
Shirayanagi-Sweedler Algebraic Algorithm Stabilization and

Polynomial GCD Algorithms

by

Pramook Khungurn

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

© Pramook Khungurn, MMVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

U o1
A +h, 1

..... 1 I , . , ..

Department of Electrical Engineering and Computer Science
January 30, 2007

Certified by........ · ...

Alan Edelman
Professor of Applied Mathematics

Thesis Supervisor

Accepted by.......

°.I ~,
/'

"---;rthur C. Smith
Chairman, Department Committee on Graduate Students

ARCHIVES

MASSACHUSETTS INSTITUTE.
OF TECHNOLOGY

OCT 0 3 2007

LIBRARIES

Shirayanagi-Sweedler Algebraic Algorithm Stabilization and Polynomial

GCD Algorithms

by
Pramook Khungurn

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2007, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Shirayanagi and Sweedler [12] proved that a large class of algorithms on the reals can be modified
slightly so that they also work correctly on floating-point numbers. Their main theorem states that,
for each input, there exists a precision, called the minimum converging precision (MCP), at and
beyond which the modified "stabilized" algorithm follows the same sequence of steps as the original
"exact" algorithm.

In this thesis, we study the MCP of two algorithms for finding the greatest common divisor of
two univariate polynomials with real coefficients: the Euclidean algorithm, and an algorithm based
on QR-factorization. We show that, if the coefficients of the input polynomials are allowed to be
any computable numbers, then the MCPs of the two algorithms are not computable, implying that
there are no "simple" bounding functions for the MCP of all pairs of real polynomials.

For the Euclidean algorithm, we derive upper bounds on the MCP for pairs of polynomials whose
coefficients are members of Z, 0, Z[6], and Q[6] where (is a real algebraic integer. The bounds are
quadratic in the degrees of the input polynomials or worse.

For the QR-factorization algorithm, we derive a bound on the minimal precision at and beyond
which the stabilized algorithm gives a polynomial with the same degree as that of the exact GCD, and
another bound on the the minimal precision at and beyond which the algorithm gives a polynomial
with the same support as that of the exact GCD. The bounds are linear in (1) the degree of the
polynomial and (2) the sum of the logarithm of diagonal entries of matrix R in the QR factorization
of the Sylvester matrix of the input polynomials.

Thesis Supervisor: Alan Edelman
Title: Professor of Applied Mathematics

Acknowledgments

First, I would like to thank my thesis advisor, Prof. Alan Edelman, for supervising the thesis and

allowing for me to use his Beowulf cluster to perform some experimental studies prior to obtaining

the theoretical results.

The majority of the work in this thesis was done while I was interning at the NTT Communication

Science Laboratories in Japan in the summer of 2005 and 2006. I thank Dr. Kiyoshi Shirayanagi of

the NTT Communication Laboratories (now a professor at Tokai University) for introducing me to

the field of symbolic-algebraic computation and the problem, for supervising me in the summer of

2005, and guiding and helping through the research. I also would like to thank Dr. Hiroshi Sekigawa

for supervising me in the summer of 2006, and Yutaka Kamamoto for helping me adjust to life in

Japan and for being a very reliable sempai. I appreciate the hospitality I received from researchers

at the Human and Information Science group at NTT, and I hope that my relationship with them

will continue in the future.

I thank Daniela Reichert, Patricia Gercik, and Saro Darien of the MIT-Japan program for pro-

viding me with the opportunity to do research in Japan, which eventually leads to this thesis. I

truly enjoyed my summers in Japan, and am deeply grateful for their assistance.

Lastly, I would like to thank my family and my Thai friends at MIT for their support during my

time at MIT.

Contents

1 Introduction

1.1 Results.

1.2 Thesis Organization

2 Notations and Preliminaries

2.1 Floating-point Numbers

2.2 Bracket Coefficients

2.3 Vectors and Matrices

2.4 Some Sets of Algebraic Numbers

2.5 Polynomials

3 Shirayanagi-Sweedler Stabilization Technique

3.1 Model of Computation and Algebraic Algorithms

3.2 Polynomial Representation and Operations . . .

3.3 Stability of Algebraic Algorithms

3.4 Shirayanagi-Sweedler Stabilization Technique . .

4 Incomputability Result

5 Euclidean Algorithm

5.1 Algorithm Description

5.2 Subresultant Theory

5.3 Approach

5.4 General Bound

5.5 Domain-specific Bounds

6 QR-factorization Algorithm

6.1 The Algorithm

6.2 Error Analysis of Householder

9

. 10

13

. 13

. 15

16

. 18

18

21

. 2 1

. 2 3

. 2 4

. 2 4

29

. 29

. 31

. 33

.. 34

.. 39

45

. 45

. 46

6.3 Error Analysis of Householder-QR 48

6.4 The MCDP 50

6.5 The MSSP 53

A Bounds on Algebraic Numbers 55

A.1 Elements of Z[{]((N)) and Q[(]((N)) 55

A.2 Determinants 58

A.3 Coefficients of Polynomials 60

B Error Analysis of Basic Arithmetic and Vector Operations 63

B.1 Addition, Subtraction, Multiplication, and Taking Inverse 63

B.2 Square Root 66

B.3 Sum 66

B.4 Dot Product 68

Chapter 1

Introduction

One of the premises of incorporating approximate computation via floating-point numbers into sym-

bolic computation is to improve efficiency. When inputs with exact values are given and outputs

with numerical values are acceptable, replacing the exact values with their floating-point approxi-

mations and carrying out the computation using floating-point arithmetic may save both time and

space. However, because most existing computer algebra algorithms assume that inputs and arith-

metic operations are exact, they cannot cope with numerical errors: even though the algorithm is

provided with a sequence of approximations of the input with successively higher precisions, the

corresponding sequence of outputs might not converge to the correct output at all. We call an

algorithm with this problem unstable.

For example, consider a simple program that receives an input x, compute x10 00 , and compares

the result to 2. If they are equal, it outputs 1. If not, it outputs 0. Depending on how the program

handles floating point computation, it might be the case that it never outputs 1 although it is

given very accurate approximation of •oo••. Table 1.1 lists approximations of '00oV/ with different

precisions and their powers of 1000, computed by Maple. The fact that the powers of 1000 of the

inputs are not exactly 2 implies that the program never outputs 1, and that the program is unstable.

Shirayanagi and Sweedler [121 proposed a general technique that transforms many algorithms to

stable ones, enabling one to use legacy computer algebra algorithms to perform approximate compu-

tations. The technique has been applied to various computer algebra algorithms such as Buchburger's

Precision 1oo00/ (oo/2)1ooo0
10 1.000693387 1.999999075
15 1.00069338746258 1.99999999999874
20 1.0006933874625806325 1.9999999999999999249
25 1.000693387462580632537569 2.000000000000000000000721
30 1.00069338746258063253756863930 1.99999999999999999999999999229

Table 1.1: Values of 100oo/ at different precisions, and their powers of 1000 as computed by Maple.

algorithm for Gr6bner bases [11], Sturm's algorithm for counting real roots of polynomials [10], and

Greville's algorithm for computing Moore-Penrose generalized inverses [9, 13].

The technique also guarantees that, for every input, there exists an integer which we refer to as

the minimum converging precision (MCP). The MCP has the property that, if the the number of

digits in the approximation of the input is greater than or equal to the MCP, then the stabilized

version of the algorithm performs almost the same computation as the original algorithm, yielding

a good approximation of the exact output. Since the MCP determines the space and time required

to perform floating-point arithmetic operations, algorithms with lower MCP are faster and more

accurate. Thus, estimating the MCP is crucial to measuring the effectiveness of stabilized algorithms.

However, there has been no systematic methods to determine the MCP. Neither are we aware

of any published work that estimates the MCP of any specific algorithms. As a result, although

researchers have been successful in applying the stabilization technique to a number of computer

algebra algorithms, the estimation of the MCP of any useful and nontrivial algorithm has remained

an open problem [13].

This thesis provides a theoretical study on the MCP of two algorithms for finding the greatest

common divisor (GCD) of univariate polynomials with real coefficients: the Euclidean algorithm,

and an algorithm based on QR-factorization given in [14]. The Euclidean algorithm is a fast al-

gorithm used as a subroutine of many computer algebra algorithms [2]. On the other hand, the

QR-factorization algorithm, although much slower, is numerically stable and has been observed

experimentally to work well with coefficients that are not known exactly [3, 14].

We prove that the MCPs of the two algorithms are generally incomputable, and derive bounds for

the MCP and some related numbers, thereby settling the open problem in [13] for GCD algorithms.

1.1 Results

Our results are summarized below:

1. A degree-aware GCD algorithm is an algorithm whose execution path changes if the degree of

the GCD changes. We show that, for any degree-aware GCD algorithm, there exists no Turing

machines that computes the MCP of pairs of polynomials whose coefficients are computable

numbers. The Euclidean algorithm and the QR-factorization algorithm are both degree-aware,

so their MCPs are in general incomputable. This fact implies that there exists no "simple"

bounding function for the MCP of these algorithms.

2. For the Euclidean algorithm, we derive an upper bound for the MCP of a simple variant of

the Euclidean algorithm. The bound is O(d(log M - log m)) where d is the degree of the

input polynomial with bigger degree, and M and m are the largest and the smallest nonzero

quantities that arise during the evolution of the Euclidean algorithm, respectively.

We also found that it is possible to simplify the bound when coefficients of the input polyno-

mials are from domains where exact computation can be carried out. To this end, we derive

simpler bounds for the MCP in cases where the coefficients are from the sets Z[6], and Q[J],
where 6 is a real algebraic integer not equal to 1. The bounds are (O(d2 log N) and 6O(d 3 log N),

respectively, with N being the largest integer in the coefficients. (For example, the largest in-

teger in the algebraic number 1 + 6 + 362 is 7.)

3. For the QR-factorization algorithm, we could not derive bounds on the MCP. However, we man-

aged to derive bounds on two related numbers: the minimal correct degree precision (MCDP)

and the minimal same support precision (MSSP). The MCDP is the minimal precision at and

beyond which the stabilized algorithm gives a polynomial with the same degree as that of the

exact GCD. The MSSP is the minimal precision at and beyond which the algorithm gives a

polynomial with the same support, i.e. nonzero terms, as that of the exact GCD.

For the MCDP, we show that it is of order O(d(log d + log M) - E• 1 log R[i, ill), where d

is the sum of the degrees of the input polynomials, M is the absolute value of the largest

coefficient, r is the rank of the Sylvester matrix of the input polynomials, and R is the upper

triangular matrix of the QR factorization of the Sylvester matrix. For the MSSP, we show

that it is of order O(d(log d + log M) - Er log IR[i, i]1) - log I p1), where pL is the smallest

coefficient of the (monic) GCD of the input polynomials.

1.2 Thesis Organization

Chapter 2 and Chapter 3 give background material of the thesis. Chapter 2 defines notations and

states preliminary facts that we use to derive our main results. Chapter 3 describes our model of

computation and discusses the Shirayanagi-Sweedler stabilization technique.

The main results are covered in the next 3 chapters. Chapter 4 proves that the MCP of any

degree-aware is not computable. Chapter 5 derives upper bounds on the MCP of the Euclidean

algorithm. Chapter 6 derives upper bounds on the MCDP and the MSSP of the QR-factorization

algorithm.

Proofs of many results rely heavily on lower bounds on sizes of nonzero algebraic numbers of

certain forms, and upper bounds on errors generated by primitive algebraic operations. Due to their

technical nature, the proofs for these bounds are given in the appendices. Appendix A deals with

the former lower bounds, and Appendix B the latter upper bounds.

Chapter 2

Notations and Preliminaries

In this chapter, we define notations and conventions that will be used throughout the thesis. Sec-

tion 2.1 defines floating-point numbers. Section 2.2 defines bracket coefficients, the workhorse of

the Shirayanagi-Sweedler stabilization technique. Section 2.3 defines vector and matrix notations.

Section 2.4 defines notations for sets of algebraic numbers whose "largest integers" are given as

parameters. Lastly, Section 2.5 define polynomial notations.

2.1 Floating-point Numbers

A floating-point number a with precision r is an ordered pair (M9)(a), e(a)), where 9)1(a) is an integer

with T digits in base 2, and e(a) is another integer. The real value of a is defined to be

a = 9•(a) x 2e(a)- r

We require that, if a # 0, then 1IJ1(a)l x 2- ` > 0.5. That is, the leftmost digit of 9X3(a) is 1 unless

a = 0. Note that our definition of floating-point numbers is very close to the IEEE floating-point

standard, except for the absence of the sign bit, and the requirement that the leftmost bit of the

mantissa is not zero.

Unless stated otherwise, 7 denotes the precision of every floating-point number we discuss.

Let x be a real number. We define the following functions:

* Let fl,(x) be the floating-point number with precision 7 closest to x.

* Let up,(x) be x rounded up to precision 7 away from zero.

* For x = 0, let e(x) be the integer such that x = y x 2e(') for some y such that 0.5 < lJy < 1.

Note that this definition is consistent with the e(a) defined above.

* Let c,(x) be the value 2e(x)- 1- r

Proposition 2.1. For all x k 0, the four functions above satisfy the following inequalities:

2
e (x) - I

< 1Il, (2.1)

2--1 x1 I eCr(x) < 2-' xl, (2.2)

fl,(x) - Er() < x < fi,(x) + E,(x), (2.3)

fl(x) - ET(flT ()) < x < fl (x) + E (fl,(x)), (2.4)

fl,(x)l < (1 + 2-')Ixl, (2.5)
Ixl < lup,(x)l < (1 + 2-'+l)Ixl. (2.6)

Proof. Let us assume first that x is positive. Expanding x in binary, we may write

x = 0.1b 2b3 ..- b,-lbb, --.. x 2kx

where all the bi's are members of {0, 1}, and k E Z. Clearly, e(x) = k, and E,(x) = 2k-r-1 . Thus,

2e(x)-1 = 0.1 x 2 k < ix. Also, since 2
k- 1 < ljx < 2 k, we have that

2--1jx < 2- - 2k = Cr(x) = 2- . . 2 k-1 < 2i-rxl.

We have proven (2.1) and (2.2).

Consider fl,(x), there are two cases. In the first case, b,+1 = 0. We have that x is rounded down

and fi,(x) = 0.1b 2 b3 ...- b,rb, x 2
k . Here, fl,(x) is less than or equal to x, and e,(x) and e,(fl,(x))

are both equal to 2
k- r - 1. Hence, fl,(x) - E,(x) and fi,(x) - ~,(fl,(x)) are both less than equal to

x, and obviously Ifl,(x)l < lxl < (1 + 2-)ixil . On the other hand,

fl,(x) + e~(x) = fl,(x) + E,(fl,(x)) = 0.1b 2 ... b1 x 2k > 0.1b2 ... b,0br+2b+ 3 - x 2Xk = X

and we have proven (2.3), (2.4), and (2.5) for this case.

For the second case, b,+l = 1. We have that x is rounded up and

fl,(x) = (0.1b 2b3 ... brlb, + 2- '-1) x 2k = (0.1b 2b3 . bT-lb-TbT) x 2k (x).

Since 0.1b 2b3 ... bT-lb,b,+l x 2 k < Ixi, and e,(x) < 2- T xi, we have that Ifir(x)i < (1 + 2-r)lx[. So,

(2.5) is true for this case as well. For (2.3), we have that

fl,(x) - eT(x) = 0.1b 2 ... b,b,+ 1 x 2 k < x < fl,(x) < fi(x) + e(x).

For (2.4), if e,(fl,(x)) = E,(x), then the situation is the same as that in the proof of (2.3). The

only case where E,(fl,(x)) e, (x) is when b2 = b3= ... =b,+l = 1. In this case, fi,(x) = 2 k and

E (x) = 2 k-r . Still, we have that

fl,(x) - er(fir(x)) = 0.11.-. 1 x2k < x < flr(x) < r(x) + E,(fl7(X)),

and so (2.4) is true in this case as well.

Consider up,(x). There are also two cases. In the first case, all of b,+l, b,+ 2 , ... are zeroes.

Thus, we have that up,(x) = x, and (2.6) holds trivially. In the second case, not all of b,+l, br+2 ,

... are zeroes. We have that up,(x) = (O.1b 2 ... b + 2- r) x 2 k > x. Since 0.1 b2 ... b, < x and

2- - 2 k - 2Ec(x) 5 2-r+lx, we have that Ixl • up,(x) < (1 + 2-r+'l)Ix as required.

The case when x is negative can be argued with the same argument as above. O

2.2 Bracket Coefficients

The Shirayanagi-Sweedler stabilization technique relies on replacing real numbers with intervals

whose endpoints are floating-point numbers. Following the convention in [12], we represent intervals

by objects called bracket coefficients.

A bracket coefficient Ix] is an ordered pair of floating-point numbers ((x), Lx]). We call (x) the

approximate value of Jx], and Lx] the error value or the error term of [xJ. The bracket coefficient

[x] is said to approximates a real number x if (x) - Lx] < x < (x) + [x]. We denote that fact that

[xi approximates x by the symbol [xz 9 x. Also, as a convention, x[z denotes a bracket coefficient

that approximates the real number x. The floating-point bracket approximation to a real number x,

denoted by [xc1, is the bracket coefficient (fl,(x), Er (fl,(x))).

Bracket coefficient [x] is said to be equivalent to zero if I(x) I< Lx [, or, in other words, if it

approximates zero. 1xi is said to be greater than zero if it is not equivalent to zero, and (x) > 0.

Similarly, [x] is said to be less than zero if it is not equivalent to zero, and (x) < 0. This trichotomy

law of bracket coefficients is based on the zero-rewriting, an idea crucial to the Shirayanagi-Sweedler

stabilization technique.

Arithmetic operations on bracket coefficients resemble those of the so-called "interval arithmetic"

studied in [1]. The operations are defined as follows:

1. Bracket coefficient [s] is said to be the sum of [Ia and [b], denoted by [s] = Iai + [b], if

(a) (s) = fl,((a) + (b)), and

(b) Ls] = up,(La] + [b] + er(())).

2. Bracket coefficient [d] is said to be the difference of [al and [bl, denoted by I[d = I[a - ibl, if

(a) (d) = fl,((a) - (b)), and

(b) [dl = up,-(Lal + [bl + Er((d))).

3. Bracket coefficient [pl is said to be the product of [a] and [bl, denoted by p] = [a] x [b] or

by just [p] = [a] [b], if

(a) (p) = fli((a)(b)), and

(b) L[pl = up,([al L[bl + I(a)lLbl + I(b) Lal + -((p))).

4. For [a] not equivalent to zero, bracket coefficient [il is said to be the inverse of [a], denoted

by [i) = [aJ- 1 or by [i] = 1/lal, if

(a) (i) = fl,(1/(a)), and

(b) Lil = up. (a)i 1il))
= i(a)I(,(a)I-Lal)

5. For ýal not equivalent to zero such that (a) > 0, bracket coefficient jr] is said to be the positive

square root of [al, denoted by [r] = [al 1/ 2, if

(a) (r) = flr((a) 1 / 2), and

(b) [r] = up ((a)2 (Ial+) er((r)).

The following preposition states that bracket coefficient operations yield bracket coefficients that

approximates the exact result. Thus, in a way, the set of bracket coefficients along with the above

operations is compatible with the field of real numbers.

Proposition 2.2. The following statements are true for all [a] and [bj.

1. [a] + [b] a + b.

2. lal - ý[bj a - b.
3. [a]lJ[b] _ ab.

4. If [a] is not equivalent to zero, then 1/la] - 1/a.

5. If [al is not equivalent to zero, and (a) > 0, then [a]1/ 2 = Vai.

The proof of the proposition is trivial, thus omitted.

2.3 Vectors and Matrices

Vectors are denoted by boldfaced lowercase letters, and matrices by uppercase letters. For example,

a is a vector, and A is a matrix. We let a[k] denote the kth component of vector a, and A[i, j] denote

the (i, j)-element of matrix A. Moreover, for integers i, j such that i < j, we let a[i ... j] denote the

vector (a[i],a[i + 1],...,a[j]). Also, for any integers ii,i 2,j l , 2 such that il < i2 and jl < j2, we

let A[ii ... i 2, jl ' j2] denote the matrix

A[il,jl] A[il + 1,ji] A[ii + 2,jl] ... A[i 2 , jl]

A[ii,jl + l] A[il + l,jl + l] A[il + 2,jl+l] . A[i2 ,jl + 1]

A[il,jl+2] A[iZ+ 1,ji+2] A[i+2,ji+ 2] --. A[i 2 , j + 2]

A[il,j 2] A[ii + 1,j 2] A[ii + 2,j 2] --- A[i 2,j 2]

Also, let A[i ... i2,j] = A[il ...i2, j...j] (a row vector), and A[i, jl " " j2] = A[i ... i, jl ... j2], (a

column vector). Moreover, let A[*, j] denote the jth column of A, and A[i, *] denote the ith row of

A.

Let |lalli and Ilail denote the 1-norm and the 2-norm of a, respectively. Similarly, IAItl1 and IIAlj

denote the 1-norm and the 2-norm,of matrix A, respectively.

If a = (al, a2, ... ,a,), then let lai denote the vector (lall, a2 [,.. - , an), the vector whose entries

are the absolute values of the corresponding entries of a. We define IAl similarly. This notation

should not to be confused with hlali or IIAII.

A vector of bracket coefficients ([bl], [b2 ,..., [bn]) is said to approximate a if [bi 2! ai for

all i such that 1 < i < n, and we denote this fact by the symbol (bi), Ib2 ,..., [bn) a. As

a convention, fal] denote the vector of bracket coefficients (jal], ýa2 J,..., jan,) that approximates

a. Also, for convenience, let (a) denote ((al), (a 2),..., (an)), and La] denote ([al], [a2],..., [an,).

These notations can be extended to matrices in a straightforward manner.

Moreover, we let fl, (a) denote the vector (fl,(a1), fl,(a2),... , fi7 (an)), and e,(a) denote the vector

(E7(al), E, (a2) ... ,E(an)). The floating-point bracket approximation to vector a is the vector of

bracket coefficients ýaj, = (ý[alj, D a21 ,..., ianf l). Again, these notations can be extended to

matrices in a straightforward way.

We will make extensive uses of the following propositions in this thesis:

Proposition 2.3 (Hadamard's inequality). If A is an n x n complex matrix, then

det(A) < 1I5 iiA[*,jII.
j=1

Proposition 2.4 (Cayley-Hamilton Theorem). If A is an n x n complex matrix and p is the

characteristic polynomial of A, then p(A) = 0.

2.4 Some Sets of Algebraic Numbers

Let N be a positive real number, and let (be a real algebraic integer of degree n. We define the

following sets:

* ((N)) = {n E Z: Inj < N}.

* Q((N)) = {p/q: p, q E ((N)), q # 0}.

* Z[6]((N)) = {ao + a16+ - -· + - an-1n-1 : a1 E ((N)), 0 < i n - 1}

* Q[6]((N)) = {a0 + a6 + - -" + an-•1n-1 : ai E Q((N)), O < i <n - 1}

For examples, ((2)) = {-2,-1,0,1,2}, and Z[V21((1)) = {0,±1,-tv,±1 + v/2,}. In effect, the

parameter N is the largest integer that can appear in the canonical representation of elements of

the above sets.

The above notations will be used extensively in Chapter 5 and Appendix A.

2.5 Polynomials

Throughout this thesis, every polynomial is a real polynomial, and x is the indeterminate variable

of every polynomial. Polynomials are denoted by boldfaced uppercase letters: for examples, P, Q,

and R. The degree of polynomial P is denoted by D(P). As a convention, the zero polynomial has

degree -oo.

The coefficient of xr in P is denoted by P[r]. When D appears inside the bracket, it refers to

the degree of the polynomial. So, the leading coefficient of P is denoted by P[D], and, if '(P) > r,

then P[D - r] is the coefficient of x ((P)-r. As another convention, the leading coefficient of the zero

polynomial is 0. A polynomial is said to be monic if its leading coefficient is 1.

The support of polynomial P is the set supp(P) = {r : P[r] # 0}. For example, the support of

x5 + x + 1 is the set {0, 1, 5}, and the support of the zero polynomial is the empty set.

For any integers a and b such that 0 < a < b, we let P[a : b] be the polynomial Zb=a xrP[r].

For examples, if P = x4 + 4x3 + 6X2 + 4x + 1, then P[1 : 3] = 4x 3 + 6X2 + 4x, and P[0 : 1] = 4x + 1.

Our use of a above carries over to here as well. For examples, P[D : D] is the leading monomial, and

P[D - 2 : 0] is the sum of three terms with the highest degrees. Also, if a > b, we define P[a : b] to

be 0.

Two polynomials A and B are said to be similar if there exists c E R such that c : 0 and

A = cB. We denote the fact that A and B by symbols A - B.

The quotient of dividing A with B is denoted by quo(A, B), and the remainder denoted by

rem(A, B). The greatest common divisor (GCD) of polynomials A and B, denoted by gcd(A, B).

As a convention, the GCD is always a monic polynomial. However, the two algorithms we study

will output a polynomial similar to the GCD, not the GCD itself.

Chapter 3

Shirayanagi-Sweedler Stabilization

Technique

In this chapter, we give backgrounds on the Shirayanagi-Sweedler stabilization technique. Section 3.1

defines the model of computation, algebraic algorithm, and the notion of execution path. Section 3.2

specifies how polynomials are represented in our model of computation. Section 3.3 defines the

stability of algebraic algorithm. Section 3.4 states the main result of Shirayanagi's and Sweedler's

paper, formally defines the MCP, MCDP, and MSSP, and gives an overview on how the stabilization

technique works.

3.1 Model of Computation and Algebraic Algorithms

We are interested in two types of machines: EXACT, and FLOAT,. Both machines have a countably

infinite number of registers xl, x2,.... Each register of EXACT holds a real number, and each register

of FLOAT, holds a floating-point number with precision 7. Both machines can perform addition,

subtraction, multiplication, and division on the contents of any two registers, and then store the

result in another register. Moreover, it can test whether the content of a register is equal to zero or

whether it is less than or greater than zero. The arithmetic operations in EXACT are the canonical

operations on real numbers, and the arithmetic operations in FLOAT, result in the nearest floating-

point number with precision r to the exact result. For example, adding xi and xj in FLOAT, would

result in fl, (xi + xj).

An algebraic algorithm is a finite sequence of the following instructions:

1. xz+- Xj + Xk

Add the content of xj and Xk and store the result in xi.

X, 4- X; - 1

Compute the difference of xj and xk and store the result in xi.

3. xi +- X Xk

Multiply the content of xj and Xk and store the result in xi.

4. xi +- x 1

Compute the multiplicative inverse of xj and store the result in xi. If the content of xj is zero,

the algorithm halts immediately.

5.xi x -vi

Compute the positive square root of xj and stores the result in xi. If the content of xj is

negative, the algorithm halts immediately.

6. xi - C

Store the an integer value C in xi.

7. goto line f

Jump to line e of the algorithm.

8. if xi = 0 goto line e
Test if the content of xi is zero. If so, jump to line e. Otherwise, continue on to next line.

9. if xi < 0 goto line e
Test if the content of xi is less than 0. Jump to the appropriate line based on the result of the

comparison.

10. halt

Terminate the algorithm.

For example, the algorithm in Figure 3-1 checks whether the content of xl is equal to that of x2. If

so, it sets x 3 to 1. Otherwise, it sets x3 to 0. We claim that most algorithms in computer algebra

can be written with the above instructions, and therefore are algebraic algorithms. Note also that

any algebraic algorithm can run on both EXACT and FLOAT, although their outputs might not

agree.

We can regard the state of the vector x = (l, x2,...) before the algorithm runs as the input

of the algorithm, and the state of x after the algorithm terminates as the output of the algorithm.

That is, an algebraic algorithm is basically a function on an infinite dimensional Euclidean space.

An execution path of an algebraic algorithm is the sequence of instructions the algorithm follows

when running on a particular input. For example, if xl = X2 , then the execution path of the algo-

rithm in Figure 3-1 is:

1 X1 +- X1 - X2

2 if xl = 0 goto line 5
3 3 0
4 goto line 6
5 3 +-1
6 halt

Figure 3-1: A simple algebraic algorithm that compares the content of register x1 and x 2, and writes
the result of the comparison into x3 in binary.

1 XI+- XI -X 2

2 ifxl = 0 goto line 5

5 X3 -- 1

6 halt

But if x1 # x2, the execution path is:

1 X1 - 1 - X 2

2 if x = 0 goto line 4

3 x 3 +- 0

4 goto line 6

6 halt

3.2 Polynomial Representation and Operations

As in most computer algebra systems, we represent a polynomial of degree at most d by an array of

d + 1 real numbers: one register is reserved for each coefficient.

The degree of a polynomial represented in this way is determined by looping through the array to

find the non-zero term with the highest degree which is not zero. The pseudocode for the procedure

to do so is given in Figure 3-2. Note that -oo in the pseudocode is just a symbol which may be

represented by any constant that is not a nonnegative integer such as -1 or 2.5.

Two polynomial operations that are relevant to this thesis are (1) polynomial addition, and

(2) multiplication of a polynomial by a monomial. The sum of two polynomials are calculated by

adding coefficients of terms with the same degree together, and the product of a polynomial with a

monomial is calculated by multiplying all coefficients of the polynomial with the coefficient of the

monomial, and then shifting the terms according to the exponent of the monomial. We assume

implicitly that there are procedures that handle these operations, but we will express them with

DEGREE(A)

r> Input: A such that <(A) < d.
> Output: D(A)

1 f--d
2 while A[e] = 0 and f > 0
3 do <-- --1.
4 if < 0
5 then return -oo
6 else return f

Figure 3-2: The procedure to determine the degree of a polynomial.

arithmetic operators in subsequent pseudocodes.

3.3 Stability of Algebraic Algorithms

Shirayanagi and Sweedler introduced the notion of stability of algebraic algorithms in [12]. A stable

algebraic algorithm is similar to a continuous function.

Let A be an algebraic algorithm, and let x be its input. For integer 7 > 0, let A,(fl,(x)) to be

the output of A running on FLOAT, with input fl,(x), and let A(x) be the output of A running on

EXACT with input x. We refer to the execution of A on EXACT as the exact computation, x as the

exact input, and A(x) as the exact output.

An algebraic algorithm A is said stable at point x if

lim A,(fl,(x)) = A(x).
T -+00

We say that A is stable if it is stable at all points in its domain. For example, any algebraic algo-

rithms with no conditional statements are stable because it only performs operations that preserve

continuity. (All arithmetic operations allowed in our model of computations are continuous functions

on real vector spaces.) However, the algorithm in Figure 3-3 is not stable at point (2, 0, 0,...)

because numerical approximations of V2 do not always yield 2 exactly when cubed. Thus, it may

not output 1 at all no matter how precise the approximation of V/2 in xl is.

3.4 Shirayanagi-Sweedler Stabilization Technique

In [11], Shirayanagi proposed an algorithm to compute a Grobner basis of polynomials whose co-

efficients are approximated by floating-point numbers. He proved that, as the precision of the

floating-point numbers increases, the basis obtained from the algorithm converges to that obtained

from the exact computation. This property gives the algorithm an advantage over algorithms which

1 X2 X1 X X 1

2 X2 X2 X X1
3 x 3 +- 2
4 X2 2 - X3

5 if x 2 = 0 goto line 8
6 x4 +- 0
7 goto line 9
8 X4 1
9 halt

Figure 3-3: An algebraic algorithm that computes the cube of the value stored in xl and checks
whether that value is 2.

assume that inputs and arithmetics operations are exact because such algorithms are generally not

stable.

Later, Shirayanagi and Sweedler [12] generalized Shirayanagi's approach and proposed a scheme

that transforms any algebraic algorithm to a stable one. Their main theorem can be restated as

follows:

Theorem 3.1. Let A be an algebraic algorithm. Then, there exists an algebraic algorithm A' such

that

1. A' is stable at every point in A's domain.

2. limr-,oo A"(fl,(x)) = A(x) for every point x in A's domain.

3. For every point x in A 's domain, there exists a positive integer r, such that, for all r > rx,

the execution path of A' on FLOAT, with input fl,(x) is the same as the execution path of A

on EXACT with input x.

We say that Fx is a converging precision of A on x. The smallest such Fx is called the minimum

converging precision (MCP). The theorem implies that, if the precision of the input is higher than

the MCP, then the "stabilized version" of the algorithm performs almost the same sequence of

arithmetic operations as the original algorithm, yielding a good approximation to the exact output.

In the context of algorithm A that outputs a polynomial, Shirayanagi and Sweedler also shows

that, for every input x, there exists an integer r s s such that, if 7 > FS s , then A',(fl,(x)) has the

same support as that of A(x). We call the least rSs the minimum same support precision (MSSP)

of A on x. Also, define the minimum correct degree precision (MCDP) of A on x to be the least

integer F such that, if 7 > r, then the degree of A,(fl,(x)) is the same as that of A'(x). Clearly,

the MCDP does not exceed the MSSP, and therefore exists.

The construction of A' from A is very simple, and can be outlined as follows:

* All the instructions in A are kept the same.

> Change x to Nx~.
1 X2 <-- Xlý X 1Xlý

2 JX2 +-- X2] X ~1Xi
3 ýx31 2]
4 x2+- ýx21 - [131
5 if x21 0 goto line 8
6 EX41 <- E0T
7 goto line 9
8 1X4]<- 4- 7
9 halt

> For all i, if xj fi 0, then [zi] <- (0, 0).
> Take (x) to be the output of the algorithm.

Figure 3-4: The stabilized version of the algorithm in Figure 3-3.

* If a is a variable in A, then it is replaced by a bracket coefficient Jaý that approximates it.

* The input x is replaced by ýx],, its floating-point bracket approximation.

* All constants in the algorithm are also replaced by their floating-point bracket approximations.

* All the arithmetic operations become those defined in Section 2.2.

* Checking whether a variable is equal to zero becomes checking whether a bracket coefficient is

equivalent to zero, and comparing a bracket coefficient to zero is done as defined in Section 2.2.

* After the algorithm terminates, each register [xil is examined. If zxiý is equivalent to zero,

then it is rewritten with the bracket coefficient (0, 0).

* Lastly, (x) is taken to be the output of A'.

An example of a stabilized algebraic algorithm is given in Figure 3-4; it is the stabilized version of

the algorithm in Figure 3-3.

Observe that the technique doubles the number of registers used: for each variable, one register

is used to hold its approximation, and the other its error term. The number of raw instructions

also increases as the stabilized algorithm also has to calculate error terms. Hence, the stabilized

algorithm does not eventually follow the execution path of the exact algorithm per se. However, if

we think of an execution path as a sequence of lines of code that the algorithm follows, Shirayanagi

and Sweedler showed that the execution paths eventually match, and that the stabilized version has

all other properties stated in Theorem 3.1.

Chapter 4

Incomputability Result

In this chapter, we show that the MCP of a large class of algebraic algorithms is incomputable

provided that the coefficients of the input polynomials are allowed to be any computable numbers.

Recall that a computable number x is a real number such that there exists a Turing machine that

produces the nth digit of the binary (or decimal) expansion of x, given any positive integer n.

Equivalently, x is a computable number if there is a Turing machine that, when given an integer r,

outputs fl,(x).

Definition 4.1. A GCD-finding algorithm A is said to be degree-aware if, for any polynomials A,

B, C, and D such that deg(gcd(A, B)) # deg(gcd(C, D)), it is true that A(A, B) follows different

execution path from that of A(C, D).

We will argue in Chapter 5 and Chapter 6, respectively, that the Euclidean algorithm and

the QR-factorization algorithm are degree-aware. The main result of this chapter is the following

theorem:

Theorem 4.2. Let A be any degree-aware GCD-finding algebraic algorithm. There exists no Turing

machine DA such that, for every pair of polynomials A and B whose coefficients are computable

numbers, DA(A, B) gives the MCP of A on A and B.

Proof. Suppose by way of contradiction that such DA exists. Let F be the MCP of A when the

input polynomials are x + 1 and x + 1. For any Turing machine M and any input s to M, we define

another Turing machine XM,s as in Figure 4-1. Note that, if M on input s does not terminate, then

XM,s computes the number 1. Otherwise, it computes the number 1 + 2 -r- k where k is the number

of steps M runs when fed with input s.

Next, we define Turing machine E as in Figure 4-2.

We claim that E rejects if and only if M does not halt on s. If M does not halt on s, then XM,s

computes the number 1. Therefore, DA(x + 1, x + XM,s) returns F, and E rejects.

XM,s (T)

1 If T < F
2 then Output fl,(1).
3 else Run M on s for T7- F steps.
4 if M does not terminate by 7 - F steps
5 then Output fl,(1).
6 else Let k be the step at which M terminates.
7 Output fl,(1 + 2 -r-k).

Figure 4-1: The Turing machine XM, s .

£(M, s)
1 Construct XM,s.
2 if DA(x + 1, x + XM,s) = F
3 then reject
4 else accept

Figure 4-2: The Turing machine E.

On the other hand, if M halts on s, then XM,s computes a number different from 1, and

deg(gcd(x + 1, x + XR,,)) = 0 # deg(gcd(x + 1, x + 1)). As a result, the execution path of the exact

computation A(x + 1, x + 1) must be different from that of A(x + 1, x + XM,s) because A is degree-

aware. Let A' be A's stabilized version. Since flr(XM,,) = fir(l), we have that the computation

of A'r (flr (+ 1),flr(x + XM,,)) must follow exactly the execution path of A(x + 1, + 1) by the

definition of F. Since this execution path is different from that of A(x + 1, x + XM,s), it must be

the case that the MCP of A on x + 1 and x + XM,S is greater than F. Hence, S accepts.

Because £ is a Turing machine that solves the halting problem, we arrive at a contradiction. O

Chapter 5

Euclidean Algorithm

In this chapter, we study the MCP of the Euclidean algorithm. In Section 5.1 we discuss how polyno-

mials are represented and give the pseudocode of the algorithm. In Section 5.2, we state some useful

facts from the theory of subresultants that we use to prove two of our main results. In Section 5.3,

we outline our approach to determine the MCP and the MSSP of the Euclidean algorithm. In Sec-

tion 5.4, we derive a general upper bound on the MCP and the MSSP of the Euclidean algorithm

in terms of the largest coefficient and the smallest nonzero coefficient of intermediate polynomials.

In Section 5.5, we restrict the domain of the coefficients of the input polynomials to be one of Z[6],

and Q[ý], and derive simpler upper bounds on the MCP and the MSSP.

5.1 Algorithm Description

The Euclidean algorithm for finding GCD of two univariate polynomials is based on the following

recurrence relation:

gcd(P, Q) = P, if Q = 0

gcd(Q, rem(P, R)), if Q 54 0

In other words, to find the GCD of P and Q, the algorithm checks whether Q is equal to the zero

polynomial. If so, it outputs P. Otherwise, it divides P with Q to find the remainder R. Then, it

recursively calls itself to find the GCD of Q and R.

The pseudocode of the Euclidean algorithm we use is given in Figure 5-1. The only difference

between our algorithm and the textbook one is that our algorithm normalize all intermediate poly-

nomials by making them monic. We include this normalization because it makes the analysis of the

MCP easier. Also, the algorithm checks whether a polynomial is zero or not by checking whether its

degree is equal to -oo (a symbolic value) or not, and this is accomplished by feeding the polynomial

EUCLIDEAN(A, B)

> Input: A, B E R[x] such that both are not zero.
> Output: gcd(A, B)

1 if DEGREE(B) = -oo
2 then return A
3 if DEGREE(A) = -oo

4 then return B
5 Ro - A/A[D]
6 R 1 - B/B[D]
7 w+-0
8 while DEGREE(Rw+1) = -oo
9 do Ww+ 2 -- REMAINDER(R,,Rw+i)

10 Rw+2 +- Ww+2/Ww+2[-]
11 w <-w+l 1
12 return R,

Figure 5-1: Pseudocode of the Euclidean algorithm.

REMAINDER(A, B)

> Input: A, B E R[x] with B # 0 and monic.
> Output: rem(A, B).

1 if DEGREE(A) < DEGREE(B)
2 then return A
3 r -- DEGREE(A) - DEGREE(B)

4 T,- A
5 while r > 0
6 do Tr-1 , T, - T,[r]xrB
7 r -- r-1
8 return T_1

Figure 5-2: Pseudocode of REMAINDER, a procedure to calculate remainders.

to the procedure DEGREE given in Section 3.2.

The procedure REMAINDER computes the remainder of the two given polynomials, assuming

that the second polynomial is monic. Its pseudocode is given in Figure 5-2. Note that, although

polynomial summations and multiplications are denoted by arithmetic operators in the pseudocode,

REMAINDER actually calls the appropriate procedures that compute the sum or the product as

discussed in Section 3.2.

The way we determine degrees of polynomials implies that EUCLIDEAN is degree-aware. The

reason is that, in the last time REMAINDER is called before EUCLIDEAN returns, the second argument

to REMAINDER is the GCD, and DEGREE is called inside REMAINDER to determine its degree.

Therefore, if the degree of the GCD changes, the execution paths of DEGREE and EUCLIDEAN

change as well.

5.2 Subresultant Theory

Our analysis of the MCP of the Euclidean algorithm relies heavily on knowing exactly what each

coefficient of every intermediate polynomial generated by EUCLIDEAN is. We obtain this knowledge

by the theory of subresultants, which relates the coefficients to determinants of matrices called the

Sylvester-Habicht of the input polynomials. This section states some important facts from the

subresultant theory we will make use of. We refer the reader to [8] and [4] for more details.

The sequence of polynomials Ro, R 1 , ... , R, in the pseudocode of the Euclidean algorithm

defines the polynomial remainder sequence (PRS) of A and B. Notice that the PRS always begins

with A followed by B and ends with gcd(A, B). Moreover, an element of the PRS is the monic

polynomial similar to the remainder of the two polynomials immediately preceding it.

Let A = adxd + ad-l d - 1 + ... - ao with ad : 0, and let B = bd_lxd- 1 + bd-_2 d - 2 + . - + bo.

Any coefficient of B can be zero, but we require that B is not a zero polynomial. Then, for j such

that 0 < j < d, the jth Sylvester-Habicht matrix of A and B, denoted by Sylj (A, B) or simply Sylj,

is the matrix:

ad ad-1 al ao

ad ad- a, a 0

ad ad-1 al ao

bd-1 bd-2 b bo

bd-1 bd-2 bl b

bd-1 bd-2 bl bo

bd-1 bd-2 bl bo

d-1-j rows

d-j rows

2d - 1 - j columns

We refer to the Oth Sylvester-Habicht matrix simply by the Sylvester-Habicht matrix, and denotes

it by the symbol Syl(A, B). For example, if P = p4 x 4 + -.. + Po and Q = q3x3 + ... + q0, then the

Sylvester-Habicht matrices of P and Q are given in Figure 5-3

Let Sylj,(A, B) be the square matrix of dimension (2d - 1 - 2j) x (2d - 1 - 2j) obtained by

excluding all columns of Sylj (A, B) except the first 2d - 2 - 2j columns and the (f + 1)st column

from the right. Examples of these square submatrices of Sylvester-Habicht matrices are given in

Figure 5-4. Note also that Sylo,o(P, Q) is equal to the Sylvester-Habicht matrix itself.

For 0 < j < d, the jth subresultant A and B, denoted by Sj (A, B) or simply Sj, is the polynomial

i
Sj(A, B) = det(Sylj, (A, B)) x'. (5.1)

f=0

Syl(P, Q) = Sylo(P, Q) =

P4

Syll (P,Q) = q3

P4
Syl 2 (P,Q) = q3

Syl 3 (P, Q) = [q3

Figure 5-3: Examples of Sylvester-Habicht matrices.

Syl (P, 4

SylI(P, Q) = q3

Syl2,1 (P, Q) = q3
qo

pi1 P4
q0O Syl2,2 (P,) = q3
1 L

Syl3,o(P, Q) = [qo] Syl3,1(P, Q) = [ql] Syl3,2(P, Q) = [q2]

Figure 5-4: Examples of square submatrices of Sylvester-Habicht matrices.

The following two propositions give some properties of subresultant polynomials. Their proofs

can be found in [8].

Proposition 5.1. Let A and B be two polynomials with D(A) > D(B), and let d = D(A). Then,

there exists a unique pair of polynomials Uj and Vj such that

(a) 0(Uj) < d - j - 2, and

(b) 0(Vj) < d-j-1, and

(c) UjA + VjB = Sj(A,B), and

(d) each the coefficient of Uj and Vj is the determinant of a minor of Sylj,o(A, B) obtained by

removing the last column of and one of its row.

P3
P4

q3 q2
q3

Po

Pi Po

qo
ql qo

qo

q4j

P2

P3
P4

q2

q3

P2

P3
qi
q2
q3
P2
q,
q2

q1

Po

P2

qo

q2

Po
pi

qo
qi
P0

Po0

Syll,o(P, Q) =

P4

q3

[P4
Syl2,0 (PQ) = q3

Po0piP1

qo
q1

p2

q2

Syl3,3 (P, Q) = [q3]-

Proposition 5.2. Let A and B be two real polynomials with d = D(A) > D(B). The subresultants

Sd, Sd-1, ... , So of A and B are either zero or similar to a polynomial in the polynomial remainder

sequence Ro, R 1 ,..., R, of A and B.

In particular, for any i such that 1 < i < w, let j = D(Ri), and k = D(Ri+l). Then,

Sj R, and Sj- 1 Sk ' Ri+. (5.2)

Furthermore, let sj = Sj[D], sj-1 i Sj1[0], and sk = Sk[D]. Then,

(a) Sk is given by

skSk j-1)-ks-1, (5.3)

(b) Se = O for all k < e < j -1, and

(c) Sk-1 is given by

Sk-1 -k+l ksj_ 1 S+ ()d- (UjVk-1 -Uk-1Vj)Sj-1l (5.4)s? s

5.3 Approach

We derive a worst-case upper bound on the MCP of the Euclidean algorithm by the following

three-step process:

1. Find an upper bound on how large can the error terms of coefficients of intermediate polyno-

mials can become as the stabilized algorithm evolves, assuming that the stabilized algorithm

follows the execution path of the exact algorithm.

2. Find a lower bound on the size of the smallest nonzero numerical value that arises during the

evolution of the exact algorithm.

3. Find a precision at and beyond which the upper bound in Step 1 never exceeds the lower bound

in Step 2. This precision is a converging precision, and therefore is greater than or equal to

the MCP.

The rationale behind this method is as follows:

1. The first place that the execution path of the stabilized algorithm differs from the execution

path of the exact algorithm must be at a conditional statement. In the Euclidean algorithm,

there is only one conditional statement that involves real numbers: the one in the while

loop in Line 2 of DEGREE. Other conditional statements, such as that in the while loop of

EUCLIDEAN or the if statement in Line 2 of REMAINDER, compare the degrees given out by

DEGREE to another constant. Hence, if the stabilized algorithm always branches correctly at

the while loop in DEGREE, then it follows the execution path of the exact algorithm.

2. The conditional statement discussed above involves testing whether a coefficient of a polyno-

mial is equal to zero. So, in the stabilized algorithm, it involves testing whether a bracket

coefficient that approximates the coefficient is equivalent to zero. According to Section 2.2, we

decide whether a bracket coefficient is equivalent to zero by testing if the error term is greater

than or equal to the absolute value of the approximate value.

3. Testing whether a bracket coefficient is equal to zero can give a wrong result only when the

bracket coefficient actually approximates a nonzero quantity, but its error term is so large that

the bracket coefficient is in effect equivalent to zero [11].

4. Therefore, if the precision is large enough so that no error term is larger than the smallest

numerical value that arises during the evolution of the algorithm, then any bracket coefficient

that approximates a nonzero value cannot be equivalent to zero. As a result, no equality testing

gives a wrong result, and consequently the stabilized algorithm follows the same execution path

as the exact algorithm.

5.4 General Bound

In this section, we derive an upper bound on the MCP of the Euclidean algorithm in terms of the

largest and the smallest values that can arise during the evolution of the Euclidean algorithm. We

assume a priori that T is larger than the MCP, so that the stabilized algorithm follows the execution

path of the exact algorithm.

In this section and the next section, we let:

* A and B be real polynomials such that D(A) > D(B) and B - 0.

* M is a positive constant that is larger than the absolute value of any coefficient of any inter-

mediate polynomials in the exact computation.

* m is a positive constant that is (1) less than or equal to one, and (2) less than or equal to the

absolute value of any coefficient of any intermediate polynomials in the exact computation.

As a convention, if a is a variable in the exact version of EUCLIDEAN, then [[a] is the corresponding

bracket coefficient in the stabilized version (see Section 3.3). For example, ý[A and [B] are the inputs

of the stabilized version, and [R 2] corresponds to the polynomial R 2 = REMAINDER(RO, R 1) in the

exact algorithm. According to the convention in Section 2.2, a bracket coefficient approximates the

exact variable it corresponds to. This convention is appropriate in our case because we assume that

the stabilized algorithm follows the execution path of the exact algorithm. Thus, for example, since

A)I x A and I[B] B, then JR 2] also approximates R 2 because 1R 21 is computed from [A) and

I[B]
As another convention, if the input to a procedure are bracket coefficients, then we mean running

the stabilized version on the bracket coefficient input; otherwise, we mean running the exact version

on the exact input. For example, EUCLIDEAN(A]I, [B]) means running the stabilized version of the

Euclidean algorithm on bracket polynomials [A] and [B], and EUCLIDEAN(A, B) means running

the exact algorithm on exact polynomials A and B.

We now proceed with Step 1 of the method outlined in the last section. The following lemma

gives a bound on the error terms of the output of REMAINDER.

Lemma 5.3. If

(a) [A[k]] > 2 1-rA[k] and [B[k]] 21-'rB[k] for all k,

(b) e is a constant such that LA[k]] • E and LB[k]] < e for all k,

(c) T 1,To, To, ... , TO(A)-'(B) are as in the pseudocode of REMAINDER(A, B),

(d) r > 5 and is greater than the MCP of the Euclidean algorithm,

then

[Tr[k]] < (56M)b(A)-D(B)-re

for all relevant r and k. In particular, if IC] = REMAINDER([A), JB]), then

LC[k]] < (56M)d(A)-D(B)+16.

Proof. The proof is by induction on r. For the base case, r = 0(A) - 0(B), we have that [Tr[k]] =

LA[k]] < e = (56M)oe for all k. Next, we assume that the lemma is true for some r < D(A) - O(B).

For 0 < k <0 (Tr), we have that, by Line 6 of REMAINDER,

ITr-l[k]] = ITr[k]] - ITr[rIIJ[B[k - r]].

Using Lemma B.1, we have that

LTr_1[k]] 5 7max { [Tr[k]], [Tr[r]B[k - r]] }

< 7 max { [Tr[k]], 8 max{ ITr[r] i, IB[k - r] } max{ [Tr [r]], [B[k - r]]}}

< 7 max {(5 6M)D(A)-D(B)-r, 8 M(56M)b(A)-D(B)-re}

< 56M (56M)"(A)-D(B)-re < (56M)O(A)-D(B)-r+1e.

By induction, the lemma is true for all -1 < r < O(A) - Z(B). The inequality involving the error

terms of ICO follows from the fact that C = T_ 1.

The following lemma gives a bound on the error terms of the output of EUCLIDEAN.

Lemma 5.4. If

(a) [A[k]] > 21-rIA[k] and LB[k]] Ž 21-TIB[k]| for all k,

(b) e is a constant such that [A[k]] < E and [B[k]] < e for all k,

(c) Ro0, R 1, ... , and W 2, W 3, ... , are as in the pseudocode of EUCLIDEAN(A, B),

(d) 7 is greater than 5 and the MCP of the Euclidean algorithm, and is large enough so that

[Ww+2[0]l < IWw+ 2[D]I/4 for all w > 0,

then

48W(56M)o(Ro
)- D(R,)+2w

LR-[k]1 •m3w

for all w > 0 and for all k. In particular, if [IG = EUCLIDEAN(fAI, [B1), then

4 8 0(A) (5 6 M)3D(A)

LG[k]] •< m3D(A)

Proof. The proof is by induction on w. There are two base cases: w = 0 and w = 1. For w = 0, we

have that, for all k,
480(56M) (Ro)-O(Ro)+o[Ro[k]3 < E-= 0 .

For w = 1, recall that J[W2] = REMAINDER(Ro], ýR 1]). Since the error term of every coefficient

of both [IRo] and [Rij is bounded above by e, we have that, by Lemma 5.3,

LW2[k]1 < (56M)ý(Ro)-D(Rl)+1E.

for all k. Hence,

R2[k]] = W2[=I 1W2[k] - 1
W2 [D]

< 8max {W 2[k], W] max {ýW 2[k]~ , [-0LW }w2[-] W2
M< s- max [W2[k]]
m

1

W2[Z]

Since we assume that T is large enough so that LW2 [k]] < IW2[k]1/4 for all k, we can use Lemma B.1

to deduce that

S6 W2[k]2
6(56M)

D (Ro)-D(R1
) + 1

-2m

Therefore,

M ax (56M)D(R°)-D(Rj)+j6, 6(56M)"(Ro)-O(Rj)+1
[R 2[kll 5 8- max (6M)() ((56M)(o)R+ +}

m m

48(56M)O(Ro)-D(Rj)+2
m 3

We have proved the case where w = 1, and established the two base cases.

As for the induction hypothesis, assume that, for some w > 1, the statement is true for w - 1

and w. Namely,

48" (5 6 M) D(R o)- Z(R w)+ 2w
[Rw,1[k]] < -3w 6,

and

48w(56M)a(Ro
) - O(Rw)+2w

Consider the bracket polynomial [Ww+ 21] = REMAINDER(I[Rw, [Rw+1]). By Lemma 5.3 and the

previous two inequalities,

4 8w(5 6 M)b(RO)-D(Rw)+2w
LWw+2[k]] < (56M)D(R)-b(RwRt)+1

for all k. Hence,

LRw+ 2[kl] = Ww+2 [k] w+2[k 1

< 8max Iw+ 2[k], w +2 max [Ww+2[k]], [W 1 [~]
M 1

< 8- max [Ww+ 2 [k],
m LWw+2[]I

Again, by our assumption that T is large enough, we have

48W(56M) D(Ro) - - (Rw+ l)+2w+1 6 -4 8 (56 M)D(Ro)- D(Rw+1)+2w+ l[1 1 W]
6Ww+2[1 2

Therefore,

[R+2[k]]_ 8m max 48"(5 6 M)D(Ro)-O(Rw+1)+2w+1

48"1 (56M)a(Ro)°(R 1)+2(w+1)

6. 48W(56M) O(RO) - D(Rw+ l)+2w+1}

, m3w+ 2

6<

48W- 1 (5 6 M) D(R o)- D(R w_ 1)+ 2(w - 1)

[R,[k]] m3(w-1)

C'.°

Thus, by induction, the statement is true for all w > 0. The bound on the error terms of coefficients

of [G] follows from the fact that there can be at most O(A) + 1 polynomials in the PRS, so

w < D(A). O

A bound on the MCP and the MSSP of the Euclidean algorithm in the case where coefficients

of the input polynomials can be any real number is given in the following theorem:

Theorem 5.5. Let d = 0(A). Then, the MCP and the MSSP of REMAINDER(A, B) is

O(d(log M - log m)).

Proof. Recall that EUCLIDEAN([IA, [BI) follows the execution path of EUCLIDEAN(A, B) if none of

the error terms of any intermediate quantity generated during the computation of EUCLIDEAN([A . BI)

exceeds the absolute value of the smallest nonzero intermediate quantity generated during the com-

putation of EUCLIDEAN(A, B).

Lemma 5.4 implies that the error term of any intermediate quantity generated during the com-

putation of EUCLIDEAN(JAý,, B]D,) does not exceed

4 8 0(A) (5 6 M)3D(A) . 4 8 (A)(5 6 M)3D(A)
3E(, max {A[k],B[k]} < 2-'M

m 3 0(A) O<k<(A) - m 3 (A)

4 80(A)(56M) 3D(A) + 1 2_

m 3 Z(A)

if T is large enough so that EUCLIDEAN(JAj,, JB],) follows the execution path of EUCLIDEAN(A, B),

and that LWw+2[011 < IWw+2[D]I/4 for all w > 0.

Setting
4 4 8Z(A)(56M)3Z

D(A)+1
7 = log 2 = O(d(log M - log m)),

we have that no error term exceeds

48D(A) (56M) 3 D(A) + 1 m 3 D(A) + 1 m

m3D(A) 4 -48(A)(56M)31(A)+1 4

Since, by definition, m is less than or equal to the absolute value of any non-zero intermediate quanti-

ties generated during the computation of EUCLIDEAN(A, B), we have that EUCLIDEAN([IAI, [B]•)

follows the same execution path as that of EUCLIDEAN(A, B). Additionally, [Ww+2[_0] < M <

IWw+2 [?]1/4 for all w > 0. Therefore, the value in the statement of the lemma is greater than or

equal to the MCP of EUCLIDEAN(A, B).

Moreover, since no the error term of the output exceeds the absolute value of the smallest

coefficient in the output, we have that EUCLIDEAN([A]D, JB],) has the same support as that of

EUCLIDEAN(A, B). Thus, the value also gives an upper bound for the MSSP as well. EO

5.5 Domain-specific Bounds

The bound in Theorem 5.5 is not very useful because it involves M and m which are quantities

that are hard to determine. However, it is possible to derive simpler and more useful bounds if we

restrict the domain of coefficients to sets where exact computation can be carried out. To this end,

we derive, in this section, simpler bounds on the MCP and the MSSP in cases where coefficients of

the input polynomials are from the sets Z[(] and Q[ý], where (is a real algebraic integer not equal

to one.

Consider the computation of REMAINDER(Ri, Ri+1) for some i. Let j = D(Ri) and k = D(Ri+,).
and Ri+S = =J-1Then, Proposition 5.2 tells us that Ri = _= = and Rs - and

i]Sj s 5

-- 1)j-k+lsks A[(i]2 -
Sk-1 - 2 Sij S + (--1)dJ ~ (UjVk-1 - Uk-lVj)Sj-l+

s s?

si 3

Sk-1 j-k+kS1 Ri + ()dA]2-1 (UjVk-1 - Uk-lVj)Ri+1s s-(--1)j-k+lsksj-Ri+(--) d- j 2-

(-1)j-k+ Sk-1 = Ri - (l 1)d-kA[o]2 Sk (UjVk-1 - Uk-iVj)Ri+1.
SkSj-1 S

In other words, the LHS of the above equation is the remainder of dividing Ri by Ri+i (because

Sk-1 has degree lower than that of Ri+1), and the quotient of the division is given by

quo(Ri, Ri+1) = (-1)d - k A [o]2 s k (UVk-1 - Uk-lVj). (5.5)

Moreover, the sequences of polynomials T_1, To, ... , TD(R%)-O(Ri+l) that arise during the compu-

tation of REMAINDER(Ri, Ri+1) satisfy the following equation:

Tr = Ri - quo(Ri, R+l 1)[r + 1 : D] . Ri+l

= - quo(Ri, Ri+l)[r + 1 :0] Sj1 (5.6)sj Sj-1

= _l (sS - s -quo(Ri, Ri+1)[r + 1:- S1

for any r such that -1 < r < O(Ri) - D(Ri+l). Using (5.5) and (5.6), we can fine simple bounds

for M and m when all coefficients of A and B belong to: Z[~]((N)), and Q[6]((N)), where N is

a positive integer, and thereby can plug the bounds into the formula in Theorem 5.5 and obtain

simpler bounds for both the MCP and the MSSP.

For the rest of this chapter, let d = D(A). Let n be 6's degree, and let g(x) = n + EClo cixi

be 6's minimal polynomial. Let C be a positive integer such that Icil I C for all i. Lastly, for

real polynomial P, we define the oo-norm of P, denoted by IIPIoo, as maxo0i<j(p) IP[i]I. That

is, IIPlloo is the absolute value of the coefficient of P that is farthest away from zero. Obviously,

we can and will take M to be the maximum oo-norm of polynomials intermediate generated by

EUCLIDEAN(A, B).

Theorem 5.6. If all coefficients of A and B belong to Z[(]((N)), then the MCP and the MSSP of

EUCLIDEAN(A, B) is O(d 2 log N).

Proof. First, we find an upper bound on M. Consider (5.5). By Proposition 5.1, we have that Uj,

Vk-1, Uk-1, Vj, Sj, Sj_1, and Sk are polynomials whose degrees are at most d and whose coeffi-

cients are determinants of submatrices of Syl(A, B). Thus, Lemma A.9 implies that any coefficient

of the four polynomials are members of Z[(] (((2C)O(nd)(ndN) O(d))). Consequently, the o0-norms of

these polynomials are at most

n-1 n-1

E (2 C)O(nd) (ndN)O(d) •lk < (2 C)O(nd)(ndN)O(d) E Ijlk
k=O k=O

= (2C)o(nd) (ndN) (d) I 1 ()

= O((2C)O(n) (ndN)O(d))

Thus, we have

IIsy quo(R, R~+il) o = l(-1)d-k A[]2sk(UjVk-1 - Uk-lVj)1 o

= IA[D]2 . ISkl IIUjVk-1 - Uk-lVjiloo

• IA[Do] 2 ISk (Ujli001llVk-111 + IIUk-llollVjljoo)
n--12

(N 1 k)- 2(O((2C)o(nd)(ndN)O(d))

k=O

= 0((2C)O(nd) (ndN)O(d)),

and, consequently,

ITIlo = 1 sIS - sj -quo(Ri, Ri+1)[r + 1 : 0 Sj1
sjlj-1 00

1 -sj Ilsj - s - quo(Ri, Ri+l)[r + 1 : d] . S
IsjI1 sS--1

• 1 (s S |,00 - s -quo(Ri,Ri+1)[r + 1: 0 IS_|l lS-00)

< o1 ((2C) o(nd) (ndN) o (d)a

Lemma A.10 implies that Isj and I sj are greater than or equal to (2C)O(•dn 2)(aN)O(dn)

Hence,

IITr Ioo < ((2C)o(dn2)(dnN)O(dn) (1i -) l)n 20((2C)o(nd)(ndN)o(d)

= O((2 C)O(dn 2)(ndN)O(dn)).

Therefore, M = O((2C)O(dn2)(ndN)O(dn)).

Next, we find a lower bound on m. We claim that every coefficient of the polynomial

P = sj-1Sj - sj- quo(Ri, Ri+l)[r + 1: 0] .Sj-1

is a member of the set Z[] (((2C)O(nd) (ndN)o(d))). The justification of the claim is as follows: let

K = (2C)o(nd)(ndN)o(d)

1. As noted earlier, coefficients of Uj, Vk-1, Uk-1, Vj, Sj- 1, Sj, and Sk are members of

Z[6]((K)). This means that sj, sj_l, and Sk are members of Z[ý] as well.

2. By Lemma A.13, coefficients of UjVk-1 and Uk-1Vj are members of Z[J(((2C)o(n)(ndK)o(1))),

which is still equal to Z[] ((K)) because (2C)o(n)(ndK)o(1) = K. So, coefficients of the differ-

ence UjVk-1 - Uk-1Vj are members of Z[(]((2K)) = Z[ý]((K)) as well. Consequently, since

A[] E Z[(]((N)) C Z[(]((K)), we have that coefficients of (-1)d-kA[D] 2 sk(UjVk_1-Uk-1Vj)

are members of Z[ý]((K 4)) = Z[ý]((K)). Therefore, coefficients of sj - quo(Ri, Ri+) [r + 1: 0]

are members of Z[ý]((K)).

3. We can keep evaluating the set that contain all coefficients like in Item 2, and conclude that

every coefficient of P is also a member of Z[] ((K)).

By Lemma A.2, every nonzero coefficient of the polynomial has absolute value at least

1 (1 - 1ý n 1 (1- 1ý1n

no(n) (2C)o(n2)((2C)O(nd) (ndN)O(d))n (1-) -- (2C)O(dn2) (dnN)O(dn) (I - •

Thus, every nonzero coefficient of Tr has absolute value at least

1 1 1 n

Isj lsj - 11 (2C)O(dn))(dnN)O(dn) 1-i n)

1 1 (1- | ln
-O((2C)o(nd)(ndN)O(d)) (2C)O(dn2)(dnN)O(dn) 1- |n

1

0((2 C)O(dn 2) (ndN)O(dn))

So, we can take m = (C)

Plugging M and m to the formula in Theorem 5.5, we have that the MCP and the MSSP of

EUCLIDEAN(A, B) is

O(d(logO((2 C)O(dn2) (ndN)O(dn)) - log O((2 1)(d2)

SO((2C)o(dn2) (nd NO(dn)
= O(n 2 d2 (log N + log d + log C + log n)) = O(d 2 log N)

as claimed. O

The bound for the Q[ý]((N)) case relies on the following lemma:

Lemma 5.7. Let A and B be polynomials whose coefficients are members of Q[ý]((N)). Let S be

a square submatrix of Syl(A, B). Then, there exists an integer L < N 2nd such that L2d det S is a

member of Z[7]f(((2CndN)O(nd2))).

Proof. Let LA be the least common multiple of all the rational numbers in the coefficients of A,

and let LB be the same for B. Let L = LALB. Take L = LALB. We have that L < N 2nd, and LA

and LB are polynomials whose coefficients are members of Z[(]((N 2nd)).

Let S be of size £ x £, and let S' be the corresponding submatrix of Syl(LA, LB). We have

that S' = LS, so det S' = Le det S. Consequently, L2d- det S' = L 2d det S. Since entries of S'

are members of Z[(]((N 2 nd)), we have that det S' is a member of Z[(](((2C)o(en)(n.)o(e)No(de)))

by Lemma A.9, which implies that it is also a member of Z[4](((2CndN)o(nd2))) because £ < 2d.

Lastly, because L2d- e = NO(d2), we have that L 2d det S is a member of Z[{]1(((2CndN)O(nd2))). E]

Theorem 5.8. If all coefficients of A and B belong to Q[(]((N)), then the MCP and the MSSP of

EUCLIDEAN(A, B) is O(d3 log N).

Proof. For M, we can argue that |sj- 1Sj - sj - quo(Ri,Ri+l)[r+ 1 :] Sj-1 is of order

O((2C)O(nd)(ndN)O(d)) using the argument in the proof of Theorem 5.6. Now, Lemma A.11 im-

plies that both ssjI and Isj_l| are greater than or equal to (2CndN1o(d2n2) 1• Therefore,
1 O((2CndN)o(d27 2)) , and consequently

IlTrIIo = lsj-Sj - sj. quo(Ri,Ri+l)[r +l :0] Sj-lll

= O((2CndN)O(d2 2)) - 0((2 C)O(nd) (ndN)o(d))

= O((2CndN)O(d2 n2)).

Thus, we can take M = O((2CndN)O(d2 n2)).

For m, let L be the integer in Lemma 5.7. We have that

1Tr = S j- Sj - sj -quo(Ri, Ri+1) [r + 1 : 0] -Sj- 1)

j1 (Sj_1Sj - ((-1)d-kA[]2Sk(UjVk-1 - Uk-V)) [r + 1 •]Sj-1)ss j _1

1 L4d (L2dSj_1)(L2dsj)

- ((-1)d-kA[]2(L2dSk)((L2duj)(L2dVk-1) - (L2dUk-1)(L2dVj))) [r + 1: 0]. - (L2dSj_ 1)).

Because the coefficients of Uj, Vk-1, and so on are determinants of submatrices of Syl(A, B),

we have that L 2dUj, L 2dVkl, and so on are polynomials whose coefficients are members of

Z[7] (((2CndN)O(nd2))). Using an argument similar to that in Theorem 5.6, we can deduce that

Tr = 1 d (a polynomial whose coefficients are members of Z[7]f((2CndN)O(nd2
)))).

Sj j1 L8d

By Lemma A.3, every coefficient of the big polynomial on the RHS has absolute value greater than

or equal to

1 1-) n _ 1 1-_,)
no(n)(2C)o(n2)((2CndN)o(nd2))n \1 • n (2CndN) (n 2 d 2) I j"

Since Isjl and Isj_l1 are of order O((2C)o(nd)(ndN)o(d)), and LSd = O(NO(nd2)), we can take

1 1 1- l n
M =

O((2C)o(nd)(ndN)O(d)) . O(NO(nd2)) (2CndN)O(n2d2) 1 - Jn

1

O((2CndN)o(n2d2))

Plugging M and m to the formula in Theorem 5.5, we have that the MCP and the MSSP of

EUCLIDEAN(A, B) is

6 (d(log O((2c ndN)o(d2n 2)) - log O((2CndN)o(n2d2) (ndN)O(dn)
= O(n 2d3 (log N + logd + log C + log n))

= O(d3 log N)

as claimed. O

Chapter 6

QR-factorization Algorithm

In this chapter, we study the QR-factorization in the context of the Shirayanagi-Sweeedler stabi-

lization technique, and find upper bounds on MCDP and the MSSP of the the QR-factorization

algorithm. After we describe the QR-factorization algorithm in Section 6.1, we proceed with the

approach outlined in Section 5.3, determining an upper bound on the largest numerical value that

can arise during the evolution of the QR-factorization algorithm in Section 6.2 and Section 6.3.

Then, we use the results of the two sections to bound the MCDP in Section 6.4, and the MSSP in

Section 6.5.

6.1 The Algorithm

The algorithm first forms the Sylvester matrix of the input polynomials. If P = po +Plx+... +pkxk,

and Q = -I- qix + lx+ . + qExe, then the Sylvester matrix of P and Q, denoted by Sylvester(P, Q),
is the matrix:

Pk-1

Pk

qe qe-1

"'." P1

Pk-1

Pk Pk-1

t~lD "1

qe qe-1

... ... Pi Po

q, qo
Y

k+£

(the Sylvester matrix is very similar to the Sylvester-Habicht matrix, but not exactly the same).

The algorithm then performs QR-factorization on the Sylvester matrix, and the last nonzero row

of the upper triangular matrix R gives the coefficients of the GCD. Proofs of correctness of this

algorithm can be found in [3] and [7]. The pseudocode of the algorithm for finding GCD is given in

Figure 6-1.

QR-GCD(A, B)

1 A Sylvester(A, B)
2 R ~ HOUSEHOLDER-QR(A)
3 i + D(A) - D(B)
4 while R[i, i] = 0
5 doi +-i- 1

6 return E(A)+T(B)-i+1 R[i, j]XZ(A)+D(B)-1 - j

Figure 6-1: Pseudocode of the main algorithm.

Our QR-factorization algorithm is a slight variation of the Householder QR algorithm given in

[5]. Unlike the algorithm in [5], our HOUSEHOLDER effectively produces a permutation matrix P

that swaps Row j with a row under it, and a Householder reflection Q that zeroes out elements under

the main diagonal in Column j of PA. Moreover, elements on the main diagonal of the resulting

triangular matrix R can either be positive or negative, but the algorithm in [5] always produces

R such that all of its diagonal entries are nonnegative. Clearly, our version of HOUSEHOLDER still

gives a correct QR-factorization although the factorization might be from those given by other

implementations. The pseudocode of the QR-factorization is given in Figure 6-2.

The QR-factorization algorithm is degree-aware because the degree of the GCD determines the

numbers of iterations it has to go through the loop on Line 5 to 7 of QR-GCD. Therefore, its MCP

is not computable.

6.2 Error Analysis of Householder

The undefined variables in the following lemma are local variables of HOUSEHOLDER.

Lemma 6.1. For any j, let x denote the vector A[j .. . m, j]. If LA[i, j]] < ellxl for all j < i < m and

for some constant e such that 2 -' < e < 1/O(m 2), then, after HOUSEHOLDER runs to completion,

the followings are true:

(i) Lv[ij] = O(meI|vI|) for all 1 < i < m - j + 1, and

(ii) L31 = o(m2e3).

Proof. Since al = Ilx112 = X -x, we have L[ll = O(mCllxlI 2) by Lemma B.9.

If IjxII = 0, then HOUSEHOLDER returns 3 = 0, and there is nothing to analyze in this case.

If IIxil 7 0, then the comparison [oul] C 0 in Line 2 of the stabilized algorithm will always results

in branching to Line 4. The reason is that e < 1/8(m2), so Lol] < X(2•x1 < X1Ix2 if m is

HOUSEHOLDER-QR(A)

> A is a matrix of dimension m x m.
1 Al-A
2 for j- 1 to m
3 do (vj, Oj) +- HOUSEHOLDER(Aj, j)
4 Aj+ - Aj
5 if -= 0
6 then continue
7 for i -- j to m
8 do c +-- 0
9 for k - j to m

10 do c -- c + vj[k -j + 1]Aj[k,i]
11 for k - j to m
12 do Aj+l[k, i] -- Aj [k, i]-

2p,3cvj [k - j + 1]
13 return A,

HOUSEHOLDER(A, j)

1> A is a matrix of dimension m x m, and 1 < j < m.
1 al +- E=jA[i,j]2

2 if al = 0
3 then 3 +- 0
4 else for k +- j to m
5 do if A[k, j] 0
6 then break
7 for i +- j to m
8 do Swap A[j, i] with A[k, i].

10 v - A[j ... m, j]
11 if A[j,j] < 0
12 then v[1] *- A, j] -p
13 else v[1] -A[j,j] + i
14 L2 4- IVI! 2

15 /3 4 1/C 2
16 return (v, 3)

Figure 6-2: Pseudocode of the QR-factorization algorithm.

sufficiently large. Therefore, (al) > Ixll12 - Lall Ž IIx112/2 > [all, and the faulty branching does

not occur.

We next bound the error term of the output in case Ilxll # 0. The loop in Line 4 to Line 6 is

guaranteed to find one value of k such that [A[k, j]f % 0. The reason is that, if Ilxil = 0, then not

all of A[k,j] can have absolute value less than I|IXl/vf . Let k be an integer such that k > j and

IA[k,j] Ž> IIxll/v-i . Then,

i(A[k,j])l Ž IA[k,jll - LA[k,j]] > eiiXII =m) IIII> xl LA[k,j]].
/i E(m)2

Note, though, that the stabilized version of HOUSEHOLDER might not find the same k as the exact

algorithm. However, we do not care whether it is the case or not.

By Lemma B.4, we have that [p] = O([all/lx) = O(mellxll). So, after Line 13, by Lemma B.2,

[v[1]l = O(LA[j, j]] + L[p + e v[1]) = O(e v|I + mE|cHvI + elIv l) = O(mclvII).

Similarly, for any 2 < i < n - j + 1, we have Lv[i]l < E|x = O(mellvII). We have proven (i).

Thus, by Lemma B.9, LU21 = O(m(me)[Ivll 2) = O(m 2e- 2). Since e < 1/0(m2), we can choose a

constant for the O(m 2) high enough so that LU21 < a2/4. So,

L[l = up, 02>(> -L21)

((1 + 2-'+)(Lo2 + 2(1 + 2-)
(1 - [0L21)+(U2 - 2L[21)

• (1 + 2--r) (M2EcT2) + O(E)((92/2)(02/2) 2o•2

= o(m2(92)-1) = O(m2 3).

We have proven (ii). Ol

6.3 Error Analysis of Householder-QR

We now analyze the growth of the error terms of variables involved in HOUSEHOLDER-QR. The

variables in the following lemmas are local variables of HOUSEHOULDER.

Lemma 6.2. Let M = max{1, maxk,e{ Al[k, f] }}. Let j be an integer between 1 and m, inclusive.

Let xj = A[j ... m, j]. Let E be a constant such that 2-' < E < 1, and such that LAj[k,e]l]< eIlxjll

for all k,e. Then, [Aj+l[k,e]] <_ O(m 3 Me) for all k,f.

Proof. Consider Line 3 of HOUSEHOLDER-QR. If fj = 0, then no elements of Aj+i are different

from the corresponding elements of Ad.No error terms increase, and we are done.

If Ofj = 0, then the loop from Line 7 to Line 12 reflects each column of Ay by the Householder

reflection calculated by HOUSEHOLDER. Consider a particular iteration of this loop. The value c

calculated by the loop in Line 9 to 10 is the dot product of A j [... m, j] and vj. Let us denote

Aj [j m, i] by u. Then, using Lemma B.7 and, we have

Lcl = O(Lul • Lvjl + lul- Lvl + !vjl - [u] + 21-'mlui Ivj1)
= O(Lul -[vjl + uIvjl + Ivj Lul + Ellmullvjl).

Since each element of Lul is bounded above by Ellxjll 5 llvjll, and Lemma 6.1 implies that each

element of [vj] is O(mE lvj l) , we have that

m-j+1

[u] Lvjl = u Lu[ill Lv[il < m(e[llvj)O(mellv j I) = O(m2E 2 11vj~ 2),
i= 1

and

[c] = 0 (m2 v j112 + IuIl(mellvj 1 1) IE vmUlll(jV •l I I).

Because Aj = QA 1 for some orthogonal matrix Q, the length of Aj [*, i] is equal to the length of

AI[*, i]. Therefore, IIuII1 < xivlIUII < v-ii[Aj[*, i]II = V/- A,[*, i]II <5 mM. Similarly, Ilvjj 1 < mM.

Hence,

d1 = o(-•2E21 VjI12 + M2M2vll~jlj + MEIIVj l + mTnMnllvjll)
[c] = O(m212V 2 2Me v + McI v + m Me!IvjIj)

= O(m%2 21vj112 + m2Mjllvj l).

Since |lvj3 I < •VM, and E < 1/E(m 2), we have [c] = O(mV-Mellvjl I+m 2 ME llvj l) = O(m 2ME llvj).

Consequently, by the fact that c = u vj < v/MM Ivj and Lemma B.3,

[Ljcl = O(L] [Lc + Ij IL[c] + L11i c I+ Ec l ci)

= O((m 2efj)(mMelvi Il) + f3j(mMIlvjl) + (m2Ep•)(V/MlvIjll|) + E3j(MMIIv ll))

= O(m 3ME ljjvjl),

and so [2j c1 = O(3M'M3 llvj ll) as well.

Let 7r = 2fjc. For k such that j < k < m, let Pk = vj[k - j + 1]. We have

Lw kl = O(L[1Lx[] + 1-ILL vk + (•lL[7l + E711pkl)

= O((meIlvj I)(m3 Me3 vlljll) + (3 v'~YM1Vj l)(mEl Vj)

+ Ivj II(m3 MAej Ilvj) + E(Mj xV'MIIvj I)llvjll)

= O((m 4 e + m3)M 3j Ivj 112) = O(m 3Mc/3jllvj I) = O(m3 Me).

Lastly, consider the calculation in Line 12. We have that, for any j < k < m and for any j < i < m,

[Aj+ [k, i]] = O(LAj [k, i]l + •k] + clAj+l [k, i]l) = O(EIIXjl1 + m3 ME + eVmM)

= O(m3 ME)

as required.

In other words, the error term of every element in the submatrix Aj increases by at most a factor

of O(m 3M)
Ixy 112

Corollary 6.3. Let -y be such that [Ax[k,f]] < -y for any k, . Let j be an integer such that

1 < j < m + 1, and ||xjJ 0. Let e be such that 2-' < E < 1/O(m 2). Let xi denote Ai[i ... m, i].

If, for all i such that 1 < i < j and IIx 1 #0 , it is true that [Ai [k, f]] < e|•xi 1, then

O(m3M)J- 1

LAj[k,]-< l<i<j Ixill
SIx,•I o

for all k, f.

Proof. By induction on j. O

6.4 The MCDP

Consider the procedure QR-GCD. QR-GCD gives a polynomial whose degree is less than the exact

GCD if lR[i, i]f is not equivalent to zero for some i > D(A) + D(B) - D(gcd(A, B)). The following

lemma states that this cannot happen if HOUSEHOLDER does not branch off incorrectly at the if

statement in Line 2.

Lemma 6.4. Let A and B be real polynomials. Let A = Sylvester(A,B), and let r be the rank

of A. If, in the first r times HOUSEHOLDER is called during the execution of the stabilized version

of HOUSEHOLDER-QR on JAl, it is true that HOUSEHOLDER never decides that oal]•u 0 at the if

statement on Line 2, then all elements in all rows below Row r in the output of HOUSEHOLDER-QR

are equivalent to zero.

Proof. The Sylvester matrix A has the property that, if A = QR is the QR-factorization of A, then

R[1, 1], R[2, 2], ... , R[r, r] are not zero, and the remaining 0(A) + D(B) - r rows below are all zero

rows [3]. Hence, the exact computation must apply r orthogonal transformations to A in the first r

iterations of the main loop of HOUSEHOLDER-QR. After that, the exact computation will not apply

any other transformations, and the return value is equal to Ar+1.

Assume then that the stabilized HOUSEHOLDER never decides lall 2 0 in the first r times it is

called. The assumption implies that the stabilized version also applies a transformation to A in each

of the first r iterations of the main loop as well. It follows that any elements in Row r + 1 to Row

-(A) + (B) of A,+1 must be equivalent to zero because r transformations are applied just like in the

exact algorithm. After that, the stabilized algorithm will also not apply any more transformation,

and return the matrix Ar++I]. O

Note that the above lemma only requires that the stabilized algorithm does not branch incorrectly

at the if statement in Line 2 of HOUSEHOLDER. Whether it branches like the exact computation

does at other if statements (such as those in Line 5 or Line 11) or not does not matter at all. Thus,

in order to bound the MCDP, it is sufficient to find a bound on the precision at and beyond which

no faulty branchings at the if statement in Line 2 occur.

Theorem 6.5. Let A and B be two real polynomials whose coefficients have absolute values not

larger than M E R. Let d = ;(A) + b(B), and let A = Sylvester(A, B) be the Sylvester matrix of the

two polynomials. Let r be the rank of A, and let A = QR be the QR-factorization of A computed by

HOUSEHOLDER-QR. If

r = Q (d(log d + log M) - log IR[i, i ,

then the matrix [R] returned by the stabilized HOUSEHOLDER-QR with input [A], has the following

properties:

(a) JR] is upper triangular, and Row r is the last nonzero row of R.

(b) limr__o E-r (R[r, d - i])xi = R[r, r] gcd(A, B). (Here, gcd(A, B) is monic.)

In other words, the MCDP of the QR-factorization algorithm is 0 (d(log d+log M) ->E r log IR[i, i] .

The proof of the theorem relies on the following lemma:

Lemma 6.6. There exists a constant C such that, for any j such that 1 < j < r, if

2-'< . IR[i,ijl)2
AO(d2(CdbM3)r)

then

[Aj[k,e]] 5 A IRj, j]
8(d 2 (Cd3M)r-j+l)

for any constant A, and for any 1 < k, e < d.

Proof. We choose C to be the the constant of the function O(m 3 M) in Corollary 6.3. Note that, in

Corollary 6.3, l1xill = IR[i,ill for all i, and I l<i<j l|xiil = j1j-l R[i,i] because the first r diagonal
Ilxifll$o

entries are nonzero.

The proof is by strong induction on j. For the base case, j = 1, we have that

[A1[k, e]] = e((Al[k,e])) 5 2-(1 + 2-')Al[k,]

r il) 2MIl=, |R[i,i]|)2
< 8 (d2(Cd5M3)r) 2M

R[1, 1] I-1i [R[i, illj 1, IRRi, ill 2M
SA (d2(Cd3M)r) (dM)r (dM)R- 1 dM

R[1,1]
e (d2(Cd3M)r-l+l)

The last line follows from the fact that IR[i, i]| 5 IIA[*, i]il 5 dM. The base case is established.

Suppose, for some 1 < j < r, the claim is true for all i such that 1 < i < j. We have that, for all

such i,
R[i, i]

[Ai [k, f]] < A
O(d2(Cd3 M)-i+).

Setting y = 1/O(d 2 (Cd3M)r-i+l), we have that E < 1/1(d 2). Hence, by Corollary 6.3,

(Cd3 M)J
L[Aj+[k, f]] < A I l [Al[k, f]]

i= JR[i, i]
(Cd3M)I (jj, I R[i, i])2

l- =1 R[i,i]f O(d 2 (Cd5M3)r)

(Cd3 M)j j+j + 1 IR[i, i]
<A (R[j + 1,j + il.E(d2(Cd3M)r (dM) 2r

< R[j +1,j + 1]|
EO(d2(Cd3M1)r-j •

Thus, the lemma is true for all 1 < j < r. O

Proof. (Theorem 6.5) We set 7 so that 2-' is less than the quantity specified in Lemma 6.6 with

A = R[r, r]/(dM). With this, T = O(d(log d + log M) - E= log JR[i, il). We have that no faulty

branching at the if statement in Line 2 of HOUSEHOLDER can take place because [A, [k, f]] < IR[JJ]I

for all 1 < j < r. This implies that r transformations are applied, and all elements below ýR[1, 1] ,

JR[2, 2]] ., .. , R[r,r] are equivalent to zero. Moreover, Lemma 6.4 implies that all rows of [IR

below Row r are zero rows. Therefore, [R] is upper triangular.

Lemma 6.6 and Corollary 6.3 together imply that ýR[r,r] is not zero because [R[r,r]] < A-

e(d 2 (CdM)) Rr] Cd < dJ
R [r r]d So, Row r is the last nonzero row of R. We have proven (a).

In the exact algorithm, the polynomial E od R[r, d - i]x i is similar to the GCD of A and B.

Therefore,
d-r

Ad+ [r, d - i]xi = R[r, r] gcd(A, B).
i=0

The Shirayanagi-Sweedler stabilization technique then implies that Row r of [[R will converge to

Row r of R, and (b) follows as a result. O

The theorem states that, if r is greater than the value indicated, then the QR-factorization of

the Sylvester matrix will yield a polynomial with the same degree as the GCD of the two input

polynomials. Moreover, the absolute error of every term is less than R[,r]. This means that the

leading coefficient of the GCD given by the stabilized algorithm is a good approximation of the

leading coefficient of the exact GCD.

6.5 The MSSP

The output of QR-GCD(I[A],, [B],) has the same support as gcd(A, B) if and only if, for all entries

R[r, i] such that R[r, i] 5 0, we have that [R[r, i]l is not equivalent to zero. We can use Lemma 6.6

to bound the MSSP in terms of the smallest non-zero coefficient of the GCD as follows:

Theorem 6.7. Let y be the non-zero coefficient ofgcd(A, B) with the smallest absolute value. Then,

the MSSP of the QR-factorization is O(d(log d + log M) - log ILI - E', log IR[i, i 1).

Proof. We use Lemma 6.6 with A = IR[r, r]|L. This choice of A gives 7 = O(d(logd + logM) -

log I|p - E•Z= log IR[i, ill) as claimed. By Lemma 6.6, we have that

RR[r [r, r] Cd3M IR[r, r],l
Rr,(d2(Cd3 M)) IR[r,r]l - (d3 M)

for all i. So, if the coefficient of xk of gcd(A, B) # 0, then

RIR[,[r, d - k]I < | R[r,r]gcd(A,B)[k]l
r(d 3 M) - e(d 3M)
IR[r,d- k]l

< (d-M) < I(R[r, d - k])l.
if d is sufficiently large. Therefore, no non-zer(dM)

if d is sufficiently large. Therefore, no non-zero coefficients are rewritten to zero. 0

Appendix A

Bounds on Algebraic Numbers

In this appendix, we prove a number of statements giving lower bounds on the absolute values of

algebraic numbers and determinants of matrices whose entries are algebraic numbers. These bounds

facilitate the study of the MCP of the Euclidean algorithm in Chapter 5.

Throughout this chapter, we let (5 1 be a real algebraic number of degree n, and let N be a

positive integer. Additionally, let g(x) = xn + cnl x-1 + -
... + clx + co be its minimal polynomial,

and let C be an integer such that C > I ci for all 0 < i < n.

A.1 Elements of Z[7]((N)) and Q[(]((N))

Lemma A.1. If ao, al,...,an,- E Z and J = ao + al +... + a 1 n- 1 , then, for all i and for all

k > n, we have Jail < 2 k-nCk-n + l for all i.

Proof. The proof is by induction on k. For the base case, k = n, the claim is trivially true. Assume

now that the claim is true for some k > n. Consider

(k+1 k x ý = (a0 + alj - - + a n-1 ý nl) x = a0~ + al +... + an-2 - + 6n-1 n - 1n

= ao6+ a6+ + -+ an-2 n i- an-(Co + 16 - + cn-1n-1)

= -an-ico + (ao - an-ici) + - - - + (an-2 - an-lCn-1) n - 1 .

We have that lanicol < (2 k-"Cn-k+1)C < 2 k-n+lCk-n+2. Moreover, for any 1 < i < n - 1,

lai-1 - aicil 5 ai-a1 + laasic 2k-nCn-k+1 ± 2k-ncn-k+1C < 2 k-n+lcn-k+2

By induction, the lemma is true for all k > n. E

Lemma A.2. Let ao, al,...,a- 1 E ((N)). If ao - alý - a2
2 ... - an-l~

n - 1 0, then

a0-a -a2 -... an- n - (2C)o(n2)(nN)o(n) K1 - I|
n

Proof. Our proof follows the one outlined in Page 161 of [6].

Consider Z[ý] as a module on Z with basis {1, , 2,... , n-1}. That is, we represent the element

bo + b16 + b2
2 + - -- + bn- 1_n - 1 as the column vector (bo, b,... , bn-1)T. Let X be the matrix that

represents multiplication by 6. Then, Xk is the matrix that represents multiplication by 6k, and

the jth column of Xk is the column vector that represents 6k+j-1. So, the last column of Xk is the

column vector that represents (k+n-1. If k + j - 1 < n, then each entry in the jth column of Xk is

either 0 or 1. Otherwise, by Lemma A.1, each entry of the jth column is bounded above in absolute

value by 2 (k+j-1)-nC(k+j-1)-n+l < 2 (k+n-1)-nC(k+n-1)-n+1 = 2k-1C
k . Hence, we can say that

every entry of Xk has absolute value at most 2k-1ck.

Let (= al+ "- + an-_1"-1. We have that (is an algebraic integer of degree at most n. Let

Y be the matrix that represents multiplication by (. Then, Y = alX + a2 X 2
+ ... + an-1X

n - 1.

Thus, every entry of Y is bounded above in absolute value by E• 2 k-1CkN < 2"C"N. Let f be

the characteristic polynomial of Y. We have that each coefficient of f has absolute value no greater

than 2n2 C 2 N n! = (2C)o(n2) (n N) ° (n). Also, by the Cayley-Hamilton theorem (Proposition 2.4),

f (Y) = f(() = 0.

Since f is an integer polynomial, we have that If(ao)l > 1, and, by the mean value theorem,

f(ao) = f(ao) - 0 = f(ao) - f(() = (ao - ()f'(x)

for some value of x lying between ao and Q. Let M be a constant such that If'(x)l < M for all

(- 1 < x < (+ 1. Since we would like to estimate how small lao - (I can be, it is safe to assume

that ao is close to (, and that it lies in the interval ((- 1, (+ 1). Doing so, we have

SIf(ao)l> 1
lao - (I - (--

S 1f'(x) - M

It remains to find an upper bound on M.

Because every coefficient of f(x) is bounded above in absolute value by (2C)(2 nN) (n), we

have that each coefficient of f'(x) is bounded above by n .(2C)o(n2)(nN)o(n), which can still be

described as (2C)o(n2) (nN)o(n). Moreover, for all x E ((- 1, (+ 1), we have

IxI < 1 + I(I < 1 ± la+ + a2+ 2
±22 + +a--ln-i-1 1 < N - 1•

- 1--

n-1 n-1

M < Z(2C)o(n) (nN)o(n) KiO = (2C)o(n2) (nN)0 (n) li Z
i=O i=0

.ni l lni

.Nn 1-0()
It follows that

1 1-al) Nn
lao _ (2C)o(n2) (nN)O(n) 1 -_ n -•

as claimed.

As a result, every nonzero element of Z[C]((N)) has absolute value greater than the value in

Lemma A.2.

Lemma A.3. Let ao, a,,..., an_- E Q((N)). If ao - ajl - a 26
2 - ... an- Cn - 1 5 0, then

la0 - a1 j - a2C
2 - - n- 1 (2C)(2)n) n.

Proof. Let f be the least common multiple of the denominators of ao, al, ..., ,n-1. Clearly, f < N n,

and we have that the numbers eao, lal, ... , lan- are integers whose absolute values do not exceed

N n . By Lemma A.2, replacing N by N n ,

- (2C)o(n2 (nNn)o(n) 1 -ICn

1 1 -

(2CN)o(n2)nO(n) h1 -uIn

Thus,

lao - aj~ - a2
2 - - . - an- n-11 =

liao - 2alj - fa 2 _
2 _ ... an- n-1-

1 1- n "

- (2CN)o(n2,)nO(n) 1 - 16n

- N2(2CN)o(n2)nO(n) 1 -ý11n

1 1- n

(2CN)O(n2)nO(n) 16 -)

Therefore, every nonzero element of Q[(]((N)) has absolute value not less than the value in the

the above lemma.

Therefore,

< (2cO(n2) nN)O(n) 1- [n \ n< (2C)o)(nN)o() 1 -j).< (2C)o(n2)(nN)o(n)

A.2 Determinants

Definition A.4. A row vector is said to be pure with respect to (if (1) it is an integer vector, or

(2) it is of the form (kv for some integer k and for some integer vector v. A row vector that is not

pure is called impure.

For example, the vector [1 2 3] and [2(5(6] are pure, but the vector [1+ 6ý 7 and

[2 V8 are impure.

Definition A.5. We say that a matrix A is pure if all of its rows are pure.

For example, the matrix is pure with respect to Jv, while the matrix
S 5 v3 + 2v 5

is not. Every integer matrix is pure.

Lemma A.6. If A is an m x m pure matrix on (such that whose coefficients are members of

Z[{]((N)), then det(A) is of the form MPk for some integer k, and for some integer M satisfying

IMI < mm/ 2Nm.

Proof. For any row whose entries are of the form a(ý, we can factor out ý(. After doing so to every

row, we have that det(A) = ýkdet(A'), where k is an integer, and A' is an integer matrix whose

entries are members of ((N)), so det(A') is an integer. Since each column of A' has norm less than

or equal to N\/, we have that Idet(A')l < (NV -m)m = mm/ 2 Nm according to the Hadamard's

inequality (Proposition 2.3). 1O

Definition A.7. Let A be a matrix with m rows whose entries are in Z[]. We say that A is r-mixed

if the first m - r rows are pure.

The next lemma relates the determinant of any matrix with algebraic number entries to the sum

of determinants of pure matrices.

Lemma A.8. If A is an m x m r-pure matrix with entries from Z[(], then det(A) can be written

as a sum of determinants of mr pure matrices.

Proof. The proof is by induction on r. For the base case, r = 0, we have that the determinant of a

0-mixed matrix, a pure matrix, is the sum of determinant of no = 1 pure matrix.

For the induction case, assume that the lemma is true for some r > 0. Let A be an (r + 1)-mixed

matrix. Then,

row 1 (pure)

row 2 (pure)

row m - r (pure)

EI-O a2,i i "... n-1am,ia i

row m - r + 2 (impure)

row m (impure)

m

i=1

row 1 (pure)

row 2 (pure)

row m - r (pure)

a2,iWi ... a ,i t

row m-r+2 (impure)

row m (impure)

In other words, det(A) can be written as a sum of determinants of n r-mixed matrices. By the

induction hypothesis, each r-mixed matrix's determinant can be written as a sum of determinants

of mr pure matrices. So, det(A) can be written as a sum of determinants of mr+l pure matrices.

By induction, the lemma is true for all r. O

Lemma A.9. Let A be an m x m matrix with entries from Z[ý]((N)). If det(A) = E•on-1 a iý , then

Jail < (2C)o(mn)(nmN)o(m)

for all i. In other words, det A E Z[(](((2C)o(mn) (nmN)O(m))).

Proof. Since A is m-mixed, by Lemma A.8, det(A) is a sum of determinants of nm pure matrices. By

Lemma A.6, any determinant of those pure matrices are of the form M~k for some integer M such

that IMI < mm/ 2Nm = (mN)O(m) and for some non-negative integer k < m(n-1). By Lemma A.1,

if 6k = do + dl + "" + dn-1~k - l, then Idil < 2k-nCk-n+l < 2mn-m-ncmn-m-n+l = (2C)O(mn).

Thus, if det(A) = ao + ajl + .. + an-6 n -l , then ai is a sum of at most nm integers whose absolute

values do not exceed 6kll[MI 5 (2C)o(mn)(mN)O(m). Therefore, jajl 5 nm(2C)O(mn)(mN)O(m) =

(2C)O(mn) (nmN)(m).

Lemma A.10. Let A be an m x m matrix with entries from Z[~J((N)). If det(A) : 0, then

det(A) (2C)o(mn2)(nmN)O(mn) 1 -

Proof. By Lemma A.9, we have that detA AE Z[7](((2C)O(mn)(nmN)O(m))). Applying Lemma A.2

det(A) =
n- 1 a j,i- i

with N := (2C)o(mn)(nmN)o(m) gives

I det(A) > (2C)O(n2)(n(2C)O(mn)(nmN)O(m))O(n) (1 - •1n

1 1 - _| n

(2C)o(mn2)(nmN)O(mn) 1 -(~ L

Lemma A.11. Let A be an m x m matrix whose entries are members of Q[ý]((N)). Then,

I det(A)l > (2C)O(mn2) (nm)O(mn)NO(n2m2) 1 "

Proof. For 1 < i < m, let fi be the least common multiple of denominators of all rational coefficients

of powers of (of elements in Row i of A. We have that Li < N m", and

A' =

is a matrix whose entries are from the set Z[(]((Nmn)). By Lemma A.10, we have

1 n
- (2C)O(mn"2)(nm)O(mn)No(n2m2) jn)

Thus,

1
det(A) = 1 det(A')

1 1 1 1-1 ý n

- N2C) (2C)O(mn2)(nm)O(mn)NO(n2 m2) \I1lý jI)
1 1-Ii)fl

A.3 Coefficients of Polynomials

Lemma A.12. If a,b C Z[(]((N)), then ab e Z[~](((2C)o(n)(nN)o(1))).

Proof. Let a = ao + a + -- + an-l1 n -
1 and b = bo + blj + --- + bn-,"-l . Let c = ab. Then, we

e,

have
2n-2 k

C= (z ib bi k.
k=O i=O

Consider the term c i= aibk-i k. We have that

k k

E aibk-i E aibk-i1 5 (k + 1)N 2

i=0 i=O

So, if k < n - 1, then ck E Z[[](((k + 1)N 2)). Otherwise, k > n, and Lemma A.1 implies that

k E Z[]]((2k-nCk-n+1)), and therefore c' E Z[6](((k + 1)N 22k-nCk-n+l)). Thus, c = E-=0 2 C~ is

a member of Z[6]((M)) where

n-1 2n-2 n-1 n-2

M = E(k + 1)N 2 + E (k + 1)N 22k-nCk- n +l = Z(k + 1)N 2 + Z(n + k)N 22kCk+1

k=O k=n k=O k=O
n-1 n-2 n-2 2n-1Cn-11

< •Z 2nN 2 + 2nN 22kCk+ = 2nN2 n + C 2kk 2nN n C 2C - 1
k=O k=O k=O

< 2nN 2 (n + 2"-lCn).

Since C > 1 and 2n - 1 > n, we have that n + 2n-1 Cn < 2nCn. It follows that

M < 2nN 22"Cn = 2n+lnN2 Cn = (2C)O(n) (nN)o(1)

Thus, c = ab E Z[6](((2C)o(n)(nN)O(1))) as required. O

Lemma A.13. Let A and B be polynomials whose coefficients are members of Z[6]((N)). Let d be

an integer such that d > D(A) and d > Z(B). Then, every coefficient of AB is a member of the set

Z[] (((2C)o (n) (ndN)o(1))).

Proof. Let A = d=o akxk and B = •d= bkxk. Then, AB = -o (o aibk-i) k. Con-

sider the coefficient of xk for a particular k, we have that aibk-i E Z[~1(((2C)o(n)(nN)o(1))) by

Lemma A.12. So, E2•oaibk-i e Z[6j((k(2C)o(n)(nN)o(i))) C Z[6](((2C) 0 (n)(ndN)0 (1))) because

k < 2d. O

Appendix B

Error Analysis of Basic Arithmetic

and Vector Operations

In this section, we derive upper bounds for the error terms of bracket coefficients which are results

of basic arithmetic and vector operations.

B.1 Addition, Subtraction, Multiplication, and Taking In-

verse

Lemma B.1. Let [a] and [bI be bracket coefficients such that La] Ž 2-'-l al, and [b] _ 2 2-'-1 bl

If 7 > 5, then

(a) If Jc] = [al + jb], then [c] < 7max{Lal, [bl}.
(b) If Jc] = [al[b]l and jlal [al, then [c] 5 8max{[al, Lb]} max{ al, Ibl}.

(c) If [a] < lal/4 and [c] = 1/i[al, then [c] • 614a .

Proof. For addition and subtraction, we have that [c] = up,([a] + [b] + eT((c))). We also have that

[a] + [bl = 2 max{ ia], Lb }, and

e~((c)) 2--'(c)I = 2-'Iflr((a) ± (b))l < 2-'(1 + 2-')I(a) ± (b)I

< 2-'(1 + 2-r)(al + [a] + IbI + [b])
< (1 + 2-T)(2-7'la + 2-71bj) + 2-'(1 + 2-r)(L[a + Lb])

= 2(1 + 2-')(Lal + Lb]) + 2-"(1 + 2-')([al + Lb])

= (1 + 2-r)(2 + 2-')([al + Lb])
5 2(1 + 2-')(2 + 2-') max{ [La, [b]}.

Thus,

[c] -(1 + 2-+±)(2 max{ Lal, Lb] } + 2(1 + 2-')(2 + 2-T) max{ [al, [b] })

= 2(1 + 2-'+')(1 + (1 + 2-r)(2 + 2-w)) max{ [a], [bl] }

< 7 max{ [a], [bl }

if T > 5.

For multiplication, we have [c] = up,(Lal [b] + [a] I(b) I + bl] (a)I + c,((c))), and

[a] [b] + [a (b) I + [bl (a) = [a] [b] + [al(ibi + [bl]) + Lb](al + [Lal]) = 3La [b] + [albi + [bllai,

and

E((<c)) 5 2-ITfl,((a)(b))I < 2-7(1 + 2) I(a) (b) I < 2-'(1 + 2T)(al + [al)(lbI + Lb])

< 2-'(1 + 2-')(lalibI + alL[b] + [al] b + Lal [b])

= (1 + 2-')(2-'T al)ibl + 2-'(1 + 2-T)(lal [b] + [a] b + [a] [b])

< 2(1 + 2-) [al] bi + 2-'(1 + 2-')(lal [bl + [a]ibi + [al bl])

< (2 + 3. 2- + 2-2) [al ibl + (2- ' + 2-2)lalL [b + (2- r + 2-2,) [a] Lb]

so,

[c] < (1 + 2-'+1)((3 + 3 .2 - + 2-2) Lal bi + (1 + 2-' + 2-2T)Ia Lb] + (3 + 2' + 2-2') Lal] bl)

< (1 + 2-r+1)((3 + 3"- 2- r + 2-27) [a]bl + (1 + 2- + 2-2T)al [b]

+ (3 + 2- r + 2-27)iaI [b]) (because lal > La])

= (1 + 2-'r+1)((3 + 3 2 •' + 2-2,) Lal Ibl + (4 + 2 -2- - + 2 -2-2-) al Lb])

< (1 + 2-T+1)(7 + 5 -2-' + 3 .2-2) max{ija, ibl} max{ [a], [b]}

< 8max{iaj, [bI}max{ La, [b]}

if 7 > 5.

For division, we have Lc] = up (I(La) I(Lal) + • ((c))), and

[a] > [a] _ > al> 8 a
(a)i((a)i - La]) (Ia - [a])(Qa - 2Lal) - (al - al/4)(Ca - al/2) - 31a2 a] '

and

Er((x)) ~=e f(l- < 2-(1 + 2-') < 2-7(1 + 2-)) < 2-'(1 + 2- 1)((a))) I(a)l -al - [a] 31al/4
4 4 2-_a 8= 2-'(1 + 2-') = (1 + 2-)r) 4 2 al < (1 + 2-r) [al.

31a| 3Ial al 31a12

Therefore,

[c] = (1 + 2-'+1) La] + (1 + 2-))= (1 + 2-r+)(2 + 2- r) [a L lal

if 7 2 5. O

Lemma B.2. Let a,b E R, and let [a] and [b] be bracket coefficients that approximate them,

respectively. Let [c] = Ial + [b], and let e be such that 2-' < E < 1. Then, [c1 = O([a] + Lb] +Elcl).

Proof.

Lci = up,(La]j + Lb- + eT((c)))

_ (1 + 2•-')([al + Lbl + 2-(1 + 2-)(I(a) + (b)))
< 2(Lal + ALb + 2e(la a La] + b Lbl [))

< 2(Lal + Lb + 2e(icl + Lal + Lbl))
= 2(1 + 2E) Lal + 2(1 + 2e) [b] + 4e••c

= O(Lal + [b] + •ec)

as claimed. O

Lemma B.3. Let a,b E R, and let [a] and [b] be bracket coefficients that approximate them,

respectively. Let [c] = [aJ[b], and let e be such that 2-1 < e < 1. Then, [c] = O(La] [b] + [a]l b| +

[bl al + E lalIbl).

Proof. We have that

Lcl = upT,(Lal bl + Lalibl + Lblia +,•e((c)))

• (1 + 21-')(Lal] bl + Lal bl + Lbl al + 2-7(1 + 2-')(lal + (a))(IbI + (b)))
< 2([al [b] + [al bl + Lbllal + 2(lallbl + [al] bl + [Lbl] al + [al [Lbl))

= 2(1 + 2e)([al [bl + Lallbl + [bllal) + 4eallbl

= O(Lal L[b + Lallbl + [bl al + elallbl)

as claimed.

B.2 Square Root

Lemma B.4. If 7 > 4, and 2- r < _ < , and [y] = [x] 1/ 2 , then Ly] < 2[. Namely, the

relative error increases by at most twice.

Proof. First, note that

x + L[Xl x + [Xl+ 2
4xThus,

Thus, 'x -+Lxi • VW(i + Lxllx), and

,(x)1/2 Lxi))
2 (<x> - LxI

LY] = up, (1(My) +

S(1 + 2-) 2-7'fl(/• + Lxl) + xl)/ 2

2
_ (1 + 2-) (2-T(1

_ (1 + 2-) (2-'(1

< (1 + 2-r) (2-'r(1

+2-r) -v Lx +

+ 2-T)v/(1

+ 2- r) (1 +

Lx+/x1+ 2

+ Ll/)

Lxl/xx 1
2 Lxj 2(

) [Lx l/x(1- 2Lxl /X))
1_ -x /xLzl/x L•II2 1/ - 2[xl/x))

2) (1- 2Lxl/x))

< (1 + 2-T) ((1 + 2-r) (1

17 17<-1
- 16 16

17
16

1
2

17
16

Lx/x) 1
1 - 2[xl/x))

Lx] -
x

<2 •x

B.3 Sum

Lemma B.5. Let xl, x 2 , ... , xn be real numbers, and y = CEz= xi. If - > log 2(32n), then

n n

Lyl • 2 Lxl + 2 -'n Ixi.
i=1 i=1

Proof. Let yi = Ek= zi. For i > 1, we have

I(y)| = |fl,((yi-1) + (xi))l S (1 + 2-")(I(yi-_1) + I(x)>).

By induction, we have I(y) I E '=l(1 + 2-7)'i-+ll(x)jl and we can further simplify the inequality

I ~J /_\\

LI2))

x - 2 [xI))

Lxl
x

x

= (x +I -I = (y +

2 (+ 2

to: I(yi)1 < (1 + 2-')n" j= I(xj)l. Thus,

Ly] = up,(Ly-. l + [xi] + E((yi))) 5 (1 + 2-r+) ([y_11 + Lxj + 2•' (y))

_ (1 + 2-+) yi-1 + Li] + 2-'(1 2-r)
j=1l

I(xjl)-

Again, by induction, we have

[ynl • (1 + 2-'+ 1)n-i+1 xl + 2-'(1 + 2-r)n
i=1 = 1

< (1 + 2-'+l)"n Lx + 2-n(1 + 2-)+12n
i=1 j=1

n n

< (1 + 2-'+1)2n •[xi] + 2-'n(1 + 2-'+1)2n •(l I + Lx1)
i=-1 j=1

< ((1 + 2-+1)2n + 2--n(1 + 2--+)2n) lxi +
i= 1

2-rn(1 + 2-'
n

+1)2n EjlX.
j=1

If 7 > log2 (16n), then

(1 + 2--+1)2 n (1

Lyn] < (1.29 + 1.29 x 0.25) [Lxl + 1.29 x 2-'rn
i=l i=-1

n n

|xlI < 2 Lx] + 21-rn 2i 1.
i=l i=l

Note that the bound does not depend on the order at which the ((xi), [x)l> are added.

Corollary B.6. If all the xi's are positive, 7 > log 2 (16n), and there exist e > 2-' such that e > iLi]
- xi

for all i, then

Lyl < (2n + 2)ey.

In other words, the relative error increases by at most a factor of 2n + 2.

Proof. From Lemma B.5, we have

n n n n n
[y,-] 5 2 E[il + 21-Tn xj < 2 e xi +" 2ne E x - (2n + 2)e xi O

i=1 j=1 i=1 j=1 i=1

+ 2 -+1)n - i + 1)

I(xj)I)

Therefore,

< e1/ 4 < 1.29.

n

I(xj)l E(1
j= 1

S n))2n4+2

B.4 Dot Product

Lemma B.7. Let a and b be two n-vectors, and let [aý and [bý be vectors of bracket coefficients

that approximate them, respectively. Let jcj be the bracket coefficient obtained by multiplying corre-

sponding elements of iai and [Ib, and then adding all the products together ("dotting" [aI and [b]).

If 7 > log2 (16n) and n > 2, then

Lcl < 9[a] -L[b] + 31al Lb] + 31bl Lal + 21-'(n + 3)al|lbl.

Proof. Let pi = aibi for 1 < i < n. By Lemma B.5, we have

[c] < 2Z[pi] + 2-rn Z pil

i=1 i==1= 2 • up,(Lai] [bi] + I(ai) Lbl + I(bi}l Lai] + E,(flR((ai)(bi)))) + 2'-rn lailibil

< 2(1 + 2-+1)([a] [b] + I(ai) Lbil + (bi [ail + (+ 2(1 + 2-) (ai) (bii)
i=1 i=l i=1 i=1

n

+ 21-'n lai Ib I
i=1

* 2(1 + 2--+) [Lal [b] + --(lail + Lai]) [b] + "(Jb + Lb]) [ai]
i=1 i=1 i=1

n n

+2T(1 + 2-) Z(ai + Lail)(Ibil + LbJ)) + 21--n laillbi
i=1 i=1

< 2(1 + 2--+1)((4 + 2-r(1 + 2-T)) [La] [b] + (1 + 2-T(1 + 2-))jla Lbl

+ (1 + 2-T(1 + 2-T))Ibl [a]) + 21-T(2(1 + 2-7) + n)jallbl.

Since n > 2 and r > log2 (16n), we have 2-' < 1/32, and

[c] 5 2 1 + (4+ (1 + [))L a]- [b] + (1 + •• (+ jal [b]

+ (1+ -(1 +))bl [a]) + 21 (21 + + n alb

< 9La] - Lbl + 31al - b] + 3bl - [La + 21-T(n + 3)lalbl.

The following two lemmas involve the 2-norm of vectors of bracket coefficients.

Lemma B.8. Let a be an n-vector and let [al be a n-vector of bracket coefficients that approximates

it. Let icý = I1 faifi| 2 = Ial. -Iaj. If there exists a constant E such that 2- -< e < 1/9, and Lai] < elail

for all 1 < i < n, and 7 > log2 (16n), then

L[cl (2n + 13)E|11a11 2

Proof. By Lemma B.7,

Lcl 5 9 La] [al + 61a|• Lal + 21-'(n + 3)laI -lal

< 9e62 a112 + 6lla211 (2n + 6)ell(al2

< ellai2 + 6sl1a211 + e(2n + 6)lla12

= (2n + 13)ellaII 2.

Lemma B.9. Let a, [ai, and Iýc be as in Lemma B.8. If there exists a constant e such that such

that 2-' < e < 1/9, and [ai] 5 ellall for all 1 < i < n, and 7 > log2(16n), then

[cl 5 (3n + 6V-n + 6)e1llaj2.

Proof. Again, by Lemma B.7,

cl 9 [La -[La] + 61al -La] + 21-'(n + 3)lal -lal
n

" 9n(Ellall) + 6ellall ail + (2n + 6)ellall2
i= 1

" n(ellall) 2 + 6~ellall|vllall + (2n +6)ella112
< (3n + 6v/ + 6)ellal12. Ol

Bibliography

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations, Computer Science, and

Applied Mathematics. Academic Press, 1983.

[2] M. Bronstein. Symbolic Integration I: Transcendental Functions. Springer-Verlag, 1997.

[3] R. Corless, S. Watt, and L. Zhi. QR factoring to compute the GCD of univariate approximate

polynomials. IEEE Trans. Signal Processing, 52, 2004.

[4] L. Ducos. Optimizations of the subresultant algorithm. J. Symb. Comput, 145(2):149-163,

2000.

[5] G. Golub and C. Van Loan. Matrix Computation. John Hopkins University Press, 1996.

[6] G. Hardy and E. Wright. An introduction to the theory of numbers. Oxford University Press,

1979.

[7] M. Laidacker. Another theorem relating Sylvester's matrix and the greatest common divisor.

Math. Mag., 42, 1969.

[8] T. Lickteig and M. Roy. Sylvester-habicht sequences and fast Cauchy index computation. J.

Symb. Comput, 32:315-341, 2001.

[9] H. Minakuchi, H. Kai, K. Shirayanagi, and M-T. Noda. Algorithm stabilization techniques and

their application to symbolic computation of generalized inverses. In Electronic Proc. of the

IMACS Conference on Applications of Computer Algebra (IMACS-ACA '97), 1997.

[10] H. Sekigawa and K. Shirayanagi. Zero in interval computation and its applications to Sturm's

algorithm. Poster presentation at International Symposium on Symbolic and Algebraic Com-

putation (ISSAC'95), 1995.

[11] K. Shirayanagi. Floating-point Grobner bases. Mathematics and Computers in Simulation, 42,

1996.

[12] K. Shirayanagi and M. Sweedler. A theory of stabilizing algebraic algorihms. Technical Report

95-28, Mathematical Sciences Institute, Cornell University, 1995.

[13] K. Shirayanagi and M. Sweedler. Remarks on automatic algorithm stabilization. J. Symb.

Comput., 26, 1998.

[14] C. Zarowski, X. Ma., and F. Fairman. A QR-factorization method for computing the greatest

common divisor of polynomials with real-valued coefficients. IEEE Trans. Signal Processing,

48, 2000.

