ED1D121DED1D

FACOF5CE6FA36F539

FAC90A3SFA360AC6

FACOF5C605C90AC6

FAC90A3905C9F539

FFAACC99FOA5C396

FF55CC66F05AC369

FFAA3366F0AB3C69

FF553399F05A3C96

FFAACC990F5A3C69

FF55CC660FA53C96

FFAA33660F5AC396

FF5533990FABC369

EDE2ED1DEDE212E2EDE2ED1D121DED1D
EDE2ED1DEDE212E2121D12E2EDE212E2
EDE2ED1DEDE212E2EDE2ED1D121DED1DEDE2EDI1DEDE212E2121D12E2EDE212E2
EDE2ED1DEDE212E2EDE2ED1D121DED1D121D12E2121DED1DEDE2ED1D121DED1D
FACOF5CE6FA36F539FAC90A39FA360ACEFACIFECE605CO0ACEFACO0A3905CIF539
FACOF5CE6FA36F5390536F5C605COF539FACIF5C605CI0AC60536F5C6FA360ACE
FACOF5CE6FA36F539FACO0A39FA360AC605360A39FA36F5390536F5C6FA360ACE
FACOF5CEFA36F5390536F5C605COF53905360A39FA36F539FACO0A3905COF539
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III.D Proofs of Theorems 2 and 3

It is convenient to develop some intermediate results for a family of related systems. Let
Sij{-} denote a linear system which is the cascade of a rate-M upsampler, an LTI system
whose unit-sample response is h;[n], a linear time varying system whose kernel is f;;[n; k],
another LTI system with unit-sample response hj[—n], and finally a rate-M downsampler.
Hence

aln] = Si{plnl} = Y fijlm; 1 hjlm — nM] hi[m — | — kM] p[k], (I11.20)
m,l.k

and it is straightforward to show that the kernel of this system is

wij[ni k] =D fijInM + m; kM + 1 hyfm] hifm — 1]. (I11.21)

m,l
We begin with the following lemma.

Lemma 4 Let hi[n] and hj[n] be chosen from an set of M orthogonal signatures, and
let fij[n; k] for j = 1,2,...,M be an admissibly ergodic family of kernels in the sense of
Definition 2. Then, with Dy and xp as defined in (I1.21) and (I1.29), respectively, as
Dy, — 0o and xp — 00, the kernel (II1.21) obeys

wi[n; k] =5 B [F5] 0[K] 06 — 5] = us;lk] (I11.22)
and .
Ekj il — Kl afy [msm — k] =% —ovar [Fy] 6[n —m] 8[j ~ 5 (IT1.23)
where
@ij[n; k] = uajn; k] — uij[k].
Proof:

Using (I1.44a) with (IIL.21), we obtain

Eluglnkll = E[F5]) hslhll +kM]
!

= E[Fu] 6[i — j]6(k] (I11.24)
and
dijlni k] =Y fis[nM +m; kM + 1] hi[m] hifm — 1] (II1.25)
m,l
where f;;[n; k] is as defined in (IL.41).
From (II1.25) we get
E{lagln:KIP] = . B [m—m/;kM — [ hjlm] hlm'] hefl + m) hill + m'], (I11.26)

m,m’,l
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where R:j [n; k] is as defined in (IL.44b). Applying, in order, the triangle inequality and the Cauchy
inequality, (II1.26) can be bounded by

E [fiii;[n; K11%] < o(Ra) o(hs) (I11.27)
where N
0} g)= > |R[m—m';kM ~1]| g’[m] g*[m']. (IIL.28)
m,m’,l

Applying the Cauchy inequality again to ©?%(g), however, gives, after some simplification, and using
(I1.444),
‘P2(9) < SR:Z;: /Dg

where 1
Dy = (Z 94[”]) .
Hence, '
9 Sgii
E {|a;;[n; k)|°) € —== I11.29

which tends to zero as Dy — co. Collectively, (II1.24) and (IIL.29) establish (II1.22).
To show (II1.23), we begin by noting that
35’ A ~ ~ %
P In,m] = Z @ij[n;n — k] a3 [m;m — k]
k
= ZZ fiilnM + ;1) f5 ImM + s';8') hy[s] hj[s') On,[nM + s — t,mM + s —1']
s,s' L.t/

where O, [n,m] is as defined in (I1.25).
Using (11.44b), we obtain

E [p:;' [n, m]] = Z RZI [(n —m)M + s — ';t hj[s] hjr[s') O, [nM + s — t,mM + s’ — 1]
s,8',t
which, with
ﬁg' [n, m] 2 Z RZ:I [(n —m)M + s — ;] hi[s] hy[s'] On,[nM + 5 —t,mM +5' —t]  (IIL.30)
s,8',t

and using (I1.27), can be rewritten as

E [0 In,m]] 7 fn,m] + -;7 STRE0;6)S hyls] hyls + (n — m)M]
= 7 [n,m] + govar [Fy) 6 — )6 = m. (L.s1)

Now applying the triangle inequality and the Cauchy inequality to (II1.31), we obtain the bound

Pl [n,m]l < 66 (I11.32)
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where

=¥ IR" [(n— m)M + s — s's 8] hj[s] hy[s'] (IIL33)
s,s',t
and
2= Z'R” n—m)M +s—s';t]hi[s]h l@2 nM+s—t,mM+s —t]. (I11.34)

s,s',t
Applying the Cauchy inequality to (II1.34) yields
£ <&t (I11.35)
where

g=> IR;Z;' [(n—m)M + s —s';t] hi[s] hjr [s']| 01 [nM +s—t,mM+s 1] (I11.36)

s,8',t

Similarly, applying the Cauchy inequality to (II11.33) yields

& < (Z ]Rfjl[(n -m)M +s—¢; t]l hf[s])
s,8',t

. (Z lel [(n-—m)M+s— s';t]' R [s’])
8,8',t

_ Q2

= Sy (IIL37)

Similarly, applying the Cauchy inequality to (I11.36) yields

fés(z

s,s',t

Rg’[(n —m)M + 5 — s';t]l h2[s]©4.[nM + s —t,mM + 5’ — t]) .

(Z ’R” (n—m)M+s—s’;t]| K2 [s'|Oh.InM + s — t,mM + &' —t]) .

s,8',t
i’ B (I11.38)

where the last inequality in (II1.38) results from using, in order, the simple bound

i ,
RY [n,k]l <S

RY"
and (IL.30).
Using (T11.37), (II1.38) and (II1.35) with (I11.39) we get
vt_') a'J
] 5 [n, m]| S (IIL39)

which tends to zero as x, — oo.
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Next, we define
7 [n,m] = o [n,m] ~ E [ [n,m]
and note

5 nym] =33 d¥ s, 8"k, K] Onls — ks s’ — K] hjls — nM] hy[s’ — mM] © (II1.40)
5,8 k&' :

where JZ [s,8';t,t'] is as defined in (I1.43) and (I1.42).
In turn, using (I1.44c) with (II1.40), we get
2 -
E [IﬁZ— [n,m]I ] = Yo Tew TH[s—s,t—t,s-t;k KLl
!

Rk’ [ R4
Op.[s —k;s' — k') Op,[t - Lt =1
hj[s = nMhj[s' — mM] hj[t — nM] hj[t' — mM](II1.41)

Now, from a simple application of the Cauchy inequality to (IL.25) we obtain
|Oh[n,m]| < 1. (111.42)

Applying, in turn, the triangle inequality, the bound (IIL.42), and the Cauchy inequality to (TI1.41)
we obtain

sllnnl] < |TX

a8l t.tf
kKLY

1P3»>

T s — st =t s~ t;k, k’,l,l’]‘ h3[s — nM] b2 [s' — mM]

TH [s— o't —t',s — 1k, K1, z']‘ B2t — nM] R [t — mM]

b
(I11.43)
Applying the Cauchy inequality once again to the right-hand side terms of (I111.43) yields
o 274
E [ 57 [n, m]| ] < (11L.44)

P3)Y

s.8! t,t!
kiU

22

a8’ t,t!
k,k L

22

s.sf t.t!
kkfoL

T [s— st — 1,5~ t;F, k',l,l']l hils — nM]

Tfjj’[s -8, t—t,s—tk, k',l,l’]| h;%,[s’ —mM)]

T [s—s,t—t,s— t;k,k’,l,l’]l 3t — nM]
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1PP>

Papt
s;,,,
= D,%, Di - (I11.45)

T” [s—s',t—t',s —t;k,K,1,I')| BS[t' —mM]

which tends to zero as Dp — oo. Collectively, (II1.31), (II1.39), and (II1.45) establish (II1.23).
|

Proposition 1 Suppose that the input to the system defined by (II1.21) is a zero-mean,
white Gaussian sequence p;[n] with variance a , and let the corresponding output sequence
be gij[n]. Moreover, assume that for different values of i the sequences p;[n] are mutually
independent. Then given the same hypotheses of Lemma 4, we have

qij [n] =5 E [Fy) 6i — j]piln] + zi5[n] (I11.46)

where the z;;[n] are mutually uncorrelated, zero-mean white marginally Gaussian sequences
with variances o?var [F;;]/M, i.e.,

Elzjln]] = 0 (I11.47a)
E [z;j[n]pi[m]] = 0 (II1.47b)
Elelnlzplml] = 8i— 16} — 16l — m] %afvar (F;.  (IL47c)

Furthermore, we have that the sequences g;j[n] are zero-mean and white with variance

var g;;[n] = 8[i — jlo? |E [Fa]l> + 514_“1'2 var [Fj;] (I11.48)

and are mutually uncorrelated for different values of j.
Proof:

We begin by noting that
@;ln] = D uijln; K] piln — &)
k

can be rewritten as
aij[n] = E [Fii] 8[i — 5] pln] + zn]
where
zig[n] =Y @jln; k] piln — K. (IIL.49)
k

From (II1.49) we get immediately, since p;[n] is zero-mean, that z;;[n] satisfies (II1.47a), i.e.,
Ep [2i5[n]] = 0,

where we use E, [-] to denote expectation with respect to p[n] given fixed but arbitrary realizations
of the kernels f;;[n; &].
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In addition, from (II1.49) we get
B, [z35ln] pb [m]] = o2 8li — #]afn n — m]. (ITL50)
Hence, since (II1.22) in Lemma 4 implies
afn; k] =5 0
we get, from (II1.50), the result (IIL.47b), i.e.
Ep [2i[n] po [m]] = 0.
Finally, using (II1.49) we also obtain

Ep [ziln) 23y [m]] = 07 6li — 1Y dhss [ k] @3 [m; D) B [pifn — k] pilm — 1]
k,l

= o0?6[i—1i] Zﬁij[n; n =iz [m;m — 1. (I11.51)
k

Applying (II1.23) in Lemma 4 to (III.51) we obtain (IIL.47c) immediately, i.e.,
x R | .
E, [2i5[n] 235 [m]] — o 8[i - z']ﬁva,r [Fij] 6[n —m)é[j — 5]

Finally, to show that z;;[n] is marginally Gaussian requires a straightforward Central Limit
Theorem argument.
| |

I11.D.1 The Forward Link Theorem

Using Proposition 1, we can readily establish Theorem 2. In particular, due to linearity
we can partition Z,,[n] into two components &4 [n] which is generated by the set of

transmitted sequences z;[n], and £ )[n] which is generated by the background noise w[n).
We first note that if in Proposition 1 we let p;[n] = z;[n] and fi;[n; k] = c[n; k], then we
readily obtain, using superposition, that

M
i'grlz) [n] = E gim[n] =3 E[C] Tm[n] + ”1(11) [n], (IT1.52)

where

M
vl =" zimln
=1

Note, in addition, that due to the properties of the z;;[n] in Proposition 1 the v [n] are mu-
tually uncorrelated, zero-mean, white marginally-Gaussian noise sequences with variances

var v [n] = var C] Ze (I11.53)
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Next we note that if in Proposition 1 we let ps[n] = > _ w[k] hm[k — nM] and fijln; k] =
k

b[n; k], then we again readily obtain that
£2n Z gim[n] 25 v{2[n], (I11.54)

where the v )[ ] are mutually uncorrelated, zero-mean, white marginally Gaussian noise
sequences with variances

varvi2[n] = NoWo|E [B] |2 + NoWyvar [B] = NoWoE [;B|2] . (I11.55)
Hence, combining (II1.52) and (II1.54) we obtain (I1.46) where
vm[n] = v n] + o ).
Furthermore, since the zn,[n] and w(n] are uncorrelated, we obtain (I1.47) using
var v [n] = var v{} [n] + var v{2n]

with (II1.53) and (IIL55).

II1.D.2 The Reverse Link Theorem

Using Proposition 1, we can also readily estabhsh Theorem 3. Again, exploiting linearity we
partition Z,[n] into two components: & )[n] which is generated by the set of transmitted

sequences z;[n], and &2 [n], which is generated by the background noise w[n].
When in Proposition 1 we let p;[n] = z;[n] and fi;[n; k] = ¢;j[n; k], we readily obtain,
using superposition, that

M
5D = 3 gimln] 25 B [Crurn] 2mlin] + oD, (I1L.56)
i=1 )

where

M
v 1] = Y zimln]

i=1

Note, in addition, that due to the properties of the z;;[n] in Proposition 1, the ey [n] are
mutually uncorrelated, zero-mean, white marginally-Gaussian noise sequences with vari-
ances

var vV [n] = Zez [Cim)- (IIL.57)

Next, when in Proposition 1 we let p;[n Zw mlk —nM] and fi;[n; k] = bj[n; k],
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we again readily obtain that

$(2) [n] = Zq [n (2)[n]

(I11.58)

where the v )[ | are mutually uncorrelated, zero-mean, white marginally Gaussian noise

sequences with variances

var viy) [n] = NoWo|E [Bum] > + NoWovar [Brm] = NgWoE [| Bm?] - (I11.59)
Hence, combining (I11.56) and (I111.58) we obtain (II.55 where
vmln] = v [n] + v [n].
Furthermore, since the z,[n] and w(n] are uncorrelated, we obtain (I1.56) using
var up[n] = var v [n] + var v{2[n]
with (IIL.57) and (II1.59).
IIT.E Proof of Lemma 1
First, note we may rewrite (I1.58) in the form
Ym(B) = - bm “‘f (4 B]/ - (111.60)
E [|¢BI"] - 57 ;sk B[4 B
where
£E= \/Nowo + % ;ekmkp. (I11.61)
Using the invertible change of variables
B = B% (I11.62)
Am = VEnAm/¢ (I11.63)
we can then rewrite (II1.60) in the form
Ym(B) = |25 A ' : (I1L.64)
B(187] - 37 S E (B A
Note that by symmetry, Ay, Ao, ..., A are also zero-mean, mutually uncorrelated random
variables, whose variances we denote by Ay, Ag,..., Ap.
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Now, any B with finite variance can be expanded in the form
-~ M ~
B=ec+) ncAx (I11.65)
k=1

where, for all k, F[e*A;] = 0 and 7, are complex constants. In particular, it suffices to
choose _ 5
m=E B4 /E (|4

Furthermore, from (I1.58) we see that if B maximizes ,,, so does xB for any . Hence, to
fix a particular solution, we may, without loss of generality, set 7, = 1.
Using (111.65), (I11.64) simplifies to

-1
Ym(B) = XL, (E [IE12] + Am(1 = Am/M) + 3 Imk[2A (1 = Ae/M) ) ,
k#m

which, since

& | Al

1 2
No + i ; Ex | Akl

AN=FE < M,

is maximized when &€ = 0 and 7, = 0 for k¥ # m. Thus, the maximum value of v, is obtained
when B is of the form (I1.59).

To obtain the bound (I1.61), it suffices to substitute the optimum value of b into (II1.60),
which yields
em/M 1

= -1
l-¢om/M  1—on/M

Ym/M =
where
om=FE [gm |Aml2/§2]
It therefore remains only to note that
1
NoWo + — D &kl Ael?

M k#m

NoWo + MZSkIAkP
k

ITII.F Proof of Lemma 2

Let &, denote the left hand side of (I1.67). Then

§1=§2="'=§Mé§0
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and, hence,

1
o = i [ ]
_ 1 [ M-1) Zkvk]
M ]. + Zk (%
M- 1
where 1
=F|—— 1I1.67
? [1 +"y] (I1L.67)
with
y= v (I11.68)
k

Now % as defined in (III.68) is an Erlang random variable of order M and mean M/pu.
Hence,

M M 1 e~ MY
o= / (l'l")’) A= (IIL69)

Exploiting the identities [15]

0 e—-st
—_— 8
/O 1+tdt—-eE1(s)

oo
the~st dt = k!l/sF*1,

S~

and
et _(=)7 n—k—1 4k
P i Z( 2 t
we get
uM M—2
o= ——= (=M Ey(u) + Y (-D)MFRl/ k] (II1.70)
(M - 1) k=0
Finally, substituting (II1.70) into (IIL.66) we get (I1.67).
|
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