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ABSTRACT

This thesis describes the design and construction of a cyclotron capable of accelerating protons to
2 MeV. A cyclotron is a charged particle accelerator that uses a magnetic field to confine particles
to a spiral flight path in a vacuum chamber. An applied electrical field accelerates these particles
to high energies, typically on the order of mega-electron volts. This cyclotron can be used by
students in the Department of Nuclear Engineering to perform experiments with low energy proton
beams. For example, this cyclotron could be used for experiments involving the Li7(p,n)Be7
reaction, which requires protons with energies on the order of 2 MeV [2].
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Introduction

A cyclotron is a charged particle accelerator that uses a magnetic field to confine particles

to a spiral flight path in a vacuum chamber. An applied electrical field accelerates these particles

to high energies, typically on the order of mega-electron volts. Figure 1 shows the vacuum

chamber and electrodes of an early cyclotron, built by Ernest Lawrence and Stanley Livingston in

1931.

A particle in a cyclotron encounters the same accelerating electric field many times along

its spiral flight path. This flight path is shown schematically in Figure 2. Using the accelerating

field in this fashion allows a cyclotron to produce high-energy particles far more efficiently than

other accelerators, such as linear accelerators.
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Figure 2. Schematic showing particles' flight
path in a cyclotron, as well as the applied
magnetic and electric fields. (from
Georgia State University)
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The force of the magnetic field on the charged particles is described by the following

relation:

my
F =qvB-V (1)r

where B is the magnetic field in Tesla, r is the particle's radius in meters, m is the particle's mass in

kg, and q is the particle's charge in Coulombs. This equation can be rearranged to give the

particle's velocity as a function of the other variables:

v= Br (2)
m

This velocity can be used to derive the angular frequency of the particle's flight path.

v _ qBr 1 _ qB
f2rrr m 2rrr 2rrm (3)

The signal applied to the cyclotron's electrodes must oscillate at this frequency. The particles'

maximum kinetic energy can also be determined from equation 2:

1 mv 2  lmq2B2r2 q2B2r2
KE=-- - 2 (4a)2 r 2 m 2m

As shown in equation 4a, the particles' maximum energy depends on the strength of the

magnetic field. A larger magnetic field exerts a greater centripetal force on the particles (by

equation 1), making their flight path a tighter spiral. A particle traveling along this tighter spiral

encounters the electrical field more often, and is therefore accelerated to a greater velocity and

kinetic energy.

Thesis Objectives

The purpose of this thesis is to design and construct a cyclotron capable of accelerating

protons to 2 MeV. This cyclotron can be used by students in the Department of Nuclear

Engineering to perform experiments with low energy proton beams. For example, this cyclotron

could be used for experiments involving the Li6(p,n)Be7 reaction, which requires protons with

energies on the order of 2 MeV [2].
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Preliminary Analysis and Research

Some preliminary analysis was necessary before starting to design the cyclotron's

components. Specifically, this analysis determined the type of charged particles to accelerate and

the range of energies to which these particles could be accelerated. The particles' maximum

energy determines the types of reactions they can undergo.

There are certain difficulties inherent in accelerating elections to high velocities. Electrons

are approximately 1800 times less massive than protons. By equation 2, a system with a given

magnetic field strength and radius would be able to accelerate electrons to velocities 1800 times

greater than the maximum proton velocity, neglecting relativistic effects. Charged particles

moving along a curved flight path at high velocities emit high-energy photons, which must be

shielded. In this cyclotron, which has a maximum magnetic field strength of approximately 2.5

Tesla and radius of approximately 8 cm, protons are not able to reach a high enough velocity to

emit this radiation. However, accelerated electrons would emit photons with energies in the x-ray

range. It was decided to accelerate protons in this cyclotron because the system would not require

extensive shielding. It is also straightforward to generate protons by ionizing hydrogen.

As shown in equations 1, 2, and 3, and 4a the protons' maximum attainable energy is

limited by the dimensions of the magnet's poles and ils maximum field strength. The magnetic

field strength is a function of the separation distance between the north and south poles of the

electromagnet. This cyclotron's magnetic field is produced using a Varian V-3900 magnet. Figure

3 shows the relation between gap distance and magnetic field intensity for this magnet.
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Figure 3. Magnetic field intensity as a function of gap distance for a Varian V-3900 magnet (from
Varian Analytical Instrument Division V-3900 manual).

As shown in Figure 3, the magnet generates 2.7 T of magnetic field with a 1.25 inch pole

separation. By equations 4b and 5, protons accelerated through a vacuum while contained in this

magnetic field can attain a maximum energy of approximately 2 MeV.

1 mv 2  1 mq2 2 r2

KE
2 r 2 m2

q2 B2r 2

2m

(1.6-10-19)2 (2.7)2(0.075)2

2.1.67-10-27
= 3.143E-13 J

4 13 1MeV3.14310-13J = 1.96 MeV (5)
1.6-10-13j

This maximum proton energy determines the reactions that the protons could undergo with a

target. These protons have a sufficiently high kinetic energy to undergo the Li7(p,n)Be7 reaction.

As shown in Figure 4, this reaction requires particles with energies of at least 1.882 MeV.
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I
PROTON ENERGY IN MEV

Figure 4. Yields from the proton bombardment of lithium. The uppermost curve represents
relative neutron yields. The threshold of the Li7(p,n)Be7 reaction is at 1.882 MeV. (Bair 1952)

It is possible to accelerate protons to this energy with the existing pole pieces in place. The

existing pole pieces have an 8 cm radius and a separation gap of 1.25 inches. By equations (4b) and

(5), this geometry and field strength is capable of accelerating protons to a maximum kinetic energy

of 1.96 MeV. It is possible to acquire lower energy particles by positioning the detector at a smaller

radius. A detector positioned 7.34 centimeters from the center of the accelerator will intercept

particles with energies of approximately 1.88 MeV in the presence of a 2.7 T magnetic field.

The presence of this strong magnetic field means that all cyclotron components must be

made of magnetically transparent materials such as aluminum, copper, or brass. The magnetic

field would cause oscillations, which would disrupt measurements, in materials such as steel that

are not magnetically transparent.

Vacuum Chamber

Determining Required Vacuum Pressure

The MATLAB simulation shown in Appendix A calculates the protons' flight distance as a

function of the magnetic field strength. It also plots the protons' mean free path as a function of the

vacuum pressure inside the chamber. The mean free path of a particle is the average distance a

Leslie Dewan

22 Thesis

9 of 23 5/16/07



Cyclotron Design and Construction

particle travels between collisions. For a particle moving at a high velocity compared to a set of

target particles, the mean free path is given by equation 6.

/=(no-)-  (6)

where 1 is the mean free path, n is the number of particles per unit volume, and sigma is the target

particles' cross-sectional area. The number of particles per unit volume depends on the pressure

inside the vacuum chamber by the ideal gas law.

P
n =(7)kT

where P is the pressure in Pascals, T is the temperature in Kelvin, and k is Boltzmann's constant,

which is equal to 1.38066 x 10-23 J/K.

An acceptable vacuum would allow for a mean free path an order of magnitude larger than

the expected flight distance. For protons accelerated by a 2.7 T magnetic field and a voltage

difference of 1000 V between the electrodes, the expected flight distance is approximately 300

meters. Figure 5 is a graph of the particle's mean free path versus the degree of vacuum, in Torr, in

which they are traveling.
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Figure 5. Proton mean free path in meters versus vacuum pressure in Torr.
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Testing the Vacuum Chamber

The vacuum chamber was pumped using a Varian Turbo-V 70 vacuum pump. The vacuum

chamber can be consistently pumped down to approximately 2*10-3 Torr. According to Figure 5,

this corresponds to a mean free path of 5 kilometers, which is approximately an order of magnitude

longer than the protons' expected path length.

Vacuum Chamber Ports

The vacuum chamber contains the two copper electrodes used to accelerate the protons, and

an ion source. This chamber has a series of ports, which connect it to (1) a signal generator and RF

matching box; (2) a vacuum pump that maintains low pressure in the chamber; (3) filament leads

for the ion source; (4) a hydrogen supply for the ion source; and (5) a target to collect the

accelerated particles. Figure 6 shows the position of these five ports on the vacuum chamber.

Figure 6. Vacuum chamber and numbered ports, connecting to the following subsystems: (1) RF
system; (2) vacuum pump to maintain low pressure in the chamber; (3) filament leads fir the ion
source; (4) a hydrogen supply for the ion source; and (5) a target to collect the accelerated particles.
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Details of Design and Construction

The sides of the vacuum chamber are made of 6061 aluminum. The vacuum chamber lids

are made of 7075 aluminum, because that alloy has a significantly larger tensile strength and yield

strength than 6061 aluminum, as shown in Table 2.

Table 2. Properties of Aluminum Alloys (from Machinery's Handbook).

Alloy Young's Modulus (GPa) Yield Strength (MPa)

6061-T6 69 .275

7075-T6 75 505

The chamber lids are subject to significant stresses because of the low pressure inside the

chamber. Following equation 8, which describes the deflection of a circular plate under uniform

load with a fixed support around the entire outer boundary, a lid with radius 10 centimeters and

thickness of 3.5 millimeters would undergo less than 1 mm of deflection when covering a chamber

with internal pressure of 103 Torr. These calculations were also verified experimentally-pumping

the chamber to vacuum resulted in no visible lid deflection.

center = ( L4-Ll1) (8a)
2D

Et3
D= Et3  (8b)

12(1-v 2 )
( 2 4  2  2

L= (1+4() -5() -4() (2+(r) )ln(a)) (8c)
64 a a a a ro

1 ro ro 2

L14= -(1-(-) -4( ))ln() (8d)16 a a ro

In equation 8, a is the plate radius in meters, ro is the outermost radius at which the distributed load

is applied q is the linearized load in Newtons per meter, t is the plate thickness in millimeters, E is

the modulus of elasticity and v is the Poisson ratio.
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The chamber has two grooves for Viton o-rings, which make the connection between the

side and lids vacuum-tight. The chamber's ports were made by screwing lengths of pipe, which

were sealed with Teflon tape, into tapped holes in the side of the chamber. The other ends of the

pipes were screwed onto QF flanges.

Electrodes

Principles of operation

Smaller cyclotrons often accelerate particles using two dee-shaped electrodes. Figure 1

shows an example of this design. This cyclotron uses an alternative design: it has one dee-shaped

copper electrode, and the grounded vacuum chamber functions as the other electrode. Figure 7

shows the shape and positioning of the electrode with respect to the vacuum chamber.

P system, witn copper grouncang strap to ensure
consistent connection to ground.
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Details of Construction

The dee-shaped electrode was made by first cutting pieces of copper on an OMAX waterjet

machine, then soldering the pieces together. A length of copper rod was then soldered to the dee.

The copper rod was threaded at one end to make an electrical connection with an RF feedthrough

(Varian Vacuum, part number 9545143). The feedthrough connects to the RF control box, as

shown in Figure 7.

RF system

Principles of Design
The RF system ensures that the cyclotron's impedance is matched with the incoming signal

impedance, which is 50 Ohms. An impedance mismatch would cause a fraction of the incident

power to be reflected, making the system less efficient. The cyclotron electrodes and vacuum

chamber act as a capacitor. This capacitor in parallel with an inductor resonates at a particular

frequency, given by equation 9.

I
f 2= r v (9)

Placing an additional variable capacitor in series with the system makes it possible to tune the

system's impedance to 50 Ohms. Figure 8 is a circuit diagram of the resonator and tuning

capacitor.

Figure 8. Schematic of resonator and tuning capacitor.
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Tuning and testing the RF system

First, the capacitance in vacuum chamber was determined by placing a coil with an

arbitrary inductance in series with the cyclotron chamber, and measuring the resonant frequency

with the network analyzer. Next, the same arbitrary inductor was placed in series with a 100 pF

capacitor, and the resonant frequency was again measured. After performing this measurement,

the coil's inductance could be determined using the resonant frequency, the known capacitance,

and equation 9. Once the coil's inductance was known, the chamber's capacitance was determined

using equation 9. The vacuum chamber's capacitance is 92 pF

After determining the chamber's capacitance, a copper inductor coil and variable resistor

were added to the circuit. The inductor and cyclotron chamber resonated at 15.1 MHz. The

variable capacitor was tuned so that the circuit had an impedance of 50 Ohms. Once the circuit

was tuned, it was tested for arcing with 100 W pulses. During testing, the chamber was connected

to an oscilloscope that displayed the incident and reflected signal. A chamber that is not arcing

produces a signal that is invariant in time. The chamber did not arc during the 100 W pulses.

A circuit's quality factor (Q) is a dimensionless number representing the ratio of the total

energy stored in an oscillating system to the energy lost in a single cycle. Q can be represented

schematically on a graph of current versus frequency, as shown in Figure 9. Q is defined as the

resonant frequency (f0) of the system divided by the bandwidth (Af).

E max

energy of E
steady-state max
vibrations 2

frequency
Figure 9. Schematic plot of energy versus frequency for a damped oscillator. Q is defined as fo/Af.
(B. Crowell).
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Before constructing the cyclotron chamber and electrodes, the Q factor was estimated, using

approximations for the system's capacitance and resistance. This estimate is shown in equation 10.

Q=R , where R = 4 mOhms (10a)

1 190.1( - 9

Q= 1 190-10-9 = 185 (10b)
Q 8.6-10-1_ 7510- 9  1

A more precise value of the Q factor was determined after the chamber and electrodes were

built by measuring the bandwidth and resonant frequency of the oscillator. For a resonant

frequency of 15 MHz and bandwidth of 80 KHz, Q is equal to 190. This experimentally derived

result is gratifyingly similar to the predicted outcome.

Details of Construction

The RF components, shown in Figure 10, are housed in an aluminum box made of bent

sheet aluminum. An n-type bulkhead connector mounted directly to the box connects to the

function generator and power amplifier that generate the RF signal. The variable capacitor is

mounted to the box using Delrin standoffs to prevent arcing. The box also contains a copper

inductor coil made of 8 gauge copper wire. The components in the box are connected by 10 gauge

copper wire. A copper grounding strap ensured a good electrical connection between the RF

source's ground, the RF box, and the vacuum chamber.
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Figure 10. Cyclotron RF system in aluminum box with copper grounding strap.

Proton Source

Principles of Operation

The cyclotron's ion source uses electrons to ionize hydrogen gas, thereby generating

protons. The electrons are generated by thermionic emission. Thermionic emission occurs when

electrons on the surface of a hot conductor (on the order of 1000 - 3000K) have enough kinetic

energy to overcome the electrostatic forces binding them to the surface. In this cyclotron's ion

source, the electrons flow from a negatively biased neodymium filament to the chamber ground.

Figure 11 is a circuit diagram showing the flow of electrons in the ion source. These electrons have

sufficient energy to ionize hydrogen gas to form protons.
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Figure 11. Ion source schematic, indicating election flow.

rigure zL. t.yclotron ion source, snowing wires connecting Io neodymium wire filament and
hydrogen inlet tube.

Details of Construction

Figure 12 shows the completed ion source. The filament is made ofneodymium wire,

which is connected to a vacuum-tight feedthrough (Kurt J. Lesker, part number EFT0024038).

There are 22 Ohms of resistance across the feedthrough leads. The filament temperature must be

approximately 1000 K for thermionic emission to occur. The wire achieves this temperature when

approximately 10 volts are applied across the filament.
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Proton Detector

Principles of Operation

The protons were detected at the end of their flight path using a Faraday cup. A copper rod,

which was connected to ground through an amplifier (Stanford Research Systems SRS560) was

positioned 7.34 cm from the center of the cyclotron chamber. Protons incident upon the copper rod

generate a current. The copper rod is shielded with copper flashing to reduce measurement noise.

There are also negative ions in the chamber produced when the hydrogen gas is ionized.

These negative ions travel in an opposite direction to the positive protons. If these negative ions

strike the copper rod, they will neutralize the protons' signal. Therefore, the copper rod is shielded

by a piece of aluminum connected to the chamber ground. Negative particles strike this grounded

aluminum, and therefore do not affect the measurement. Figure 13 shows the cyclotron's proton

detector.

Figure 13. Proton detector and copper flashing which ensures constant connection Io ground and
shields detector.

Details of Construction

The detector has a vacuum-tight feedthrough made by press-fitting the copper detector rod

through a piece of Delrin, which was in turn press-fit through a length of copper tubing. The

copper rod is shielding with copper flashing and an aluminum housing box. A BNC connector,

which connects to the amplifier, is mounted to the aluminum housing.
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Conclusions and Additional Testing

Figure 14 shows the closed cyclotron chamber, RF box, and mounting plates. I was unable

to test the cyclotron's proton source and detector before writing this document, because there was

no hydrogen available for the ion source. These components will be tested during the week of May

27, 2007. The modules of the cyclotron that have been tested-the RF system and vacuum

chamber-all function successfuly. The vacuum chamber can consistently hold a vacuum of

approximately 2*10-3 Torr. The RF system, which has a quality factor of 190, does not arc when

subjected to 100 W pulses. Following testing of the remaining two modules, the cyclotron's

inductor will be tuned to 160 nH (by equation 9), creating aresonance at 41.2 Mhz (by equation 3).

The variable capacitor will then be adjusted to match the incoming signal impedance, and the

applied magnetic field will be set to 2.7 Tesla. Adjusting these parameters will make the system

capable of producing a beam of 1.88 MeV protons, which will drive the Li7(p, n)Be7 reaction.

Figure 14. Closed cyclotron chamber, RF box, and mounting plates.
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Appendix A: Proton Flight Path and Mean Free Path Calculations

function cyclotron_and_mfp

m = 1.67*10^-27; % mass of proton, kg
q = 1.662*10^-19; % proton charge, C
r_max = 6.076; % maximum proton flight path radius, m

B = 2.5; % magnetic field strength, Tesla
volts = 50; % applied voltage, volts

freq = q*B/(2*pi*m); %cyclotron frequency, Hz

r = 0; % initial proton flight path radius
t = 0; %initializing time variable
i = 1; %6 initializing index i
deltat = 10^-7; % time increment, s

while r < r_max % while the proton's flight path radius is less than the dee's
radius

dEdt = 2*volts*q*freq; % rate of energy input into the cyclotron.

KE = t.*dEdt; % kinetic energy of the proton.
% st time = 0, the proton's kinetic energy is O. All kinetic energy
% increase is due to the applied voltage between the dee and dummy dee.

v = sqrt(2*KE/m); % proton velocity, which is a function of its KE

r = m*v/(q*B);
% the radius of the proton's flight path is a function of it's KE, and
% is therefore a function of its velocity

t = t + deltat; % increment time

% store the following in vectors, to be read later:
time(i) = t;
kineticenergy(i) = KE/(1.6*10^-13);
velocity(i) = v;
radius(i) = r;
flightdistance(i) = v*delta_t;

i = i+1; %increment index
end

KE_max = max(kineticenergy)

totalflight = sum(flightdistance) %determine the proton's total flight path

%plot(time,velocity,'*')
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%ts = timeseries

x = radius.*sin(2*pi.*time*freq);
y = radius.*cos(2*pi.*time*freq);
%plot(x,y,'.')

%estimating mean free path
rproton = .8*10^-15;
r_oxygen = 2*60*10"^ -12;
r_nitrogen = 150*10^-12;

r ave = 10^ -12;

P = [0.001 0.01 0.1 1 10 100]; %pressure, Pa
RB = 8.31; %universal gas constant
T = 300; %temperature in Kelvin

NA = 6.022*10^23;

molardensity = P/(RB*T);
moleculardensity = NA*molardensity;
mfp = 1./(pi*r_ave^2*moleculardensity)

pascal_to_torr = 0.0075

x = 0.0001:0.001:10;
loglog(P*pascal_to_torr, mfp, x, 7*10^3)
title('Proton Mean Free Path vs Vacuum Pressure')
xlabel( 'Pressure, Torr')
ylabel('Mean Free Path, m')
%flight to mfp ratio = totalflight/mfp

Leslie Dewan

22 Thesis

23 of 23 5/16/07


