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Abstract

This dissertation is composed of three chapters. The first demonstrates that natural
gas violates many of the simplifying assumptions frequently used in modeling its be-
havior. Careful analysis of futures contracts written on gas suggests that gas prices
are seasonal while returns are non-Gaussian and evidence stochastic volatility. In
addition, examination of options prices indicates the intermittent presence of jumps.
We find that models which disregard these properties struggle to recover options
prices with any precision. Thus, we propose an alternative nonparametric approach
to gas options pricing that captures these salient features while also shedding light
on the nature of risk aversion embedded in gas markets.

The second chapter offers a parametric approach to pricing derivatives written
on natural gas futures designed to overcome the shortcomings of existing paramet-
ric schemes. First, it proposes a model of the underlying futures prices that ad-
mits stochastic volatility. Second, it makes use of a state-of-the-art Bayesian parti-
cle filtering technique to estimate the underlying process parameters along with a
simulation-based technique for option pricing. While it trades off some performance
relative to nonparametric approaches, such as the kernel scheme employed in the
first chapter, the strategy employed is very general and allows for the pricing of more
complex derivatives.

The final chapter presents new estimates and approaches to estimating the home
bias puzzle. It uses micro-level data to calculate households’ foreign equity exposure
as a function of wealth. We find simple estimates have significant errors-in-variables
problems and we construct an estimator using grouping to account for this issue.
Our estimates still imply low aggregate investment in foreign equity. Finally, we
disaggregate the investment decision by incorporating two step decisions that allow
households to forgo participating in the market. As a result of the decoupling, we
find foreign equity levels closer to that of standard portfolio theories.
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Chapter 1

Capturing the Idiosyncrasies of
Natural Gas Markets for Better
Derivatives Pricing

With Alan Michael Grant

Abstract

In this chapter, we demonstrate that natural gas violates many of the simplifying
assumptions frequently used in modeling its behavior. Careful analysis of futures
contracts written on gas suggests that gas prices are seasonal while returns are
non-Gaussian, and evidence stochastic volatility. In addition, examination of options
prices indicates the intermittent presence of jumps. We find that models which dis-
regard these properties can accurately predict futures prices, but struggle to recover
options prices with any precision. Thus, we propose an alternative nonparametric
approach to gas options pricing that captures these salient features while also shed-
ding light on the nature of risk aversion embedded in gas markets important for
evaluating and calibrating derivatives models.

1.1 Introduction

Over the last thirty years, natural gas markets have come to play an extremely im-
portant role in the global economy. In 2005, the United States alone consumed about
$260 billion in natural gas.! In that same year, greater than $1 trillion in gas fu-

I This assumes $10 average gas and 26 trillion cubic feet of consumption. (cf. Energy Information
Administration (2004))
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14 CHAPTER 1. NATURAL GAS MARKETS

tures traded on the New York Mercantile Exchange (NYMEX).? A variety of factors
including its relative abundance, low cost of transport, and promise as a clean source
of fuel, have helped to make natural gas the world’s fastest growing commodity as
well a major profit driver for leading investment banks.? Natural gas is unlikely
to lose any of its momentum as interest in national energy independence, reduced
environmental impact, and the low cost associated with gas-fired power generation
drive producers and consumers towards its further embrace. In addition to growth in
the underlying physical market, gas’s high price volatility will increasingly motivate
market participants to manage their risk by trading in derivatives.

Despite its substantial economic significance, natural gas has received compara-
tively little attention from researchers in finance. The vast literature in asset pric-
ing has certainly provided some insights into the value of spot prices and derivative
contracts written on gas. However, academic work has mostly focused on equities,
fixed income securities, and currencies. Commodities, and natural gas in particular,
behave quite differently empirically than other asset classes making it difficult to ap-
ply, for example, equity derivative models to pricing natural gas options. Gas prices
are clearly seasonal and evidence volatility and jumps which vary through time in
a complicated manner. Price levels seem to be related to convenience yields, stor-
age costs, and the price of alternative energy sources such as oil.* As documented
in this chapter, natural gas derivatives have unique properties too; futures on gas
are distinguished by a small degree of backwardation, a feature prominent among
agricultural and metal commodities, while options on futures display upwards slop-
ing implied volatility wings. Finally, natural gas markets evidence an unusually low
degree of geographic integration. As a result, in the United States, where pipeline
networks in eastern and western states do not interconnect to a great degree, there is
substantial price segmentation across regions.® All of these factors suggest that gas’s
underlying market microstructure and representative stochastic process differ from
those of equities and fixed income securities and other commodities as well. These
differences have profound implications not only for the understanding of gas prices
in their own right, but for the valuation and hedging of both real assets and financial
derivative contracts tied to the underlying price of gas.

A collection of recent work, including Pindyck (2001), Pindyck (2004), Gibson
and Schwartz (1989), Schwartz (1997), Miltersen and Schwartz (1998), Schwartz and
Smith (2000), Todorova (2004b), and Clewlow and Strickland (2000), attempts to cap-
ture a few of the stylized facts regarding commodities futures and incorporate them
into parametric partial and general equilibrium models. To the extent that the au-

2The value of over-the-counter transactions in futures and other derivative contracts totaled an
even greater amount according to industry sources.

3See Geman (2005, p. 227).

4Convenience yield refers to the benefit associated with directly holding inventory in an underlying
asset rather than a derivative contract written on the product. See Pindyck (2004).

5See Cuddington and Wang (April 20, 2005).
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thors extend their models directly to natural gas, they limit their empirical analysis
to futures prices. This is likely due to the fact that exchange-traded gas derivatives
were limited before March of 2004 when NYMEX introduced a European options con-
tract on gas futures.® In addition to all the other benefits they offer with respect to
risk management and market completion, options markets provide rich information
about the underlying security’s market structure.” A spate of recent papers includ-
ing Jackwerth (2000), Ait-Sahalia and Lo (2000), Carr and Wu (2003b), Carr and Wu
(2003a), and Carr and Wu (2004) have exploited the theoretical links between option
prices and those of the underlying to deduce important characteristics about investor
preferences and admissible stochastic processes.

To date, researchers have made numerous simplifying assumptions in their at-
tempts to model commodities markets. We show that natural gas meaningfully vi-
olates many of the idealized conditions commonly imposed. Moreover, these depar-
tures, which can be grouped into two classes, are of first order importance when
pricing derivatives written on gas. First, there are features such as non-normality,
seasonality, and stochastic volatility in returns which are evident from direct analy-
sis of gas spot and futures prices. The second class of deviations are those features,
such as low risk aversion and the intermittent presence of jumps, which are only ob-
servable via indirect examination using options data. This chapter sets out to accom-
plish the following: (1) leverage specialized empirical tools from the equity options
literature along with more standard econometric techniques to document the impor-
tant features of gas markets often neglected in extant models, (2) demonstrate how
the failure to incorporate these features can lead to substantially magnified pricing
errors in options markets relative to futures markets, and (3) propose an alternative
nonparametric approach to derivative pricing that avoids these pitfalls.

The chapter proceeds as follows: In Section 1.2, we furnish an abbreviated survey
of the literature to give context to our findings. Section 1.3 is devoted to explaining
our data set. Section 1.4 documents important features of natural gas’s stochastic
process. First, the section offers evidence from spot and futures prices of the idiosyn-
cratic nature of gas’s process. Next, it exploits estimation techniques first employed
by Carr and Wu to identify the periodic presence of jumps in addition to diffusive be-
havior. Section 1.5 makes use of an observation by Breeden and Litzenberger (1978)
regarding the link between European options prices and state price densities as well
as an estimation technique employed by Ait-Sahalia and Lo (2000) and Jackwerth
(2000) to provide evidence of another important feature of gas markets: investor risk
aversion that is low and relatively constant in wealth. Section 1.6 introduces several
approaches to pricing natural gas options representative of the those in the existing
literature. It establishes the failure of these candidate models to accurately recover
the market prices of options as the result of the misspecifications in the stochastic
process and the nature of risk aversion highlighted in the prior two sections of the

SNYMEX introduced American options on natural gas futures in 1992,
"See Ross (1976).
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chapter. Section 1.7 offers an alternative nonparametric means of pricing derivatives
using a kernel estimator which disregards the common restrictions we determine to
be inaccurate. Consequently, the kernel estimator is significantly more successful in
pricing options than the other methods considered. Section 1.8 concludes.

1.2 Background and Literature Review

Some of the earliest research into commodity pricing dates back to work by Kaldor,
Working, and Telser who studied the interplay of storage costs and convenience yields
and their impact on the relationship between spot and futures prices.® Recent efforts
have focused on establishing either richer microfoundations or better empirical prop-
erties at the cost of reduced form modeling. Among the structural approaches, some
of the more notable papers include Sundaresan (1984), Chambers and Bailey (1996),
and Routledge, Seppi, and Spatt (2000). Sundaresan (1984) develops an equilibrium
model for spot and futures prices in a nonrenewable commodity market characterized
by uncertain exogenous discoveries of the resource. The paper finds that in periods
between supply shocks, spot prices generate positive excess return as a function of
the price elasticity of demand, the mean arrival rate of discoveries, and the degree of
enlargement to existing reserves. In times of repeated discoveries, the model predicts
discontinuous price declines. Using equilibrium arguments, Sundaresan derives the
price of a futures contract as a function of the price elasticity of demand, the spot
price, the volatility in reserve levels, and the contract’s time to maturity.

Chambers and Bailey (1996) focuses on the determination of spot prices by exam-
ining equilibria under various assumptions about the nature of supply shocks. The
paper proves the existence of a unique stationary rational expectations equilibrium
under three types of disturbances: independent and identically distributed, time de-
pendent, and periodic. It develops testable implications for each model type and
conducts an empirical exercise with a variety of agricultural commodities; the paper
finds weak support for a model with periodic supply shocks.

Routledge, Seppi, and Spatt (2000) builds on work by Wright and Williams (1989),
Chambers and Bailey (1996), and Deaton and Laroque (1996) to develop a compet-
itive rational expectations model of storage. The paper solves for the equilibrium
level of inventory in a setting with competitive risk-neutral agents in which “imme-
diate use” consumption value is determined by a mean-reverting Markov process.
The inventory rule and shock process together determine the spot and forward price
processes. In empirically testing their model with NYMEX crude oil futures, Rout-
ledge et al. find that the one-factor version fails to produce the correct conditional
and unconditional moments of the data while the two-factor extension has somewhat
greater success.

Amongst those papers that start from a set of reduced form assumptions and

83ee Kaldor (1939), Working (1948), Working (1949), and Telser (1958).
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make use of no-arbitrage arguments, Black (1976) is perhaps the best known. It for-
goes analysis of spot prices and focuses instead on deriving a closed form expression
for the value of commodity options written on futures prices. The method amounts to
first valuing a futures contract as the expected value under the risk-neutral measure
of the spot at the time of expiration, and second replacing the value of the spot in
the original Black-Scholes-Merton formula with the discounted value of the futures
price. The paper makes the simplifying assumption that futures have a lognormal
distribution.

In a series of primarily co-written papers, Eduardo Schwartz has developed sev-
eral approaches to modeling spot commodity prices as well as futures and options
on futures. The first paper in the sequence, Gibson and Schwartz (1989), adapts the
two-factor partial equilibrium bond pricing model of Brennan and Schwartz (1979) to
commodity markets. In this context, the two factors are the spot price of the commod-
ity and the instantaneous convenience yield, which are assumed to evolve according
to a geometric Brownian motion and mean reverting diffusion process respectively.
As an empirical exercise, the paper looks at weekly oil futures and finds that the
model prices short-term futures with reasonable success. Schwartz (1997) extends
Gibson and Schwartz (1989) by adding an instantaneous interest rate that also fol-
lows a mean-reverting process. More importantly, this iteration in the series shows
how to take advantage of the model’s inherent Markovness by rewriting it in state
space form and estimating the unobserved state variables via the Kalman filter and
maximum likelihood technique.

Miltersen and Schwartz (1998) further builds on Schwartz (1997) by deriving an
analytical expression for valuing European options on commodity futures in the pres-
ence of stochastic interest rates and stochastic convenience yields. In the same Jour-
nal of Finance issue, Hilliard and Reis (1998) incorporates jumps in the spot process
into the framework of Schwartz (1997). The paper manages to endogenize the market
price of risk stemming from interest rates but leaves the risk associated with the con-
venience yield as an exogenous parameter set in equilibrium. Schwartz and Smith
(2000) breaks from the tradition of modeling spot prices as draws from a lognormal
distribution so that it can capture both the effect of price’s long-term impact on sup-
ply as well as more immediate deviations from the equilibrium level. To accomplish
this, the paper formalizes a two-factor model. The first factor follows an Ornstein-
Uhlenbeck process which reverts back to zero and is designed to soak up short-term
shocks like supply interruptions and demand variation stemming from weather. The
second factor, which evolves according to a geometric Brownian motion with drift,
incorporates long-term changes to the equilibrium price level resulting from politi-
cal and regulatory effects, technological improvements related to the discovery and
production of the commodity, and expectations regarding exhaustion of the existing
supply. As with Schwartz (1997), the two-factor formulation admits an easy state
space representation so that Kalman filtering and maximum likelihood can be used
for its estimation. Though formally equivalent to Schwartz (1997), Schwartz and
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Smith (2000) has greater econometric and intuitive appeal. Specifically, the short-
term/long-term model is more “orthogonal” in its dynamics than the approach based
on spot prices and convenience yields. In the Gibson and Schwartz (1989) frame-
work, the convenience yield plays a role in the stochastic process for the spot price
whereas in the Schwartz and Smith (2000) set-up, the only interaction between fac-
tors arises via the correlation of their stochastic increments. Schwartz and Smith
argue that this orthogonality is not only cleaner (i.e. the volatility for the price of a
futures contracts is equal to the volatility of the sum of short- and long-term factors)
but it may make it possible to safely disregard the short-term factor when valuing
long-term assets. Such a simplification facilitates extensions to the model like that of
a stochastic equilibrium growth rate. Finally, the authors estimate the parameters
of the model using prices from oil futures contracts

Todorova (2004b), whose primary aim is achieving a closer fit to natural gas fu-
tures data, incorporates explicit seasonal price fluctuations into the framework of
Schwartz and Smith (2000). To this end, the paper considers a third “seasonal”
stochastic factor as well as various other means of deseasonalizing the data. Clewlow
and Strickland (2000) takes a nonparametric approach based on principal component
analysis to modeling the futures curve; the strategy is flexible enough to take season-
ality into account. Examining the case of gas futures, Todorova compares the results
generated by her models with those implied by Schwartz and Smith (2000) and the
volatility functions model of Clewlow and Strickland (2000). She finds that the three-
factor model with the stochastic seasonal component produces the highest likelihood
amongst all the models considered but that Clewlow and Strickland’s methodology
has superior out-of-sample prediction performance.

More recently, Doran (2005), building on earlier work in Doran and Ronn (2006),
attempts to model natural gas options under various stochastic volatility regimes.
Although he does not use actual European option prices, Doran makes use of a tech-
nique pioneered in Barone-Adesi and Whaley (1987) to approximate European prices
from traded American options. He finds best out-of-sample performance in a least
absolute deviations sense using a variant of the Bates (1996) stochastic volatility
and jumps model where he additionally allows for jumps in the volatility itself.

1.3 Data

In this section, we describe the data used in this chapter and highlight some of its
salient features. The two types of gas derivatives examined, natural gas futures
and European options written on futures, are exchange traded on NYMEX. Yield
curves are constructed from data on government securities made available by the
US Treasury Department.
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1.3.1 Futures Data

Our data on natural gas futures (symbol: NG) consist of daily settlement prices for
the natural gas futures contract traded on NYMEX from April 1990 to December
2005.% 1° Contracts are priced in dollars per million British thermal units (mmBtu)
and obligate the seller to deliver gas to the Henry Hub in Louisiana. The trading
unit for the market is 10,000 mmBtu. The data consists of 3,942 days of prices for
contracts of 12 different maturities—a one month maturity, two month maturity, and
s0 on up until and including a twelve month maturity contract.!!

Estimation of parametric pricing models often necessitates the use of synthetic
fixed maturity data in order to reduce the dimensionality of the problem; otherwise,
contracts would not be comparable through time and hence require the estimation of
parameters which change, for example, daily. Thus, we construct a complete futures
curve for each trading day using actual prices and interpolate via a cubic spline
approximation procedure a constant maturity price series. Throughout the chapter,
we make special use of our synthetic contracts with maturities that are multiples of
a month.!2

Liquidity in natural gas, as with other commodities, is concentrated in futures
rather than spot markets. While the dynamics of futures markets, per se, are not
of principal interest in this chapter, NYMEX options which play a central role in
our investigation, are written on futures and thus our interaction with them is un-
avoidable. Consequently, we provide some analysis of their characteristics as well.
Table 1.1 highlights some basic sample statistics of the shortest maturity contract
which can be interpreted as a proxy for the spot price. One observation immediately
evident from this table is the increasing average price, a point to which we return in
Section 1.6.1 when we detrend the data. In particular, prices rise substantially after
the year 2000. In figure 1.1, we illustrate the dynamics of natural gas futures by
showing the settlement prices for all of the contracts from March 2004 to December
2005 (i.e. the period for which we have options data) for maturities ranging from one

9See http://www.nymex.com/.

10Settled prices are volume-weighted averages of transactions which occur in the final two minutes
of the trading session.

L1 A5 ig standard with futures, the one month contract is not the same instrument across days be-
cause the time to expiration changes daily. For example, on January 1st the contract expiring in
February of the same year matures in 30 days while the one month contract on January 2nd matures
in 29 days. This feature of futures contracts necessitates some care in modeling since the one month
contract is not the same asset through time.

12There are, of course, alternatives to constructing a constant maturity price series. One procedure
is simply to define the one month contract as the contract expiring the following month. Another is
to define the one month contract based on a window wherein it equals the contract which expires the
following month if the time to expiry is greater than say, 2 weeks, and equal to the contract expiring
in 2 months otherwise. This method easily extends to other contracts. We found that neither of these
procedures works well in spot price models and generally produces a poorer fit than that obtained via
a spline.
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Table 1.1: Natural Gas Futures Sample Statistics

The prices in the table are those of the one month contract and are denominated in dollars.

Time Period
Statistic Entire Sample 90-95 95-00 00-05 3/04-12/05
Min 1.046 1.046 1.323 1.830 4.570
1st Quartile 1.895 1.510 1.946 3.491 6.146
Median 2.358 1.720 2.287 5.149 6.819
Mean 3.315 1.794 2.579 5.412 7.819
3rd Quartile 4.294 2.085 2.748 6.348 8.117
Max 15.380 3.448 9980 15.380 15.380
Std. Dev. 2.275 0.376 1.132 2.473 2.582

month to twelve months. The plot demonstrates that prices rise over the time period.
In addition, the two prominent diagonal “humps” in the plot clearly testify to strong
seasonality as the protrusions in price in the Date-Price plane always correspond
to December and January contracts. These humps are also evidence of consistent
backwardation in gas markets.

There are several more important features of the futures curve and its evolution
through time that deserve mention. First, and not surprisingly, there exists signifi-
cant correlation between the prices of different contracts on a given day; correlations
often exceed 0.9. Second, we examine the realized distributions of returns between
pairs of contracts using Kolmogorov-Smirnov tests and find that we cannot statisti-
cally reject the null hypothesis that the returns of contracts with different maturities
are realizations from the same distribution. Finally, we look at the correlation be-
tween continuously compounded daily returns of different contracts and find that
returns at time ¢ and time ¢ + 7 have correlations near 0 for values of 7 ranging from
30 days to 360 days.

1.3.2 Options Data

We also make use of data on European-style options on natural gas futures (sym-
bol: LN) traded on NYMEX.!3 The options essentially expire at the same time as
the underlying futures contract and, as is the case with futures, prices are quoted
per mmBTU. One option constitutes the right to buy or sell one futures contract on
10,000 mmBTU of gas. The data consists of daily settlement prices in dollars for call
and put options traded on NYMEX from March 2004 (when the options began trad-
ing) to December 2005. This corresponds to 455 trading days and 47,408 contracts
with a positive trading volume. To allow for simpler pricing models and reduce di-

13We make use of daily “settled” prices as determined by NYMEX’s Options Settlement Committee
at the end of trading.
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Figure 1.1: Natural Gas Futures Prices
The figure plots the daily futures curve from March 1, 2004 until December 31, 2005 using contracts

with maturities from 1 to 12 months. Prices are in dollars.

Price ($)
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Table 1.2: Option Summary Statistics

Call price is the price of the call in dollars. Also, we have used put-call parity to translate the put
prices into calls and the table reports those prices. Implied volatility represents the implied volatility
as calculated using the pricing formula from Black (1976), T represents the time to maturity in years,
X represents the strike price in dollars, and r represents the risk-free interest rate used for that
option calculated in the manner we have described in Section 1.3.3.

Variable Mean Std. Dev. Min Median Max
Call price ($) 1.162 1.010 0.000 0.915 10.710
Implied o (%) 39.890 12.243 0.049 38.280 159.400

7 (years) 0.753 0.707 0.011 0.564 5.536
X @® 8.454 3.111 1.000 7.750  99.000
r (%) 3.103 0.836 0.776 3.195 4.557

mensionality, we use put-call parity to convert the put option prices into call prices.
When both puts and calls are traded with the same maturity and strike and both
have positive trade volume, we follow a simple decision rule of using the price im-
plied by the derivative with the higher trade volume. Thus we use the actual call
price if its volume exceeds that of the put and otherwise use the implied call price
of the put. We only include option prices where there is positive trading volume to
ensure a higher confidence in the reported price quotes.

For several pricing models, we also need pricing information on the underlying
futures contract. Thus, we merge the futures data, interest rate data, and option
data to produce a combined data file. This constructed data set includes 427 trading
days from March 2004 to December 2005 and has 38,885 unique option prices. We
report various summary statistics for the option data in table 1.2 and table 1.3.

For the pricing models that we introduce later in this chapter, we describe the
options in terms of the Black (1976) implied volatilities rather than the prices them-
selves. Since Black (1976) provides a unique one-to-one mapping between prices and
implied volatilities, this presents no loss of information. Further, it complies with
both industry and academic convention. We are particularly interested in how vari-
ables such as moneyness, which is defined as an option’s strike price divided by the
price of the underlying futures contract, and time to expiry influence implied volatil-
ity and thus prices.

To produce a smooth visualization of the surface implied by the options, we esti-
mate the relationship between time to maturity, moneyness, and implied volatility
using a nonparametric series regression.!* Several representative plots are provided
in figure 1.2. As is evident from the plot, the relationship between implied volatil-
ity, time to expiry and moneyness is not entirely stable through time yet the overall

4¥or these plots, a third order Taylor approximation is used as the approximation function. The
results are robust to changing this approximation function.
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Table 1.3: Natural Gas Futures and Options Median Volumes by Contract

The Maturity column represents the contract’s time to maturity in months. The NG volume column
represents the median number of contracts traded over the entire data set from 1990 to 2005 and the
LN volume represents the median number of options traded using the entire sample.

Maturity NG Volume LN Volume

1 20,700 200
2 9,160 150
3 3,639 150
4 2,033 100
5 1,348 100
6 953 100
7 676 100
8 503 100
9 393 100
10 311 100
11 241 100
12 208 100

shape is quite persistent.

First, the implied volatility is not constant and each month produces a volatility
surface entirely different than the plane which arises out of the traditional Black-
Scholes-Merton assumptions. Second, over almost any time period, there is a pro-
nounced positive relationship between moneyness and implied volatility. This is the
opposite of the relationship we observe in equity index options, and different than
the “smiles” that characterize equity options. Also, there is a negative relationship
between the time to maturity and implied volatility. Again, this contrasts with what
we often observe in equity option markets. These relationships evidenced in the ac-
tual data are quite strong and explored in later sections to make inferences about the
underlying gas market and evaluate the accuracy with which option models recover
market prices.

1.3.3 Interest Rate Data

Our interest rate data consists of daily rate quotes for fixed maturity securities with
expirations in 1 month, 3 months, 6 months, and several longer term maturities.1®
The US Treasury Department has made this data available since 1990 thus more

15The Treasury Department uses cubic spline interpolation to actually derive these rates.
See http://www.treasury.gov/offices/domestic-finance/debt-management/
interest-rate/yieldmethod.html for more information.
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Figure 1.2: Implied Volatility Surfaces of Actual Prices
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than matching the life of our combined futures and options data sets.!® In estimating
various models throughout the chapter, we utilize interpolations from cubic splines
of the complete fixed-length Treasury rate curve to estimate the risk-free rate associ-
ated with a given maturity and trade date. Overall, we find that our models are not
especially sensitive to interest rates.

1.4 Analysis Under the Objective Measure: Process
Specification

In this section, we use both the futures and the options data to illuminate the dy-
namics of natural gas. These properties are critical stylized facts that most existing
papers, such as those cited in Section 1.2, largely ignore because their introduction
makes modeling and estimation a more intractable task, because they are poorly
documented, or because they are specific to gas while the author’s focus is elsewhere.
We view as a central contribution of this chapter the notion that correctly capturing
these features is particularly significant when one is trying to value derivatives writ-
ten on gas. We first highlight three features of the gas process that are obtainable
from direct analysis of the futures prices and then proceed to analyze those exposed
via an examination of options written on those futures.

1.4.1 Evidence from Futures

We begin by utilizing futures data to document the empirical properties which char-
acterize the dynamics driving gas markets. One crucial aspect in which gas mar-
kets behave in a similar manner to what we observe in, for example, equity markets
involves the pattern in which the distribution of returns evolves over time. Specifi-
cally, we test the hypothesis that simple and continuously compounded returns are
normally distributed. First, we construct daily, weekly, and monthly returns and gen-
erate Q-Q plots against a normal distribution to check for normality. The Q-Q plot
shows points that represent the realized quantiles of the actual futures returns and
a line that represents the quantiles of a normal distribution with the same mean and
standard deviation. If the futures returns were normal, we would expect the points
to lie on the line. As with equities, it seems clear from figure 1.3 that short duration
returns are non-Gaussian while longer duration returns have a distribution that is
closer to normal. We formally test this hypothesis with Shapiro-Wilk tests. We report
the results from the Shapiro-Wilk test in table 1.4 and note that the tests reject the
hypothesis that returns are normally distributed for short duration returns, but can-

16The data is available online from Treasury’s website: http://www.treasury.gov/
offices/domestic-finance/debt-management/interest-rate/yield.shtml.
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Table 1.4: Representative Test of Normality
Maturities are in months and W represents the Shapiro-Wilk test statistic. *** represents significance
at the 1 percent level and hence we can reject normality at the 99 percent confidence level.

Daily Weekly Monthly
Maturity w w w

1 0.882*** (0.983***  0.991
2 0.888*** (.984***  (0.992
3 0.893*** 0.985%**  0.995
4 0.896*** 0.985***  0.996
5 0.896*** 0.987***  0.995
6 0.899*** 0.988***  0.994
7 0.907*** 0.989***  0.993
8 0.919*** 0.990***  0.993
9 0.930*** 0.991***  0.994
10 0.938*** 0.991***  0.996
11 0.941*** (0.991***  0.996
12 0.943*** 0.992***  0.996

not reject normality in monthly returns.” These results indicate that the common
assumption of a lognormal price process can prove problematic.

A second important property of gas made evident from analysis of futures prices
is its randomly time-varying volatility. The accurate pricing of options, an impor-
tant component of this chapter, is closely linked to the nature of volatility. More
precisely, the Black-Scholes-Merton framework rests heavily on the assumption that
an asset’s quadratic variation over any finite time interval is deterministic. In the
standard case that the underlying asset follows a diffusion process with nonstochas-
tic coefficients, realized variance is deterministic and equal to the integral over time
of the squared value of the diffusion coefficients.'® The presence of stochastic volatil-
ity, then, represents a substantial departure from the Black-Scholes-Merton world.
We find that natural gas exhibits stochastic volatility and illustrate this fact by cal-
culating rolling 30-day standard deviations. As is evident in figure 1.4, there are
significant changes in the estimated volatility through time as well as differences
between estimates constructed from contracts of different maturities. Consequently,
models which fail to capture gas’s time-varying volatility will almost certainly pro-
duce incorrect estimates of option prices.

A third and highly distinctive yet poorly modeled feature of natural gas is the

17The Kolmogorov-Smirnov test does not work well here because it requires the sample to have no
ties in order to generate an exact distribution. We do not meet this requirement and hence must rely
on a potentially very inaccurate approximation. Hence we do not report that test statistic.

18gee Shreve (2004, p. 107) and Rebonato (2004, pp. 97-98) for a more detailed discussion.
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Figure 1.3: Representative Q-Q Plots

The first column includes Q-Q plots comparing the sample quantiles of daily, weekly, and monthly
returns of the 1 month futures contract against the quantiles of the normal distribution whose mean
and variance match the sample mean and variance of the 1 month contracts’ returns. The second

column offers the same analysis for the 12 month contract.
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Figure 1.4: Natural Gas Price Volatility
The top panel shows a rolling estimate of the sample standard deviation of the daily price of a 1 month
futures contract. The bottom panel shows the analogue for a 12 month futures contract.
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Table 1.5: Average Monthly Price Deviations

The month column represents the period in which a given contract matures. The deviation represents
the average deviation over the entire sample where individual deviation is defined as the difference
between the price of a contract expiring in a given month on a particular day and the average price
for all contracts on that day as a percentage of that average price. We aggregate over days to produce
the average deviation. These deviations are denominated in dollars.

Month  Deviation Month Deviation
January 0.136 July -0.055
February 0.074 August -0.050
March 0.006 September -0.049
April —-0.056  October -0.029
May -0.063 November 0.037
June -0.060 December 0.108

seasonal fluctuation in prices. Figure 1.1 provides visual evidence for the presence
of seasonality. Here, we provide further proof by examining the extent to which
contracts’ prices exceed the average price of all the contracts traded on a given day.
More formally, we compute daily price averages and determine the monthly deviation
(in percentage terms) from that average. Aggregating over the entire data set and
controlling for daily price fluctuations, we identify the seasonal component in natural
gas pricing by observing which months, on average, have the highest prices. These
average monthly deviations are reported in table 1.5. We find that contracts which
expire in December and January are the most costly indicating a strong empirical
regularity in the data that must be modeled. We make heavy use of this fact in later
sections of the chapter when we suggest an alternative procedure for pricing natural
gas options.

1.4.2 Evidence from Options

While we have shown that much about gas’s representative stochastic process can
be learned from direct study of spot and futures’ prices, an examination of options
can shed further light on the nature of the underlying process. Specifically, it is dif-
ficult to identify the presence of jumps if one only observes discretely sampled paths
of the underlying asset’s price. Unless the sampling frequency is extremely high,
wherein market microstructure effects would almost certainly have the unintended
consequence of obscuring the result, jump and continuous processes are essentially
indistinguishable. Carr and Wu (2003b) address a similar problem in equity mar-
kets and develop a technique for differentiating between a purely continuous process
(PC), pure jump process (PJ), and a combination of the two, or continuous jump pro-
cess (CJ). Since the presence of jumps in the underlying’s process can have substan-



30 CHAPTER 1. NATURAL GAS MARKETS

Table 1.6: Asymptotic Behavior of Short-Maturity Options

Process Type OTM Options ATM Options

PC O "),e>0 O(/1)
PJ o(1) O(1?),p €(0,1]
cJ O(r) 0GP),p (0,31

tial impact on the value of derivatives, it is important to identify their existence in
order to develop an accurate pricing model. In this section, we employ Carr and Wu’s
methodology to demonstrate that in fact gas shows evidence of switching between PC
and PJ/CJ regimes.

While the interested reader is directed to the original paper for technical details,
the basic idea underlying the Carr and Wu’s test is simple: short-dated option prices
are highly dependent on the presence of jumps. As an example, out-of-the-money
(OTM) options with near-term maturities have little chance of recovering any value
if the asset on which they are written follows a purely continuous stochastic pro-
cess. However, if the process admits jumps, the OTM option may retain considerable
value depending on the magnitude and frequency of those jumps. Carr and Wu ex-
tend this intuition and show via analytical derivation and simulation the behavior
of at-the-money (ATM) and OTM options as the time to maturity approaches zero.
There results are summarized in table 1.6 where the O(-) follows the standard Lan-
dau notation regarding asymptotic speed.!® Carr and Wu find that the asymptotic
behavior is always exhibited by options maturing within 20 days.

The analysis is nicely captured in term decay graphs which plot the log of the
ratio of option prices to maturity, log% , against log maturity, logz. As the contract
approaches expiration, ATM options evidence zero slope in the presence of a finite
variation PJ model and a negative slope in the PC or CJ cases where jumps are of
infinite variation. In contrast, OTM options are characterized by zero slope in the PJ
case and positive slope in the PC case. In order to estimate the slope coefficient, we
fit a second-order polynomial

In (g] =a(ln7)2+b(n7)+c

to the plots where C is the call price. Consequently, the slope of the graph at a given
InT is given by 2aln(z) + 5.

197 = O(g) should be interpreted as li:n::pg < 0o.
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Empirical Results

Following the procedure laid out by Carr and Wu (2003b), we estimate the term
decay graphs at four log moneyness levels: 2 = In(X/F) = 0%,3%,6%,9%. However,
before we produce plots and accompanying polynomial fits, we first filter the data in
several ways. In addition to requiring that options contracts have sufficient volume
for inclusion, we ensure that there are enough contracts with different strikes for
each maturity that interpolation of call prices is possible. Finally, we guarantee that
we can fit meaningful regressions to this interpolated options data set by dropping all
days in which there are an inadequate number of contracts at the same moneyness
level. We display some sample plots in figure 1.5. The top panel suggests that options
on December 7, 2004 follow a PC process given the downward sloping OTM plots
and flat ATM plot as contracts approached maturity. In contrast, the bottom panel
provides evidence that options on March 10, 2005 have a jump component. Given
that the plots of the OTM options are not downward sloping, we can largely rule out
the possibility of the presence of a PC process on that day.

Table 1.7 summarizes the key result of this section: the stochastic process for nat-
ural gas shows evidence of the intermittent presence of jumps. Specifically, the table
shows that 89% of the days between October 1 and December 31 in our scrubbed data
set follow a PC process while the remaining 11% of the days provide indeterminate
evidence for the process type. Conversely, between January 1 and September 30,
88% of the days show evidence of jumps while the remaining 12% of days offer no
information. On about half of the days on which we can make inferences, there is
evidence of a diffusion component as well. Perhaps the most striking result is that
in the October-December period there is not a single day in which the potential for
jumps are present while during the January-September period there are zero days on
which options prices suggest gas follows a purely continuous process. Finally, one can
observe that the periodicity in the presence of jumps overlaps with the seasonality
of prices discussed in Section 1.4.1. There we found that prices seem to follow a sea-
sonal pattern wherein spot prices rise in the months of December and January. Carr
and Wu concluded from their study of S&P index options that equities too appear
to fluctuate between regimes with different combinations of jump and continuous
components,

1.5 Analysis Under the Risk-Neutral Measure: Risk
Aversion

The nature of investors’ attitudes toward risk plays a subtle yet important role in the
derivation of option pricing models. In the standard Black-Scholes-Merton frame-
work, for example, we derive the price of an option using Girsanov’s Theorem. The
change in measure, of course, only affects the drift term in the stochastic differential
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Figure 1.5: Sample Term Decay Plots
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Table 1.7: Daily Breakdown of Process Types

PC, PJ, and CJ refer to Purely Continuous, Pure Jump, and Continuous Jump processes respectively.
Figure entries reflect the percentage of days within the associated time period that evidence a given
process.

Process October-December January-September
PC 89% 0%
PJ 0% 47%
PJ/CJ 0% 41%
Indeterminate 11% 12%
Total 100% 100%

equation governing the evolution of the underlying asset; the diffusion component
is unaffected and equal to its analogue under the objective measure. However, as
one relaxes the Black-Scholes-Merton assumptions and allows for jumps or stochas-
tic volatility, the measure transformation becomes more complicated and intrusive.
If, for example, volatility is thought to be stochastic and follow a mean-reverting pro-
cess, the measure transformation will affect not only the asset’s drift, but the mean-
reversion speed and level of the volatility term as well. Likewise, the risk-neutral
description of an asset which includes a jump component differs from its real-world
counterpart in its jump frequency and jump amplitude. In fact, Rebonato (2004)
shows how even in the absence of jumps and stochastic volatility, the introduction of
realistic conditions governing supply and demand imbalance can sever the equality
between the deterministic volatility term under the risk-neutral and objective mea-
sures. To the extent one believes these departures from the Black-Scholes-Merton
world are significant enough to impact market prices, one cannot afford to ignore
investor preferences when constructing models for option prices.

The precise link between investors’ tolerance for uncertainty and the risk-neutral
parameters in option models is complex and model dependent. Nonetheless, esti-
mating risk aversion can play a very important role in helping to evaluate the va-
lidity of a derivatives pricing model. For example, in the case of a jump-diffusion
model, Lewis (2002) derives a closed-form expression linking the risk aversion of
a power-utility investor with the real-world and risk-neutral jump frequencies and
amplitudes. The paper shows that risk-averse investors perceive negative jumps
with greater frequency and amplitude under the risk-neutral measure than under
the objective measure. Intuitively this makes sense as one would expect risk-averse
investors to be compensated for bearing greater risk. Rebonato (2004) recommends
that practitioners make use of this result in several ways. Starting with some prior
on risk aversion, a derivatives trader who finds risk-adjusted jump frequencies of
five times per month with downward jumps of 80% should question the soundness
of his model unless he imagines the representative investor to be extremely risk-
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averse. In the event the trader cannot estimate risk aversion with great precision,
he can still make use of Lewis’s observation by estimating the real world values of
jump frequency and amplitude and then choosing bounds on the value of the risk
aversion coefficient. Next, he can simply evaluate the corresponding risk-neutral pa-
rameters implied by these previous calculations and compare them to those implied
by his model. To the extent that these two sets of estimated parameters differ, he
might again call into question his model specification or his parameter estimation
procedure.

A careful consideration of risk aversion can also be of help in evaluating stochas-
tic volatility models. However, in contrast with the jump-diffusion case, the implica-
tions are more model specific. Lewis (2000) shows that in models with square-root
or GARCH volatility combined with power utility, options prices vary with levels of
risk aversion depending on the sign of the correlation between the asset price and
volatility. With zero correlation, risk aversion varies inversely with option value but
with positive correlation, increases in risk aversion correspond to higher price levels.

The important point is that complex models with many parameters can be diffi-
cult to estimate. Thus, parameter restrictions informed by an understanding of risk
aversion can greatly improve overall model calibration and hopefully the model’s
ability to recover out-of-sample prices. Given the importance of understanding in-
vestor attitudes towards uncertainty in pricing derivatives, we modify approaches
taken in Jackwerth (2000) and Ait-Sahalia and Lo (2000) to estimate risk aversion
in gas markets.

1.5.1 A Simple Model

Following Constantinides (1982) and Merton (1992), we consider a complete market
economy with heterogeneous agents and note that the competitive equilibrium is
equal to that arising from a representative investor with utility function U(:). The
agent is endowed with one unit of wealth at time ¢ and faces a fixed time horizon
T. In equilibrium, the agent holds all of his wealth in gas. His problem, as posed in
Jackwerth (2000), is

max f UWp)P(Wp)dWp—A (—(?1_-5 f WrQ(Wz)dWrp — 1)
Wr r

where Wy is wealth at time 7', A is the shadow price of the budget constraint, r is
the gross interest rate, @(-) is the risk-neutral probability distribution, P(:) is the
objective probability distribution, and St is the spot price of gas at time T'.

The well-known equilibrium result arising from this simplified version of Mer-
ton’s optimization problem is

AQ(ST)

U'St)= —__r(T“)P(ST)

(1.1)
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where the time index has been dropped for notational convenience. If we then dif-
ferentiate equation 1.1 a second time and solve for the coefficient of relative risk
aversion, p, we find

S7A ((@Q'(ST)P(ST)-Q(ST)P/(ST)

__StU'Sn _ s PG ) _SrP'(Sr) _S1Q'(S1)
US7) LN P(S7) Q)
Estimating Risk

We estimate p in a two step process. First, we find Q(-) by making use of the obser-
vation in Breeden and Litzenberger (1978) that the risk-neutral distribution is equal
to the discounted value of the second derivative of a European call option taken with
respect to the strike and evaluated at the spot price of the underlying asset.2 2! This
somewhat surprising result is quite easily understood.22 Recall that options can be
priced under the equivalent martingale measure, Q(-), as

Crx(t,8)=e TV (fg(Sr)IS; = S} = 7T f fr(s)Q(s)ds

where S is the spot price, K is the strike price, fx is max(x—K,0), ¢ is the initial
time, and T is the time of expiry.
Next, note that

Ofx(x) [ -1ifK<x }
0K | OifK>x
This in turn implies that
2 fx(x)
0K?

where 8, denotes the Dirac delta function over x. If we then permit the interchange

= ax(K )

20Although we are dealing with options written on futures in this context, as NYMEX option con-
tracts and their underlying futures expire at the same time, the result carries through unaffected.

21Note that there is some inconsistency in the literature as to what is meant by the term “state price
density”. While Duffie (2001) and Shreve (2004) equate the SPD to the ratio of the risk-neutral density
and the objective density multiplied by a risk-free discount factor, other sources such as Ait-Sahalia
and Lo (1998) use SPD to mean the risk-neutral density itself. We adhere to the latter convention in
this chapter.

22This nice derivation follows that of Carmona (2004, p. 221).
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of derivatives and integration, we get our result:

PCrxt,8) oy 0
'%‘ =eT ”31'{—2 f fr(x)Q(x)dx
2
= TD f a—%fx(x)Q(s)dx

=g 7T f 6. (K)Q(x)dx
= e—r(T—t)Q(K)

where the last equality follows from the definition of the delta function. Thus,

3%Cr x(t,8)
— (T~ K\E,
Q(ST)— e (T-2) (—_aI—(z—)

K=Sp

Next we estimate P(-), the objective distribution of prices, using a kernel density
estimator in the spirit of Ait-Sahalia and Lo (2000).23 24

1.5.2 Results and Implications

The estimated risk aversion functions are shown in figure 1.6 along with the 95-
percentile confidence intervals for these estimates using the procedures outlined in
Ait-Sahalia and Lo (2000).25 While the optimal bandwidth procedure plays some
role in determining both the shape and levels of the plots, two features are promi-
nent and robust. First, the coefficients are small and second, they are meaningfully
different than what studies have generally found to be the case in equities markets.
We estimate the average value of the relative risk aversion coefficient to be 0.02.
The implication is that investors in gas markets are virtually risk-neutral. In con-
trast, while Hansen and Singleton (1982) and Hansen and Singleton (1984) find that

23The procedure involves using a kernel density estimator on the time-series of 7-period returns.
This density estimator then can easily be transformed into the conditional density of prices. We use
this method to estimate the objective probability distribution P(-). For more details, see Section 4 of
Ait-Sahalia and Lo (2000).

24For the entire nonparametric analysis, we follow Ait-Sahalia and Lo (1998) and choose band-
widths according to the rule they develop which gives the proper rate of convergence of the estimator
allowing asymptotic analysis to hold; we choose bandwidth %, for the estimation of n(x) such that
hy = cx8(x)n~1@+2a+m) where c, = v,/log(n) (7, constant), s(x) is the standard deviation of x, n is
the number of observations, d is the number of regressors, g is the order of the kernel, and m is the
number of derivatives we are estimating.

25Using the results of Ait-Sahalia and Lo (2000), nY2h 72, h Y2k Y2(5(Fr)~p(Fr)) A (0,0%) where

2 2022, (D P )X [, B wIdwX [, kE (w)dw)
aC(@(Y),Y, _ s _ by
ot = LM PED, o, = (4R0) 02, o2, = S e e )

Also see Section 1.7 for a more detailed discussion of the kernel estimation approach we employ in
order to estimate the underlying densities needed to construct our risk aversion estimates.
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relative risk aversion in equity market varies between —1 and 1, other more recent
papers such as Mehra and Prescott (1985), Ferson and Constantinides (1991), and
Ait-Sahalia and Lo (2000) find evidence for substantially higher risk aversion levels.
Mehra and Prescott (1985), for example, cites work done by Fisher Black indicat-
ing that the risk aversion coefficient is around 55. Ait-Sahalia and Lo (2000) finds
that relative risk aversion in equities is on average about 13. In addition, the au-
thors’ nonparametric procedure suggests that the value of the coefficient varies over
wealth; risk aversion appears to be as high as 60 at low wealth levels and close to
five at average wealth levels. This too suggests a difference between equities and gas
as our analysis indicates that risk aversion is essentially constant over wealth and
much closer to zero.

Our results seem to offer further evidence for market segmentation. While basic
finance theory suggests that there is but one representative investor with a single
risk profile, comparisons between the risk aversion levels embedded in gas and equi-
ties indicates otherwise. One possible explanation for the low level of risk aversion
in gas relates to the inherent market structure. While equities markets boast sub-
stantial retail investor participation, NYMEX is almost exclusively the domain of
institutional investors. A single futures contract often costs tens of thousands of dol-
lars so it comes as no surprise that day-traders and average consumers steer clear
of this asset class. One might further conjecture that institutions enjoy greater di-
versification opportunities, better access to information, and less susceptibility to
behavioral biases than do retail investors. Consequently, they transact in markets
with markedly less risk aversion.

1.6 Existing Models

In this section, we examine three popular and representative models from the com-
modities literature. While the models price futures contracts with reasonable success
(see table 1.8), we show that their failure to incorporate the various features high-
lighted in the previous sections leads to dramatic pricing errors in options markets.26
The first two options models are derived from parametric assumptions of the under-
lying spot price while the third yields an option price based on modeling the evolution
of the forward curve through time.

26T actually estimate the futures prices in table 1.8, we use the Kalman filtering algorithm for the
Schwartz and Smith and Todorova models and the volatility functions for the Clewlow and Strickland
model. The Kalman filter approach involves first estimating the parameters of the process using the
entire data set and then computing one day ahead filtered prediction of the futures prices. For the
Clewlow and Strickland model, we note that equation 1.13 gives a relationship between today and
tomorrow’s prices. Using this relationship we can calculate tomorrow’s expected price given today’s
price. For the volatility functions, we again allow mild stationary and reestimate them on a rolling 30
day basis.
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Figure 1.6: Plot of Risk Aversion
The figure plots the relative risk aversion estimated via a kernel regression. The solid line represents
the estimated coefficient while the dashed line represents the 95 percent confidence interval.
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Table 1.8: Errors of Parametric Models in Pricing Futures Contracts

The table reports the root mean squared errors (RMSE) and the RMSE as a percent of the average
price (Percent) for the 1 month, 4 month, and 8 month futures contracts using data from 2003—2005
future prices. The RMSEs are denominated in dollars.

Model 1 Month 4 Month 8 Month
Schwartz and Smith RMSE 3.735 3.144 2.554
Percent 47.768 38.388 32.900
Todorova RMSE 3.791 3.169 2.588
Percent 48.484 38.693 33.338

Clewlow and Strickland RMSE 0.320 0.250 0.150
Percent 4.088 3.054 1.936
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1.6.1 Modeling the Spot

The first model we consider is developed in Schwartz and Smith (2000) wherein the
spot price, S;, is written as a function of two stochastic factors: an equilibrium price,
¢, and y,, a short-term deviation around that level. In logarithmic form, the rela-
tionship is linear and formulated as InS; = y, + ;. Changes in ¢,, which includes a
drift component, reflect long-term shifts in supply and demand as well as the effects
of inflation, regulatory developments, and the inevitable improvements in finding,
extraction, and distribution technologies. Consequently, the associated SDE of equa-
tion 1.2 is that of a standard diffusion process. The short-term deviations around
the equilibrium level arise from temporary supply shocks, themselves the result of
inclement weather or other hiccups in production or distribution. It is natural, then,
that Schwartz and Smith let y, follow a mean-reverting Ornstein-Uhlenbeck process
as reflected in equation 1.3 where «x is the mean-reversion coefficient. The authors
further assume that shocks to ¢{; and x, are correlated increments of Brownian Mo-
tion which yield equation 1.4 where p,, is the correlation coefficient.

dé, = ufdt+ oedzg (1.2)
dy, =-xy,dt+0o,dz, 1.3)
déidy, =pdt (1.4)

Schwartz and Smith show that this set-up implies that y, and ¢, have a jointly
normal distribution while S; has a lognormal distribution. In order to derive deriva-
tives prices, the authors also evaluate the dynamics of the the two factors under
the risk-neutral measure. They reason that the correlation between changes in the
state variables and aggregate economic wealth is zero and thus that risk adjustment
results in simple corrections to the drift terms as reflected in equations 1.5 and 1.6.

dé, = (g - Adt +0¢dz; (L5)
dy,=(-xx,—A)dt+0,dz, (1.6)

Here, the * indicates that the corresponding variable is evaluated under the risk
neutral measure while A; and A,/x represent the “market price of risk” associated
with {, and y, respectively. This model together with the assumption that interest
rates are independent of spot gas prices allows for the simple calculation of futures
prices as the expectation taken with respect to the risk-neutral measure of the future
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spot price. This leads to equation 1.7,
In(Fr;)=e Ty +&+A(T-1) 1.7

A(T - 1) = (g — AT - ) - (1- e““‘“’)%—

2

1 g 0,0,
+=|(1= e 2KT-0) x+a?(T_t)+2(1_e-x(7‘-t))px€ 1%¢
2 2x '

where F7; is the time ¢ price of a futures contract expiring at time 7. Under the
risk-neutral model, futures prices are still lognormal with variance o but mean Bo
where

pet, TV =E* InFr,)] = e X T 0y, +& + (u = AT - ) + (1 - <T7)
2

g
046, T) = Var' In(Fr )] = (1- e T2 1+ oT - 1) +2(1-e7™T) (1.8)

Py010¢

x
and y, and ¢, are initial value of y, and {; respectively.

Since the state variables, y, and ¢;, are unobservable, Schwartz and Smith esti-
mate the parameters of the model using MLE where the likelihood function is com-
puted via a Kalman filter. The details of this procedure, which involves first recasting
the model in a discrete state space framework, are outlined in Appendix 1.A.

Finally, the authors apply basic Black-Scholes-Merton methodology to derive a
closed form expression for the value of a call option on a futures. Explicitly, the price
of a call option with strike K expiring at time ¢ on a futures contract expiring at time
Tis

e T NFr, N (d)-KN(d-04t,T))) (1.9)

whered = %{9 + %a,p(t, T) and A (') is the standard normal cumulative distribu-

tion function. We use this pricing formula in conjunction with our MLE estimates of
K, Oy, 0¢, and p,; to estimate the prices of all of the traded options in our data set.
We report our findings in Section 1.6.3.

It is important to note the ways in which this model departs from the realities
of the actual natural gas markets given what we document in Sections 1.4 and 1.5.
First, the model asserts that the evolution of both spot and futures prices are log-
normal at all horizons. This clearly is at odds with our observation that returns
are only Gaussian when calculated on a monthly basis but evidence non-normality
over shorter intervals. Second, Schwartz and Smith do not allow for seasonality of
returns which is another important feature of the data. Third, their paper imposes
constant volatility despite substantial evidence to the contrary, and fourth, it makes
no provision for the possibility of jumps in the price level. Finally, as the result of
these overly simplifying assumptions, Schwartz and Smith are able to show that the
model’s formulation under the risk-neutral measure amounts to trivial adjustments



1.6. EXISTING MODELS 41

to the drift terms of the two state variables. In light of the discussions in Sections
1.4.1,1.4.2, and 1.5, we can conclude that the true risk-neutral dynamics are likely
to be more complex.

Arguably the most easily rectified potential shortcoming of Schwartz and Smith’s
paper is its failure to incorporate the presence of seasonality in the price of gas. To de-
termine whether or not the explicit consideration of seasonality improves the model’s
ability to recover market prices, we rely on a model introduced in Todorova (2004b).
Todorova essentially picks up where Schwartz and Smith leave off and treats sea-
sonality in several different ways. One method she implements with mixed success
involves adding a third factor, seasonality, to the Schwartz and Smith framework.
While this leads to a nice closed form option pricing formula, the model struggles
to recover futures prices due to the substantial number of additional parameters
that require estimation.?” A second approach is to estimate the Schwartz and Smith
(2000) model having first deseasonalized the data. To preprocess the data in this
fashion, Todorova proposes a procedure outlined by Kendall and Ord (1990) which
involves detrending the data and looking at price deviations in order to identify sea-
sonal components. The process then reintroduces any time trends resulting in a data
set with the seasonality removed. To avoid the curse of dimensionality inherent in
the first approach, we utilize the deseasonalization strategy in this chapter.

To implement Todorova’s model, we begin by deseasonalizing the data as previ-
ously described. This produces a futures price series that has the seasonal component
removed. We then proceed to estimate the model in the framework of Schwartz and
Smith (2000) since we assume the deseasonalized data follows the assumptions re-
garding the dynamics of the process made in that paper. This estimation procedure
produces estimates of the parameters of the stochastic process that underlie the de-
seasonalized data rather than the true stochastic process. However our method of
deseasonalization only modifies the underlying process by changing the first moment
via adding a nonstochastic constant, therefore neither the distribution nor the vari-
ance of the process changes and the option pricing formula derived in equation 1.9
remains valid with the parameters estimated from the deseasonalized price series.

Though Todorova’s approach certainly attempts to address the issue of season-
ality, it is open to all but one of the same critiques as Schwartz and Smith (2000).
Namely, that it fails to incorporate non-normality and stochastic volatility in returns
as well as the presence of discontinuities in prices. As a consequence, its formula-
tion for the dynamics under the risk-neutral measure are almost certainly overly
simplified.

2"While Todorova did not explicitly do so, we derive an expression for the value of a European
option based on her three-factor model. The expression is straightforward but the addition of a third
factor introduces significantly more parameters to estimate. Consequently, the estimation procedure
yields extremely unstable results with our data set. Therefore we do not report any results using this
method.
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1.6.2 Forward Curve Model

In contrast to Schwartz and Smith (2000) and Todorova (2004b) which rely on struc-
tural specifications of the underlying spot process, Clewlow and Strickland (2000)
derives option prices by modeling the entire forward curve. First, the authors posit a
model of the forward curve wherein each contract is a linear combination of n inde-
pendent sources of uncertainty. Formally,

dF¢,T) _ & .
FC.T) _z_ia,(t,T)dz,(t) (1.10)

where F(¢,T) represents the time ¢ price of a futures contract maturing at time T
while o;(¢,T) and dz;(¢) equal that contract’s ith volatility function and ith source
of risk respectively. Next, the authors extend the model to markets with substantial
seasonality in prices by modifying equation 1.10 to incorporate a time dependent spot
volatility function. Now,

n

%%-)- = as(t)tzzlai(T —t)dz;(t) (1.11)
where 0g(t) captures seasonality.2®

We follow the procedure outlined in Appendix 1.C to estimate both the time de-
pendent and individual factor volatility functions. In short, we use the rolling 30 day
sample standard deviation to find og(t). Estimating the individual volatility func-
tions is more complex and relies on converting the stochastic process in equation 1.11
to a logarithmic form and then discretizing it. This allows us to utilize Principal
Component Analysis by constructing a covariance matrix of forward returns. Next,
we compute an eigenvector decomposition of this matrix scaled by our estimated spot
volatility such that we can recover independent factors that drive the forward curve.
A simple transformation of these factors and their associated eigenvalues gives us
the discretized volatility functions.2? One can also use the eigenvalues of the decom-
position to choose the number of volatility functions necessary to model the forward
curve with desired accuracy. In this chapter we use five volatility functions which

28Notice in moving from equation 1.10 to equation 1.11 we have replaced o;(¢,T) with o;(T - ¢t)
which is essentially an assumption on the stationarity of the process; we are assuming that volatility
only depends on the length of time until expiration rather that the specific values of ¢ and T'. This
is an important assumption without which we could not use historical data to estimate the volatility
functions. In our actual estimation procedure we do allow for mild non-stationarity by estimating the
volatility functions using rolling data.

29Gince this technique relies on a stochastic process without jumps, we also follow Clewlow and
Strickland (2000) and apply what their paper terms a “recursive filter” to remove data points that
appear to be generated by a jump. The actual implementation relies on repeated calculations of the
sample standard deviation and filtering out observations that exceed an arbitrary threshold scaling
of that sample standard deviation. We use 3 standard deviations but find that the results are not
extremely sensitive to the choice.
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seem to capture most of the variation in the covariance matrix of returns.

Once we estimate the volatility functions, it is straightforward to price options
assuming interest rates are nonstochastic. The authors derive a closed-form formula
for the price of a European call option at time ¢,

c(t,F(t,T),K,T) =" T2 (F(t, DN (B)- KN (h - V)), (1.12)

where K is the strike price, and both the option and futures mature at time T'. Fur-
ther,
. log(F(t, TVK) + sw

n T 2
7 , w=i=z1(ft oi(u,T) du).

We calculate one day ahead option prices by first estimating the volatility functions
on a 30 day rolling basis to allow for mild nonstationarity.3° This procedure produces
volatility functions for each trading day which in conjunction with equation 1.12,
enables us to price any options that trade on that day.

On one level, Clewlow and Strickland (2000) seems less intellectually appealing
than the fully parametric approaches taken in the first two papers considered. It is
not clear, for example, how to interpret the volatility functions except to understand
them as weights on opaque “sources of risk.” However, the trade-off is in the model’s
comparative flexibility as it imposes none of the rigid structure on futures volatil-
ity included, for example, in equation 1.8. In addition, as with Todorova’s model,
Clewlow and Strickland’s approach explicitly incorporates seasonality, one of gas’s
important characteristic features. It too, however, fails to permit stochastic volatility
and because changes in futures prices are modeled as linear combinations of Brown-
ian increments, returns will necessarily be Gaussian over all horizons. Both of these
features contradict the empirical evidence. Finally, by construction, the forward-
curve model fails to admit the possibility of jumps even though we have seen that
prices behave as if they follow a jump process during certain months of the year.

1.6.3 Empirical Results

We evaluate the models’ success in reproducing actual options prices in three ways.
First, we compare the models’ predictions with the actual prices in terms of root
mean-squared error (RMSE). Next, we examine performance by measuring slippage
with respect to a delta-hedged portfolio. Finally, we offer a visual exposition of the
degree of mispricing by comparing the volatility surfaces implied by the candidate
models with the actual implied volatility surfaces calculated in Section 1.3.2.

Table 1.9 reports the RMSE of the different estimators. As one would expect, the
models tend to price ITM options better than ATM and OTM contracts. Nonetheless,
it is readily apparent that overall the three models price the options quite poorly with
the average mispricing often exceeding 100% of the average option price. Although

30We apply the recursive filter on each of these returns to filter out possible jumps.
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it is not directly observable from the RMSEs, some of the models exhibit quite pro-
nounced tendencies in mispricing. For example, the Clewlow and Strickland (2000)
model generally predicts option prices which are too low, while Schwartz and Smith
(2000) typically over-prices the options. It is also interesting to note that the models
have biases with respect to time to expiration. Table 1.10 shows that the Schwartz
and Smith and Todorova models tend to price more distant options accurately while
the Clewlow and Strickland approach better recovers the prices of short-term options.

One can also assess a pricing model by evaluating the relative magnitude of the
tracking errors associated with a delta-hedged portfolio. Let A represent the deriva-
tive of an option-pricing formula with respect to the underlying security. For the
models in this section, we can calculate this derivative analytically.3! Given A, we
can construct a portfolio of the underlying futures and a riskless bond that exactly
replicates the option’s payoff assuming continuous time. More formally, to construct
this portfolio for each option, let ¢ = 0 be the time at which the option was first traded
and let

Vs(0) = F(0)A(0)
Ve (0)=-C(0)
Ve(0) = —(Vg(0) + Vc(0))

where F(t) is the futures price, C(¢) is the call price on that future, Vg(¢) is the values
of the futures in the portfolio, Vz(t) is the value of the bonds, and V¢ (¢) is the values
of the call options.32 By construction, at ¢ =0,

V(0) = Vg(0)+ V(0)+ Vc(0)=0
and then we calculate V(¢) with
Vs(t) = F()A()

and
Va(t)=e"Vp(t—1)-F(t)(A®)- A(t-1)).

The tracking error is then defined to be V(T') where T is the date of expiry of the op-
tion. Finally, we define a performance measure ¢ = e "7 |V(T)| which is the present-
value of the tracking error. In table 1.9, we average these tracking errors over dif-
ferent types of options to illustrate how well the various option pricing formulas
perform. We find that by this measure as opposed to RMSE, the model in Clewlow
and Strickland (2000) enjoys a substantially smaller performance advantage vis-a-
vis the models of Schwartz and Smith (2000) and Todorova (2004b); the mean abso-

31For the nonparametric model introduced in the next section, we must resort to calculating this
derivative numerically.
32We follow the notation of Hutchinson, Lo, and Poggio (1994) for this section.
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Table 1.9: Errors of Models

45

RMSE represents the root mean squared error of the estimated option price compared to the actual

option price. TE represents the mean absolute tracking error of a delta-hedged portfolio. Total rep-

resents the error over all options, while ITM, ATM, and OTM represent the errors of in-the-money,

at-the-money, and out-of-the-money options respectively. Both the RMSEs and the TEs are denomi-

nated in dollars.

Model RMSE TE
Schwartz and Smith (2000)
Total 2.044 0.292
ITM 1.922 0.211
ATM 2.209 0.203
OT™™ 2.143 0.365
Todorova (2004b)
Total 2.090 0.293
ITM 1.965 0.211
ATM 2.257 0.203
OT™™ 2.194 0.367
Clewlow and Strickland (2000)
Total 0.425 0.233
IT™M 0.367 0.174
ATM 0.537 0.200
OTM 0.459 0.291

lute tracking error of Clewlow and Strickand’s approach is $0.23 compared with that
of $0.29 for both Todorova and Clewlow and Strickland.

A final instructive approach to measuring the efficacy of the pricing models is to
compare their implied volatility surfaces. As in Section 1.3.2, we use the result from
Black (1976) to estimate the implied volatility surfaces.3®> We reproduce represen-
tative samples of these surfaces in figures 1.7 and 1.8. These figures clearly show
that the parametric models do not seem to yield the regularities we see in the actual
data. In particular, the models fail to capture the relationship between moneyness

and implied volatility.

33Just as before, we use a series regression in order to approximate the function for plotting pur-

poses.
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Figure 1.7: Model Implied Volatility Surfaces for May 2005
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Figure 1.8: Model Implied Volatility Surfaces for November 2005
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Table 1.10: Errors of Models by Maturity

Table entries represent the root mean squared errors of the estimated options prices compared to the
actual options prices. Maturities, denoted by 7, are in months. SS denotes Schwartz and Smith (2000),
T denotes Todorova (2004b), and CS denotes Clewlow and Strickland (2000). The entries in the table
are denominated in dollars.

Maturity SS T CS

7<1Month 2.746 2.882 0.159
1<1<2 2475 2.585 0.314
2<1<3 2.302 2.387 0.456
3<1<4 2.206 2.270 0.499
4<1<5 2.116 2.163 0.524
5<1<6 2.041 2.075 0.503
6=<=1t<7 1.998 2.022 0.401
7<1<8 1.940 1.957 0.386
8<1<9 1.896 1.908 0.409
9<71t<10 1.874 1.882 0.447

1.7 Nonparametric Approach

1.7.1 Set-Up

As demonstrated in the previous subsection, the parametric pricing models we have
considered neither price options well nor capture the relationships between money-
ness, time to maturity, and implied volatility exhibited by the actual data. Thus, we
suggest an alternative nonparametric approach to pricing these options inspired by
Ait-Sahalia and Lo (1998). The advantage of using a kernel-based regression is that
we avoid structural restrictions. As a result, we can theoretically capture all of the
important features of gas including the seasonality, non-normality, and time-varying
volatility of returns as well as the presence of jumps.

The biggest challenge facing the application of kernel techniques is the curse of
dimensionality. With just under 40,000 observations, we reduce the complexity of the
problem by estimating o, the implied volatility of Black (1976), via a kernel regres-
sion and then calculate option prices by simply inverting Black’s formula. Further,
we select as our state variables, the futures price, the strike price, time to matu-
rity, and seasonality.34 This fourth regressor is a simple measure of seasonality: the
month the option expires.?? In addition, we standardize all of the state variable

341n contrast to traditional parametric econometric approaches, there is no omitted variables bias
with kernel techniques. See Ait-Sahalia and Lo (1998, p. 507).

35We also tried several other combinations of state variables. For example, we combined the futures
price and strike price into a single variable, moneyness, in order to reduce dimensionality. Also, rather
than allowing seasonality to enter more generally as the month of option expiry, we tried incorporating
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by de-meaning them and dividing each by their respective standard deviations; this
allows us to use a common bandwidth, b, for each element in the kernel’s tensor prod-
uct. As the choice of the kernel function generally does little to affect the outcome
of the estimation procedure, we employ a multivariate Gaussian kernel. Formally,
we use these assumptions along with the Nadaraya-Watson kernel estimator which
yields oF
n_ k(=B g (3550,
Fre—Fr.z Ko o1e1s _S.

7y R k(R R RS54
where F, ; is the futures price as of time ¢ of a futures contract expiring in 7 periods,
K; represents the strike price, 7; represents the time to the option’s maturity, S,
represents the month that the option expires, and k() is the univariate Gaussian
kernel. We can then calculate the price of a call option, €, as

6’(Ft,r,Kt,T,St) =

é(Ft,T,Kt)T’rt,t) = CBlack76(Ft,nKt:T,rt,r;&(Ft,nKt’T’St»

where Cp;qcr76 is the price of a call given by the model in Black (1976). As with
our implementation of Clewlow and Strickland (2000), we allow for some degree of
nonstationarity by recalculating 4 every day on a 30 day trailing basis.

1.7.2 Results

As reflected in figure 1.11, this model leads to lower RMSE and tracking errors than
any of the parametric approaches considered in the previous sections.3¢ In fact, in
terms of RMSE on OTM options, the kernel method improves upon the Clewlow
and Strickland (2000) approach by 83% and outperforms the Todorova (2004b) and
Schwartz and Smith (2000) models by a 96% margin. In addition, this nonparamet-
ric approach suffers no bias with respect to term-structure; the RMSEs are around
0.05 over all maturities. The improvements, as measured by slippage with respect
to a delta-hedged portfolio, are also quite substantial. The kernel estimator yields
slippages that are 72% better than that of Clewlow and Strickland and 124% better
than that of either Schwartz and Smith or Todorova.

In addition, the nonparametric model produces implied volatility surfaces which

seasonality as a dummy variable taking on the value of 1 in the case of December/January expiry
and zero otherwise. This seasonality regime was determined based on the findings in Section 1.4.
Combinations of these approaches all performed more poorly than the seasonality factor/four-state
variable set-up we use in the main body of the text.

36As is standard with kernel regressions, the results are heavily dependent on the choice of band-
width 5. While there is a literature on “optimal” bandwidth selection, it is not clear that these tech-
niques are more sound than simply applying rules of thumb in small samples. The RMSE of our model
varies depending on the choice of bandwidth, but is lower, and in most cases substantially lower, than
those of the other models for any reasonable value of b. The results in the table use the bandwidth of
b=0.25.
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Table 1.11: Errors of Nonparametric Model

RMSE represents the root mean squared error of the estimated option price compared to the actual
option price. TE represents the mean absolute tracking error of a delta-hedged portfolio. Total rep-
resents the error over all options, while ITM, ATM, and OTM represent the errors of in-the-money,
at-the-money, and out-of-the-money options respectively. Both the RMSEs and the TEs are denomi-
nated in dollars.

Panel A: RMSE and Tracking Error by Option Type

Model RMSE TE
Ait-Sahalia and Lo (1998)
Total 0.067 0.184
IT™ 0.055 0.140
ATM 0.074 0.212
OoT™™ 0.077 0.211

Panel B: RMSE by Time to Maturity

Maturity RMSE
7 <1 Month 0.055

1<1<2 0.063
2<71<3 0.078
3<1<4 0.071
4<1<5 0.063
5<1<6 0.047
6=<7<7 0.053
7<71<8 0.057
8<7<9 0.051

9=<71<10 0.060
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Figure 1.9: Nonparametric Estimated Implied Volatility Surfaces for May 2005 and
November 2005

Ait-Sahalia and Lo for May 2005
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more closely approximate actual surfaces. We reproduce a representative sample of
these implied volatility surfaces in figure 1.9. Comparing these plots with those in
figures 1.7 and 1.8, it is immediately clear that the nonparametric approach captures
the key features of implied volatility in the dimensions of moneyness and time to
maturity that other models do not.

Finally, figure 1.10 and table 1.12 offer an important insight into why the kernel
method is more capable of pricing options correctly than the parametric approaches
considered. Figure 1.10 plots the SPDs in return space rather than price space. In
valuing options using martingale pricing techniques, it is these densities rather than
the real-world densities that are relevant. Table 1.12 displays the moments of the
risk-neutral distribution of the futures returns at expiry. The Black (1976), Schwartz
and Smith (2000), Todorova (2004b), and Clewlow and Strickland (2000) approaches
all yield Gaussian distributions while the unrestricted kernel approach allows for
negative skewness and kurtosis. Since option prices are far more sensitive to tail
distributions than are, for example, futures prices, it reasonable to conclude that
much of the advantage of using the kernel regression method stems from its inherent
ability to capture higher moments of a distribution in a way that parametric models
derived from Brownian motions cannot. Further, it is easy to understand why the
parametric models are more capable of recovering futures prices than option prices
as noted in Section 1.6.3. With nonstochastic interest rates, futures prices equal
the expectation under this same risk-neutral density of the spot at the contract’s
expiry. However, the expectation is applied directly to the spot price rather than the
maximum of zero and the difference of the spot price and the strike as is the case
with options. Put another way, the futures price is less sensitive to skewness and
kurtosis. In sum, the simplifying assumptions used in parametric models examined
in this chapter, while arguably justifiable when pricing futures, are a substantial
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Figure 1.10: Estimated SPD-Generated Densities for Continuously Compounded Re-
turns
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Table 1.12: Moments of SPD-Generated Densities for Continuously Compounded Re-
turns

The table gives the mean, standard deviation, skewness, and kurtosis of various models. The nonpara-
metric estimate refers to that derived from kernel density estimation, BS to that from the model of
Black (1976) calibrated to to the realized means and variance, SS to that from the model of Schwartz
and Smith (2000), T to that from the model of Todorova (2004b), and CS to that from the model of
Clewlow and Strickland (2000). The entries in the maturity column are measured in months.

Model Maturity Mean Std.Dev. Skewness Kurtosis

Nonparametric 1 -0.006 0.138 -0.190 -0.798
BS 1 -0.004 0.113 0.000 0.000

SS 1 -0.446 0.892 0.000 0.000

T 1 —-0.483 0.966 0.000 0.000

CS 1 0.000 0.014 0.000 0.000
Nonparametric 2 -0.015 0.161 -0.141 -1.406
BS 2 -0.008 0.159 0.000 0.000

SS 2 -0.461 0.921 0.000 0.000

T 2 -0.490 0.980 0.000 0.000

CS 2 0.000 0.018 0.000 0.000
Nonparametric 4 -0.026 0.180 -0.101 -1.699
BS 4 -0.016 0.225 0.000 0.000

SS 4 -0.480 0.959 0.000 0.000

T 4 -0.497 0.995 0.000 0.000

CS 4 0.000 0.021 0.000 0.000
Nonparametric 6 -0.028 0.184 -0.117 -1.724
BS 6 -0.023 0.276 0.000 0.000

SS 6 -0.490 0.981 0.000 0.000

T 6 -0.500 1.001 0.000 0.000

CS 6 0.000 0.021 0.000 0.000

liability when trying to price options.

1.8 Conclusion

Though it has received comparatively little attention from economists, natural gas is
a remarkably important commodity that quite literally powers our lives. Its signifi-
cance will surely grow with time as will the associated financial derivatives markets.
In recognizing that gas prices behave differently than those of other commodities let
alone those of equities, bonds, or currencies, we attempt in this chapter to document
gas’s unique properties with the aim of building better derivatives models. A direct
examination of futures prices reveals evidence of strong seasonality in prices as well
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as stochastic volatility and the absence of strict normality in returns. Next, we use
options prices and a technique borrowed from the recent equity derivatives literature
to show that the underlying commodity exhibits regime-switching behavior in its
stochastic process; gas prices evolve according to a purely continuous process during
the months of October, November, and December, while they evince a combination of
pure jumps and jump-diffusions during the remainder of the year. In addition, option
prices embed a great deal of information about investors’ attitudes towards risk. Us-
ing a simple model of investment, we find that investors in gas markets are virtually
risk-neutral over all levels of wealth. This differs from what numerous other papers
have observed in equities leading one to conclude that markets are likely segmented.
Further, an understanding of risk can prove helpful in calibrating derivatives models
as well as evaluating their validity.

We also consider three representative models from the literature and find that
while they are effective in forecasting futures, they are unable to accurately recover
option prices. We attribute this to their failure to fully incorporate all of the stylized
facts highlighted in the first part of the chapter. Finally, we introduce an alterna-
tive method for pricing gas options based on a kernel regression. We show that this
approach, while nonparametric and thus unable to provide the sort of economic intu-
ition of the other models considered, is far more effective in accurately pricing options
out-of-sample.

1.A Appendix on Estimating Schwartz and Smith
and Todorova Models Using a Kalman Filter

In this approach, we discuss the model of Schwartz and Smith (2000) for concreteness
since the extension to that of Todorova (2004b) is quite simple. Calculating options
prices using Schwartz and Smith’s approach requires that we first estimate the pa-
rameters in equations 1.5 and 1.6. This can be accomplished by discretizing each
equation, rewriting the dynamic system in state space form, and finally, since the
state variables y and ¢ are unobservable, making use of Kalman filtering techniques
to construct a likelihood function which we can maximize over our parameters.3’
Comprehensive textbook treatments of the Kalman filter can be found in Hamilton
(1994), Zivot and Wang (2003), and Brockwell and Davis (1990). This appendix is
meant to serve as a brief overview as it applies to our problem.

We begin with our transition equation which describes the evolution of the state
variables

x; =c+Gx;-1 +w; for t=1,...,nr

where,

37See Bingham and Kiesel (2004) for more on discretizing continuous functions for maximum like-
lihood estimation.
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x; = [x,;,¢]),a2x1 matrix of unobserved state variables,
c: = [0;,p,Atl,a2x1 vector,
e ¥At ¢ .
G = o 12 2 x 2 matrix,
n = number of time steps,
At = length of a time step, and

w; a 2 x 1 vector of mean zero, serially uncorrelated, and normally distributed distur-
. a- e—2xAt)E§_ a- e—2xAt)pz£"l”f
bances with Var{fw,] = W = Covl(y,,,¢éa:)] = (1 e-2x0t)PacPoe o2At x
X
The measurement equation links the state variables with the observed futures
prices. Here we have,

vi=d;+Fix; +v;, for t=1,...n7
where,
y: = [nFrp,,...InFr,7, an n x 1 vector of (log) futures prices with maturities 7},
d, = [A(TY),...,A(T,)Y, an n x 1 vector,
eKT1 1
F, = an n x 2 matrix, and

e KTI 1

v, an n x 1 vector of mean zero, serially uncorrelated, normally distributed innova-
tions with Coviv,]=V.

Next, the Kalman filtering algorithm is used to compute forecasts £;;—; and §;;-,
where the hat and subscript notation denotes linear projections of x and y on their
respective vectors of lagged values. If we assume that the initial state, x;, and the
disturbances { w,,v,}f;l are Gaussian, then one can show that £;;_; and §;;-; are
optimal forecasts among any (not just linear) functions of y;_;. Further, the distri-
bution of y; is conditionally normal,

Yilye-1~ A (F'Zy-1),(F Py 1 F+V))

where,
Pyo1 = EI(Xp1 —Rppe-1)(Xes1 —Rege-1)']
Py = El(x;—%1)Xee1—Rpe-1)]

This in turn allows us to construct the sample log likelihood function

T
Z log fy,iy, ,(¥¢ly:-1)
t=1

which we can maximize in order to find ¢, G, d, and F and in turn x, A,, 04, Bes Ag,
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o¢, and p ;.

1.B Appendix on Todorova and Kendall Deseason-
alization

As discussed in Section 1.6.1, Todorova (2004b) is interested in incorporating sea-
sonality into the models of several commodity price processes. To that end, Todor-
ova modifies the Schwartz and Smith (2000) framework by first fitting the model to
a deseasonalized price series and then adding back the seasonal component to the
forecasted prices.

We follow the procedure outlined by Todorova (2004a, Appendix E) which in turn
is derived from Kendall and Ord (1990, Chapter 4) in order to deseasonalize the
futures data. Let F,;; denote the mid-month time series of futures that expire in 7
months. Since the futures prices seem to exhibit a time trend, that trend must be
removed before seasonality can be estimated.?8 Let

. 1(1 1
M= 15 ('2'Ft—6,r +F 5+ Fy g1+ +Fpq;+Fri5:+ '2'Ft+6,1

be the moving average used to estimate the time trend component r2;. Given the
time trend, we can compute the detrended time series x; ; as

Xp7=Fpp =1y

Given the detrended data, it is simple to estimate a monthly seasonal component s;
defined as

Sj=Xjr—X

where %, is the average detrended price for calendar month j across the years of
the sample, and % is the average detrended price (x = —115 Y jXj.). Finally we compute
the deseasonalized price series F; ; as F;; —s;. We use this deseasonalized, but not
detrended, process for estimation using the Kalman filter.

1.C Appendix on Clewlow and Strickland and PCA
Analysis

In this appendix, we provide additional details regarding the procedure we used for
estimating the Clewlow and Strickland (2000) model. The authors’ approach is to

38For the mid-month prices, we use the realized price closest to the 15th of each month, so t =
April 15,May 15,June 15,....
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model the entire forward curve through time by specifying that the process is com-
posed of n independent volatility functions, each parameterized by the current date
and the maturity date, with uncertainty introduced by » number of random shocks
which are assumed to be Brownian increments. These assumptions are incorporated
into the stochastic process given by equation 1.10. It is worth noting that this pa-
rameterization is fairly general and does not assume any functional forms for the
volatility functions save the for modelling of shocks as Brownian increments.

To actually estimate these volatility functions, additional assumptions must be
made. First, as we have noted, gas exhibits seasonality which we can incorporate
into the model quite easily by introducing a time-dependent seasonality adjustment
factor which can be proxied by the spot volatility. Second, while we need not intro-
duce functional form restrictions on the volatility functions, we must reduce some of
the time dependence of their parameterization in order to estimate them with his-
torical data. To do so, instead of allowing the functions to be dependent on both ¢
and T, the current date and the maturity date respectively, we only allow them to
depend on T'—¢ = 7, the time to maturity. The estimation procedure itself determines
the number of volatility functions. These two restrictions yield equation 1.11.

At this stage, we have a model for the futures curve evolution with two compo-
nents to estimate. First, we must estimate the spot volatility and second we must
estimate the volatility functions. For the first task, we proceed as suggested by the
authors and construct rolling estimates of the spot standard deviation by calculating
the sample standard deviation of the shortest maturity contract’s daily returns on a
30 day rolling basis.

To estimate the volatility functions, we follow the authors who apply Ito’s lemma
in logarithmic form after the futures prices have been normalized with the rolling
volatility as we have previously described. The authors discretize the resulting equa-
tion giving us

1 n n
AlogF(t,t+1))=~2 Zla,-(t,t+ 7,%At+ Y 0i(t,t+1,)Az; (1.13)
1=

i=1

where At is one day, logF(¢,t + 7;) is the price of the futures with the jth maturity
at time ¢ and n represents the number of volatility functions.?® It is worth not-
ing here that the assumptions we have made so far imply that the left-hand side of
equation 1.13, AlogF(¢,t + 1), is jointly normally distributed for all of the different
maturities. Also, it is clear that the left-hand side is simply the daily continuously
compounded returns of the futures contract. Given we are continuing to assume that
the stochastic process does not have jumps, before continuing, we take a detour and
review a filtering procedure that must be undertaken before proceeding with estima-
tion.

Since it is assumed in the formulation of this model that the underlying stochas-

39, ; would, for example, be one month or two months.
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tic process is one without jumps, returns which appear to violate this assumption can
adversely affect estimation. To mitigate this potential problem, we apply a “recur-
sive filter” to the data to remove suspected jumps before estimating the parameters
of the stochastic process as suggested by Clewlow and Strickland. First, we calculate
a time series of daily returns for contracts of each maturity as well as the associated
sample standard deviations. Next we somewhat arbitrarily assert that returns be-
yond a threshold of three standard deviations constitute a jump and are accordingly
eliminated from the data set. Then, we recalculate the sample standard deviations
and again eliminate observations associated with potential jumps as previously de-
fined. We repeat this procedure for 10 iterations. As 12 different futures contracts
trade each and every day, we must apply this procedure separately for each contract.
As AlogF(t,t+7;) is simply the daily continuously compounded return of a futures
contract, to estimate the volatility functions we begin by constructing the covariance
matrix of these returns which we denote X;. To allow for some time dependence,
we estimate these covariance matrices on a rolling 30-day basis. These covariance
matrices are then decomposed using an eigenvector decomposition into two pieces: a
matrix of eigenvalues and a matrix of eigenvectors. Thus we decompose X; as

Zt = rtAtr,t
with
Vi1t Vlp Ay 0 O
Iy= andA;=|0 "-. 0
Uni *** Unn 0 0 4,

where T'; is a the matrix of eigenvectors and A; is the diagonal matrix of associated
eigenvalues. The relative size of the eigenvalues determines the extent to which that
eigenvalue and its associated eigenvector (i.e. the factor) explains the variance of the
sample returns and thus provides a method for choosing an appropriate number of
volatility functions; in practice we choose 5 volatility functions for most estimations.
The actual volatility functions are recovered by simple algebra from the decomposi-
tion as

oi(t,t+1))=v;iVAi.

Armed with the volatility functions, we can completely characterize the evolution
of the forward curve through time. Furthermore, due to the assumptions regarding
the forward curve given in equation 1.11, we know that logF (¢, +1;) is normally dis-
tributed. Since the log-transformed futures prices are normally distributed, we can
apply the standard Black-Scholes-Merton approach and derive a closed-form option
price which the authors undertake thereby deriving equation 1.12. Since we have
estimated the volatility functions at each time ¢ as outlined in this appendix and
estimated appropriate interest rates as detailed in Section 1.3.3, it is then straight-
forward to price the options in the data set using this formula.
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Chapter 2

A Bayesian Particle Filtering
Approach to Pricing Natural Gas
Derivatives with Stochastic
Volatility

Abstract

Parametric approaches to pricing options on natural gas futures require selecting a
model and choosing a method for estimating the associated parameters. With respect
to the second step, strategies can be classified as falling into one of two categories.
Schemes, such as those adopted in Schwartz and Smith (2000) and Todorova (2004),
attempt to estimate directly the parameters of the underlying price process using
a time series of futures prices. In contrast, techniques like the one pursued in Do-
ran (2005) estimate the parameters of the primitives by calibrating a cross section
of calls and puts to traded option prices. Chapter 1 documents the challenges asso-
ciated with the first class. Similarly, the alternative procedures prove problematic
because they give rise to inconsistencies. This chapter attempts to reconcile the
dual approaches in two ways. First, it proposes a model of the underlying futures
prices that admits stochastic volatility. Second, it makes use of a state-of-the-art
Bayesian particle filtering technique to estimate the underlying process parameters
along with a simulation-based technique for option pricing. While it trades off some
performance relative to nonparametric approaches, such as the kernel scheme em-
ployed in Chapter 1, the strategy employed is very general and allows for the pricing
of more complex derivatives.
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2.1 Introduction

Events over the past two years including Hurricane Katrina, the collapse of two
large energy hedge funds, record heat waves, and the war in Iraq have brought to
the forefront of public awareness the growing importance of natural gas and the
critical role it plays in driving U.S. economic growth. The primary fuel source for the
majority of new power generation plants, gas has been an important commodity in
this country for years and its influence has continued to grow. Between 1997 and
2007, the underlying physical gas market grew by over 160% to a value in excess of
$100 billion while the financial market built on top grew even faster; open interest
on NYMEX natural gas futures ballooned by over 300% during the same time period
to several billion dollars per day.!

Despite the significance of the physical and financial natural gas markets, aca-
demic research targeted at understanding the price dynamics of natural gas futures
and derivatives written on those contracts has been surprisingly limited. In Chap-
ter 1, an attempt is made to both document important features of natural gas’s
stochastic process as well as utilize a nonparametric method for pricing European
options on gas futures. The kernel technique is successful in recovering plain vanilla
option prices and, in theory, pricing contingent claims whose payoffs are functions
of the states which characterize the estimated state price densities (SPDs). In other
words, the estimated SPDs can only be used for pricing complex derivatives which
are functions of gas futures alone. Clearly, this constitutes a substantial restriction
because derivatives such as path-dependant options or basket options with richer
state spaces can not be priced this way. In sum, since the nonparametric approach
provides little insight into the structure of the underlying process, it cannot be used
as a basis for Monte Carlo pricing of generalized payoff structures.

As documented in Chapter 1, methods developed in Schwartz and Smith (2000),
Todorova (2004), and Clewlow and Strickland (2000) which attempt to model the un-
derlying dynamics of gas futures fail to capture important characteristics such as
stochastic volatility and non-Gaussian returns. Consequently, they fail to recover
simple traded European option prices. Moreover, even if they succeed in recovering
traded futures prices, they are poor primitives for simulation-based complex deriva-
tive pricing techniques. Hilliard and Reis (1999) and Doran (2005) attempt to rectify
the shortcomings of these earlier models by modifying a Bates (1996)-style model so
as to explicitly capture jumps, stochastic volatility and thus non-Gaussian dynamics.
However, Doran utilizes cross-sectional options data to calibrate the model parame-
ters of the underlying futures contracts. As discussed in Chapter 3 of Javaheri (2005)
and earlier in Ait-Sahalia, Wang, and Yared (2001), this approach is problematic; it
leads to substantial inconsistency problems wherein the parameters implied from a
cross section of options do not coincide with those estimated from a time series of

1See Federal Energy Regulatory Commission (2006) and Energy Information Administration
(2004).
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futures prices. Therefore, even if it proves inferior to nonparametric methods with
respect to recovering European option prices, an approach which estimates the pa-
rameters in the underlying futures process using a time series of prices may still be
valuable; the parameter estimates can be used directly in Monte Carlo simulation
based approaches to pricing complex derivatives. Simply put, there is good reason to
reconsider better models for the underlying dynamics of natural gas futures.

This chapter estimates the parameters of a model for gas futures prices which in-
corporates stochastic volatility. However, in contrast to the approach of Doran (2005),
rather than calibrate parameters driving futures prices with a cross section of options
prices, the strategy here is to apply a modern Bayesian filtering technique pioneered
in Johannes and Polson (2006) to directly estimate the parameters with a time series
of futures prices. In so doing, it is possible to avoid the inconsistency problem and
build a better foundation from which to price complex derivatives. The chapter will
proceed as follows: Section 2.2 explores the stochastic volatility model employed in
this study. Section 2.3 offers a review of the relevant literature on filtering. Section
2.4 provides a basic overview of particle filtering technology and outlines the partic-
ular technique used in this chapter. Section 2.5 documents the results from applying
the technique to a stochastic volatility model and actual natural gas futures price
data. Section 2.6 details a procedure for pricing options on the stochastic volatil-
ity model considered and tests the ability of the approach to recover traded options
prices. Section 2.7 concludes.

2.2 Model

The objective of this study is to move towards a better method for pricing natural
gas derivatives. This is to be accomplished in two ways: First, by offering a more
accurate model for the process underlying the price of gas, and second, by suggesting
an effective procedure for estimating the parameters of that model. With respect to
the former, it is crucial to choose a model which incorporates the relevant stylized
facts of the asset under investigation. We know from Chapter 1 that in the case of
natural gas futures, this means selecting a model which can reproduce seasonality,
stochastic volatility, and non-Gaussian dynamics. We further observed that many of
the popular models in the literature including Schwartz and Smith (2000), Todorova
(2004), and Clewlow and Strickland (2000) fail on some or all of these counts. As a
result, those approaches fare poorly when it comes to recovering the prices of traded
options on gas futures. One can reason that they likely imply prices for more exotic
derivatives which are equally inaccurate relative to what one finds in the market-
place.

In order to address the shortcomings found in earlier attempts to price natural
gas derivatives, the model presented here is adapted from one typically used in the
study of equities. We begin with a spot price, S;, which follows a standard diffusion
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process, and a log volatility term, x;, which follows an Ornstein-Uhlenbeck process.
In other words,

dSt = ﬂ(St)dt'i'O'tStdBt (2.1)

JFwSads = g1 [ 6(s-bi(s)~8(s—ex(s)ds +...

2.2
+812 J}*[6(s — b12(s)) - 8(s - e1a(sDIds + [ A [iSds @2
gr=e? 2.3)
dx; = a(m —x;)dt +o0,dW, 2.4)

where p(-) is the seasonalized drift coefficient, [i is the deseasonalized drift coeffi-
cient, 6() is a delta function, g; is month i’s seasonality factor, b;(s) is the first day
of month i in the year associated with time s, e;(s) is the final day of month i in the
year associated with time s, m is the long-run mean reversion level for x;, and a is
a parameter which controls the speed of mean reversion. B; and W; are independent
and identically distributed standard Brownian motions. This independence assump-
tion is critical as it dramatically simplifies both the parameter estimation procedure
as well as the technique employed for pricing options written on the futures. Em-
pirically, the independence assumption, though incorrect in the case of equities, is
well known to hold with foreign currency and thus it is not necessarily a poor con-
jecture. Next, one can show using standard no-arbitrage arguments that assuming
non-stochastic interest rates (r;), a futures contract, F;, which expires at time 7' is
related to S; by
Ft = ef'TrsdsSt.2

It then follows from the Ité6 product rule and equation 2.1 that
dF, = dS;el s deli redsg,

((S))dt +0,S,dB,)el 795 — r,eli Tedsg
a(St,Ft,r,)dt+atFtdBt (2.5)

where a(S;,F;,r:) = (u(S;) —rFy). _
Finally, we observe that the deseasonalized spot price, S;, evolves according to

dgt =ﬁ§tdt+at§,d3t

2Gee Shreve (2004) p. 247 and Bingham and Kiesel (2004) p. 283.
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which implies that the deseasonalized futures prices, #;, follows the SDE
dF,=(fi-ryF,dt+o,F,dB,. (2.6)

Note that the model outlined in equations 2.1 though 2.5 incorporates all three
of the stylized facts previously mentioned. Most notably, it allows for returns which
exhibit kurtosis as Chapter 1 finds present in actual gas futures data. In addition,
in comparison with Clewlow and Strickland (2000) and the kernel method explored
in Section 1.7, it is inherently parametric. Therefore, it provides greater economic
intuition than either of these earlier approaches, avoids the pitfalls of bandwidth
selection and the curse of dimensionality inherent in kernel methods, and offers the
potential for use in Monte Carlo based schemes for pricing a vast array of both plain
vanilla and exotic derivative products.

Next, we consider a discrete approximation to the model so that we may estimate
the parameters using a time series of prices. First, we can solve the SDE in equation
2.6 using a straightforward application of It6’s Lemma for Standard Processes to
In(¥#,).2 This yields

~ ~ t+A8 ~ 1 2 t+At
Fiine =F'te(j;+ (-re=gol)ds+[;" 0,dBy) 2.7

Let At =1 and 7; be the de-meaned value of ln(-ﬁ-‘ﬁﬂ). Rewriting the previous equation
t
in log-return space, we arrive at

Tl 7 t+1
g2 ij,.”)—mn(F 2= [ oudB.. (2.8)
t t

Now, assume At is sufficiently small that o, varies little in the interval. We can
then define y; = 5:(2) where 02 = 02 for t < s < t + At and write the following as an
approximation to equation 2.8:

* — axn( Xt
¥e = exp( 2 )€t
where €; = B;,1 —B; «~ N(0,1). Finally, define y; =In(y;)? so that
¥yt =X+ Wy (2.9)

where w; 2 In(¢?) «~ In(x2).
Turning our attention to equation 2.4, we discretize the Ornstein-Uhlenbeck pro-
cesses as follows:

X —Xe-nr = alm—xe-pa)At+0,V AL,
ay+ (B, —Dx;_1+0,0;

3See Steele (2000) p. 126.
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where a, £ am, f, = —aAt +1, v, -~ N(0,1) and again At = 1. Rearranging terms, we
arrive at
Xi=ay+ P %1 +0,0;. (2.10)

Equations 2.9 and 2.10 form the basis of the parameter estimation procedure detailed
in Section 2.4.

2.3 Literature Review and Filtering Overview

Researchers in fields as diverse as computer science, biology, economics, and elec-
trical engineering have long been confronted with a similar problem: estimate the
value of state X; € R” x T where X evolves according to some known stochastic differ-
ential equation g(-). Additionally, X, is related, via another known function f(X;,¢;),
to an observed value Y; where ¢; is random and unknown. In a seminal paper pub-
lished in 1960, R.E. Kalman derives a recursive solution to a discretized version of
this problem where the so-called state equation, g(-), and observation equation, f(-),
are linear and their attendant errors Gaussian. He provides analytical techniques
which minimize the mean of the squared error of three types of calculations:

Filtering: E(X.Y:)
Prediction: E(X;|Y;) wheres<t
Smoothing: E(X,;|Y;) wheres>t¢.

The estimation of the parameters in the state and observation equations is called the
parameter learning problem or, in some literatures, the machine learning problem.
Joint filtering refers to the simultaneous estimation of parameters and unobserved
states. In Chapter 1, a two step process of Kalman filtering and maximum likelihood
is employed to estimate both the value of the unobserved states and the underlying
parameters in the gas futures models of Schwartz and Smith (2000) and Todorova
(2004).

In this study, we solve the joint filtering problem associated with equations 2.9
and 2.10. The challenge is that in this case, as opposed to in the simpler Kalman
setup, the error term in the observation equation is no longer Gaussian. Conse-
quently, one can show that the associated likelihood function is not known under
an integrated form.* When either the Gaussian or linearity conditions are violated,
the alternatives are to appeal to extensions of Kalman’s approach or employ one of a
variety of simulation based techniques.

Since Kalman first published his work, others have generalized the results to
nonlinear and non-Gaussian cases. The so-called extended Kalman filter (EKF) uses

41t is interesting to note that GARCH models, unlike SV models, have no randomness in the o SDE
so they can be estimated with simple MLE; SV models, with two sources of randomness, do not admit
likelihood functions which are analytical in integrated form. See Javaheri (2005) p. 57 for more.
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a first-order linearization to recast nonlinear Gaussian problems within the stan-
dard Kalman framework.’ Though widely popular for thirty years, the EKF poses
implementation difficulties arising from the fact that it requires the computation
of Jacobian matrices. In addition, filtering results are often highly unstable if the
assumption of local nonlinearity is violated. Kushner (1967) introduces a nonlin-
ear filtering algorithm (NLF) based on Gaussian quadratures to address these is-
sues. Julier and Uhlmann (1997) develop a more computationally efficient approach
dubbed the “unscented filter” (ULF). Rather than approximate linear functions with
nonlinear ones, Julier and Uhlmann utilize an unscented transform to calculate the
mean and variance of random variables altered by a nonlinear transformation. They
show that the method does not require that the error terms in the observation or
state equations have a Gaussian distribution. Javaheri (2005) demonstrates via sim-
ulation that in the case of stochastic volatility models, neither the EKF, NLF, nor the
UKEF in conjunction with maximum likelihood estimation do a reasonable job with
respect to parameter learning.

A variety of econometric approaches developed to better address the parameter
learning problem as it relates to stochastic volatility models have been proposed.
These methods are generally simulation based and fall into one of two categories:
sequential and non-sequential. In the first case, each time the parameters are es-
timated, the procedure requires utilizing the entire data set to update the calcu-
lation. In the second case, estimators can be updated "on-line" meaning only the
newly observed data is needed in the revision process. Within the non-sequential
class of estimators, numerous papers including Jacquier, Polson, and Rossi (1994),
Kim, Shephard, and Chib (1998), Elerian, Chib, and Shephard (2001), Eraker (2001),
Meyer and Yu (2000), Jacquier, Polson, and Rossi (2004), Yu (2005), and Raggi (2005)
exploit various Markov-Chain Monte Carlo (MCMC) methods to address the filter-
ing and parameter learning problems. Danielsson (1994) makes use of a simulated
maximum likelihood approach to the joint filtering problem while Duffie and Sin-
gleton (1993) and Gallant, Hsieh, and Tauchen (1997) employ method of moments
techniques.

In many applications, including the one examined in this chapter, sequential es-
timation methods are preferred; the schemes cited above are highly computationally
intensive so in cases where the state and/or parameters must be frequently updated
and speed is of the essence, for example on a derivatives trading desk, non-sequential
routines cannot be used. In addition, the storage costs associated with using batch
algorithms can be prohibitive; sequential strategies help to avoid this pitfall too. A
large class of approaches which fall under the rubric of "particle filters" are amongst
the most popular on-line estimation techniques.

Particle filters are recursive Monte Carlo methods based on point mass repre-
sentations of probability densities wherein the objective is to construct a numerical
approximation to the posterior probability density function (PDF) of the state based

5See Harvey (1989) for more.
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on all available information. The filters essentially have two elements: prediction
and update. The first component is the prediction stage in which the state PDF is
evolved forward one unit of time. The state equation usually includes some random
and unobserved noise so the prediction step tends to reshape the PDF. The update
stage involves using Bayes’ theorem and the currently observed data to modify the
PDF so that it incorporates this new information. Doucet (1998) shows that the chal-
lenge to using particle filters relates to a degeneracy phenomenon wherein after a
few iterations a single particle accounts for virtually all the weight.

Some schemes, such as those in Hiirzeler and Kiinsch (2001) and Pitt (2002),
implement parameter learning within a classical frequentist framework. Similarly,
Javaheri (2005) studies stochastic volatility models with daily S&P prices using par-
ticle filters for state filtering and maximum likelihood for parameter learning. The
study finds in every model examined that while the technique outperforms KF, EKF,
and UKF schemes, the diffusion parameters are still difficult to estimate. This is
attributed to insufficient data frequency.

As detailed in Arulampalam, Maskell, Gordon, and Clapp (2002), most particle
filtering strategies are inherently Bayesian. Among these, Gordon, Salmond, and
Smith (1993) and Kitagawa (1996) try to resolve the degeneracy problem by incorpo-
rating a sampling/importance resampling (SIR) step in the algorithm. While these
papers make advances over the various KF extensions and MCMC methods in that
they are highly stable and fast and place no restrictions on the form of the measure-
ment or system equations, they fail to solve the parameter learning problem and suf-
fer from poor handling of outliers and still-present, albeit reduced, degeneracy prob-
lems. Pitt and Shepard (1999) introduces an auxiliary sampling/importance sam-
pling (ASIR) procedure which better handles outliers. However, it performs poorly in
cases with substantial process noise. Fearnhead (2002) introduces a sufficient statis-
tic structure to reduce the storage costs associated with particle filter algorithms.

Storvik (2002) is significant in that it is the first paper to use particle filters
to solve the joint filtering problem. However, the parameter inference performance
proves quite poor in the presence of outliers. Attempts to rectify this problem are pro-
posed in Liu and West (2001) with its kernel density methods as well as Andrieu and
Doucet (2003) and Andrieu, Doucet, and Tadic (2005) with their approaches which
rely on expectation-maximization (EM) algorithms. Polson, Stroud, and Muller (2006)
offers an approach which employs practical filtering with sequential parameter learn-
ing by incorporating a rolling-window MCMC scheme. Unfortunately, as pointed out
in Johannes, Polson, and Stroud (2006), when applied to a stochastic volatility model,
Polson, Stroud, and Muller (2006) struggles to sequentially learn the volatility of
volatility parameter. At the cost of imposing some extra structure on the problem,
Johannes and Polson (2006) seems to do the best job learning parameter values in
a stochastic volatility framework. As a result, Johannes and Polson’s approach is
adopted in this chapter and explored in detail in the following section.
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2.4 Overview of Bayesian Filtering and Parameter
Learning

The filtering and parameter learning problem associated with a state space model
such as the one describing gas futures in equations 2.3 through 2.5 is notoriously
difficult. As discussed in the previous section, numerous approaches have been pro-
posed all with varying degrees of success. In particular, the parameter estimation
component remains challenging with many schemes failing to achieve consistently
reasonable results. The strategy employed in Johannes and Polson (2006) seems to
offer the best hope of providing not only accurate filtered estimates of the unobserved
state, volatility, but the parameter values which are of great interest in the pricing of
derivative instruments. Johannes and Polson propose to avoid the degeneracies in-
herent in sequential importance sampling by making clever use of a sufficient statis-
tic structure which will now be described.

Let 0 represent the vector of parameters (ay, §, 0,) and N the number of par-
ticles which approximate the joint posterior distribution of the parameters and la-
tent state. The objective of Johannes and Polson’s Bayesian particle filter is to
generate samples from p(0,x,|y’) where x; is the unobserved state as before and
' = (y0,¥1,...y:) the vector of observations up until time ¢. This joint filtering al-
gorithm is optimal in the sense that exact draws are taken from p¥(x;|y*) which
denotes the particle approximation to p(0,x:]y’). Sequential particle filters do not
work this way and consequently run into the degeneracy difficulties described above.
As with other particle filtering methods, this strategy can be used with nonlinear and
non-Gaussian models such as the stochastic volatility model studied here. The one
qualification is that the procedure requires the existence of a known function . such
that s;41 = F(s¢,%:41,¥:+1) Where s; is defined to be a vector of sufficient statistics
which fully characterizes the posterior distribution of 8. By tracking the distribution
of the triple (9, s;,x;) at each time step, the technique allows for the desired inference
of states and parameters.

The implementation of Johannes and Polson’s scheme relies on three important
insights: a useful factorization of the desired joint PDF, the presence of a sufficient
statistic structure, and the ability to generate draws from p"(x;|y’), the particle
approximation of the marginal distribution of x;. We shall provide and overview of
all three components of the strategy.

First, the joint density in question is decomposed as

t+1) +1)

PO18s+1,%41,5  Dp(8141 x,,, 19
POlst+1)D(8141 %,,,1¥"* D)
POlser1)p(se+112e41, ¥ Dp(asely™™) (2.11)

p@,8:41,%:41ly

where the second equality follows from the sufficient statistic assumption.
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Next, the third term in the factorization equation 2.11 is rewritten in a clever
way:

t+1)

P(xee1ly P(xer1lyeer, ¥') = f f P@ee1lyee1, ¥, %,0)D(xs,01y241,y )dx,dO

plx:,01y*)
P(ye+1ly?)

I

ffP(xz+1Iyt+1,yt,xt,e)P(ytﬂl,yt,xt,@) dx.dé.

This characterization yields a convenient particle representation of p(x;.1|y**!) since

N(x ,0 t
PN Galy™) = f pN(xm|yt+1,y‘,xt,e)p(yt+1|,y‘,xt,e)”—"y,—)dxtde

P(yz+1ly?)

N . 3

= Y wi(x,0))p(x+11(xs,0) 9141, 5")
i=1
where the weights are defined as
. ’e i’ t
w((xt,e)l)= p(yt+1 l(xt ) y ) (2.12)

N p(ealxe, 00,57

The computation of p(x;+1/(x;,0), y:+1,%) is discussed below.

In order to generate the N weights, it is clear from equation 2.9 that we must
simulate from a log( le’) distribution. Building on the earlier work of Kim, Shephard,
and Chib (1998), Omori, Chib, Shephard, and Nakajima (forthcoming) uses a 10
component matched mixture of normal distributions to approximate draws from a
log(x?) distribution.® This approach yields

10
wr=) piN@Im;,&)
j=1

where N(w;|lm j,fg) refers to a normal random variable with mean m; and variance
5?. If we then define I, as the value of the j € (1,...,10) drawn and

1 11— My, — Qx~ ﬁ,,xt)2)

—————exp(- :
[2 2 2 2 42
aIt+1 +oy UI'H Tv

equation 2.12 can be expressed as w(l;+1,x;,0) which we define as w*(I;+1,%;,0) nor-
malized to sum to one. Assume that the initial state distribution x¢ is distributed

N(yo,ag).

W*(It+laxt’0) =

6See Omori, Chib, Shephard, and Nakajima (forthcoming) for the values of p;,m j,and ¢; for j€
Qq,...,10).



2.5. FUTURES 73

Returning to equation 2.11, define s; = (B;,¢;,C;). Poirier (1995) derives the cal-
culations necessary for generating draws from the second term in the decomposition.
The requisite recursion equations for the hyperparameters are

1

b = —+b

t+1 2 +0;

1
Biv1 = B:i+ E(le =Z,C) U+ ZiCZ,)(x141 - Z;Cy)
ce1 = Cp(Cice+xenZ))
Ct+1 = Ct + ZiZ;'
The procedure for drawing samples from the first term in equation 2.11 is the

result of straightforward Bayesian analysis. Begin with standard conjugate priors
for the parameters

p0) = p(Blo2,s,)p(o21s,) ~NIG(b;, B:.1)

where NIG denotes the normal inverse gamma distribution. Next, define Z, = (1,x;)’
and p = (a,,B,). Then, it follows that the posterior distributions of the parameters
are

p(olls;) v 16(bss1,Bri1)
p(BloZ,s) « N(crs1,02C;L).

Finally, Johannes and Polson (2006) shows that draws from the conditional distri-
bution of x;., can be taken from a mixture of normals with mean fl,,, ; and variance

f,zﬂ ,j- More precisely

i ~ 22
p(xt+1 I(It+1,xt,3)l,yt+1) A N(“t+1,1¢+1,€t+1,1‘+1)

2 2
~ J
Bii1,,; W:{?(ytﬂ -mj)+ W(ax + B.x:)
-2 2 e
$ivl,j = Uvz"'sz-
2.5 Futures
2.5.1 Data

The data set used for estimating the instantaneous volatility as well as the parame-
ters in the model of equations 2.3 through 2.5 is the same as that employed in Chap-
ter 1. Returns are calculated from daily settlement prices for natural gas futures con-
tracts traded on NYMEX for the 3,942 days between April 1990 and December 2005.
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Table 2.1: Credible Intervals for Parameters.

5% a, 50%0a, 95%ay|5%p, 50%p, 95%P,|5%0, 50%a, 95%a,
Contract 1 | —0.049 -0.041 -0.034 | 0.947 0.955 0.964 | 0.036 0.038 0.040
Contract 2 | —0.049 -0.040 -0.033 | 0939 0949 0956 | 0035 0.037 0.039
Contract 3 | -0.050 -0.043 -0.037 | 0940 0948 0957 | 0.036 0.037 0.039
Contract 4 | -0.054 -0.046 -0.038 | 0948 0955 0.963 | 0.037 0.039  0.041
Contract 5 | —0.056 -0.049 -0.040 | 093¢ 0942 0951 | 0.034 0036 0.038
Contract 6 | —0.055 -0.047 -0.039 | 0937 0945 0956 | 0.035 0.038  0.040
Contract 7 | —0.061 -0.051 -0.042 | 0929 0938 0949 | 0.036 0.039 0.041
Contract 8 | —0.057 -0.050 -0.044 [ 0929 0941 0952 | 0.037 0.039 0.040
Contract9 | -0.058 -0.048 -0.040 | 0933 0943 0953 | 0.036 0.038  0.040
Contract 10 | —0.054 -0.047 -0.038 | 0939 0948 0957 | 0.034 0.037 0.038
Contract 11 | -0.058 -0.050 -0.043 | 0938 0947 0.956 | 0.036 0.038  0.039
Contract 12 | —0.058 -0.050 -0.040 | 0.937 0.946 0.955 | 0.036 0.039  0.040

Contracts are denominated in dollars per million British thermal units (mmBtu) and
require the delivery of gas at Louisiana’s Henry Hub. The security is traded in units
of 10,000 mmBtu. Given the low liquidity of long-dated contracts, only prices of the
first 12 monthly futures are considered. This study also makes use of the interpola-
tion procedure and cubic spline scheme described in Chapter 1 in order to construct
a complete futures contract for each trading day. In this way, the model can be fitted
to synthetic constant-maturity securities.

2.5.2 Results

The particle filtering and parameter learning algorithm outlined in the Section 2.4
is applied to a data set of futures contracts where the number of particles is set to
100. Table 2.1 displays the 5%, 50%, and 95% quantiles for all 12 contracts of the
final period posterior distributions for a,, B,, and o,. Two observations are worth
noting. First, §, and o, are approximately equal across all contracts as one would
expect since they arise from the same spot process. Second, though a, seems to fall
with longer dated maturities, the effect is minor. Figure 2.1, which plots the filtered
estimates of x; for the 1, 4 and 12 month contracts, highlights the near-identical
volatility of the different contracts which again is expected given the model. Figures
2.2, 2.3, and 2.4 characterize the posterior distributions of the parameters generated
from the particle filter for the one month contract. The plots for other maturities look
similar and highlight the degree to which the Bayesian credible intervals diminish
as more data accumulates over time.
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Figure 2.1: Filtered Instantaneous Volatilities
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Figure 2.2: The figure displays the 5%, 50%, and 95% quantiles of a,’s posterior
distribution.
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Figure 2.3: The figure displays the 5%, 50%, and 95% quantiles of §,’s posterior
distribution
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Figure 2.4: The figure displays the 5%, 50%, and 95% quantiles of o,’s posterior
distribution
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2.6 Option Pricing
2.6.1 Theory

European options on natural gas futures which evolve according to the dynamics
of equations 2.1 to 2.3 can be priced in a rather straightforward manner. This is
accomplished via a procedure that combines elements of Hull and White (1987) and
Black (1976). First, rewrite the stochastic volatility model under the risk-neutral
measure QU where P denotes the objective measure.” Define

BT Br fa(st,Ft,rt)

and
Wp=Wr+ stds
t

where (r;) is the risk-free process and (y,) is any adapted process meeting some basic
regularity conditions including boundedness. Recall we have assumed that B, and
W, in equations 2.1 and 2.3 are uncorrelated. Consequently, Girsanov’s theorem
guarantees that B and W are independent Brownian motions under Q" defined
by

T
(7)
dQ (__f«a(st,Ft,rt) ds fa(St,Ftsrt) stdWs)-

t

Equations 2.1 and 2.4 can now be rewritten under Q7 as

dF,=0.F.dB} (2.13)
o,=e? (2.14)
dx; =(a(m -x;)—0o,y,)dt+0,dW,; (2.15)

Next, define (F) to be the filtration generated by W; and assume suitable regu-
larity conditions on (o;) such that the stochastic integral f,T 0:dB; is a martingale.
Solving the stochastic differential equation of equation 2.13 and applying the inde-
pendence of B; and W, as well as Itd isometry, we find the mean and variance of

"See Fouque, Papanicolaou, and Sircar (2000) pp. 42-48 and Steele (2000) p. 224 for more on the
key results used in what follows.
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In(F'r) conditioned on W;*:

E'lnFp)FF]1 = -172-(T-v)
Var'In(Fp)IF)] = E*[n(Fr)-E*OnFn)llFN 2

T
= E'[ tfasdB;w}V 12
T
= [E'lo,|F} Pds
t

T
= [o2ds=G2-(T-1)
t

T
where 3;° £ 71~ [olds and * denotes operations taken under the measure Q7.
t
Therefore,
W 1, —2
InFr|Fp N(ln(Ft)"EUt T-1), 0, (T-1)

under Q7. Note that the equivalent martingale measure Q" is a function of (y,)
which should be interpreted as the risk premium associated with W;. Subject to some
regularity conditions, (y,) can be any nonanticipating process. Consequently, since
x; is not a traded asset, the stochastic volatility model in this chapter suggests an
incomplete market; without exogenously specifying (y,), prices are not unique. Fur-
thermore, (7,) cannot be inferred from a time series of futures as prices are observed
evolving under the objective measure P. The risk premium must then be modeled
explicitly or calibrated to options or other derivatives prices. At this stage, we will
simply assume y, =0 for all z.

Now, we can apply standard no-arbitrage arguments to derive a scheme for pric-
ing natural options on gas futures which we denote C(¢,F;,x;) in the case of calls.
Begin by observing

C(t,Fy,x;)

T
E*(exp(- [ rsds)[Fr - K]%)
t

T
E*E*(exp(- [ rsds)Fr —K]+l31v-" )
t

where K is the strike and the second equality follows from the tower property of

8Using Itd’s Lemma for Standard Processes (Steele (2000) p. 126), we see that

T T 1 T 1 T T
f dlong=f —dFs'f —dF,.dF,=f 0:dB; —f o’ds.
t t Fs ¢ F? t t

This in turn implies r r
log Fr = logF; - f 0,dB} - f olds.
t t

Appling the expectation operator under the risk-neutral measure we find that E* [ln(FT)I.?r.' 1
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conditional expectations. Then, recalling the work of Hull and White (1987) and
Black (1976), we recognize that for a given realization of a volatility path, we can
calculate @2. Next, the inner expectation can be solved in closed form using Black’s
formula for options on futures,

CBleckt F,;57)

T
exp(- f rods)(Fy * O(dy(t, Fy) - KOda(t, Fy)))
t

log(R)+ 35, %(T - 1)
o vVT -t

d1,2(¢,Fy)

where 0, the average realized volatility, has been substituted for Black’s constant
volatility term. Finally, C(¢,F;,x;) is solved by taking an average of CB/c%(¢ F;) over
different values o;.

This analysis leads to a numerical algorithm for pricing gas options. First, use
a simple Euler discretization of equation 2.15 in conjunction with equation 2.14 to
simulate N paths of o; under the Q") measure. Next, calculate G* for each path and
solve CBlack(s F,;57). Finally, average across the values of CBlack(¢, F,:57) to arrive
at C(t,Fy,x;).

2.6.2 Data

The options data set used in this chapter is the same as that in Chapter 1. Each
contract, which trades on NYMEX, entitles the holder to buy or sell one futures con-
tract on 10,000 mmBTU of gas. The data, which includes calls and puts, consists
of 47,408 settlement prices spanning 455 days from March 2004 to December 2005.
A complete fixed-length Treasury curve is also constructed using a cubic spline pro-
cedure wherein the risk-free rate associated with a given maturity and trade date
can be approximated via an interpolation procedure. We restrict analysis to options
on contracts with a maximum of 1 year maturity limiting the combined data set to
29,239 observations.

2.6.3 Results

The results of the option pricing scheme can be evaluated in three ways. First, we
offer visual representations of the procedure’s accuracy in the form of actual and
estimated monthly implied volatility surface plots. These surfaces are constructed
from a nonparametric series regression of Black *76 implied volatilities on time to
maturity and moneyness where the latter is defined as the strike divided by the
futures price. Figures 2.5 and 2.6 offer representative plots. Next, we calculate
the RMSE and find it to be $3.530. Finally, using the same procedure outlined in
Chapter 1, we calculate the discounted value of the tracking error associated with a
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Figure 2.5: Sample Implied Volatility 1
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delta-hedged portfolio. Across all options, the tracking error is $.252. By this metric,
the approach of particle filtering and simulated option pricing taken in this chapter
outperforms the approaches of either Schwartz and Smith (2000) or Todorova (2004)
and only narrowly trails that of Clewlow and Strickland (2000).

2.7 Conclusion

This chapter hopefully takes an important step in the direction of building models
for natural gas futures prices that more accurately capture the commodity’s unique
dynamic characteristics. In so doing, it becomes possible to extend the results to
pricing European options and more complex derivatives in a consistent manner. The
important contribution here is the combination of three key components: the intro-
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Figure 2.6: Sample Implied Volatility 2
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duction of a model of the underlying futures prices which admits stochastic volatility,
the use of a state-of-the-art Bayesian particle filtering technique to estimate volatil-
ity and the underlying process parameters, and finally, a simulation-based method
for option pricing. While the performance with respect to options pricing falls short
of some nonparametric approaches, it has the advantage of offering a framework for
pricing more complex derivatives.

This effort suggests at least two directions for future research with the promise
of better options pricing performance. First, the assumption that the correlation
between B; and W; is zero could be relaxed. Loosening this restriction is nontrivial as
the particle filtering and parameter learning procedure as well as the option pricing
scheme heavily exploit the independence of the Brownian motions. Second, y might
well not be zero. Since this risk premium is not observable from futures prices, one
can imagine employing a procedure which combines particle filtering techniques to
estimate 0 and x; with cross-sectional calibration methods to infer y.
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Chapter 3

Rethinking the Home Bias Puzzle:
A Two-Step Approach

With Alan Michael Grant

Abstract

This chapter presents new estimates and approaches to estimating the home bias
puzzle. We use micro-level data to calculate households’ foreign equity exposure as
a function of wealth. We find simple estimates have significant errors-in-variables
problems and we construct an estimator using grouping to account for this issue.
Our estimates still imply low aggregate investment in foreign equity. Finally, we
disaggregate the investment decision by incorporating two step decisions that allow
households to forgo participating in the market. As a result of the decoupling, we
find foreign equity levels closer to that of standard portfolio theories.

3.1 Introduction

In their 1991 paper “Investor Diversification and International Equity Markets,”
French and Poterba (1991) quantify the strength of one of the most curious and en-
during empirical irregularities in open economy macroeconomics: the Home Bias
Puzzle (HBP). Their paper presents strong evidence that aggregate equity portfolios
in industrialized countries are heavily biased towards domestic stock ownership rel-
ative to the predictions of standard portfolio optimization models. While subsequent
papers, including Bohn and Tesar (1996), find that the HBP has diminished some-
what since French and Poterba published their results, the magnitudes of the bias in
most countries are still far too great to be accounted for using standard explanations.

Most investigations into the HBP utilize aggregate data. This chapter takes a
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different approach in that we use individual investor level data to examine asset al-
location decisions. Moreover, we add to the existing debate over the source of the
HBP by disaggregating portfolio selection into two components: first, the binary de-
cision to participate in international markets and second, the conditional foreign as-
set allocation choices. Whereas previous investigations into the HBP try to explain
why investors on average hold seemingly low shares of foreign assets, we show that
conditional on their choosing to participate in foreign markets, investors construct
portfolios with much higher levels of foreign holdings. Thus, the interesting question
regarding foreign asset ownership shifts from one of portfolio share to one of par-
ticipation in international markets. In addition, we find that while the conditional
portfolio allocations to foreign assets are somewhat independent of wealth levels, the
participation decision is closely tied to investor affluence.

Using detailed household-level data provided by the Survey of Consumer Fi-
nances (SCF), we structure our investigation by first studying the interplay between
individuals’ portfolio decisions and their levels of net financial wealth. Simple econo-
metric analysis suggests little relationship between wealth and unconditional foreign
equity ownership. However, we show that this is the result of an errors-in-variables
problem and we discuss the implications and caveats associated with this conclusion.
Finally, we decouple the participation and conditional portfolio decisions and provide
some evidence that the real empirical “puzzle” is the binary decision of whether or
not to invest.

We will proceed as follows. In the next section, we highlight some of the impor-
tant insights and approaches in the extensive literature and show how they relate to
this paper. In Section 3.3, we discuss our data and their relevant statistical proper-
ties. Section 3.4 lays out our estimation procedure for the unconditional investment
decision and the associated problems in measuring this choice. Section 3.5 estimates
the participation decision and conditional portfolio choices. Section 3.6 concludes.

3.2 Literature Review

Even prior to French and Poterba (1991), financial economists' asserted that in-
vestors hold insufficient foreign assets relative to that suggested by traditional port-
folio theory models such as the international version of the capital asset pricing
model (CAPM).2 Most often these older studies use macro level data to estimate the
home bias. Often, as is the case with the original French and Poterba (1991) article,
the home bias is estimated using accumulated capital flows and valuation adjust-
ments. However there is evidence that these flows are not well suited for estimating
the home bias.® In March of 1994 and again in December of 1997, the U.S. govern-

1gee, for example, Levy and Sarnat (1970).
2S5ee Sharpe (1964) and Lintner (1965) for the original development of these models.
3See Warnock and Cleaver (2003).
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ment conducted comprehensive studies of its residents’ foreign security holdings by
surveying major custodians and other large investors.* Using this data, Ahearne,
Griever, and Warnock (2004) estimates that foreign equities comprise 12 percent of
US investors’ equity portfolios (using 1997 data). In comparison, French and Poterba
(1991) estimate that share to be about 6.2 percent at the end of 1989 and Bohn and
Tesar (1996) estimate the share at nearly 8 percent in 1994. Thus, there is some
evidence that while home bias in the US has lessened substantially over the last
twenty years, US foreign equity holdings are still much lower than levels predicted
by standard portfolio theory.

Numerous attempts have been made to explain the HBP by loosening typical as-
sumptions like the existence of a representative consumer, riskless borrowing, and
complete markets or by more explicitly modeling the gains from diversification.> One
simple approach is to consider the possibility that domestic equities provide a better
hedge for home country specific risks. However, models in this spirit generally pre-
dict lower levels of home bias than observed. Another form of country specific risk
could be related to non-tradable assets such as human capital. For example, Stock-
man and Dellas (1989) finds an equilibrium in which a country’s residents derive
little benefit from diversification via claims indexed to nontradable endowments be-
cause investors capture all the available gains from diversification by investing in
claims linked to tradable goods. However, others have found that this approach is
unlikely to provide a sufficient explanation for the HBP. Another version of the non-
tradables idea is offered by Bottazzi, Pesenti, and van Wincoop (1996) which argues
that given the negative correlation between labor income and returns on capital, do-
mestic stocks may provide a better hedge against consumption volatility than inter-
national equities. This explanation seems unlikely given the findings of Mankiw and
Zeldes (1991) which previously showed that wealthy investors, who constitute a large
portion of equity holders, care little about hedging labor income. Lucas (1987) tries a
different approach claiming that observed aggregate consumption volatility is insuf-
ficient to justify much international investing in the face of even minor transactions
costs. Lucas’s paper, however, relies heavily on the assumption of a trend station-
ary consumption process and at best only explains the HBP for the United States
which experiences unusual consumption smoothness. Further, because it only con-
siders aggregate decision-making, Lucas’s approach ignores individual heterogeneity
and the fact that individuals cannot as easily hedge away idiosyncratic risk and thus
may have more motivation to hedge than a representative consumer. There is also a
substantial literature that tries to explain the HBP in the context of diversification
costs, but many authors have found large gains from international diversification
even when taking these costs into account. Another possible explanation relates to
simple mismeasurement. Gains from international diversification are derived from
historical means and variances, but limited data leads to significant uncertainty re-

4See Griever, Lee, and Warnock (2001) for a discussion.
5For a more comprehensive look at the literature, see Lewis (1999) for a recent survey.
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garding these measures and hence the existence of a home bias. Lastly, Ahearne,
Griever, and Warnock (2004) proposes that the underweighting of foreign equity in
US portfolios is primarily due to significant information costs.

The present study does not try to explain the home bias in the traditional sense,
but rather redefine the puzzle. To do so, we investigate individual portfolio choices
as opposed to the aggregate measures the other studies have used. This allows us to
examine the interplay between investors’ decision-making processes and their indi-
vidual characteristics including wealth levels.

3.3 Data

The U.S. household level financial data used in this chapter are taken from the Fed-
eral Reserve’s Survey of Consumer Finances. The most recent publicly available ver-
sion of the SCF, which is conducted every three years, was compiled in 2001. While
the Fed has been conducting the survey for decades, it only started collecting data
on our primary variable of interest, U.S. household ownership of foreign assets,® in
1995. Thus, this chapter restricts itself to data from the 1995, 1998, and 2001 sur-
veys. The SCF, which utilizes a dual-frame sample design, offers the most complete
obtainable description of U.S. family finances. The survey designers selected about
4,0007 household participants using a dual-frame methodology. The first group of
families were selected from a standard multi-stage area-probability design devised
to ensure proper representation of broad characteristics like home ownership. The
second group of families were chosen based on Internal Revenue Service data to get
disproportionate representation of relatively wealthy Americans. Given the limited
survey size, the inclusion of this set of subjects is critical to ensuring proper repre-
sentation of a concentrated yet significant agglomeration of national wealth and in
particular foreign asset ownership.

The SCF has two important features which deserve mention as they have very
significant ramifications for performing any sort of econometric analysis on the data.
First, the observations do not have equal associated probability and therefore must
be weighted before trying to interpret the survey data. The SCF designers con-
structed the weights using original selection probabilities and frame information as
well as information available in the Current Population Survey; the weights sum to
the number of households® in the sample universe.® In addition, the study suffers
from missing data. To remedy this, the surveyors opted to impute missing values

6The Fed collects data on both foreign stock and foreign bond ownership; it does not collect infor-
mation regarding other forms of foreign financial asset ownership (e.g. derivatives, mutual funds, etc.)
nor does it provide more detailed information regarding portfolio choices.

7The number varies slightly by year.

8Tn 1998, the number of households, and hence sum of weights, was 102.5 million.

9This is from the survey documentation; see http://www.federalreserve.gov/pubs/
oss/0ss2/98/scf98home . html (Kennickell, 2000).
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by drawing repeatedly from an estimate of the conditional distribution of the data
and then storing these imputations as five successive replicates, or “implicates,” of
each data record. As a result, the full data set has five times the actual number of
respondents: for example, in 1998 there are 21,545 observations versus 4,305 house-
holds. The survey designers argue that multiple imputation promises more efficient
estimation than singly-imputed data because it generates multiple outcomes from
a stochastic process. In addition, with multiple imputation, users can estimate the
level of uncertainty associated with the missing information. Estimation, of course,
requires some care since each data record contains five implicates which are not in-
dependent observations.

We provide some sample statistics in table 3.1 for the SCF data sets from 1995,
1998, and 2001 that we use in this chapter. The table illustrates that weighting is
crucial to properly interpreting the data set and any statistics derived from it; the
difference between weighted averages and simple averages is substantial. Also of
interest is the relatively small number of households that actually report owning for-
eign assets. Although members of these households constitute a significant portion
of the total population when weighting is taken into account, the fact that there is
only a small number of these observations makes estimation problematic especially
if there are errors present.

3.4 Estimation of Unconditional Investment Deci-
sion

3.4.1 Simple Models and IV

The first step in offering an explanation for the HBP is to examine the relationship
between wealth and foreign stock ownership at the individual household level. Defin-
ing y as foreign equity holdings, we are interested in the regression function

yi=ipre @D

where x; is a k-dimensional vector specifying the ith observation’s characteristics.
These characteristics can include various factors (e.g. home ownership, trust own-
ership, sex, etc.), but most importantly include financial wealth. First, let y; be
dollar-denominated foreign stock holdings and x; net financial wealth and other de-
mographic variables of the household including education, age, and whether the
household received professional financial advice. The results are tabulated in ta-
ble 3.2. These results are striking in that only FIN is significant. This is a rather
surprising result given that one would think that better informed households, either
through education or professional advice, would diversify their portfolio holdings and
realize the potential gains that other authors have found with international diver-
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Table 3.1: Sample Statistics of SCF Data Sets

Year
Statistic Variable Implicate 1995 1998 2001
Number of observations 4299 4305 4442
Sum of weights 1 99,010,458 102,548,840 106,495,827
2 99,010,458 102,548,841 106,495,822
3 99,010,458 102,548,842 106,495,762
4 99,010,458 102,548,843 106,495,808
5 99,010,458 102,548,847 106,495,827
Average 99,010,458 102,548,842 106,495,809
Observations FA >0 1 236 264 288
2 235 272 287
3 234 263 290
4 238 265 290
5 239 265 289
Average 236.4 265.8 288.8
Weighted Mean Foreign Assets 1 327.5265 1,393.268 1,544.332
2 323.1702 1,167.291 1,481.277
3 293.2713 1,104.691 1,516.466
4 333.4674 1,302.647 1,575.255
5 399.1033 1,213.458 1,469.048
Average 335.3077 1,236.271 1,517.276
Weighted Mean Financial Wealth 1 92,806.6 133,547.2 191,869.5
2 91,652.16 137,320.6 189,474.2
3 91,964.38 132,478.4 192,905.4
4 89,009.1 139,878.0 186,775.0
5 93,069.14 131,053.4 192,230.0
Average 91,700.28 134,855.5 190,650.8
Unweighted Mean Foreign Assets 1 18,094.44 47,711.53 94,184.64
2 15,588.47 45,271.71 89,610.38
3 18,712.08 44,969.76 88,969.61
4 19,853.45 42,882.48 94,104.70
5 14,833.23 44,804.12 100,138.44
Average 17,416.33 45,127.92 93,401.55
Unweighted Mean Financial Wealth 1 1,681,018 2,165,496 2,920,921
2 1,675,034 2,184,691 2,830,215
3 1,699,617 2,175,257 2,841,817
4 1,744,324 2,143,680 2,946,908
5 1,718,128 2,216,238 2,870,094
Average 1,7038,624.03 2,177,072.29 2,881,990.87

“Observations FA > 0” refers to observations who have positive foreign equity holdings.
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Table 3.2: OLS Regression Results: Multiple Independent Variables

Year
1995 1998 2001
Intercept -336.0259 1973.86 21304.198**
(1425.6189)  (4462.2167) (10672.252)
FIN 0.0037452*** (,0150006*** 0.0340929***
' (0.0006839)  (0.0020877)  (0.0032153)
Professional Advice 84.449086 -148.343 -3104.597
(438.67514)  (1580.2427)  (3809.7003)
Education 34.246357 -138.492 -1199.743*
(80.208039) (272.35948)  (654.64935)
Age -3.512104 -17.72655 -176.1148
(-3.512104) (44.495354)  (107.34792)

Table 3.3: Results from Simple Regression.

Year
1995 1998 2001

Intercept -8.7353 -776.3679 -4,836.696***
(225.4055) (785.9162) (1,856.3869)
FIN 0.00375***  0.0149*** 0.0333***
(0.0007) (0.0021) (0.0032)

*** gignificant at 1% level, ** significant at 5% level, * significant at 10% level. Numbers in paren-
theses are standard errors. This regression takes into account all five implicates and adjusts the
coefficient estimates and standard errors appropriately.!!

sification.1® Hence, we will proceed by letting financial wealth (FIN) be our only
independent variable. The results are tabulated in table 3.3.

The table clearly shows, not surprisingly, that wealth is strongly related to for-
eign investment level. For example, in 1995, households invested in foreign assets

10We have also looked at numerous other explanatory variables and combinations thereof including
use of a professional financial adviser, ownership of a trust, sex, home ownership, and equity in one’s
company among others. The results for these regressors are consistent with the results we report
in table 3.2; regressions involving wealth and other potential explanatory variables almost always
produce statistically insignificant coefficients estimates for those other factors. This itself is a very
interesting result and probably deserves a fuller discussion, but is somewhat outside the scope of the
current chapter.

11gee Montalto and Sung (1996) for a discussion of the theory of properly adjusting for multiple
implicates in the regression context.
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about 0.4 cents of each incremental dollar of wealth. Three years later, investors
were allocating about 1.5 cents on the the dollar to international holdings. By 2001,
the marginal rate of foreign investment had risen to about 3.3 cents.!? In sum, the
coefficient estimates of marginal foreign investment level, though significant, are
quite small and imply foreign equities as a share of total financial assets at a lower
level than the original work that established the home bias and thus implying an
even larger home bias. There is strong reason to believe, however, that these small
coefficient estimates may be partially attributable to measurement error as mismea-
surement in explanatory variables yields downwardly biased coefficient estimates.'?
While uncertainty over the existence of a subset of good instruments means we can-
not use a standard test to check for the failure or orthogonality, we have two reasons
to believe that measurement error presents a particularly acute problem in this data
set. First, anecdotal analysis suggests inconsistencies in the data. For example,
there are households in the data set whose foreign equity holdings exceed their gross
financial wealth holdings. This is clearly a nonsensical result. Second, when we
employ an instrumental variables approach to correct for potential measurement er-
ror of the covariates using labor income and housing wealth as our instruments, the
coefficients increase in magnitude. The results are reported in table 3.4.

Using both labor income and housing as instruments, we find that the coefficient
on foreign investment increases approximately fourfold in 1995, twofold in 1998,
and 14% in 2001 from the simple regression reported in table 3.3. Thus this stan-
dard approach for correcting errors-in-variables does increase the magnitude of the
point estimates. There is, however, significant concern with using the instrumental
variables approach for if financial wealth is measured with error, it is likely that
instruments are as well. This suggests that the instruments are correlated with
error term and thus are invalid instruments. Since it seems likely that we have in-
valid instruments and thus inconsistent point estimates, we will move forward and
attempt to estimate the relationship between foreign equities and financial wealth
using a different approach. In the spirit of Wald (1940), the basic idea is to average
across observations within a wealth range. Assuming no correlation among obser-
vations! and given our relatively large sample, this strategy would be expected to
“gverage away” much of the measurement error. Essentially averaging across obser-
vations reduces random disturbance in magnitude and will hopefully eliminate the
errors-in-variables problem thereby allowing us to produce consistent coefficient es-
timates. There is, of course, a tradeoff here: averaging across observations reduces

1214 js worth noting this coefficient changes by a large margin from 1995 to 2001, but further explo-
ration of this result is outside the scope of this chapter.

1BHausman’s “Iron Law;” holds when error is uncorrelated with true value. For a fuller discussion
of this result see Greene (2002, Section 9.5.2) and Wooldridge (2002, Section 4.4.2).

14This is not much of an assumption in a cross-sectional data set if you believe in random sampling
and its correct application; the survey design, however, introduces two-stage samples, but we still
have no reason to believe we do not have a random sample and hence uncorrelated disturbances
across observations.



Table 3.4: IV Regression Results

3.4. ESTIMATION OF UNCONDITIONAL INVESTMENT DECISION

Year

Instruments 1995 1998 2001
Labor Income Intercept || -10370.8*** .29094, 9%** 13409.14
(3128.043) (6228.006) (14295.06)
FIN 0.016311*** (0.034093*** (.027756%**
(0.000817) (0.001781) (0.003473)

Housing Intercept || -5246.41*  -35898.3***  -18476.5*
(2989.843) (5550.908) (10822.75)
FIN 0.013303*** (0.037218*** (.038820%**
(0.000741) (0.001118) (0.001395)

Both Intercept || -7591.03***  -34446 9*** -16241.9
(2938.709)  (56452.211) (10808.89)
FIN 0.014679*%** (0.036551*** 0,038044***
(0.000612) (0.001037) (0.001376)

95

The “Instruments” column denotes which instruments were used in the regression.

the number of observations we can use in our regression analysis. Averaging across
observations can eliminate much of the uncertainly regarding the actual values of
the explanatory variables, but averaging too much will significantly reduce the size
of the sample on which we can perform regression analysis and hence give results
that, although asymptotically consistent, have not yet converged to the population
values.

3.4.2 Grouping

More formally, our approach is to avoid estimating equation 3.1 directly and instead
estimate
Fi=Xp+é (3.2)

where the variables are defined as follows. Let X be a n x £ matrix, where 7 is the
number of observations and % the number of explanatory variables.1® x; is a column
vector containing the observations of the ith individual. It is important to draw the
distinction between implicates and observations; where needed, we will use a second
subscript to denote implicates hence the jth implicate for observation i is denoted
x . Let Y denote the n x 1 column vector of the associated response variables and w

represent the n x 1 column vector giving the weights w; for each observation i; these

15Although we develop the more general case of a k explanatory variables, the empirical results
only include a single explanatory variable.
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weights attempt to estimate the relative effect of each observation on the variance.!®
Let & represent the weighted average of m observations. Thus

m

~f _ A=l=1 wyx;

i~ m *
Zl=1 w)

These averages should be computed separately for each implicate giving rise to a
vector, indexed by j, of #]. Similarly, define

5= Y wiy
i ym .
X W

which is simply the weighted average of m dependent variables. Continuing this
averaging process we can obtain a matrix X and a column vector ¥.

We will assume the equation 3.1 satisfies the standard large sample consistency
assumptions (i.e. the linear model is correct, X'X is non-singular, and plim (-’%’ﬁ) =
0). However, we will allow that our sample has a non-spherical covariance matrix
and is characterized by heteroscedasticity across observations.!” In particular, we
suspect the heteroscedasticity will be a positive function of the financial wealth. Thus
var(e|X) # oI and instead

o2 0 0
var(e|X) = : 3.3)
0 0 o2
where af is an increasing function of financial wealth. Note that we impose zero co-

variance between observations since we assume, given the SCF survey methodology,
that the data set is a random sample.

If the underlying model expressed in equation 3.1 satisfies the large-sample con-
sistency assumptions, then the the transformed regression model expressed in equa-
tion 3.2 also satisfies those assumptions and therefore least squares will provide a
consistent estimate of . The presence of heteroscedasticity, however, means that
OLS applied to the original regression model as well as the transformed model will
not be asymptotically efficient even in the class of linear estimators. The motivating
point, however, is if the model expressed in equation 3.1 does not satisfy large-sample
consistency assumptions, which is likely given measurement error and the resulting
correlation between the dependent variable and the disturbance, then OLS on the
transformed model may produce consistent estimates while OLS on the original may
not due to errors-in-variables. By averaging away errors-in-variables, we can con-

16Recall that our data set results from an unequal probability design hence we must take into
account the weighting to get accurate results. )
17Notice there is necessarily heteroscedasticity across observations in X.
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struct a transformed model that we can estimate with OLS and produce consistent
point estimates.

In this chapter we use two alternative approach to grouping observations prior
to averaging. The first approach assigns the same number of observations in each
grouping. We order the observations by net financial wealth and then, in that or-
dering, assign the first m observations to the first group, the next m observations
to the second group, and continue in this manner for all of the observations. This
will produce a data matrix of size Z x k and a response vector of size % 1.18 It is
worth noting that the consistency of the averaging approach does not depend on the
grouping method. The grouping method will, however, affect whether averaging can
help alleviate the errors-in-variables problem. Indeed, by first ordering the data set
by wealth and then grouping equal numbers of observations, we can appeal to the
likeness of observations with similar wealth levels to net out errors-in-variables in
the data. One possible problem with the first approach to grouping is the weight-
ing associated with our data set. As seen above in the construction of elements of
X, each group has associated with it a weighted size which is significantly different
than the number of observations in each group. In particular, consider a group with
a low mean financial wealth and another with a high mean financial wealth; given
the financial wealth distribution implied by the data, the former group will represent
significantly more households than the latter. This fact motivates the second form
of grouping we use in the chapter. Rather than create groups that have the same
number of observations, we can construct groups that would have approximately the
same implied size in population terms. More concretely, we can construct groups
where the sum of the weights in each group is approximately equal.!® Although we
use both grouping methods in this chapter, in most cases the approach selected does
not matter much. In cases where the choice of method does impact the result, we will
be careful to draw a distinction.

Results

In previous sections we have attempted to estimate the incremental changes in for-
eign equity holdings for increases in net financial wealth. Thus we have attempted
to estimate the following equation:

FA; = By + B, (FIN;) +¢; (3.4)

where FA; is investor i’s level of foreign equity holdings (i.e. Foreign Assets) and
FIN; is an individual’s net financial wealth. We have attempted to estimate this

'®Integer constraints will cause some difficulty here. Generally the last group will have fewer than
m observations in it and the associated average will have to be adjusted accordingly.

9Since every observation has an associated population weight different than one, it is not possible
to create groups with equal implied population weight. Instead we attempt to construct groups where
the associated population weights are as near to each other as possible.
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equation using standard OLS and IV approaches with less than satisfactory results
which we believe is due to a significant errors-in-variables problem; when FIN is
measured with error, OLS does not produce consistent coefficient estimates and the
increase in coefficient estimates we see by using IV provides some evidence of this.
As we have noted, IV is not without problems and, in particular, may itself be in-
consistent, so we have introduced an estimator using averaging in section 3.4.2. We
will use this approach to again estimate equation 3.4. This method should reduce
errors-in-variables and hence can produce consistent, but not asymptotically effi-
cient, results. We construct estimates using various group sizes and utilizing the
first grouping method (i.e. using equal number of observations per group) discussed
in section 3.4.2. The results from this approach are summarized in table 3.6.2°
Table 3.6 shows that the averaging approach doubles the 2001 point estimate
over the simple regression reported in table 3.3 and nearly doubles the IV regression
coefficient in table 3.4.2! These regression results, as well as the alternate quadratic
formulation
FS; = By + B1(FIN;) + Bo(FIN;)® +¢; (3.5)

reported in table 3.5, can be visualized in the figures on the following pages. For
example, figure 3.1 shows the graph of financial wealth versus the level of foreign
equity for both the models in equation 3.4 and equation 3.5 as well as the fitted
regression line with the 95 percent confidence interval shaded. The figures illustrate
the relatively strong explanatory power of financial wealth which can be seen visually
as well as evidenced through the high R2.22

These results, in particular the rather dramatic changes in coefficient estimates,
provide strong evidence that our original OLS and IV estimates are not very accu-
rate. OLS, IV, and averaging followed by OLS are all consistent under the standard
assumptions and given our relatively large data set, it is unlikely that the estimates
should change so dramatically. In light of the rather substantial difference in coef-
ficient estimates, we have strong evidence that the consistency assumptions of OLS
and IV are not satisfied. This result in particular furthers our believe that this data
set and the FIN variable exhibit significant errors-in-variables and thus necessitates
the need for more complicated estimation procedures such as the one we have devel-
oped in this section.

20We report robust standard errors in the table.

211t is worth noting that the other coefficients do not seem to respond in the same way. Still, in
the presence of measurement error on explanatory variables, the original regression point estimates
reported in table 3.3 are not even consistent so this may be of little practical concern. We do not
currently explore the change in the regression coefficients over time.

22This result is also robust to logging the data which which results in a more uniform distribution
of financial wealth. (N.B. the original data is nearly exponential in distribution.)
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Figure 3.1: Level Graphs.
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The first column displays linear models. The second column displays quadratic models.
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Table 3.5: Averaging OLS Regression Results

Model I 1995 1998 2001
Quadratic Intercept 391.1065 614.9783  -31729.07**
(535.4887) (2725.747) (14171.27)
FIN 0.0047656*** (0.0151463*** (.0382529%**
(0.0001819)  (0.0007892)  (0.0016108)
FIN? -2.19e-11%** -5.62e-12 9.63e-11%**
(2.12¢-12) (8.99¢-12) (4.38¢-12)

Table 3.6: Averaging OLS Regression Results by Group Size

Year
Bin Size 1995 1998 2001
5 Intercept -1142.6175 7911.0542 -77125.7695*%*
(3677.528) (9154.903) (37633.001)
FIN 0.006454614*** (0.013665547*** (0.065552486***
(0.000358704)  (0.000713654)  (0.002129313)
10 Intercept -514.903 6903.9853 -95686.9831**
(1458.548) (10979.162) (40786.623)
FIN 0.005007614*** 0.012663343*** (0.075210828***
(0.000138726)  (0.000730178)  (0.001906739)
20 Intercept 1669.2806 12581.1962 -99113.6497
(1258.341) (6893.211) (38171.906)
FIN 0.003066427*** (0.006250884*** (.074315601***
(0.000165774)  (0.000369908)  (0.001395326)
50 Intercept 1426.1937 14809.7096* -46235.9569**
(1099.281) (8489.548) (21123.041)
FIN 0.003161702*** 0,005101461**%* (0.048890705***
(0.000171369)  (0.000305383)  (0.001784175)
100 Intercept 929.0174 15550.4591 -51119.5422%*
(1014.659) (11137.517) (24500.412)
FIN 0.003656479*** 0.004729674*** 0.054054914***
(0.000214935)  (0.000291107)  (0.001599092)

The “Bin Size” refers to the number of observations in each group that are averaged together. This
corresponds to m in the notation of section 3.4.2. Each implicate is treated separately; the results are
then averaged to produce the results in this table.



3.5. ESTIMATION OF CONDITIONAL INVESTMENT DECISION 101

Discussion of Results

The averaging approach outlined in the previous section is not without problems.
There is a fundamental tradeoff between increased averaging to reduce errors-in-
variables and the resulting loss of variability in the transformed observations. In
fact, there are at least three effects that we must consider. First, increasing the size
of the group can eliminate errors-in-variables due to the law of large numbers since
more observations allow a better estimate of group means. Second, increased av-
eraging reduces the overall variability of the transformed (i.e. grouped) data. This
problem is particularly acute in our data since most of the variability is in observa-
tions with high wealth levels and, since these represent fewer observations, there
is a resulting loss of variability in the transformed data. Third, increased grouping
reduces the number of data points in the transformed data and hence leads to larger
standard errors following estimation. It is clear that groups must be of sufficient size
to alleviate errors-in-variables and hence produce consistent point estimates with
OLS, but the other two effects both imply excessive grouping will not produce good
results. Overall, it is unclear the net direction of these three effects. We can, however,
illustrate the tradeoffs on our point estimates by looking at the estimated coefficients
in equation 3.2 while varying the group size as we have done in figure 3.2. The first
panel uses the same number of observations per group, while the second uses equal
implied population weights per group.

Also, estimating the relationship between wealth and foreign equity investment
is somewhat difficult when using levels. It would be beneficial to transform the vari-
ables using logarithms and avoid the exponential-like distribution of the variables
in levels. This transformation is not possible in our data set since, as we saw in
Section 3.3, almost all of the observations in the data set have foreign equity of zero.

The main result in this section, however, is that we can utilize averaging to pro-
duce consistent point estimates of the fraction of the marginal dollar invested in
foreign equities. It is worth noting that even in the best case the estimate of this
quantity is less than 8 cents on the dollar which, given the linear specification, cor-
responds to a very small fraction of wealth invested in foreign equities. This result is
consistent with the previous literature showing that too little is invested in foreign
equities, but, given our micro-level data, we believe there is more that we can say. In
particular, the data illustrates that most households choose foreign equity holdings
of zero and, given this, perhaps we can disaggregate our total sample into two parts
and look at each part’s decision separately as we do in the next section.

3.5 Estimation of Conditional Investment Decision

As we mentioned earlier in Section 3.3, only a small number of observations actually
have positive foreign asset holdings. We were interested in determining whether
we could find characteristics which would imply that households hold positive levels
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Table 3.7: Participation Regression Results

Model | 1995 1998 2001
Linear  Intercept || 4.522679*** 4.99551%**  562112%**
(7132722)  (.7984792)  (9.8008032)
FIN 6.23e-07***  588e-07***  2.81e-07T*+*
(7.29¢-08)  (7.63e-08)  (2.13e-08)
Quadratic Intercept || 3.432893*** 3.638101*** 4 569739%**
(.57304) (.6230971)  (.6915298)
FIN 2.16e-06***  2.12e-06***  8.01e-07***
(1.95e-07)  (1.80e-07)  (7.86e-08)
FIN? || -1.88e-14%** .1 84e-14*** .1 46e-15%**
(2.27e-15)  (2.05e-15)  (2.14e-16)

of foreign equity. To that end, we have found that the decision to invest a positive
dollar amount in foreign equities is strongly related to financial wealth. Consider the
following regression

3.6)

where participation is the fraction (in percentage terms) of a group (in the notation
of section 3.4.2) that owns foreign equities, and FIN is that group’s (weighted) mean
financial wealth. We report the results in table 3.7 and figure 3.3.22 The regres-
sion results and figures show that participation is greatly influenced by wealth and
only high wealth levels induce significant participation. Indeed, only in the higher
quantiles of the wealth distribution do over half the quantile’s members participate
in foreign equity markets. This observation leads to a theory that low aggregate
levels of foreign equity holdings are not just a matter of each investor choosing a
suboptimal portfolio, but rather the result of many investors failing to participate
in the market at all. Hence, perhaps there are significant information costs that in-
vestors must incur to participate in foreign equity markets and these fixed costs lead
to many investors choosing not to participate in any way. This hypothesis leads to
the last component of this chapter.

As we have established, most households do not participate in foreign equity mar-
kets, so the final stage in shedding a new light on the HBP is to disaggregate the
international market participation and portfolio allocation decisions. We decouple
these choices by only including in the analysis those portfolios which include nonzero
levels of foreign equity holdings. We estimate equation 3.2 using this subset of obser-
vations and the same averaging approach employed in the previous section in order
to properly account for the errors-in-variables problems. As detailed in table 3.8,

participation; = By + pL(FIN;) + 1),

23We also report an alternative quadratic formulation: participation; = By +B,(FIN); +Bo(FIN); +n;.
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Figure 3.3: Participation Regression Graphs.
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we find that conditional investment in foreign assets is substantially higher than
the unconditional levels measured in the previous sections. Specifically, in 2001 the
conditional investment level is about $.18, or about 2.5 times greater than the un-
conditional level measured under the averaging approach, and 4.5 times greater than
the level measured under the IV approach.?4

The results in this section, particularly those from 2001, provide evidence that the
question of home bias is not so much an issue of levels, but rather one of participation.
In 2001, households which actually participated in foreign equity markets (i.e. those
which made portfolio choices that included positive amount of foreign equity) did so
at a rate of 18 cents per dollar. At this rate, those households’ foreign equity holdings
are more consistent with predictions of standard portfolio choice models. With this
result, the home bias question becomes one of participation rather than (conditional)
allocation; this, we believe, is our central result.

3.6 Conclusion

This chapter is primarily concerned with with foreign asset diversification. Classic
results detailing a lack of international diversification relies primarily on macro data;
this chapter instead relies on micro level data that allows us to look more closely
at individual investment decisions. More importantly we consider a richer foreign
asset decision rule. This decision rule incorporates the notion that agents first decide
whether to invest in foreign assets thereby incurring any fixed costs associated with
that action, and then contingent on that first decision agents can decide on the level
of foreign investment. Using this two-step decision rule and our individual micro
data we are able to show that the share of foreign assets is much closer to levels that
traditional portfolio theory would predict.

These results however are not consistently strong and, moreover, only dramatic in
2001. We interpret this as weak evidence that the home bias may be diminishing and,
more importantly, that it may be important to think about foreign asset ownership
decisions using more complicated decision rules rather just assuming that all agents
are equally able to participate in foreign equity markets.

Our analysis has omitted some major sources of potential international diversi-
fication by not including bonds and mutual funds. The former, although available
in the SCF data set, does little to change our results. The larger omission is that of

24This estimation technique as described in the text has selection issues. Accordingly, one can
construct a method to estimate these coefficients taking these selection issues into account. One
possible approach is to utilize a standard Heckman two-stage estimator. First estimate a probit model.
Then use the predicted values from this first stage and average across observations to correct the
errors-in-variables problem we described earlier in this chapter and estimate the second stage thus
producing estimates that take in account the selection issue. Note this approach requires that the
first stage probit regression has additional explanatory variables besides financial wealth to ensure
identification in the second stage regression.
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Table 3.8: Conditional Foreign Asset Investment in Levels

Implicate [ 1995 1998 2001
1 Intercept || 46131.66%*  474336.4* -1365957
(17642.96) (248379) (946914)
FIN 0.0073974***  0.007799*  0.2055959%**
(0.0009655)  (0.0043092)  (0.018327)

2 Intercept | 47729.69***  -45177.56 -1174927
(13888.05) (36474.47) (905314)
FIN 0.0075897*** 0.0688061*** (.1945395%**
(0.000584)  (0.0011388)  (0.0219754)
3 Intercept || 7547.298 397246.2 -941636.5
[| (26093.96) (2525617.3) (759634.2)
FIN 0.0133184***  (0.0106562** 0.1776236%**
(0.0009465)  (0.0042075)  (0.0192358)
4 Intercept || 52408.13 266290 -766932.9*
(30819.98) (159599.6) (3957817.9)
FIN 0.0076272%** 0.0190496*** 0.1572903***
(0.0018227)  (0.0040166)  (0.0090266)

5 Intercept || 75953.85** -374409.9 -789254.1
(30627.21) (3136417.5) (618151.2)
FIN 0.003985**  0.1034566*** (.1638611***
(0.0018937)  (0.0072245)  (0.0149347)

Sample Average Intercept | 45954.13 143657 -1007741
(23814.43) (202133.6) (725160)
FIN 0.00798354  0.0419535  0.17978208
(0.00124348) (0.00417932)  0.0166999

Results are from levels regressions wherein we first eliminate all observations with no foreign assets
and then average across observations using fixed size groups of 20 observations. These results are

from the first set of implicates.
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Figure 3.4: Conditional Foreign Asset Ownership in Levels.
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mutual funds. There is no doubt that this investment vehicle provides a substantial
degree of diversification to large numbers of investors, however, we could not in-
clude it in our analysis due to data availability. Adequately including mutual funds
would require obtaining each household’s fund holdings. We do believe though that
including mutual funds would only strengthen our results since a larger proportion
of individuals who own foreign equities also own mutual funds.

In summary, this chapter attempts to estimate the propensity of households to in-
vest their financial wealth in foreign equities. First, we note standard OLS estimates
are problematic due to significant errors-in-variables problems in the data and the
standard approach of using IV is not practical due to invalid instruments. We then
construct an estimator by averaging across observations to avoid errors-in-variables
and, although these estimates are much larger than those from the non-averaging
approaches, find that foreign equity investment levels are quite low. However since
we have micro-level data, it is clear that many households are not even participating
in foreign equity markets and this fact motivates a model of investment behavior that
involves a two-step investment decision process. We estimate that once households
decide to invest in foreign equities, their choices are not nearly as low as that implied
by aggregate data. The deconstruction of the foreign equity investment decision is
the central result of this chapter.



Bibliography

AHEARNE, A. G., W. L. GRIEVER, AND F. E. WARNOCK (2004): “Information Costs
and Home Bias: An Analysis of US Holdings of Foreign Equities,” Journal of Inter-
national Economics, 62(2), 313-336.

BOHN, H., AND L. L. TESAR (1996): “U.S. Equity Investment in Foreign Markets:
Portfolio Rebalancing or Return Chasing?,” American Economic Review, 86(2), 77—
81.

BOTTAZZI, L., P. PESENTI, AND E. VAN WINCOOP (1996): “Wages, Profits, and the
International Portfolio Puzzle,” European Economic Review, 40(2), 219-254.

FRENCH, K. R., AND J. M. POTERBA (1991): “Investor Diversification and Interna-
tional Equity Markets,” American Economic Review, 81(2), 222-226.

GREENE, W. H. (2002): Econometric Analysis. Prentice Hall, Upper Saddle River,
New Jersey, fourth edn.

GRIEVER, W. L., G. A. LEE, AND F. E. WARNOCK (2001): “The US System for Mea-
suring Cross-Border Investment in Securities: A Primer with a Discussion of Re-
cent Developments,” Federal Reserve Bulletin, 87(10), 633—650.

KENNICKELL, A. (2000): Codebook for 1998 Survey of Consumer FinancesBoard of
Governors of the Federal Reserve, Mail Stop 153, Washington, DC 20551.

LEVY, H., AND M. SARNAT (1970): “International Diversification of Investment Port-
folios,” American Economic Review, 60(4), 668—675.

LEwIs, K. K. (1999): “Trying to Explain Home Bias in Equities and Consumption,”
Journal of Economic Literature, 37(2), 571-608.

LINTNER, J. (1965): “The Valuation of Risk Assets and the Selection of Risky Invest-
ments in Stock Portfolios and Capital Budgets,” Review of Economics and Statis-
tics, 47(1), 13-37.

Lucas, JR., R. E. (1987): Models of Business Cycles. Basil Blackwell, Oxford, UK.

109



110 BIBLIOGRAPHY

MANKIW, N. G., AND S. P. ZELDES (1991): “The Consumption of Stockholders and
Nonstockholders,” Journal of Financial Economics, 29(1), 97-112.

MONTALTO, C. P., AND J. SUNG (1996): “Multiple Imputation in the 1992 Survey of
Consumer Finances,” Financial Counseling and Planning, 7, 133-146.

SHARPE, W. F. (1964): “Capital Asset Prices: A Theory of Market Equilibrium under
Conditions of Risk,” Journal of Finance, 19(3), 425-442.

STOCKMAN, A. C., AND H. DELLAS (1989): “International Portfolio Nondiversifica-
tion and Exchange Rate Variability,” Journal of International Economics, 26(3/4),
271-289.

WALD, A. (1940): “The Fitting of Straight Lines if Both Variables are Subject to
Error,” The Annals of Mathematical Statistics, 11(3), 284-300.

WARNOCK, F. E., AND C. CLEAVER (2003): “Financial Centres and the Geography of
Capital Flows,” International Finance, 6(1), 27-59.

WOOLDRIDGE, J. M. (2002): Econometric Analysis of Cross Section and Panel Data.
The MIT Press, Cambridge, Massachusetts.



