
Outdoor Augmented Reality n-th Game Editing

Suite

by

Benjamin Arthur Schmeckpeper

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

Author" " " ." " '. ' -"
p rtment of Electrical Engineering and Computer Science

May 25, 2007

Certified by.
Eric Klopfer

Associate Professor
Thesis Supervisor

.. , .. '"" .•,":"

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Students

ARCHIVES

MASSACHUSETTS INSTITUTE.
OF TECHNOLOGY

OCT 0 3 2007

LIBRARIES

.

Outdoor Augmented Reality n-th Game Editing Suite

by

Benjamin Arthur Schmeckpeper

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2007, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

OARnGES was developed to be a comprehensive Augmented Reality game develop-
ment tool. Augmented Reality provides players a view of the real world augmented
with virtual characters and information. Augmented Reality has proved to be a valu-
able educational tool, but bridging the gap between experimental game engines and
in-class deployment has proved difficult. OARnGES attempts to close that gap by
removing the technical barriers of game development. The Augmented Reality en-
gine framework is still in flux and OARnGES provides a stabilizing layer between the
developer and the platform.

Thesis Supervisor: Eric Klopfer
Title: Associate Professor

Acknowledgments

I would like to thank Professor Klopfer for hiring me as an RA despite my lack of

hands-on experience.

Thanks to Judy Perry for her tremendous project management abilities and for

keeping this project on track and moving forward.

And most of all, thanks to my fiancee Kathryn for letting me take two years to

finish a degree that was supposed to take me one.

Contents

1 Introduction 11

1.1 Explanation of Augmented Reality 11

1.2 Goals for OARnGES 12

1.3 Design and Implementation 12

1.4 R esults . 13

2 Outdoor Augmented Reality Overview 15

3 OARnGES Goals 19

4 OARnGES Design Strategies 23

4.1 Overall Design 23

4.2 Back End Design 23

4.2.1 Classes . 24

4.2.2 Storage . 24

4.3 UI Design 25

4.3.1 Map Based Design 25

4.3.2 Access To Game Data 26

4.4 Overcoming Decoupling 26

5 OARnGES Implementation 27

5.1 Back End Implementation 27

5.1.1 GameObject Class 27

5.1.2 Game Class 29

5.1.3 ObjInformation Class

5.2 User Interface Implementation . . .

5.2.1 Main Form and Map Panel .

5.2.2 Game Object Properties Form

5.2.3 Properties Form

5.3 Development Timeline

6 Results

7 Future Work

7.1 User Interface

7.1.1 Existing Design

7.1.2 Future Designs

7.2 .NET Framework . . .

7.3 Data Structures

A OARnGES User Interface Manual

.....................

.....................

.................. °..

.o.................°.

............ °.°.°.....

List of Figures

5-1 OARnGES' Main Form and Game Map View 33

5-2 Main Form's Toolbar 33

5-3 Placing an object in OARnGES 34

5-4 Visualizing Triggers in OARnGES. 34

5-5 OARnGES' Game Object Properties Form................ 35

5-6 OARnGES' Game Properties Form 36

A-1 OARnGES' Game Properties Form 47

A-2 OARnGES' Game Object Background Pane 48

A-3 OARnGES' Game Object Visibility Pane 49

A-4 OARnGES' Game Object Triggers Pane 50

A-5 OARnGES' Item Information Pane 51

A-6 OARnGES' NPC Interview Pane 52

A-7 OARnGES' Gate Information Form 53

A-8 OARnGES' Spill Information Pane 54

A-9 OARnGES' Gradients Form 55

A-10 OARnGES' Sample Type Form 55

Chapter 1

Introduction

1.1 Explanation of Augmented Reality

Augmented Reality (AR) immerses players in the real, physical world and provides

auxiliary data, such as virtual characters, which augment the player's view of the

world. By moving through the physical world to interact with this virtual world

players are drawn more deeply into AR games. The AR platform allows game design-

ers to present a wide variety of data to players and also customize the ways in which

players access that data. Players can be presented with a lot of information at once,

forcing them to prioritize their information gathering, or players can be presented

with limited information, requiring in-game critical thinking to unlock or discover

further information. The Augmented Reality paradigm provides instructors with a

captive audience and an incredibly flexible platform.

Implementations of Outdoor Augmented Reality games involving middle and high

school students have been "effective at fostering collaboration" as students probed

each other for new information [3]. Students have reacted positively to the Outdoor

AR platform, excited that it gave them "a chance to go out of school to learn math and

English" [2]. The features of the platform observed to captivate the most students

were the game's narrative, the ability to adopt a role and solving codes to access

critical game content [2]. The extent of students' collaboration and engagement with

the platform varies with the style of game and extent of the narrative. Games which

include multiple roles and present each role with customized content have "enhanced

the potential for larger scale collaborative learning" [3].

1.2 Goals for OARnGES

The Outdoor Augmented Reality n-th Game Editing Suite (OARnGES) attempts

to simplify the creation of Augmented Reality games. Harnessing the full power of

the AR platform can be a long and technical process, which may seem daunting

to teachers otherwise willing to use AR games in their classrooms. The utility of

the AR platform is dependent upon the quality of games developed for the platform

and developing game files in a text editor is not a viable option. Even a basic AR

game requires a fairly complex Xml document to completely specify all the necessary

settings for the AR Engine to function. A game development tool is needed to ease

the development of engaging, instructive AR games [4].

A useful tool will hide the majority of the AR engine's technical details from

the game designer, and also providd multiple views of game data and assist in game

development, beyond simple content creation. OARnGES is more than an Xml au-

thoring tool, its functionality enables game designers to develop richer OAR games.

As the size and scope of a game grows it becomes increasingly difficult to account

for all game content and ensure players are presented with a consistent narrative.

OARnGES is offered as a simple to use tool which gives game developers multiple,

meaningful views of their game data.

1.3 Design and Implementation

The Outdoor AR platform is being developed to enable educational research and

OARnGES has been strongly influenced by the wants and needs of the educational

researches utilizing it. Teams at both Harvard University and the University of

Wisconsin-Madison have developed multiple augmented reality games using successive

versions of OARnGES and providing constant feedback. This situation has presented

unique challenges, as the research needs of the Harvard and UW teams dictated the

evolution of OARnGES.

OARnGES has been designed and implemented with a strict separation between

the front-end GUI and the back-end data structures. This decoupling has allowed

for rapid feature development as well as isolating the impact of errors and reducing

the time required to fix bugs. This design strategy has proved useful in OARnGES

development environment, enabling a rapid release schedule and enough flexibility to

respond to both feature requests and bug reports from the end users relying upon

OARnGES as a research tool.

The user is presented with a view of game data which closely resembles the end

result displayed on a player's PDA. However, OARnGES was designed to allow for the

future development of alternate views to enable alternate game development work-

flows. While the current implementation of OARnGES has focused on perfecting just

a single view, ideas for alternate views are presented in the future work section of this

thesis.

1.4 Results

Through a series of releases spanning approximately 14 months OARnGES has ma-

tured into a stable product and an important tool for Outdoor AR game development.

Multiple OAR games have been developed using OARnGES and approximately 200

students have played those games. OARnGES has met many of its stated goals, de-

coupling game data from user interface and has been adapted to the requests of its

core users, game developers. However, the difficulty of developing a useful and intu-

itive UI was underestimated and OARnGES currently lacks the multiple development

views which the decoupling was intended to allow. Ideas for future views, along with

other development areas, are presented in the Future Work section of this thesis.

A more detailed description of Augmented Reality is presented in Chapter 2 and

the initial goals of OARnGES are described in Chapter 3. Chapter 4 discusses the

design of OARnGES and Chapter 5 details how those designs were implemented.

Chapter 6 describes the results of OARnGES development and Chapter 7 outlines

possible future development of OARnGES.

Chapter 2

Outdoor Augmented Reality

Overview

The Teacher Education Program at MIT has developed an augmented reality game

designed to teach math and science literacy skills to middle school students [1]. This

game is played on a Pocket PC (PPC) and uses GPS technology to correlate your real

world location to your location in the game, overlaying your position in the real world

on top of a map displayed on the PPC. The map also displays objects and people who

exist in the virtual world and with whom the students can interact. When playing

the game, the student moves around in the real world to interact with virtual Items

and virtual characters (referred to as non-playing character, or NPCs.)

The Outdoor AR engine, which runs on a student's PPC, allows games to be

played anywhere around the globe when given correct latitude and longitude. Initial

work on OAR began with the development of the game Environmental Detectives,

which is played on the MIT campus. The game has been updated with successive

changes to the OAR engine, renamed the Summerbridge Game and remains the game

of choice to demonstrate Outdoor Augmented Reality at MIT. Players are assigned

one of three roles, Engineer, Environmental Scientist or Reporter, and dispatched to

discover the reason two MIT students have recently become ill.

Players are presented with a bird's eye view of the MIT campus with NPCs and

Items scattered throughout. The focus of the Summerbridge Game is information

gathering and players are able to glean different types of information from different

characters. For instance, visiting the NPC Andrew Davis, who is walking his dog

along the river, triggers an old drain pipe up river. Inspecting this new Item reveals

that foul smelling water is trickling into the Charles River. The Engineer is able

to inspect a variety of sampling stations along the river but unable to understand

their readings until visiting the NPC Eileen Chang, who works for the Charles River

Watershed Association. Players spend their time canvassing the campus conducting

interviews and gathering evidence, then reconvene at the end of the game to compare

data and formulate theories.

Because of the limitations of GPS, OAR games are mainly conducted out of doors,

but through the use of Gates parts of the game can be played indoors. When students

visit a gate, which is typically placed near a building on the map, they are instructed

to enter the building and find a clue or other information posted somewhere inside

that building. After finding the posted information, the student is asked to enter a

code which then unlocks an NPC or Item which is only available through that gate.

For example, the designer of the game could wish to have the students interview an

NPC in that character's office. To accomplish this, the game designer would place

a Gate on the map where the NPC's office building sits and classify the NPC as

"gate-accessible." On the day of the game, the designer may post a puzzle or a math

problem on the office door which the students must first solve before interviewing

the NPC. The students then enter the solution to the problem into their PPC, and

if they entered the correct solution they are then presented with the interview for

the NPC. In the Summerbridge Game players wishing to interview one of the sick

students must enter MIT's Student Center in order to speak with him. To ensure

players physically enter the building, a sheet of paper is posted inside with the code

required to interview Carl Samson printed upon it. Once the player enters that code

they are able to view a video of Carl explaining why he believes he got sick.

The game allows students to perform a variety of virtual experiments, such as

sampling ground water or using a Geiger counter to detect radiation. Using the

results of these experiments, along with information gained from Items and NPCs, the

students can formulate hypotheses to answer some larger question, such as who caused

a chemical spill which contaminated the ground water around MIT. The game designer

creates a variety of spills throughout the virtual world, giving the students something

to sample. Before placing spills on the map, the game designer must first create at

least one gradient. A gradient can be thought of as a type of spill, and individual spills

of the same gradient share common characteristics, such as the sampling method for

the spill and the accuracy of that sampling method. Once gradients are created, spills

can then be added, by specifying two foci and the width of the spill. Spills are not

displayed on the map as the students play the game, but through sampling at different

locations the students can begin to form an idea about the intensity and location of

the spill(s). In the Summerbridge Game the Environmental Scientist carries both a

Geiger Counter to measure radition, particularly useful at MIT's nuclear reactor, and

a soil sample kit to test for contamination in the ground.

Beyond merely placing objects on the game map, there are many features of the

virtual world which the game designer needs to configure. Some of these features

define small aspects of the game like specifying the image file to be used as the map

image and the GPS coordinates of the corners of the map, but other features dictate

larger aspects of game play. One of these larger features is the creation of a variety

of roles for students to assume at the start of the game. The use of multiple roles

allows, for instance, a group of students to play the game as scientists while another

group plays the game as reporters. The addition of roles adds flexibility to the game,

because all game objects can be configured as visible or invisible to individual roles.

Furthermore, the information associated with NPCs and Items can be customized

on a per-role basis. This allows for more realistic game play, as students receive

information specifically customized for the role they are pretending to embody. Also,

details about the length of the game, both real and imaginary, can be set by the

game designer. The game can be divided into any number of time switches, which

partition the real time length of the game. Information associated with NPCs and

Items can also be customized by time switch, which allows the state of the virtual

world to change over time.

Games typically occur outside and cover a large area, which makes centralization

of the game very impractical. Items and NPCs are able to trigger other game objects,

which results in previously unseen game objects becoming visible on a student's map

after the student views the information related to an NPC or an Item. For instance, if

an NPC recommends that the student interview a colleague, then the use of triggers

would allow the NPC's colleague will appear on the student's map after the interview.

However, this situation introduces non-determinism into the game as changes to one

student's view of the world are not propagated amongst the rest of the students and

by the end of the game each student arrives at a slightly different view of the world

than their peers. While there is no central state maintained during the course of

the game, students are able to share information using the IR transmitter on their

PPC. Interviews, documents and other data collected over the course of the game

can be beamed between PPCs, which allows students to learn about different areas of

the virtual world even if they are not able to cover the whole map during each time

switch.

Chapter 3

OARnGES Goals

The overarching aim of OARnGES is to make the process of designing games acces-

sible to even the least technical users. As development of the Outdoor AR (OAR)

platform continues, its feature set remains in flux and the platform undergoes frequent

changes. OARnGES enables game designers to ignore this volatility and simply de-

velop games. Additionally, OARnGES aims to alleviate Xml authoring difficulties,

enable varied development styles and provide tools to aid game development, while

handling the challenges of the platform's flexibility.

An OAR game is defined by an Xml document following a very specific format.

Any variance from this format, or any malformed Xml, will render the entire game

unplayable. Creating valid Xml by hand is a tedious process, as all tags must match

and attention must be paid to proper casing of tags. OARnGES is able to auto-

mate the creation of these documents, and as such manages to abstract away Xml

authoring details and difficulties. OARnGES provides much quicker and easier Xml

authoring and the development of OARnGES in conjunction with the OAR platform

allows OARnGES to readily incorporate the Xml definitions of new game features

and remain consistent with new requirements.

The process of designing an OAR game is very nebulous and personal. As no

standardized process for game development exists, OARnGES should enable multiple

development strategies. OARnGES was designed to accommodate game develop-

ment, not to enforce a specific game development workflow. To this end, OARnGES

decouples the game data from it's graphical representation in order to allow rapid

changes to the GUI as well as enabling the development of alternate views of game

data. The development of OARnGES began early in the life of the OAR platform and

OARnGES needed to be flexible enough to respond to both changes in the platform

and new strategies for developing OAR games. As educational researchers continue

to investigate the OAR platform they will certainly develop new methodologies for

designing games which will place new demands upon OARnGES. Separation of the

internal representation of game data from the view of this game data OARnGES

presents to the user allows changes to OARnGES' UI without the possibility of dis-

turbing its data model. This not only allows simple tweaks of OARnGES' UI, but

also the development of alternate views of game data.

Finally, OARnGES aims to aid game developers with tools that go beyond simple

content creation. These tools will aid collaborative development, speed the deploy-

ment of games to PDAs and verify all references to external content. Collaborative

development of OAR games often reaches a snag when attempting to work on a shared

game document with external content, such as images or video, because of differences

in the absolute pathnames on different machines. OARnGES recognizes the bene-

fits of collaboration and will provide built in tools to quickly convert filenames and

overcome difficulties in sharing game documents. Although OARnGES attempts to

faithfully recreate the game play experience through it's user interface, some aspects

of the game simply need to be tested on a PDA. Developers need to ensure that

colors are drawn correctly, images fit the smaller screen size, etc. Aware of this need,

OARnGES attempts to speed testing and also assist in content organization with

a few included deployment tools. A development environment like OARnGES will

allow users to copy all necessary game files to the PDA with a single click, giving

the game developer a no-hassle deployment option. If the developer does not wish

to immediately copy game files to the PDA, OARnGES will create a locally stored

"package" containing all files necessary for future deployment. Furthermore, since

references to all external content are stored in the current game, OARnGES is able

to quickly verify those references and report to the developer whether any game files

are missing. This scan occurs automatically before packaging and deployment and is

also available to the user on-demand. Perhaps the most useful tool allows the user

to quickly and easily obtain both an aerial map of the game's location and exact

GPS coordinates for the game space. This pre-existing tool has been developed in-

dependently of OARnGES, but will seamlessly integrated into newer versions of the

suite.

The very things which make the Outdoor AR platform an appealing educa-

tional tool, it's malleability and customizability, present a number of obstacles which

OARnGES must address in order to be an effective game design tool. OARnGES

is forced to present the user with the wide range of options available to them, but

at the same time should not overwhelm the user with myriad choices. Internally,

OARnGES needs to store these customizations and provide ready access to them.

Many customizations are allowed on a per-role and per-time switch basis, resulting in

OARnGES needing to track role-times-time switches pieces of information for each

customizability. Finally, because the platform is still under development OARnGES

needs to be flexible enough to accommodate new features and also changes to existing

features, i.e. settings or data once thought to be fixed becomes customizable.

Chapter 4

OARnGES Design Strategies

4.1 Overall Design

OARnGES essentially consists of two parts, the back end data structures which store

game data and the front end user interface which allows the game designer to manip-

ulate game data. Throughout the design process these two pieces of OARnGES were

willfully and intentionally kept separate. This decoupling allows tuning of the user

interface design without disturbing the underlying data structures, and the internal

workings of the data structures can be easily modified without affecting the user in-

terface. Future work on OARnGES can develop completely new user interfaces which

rely entirely upon OARnGES' existing back end. The user will be able to seamlessly

toggle between alternate interfaces built upon the same data structures and receive

different views of the same game data.

4.2 Back End Design

OARnGES has been designed using an object-oriented approach, to encapsulate data

and achieve the desired decoupling between game data and user interface. All the

common features of game elements which players interact with (NPCs, Items, Gates,

etc.) appear in a common GameObject class. GameObjects are stored, along with

other game data, in a central Game object. The Game object provides access to stored

data and contains most of the general game logic as well.

4.2.1 Classes

Each type of game element extends the GameObject base class to incorporate their

element-specific data. This allows the game logic to operate on collections of objects

using their shared base type and only cast to a specific object type when necessary.

This also eases development by centralizing common data and logic so that changes

need only occur in one location. When the OAR platform expands and new game

object types are invented, their addition to OARnGES is simplified by this common

base class.

Other ancillary classes exist which encapsulate the remaining game data, such

as the introduction content displayed at the start of the game and the different roles

available to players. Finally, a few classes are needed to provide consistency across the

game. For example, when a player visits an NPC they are able to view an "Interview"

for that person, and when they visit an Item they are able to view "Information."

Both Interviews and Item Information behave in the same way and have the same

properties, so one class is used to store this data for both NPCs and Items. It is

left to OARnGES' user interface to clarify whether a class represents an Interview or

Item Information.

4.2.2 Storage

The most essential function of OARnGES is the storage of all game data represented

by the above classes, and OARnGES' back end makes this data available via a clean

and simple interface. The power of the OAR platform is it's customizability; nearly

all aspects of the game, especially it's content, can be defined on a per-role and per-

time switch basis. While any one game may only employ a small portion of these

options, OARnGES needs to accommodate their full utilization. This customizability

has led to the development of dually-indexed data stores. These are essentially two-

dimensional arrays, except they are indexed by an integer (the time switch) on one

dimension and an object (the role) on the other dimension.

4.3 UI Design

OARnGES user interface has been designed to continually provide the game developer

with a map based view of the game they're editing. OARnGES uses the game map

as its background and allows the developer to position game objects directly on the

map. OARnGES draws all game objects on the map, allowing the developer to quickly

judge their relative positioning.

4.3.1 Map Based Design

The map centric UI of OARnGES has been designed to echo the appearance of the

game on the handheld. Many aspects of the UI follow a "What You See Is What You

Get" (WYSIWG) strategy. Game objects are drawn on the map using the same shape

and color as they will when playing the game on a PDA. OARnGES allows the user

to see how the game will appear to different roles at different times by filtering which

objects are drawn on the map. OARnGES' WYSIWYG feature aids game design

by providing developers with a representative view of the game world. Constantly

updated feedback helps users envision their game throughout the development process

and fosters an interative design process. The form factor of Windows Mobile devices

plays a vital role in the effectiveness of game content and OARnGES' WYSIWYG

interface strives to reflect the device's constraints.

The map view also speeds the process of porting an existing OAR game to a new

location. After loading a new map, all the game designer needs to do is relocate game

objects. The existing game objects preserve all their content, they only need to be

placed in accessible locations on the new map.

4.3.2 Access To Game Data

The amount of customizability of the OAR platform presents a sizable hurdle for

OARnGES. There is a need to allow the user to configure everything while at the

same time not overwhelm the user with options. OARnGES gives the user full power

to manipulate every setting but limits the amount of information presented to the

user at any given time. This means that for fields which the user can customize for

each time switch and each role, OARnGES only allows the user to view a single time

switch-role combination at any time. This allows OARnGES to reuse UI elements,

replacing data when the user chooses a new time switch-role combination.

OARnGES also attempts to make all information readily available, requiring just

a few clicks to access any particular piece of game data. A "flat" layout allows the

game developer to quickly add game content and not waste time clicking through

multiple menus. This strategy is not without it's problems, however. A flat design

requires OARnGES to sort game information into a large number of categories and

the game designer must remember where a specific piece of data is stored. OARnGES

attempts to overcome this issue by intelligently sorting information (related features

are stored together,) using an open layout (instead of hiding options in drop down

menus,) and plenty of icons.

4.4 Overcoming Decoupling

Although the separation between the two sections of OARnGES gives us many advan-

tages, it requires extra effort for effective communication between data structures and

user interface. Furthermore, OARnGES' data structures have not been designed to

support undo operations, which forces the UI to employ temporary storage variables

to track changes until the user chooses to apply them.

Chapter 5

OARnGES Implementation

Both sections of OARnGES have been implemented in Microsoft's C# language, mak-

ing use of the .NET runtime (version 2.0) [5]. This language choice limits OARnGES

to platforms which support .NET, which is predominantly just the Windows plat-

form. Mono, an open source effort, is attempting to spread to .NET platform to

Linux, Solaris, Mac OS X and Unix, but OARnGES has not been tested on any of

those systems [6]. However, the benefits of using the .NET runtime sped the imple-

mentation process and overcame the runtime's limited portability.

5.1 Back End Implementation

The back end data structures form the backbone of OARnGES; they need to manage

all game content without losing or distorting it. The amount of content included in

any one game is not so large as to require the implementation of any advanced data

structures, which allowed all effort in implementation to focus upon correctness and

ease of use.

5.1.1 GameObject Class

The GameObject class encapsulates all features common to objects which the player

interacts with during game play (NPCs, Items, Gates, Spills, etc.) A GameObject

contains such properties as Name, Location, Description and path to the object's

Image file. The GameObject class contains a static variable which serves as a count

of all GameObjects created, and the constructor assigns each GameObject a unique

id based off of this count. The GameObject class is declared to be abstract, which

prevents its instantiation. GameObj ect exists simply as a template, used to consolidate

shared features and code into one central location. This strategy provides much of

the same functionality of an Interface, specifying the properties and methods of any

class which inherits from it. While an Interface merely defines methods, abstract

classes are able to fully implement those methods, which means derived classes all

share common code and changes to the abstract class are automatically propagated

to all subclasses.

There are multiple subclasses of GameObject, as each type of object in the game

derives from GameObject. Each subclass provides its own constructor which sets

type-specific data after calling the GameObject constructor. For some objects, such

as NPCs, this is merely a formality, the constructor is only used to set a few default

values. Other objects differ greatly from the GameObject base class and their con-

structors becomes more important. For instance, a Spill inherits from GameObject,

but needs extra data, such as its radius and two focus points, which the GameObject

class is unable to store and must be initialized in the Spill constructor.

Instantiation of GameObjects occurs via two flavors of constructors. GameObject

and its subclasses can be created from their basic data, passed as distinct parameters

to the constructor. This is the standard behavior for creating brand new GameObj ects.

A GameObject is created from the minimum necessary data: name and location; that

object is later fleshed out with auxiliary content, such as description, image and vis-

ibility information. Alternatively, objects can be created from their Xml definitions,

often loaded from a saved game file. This strategy creates a distributed environment

for parsing an OAR game file. The only section of OARnGES which knows how to

parse an NPC's Xml definition is the NPC object itself. The main parsing algorithm

merely needs to identify the type of object each XmlElement defines and then dispatch

that element to instantiate the necessary GameObject.

The GameObject class contains an abstract property Type, which all derived

classes are forced to override. This strategy allows all subclasses of GameObject to

identify their type, even when stored as a generic GameObject object. The GameObject

class also contains the abstract method ToXML, which all derived classes again must

override. When implemented, this method creates an XmlElement containing a full

definition of the GameObject. The exact format of this XmlElement varies by object

type, which prevents the consolidation of any Xml creation in the GameObject class.

However, since each subclass of GameObject is required to implement this method,

OARnGES is able to simply iterate over a collection of GameObjects, oblivious to

their specific types, call ToXML on each object and generate full Xml definitions of all

objects in the game.

5.1.2 Game Class

The core of OARnGES' back end is the Game class. This class stores all game objects

and provides a clean interface for accessing these objects. The Game class enforces

constraints placed upon the game by the OAR Engine, such as preventing the creation

of objects with the same name. Because the Game object contains references to all

game content, including all Game0bj ects, the enforcement of these constraints is very

straightforward.

The Game class contains a separate Collection for each type of GameObject. This

allows the Game class to easily separate NPCs from Items from Gates, etc. These col-

lections make use of C#'s generics feature, which means each Collection only accepts

it's intended subclass of GameObject, an NPC can never be added to a Collection of

Items. This feature also relieves the Game class from needing to recast an object when

accessed via the Collection. Because each Collection knows which type of object it

stores it is able to return that exact type, instead of the more general Object type

as it would without using the C#'s generic feature. GameObjects are added to the

game via the AddGameObject method, which examines the Type of the GameObject

and places it in the correct Collection.

Xml Creation

The Game class governs the creation of an Xml game file, stitching together the

XmlElements created by the various GameObjects. Although no formal schema ex-

ists to define the format of this game file, development of OARnGES has coincided

with the development of the OAR platform and this process has proved beneficial

in debugging errors in both the Xml specification and the Xml files generated by

OARnGES. The creation of an Xml document is greatly simplified by the classes

included in C#'s System.Xml namespace. The Game object creates the top-level ele-

ment and adds background data, such as the number of time switches and the roles

in the game, then simply iterates through all GameObjects and appends their Xml

definitions. The existing Xml specification does not completely lend itself to an ob-

ject oriented approach and after appending all objects to the top level element, Game

must iterate through NPCs and Items and append Interview and Information data

separately. This added complexity could be removed through the alteration of the

Xml specification.

Xml Parsing

An existing OAR game file is parsed in a distributed manner, each back end object

knows how to instantiate itself from its own Xml definition and the Game object merely

needs to know how to identify different elements. When the Game constructor receives

a path to an Xml game file, the class begins the process of parsing the Xml in order

to instantiate both itself and all GameObjects in the game. It begins by comparing

the version number of OARnGES which created the file with its own version number

and throws an Exception if they do not match. This allows the user interface to warn

the user before trying to open a possibly unsupported game file. The constructor

accepts a Boolean value to indicate whether or not to throw the Exception. If told

not to throw the Exception, the Game class does its best to load the game. The Game

class parses the background information which it stores itself and then simply iterates

over the elements defining GameObjects, using them to instantiate new objects and

adding those objects to its Collections.

Access to Game Objects

The Game class exposes multiple overloaded methods to access stored GameObjects.

The use of multiple methods allows the results to be filtered by role and/or time

switch, if desired. This results in four separate methods:

* GetAllGameObjects (void)

* GetAllGameObjects(Role)

* GetAllGameObjects (int)

* GetAllGameObjects(Role, int)

Calling GetAllGameObjects with no arguments retrieves all GameObjects without

any filtering, but passing a specific Role, time switch or both will return only those

Game0bjects which would be visible to that Role and/or at that time switch. The

user interface uses this feature to give the game developer control over which objects

are drawn on the map. All four methods simply provide public access to a single

private method _GetAllGameObjects, which requires both a Role and time switch

as parameters. This method iterates over all stored objects and returns those which

are visible to the specified role and at the specified time switch. Each GameObject

contains its own logic to determine its visibility relative to a given Role or time switch.

5.1.3 ObjInformation Class

Preparing interaction with virtual objects during game play requires OARnGES to

maintain several types of content: paged text presented to the player to read, paths

to audio and video files which the player can view and listen to, and also paths to doc-

uments (HTML files and images) which the player can inspect. The ObjInformation

class encapsulates all this disparate data into a single entity for OARnGES to operate

upon. This class provides a clean interfacing for manipulating pages of text, adding

and removing documents, audio and video files along with storing the time switch

when this data will be shown and the Role which this data will be shown to. In ad-

dition, Obj Information contains a deep cloning method, which creates a brand new

Obj Information object containing copies of, not shared references to, the original

object's data. This proves very useful when the user wishes to copy the content for

one Role at one time switch across multiple roles and/or multiple time switches.

ObjInformation makes use of a private class, PagedText, which manages the text

presented to the player when visiting a GameObject. Although PagedText is nothing

more than a simple array of strings, its public methods greatly simplify the usage

of multiple pages of text. For instance, while the internal array of strings begins at

the Oth index, PagedText makes that page publicly available as page number one.

This coincides very cleanly with a game developer's expectation and precludes the UI

from doing messy index calculations. The PagedText class also cleanly handles the

addition and deletion of pages of text, isolating these operations prevents the objects

interacting with PagedText from needing to concern themselves with maintenance

of the PagedText. The Obj Information class further simplifies this interaction, ex-

posing just two methods, one to access a specific page of text and another to set a

specific page's text.

5.2 User Interface Implementation

Although OARnGES has been designed and implemented to accommodate multiple,

interchangeable user interfaces, only one interface has been fully developed at this

point in OARnGES' development. This interface provides the developer with an

overview of the state of the entire game from the vantage point of a game player.

5.2.1 Main Form and Map Panel

OARnGES' Map View interface presents the user with their games map as a canvas

to place GameObj ects upon. Many of OARnGES' features on this creen were intended

to mimic a graphics program, where the game map cts as the user's canvas and the

I Fh v* Took "a

Figure 5-1: OARnGES' Main Form and Game Map View.

type of GameObj ect to place on the ap is chosen similar to choosing the type of brush

to draw with. The ser is presented with a toolbar (Figure 5-2) above the canvas, hich

allows them to select their "brush," an NPC, Item, Gate, etc. hen placing an NPC

on the map, for instance, OARnGES draws the efault NPC shape at the point of the

cursor (Figure 5-3). Once the NPC has been ositioned where the developer desires, a

click places the NPC and pens a window to customize the new object's features.

Item NPC Gradients Spill Gate Checkpoint Properties Delete I ActualSize

Figure 5-2: Main Form's Toolbar.

Once a new GameObject has been added to the game, it appears on the map,

with the color and shape specified when created. The Main Form gives the user the

ability to filter which objects appear on the map to get a view of the' game map at a

certain time switch and to a particular role. Also, OARnGES provides the user with

the ability to visualize triggers (Figure 5-4), drawing arrows from an object to those

which it will trigger or anti-trigger. Since triggered objects are typically invisible

prior to their triggering, OARnGES draws an empty square in the location where the

object will appear, to visually discriminate between visible objects and objects which

I rm

Figure 5-3: Placing an object in OARnGES.

Figure 5-4: Visualizing Triggers in OARnGES.

appear via triggering.

5.2.2 Game Object Properties Form

The Game Object Properties form allows the game designer to configure all aspects

of a GameObject. A single form contains fields to manipulate every feature of every

subclass of GameObject, taking advantage of the many similarities between these

subtypes. This not only allows OARnGES to reuse code, but the game developer

is always presented with a consistent interface. The Game Object Properties Form

constructor requires either the Game0bj ect to be edited or the type of GameObj ect to

be created. The constructor then displays the applicable features for that object type,

while hiding the unsupported features. The Game Object Properties form allows the

developer to control all properties of the object, from its name and location to which

TrIgars

Irterviws

Is.e - F Y

Sh Ob ISTobe [ie i T
0 Objrcstd isgpie 0 W Oit ArTMUwdb

I (

Figure 5-5: OARnGES' Game Object Properties Form.

roles can interact with it to what game objects are triggered after the current object

is visited.

The form is forced to create many temporary storage variables to avoid committing

changes to the back end data structures before the user decides to keep the changes.

This allows the user to cancel the form without affecting the state of the game. Once

the user does decided to keep the changes, the Game Object Properties Form signals

the Main Form, which sets every property of the object being created or modified.

The Main Form obtains the data through a series of public variables exposed by the

Game Object Properties Form.

5.2.3 Properties Form

The Properties Form shares the look and feel of the Game Object Properties Form,

but has much simpler behavior, since it avoids the dynamic display feature of the

Game Object Properties Form. The Properties Form layout is static, as opposed

to the Game Object Properties form, because the global settings available to the

developer do not vary between games. These settings include the path to the map

image, the GPS coordinates of the map, the number of time switches in the game

Tie /Date

Into

Mise

O 0 Use SepateZoomMap

Zoom Map Fienawe 0 EnlarePrtimy Map

Boe Alow Manual Movement
Zoom Ratio

02x 03s 04m Capt.. Mapa ®2" o• o c. ,, a

Set Dua COM Post for GPS MCO7

Set GPSDsrNme [OMPt 7

Upper Rigt Conor Lowe Lelt Con Low Rit Caom

Losiud : + [oooo oto t O.

OK i E i

Figure 5-6: OARnGES' Game Properties Form.

and the types of Roles in the game. Similarly to the Game Object Properties Form,

the Properties Form must utilize temporary storage to avoid committing changes too

early and Main Form accesses data via a set of public variables.

5.3 Development Timeline

Initial work on OARnGES began with prototyping in March 2006 in preparation for

a meeting between all teams working on the OAR platform. The map-centric UI was

presented to the Harvard and UW-Madison researchers who would be OARnGES'

initial target audience. The UI design was tweaked slightly addressing feedback from

that initial meeting and some of OARnGES' goals were reprioritized. The back end

of OARnGES was largely stabilized by early April 2006 and a functioning beta was

release on April 17. The first major deadline for OARnGES occurred in July 2006.

The team at UW-Madison needed a stable release to develop games in anticipation of

a workshop demonstrating the capabilities of the OAR platform. Through a process of

interim releases and bug fixes a feature complete version of OARnGES was obtained in

late June and successfully generated OAR games for both the UW-Madison workshop

and a workshop run at Harvard University.

The experiences of building games both in anticipation of the workshops and as

part of the workshops largely influenced the future direction of OARnGES. Most of

the developer tools were added in the fall of 2006 and by the winter OARnGES had

largely been stabilized and few features have been added since then. Beginning in

early 2007 a UROP at MIT has worked on both beautifying the UI and adding a

"quick view" panel to show the main attributes of a selected object.

Chapter 6

Results

Throughout the 15 months of OARnGES' development, its various releases have

been used to create, update and maintain approximately a dozen Augmented Reality

games. These games have been designed and implemented by multiple developers,

some built collaboratively and others built by a single developer. The evolution of

OARnGES has been greatly influenced by the development of these various games.

The current design and implementation of OARnGES largely matches its initial

concept, either a testament to its original design or an indication of underdevelopment.

Researchers at Harvard and UW-Madison expressed a desire to add new types

of game objects to the OAR platform following the implementation of a few OAR

games during the summer of 2006. The most sought after addition was an object

which would give the developer greater control over the flow of the game. Further

discussion of this issue resulted in the development of a game object which simply

triggers and anti-triggers other objects, provided the player correctly enters a code.

This object, named a Checkpoint, allows the game designer to manipulate which

objects are available to the player and possibly require the player to solve a puzzle

or answer a question in order to unlock new objects. Alternatively, the Checkpoint

can be used to ensure a large class of students remain in the same general vicinity. In

this scenario, players interact with available objects until arriving at the Checkpoint.

With no further objects to interact with, the player remains at the Checkpoint until

given a code to unlock new objects. This strategy allows the teacher to hold the class

at specific points until stragglers catch up.

The addition of Checkpoints to OARnGES was quite straightforward and accom-

plished in just a few days. The back end Checkpoint class naturally inherited most of

it's properties from the Game0bject class, with only slight modifications required to

accommodate the code feature. The majority of the implementation time was spent

updating the user interface to accommodate the new object and its attributes. While

many UI elements were able to be reused due to the common GameObject base class,

features such as conditional triggering required some redesign. However, the effort

devoted to the early design of OARnGES' data structures proved beneficial, not only

by speeding the development process but also in thinking about ways to expand the

Outdoor AR platform.

Although OARnGES does not currently provide multiple views of game data, the

separation between game data and user interface has proven beneficial. An under-

graduate student was able to leverage the decoupled data structures to quickly and

cleanly embed data about a selected GameObject in the Main Form. After laying

out the UI elements, all that is required to add this functionality is to populate those

elements when the selected object changes. This is easily accomplished by piggyback-

ing on the existing object selection code. Similarly, the Main Form was extended to

include a simple tree listing all GameObj ects on the map. The implementation of this

feature was also aided by the clean interface to OARnGES' back end data structures.

While OARnGES does a good job of separating back end data from its user inter-

face, the map centric design has not proven conducive to complete game development.

Many users of OARnGES design games and assemble content outside of OARnGES,

then merely use OARnGES as a tool to create an Xml game file from that pre-

existing content. Clearly, OARnGES has failed to provide useful functionality in

guiding the development of an OAR game from concept through implementation.

The lack of a standard game design process at the early stages of OARnGES' design

resulted in OARnGES positing a certain design style and developing around that

style. OARnGES has yet to evolve beyond that initial design style and incorporate

lessons learned from 15 months of OAR game development.

Chapter 7

Future Work

Although OARnGES currently provides all the functionality needed to develop OAR

games, there still remains many further areas of development. For instance, the cur-

rent map-centric user interface could certainly be refined through usability testing

and alternate views could be developed to aid game design. Also, the .NET Frame-

work continues to grow and further development of OARnGES can harness the new

functionality of the framework. Finally, development of the OAR platform continues

and OARnGES will need to accommodate new game features.

7.1 User Interface

7.1.1 Existing Design

The current user interface for OARnGES allows the developer to view the entire game

state and modify all features of game data. However, the number of features which

game developers are allowed to modify has continued to grow since work began on

OARnGES. The UI has not handled this expansion gracefully, many new features

and settings have been forced into an existing template which struggles to contain

them. The current UI would benefit greatly from a redesigned approach to edit-

ing GameObjects and game content. Also, as the number of OAR game developers

continues to grow, conducting usability tests of the UI becomes a feasible idea.

7.1.2 Future Designs

Currently, OARnGES restricts game developers to a universal view of their game

state. This places strict limitations upon their ability to view interactions between

GameObjects and does not give a sense of the game's narrative. Many OAR games

are designed to guide the player through a defined story, moving from location to

location along a well defined path. Future UI designs of OARnGES could provide

the game developer with alternative views of game data which are better suited to

developing these types of games.

Storyboarding

For instance, OARnGES could enable game designers to develop game content through

a storyboard style interface. This interface would focus on giving the developer a clean

view of the information each object will present to players during the game. Because

OARnGES currently restricts the developer to seeing this content one Role and time

switch at a time, a storyboarding interface could present multiple Interviews at a

time, allowing for easy comparison. Many OAR developers already develop games

in this style, but OARnGES' limitations force them to develop game content out-

side of OARnGES to allow this side-by-side comparison. The largest obstacle to

the development of this interface is the amount of variability allowed by the platform.

Three dimensions of information must be accommodated, game object, Role and time

switch. The challenge will be in both helping the user to select a slice of this cube to

view, and also to alert the user to which slice they are currently viewing. Once this

content has been created, OARnGES' map centric UI can then assist the developer

in positioning objects on the map.

Game Paths

OARnGES' map centric UI attempts to show the developer how the game will appear

at a certain time to a certain role, but the triggering feature of the OAR platform

causes a players view of the game to change as they interact with different objects.

At the early stages of OARnGES' development triggers were not an integral part of

game play and this shortcoming of the UI was not a significant issue. Over time,

however, triggers and anti-triggers became widely used to guide a player's movement

through the game, and the usefulness of OARnGES' UI declined. An additional view

of game data could allow game designers to observe how interaction with game objects

changes a player's view of the world. The game designer would be presented with a

view of all objects visible at the beginning of the game. Choosing a visible object

would then update the view as necessary, showing the newly triggered objects and

hiding the anti-triggered objects. The interface would also show the "path" followed

to arrive at the current game state. The user could then step backwards through this

history and branch off along a different path to arrive at an alternate game state.

Junior Editor

OARnGES has been developed to enable game developers to control every facet of

OAR games. As a result, OARnGES' learning curve is very steep, a large number

of OAR game concepts must be understood to successfully create an interesting and

engaging game. This creates a formidable barrier to entry for both OARnGES and the

OAR platform. A wizard style game editor would make a nice addition to OARnGES,

to guide new users through the process of creating an OAR game, while hiding much

of the complexity from the user. This "junior" editor would present the user with only

those features which are required to create a workable OAR game, and automatically

flesh out the remaining features with default values. Guiding the developer through

the game design process step by step, this junior editor would not only introduce the

OAR platform and concepts, but also show the user sound game design strategies

and workflows. Once users new to OARnGES have become familiar with OAR games

through the junior editor, they can use the main OARnGES interface to enhance

their initial game or develop a more complex game from the beginning. Ideally, this

junior editor would be straightforward enough for students to develop their own games

as part of an OAR curriculum. Enabling students to create their own content and

develop their own game would expand the educational benefits of the OAR platform.

7.2 .NET Framework

Although the .NET Framework is a state of the art technology developed by Microsoft,

OARnGES is limited by the Windows Forms API used by the framework. Microsoft

is posed to release a brand new graphical user interface API known as Windows

Presentation Framework (WPF.) By upgrading to WPF OARnGES will be better

positioned to remain technologically relevant. In April of 2007 Microsoft announced

its new Silverlight project, aimed at enabling the development of rich internet appli-

cations. Silverlight is a cross-browser, cross-platform technology which allows users

to launch a .NET application from their web browser [7]. This is a powerful paradigm

from which OARnGES would greatly benefit. Developed with Silverlight, OARnGES

can be delivered across the Internet, instead of distributed as a compiled program.

This not only gives greatly flexibility to OARnGES release schedule, but will also

enable game designers to work with OARnGES from any computer with an Internet

connection. A Silverlight based version of OARnGES would no longer require the

Windows platform, removing a barrier to entry of the OAR platform.

7.3 Data Structures

A more general game object would give game designers a much more flexible plat-

form on which to develop games. This evolution would require much work on the

OAR game engine, along with a rethinking of both OARnGES' front end and back

end designs. Currently the OAR platform restricts game developers to well defined

subclasses of the general GameObj ect class, limiting their creativity. A more powerful

platform would allow designers to develop their own subclasses, mixing and matching

features and also specifying in game look and feel for each new class. This would re-

quire a much more powerful and more flexible design for OARnGES to accommodate

the greater level of customizability allowed by this new platform. However, allowing

game developers to build custom objects will enable much richer narratives and give

developers much more control over the appearance of their games. For example, a de-

veloper could create a Witness class, which the player would be allowed to interview,

and a Suspect class, which the player would get to interrogate.

This scenario would also foster more cross-game collaboration and development

than the current OAR paradigm. Currently, the effort spent developing game char-

acters is tied very closely to the narrative of that game, outside of that context much

of a character's content loses its relevance. In contrast, a general characteristics of a

new class of game objects developed for one game may easily fit the narrative of a

different game. The development of a shared repository for these new objects, brows-

able through OARnGES, would help foster cross-game collaboration and encourage

richer OAR game development.

Appendix A

OARnGES User Interface Manual

A typical game design process using Editor3 is detailed below.

hnbo

Misc

_ j uAowse AlWbs Mwa Movemew
Zoom Ratio

02o 03x 04& jL Cqpa M. j

Se Def•cOMPotlais GPS [C 7

[Set GPS Dela Name COM Plt7

Upper Rigt Comer Low Left Ca Lowe Rig Come

La'olds o g ooamo oo, o a lo.oaomoow -

LhLongl~ouds e a*m j oooaa~o_ IOa

i ilOOl C i CTO

Figure A-1: OARnGES' Game Properties Form.

With the Cursor button selected, click Properties to view the game properties

form. Here the user can browse for a map file and specify your zoom map. Al-

teratively, they can launch the MapTool and grab a map file and GPS coordinates

automatically. The buttons on the left side of the form switch panes, allowing the

user to specify information about the Time and Date, to create Roles and write

Introduction text.

Once all background information has been specified, the next step is to place game

objects on the map. Using the game object properties form you can specify all the

information related to that object. The form has a similar look for all objects but

the specific fields are tailored to the features of a given object.

Game Object Background Pane (Figure A-2)

Figure A-2: OARnGES' Game Object Background Pane

Used to give the object a name, description, picture and to set other background

information about the object. This information will be displayed to the user when

they interact with the game object during the game. The object's location can also

be adjusted manually, specifying its exact (x,y) coordinates, on the 200x200 game

map. Both the color and shape of all GameObjects can be set on this pane; these

settings will carry over to the game on the handheld.

I Main I
Appeas at Time Time Switch 1

Triggers

Interview

El Disappeas

Disappears after Tie Time Switch 2

On Object is Accessible From A Gate

Starts out Visible To

Engneer
Enviromental Scientist

R Reporter

Figure A-3: OARnGES' Game Object Visibility Pane

Game Object Visibility Pane (Figure A-3)

This pane allows the user to set the time when the object will first appear and specify

whether the object will ever disappear. If the object does disappear, the last time

switch when the object will be on the map must be specified. If the object is set

"accessible from a gate," it will not be drawn on the map, it must be associated with

a gate. Finally, using this pane sets the roles which the object is initially visible

to. The object will only be drawn on the map for the checked roles, and the object

will not be seen by the other roles until triggered. An object which begins as not

visible to a certain role can be triggered by a different object and become visible to

a certain role. For Items, you can also specify accessibility in the same way. Roles

which can see an Item but not access it are able to interact with the Item, see its

name, description and picture, but cannot see the associated Information.

I

Mdn

Vkslty

IntSMvew

c I. I I
Role TimeSw•ch Tine Switch 1

Environmenal Scientist
I o this i tect AnbTfigges or this Obiec

E PalrRoid O ECadSamon
] Anrew Davis Randee Gpta
E] MeandaFitznomons 5 RiCedoGutman
Saement Srith 1 Maria Roh
SRa4m ndGarcia El Inrid

E]Do. AinWlon OVs Doug Thompson
] Cal Samson 1] Wiliam Robinon
Randee sGupta Eien Chang
Mai oRoh E] Janet Rockdid

] Ingid F] John Kinb
] Doug Thompson Di OIdBanels

WiamRobinson EO RiveStaion
O Eleen Chang n RiveStatmionc

J Janet _Rodwd*g ~1 ••RivistationA
App Fr AI Rde. AppI Fo AI Role

App~ For Al Times App(Y F•A Times

App Eveywhee Api Eveywhao.e

[' K o•]1 •• "J[Z ,h1

Figure A-4: OARnGES' Game Object Triggers Pane

Game Object Triggers Pane (Figure A-4)

Used to specify the objects which will be triggered or anti-triggered by the current

object. After the player interviews an NPC or inspects an Item, the triggered objects

will appear on the game map and the anti-triggered objects will be removed from

the game map. To set an object to be triggered or anti-triggered, simply check the

checkbox next to it. The objects to be triggered and anti-triggered can be specified

by role and time, using the drop down menus at the top of the pane to choose which

Role and time combination to set triggers for. To quickly apply the current set of

Triggers or Anti-Triggers use the Apply For All Roles / Apply For All Times / Apply

Everywhere buttons. Apply For All Roles will give the current set of Triggers or Anti-

Triggers to each role at the current time. Apply For All Times will give the current

set of Triggers or Anti-Triggers to the current Role at all times. Apply Everywhere

will give the current set of Triggers or Anti-Triggers to every role at every time.

Item Information Pane (Figure A-5)

Used to compose the text which the player will see when inspecting the Item in the

game. Multiple pages of text can be created by changing the "Information Length

mX1

Innaaa -

0
Man I

vli sty

triggars

Idwebm fixlwR* WWAfMdoft TitsSWkbh
lEjginj al I Ti Swrchl 1

Cutmt Iriinmon

Qambas Ted1 age

Ap* For Al R

Ap*rFoiAlTim Do M Name

Do.aeeNPath
Ap*b E.74.h~

IVideoPath B

'~':

Figure A-5: OARnGES' Item Information Pane

(Pages)" property and the "Current Page" property is used to control which page

is being edited. Just as with Triggers, the Information returned by an Item can be

customized to the Role viewing it and when it is being viewed. The Item Information

pane uses a similar interface to the Triggers Pane, you specify a Role and time com-

bination using drop down menus at the top of the pane and can use the Apply For

All Roles / Apply For All Times / Apply Everywhere buttons to quickly replicate

Information among roles and times. Each Information can specify a document to

give the player, which can be a web page, an image, an audio file or a video file. If

a document is added to an Item Information, it must also have a Document Name,

which must be unique across the game. An audio or video file can also be added to

the Item Information and the player will be able to listen to or view this file as they

inspect the Item. The Clear Information button will reset all the data, but only for

the current Item Information. To clear all data, clear the current Information and

then use the Apply Everywhere button.

NPC Interview Pane (Figure A-6)

Used to compose the text which the player will see when interviewing the NPC

in the game. Multiple pages of text can be created by changing the "Interview

I

Main

Visaty

Interview fo Role Inteview for Time Swich

Er ngm 7-ee r TueSwit ---ch - Y

Inteview Length (Pageal Add Docuesx t

interview Tet (Page l]
No. IT hatnothad anyenvionmental

Save spills or ma incidnt yet. Oth•
academic institutions have, however and

Clea_ they can be very epenrive, embarassing
Cla and potnti*y dangrou to deal with It

we have a p~oblem hei, we want to
know abou it ASAP so we can take
quick action.

For AIlRoles

ForAITenet

I Evey4wher Q evu F Next

SOK iCanexl

Figure A-6: OARnGES' NPC Interview Pane

Length (Pages)" property and the "Current Page" property is used to control which

page is being edited. Just as with Triggers, the Interview returned by an NPC

can be customized to the Role viewing it and when it is being viewed. The NPC

Interview pane uses a similar interface to the Triggers Pane, you specify a Role and

time combination using drop down menus at the top of the pane and can use the

Apply For All Roles / Apply For All Times / Apply Everywhere buttons to quickly

replicate Interviews among roles and times. Each Interview can specify a document

to give the player, which can be a web page, an image, an audio file or a video file. If a

document is added to an Interview, it must also have a Document Name, which must

be unique across the game. An audio or video file can also be added to the Interview

and the player will be able to listen to or view this file as they interview the NPC.

The Clear Interview button will reset all the data, but only for the current Interview.

To clear all data, clear the current Interview and then use the Apply Everywhere

button.

Gate Information Pane (Figure A-7)

Used to put Gate Accessible objects behind the Gate whose properties you are editing.

To place an object behind the Gate, simply check the object's checkbox. To edit the

a 1~1 I is

~W~IAQI ~ -I

I !

9VisIt C mSamson

ObjectPmpeotue

c.& r 414i1

OK CacdAp*~

Figure A-7: OARnGES' Gate Information Form

code for an object behind the Gate, click the object's name and the name will then

be highlighted and the code textbox will contain the current code for that object.

Spill Information Pane (Figure A-8)

Used to specify properties of the Spill being created. Spill Dropoff can be set as either

Exponential or Linear (at the current time neither setting affects gameplay.) Spills

are drawn as ellipses around two given foci, and the minor axis of the ellipse is set via

the Radius property. The major axis is then determined by the minor axis and the

distance between the foci. Finally, the intensity of the spill can be set, on a relative

scale from 0 to 100.

Gradients Form (Figure A-9)

Used to create and edit Gradients in the game. Gradients do not have many prop-

erties, just a name, the amount of time it takes to sample the gradient and the roles

which are able to access this gradient. Spills will have the same accessibility rules as

the gradients which they belong to (i.e. either a role has a Geiger counter and can

measure all Radiation spills, or they don't have a Geiger counter and have no way of

measuring any Radiation spills.) The Display Color setting only affects the way spills

I

I.' m

01
Main

LkbWk Diopdf Lvieu

InnsyF35

OK Cwielw

Figure A-8: OARnGES' Spill Information Pane

are drawn on the Editor screen, the color setting will not carry over to the handheld.

To edit an existing Gradient, selecting it from the table at the bottom of the form

will populate the fields with its information. Finally, each gradient can have multiple

sample types, or different methods of sampling which the player can choose from dur-

ing the game. The "Add Sample" "Edit Sample" and "Delete Sample" buttons allow

the user to create and edit these. The "Edit Sample" and "Delete Sample" buttons

will affect the highlighted sample, while "Add Sample" will create a new sample.

Sample Type Form (Figure A-10)

This form is used to create and edit a Sample Type associated with a specific Gradient.

There is currently no way to copy Sample Types between Gradients. Each Sample

Type has only four properties, a description, the length of time (in seconds) it takes

to process a sample of this type, the accuracy of the sample type and which roles can

use the sample type.

Grtadison Nams Aocsu~___
[ean Engineer

jJEnworworta Sco
TktoTakeSu* ERepo"te

DMpOWCdm Red

Updeie-radal Od.dGraimo t

Gos Cotd-9r

AddSanr,*

Gral NamT S . .Ac . .b.To

Sod 0O Enraorwneoda Scsntt Biks

Figure A-9: OARnGES' Gradients Form

Sample Poe

Description Accessible To Roles

II I

Time to Process Sample

Percent Error

IZ II

OK Cancel

Figure A-10: OARnGES' Sample Type Form.

O Engineer
O Environmental Scientist
O Reporter

m

.a~~:~~

Bibliography

[1] Priscilla Cheung. Charles River City: An Educational Augmented Reality Simu-

lation Pocket PC Game. Master's thesis, Massachusetts Institute of Technology,

2003.

[2] Matt Dunleavy. Harp evaluation report. Evaluation of Fall 2006 Implementation

of OAR game at Harvard.

[3] Eric Klopfer, Judy Perry, Kurt Squire, and Ming-Fong Jan. Collaborative learn-

ing through augmented reality role playing. In CSCL '05: Proceedings of th 2005

conference on Computer support for collaborative learning, pages 311-315. Inter-

national Society of the Learning Sciences, 2005.

[4] Eric Klopfer, Kurt Squire, and Henry Jenkins. Environmental Detectives: PDAs

as a Window into a Virtual Simulated World. In Proceedings of the IEEE In-

ternational Workshop on Wireless and Mobile Technologies in Education, pages

95-98, 2002.

[5] Mickey Williams. Microsoft Visual C# .NET. Microsoft Press, 2002.

[6] http://www.mono-project.com.

[7) http://www.microsoft.com/silverlight.

