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Abstract

We present a general theory for the dynamics of thin viscous sheets. Employing concepts
from diffferential geometry and tensor calculus we derive the governing equations in terms
of a coordinate system that moves with the film. Special attention is given to incorpo-
rating inertia and the curvature forces that arise from the thickness variations along the
film. Exploiting the slenderness of the film, we assume that the transverse fluid velocity
is small compared to the longitudinal one and perform a perturbation expansion to obtain
the leading order equations when the center-surface that defines the coordinate system is
parametrized by lines of curvature. We then focus on the dynamics of flat film rupture, in
an attempt to gain some insights into the sheet breakup and its fragmentation into droplets.
By combining analytical and numerical methods, we extend the prior work on the subject
and compare our numerical simulations with experimental work reported in the literature.
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Chapter 1

Introduction

1.1 Background

Thin fluid sheets are encountered in a wide range of natural and industrial processes, making

their study of interest to both scientists and engineers. The disintegration of fluid sheets into

droplets, is desirable in a variety of industrial applications, such as spray painting and fuel

injection (for an overview see [123] and the references therein). Conversely, the instabilities

leading to sheet breakup is to be avoided in other applications, as in glass-blowing [45], the

commercial filling of containers [97] or in curtain coating [79], where a thin layer of fluid is

deposited on a moving substrate (see figure 1-1).

Sheet disintegration (see figure 1-2) is of primary importance in the context of fluid

atomization (e.g. the texts by Lefebvre [72] and Bayvel & Orzechowski [7]). Atomization

is the process by which a fluid volume undergoes topological changes due to instabilities

and evolves into structures of progressively smaller size. Commonly, a critical step in the

atomization process involves the progression from sheets to filaments to drops. The ability

to understand the underlying mechanisms for drop formation and predict their size can be

a deciding factor when it comes to the performance of, say, a combustion engine or a spray

painting process [123]. While the mechanism of filament breakup into droplets has been

extensively studied and is well understood since the seminal work of Lord Rayleigh ([20],

[93]), filament formation and detachment from the film edge have not received as much

attention.

Research on fluid sheets was initiated by the early exploratory experiments of Savart

(1833), who in a series of papers investigated the sheets formed when a fluid jet impinges
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Figure 1-1: Thin film deposition on a moving substrate (curtain coating)

on a circular impactor ([100],[101]) and when two jets collide with each other [102]. Since

then, many studies have been conducted on fluid sheets, the most important and relevant

of which we review in this chapter.

Sheet formation by jet impingement is dependent on the flow parameters. For instance,

a flat sheet will be generated by a vertical jet striking a horizontal impactor provided that

the Froude number, Fr, is large:

inertia U2

Fr = 1 , (1.1)
gravity gDo

where g is the acceleration due to gravity, Do is the jet diameter and Uo is the fluid speed

at the impactor. In this case, the film extends radially to a critical radius R, where a rim

forms, and eventually disintegrates into small drops. The resulting flow also depends on

the Weber number, defined as:

inertia pU02Do
We - (1.2)surface tension -Y

where p is the fluid density and y the surface tension. Savart observed two distinct regimes:

below a critical Weber number, Wec, 1000, the sheet remains flat up to the rim and as
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Figure 1-2: Sketch of different mechanisms for sheet disintegration. In rim-driven disinte-
gration capillary instability causes the pinching of the rim to droplets due to the capillary
instability. Wave-driven instabilities are created by the flapping of the sheet, induced by
the ambient air.

Wec is exceeded, the sheet begins to flap violently and create audible sounds.

Savart's observations were followed by a number of studies devoted to expanding sheets.

Taylor [114] deduced the critical radius R in the smooth sheet regime. By assuming a

constant speed up to the rim and balancing the film inertia to surface tension forces, he

obtained

pvU2h ~ 2y, (1.3)

I

A

-4



where h is the film thickness, found by the conservation of flux, Q, within the sheet:

Q = 1D o 27rRhUV2 0 h = 8 (1.4)
8R

Combining the last two equations yields the critical sheet radius:

WeR= Do , (1.5)
16

that is consistent with Savart's experiments. The rim that develops at this radius becomes

unstable to azimuthal perturbations and pinches-off due to the capillary instability [93] (see

figure 1-2). The smooth sheet regime was further explored by Clanet & Villermaux [26],

who focused on the transient formation and destruction of the sheets as the source was

turned on and off respectively.

Huang's experiments [59] offered more data supporting Taylor's result, and also deduced

the critical Weber number, Wec, at the onset of the flapping regime. In this regime, the

ambient air becomes dynamically significant and the maximum radial extension of the film

evolves according to R -We-1/ 3 Do. Sheet disintegration is now wave-driven, as shown

in figure 1-2. Analytical work via linear stability analysis was performed by Weihs [125]

and a more detailed experimental study was presented by Villermaux & Clanet [122], who

further elucidated some of the mechanisms of droplet shedding and gave scaling arguments

for the droplet sizes. Additional work done in the context of atomization can be found in

the articles by Dombrowski & Fraser [38], Crapper et al. [28], Bremond & Villermaux [12],

Villermaux [123] and the references therein.

A sheet punctured by a needle retracts due to unbalanced surface tension forces; this

is in some sense the opposite configuration to the expanding sheet, but both share similar

characteristics. Bursting phenomena arise in a wide range of physical settings, ranging from

foams in the food industry to biological membranes (for an overview see [49]). Depending

on the application at hand, film rupture can be either desirable, as in spray formation [88],

or undesirable, as in curtain coating [79]. The initial observations of soap film rupture

were reported by Rayleigh [94] and Dupr6 [40] in the late 1800's; their systematic study

initiated the experimental work of Ranz in 1959 [92]. In his experiments he observed

that upon puncture, the film recedes at a constant speed under the influence of surface

tension and fluid accumulates in a roughly circular rim as it is drawn away from the point



c= i/St

1H

Figure 1-3: Retraction of a planar film. In time 6t, the tip of the film moves by a distance
61 = uc6t. The mass of the fluid (per unit length) accumulated in the rim during that time
is 6m = pH61.

of puncture. Dupr6 incorrectly deduced the retraction speed of the film, based on the

erroneous assumption that the surface energy lost due to retraction is converted purely into

kinetic energy:
1rpr2HU 2 = 2yrr2 = U =(1.6)
2 pH (1.6)

where H is the thickness of the film.

Culick [31] and Taylor [114] independently corrected Dupr6's calculation using an argu-

ment based on the conservation of momentum of the film. In particular, they assumed that

the motion is resisted by inertia and that the fluid collects in a rim moving at a constant

speed. The film preceding the rim is assumed to be at rest; therefore the force balance on

the rim may be expressed as a balance between the rate of change of rim momentum and

the curvature force exerted on the rim:

dP dm
d-t = uc-m = 27, (1.7)dt dt

where uc is the constant rim speed and m the rim mass per unit length (see figure 1-3).

The rate of change of the mass of the rim satisfies

dm
dt pHu , (1.8)

where H is the sheet thickness, assumed to be uniform. Henceforth the constant speed



found from equations (1.7) and (1.8)

uc = (1.9)

became known as the Taylor-Culick speed. McEntee & Mysels [77] confirmed experimen-

tally the Culick-Taylor theory for soap films of thickness greater than 0.1/1m. In 1983, Keller

[64] extended the previous work of Taylor and Culick by considering sheets of non-uniform

thickness. In collaboration with Miksis [63], Keller also considered time-dependent invis-

cid potential flows in which a wedge-shaped initial free surface profile admits self-similar

solutions.

It is not immediately apparent why an energy balance yields an incorrect result. How-

ever, as we will see in section 4.2, viscous dissipation must be taken into account, no matter

how small the fluid viscosity. Nevertheless, viscosity does not appear explicitly in the expres-

sion for u,; rather, its presence essentially dictates how the fluid momentum is distributed

within the film and whether capillary waves can exist.

While the bulk of experiments on retracting fluid sheets have been conducted with water

sheets in air or with soap films, Debr6geas et al. ([35],[36]) presented a series of experiments

using films whose viscosity was of the order of one million times that of water. In particular

they used polymer PDMS films obtained by a novel technique in which the film was created

by initially dipping a ring in an isopentane solution of the polymer. After lifting the ring

from the solution, the solvent evaporated, leaving behind a suspended film of pure PDMS

of thickness of the order of 10-50[/m, much thicker than a typical soap film, which is less

than 1/m thick. Accurate measurements of the retraction process revealed behavior that

was markedly different from that predicted by inviscid theory. In particular, they found

that the fluid no longer collects in a rim as it retracts. Moreover, the rim does not retract

at a constant speed; rather the hole radius grows exponentially as:

R = Roet/(1.4r) , (1.10)

where T- = H/27y, with Ro being the initial hole size and p the film's dynamic viscosity.

The exponential hole growth was also supported by a simple theoretical argument they

provided (see § 5.2), by assuming that the surface energy gained is dissipated through the

action of viscosity, but the exponent in the exponential was different from that observed.



The experimental studies of Dalnoki et al. [32] and Roth et al. [99] that succeeded the

work of Debr6geas et al. used film rupture as a means to measure the viscosity of molten

polystyrene films.

By applying Buckingham's fH-theorem, one may identify the single dimensionless control

parameter concerning sheet retraction, the Ohnesorge number, defined as:

Oh = (1.11)
,/2-Ho '

that essentially expresses the relative importance of viscous resistance to surface tension

forces. It can also be seen as the Reynolds number of the flow if one takes uc as the

characteristic speed. Thus the Ohnesorge number for the soap films explored in the early

experiments (e.g. [92], [77]) ranges from 0.01 to 1 when the thickness of the film is in

the range 0.1 - 1nm, whereas for the PDMS fluid in the experiments of Debr6geas et al.

Oh ranges from 104 to 105. One of the goals of the thesis is to develop a theory for sheet

retraction valid for all Oh.

Following the work of Debr6geas et al., Brenner & Gueyffier [13] studied the retraction of

a two-dimensional sheet numerically, by using a one-dimensional Trouton-type lubrication

model from which they were able to identify 3 distinct regimes depending on the Ohnesorge

number. In the low Oh regime (Oh < 0.1), they found that capillary wave disturbances are

generated ahead of the retracting rim. As the Ohnesorge number is increased, the capillary

waves disappear and the rim starts diffusing towards the bulk of the sheet. Finally in the

high Oh regime (Oh >10), they found that no rim forms at all, in accord with Debr6geas'

observations. In all cases considered, the fluid was observed to approach the Culick-Taylor

speed in the long time limit. Their work however did not report on the acceleration phase

of the film, which was examined later by Sflnderhauf et al. [111], via two-dimensional

numerical simulations. Critically, their model was not able to capture the exponential

regime observed by Debr~geas et al., a shortcoming they attributed to the different geometry

considered (2D planar vs Circular). In Chapters 4 and 5, we shall elaborate on the retraction

dynamics of flat sheets by building upon Brenner's & Gueyffier's work, to clarify the effects

of viscosity and geometry by solving the appropriate Trouton-type model for both planar

and circular geometries.

The retraction dynamics are greatly affected if the film is embedded in a viscous envi-



ronment, as was demonstrated in the studies of Joanny & de Gennes (621 and Reyssat &

Quer6 [91]. The experimental work of Reyssat & Quer6 involved the bursting of soap films

embedded in viscous oils, typically with viscosity 20 to 1000 times that of water. Even

though the fluid is collected in a rim as it retracts, in accordance with the bursting of films

in air, the retraction process is limited by the friction arising from the viscous environment.

The retraction speed is not given by equation (1.9) ; rather, it satisfies the implicit relation:

V =2 r  In Vp• r) , (1.12)

found by balancing the curvature force with the viscous force on the cylindrical rim, de-

termined via the Oseen approximation, with r being the radius of the toroidal rim and it

the viscosity of the ambient fluid. Given that r is time-dependent, V should also depend

on time. However this dependence was found to be weak, in agreement with experimental

observations.

When the fluid film is extremely thin (typically of the order of 100-1000 A), sheet rupture

can be affected by van der Waals forces, [106]. These attractive, long-range molecular forces

can cause the nucleation of holes when the free-surface is perturbed. Using the model of

Erneux and Davis [44] on planar sheets, Ida and Miksis [60] identified a similarity form

for the film thickness and found that when a perturbation is introduced in the film, van

Der Waals forces and viscous forces dominate over inertial and surface tension effects and

eventually lead to film rupture. By extending this work, Vaynblat et al. [121], examined

axisymmetric point rupture and found that the film thins according to 71/3, where 7 is the

time remaining to rupture.

Savart's experiments [102] on the oblique collision of identical jets, a configuration also

known to produce flat sheets, have been pursued by a number of investigators with the

intention of elucidating the atomization and breakup characteristics of the resulting sheets.

Such configuration is applicable in fuel atomization in combustion engines [1]. By varying

the flow conditions, one may observe a wide variety of structures, ranging from steady

to violently flapping and quickly disintegrating sheets (see figure 1-4). As reported by a

number of authors (e.g. [58], [17], [12]), flow conditions exist for which a steady leaf-shaped

sheet is formed, bound by a rim normal to the plane of incidence of the jets. Multiple such

leaves of progressively smaller size can coexist downstream and be mutually orthogonal,



(C) (d)

Figure 1-4: Flow structures observed for the colliding jets (taken from Bush & Hasha [171).

resembling a chain.

Hasson & Peck [54] provided a theoretical model that gives the thickness distribution

over the film, Bush & Hasha [17] provided a generalized version of Taylor's work [115] to

predict the shape of the leaf and presented a detailed parameter scan indicating the regimes

where each of the various structures can be observed. Most importantly, they identified

that the instability of the rim (figure 1-4b) can be rationalized by the Rayleigh-Plateau

instability. Experimental work focusing on the high We regime, where sheets disintegrate

by flapping can be found for example in Fraser & Dombrowski [38] and Dombrowski &

Hooper [39]. More recently, Bremond & Villermaux [121 explored further the issue of at-

omization and how the conditions near the source can affect the dynamics and the droplet

size distributions.

When either the angle of ejection is not 900 or the Froude number criterion, equation

(1.1), does not hold, a jet impinging on an impactor gives rise to the so called fluid-bells

(see figure 1-5). These shapes were initially observed by Savart in [1001 and [1011 and
theoretically studied in 1869 by Boussinesq ([10], [111), who deduced the equations of the

stationary bells. The bells close due to the azimuthal curvature and their shapes are essen-
tially prescribed by the balance of inertial, gravitational and curvature forces. The excellent
agreement between theory and experiment prompted Bond [9] to use the fluid bells to mea-
sure the surface tension of water. Similar experiments by Hopwood [55], revealed that a
pressure difference between the interior of the bell and the surroundings generally alters the

(a) (b)



Figure 1-5: A fluid bell (taken from Buckingham & Bush [16])

bell shapes, and can also lead to their destabilization and destruction. Further theoretical

studies were conducted by Lance & Perry [70], who performed numerical computations and

noted that when the pressure difference inside the bell is sufficiently high, the solutions

obtained yield unphysical, self-intersecting shapes, thus suggesting the apparent breakdown

of the Boussinesq theory. Experiments in the regime where the Boussinesq theory yields
these self-intersecting shapes, indicate that the bells tend to form cusps, but to date no
theory exists that describes these shapes [27]. In another study, Taylor [112] computed a
correction term that takes into account the motion of the ambient air, whereas Parlange [83]
focused on the air motion inside the bell, induced by the moving fluid. In general however,
the corrections in speed due to, respectively, air drag and aerodynamic pressures, are of the
order of a few percent and so generally negligible in a laboratory setting [112].

Clanet [24] and Aristoff et al. [3], identified a regime where the bells become unstable
by progressively decreasing the flow rate of the impinging jet. This process gradually
increases the pressure inside the closed bell and eventually results in the bell bursting
and the subsequent formation of a smaller stable bell. These studies also identified regimes
in which self-sustained periodic oscillations can occur at constant flow rate, when the angle
of ejection is close to 900. During this process the bell alternates between being concave
up and down (see figure 1-6). In a follow-up paper, Clanet [25], studied the detachment



Figure 1-6: Self-sustained oscillations of bells at constant flow rate (Aristoff et al. [3]).

Figure 1-7: Symmetry breaking in fluid sheets with viscosities 10 - 20cS (taken from Buck-
ingham & Bush [16]).

of the film from the impactor and the dependence of the maximum angle of ejection V)

(see figure 3-1) on the flow parameters. In all these experiments, symmetry was preserved.

However as shown in a series of experiments by Buckingham & Bush [16], the attainable

shapes depend on both the fluid viscosity and the source conditions, which may break the
symmetry yielding a variety of fascinating polygonal and polyhedral forms (see figure 1-7).

Bark et al. [5] presented a combined experimental and theoretical investigation of the
effects of rotation on the bell shapes. Here the phenomenon is markedly different, since
the presence of the centripetal forces prevents the closing of the bells downstream. As
the bell tends to close due to surface tension, conservation of angular momentum dictates
that large swirl velocities and hence large centripetal forces be generated that cause the
fluid to be flung outwards. Inviscid theory suggests that there should exist infinitely many
necks downstream, something that is not observed experimentally. The bells instead tend
to disintegrate, typically before the second or third neck forms, which can be attributed
to viscous dissipation and the Kelvin-Helmholtz instability. A related mechanism aimed
at producing small metal particles was introduced by Gasser & Marty [51], who proposed
the use of a rotating magnetic field to set liquid metal sheets into a swirling motion. The
sheets produced by this procedure will ultimately disintegrate to yield the desired particles,
of characteristic size 50m.



A liquid film falling under the influence of gravity is susceptible to a number of in-

stabilities. Various aspects of the dynamics of falling liquid films have been investigated

owing largely to its applications in curtain coating (e.g. [14], [33], [34], [46], [73] and [74]).

Teng et al. [119], motivated by earlier experiments by Lin & Roberts [73], studied the

linear stability of a viscous film falling between two viscous gases. Taking into account the

destabilizing effect of the ambient gas, they showed that the critical Weber number above

which the flow is convectively unstable is approximately unity in accordance with Taylor's

earlier predictions [116] for a sheet in inviscid ambient, but for We < 1 they found that the

flow is absolutely unstable. Conversely, Taylor's earlier work on sheets, where he neglected

the ambient air, predicted the flow to be neutrally stable in this low We limit. Le Grand

et al. [71] discovered experimentally a new type of instability that gives rise to a striking

checkerboard pattern on the film. As the film falls from a smoothly curved substrate in-

stead of a slot, transverse motions are generated within the sheet and ultimately yield this

wave-induced pattern.

The dynamics of a falling liquid film in the viscous limit are qualitatively different from

those of its low viscosity counterpart. In particular, it is observed that the film folds itself in

a regular, periodic manner, just as happens when honey is poured on toast. In an industrial

setting, this folding instability can be observed during the commercial filling of containers,

with, for example, paint. Detailed experiments of this phenomenon were first carried out

by Cruickshank & Munson [29], who later investigated the linear theory of the problem

[30]. Yarin & Tchavdarov [129] also employed linear theory to study this instability, but its

applicability was restricted to the onset of folding. The inertia-free models of Skorobogatiy

& Mahadevan [107] and Ribe [97], yielded scalings for the folding amplitude and frequency

that were supported by experiments. Nevertheless these models showed only qualitative

agreement with the experiments. As Ribe pointed out, the discrepancy in frequency of

up to a factor of 2 with the experimental data, can be amended by either including the

inertial terms or the surface tension effects near the edges of the film that tend to reduce its

width downstream. This mechanism is quite similar to that arising in the recently reported

experiments of Chiu-Webster & Lister [23], who examined the fascinating shapes attained by

coiling and folding when a viscous thread falls onto a moving surface, the 'fluid mechanical

sewing machine'.

In comparison to the wealth of inviscid models to describe thin film dynamics, the



theory of viscous films is much less developed. In many situations, the inclusion of viscosity

is critical. The first study of a viscously dominated thin film flow was that of Pearson &

Petrie ([85] and [861), who were motivated by an interest in thin-film blowing, wherein film

deformations are induced by a pressure difference applied between at the film boundaries.

Fliert et al. [45] developed general equations for unsteady films of arbitrary shape, using

an asymptotic expansion in terms of the aspect ratio of the film, namely the ratio of its

characteristic thickness to length. This work is essentially a generalization of the work of

Pearson & Petrie who presented the governing equations in the axisymmetric, static case,

and the model of Yarin et al. [128], who considered the unsteady axisymmetric case and

applied it to the problem of hollow fiber drawing. Fliert et al. developed this general

formulation and then applied it to the special case of the blowing of a two-dimensional

viscous sheet, in which inertial effects are negligible. A mistake in their formulation is

corrected in Chapter 3.

More recently, Ribe [96] generalized the previous two-dimensional theories by Buck-

master, Nachman & Ting [15] and Ribe [95] to allow for consideration of sheet dynamics

in arbitrary geometries. The difference between the models of Ribe [96] and Fliert et al.

[45] lies in the form of the governing equations and how they are obtained. By closely

following the elastic theory of shells [53], Ribe integrates the 3 dimensional flows across

the film, thus obtaining a set of equations that depend on integrals involving the stress

elements, the bending and stretching moments. While this approach yields better results

than the asymptotic expansion of Fliert et al. [95], this technique cannot be utilized when

inertial terms are significant, due to the nonlinearity they introduce. Lastly, Ida & Miksis

[61] considered the evolution equations for thin sheets with the effects of van der Waals

forces, inertia and surfactants present; however, their model scaling resulted in the inertial

terms and viscous terms of the normal momentum equations being incorrectly dropped.

The inclusion of inertia and surface tension contributions arising from the curvatures of the

bounding interfaces of the film not being exactly equal are taken into account in Chapters

2 and 3. These curvature effects are expected to become appreciable for sheets with sharp

curvature and/or rapidly varying thickness, as for example in retracting sheets, bells and

sheets with rims.

In principle, numerical simulations of the fully three-dimensional equations that govern

the thin film flows are somewhat impractical, especially if there is a large difference between



the sheet thickness and length. For instance, in a situation where the film thickness is many

orders of magnitude smaller than the characteristic sheet length, successful resolution of

the governing equations would require an extremely fine discretization in the vicinity of the

film, especially if the ambient fluid is taken into account. In cases where the ambient fluid

can be assumed to be dynamically insignificant, efficiency can be improved, by using, say,

a boundary fitted method (e.g. [18], [81]).

As demonstrated by numerical tests by Ribe [95] and Mehring & Sirignano [78] and

corroborated by numerous experimental data, reducing the dimension of the problem by

taking the motions normal to the film to be smaller relative to the tangential speeds, yields

reasonably good descriptions of the dynamics. For this reason, the majority of the liter-

ature is devoted to techniques reducing the complicated, three-dimensional problem into

a lower one- or two-dimensional system. The current thesis contributes in this direction,

by presenting a general framework upon which one can build lower dimensional models to

study thin film flows.

1.2 Thesis outline

We here present the results of a theoretical investigation of the dynamics of thin viscous

sheets. We begin in Chapter 2 by introducing the notation and the differential geometric

concepts necessary for deriving the equations of motion on a curved geometry for an arbi-

trary coordinate system, whose basis is not necessarily orthonormal. Particular attention is

given to including the inertial terms, which have not been previously considered, apart from

the special case of curvilinear coordinates. Such a formal treatment is most valuable when

one considers fully three-dimensional simulations by using an appropriate boundary-fitted

numerical technique. The more compact-looking equations for a curvilinear coordinate sys-

tem are less advantageous for arbitrarily shaped thin films, since remeshing of the equations

would be required at each timestep. In the remainder of the thesis we focus on relatively

simple cases, where the film exhibits certain symmetries.

In Chapter 3, we consider the dynamics of a slender sheet of viscous fluid, in geometries

where it is convenient to employ a curvilinear coordinate system. Using an asymptotic

expansion, we find the leading order equations, which, together with the appropriate free-

surface conditions, yield a model that reduces the equations from three to two dimensional.



The surface tension contributions arising from the variations in the fluid thickness are also

included, which become important near the edge of the film. Further reduction of the

equations for two-dimensional or axisymmetric sheets reduce the resulting equations to a

set of coupled one-dimensional, time-dependent partial differential equations.

In Chapters 4 and 5, we present the application of the general theory developed in the

previous chapters to the bursting of flat viscous sheets. In particular, we consider both

the two-dimensional, planar film (Chapter 4) and the axisymmetric, circular film (Chapter

5), and present a combined analytical and numerical investigation of their dynamics. We

extend prior work on the subject through rationalizing the experimental observations of

Debr6geas et al. [35] on the bursting of very viscous sheets. We conclude in Chapter 6, by

discussing the implications of our work and proposing directions for future research on the

dynamics of thin films.



Chapter 2

Notation and general formulation

In this chapter we present the equations that govern the motion of fluid sheets through

a formal differential geometric and fluid mechanical treatment. We model the fluid as

Newtonian and incompressible, but this treatment can also be extended to allow for fluids

of different characteristics. To do so we require a brief review of the concepts borrowed

from differential geometry that are essential to describing the Navier Stokes equation on a

curved film. This introduction to the notation used throughout makes up most of §2.1. In

the subsequent sections 2.2-2.3 we extend the prior work done on fluid sheets (e.g. [56],[45]

and [96]), to include terms arising from inertia and the variation of the sheet thickness. We

conclude in §2.4 by presenting the appropriate boundary conditions.

In what follows, superscripts and subscripts are used to label contravariant and covariant

quantities respectively. Greek indices take the values 1 and 2 whereas the Latin indices take

the values 1,2 and 3. Summation is assumed for repeated indices unless otherwise stated.

This notation is abandoned in subsequent chapters when we turn our attention to simpler

geometries.

2.1 Notation and concepts from differential geometry and

tensor calculus

2.1.1 Differential geometry of surfaces

Our discussion is limited to regular surfaces ro (x1 , x 2 ) defined on a set U C IR2 such that

ro : U --+ R3. Such a surface is called regular if it is smooth and the vectors x, ro and
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Figure 2-1: Geometry of a surface in IR .

S2Fro are linearly independent at all points (xt, x 2) E U. Here we use Oxaro to denote partial

differentiation of ro with respect to xi. Equivalently, ro should be smooth and the vector

product Oxro x x2r 0 should be non-zero at every point of U. This last statement implies

that a normal at each point on the surface is well-defined.

We proceed with a presentation of the tools needed for defining the differential operators

on a surface which will eventually allow us to formulate the Navier Stokes equations on a

surface. In our treatment, we omit all proofs and introduce notation only as needed to derive

the equations. The details can be found in the excellent texts on differential geometry by

Pressley [89] and Do Carmo [37].

The vectors

ec = x,,ro (2.1)

correspond to the covariant tangent vectors of the surface. The unit normal vector e3 is:

- elx e2e = n = x e2  (2.2)

Because the chosen coordinate system (xl, x2) may not be orthonormal, one may define a

I
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Figure 2-2: Covariant and contravariant vectors in two dimensions.

set of contravariant vectors e8 that satisfy

e. -e6 = 0 , (2.3)

where 6S corresponds to the Kronecker delta. An explicit expression for these reciprocal

basis vectors can be computed using

i e 2 x e3  2 _3 X e1Se 2 x e3 e = e3- el and e3 = e3 , (2.4)
a a

where a = el - (e2 x e 3).

Another important concept from the differential geometry of surfaces is to define a

means of computing arc-lengths of curves lying on the surface ro. If we define a curve

c (t) = ro (x (t), x 2 (t)), its arc-length s starting from a point c (to) to a point c (tl) is

found using

S = I (ir)i()l dr -= all (&1 )2 + a12 &•1 2 + a22 (2) 2 dr . (2.5)
to t.

The expression (an () 2 12+ all2 + a22 (&2)2) is termed the first fundamental form,

where the coefficients all, a22 and a12 = a 21 constitute the metric tensor of the surface

and are given by

ap = e 7 e8 . (2.6)



Just as the first fundamental form characterizes the arc-length of curves that lie on ro, the

second fundamental form characterizes the curvature of a surface. To introduce this notion,

we perturb the surface ro (xl, x2) to ro (x1 + Ax 1, x2 + Ax 2 ) which moves the surface away

from its tangent plane at ro (x1, X2) by a distance

(ro (xi + Axl, x2 + Ax 2) - ro (x1, x2)) -e3

[ eAxa + 1 ((AXz)2 8~1 1 0ro + 2AxzAX(Zx0 21ro + (AX2)2 OX2 2ro) + 3.

S(bll (AXl) 2 + 2b 12 AX1AX2 + b22 (Ax 2 )2) (2.7)
2

This last result is the analogue for the curvature term n (At)2 in the case of a curve c (t).

Here we define the coefficients of the second fundamental form, the curvature tensor b,3 as:

bag = e3- ax,, ep . (2.8)

In addition to this formalism, it is of interest to know how the tangent vectors vary as

we move along the surface. To do so we define the 6 Christoffel symbols Fp by

•.e3 = Fr"e, + bc3e3 . (2.9)

These are given explicitly by:

1
11 = -a (a221x 1all - 2al2 xa1a 2 + a12Ox2all) , (2.10)

1
r1 = (2allxza12 - all1X 2 all - a12 19xall) , (2.11)

1
r2 = (a228 2 a 11 - a121xla22) , (2.12)

1
22 = a (allla22 - 1a22 2all) , (2.13)

r 2 = 2 (2a22212 - a2 22 - a120 22a22) , (2.14)

1
22 = (all8 2a22 - 2a812O 2a12 + a12xlaa2 2) , (2.15)

where a = ala 22 - al2a2l. Of equal importance are the derivatives of the normal vectors

along the surface:

x,.e3 = -Vbea , (2.16)



where

b blla22 - bl2a12  b12a1 1 - blla12  (2.17)
a a

b bl 2a22 - b22a12  b2  b22 a1 1 - b12 a1 2  (2.18)
a a

We conclude by defining the mean and Gaussian curvatures of the surface. Letting rt and

K2 be the principal curvatures of the surface, its Gaussian curvature is

K = 1I2 = a (bib2 - b2 b) = blb22 - bl2b21 (2.19)
a11a22 - a12a21

and its mean curvature is:

1 1 1 2 a22bl - 2a 12b12 + allb22  (2.20)
H= -(n± 2 ) = 2 f= (b +b2 ) = (2.202a

The principal curvatures are:

K1,2 = H ± H 2 - K. (2.21)

2.1.2 Covariant differentiation

In deriving the equations of motion, we need to express how the hydrodynamic quantities

vary as the fluid particles move along the surface. To do this, the notion of the covariant

derivative of a vector or tensor component with respect to the surface coordinates xa needs

to be introduced. It essentially expresses the derivative of the vector, taking into account

the change of the basis vectors from point to point. To illustrate these concepts, we go

through the steps of deriving the derivative with respect to x3 of a vector field F = Faea

defined on the surface ro :

O OF' Fae,
&x6F = (Faec) = e, + FOa

(Fe
5F

a e F,,, + 
' (r-Ye

= x--ea + Fa ,3ey + baje3)

- x= + F~T ) e +FFbbe 3

= Fe + Fe, , (2.22)
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Figure 2-3: Definition sketch of the thin film model. The basis vectors g, of the coordinate
system defined in (2.25) are essentialy rotations of the corresponding tangent vectors of the
surface ea.

where we made use of equation (2.9) in the second step. The quantities

OF 0

Fa,= OF` + F-r, (2.23)

ealp = b,3e3 (2.24)

denote the covariant derivatives of the components of the vector field and the basis vectors

respectively. Similar expressions may be derived for the components of vectors and tensors

and can be found in Chapter 1 of the book by Green and Zerna [53].

2.2 Problem geometry

We consider the motion of a slender fluid sheet of dynamic viscosity /u, density p variable

thickness h and surface tension -y. The motion of the ambient fluid is neglected in this

analysis. Following the prior work on the subject such as [96] and [45], we describe the

underlying dynamics by choosing a coordinate system that moves with the sheet. For this

reason we define the 'midsurface' ro (x 1 , x2 , t) to be the surface whose normals intersect the

bounding surfaces at equal distances h/2 (see fig 2.3). Here xl and x2 are the coordinates

of ro and x 3 E [-lh, 1h] is the normal distance from ro.2 2ZD D ICIVII~ L~~It:IVI 0



This allows us to define the position vector r (xl, x2, X3 , t) of a fluid particle within the

sheet as

r = ro + x3 e3 , x3 [- h, h] , (2.25)

where as usual e3 is the (unit) normal vector to the surface. Since points that do not lie on

ro do not share the same vectors ei we use the formalism and notation developed in §2.1

for surfaces to define the contravariant gi and covariant g' base vectors associated with the

coordinate system (2.25) as

(qpP6a -q) a
ga = Oar = q e-, g 3= g3 = e3  and ga 2- A ) e (2.26)

qllq 2 - q1 q 2

where

qQ = 6' - x 3b• . (2.27)

Since the vectors g, and e, share the same normal vector, it is easy to see that the g, are

obtained through rotations on the vectors ea. These vectors constitute dual bases, meaning

that they satisfy:

gig = . (2.28)

As in the case of surfaces, we also define the covariant and contravariant components of the

metric tensor

gii = gi gj , gij = g i gj . (2.29)

Finally, an important set of equations that we need to use to simplify the equations later

on is:

=- Y + qO-Pl ) ey + bx\qApe3 , (2.30)

093 a = -b~epj. (2.31)

Here we note that the vectors are not assumed to be either of unit length or orthog-

onal. The advantage of this more general description lies in the fact that the sheet may

undergo large deformations and material coordinates that were initially orthogonal will not

necessarily remain so at later times, thus requiring remeshing at each time step of the com-

putation [96]. The elasticity theory of shells is built upon this theoretical framework (see



for example Green and Zerna [53]), where the velocities of the fluid particles correspond to

the deformations of the elastic shell. The Reynolds number of the flow, which characterizes

the relative importance of viscous and inertial forces, is defined as:

Re = , (2.32)

where v = is/p is the kinematic viscosity of the fluid, e is a characteristic lengthscale and u0

a characteristic velocity. The governing equations in the low Re regime, where the inertial

terms can be dropped, are directly analogous to the equations obeyed by an elastic shell

in equilibrium. It is thus that Ribe developed the general theory for viscous sheets [96],

by following closely the theory developed for elastic shells in equilibrium. In this case,

integration of the Navier-Stokes equations across the sheet yield a set of equations for the

total force and torque balance on the sheet. However, this procedure is not applicable in

the more general case where inertia is present, due to the non-linearity introduced by the

convective terms. Hence the standard lubrication approximation is performed, as we will see

in the next chapter, where we investigate surfaces parametrized in curvilinear coordinates.

In what follows, the general set of equations are presented; the leading order expansions for

surfaces parametrized in curvilinear coordinates are to be presented in the next chapter.

2.3 Navier Stokes equations

Given the complexity of the calculation, we proceed by computing the individual compo-

nents of the momentum equation:

p - = V -T + fbody , (2.33)

where v is the velocity of the fluid particles, T corresponds to the stress tensor and fbody is

the body force (e.g. gravity).



2.3.1 Inertial terms

Since the location of each fluid particle within the sheet is given by r, the velocity of the

fluid particles measured in the laboratory frame is:

dr
V - = vT gi = vig z

dt

Or dxi Or

-t dt Oxi
Or

-= + u g i = w + u , (2.34)at

where w = Or/Ot corresponds to the velocity that describes the motion of the coordinate

system attached to the midsurface and u = utgi corresponds to the velocity as measured in

this moving coordinate frame. Under this non-orthonormal coordinate system, the physical

components of the velocity U7phys are related to the components u' (no summation assumed

over i) by:

U = ugi Uphysg i  Uphy s = u . (2.35)

In case the base vectors are not of unit length, the ui would not correspond to velocities that

are measurable in a laboratory setting, justifying our introduction of uphys . Even though

the geometries we will examine later preserve the orthogonality of the coordinate curves,

we proceed in this more general setting for the sake of completeness. The acceleration term

is now:

dv Ov Ov dxi Ov ui 0 (Or
- += -+uu +ukýkdt Ot Oxi dt t Oxi at

= + i + U (uk gk), +uW- (U 3 g3) . (2.36)

This may be expressed in terms of either the base vectors gi or the surface vectors ei. In

terms of the former:

dv O + 2ui ] + Ot + u k Ok + u  k ,Mk gi (2.37)

Here Fmk are the Christoffel symbols of the coordinate system that satisfy (see [2] p. 165):

ki 

(2.38)

OXk = F~kgi. (2.38)



For a curvilinear coordinate system there are 27 such symbols, 15 of which are distinct and

non-zero (for a surface we have only 6 as we saw in the previous section). The explicit

computation of Fmk is shown in Appendix B. It is also worth noting that in case of a

non-moving curvilinear coordinate system, the expression for the acceleration term that

can be found in some introductory fluid mechanics textbooks (e.g. [6]) follow from the

assumption of orthonormal base vectors. Identical expressions are obtained if we derive

these expressions in terms of gi that are taken to be orthogonal. It is most useful to express

the acceleration vector in terms of the surface vectors. Using equations (2.30) and (2.31)

and after some tedious algebra, we obtain:

dv 02ro 0 2e 3  3 e3 Oe.
=d Aiei - + X3 + 2u + 20"q'tdt t2  2 a t at

+ [q f +2uP + u? ± (u q) FdA) ± u(q q 3 - 2b))] n

+ (U3 +Uk U3 + ukuIboaAq) e. (2.39)

In general, the time derivatives of vectors in equations (2.37) and (2.39) cannot be expressed

a priori in terms of the basis vectors ei or gi and should be projected onto the base vectors

to obtain their respective components. In deriving equation (2.39), no simplifications are

made apart from the assumption that a midsurface can be defined. These expressions are

most suitable for three dimensional computations, but as we will see in the next chapter we

can exploit the slenderness of the sheet to simplify the equations considerably.

2.3.2 Stress tensor

The constitutive relations for a Newtonian fluid in a general coordinate system are:

TiJ _pgij + 2y9gik gjll ,



where p is the pressure of the fluid and eij is the strain rate tensor given by ([53], p.381)

eQO = [pq (vA1n - bAV3) + q (vA A - bs3) , (2.40)

ea3 = aOxaV 3 + Ox,,va + b' (vA - X3x 3 vV) , (2.41)

e33 = 9X3 V3 , (2.42)

where the covariant derivatives va,p of the contravariant components of velocity can be

found using ([53], p.38)

v 9a = 3xVA - rV~1  . (2.43)

Here the vi correspond to the components of V expressed in the surface coordinate system,

V = vie i = v'ei. In deriving the divergence of the stress tensor for an elastic shell, Green

and Zerna expressed the tensor elements relative to the midsurface base vectors ei instead

of the base vectors gi associated with the coordinate system. Even though this was done in

order to facilitate the integration of the equations across the sheets and obtain physically

meaningful stress resultants and bending moments, it is also suitable for our purposes, given

that we have already expressed the acceleration term (2.39) in terms of the surface vectors.

Hence

aiA = f A TiA ai3 = fi3 , (2.44)

where f = qlq2 -q2 ql2 = 1 - 2Hx3 + Kx . The divergence of the stress tensor is set equal to

the inertial and body forces on the right hand side, which yields the momentum equations:

fp(A - Fbody) -b('•a3 c-- 303 , (2.45)

fp (A3 - Fbody) = 3a + boa~a 3 -+ a 3 3 , (2.46)

where the expressions for the covariant derivatives of the tensor elements are:

a '3= a'oUQ + ra, a+ ra•-, (2.47)

a31 = Oo oa + r~/3 c3 (2.48)



2.3.3 Continuity equation

The continuity equation requires incompressibility of the fluid. The strain elements should

satisfy hzjeij = 0, or in terms of the velocities and the geometry of the center surface:

X3 (fv 3 ) + [a + X3 bP - 2Hac1p)] vlo = 0. (2.49)

2.4 Boundary conditions

We must now supplement the governing equations with the appropriate boundary condi-

tions. In the end we have to solve the three components of the momentum equations and the

continuity for vi and p. We note that in case the geometry is entirely arbitrary, additional

conditions/equations must be provided, as we will see in the next chapter when we consider

the special case of an axisymmetric sheet.

2.4.1 Geometry of the boundaries

The thickness h may be considered small compared to the characteristic lengthscale and we

assume that the radius of curvature of the center surface is of the order of the characteristic

lengthscale and varies slowly along the surface. Nevertheless, there can exist situations

where 9,.h may be quite important such as near neck regions, or in regions where the

film thickness varies rapidly. Therefore, we proceed by deriving the mean curvature of the

boundaries in order to take into account these effects. The outer surfaces are defined by:

r = r0 ± + he3 , (2.50)

and tangent vectors by

ci = O r - = g ± ,4 ahe3 . (2.51)

The determinant of the metric tensor gp is

g = g3 (gl x g2) = af± , (2.52)



Figure 2-4: Definition sketch of the outer and inner normals.

where we define a = e3 -(el x e2 ) = al1 a22 - al 2a21 and f± = 1 + Hh + Kh 2 /4. To compute

the normal vectors, we consider

c± x c = (g ± -102x hes) x (g2± ± l6, 2 hes)
= (g xgf) 02 , h (e3xg9) -1 2h(g2 xe 3 )

1-2 2 2

g3 a
= T -lx. hg (2.53)

g g

where we have used the reciprocal base property, equation (2.4). The unit normal is:

T lx. hge + g3
fi g+ (2.54)

We note that fi+ is the outer normal whereas fi- is the inner normal, in the sense that

fi+/f- points away/towards the fluid region (see Figure 2-4). The first fundamental form

is

aP = c cy = gaf + ¼ hzh, ha (2.55)

To find the second fundamental form bc3 = or ca-n + , we need to determine the derivatives

of the tangent vectors, which are

Oc: = O a- F !2 x,hbeA, - Oxhe3 , (2.56)a = (9x,6a T 2 0 2



with

xs = l x, (qeA) = (q, T- 1 Oxhbl F hO~,b) e, + q~b e3 (2.57)

The computation of the second fundamental form is facilitated if we write 0x& cl in terms

of the gi. Doing so, we find:

1Oe = (q4, - q ) (q\A7 T 1b7Oa h Th

+ (qbAi ± 4 l gh) . (2.58)

The second fundamental form is thus:

ba' = X3 q cfa = (q~6 -qY) (q ,71~F b axh bx hhF hhOx,
-Al I2fl n I 2 a± 2 0 2

a+ b 0± l ha (2.59)

where we set A± = 1+ 1g ox.h iOh. The mean curvature is found using equations

(2.56) and (2.59) in (2.20), which results in a rather unwieldy expression. Noting that the

contributions to the mean curvature that arise from the center surface being different from

the bounding surfaces essentially come from sharp variations in h, we neglect h to leading

order, while at the same time retain the terms involving its derivatives, to find

b ±- [bbe + - (b- , oh + b& Oh + 2Lh ') + .Ox,oh , (2.60)

a, a ,a3 + !a. h Ox h . (2.61)

Finally in the special case of a curvilinear coordinate system, where

a12 = a21 = b12 = b21 = 0 (2.62)



we find that the mean curvature may be expressed:

V - fi b± - 2b2al + a22al
2 2a (A+)2

S[(a22  + (oxh)2(1 F axh 1 ± hlxaxh
2a(A)3 L + 2 122 1

- 2x Oxh 2 h (• X2h HF Zl Ox, h rF2 ±O 1 2h
4 h 2  2 12

(b22 + I (x 2h)2 K2 F laxh 222 ± x22h) 11  ( h) . (2.63)

This expression can be further simplified if the geometry depends on one coordinate, say

x2. In this case we obtain:

H+ + H- = - 2H + ¼ (0a2h)2 bil + 2 2 a1 1  . (2.64)

H - H- = l0 2 2h all - ½092 h (a 1 22 ) g (x 2 h)3 21 . (2.65)H +  - 18 X

In the limit of a planar film we obtain

H - H1- H2, (2.66)

(1 + (aX,2h)2) 3/2 '

and in the circular geometry:

H +
- H- = __l x2X2h 1 2H+ - H- 22 212 (2.67)

(1 + • (oX2h)2) 3/ 2  (1 + 1(X 2h)2) 1/22

2.4.2 Boundary conditions

We use the normal to the midsurface, e3, to define the outer and inner normals, fi±, such

that e3s - i± > 0 (see figure 2-4). The boundary conditions cast in vector notation take the

form.

fi± -(-P± + T±) = +2yHii± , (2.68)

where P± = -Podg gt j is stress applied at the boundaries and po± corresponds to the

external pressure. Using this convention, the six boundary conditions corresponding to the



top and bottom surfaces become

gnk gl " i Pj +g ± ) g g3 = 27H njg•
gipo±ggg + Zj ; +2 n 3y

n-ijp9+ j + •. •8 += 2•2H .n g . (2.69)

2.4.3 Kinematic conditions

Finally, the kinematic boundary condition relates the rate at which the boundary moves

to the velocities of the particles lying on it. Since the boundaries are treated as material

surfaces, we have:

(x3 ± h) = 0 = u3 + [ath + (V - tr) - Vh] = 0 , (2.70)

with

Vh = &ih g 3. (2.71)



Chapter 3

Leading order expansions in

curvilinear coordinates

3.1 Introduction

The general theory developed in the previous chapter is admittedly rather complicated to

apply, but it is necessary for entirely arbitrary geometries. Here we turn our attention

to geometries that can be studied with a curvilinear, orthogonal coordinate system. This

kind of coordinate system results by parametrizing the center-surface by lines of curvature

where the coordinate curves intersect each other at right angles. This type of geometric

parametrization was considered in the past for example by Fliert et al., [45], and Ida &

Miksis, [61]. In [45], attention was limited to Stokes flow in industrial processes such as

glass blowing. In [61], an attempt was made to present the equations for a more general

setting by incorporating van der Waals forces and Marangoni stresses in their model, but

the resulting equations were cumbersome and they neglected the effects of the variations of

the film thickness. These effects are essential for sheet retraction, a problem to be consid-

ered in Chapter 4. Moreover the normal momentum equation they derive was incorrectly

formulated.

In what follows, we define the curvilinear coordinate system and the simplifications that

result in the governing equations. By exploiting the slenderness of the film, an asymptotic

analysis is performed resulting in a system of evolution equations for the shape of the center-

surface, film thickness and velocities as measured in the moving-surface coordinate system.



The chapter is concluded by giving the leading order equations for the case of an unsteady

axisymmetric fluid film which will be the main focus of subsequent chapters.

3.2 Navier Stokes equations in curvilinear coordinates

We begin our derivation by considering a curvilinear coordinate system in which the coor-

dinate curves xi =constant are mutually orthogonal. This formulation is most appropriate

when the system we are dealing with exhibits some symmetries or in geometries where en-

forcing the orthogonality of the coordinate curves is not difficult. It is thus important to

note that the assumption that the midsurface is parametrized by lines-of-curvature need

not hold as the surface moves and deforms in time. In such a case a remeshing would be

required at each time-step. Alternatively an asymptotic expansion of the more complicated

equations of Chapter 2 needs to be considered. Geometries that exhibit certain symmetries

however have this property of preserving the orthogonality of the coordinate curves at all

times. In the case of lines-of-curvature parametrization of the center surface, the differential

geometric quantities we used in the previous chapter reduce to:

q =1 = - x 3K• q = 1 -x3K2 and q = ql = , (3.1)
bI = ni, b2 = 2 and b2 = b = 0 , (3.2)

bll = alKl, b22 = a22n2 and b12 = b = = 0 . (3.3)

The Christoffel symbols associated with the midsurface become

10al 1 1 _2 al Oal

ri 1 Oal 1 a 2,i= I Ox, 1 a 210a, r 2 
- 1 N 2  (3.4)

1 2 a 2 12  1 a h2

22 a2 ox1  22- x242

where we use

ap = Vaop =  lep8 . (3.5)

Hereafter, to avoid any difficulties in notation, we drop the lowered and raised indices to

distinguish between the covariant and contravariant components considered in the previous



chapter. Henceforth, a raised index denotes a power. We also define

(3.6)

In addition, let the physical components of the velocity in the coordinate system attached

to the midsurface be

U = uiei , (3.7)

and the fluid velocity

The acceleration term becomes

(3.8)Or
v = - + u = vi2i.at

a2r0
-- t -

a2-3+ 63+ X3 t2

+ [1 a(ulll)
11 at

a63
+ 2u3-

+ U (aul
±11 ax1

1 (u212)t +T

+12 at 1
[u 3 u1 au3+ -7 +  -O-at 1l 7x

U2 Oal
a2 ax2

1 ( a2 ul al
1 ax 1 a2 ax 2

u2 au3
12 ax 2

u2 aul
+12 ax2

U2 aa2
a1 ax1l

U2 f (u2  ul1 2 a
12 \ax2 al axl

au3  1 2 -a2]
+ u3 + u2 a, + U2K2

a 3 11 2 12

al -
' 39U1

' 2a2 ]e2
12J

(3.9)

By including the inertial terms (3.9), the full Navier Stokes equations become:

p1112 dt- fbody) = (12T 1) +

+ 1 (1T)12

+ a (12T13) +axx

a
+ (11T22)aX 2

T22 T1ax1 ]j

1 a3

+ 28 j3
(11 2T23) - a~T T 2

S(1112 T33 )- 2 T11aX3 aX3
0122 T22ax3  1

(3.10)

Su 1  062+ 2uli + 2u2 t

13 = ap (1 - x3r) .

(•1+ u3 \3ul

+ u3 Ou23
(O3

11

(T12) + 11 3 12T13) -



with the physical components of the stress given by (e.g. [45] and [124] ):

Tl1 = -p + 11 (ax,
T22 = -p + 12 ý7X2

v2 011
12 Ox 2

V1 012
11 Ox1

- al v 3 )

- a2 23)

0v3T33 = -p + 2 • 3OX3

T12 = /-' (ý1

( Ovi

T23 = 12-12 OX3

11 -
Ox2

02
+ 12Oxl

012
Ox1

-alVl v Ol
OX2

a2 2V2 + V
OX2

Finally, the incompressibility condition may be expressed as

+ (11v2) +OX2

a (1112v3) = 0 .
Ox 3

Before proceeding further, we need to consider how the geometry of the midsurface is related

to its speed. Letting:
0ro
- = wie
Ot

(3.18)

and following [45], we have

0a1  _ 0a 2= 0 • = + i2 ý
OX2 1

Oal
= 2a~-

dt
Oat

• -i

Oa2 0 a2
= 2a2- = aOt Ot

O 2a
OX2

OX2
S2

Oa2Sa2 x1OX1
_ Oal

a2

Ox2_ 032
+ wl 1

- ala2Kl3 ,

- a 1 a 2 K 3 •.

Adding (3.20) and (3.21) yields

0 0
- (a1a2) = (a2 1)
at Oy

0
+ - (al 2) - ala2 (KI + -2) z3 .

Ox 2

3.3 Slenderness approximation

We take advantage of the slenderness of the sheet to simplify the equations. To do a proper

leading order expansion of the equations we need to assume that h, the thickness of the

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

0
- (12v1)Ox1

(3.17)

0 Oro
Ot \Oxz

0 (Oro

at \k-x7

(3.19)

(3.20)

(3.21)

(3.22)



sheet obeys

hki << 2 and hK2 << 2, (3.23)

where K1,2 correspond to the principal radii of curvature. This essentially means that the

characteristic thickness of the film is much smaller than its longitudinal lengthscales. If

this does not hold, the full set of equations (3.10) and (3.17) should be used, because when

h 1l = 2 or hr2 = 2 the system of equations becomes singular. To non-dimensionalize the

equations, we choose the scalings

aix * = Lla* x vi= vv L, '
a2X2 = L 2a* 2 = * 220  = 21 and t = Tt*, (3.24)

2 2  2 -- 20V 2  2 --

x3 = hx v3 = v30v P = PoP*

where the starred quantities are non-dimensional. The characteristic pressure Po depends

on whether the motion is driven by surface tension or an applied pressure difference. Letting

6 = h/ max (L1, L2), we write the hydrodynamic quantities as an expansion

A = A (O) + eA (1) + e2A(2) + ... (3.25)

Performing the analysis using this expansion, we find that A(o) does not depend on x3 under

the assumption that x3 = 0 is a material surface. This assumption means that the fluid

particles that lie on x3 = 0 remain on it for all times, thus implying that

U3 (1, 2 , 0, t) = 0 . (3.26)

This reasoning motivates our alternative expansion in powers of x3 , i.e.

A = A(0 ) + (1) + 3(2)+ ... (3.27)

To be consistent with the proposed expansion, the effects of outer surface variations should

be neglected to leading order. However, retaining the full curvature terms, as was done for

the circular jet break-up by Eggers & Dupont [43] and for the planar sheet retraction by

Brenner & Gueyffier [13], gave results that better agreed with experimental observations.

Eggers in [41] presented an argument based on a Galerkin-type expansion, where one retains



the full curvature terms in the leading order equations of the circular jet breakup. By the

same token it is reasonable to treat these terms as being leading order in our system.

Therefore in our expansion we consider the viscous terms in the long wavelength limit, but

retain the terms associated with surface tension provided (3.23) holds.

With this kind of expansion we can study the governing equations restricted to the

center-surface. The final accuracy of the calculation will depend on how well we can estimate

the derivatives with respect to X3. The leading order equations are essentially the same

for each of the different expansions (3.25) and (3.27). Denoting with bars the velocities

evaluated at x3 = 0 and using equation (3.26), the inertial terms in dimensional form

become:

dvI 02ro 61 (620= at + 2t51 + 2i52

[t ixo a l+ at-- 1 + a1 + ii
at alt at, axl

+[a2 +2 aa2  1 2

+ (5 ,1+ U2i2) 3 ,

"52 aal
a2 Ox2

a2 ax2

+ 2

a2

a2
a2

Ox2

Ox2dl2 d~

112 aa 2 ]
al Oxl 6a1 1a2)]

+ zla1, x1)]

where we wrote [Bjxa=o to denote the quantity B evaluated at X3 = 0. Alternatively we

may group some terms to get the more compact form:

dv a2 2 ro 1 62S at= - + 251- + 2i52
I X3=0at at

1 ra (a1 1) 1 2 52 0 (a1 1)
+- + +al t 2 ax1 a2 Ox2

1 (a252) 1 + •2 u1 a(a2u 2)+ + +a2 Ot 2 ax2 aO axl
+ (UiKi + •)•.2 3 .

2i aa1 1a2l ax1
a0 Oa2
al (9X21_ Z~

(3.29)

It is important to note here that the acceleration term in (3.29) is exact, assuming (3.26)

holds. If higher order accuracy is desired, the expansion should proceed by considering

higher order terms that come from the divergence of the stress tensor. The Navier Stokes

(3.28)



equations now assume the form:

dv T13 - (21 + K2) Ti13 1+ 1 l 1
dt aIX x • 3 al ox,

1 d 1 Ja21
+ (a 1T2)+ 11 - T2 2) ela1a2 aX2 ala2 x 1 x

OT23  ( 1 0+ T - (2 2 + r1) T23 + 2 (a2T12)
[+ LT3 a3=0 a aa x

2 2 21 2 2)]

+ 3 0 - (1 + r-2) T33 + r-111 + r12T22

+- (a21 3)+ (al-23 e3
ala2 •X 1 ala2 x2

(3.30)

and the continuity equation requires that

L v3 I
OX3 zs3=0

= (ni + 2) v3 - 1 [ (a21j) + a (aP)]Sa 2 11 aX2 -
(3.22) 1 a 0 a

a•a2 L X ( 1a2u) + 2 (a, t2) 1+ (8182 8 2 0

(3.31)

(3.32)

We note that we have yet to make any approximation. The approximation lies in how the

normal derivatives are evaluated at the center-surface. The slenderness of the sheet allows

us to estimate them using:

OTi3 3
80 a23=o

(3.33)i3 i3
h

where Ti correspond to Ti3 evaluated at the top and bottom surfaces of the sheet respec-

tively. These TI can be determined from the stress boundary conditions.

3.4 Stress conditions

We adopt the convention that the normals to the boundaries satisfy fi± -n > 0. With this

notation, we label the respective inner and outer regions such that the normal always points

in the outer region (see figure 2-4). As in the previous chapter the boundary conditions at



the top and bottom surfaces r + = ro ± !h^ 3 become:

(3.34)fi± - (p iki + T± e.ie = T 2nyH nf ,

where H is the mean curvature of the surface. The unit normal vectors are:

f -

1ah 0 2h 2
3=2- el -2 e2 + 3

±1+ (6h)2/I + 2 (6 2h)• /

_ 1 (1j ih 1

A± 2 -11 e S-2h, 2 +2
63)

From (3.34) and (3.35), the stress conditions in each direction take the form:

T = (ph - 2 + T2h ,
21 1 (P) 21

T3= 2 21 T12
1

Sld (p - 2H± + T2)
2

Tf = -P~ 2±H± 1 hT3 012h •
2

(3.35)

(3.36)

(3.37)

(3.38)

To leading order in e we thus have

We define

AH=H+-H_,

ap = po - Po , 2= ( Po+ +po)

I' = aj + O (e) ,
Tt + T7 = 2T .

V. %3

(3.39)

(3.40)

(3.41)

(3.42)



and assume that hrl << 1 and hn2 << 1 so that by applying the long wavelength approx-

imation for the viscous terms we get:

T - T3 = Ol h (-23 (H+ - H_) + po p + 211) + T2h2 1

al a1
T+ - T32 = 2 (-2H (H - H_) + po Po + 2T22) + 21

T - 1,,h 1 12hT+ - (Ap - 2y (H+ + H_) + Tl - T) + (T -) - 0a1 2  2a

T + T2a2 (Ap - 2- (H + H-) + T - Tj2 ) .
a2 2 1a

(3.43)

(3.44)

(3.45)

(3.46)

Another way to argue that T3~a (T3 + T ) 0 is by looking

itself. Using

at the stress element

vP3 dN OU ar = (r - -1 C3- =- + -a + () eg
3 X3 Ox3 it aX3 a, ax (3.47)

we find that:

T•3 = A X3 •-O + (3.48)

To leading order, however, we expect the fluid particles to move around a curving sheet

with roughly the same local angular speed unless some external shear is applied (the minus

sign results from the convention that the normal points outwards, so the radius of curvature

has an opposite sign). Hence:

I Ix3 Js=o 0 , -KfUP . (3.49)

We can then estimate the pressure at the midsurface, p using (3.32):

T3 3  + T33
2

- (, - (Po+ Po ) + + aH+2A (a2l) + (alf2) + (ala2)2 ala2 IX1 2 O (3.50)

The last equation is a direct result of the lubrication approximation, where we treat

Olh (T+ - Tjj) /al and 02h (T+ - T3) /a 2 as small, viscosity-dependent terms in the long

wavelength limit. Finally, we estimate LOxaTi3Jxs=o using equations (3.36)- (3.38) together



with (3.45) and (3.46) in (3.33) :

S0 T13 =
Ox3 J3=-0

LOx3= 01
0T33
Ox3 x3=0

8th 82h= Q- ( (p4 +po) --yAH +Ti) + a2h •,
a1h a,2 02h

Sa21h 2 ( (po + p) - yAH + T22) ,
-Ap+h 2 +
-Ap + 27 (H+ + H-)

3.5 Continuity equation

The kinematic boundary condition is:

d (3 ± he 0(3

whose leading order expression is written as

al Ohx

al 1xl

Combining with (3.32), after some algebra we obtain a continuity equation of the form

Ox3 J o=0o

(ha2il) + 2x(haiiO
la, 1Ox 2

h -h

haa
a2a2 1

The term on the right hand side of (3.56) accounts for the motion of the midsurface. Re-

arranging terms using equation (3.22) yields the simpler expression:

O 0
-(aa 2h) + (ha2ul)Ot Oxx

+ (ha 2) = 0.
0X2

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
+i2 Oh
a2 ax2

1
+ -a

ala2

0
+-O-2 (a, 2)]

(3.56)

(3.57)

ShU± = ±1 A
3 2 ( a

v



3.6 Leading order Navier Stokes equations

To simplify the notation we define a modified pressure P, in terms of the physical pressure

p derived in equation (3.50)

(3.58)

The stress elements are also modified by a tensor Sp such that

T 1 1 = -P+ S11 , 33 =-

T22 = -P +S 2 2 , T12 =

After a bit of algebra, we find the tensor elements to be:

2p 1 a (iia2)
$22 =2 1 0 (ia 2

x
)

a22 =
ala2 2t 0 1

512 = (a1a2 a (il/al)
ala2 1 O2

1 (&2a2)+ -O

1 a (a1i)
U2 a+2

2a (i•2/a 2)+ 2 .

Using equations (3.51)-(3.53) in (3.30), we arrive at the leading order momentum equations

along each of the vectors 61, 62 and 63 respectively:

_ 061 2-+ 2il-- + 2iM29 •

)P 1 a (ha2n11)
x,+ ala2h Oxl

+ 2961 + 2(62

}P 1 0 (halS22)
Fx2 ala2h Ox2

61 + E +11 1)

1 a

ha2 a1 2 (ha2 12)ha2a 52 1

6 a2 (a2+
a2 at

1
hala2 ax l

1
2

a 2i+2 19 (a1i)
+Ox a2 zX2
1  a2 ,

ala2 01 2

£2  f1 a (a212)

+X2 al 0zl
2 1 aal(ha 12) - 11,-llala2 ax 2

tii aa2]
a2 ax1

(3.63)

21 0a3al
a, ax2]

(3.64)

(0 2ro
P 8t2i 22 3-P 1 2 +1S11+K2S22 .

at h
(3.65)

This concludes our derivation of the leading order equations, that extends the prior work

in [96] and [45], through the inclusion of the inertial effects and pressure contributions in

-P ,

)12 -
(3.59)

1  at 2+ a t

1 a (ala2)

+ a2 at

(3.60)

(3.61)

(3.62)

(a2 ro

al

(a2 ro
at2

1 5
a2 i)

P = ½ (po+ +po) - -AH .

061
+ 2a-1 - +at



the tangential direction. The addition of these extra terms is important for a number of

problems; for instance in sheet retraction the driving force originates in the VP term, which

was omitted to leading order in the past. The addition of the inertial terms enables us to

examine sheet motion at arbitrary Reynolds numbers. Finally, we note the error made by

Fliert et al. [45] in deriving equation (3.62).

The system of equations (3.63) - (3.65) is completed by the continuity equation (3.57).

We thus have 4 equations to solve for the unknown midsurface, h, il and i 2. Additional

equations and conditions need to be included, if the geometry under consideration is more

complex and requires more than one function to be completely determined.

In this thesis, we shall concentrate on axisymmetric sheets. Nonetheless, we note that

other geometries can also be considered provided we can parametrize the midsurface using

line-of-curvature coordinates at all times. If this is not feasible, the more complicated

equations shown in the previous chapter must be considered.

3.7 Unsteady axisymmetric sheets

Here we consider the motion of an unsteady axisymmetric sheet. We can parametrize its

center-surface by (see figure 3-1)

ro = [R (s, t) cos q, R (s, t) sin ¢, F (s, t)] , (3.66)

where s corresponds to the arclength. The parametrization by arclength requires

S+ F2 = 1 , (3.67)

where the subscript denotes differentiation. The tangent vectors are

el = [R, cos ¢, R, sin ¢, F,] =- al = 1, (3.68)

e2 = [-R sin ¢, R cos ¢, 0] > a2 = R (3.69)

and the corresponding outward (pointing away from the axis of rotation) unit normal vector

is
e= x e 2n = [-F, cos q, -F, sin ¢, Rs] . (3.70)
lel x e2j



:osý, Rsin ,F)

Figure 3-1: Axisymmetric Sheet Geometry

Introducing the angle the tangent makes with the vertical, 4, we can reduce the complexity

of the equations. We thus write:

Fs = - cos 4/

Rs = sin 4 ,

(3.71)

(3.72)

and express the azimuthal , 1 and axial K2 curvatures in terms of 0 as

Osel • fi
• -- s ,
el - e1

- e2 - fi
e2 -e2

F, - cos
R R

(3.73)

(3.74)

Moreover the unit cylindrical coordinate vectors, ez and er, can be expressed in terms

of the vectors el = 61 and fi through

er = R,61 - Fsfi = sin •e 1j + cos #fi

ez = Fs8 1 + Rsfi = - cos 0~ 1 + sin Ofi

(3.75)

(3.76)



With the help of these expressions we can determine the time derivatives of the surface

vectors:
de l  Oe2 afi

-= Ctfi , =Rte2 and = -eat at at (3.77)

In the same manner, we determine the velocity and acceleration of the midsurface

Br0Or = Vo = (Rt sin V - Ft cos 0) e1 + (Rt cos 0 + Ft sin ?) fi,
at

02ro
at2

aVo=- = (Rtt sin V - Ftt cos 0) A1 + (Rtt cos 0 + Fu sin 4) f .at

(3.78)

(3.79)

Let the velocity of fluid particles on the midsurface relative to the moving coordinate

system be:

U = u6l + ve2 . (3.80)

Thus we have a system of 5 equations in the 5 unknowns F, R, u, v and h :

p (Rttsin - Futcos4 +
1 au2

2 Os

( (Rv)P ( --t-

v2 OR
R s )

OP

Os

hR k (hR2 12)
- R Os

-Ap + 4yH
p (Rt cos 0 + Fu sin 0 + 2uPt
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R
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Rh Os

1 OR
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Figure 3-2: Geometry of the outer surfaces

where the stress elements are now:

2-2p OR 1 (U2R) 24 [OR O uORS11= f-- -- + 2R• +
R Ot u s R Ot ss s

22 OR2  O (uR2) 21_ [2 OR u OR]
22 = + a o - [R t Rs as+2 &

S12 = R 0 (vR)
Os

(3.87)

(3.88)

(3.89)

The principal curvatures of the outer surfaces need to be determined in order to find

H = (H+ + H) and AH = H+ - H. The leading order expressions for the mean

curvatures H± was given in Chapter 2 (see equation (2.63)). To study the effects of highly

curved sheets and/or sheets whose thickness varies rapidly, all terms need to be retained.

The upper (+) and lower (-) surfaces are (see figure 3-2):

r± = ro• i, (h,(3.90)



whose corresponding tangents are given by:

e I = [(11± sin ± h, cos 0) cos 4, (1i± sin + - h, cos i) sin q, -li± cos0 -l h, sin e] ,

(3.91)

(3.92)

where we set

11,2± = 1 F h 1,2. (3.93)

Using (3.91) and (3.92) we can deduce the components of the first fundamental form:

1 e2a l = e = 12 + ,

a2 =e . e-2 = R212,

a12 = 0.

(3.94)

(3.95)

(3.96)

The normal vectors are

el x e±Se~ Xe2
Ie xe I a1

(11± cos o +F 1h' sin O) sin ¢, (11± sin I ± ½h' cos 4)] . (3.97)

and the derivatives of tangent vectors are:

,e• = [[(11±, T ½hi) sin) + (li±ni ± 1hS,) coso ] cos 4,

[(11±• T hrlSi) sin / + (l1i =± h,,) cos 0] sin 4,

- (1i±s = h8 i) cos + (li±K ± h,,)sin ] , (3.98)

00e± = [-Rl 2± cos 4, -Rl2± sin 4, 0] . (3.99)

The second fundamental form is found after some algebra involving equations (3.97)- (3.99):

b = Oe - fi = (a 11±hl , + hs (hK•),) (3.100)b~tA, ta l 2LIIILQ±

b= e 2 R12±b22 0 -e• "n = - -±11V a,,(l1± cos7 :F ½h, sin )

e = R [-12± sin ¢, 12± cos 4, 0] ,

(3.101)

[(li± cos = T½h' sin e) cos ¢,



The principal curvatures are thus:

K1

V(1 T- lhl

(
a22 - (1 2

+
h. (hnl), ± 2hs, (1 T !hK)

)2 + h2 4 ((1 T 1h)2+

S1 htan

(3.102)

(3.103)
V(1 Ahri) 2 + 1h2

In the limit where hr, << 1, but h, and h,, are appreciable we find that:

(H+ + H = ( + 2) hs (hKl)s

F1 -2 4 (1+ h•h) 3/2

4+ SS

H+ - H_ =
(1+ l h)3/2

(3.104)

(3.105)
h1 K2 tan

4 s

This concludes our derivation of the governing equations. In the chapters that follow, we will

focus on applying this more general framework to a number of specific physical problems.

1 aa±11 W 3/2

+b2 _ 2
= 

=



Chapter 4

Planar sheet retraction

In this chapter we consider the retraction of a planar, semi-infinite viscous sheet under the

influence of surface tension (figure 4-1). Experimental study of the retraction of a planar

film is impractical owing to the edge effects [21] and the difficulties inherent in producing a

perfectly linear rupture. Nevertheless it is interesting to study this geometry in order to gain

physical insights from the relatively simpler governing equations and to make comparisons

with the more experimentally feasible circular geometry.

4.1 Introduction

}h(o,t) = H

Figure 4-1: Planar Sheet Geometry

Planar sheet retraction has been investigated numerically by a number of authors, begin-

z.k



ning with the work of Brenner & Gueyffier [13], who presented a study of a one dimensional

lubrication model. For a planar sheet of thickness h (x, t) moving under the influence of

curvature forces along the x-axis with speed u (x, t) (figure 4-1), the equations used in [13]

follow directly from equations (3.57) and (3.63) by setting al = a2 = 1. We find:

Ut + uu = (hux)x + X , (4.1a)
ph p

ht + (hu)x = 0 , (4.1b)

where n (x, t) corresponds to the curvature of the film profile,

K= xx (4.2)

(1 + lh2~)3/2

Brenner & Gueyffier identified three distinct regimes that depend on the Ohnesorge

number that characterizes the flow, defined as:

Oh = (4.3)

Their simulations revealed that in the low Oh regime (Oh < 0.1) capillary waves exist ahead

of a retracting rim. For moderate Oh (0.1 < Oh < 10) a rim is present, but no capillary

waves form, whereas in the high Oh regime (Oh > 10) no rims were found in accordance

with the observations of Debr6geas et al. [35] (see figure 4-2).

The retraction time scales are different in the high and low Oh regimes. Since numerical

simulations indicated that the characteristic speed, uc, is independent of Oh, the length

scale prescribes the characteristic retraction time. Naturally, this length scale is a measure

of the distance from the tip over which the film is disturbed and depends on the relative

importance of viscosity to surface tension, as quantified through Oh. In the low Oh regime,

the motion is primarily concentrated near the tip, so that the characteristic length scale is

set equal to H. This implies that the characteristic time scale is

H _/pH
3

Tinv - -- 
•  (4.4)uc 2,/

which is in the order of microseconds for the soap films in Ranz's experiments [92]. Con-

versely, at high Oh, a larger portion of the film is accelerated by the unbalanced curvature



Oh < 0.1

0.1 < Oh < 10

10< Oh

Figure 4-2: Schematic illustration of the three distinct regimes obtained for a retracting
sheet [13]. As the Oh progressively increases, the capillary waves and then the rim disappear

through the action of viscosity.

near the tip and the flow is characterized by a length scale OhH . Hence the characteristic

retraction time is given by:

OhH pH
Tvis h- H - (4.5)

uc 2 -y

This time was of the order of seconds for Debr6geas' thicker films [35].

Following the work of Brenner & Gueyffier, two-dimensional simulations of planar sheet

retraction were presented by Song & Tryggvason [108], who took into account the effect of

the ambient fluid. They found that even when the ambient to sheet viscosity is of the order of

0.1, the influence of the ambient fluid is minor. Their results however were somewhat limited

due to the short extent of the fluid sheet, and no conclusion could be drawn concerning the

dynamics in the long time limit. More recently, Stinderhauf et al. [111] performed two-

dimensional simulations of the Navier-Stokes equations, but neglected the ambient fluid on

the basis of the prior work of Song & Tryggvason. They focused primarily on exploring the

acceleration phase of the film edge towards the terminal Taylor-Culick speed and provided

some insights into the stability of falling liquid sheets.

In this chapter we explore further the model of Brenner & Gueyffier [13]. Even though

this geometry has been previously considered, several new insights may be obtained. In § 4.2



we present the derivation of the conservation laws and clarify why equation (1.7) adequately

describes flow with viscous dissipation, despite the fact that viscosity was neglected in its

derivation. In § 4.3 we calculate an analytic expression for the hole growth during the early

stages of retraction in the high Oh limit. Finally in § 4.4, we derive a simple analytic formula

that gives the maximum thickness of a high Oh film at all times. These new analytic results

are compared with numerical solutions.

4.2 Conservation laws

We consider a planar sheet of finite initial length L. At any instant, the edge of the sheet

is located at xtip (t). Imposing the conditions

h (Xtip, 0) = hx (L, t) = hxx (L, t) = 0 , (4.6a)

u (L, t) = uX (L, t) = 0 , (4.6b)

and h (L, t)= H, (4.6c)

we can deduce the conservation laws for the mass, momentum and energy. The total mass

of the fluid (per unit length) is: L
m = p hdx . (4.7)I tip

Mass conservation trivially follows from (4.1b) since

dt = ht dx = -p huIt. =0. (4.8)
Sxtip

More importantly, an expression for the total sheet momentum

P = p hu dx (4.9)
xLtip

can be found by multiplying equation (4.1b) by u and equation (4.1a) by h and adding them

together. Making use of

h(1 hxx ( hx + 2

h 2 h 3 + (4.10)(1 + 1hý2) 3/2 x3/2 2X 4x V +4h



we obtain the equation

(phu)t + phu2 - 4uhux - yhK - 2-y (1 + h2)-1/2) = 0. (4.11)

Integrating from xtip to L and making use of (4.6) yields:

dPdP - 2, (4.12)

under the assumption that hx -- oo as x -- xtip.Hence, we find that even though the

dissipation due to viscosity is not directly described by Taylor and Culick's momentum

balance, its inclusion does not alter the veracity of their result. With this simple new

calculation, we see the role of viscosity in the dynamics of retraction: it affects how the

momentum is distributed through the film, but does not affect its terminal speed, u,. As

also pointed out in the two-dimensional numerical calculations of Sfinderhauf et al. [111],

in the long time limit 1/2 of the surface energy is converted to kinetic energy; the other 1/2

is ultimately dissipated due to viscosity.

To obtain the corresponding energy equation, we multiply equation (4.1b) by u2 and

equation (4.1a) by hu and add them, which yields:

½p (hu 2), + p hu3 ) = 4p•u (hux), + "yuhnx . (4.13)

The two terms on the right hand side of (4.13) can be written as:

u (hux), = (uuxh), - hu2  (4.14)

uhK~ = (uhn)x - (hu)x . = (uhn), + htn . (4.15)

After some manipulation we find that

he = hxht(1 + h2)-1/2 ( 1+h) , (4.16)

which allows us to write

phu2 + 27 t1+ 4h2 )+ (phu - 4jhuux - yuhn -3 ½hxht (1 + 12h -4phu2.

(4.17)



Integration with respect to x and use of the boundary conditions (4.6) yields

d- phu + 2 1+ 2h) dx = -4p L hu2 dx

-li h2ht (1+ 4h2) -1/2 2Z2y

(4.18)

Using (4.1b), we finally obtain

d
(Ek + E ) = -D, (4.19)

where we identify

-LL
Ek = hu 2 dx, (4.20)

Eo= 21+ hdx, (4.21)
xtip

/L
D =-4 hu2 dx, (4.22)

Xtip

as the total kinetic energy, surface energy and viscous dissipation of the sheet respectively.

This argument reveals why Dupre's original argument of balancing surface energy lost and

kinetic energy gained by the retracting film predicted an incorrect retraction speed. Culick

[31] argued against Dupr6's prediction on physical grounds, attributing the discrepancy to

the energy lost while the undisturbed film accelerates inelastically to the constant Taylor-

Culick speed. We now see that momentum conservation equation nevertheless yields the

correct expression for uc, since the viscous terms dropped out of equation (4.12).

4.3 Early stages of retraction

Assuming that we are in the high Oh regime, we can obtain an analytic expression that

describes the initiation of the sheet retraction. Non-dimensionalizing the equations by

t --• Yvit*, x --+ OhHx*, h --+ Hh* and u ->- ucu* ,



we can write the momentum equation in non-dimensional form as

u=* + u*u h* (h*u*)x* + Oh-20.h . (4.23)

If we assume that the fluid sheet consists of a nearly semi-circular cap followed by a straight

edge, there occurs a singularity in the curvature at xO = (20h)-1, since at t* = 0 it satisfies

20h2  0 < * < (2h)4.24)

0 z* > (20h)-1

Therefore we can approximate .4** initially by a delta function

n• = 20h26 (x - xo) . (4.25)

We further assume that during the initial stages of retraction, the film thickness remains

uniform to leading order, x* is small compared to the axial extent of the film, the delta-

function structure is preserved in n**, and the semi-circular cap moves at nearly constant

speed. We thus reduce the problem to

ut = 4uxx + 6 (x - xo) , (4.26)

where we have dropped the stars for convenience. These simplifying assumptions are ex-

pected to be strictly valid only in the high Oh regime, where the viscous effects dominate

and resist the shape change of the fluid film, specifically the development of a pronounced

rim.

The velocity is assumed to be continuous, which allows us to integrate equation (4.26)

from x0 -e to xzo+ for some e > 0 small. Taking the limit as e -- 0 yields a jump condition

for ux:

[ux] = -¼ . (4.27)

Away from the discontinuity at x0 (which without loss of generality we set to be xo = 0)

we are left with the heat equation

ut = 4uxx , x 0 , (4.28)
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Figure 4-3: Plot of the tip velocity vs time during the early stages of retraction for different
Ohnesorge numbers. The plots for Oh = 100, 500, 1000 and 10000 are indistinguishable.
The dotted curve shows the theoretical result, equation (4.34), which is in good agreement
with numerics up to a time t O.4 0.4rvis, where Tvis = 2-y

which we solve subject to the conditions

u (, o) =0,

us (0, t) = - ,
u (x, t) --+ 0 as zx --+ oo .

(4.29)

(4.30)

(4.31)

The condition (4.30) comes from the jump in ux at xo and assumes that there are no

velocity gradients within the fluid cap. Defining ii as the Laplace transform of u, we take

the Laplace transform of equation (4.28) to find:

(4.32)
d2 exp x).

s 4 l = 0 -* U= -I exp(- X,.ds 4 VS F

The transform can be inverted by contour integration to yield

S(x, t)= /4t -- ds = exp - - ¼xerfc ( (4.33)



The speed at the tip is thus

(0, t)= /, (4.34)

or, in dimensional variables,

S(0, t) = uc V , (4.35)

which implies that the free edge is located at

2 t 3/2
XO = 3 •  H. (4.36)

In figure 4-3 we show the evolution of the tip speed for various Ohnesorge numbers

which verifies the validity of our calculation for short times. This new result supports the

idea that the geometry does play an important role in the retraction dynamics as suggested

by Brenner & Gueyffier [13]. The edge of a planar film initially recedes with a displacement

that scales as t3/2 while in the experiments reported in [35], [32] and [99] the retraction of

a circular hole follows an exponential law.

Despite our assumptions greatly simplified the problem, the analytical solution obtained

matches perfectly the numerical simulations at early times ( t < 0.2tvis). At later times,

the agreement is quite good with an error of less than 6% at t - tvis. Beyond that time,

a number of neglected effects become significant, such as h, and the convective term, thus

rendering this approximation invalid.

In figure 4-4 we plot the evolution of the tip speed for various Oh. We see that for films

of Oh > 100, the tip speed evolution curves coincide with each other . This behavior could

also be inferred from equation (4.26), where Oh dropped out in the end. This observation

provides further support that the retraction indeed occurs on the viscous timescale.

4.4 Maximum film thickness

In the high Oh limit, no visible rim forms as the sheet retracts; therefore, by mass conser-

vation, the film thickness must increase with time. To find the maximum film thickness,

hm (t), we examine equation (4.23). We assume that the semi-circular cap is preserved at
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Figure 4-4: Velocity of the film edge for different Ohnesorge numbers. In the high Oh limit
the velocity curves coincide with each other.

all times. The non-dimensional curvature is thus assumed to be

0 < X* < lh* (t) /OhK* = h* (t) /Oh (4.37)
0 x* > h*m (t) /Oh

The maximum film thickness is expected to be at the point of discontinuity in curvature,

the center of the semi-circular cap, where x = A* (t) /Oh. Plugging this expression for

K* into equation (4.23), integrating over an interval around x4 and shrinking it to zero

yields the jump condition at 4x:
[h*u*.] = - . (4.38)

Just to the right of x4, we use mass conservation (4.1b) and the jump condition (4.38) to

find

hm (t) = H 1 + t) (4.39)4 Tvis

where H is the initial film thickness. The linear increase in film thickness is confirmed with

the numerical results shown in figure 4-5. Since in a numerical solution having a discon-
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Figure 4-5: Maximum film thickness, hm, vs time for different Ohnesorge numbers. In the
high Oh limit, hm grows linearly in time, confirming the theory represented by the dotted
line. The numerical results correspond to profiles with no = 2.1 .

tinuity in curvature would complicate its implementation, we smooth the initial curvature

gradient as discussed in Appendix B. The slope of the line is corrected to account for this

smoothing by writing:

hm = H 1 + HKo , (4.40)

where no corresponds to the initial curvature at the tip. It is also important to note here

the difference with the low Oh regime films, where one finds through mass conservation

that the maximum film thickness, or in other words the rim radius, evolves according to

In summary, we clarified through directly manipulating the lubrication equations how

the momentum balance obtained in terms of an inviscid theory by Taylor [114) and Culick

[31] can be similarly obtained for arbitrary viscosities. Moreover, by making some sim-

plifying assumptions made for the high Oh films, we were able to obtain new analytical

expressions for the rate of retraction during the initial stages of the motion the maximum

film thickness as a function of time. These results will be built upon and extended in our

consideration of circular sheet retraction in Chapter 5.



Chapter 5

Circular sheet retraction

We now turn our attention to the retraction of flat films that move owing to the unbalanced

surface tension force that results from nucleating a hole of radius Ro at time t = 0. This

configuration is easily achieved in the laboratory with the bursting of a soap film (see figure

5-1). To complement the numerous experimental studies on film rupture (e.g. [77], [92],

[35]), we develop a new theoretical model that allows us to investigate the film motion for

arbitrary Ohnesorge numbers.

Figure 5-1: Frames taken from the bursting of a soap film. Time increases from left to right
and from top to bottom. The times are indicated at each frame. The retraction process
lasts about 7.6 ms.



5.1 Introduction

1'

Figure 5-2: Circular Sheet geometry

As in the planar case considered in Chapter 4, we assume that the film thickness h (r, t)

varies slowly with r and so describe the equations of motion with the lubrication model

derived in Chapter 3. In particular, we set al = 1 and a2 = Xl = r in the continuity (3.57)

and momentum (3.63) equations to find:

ht + - (hur)r = 0,
r

Ut + UUr = [(h (rU)r) hr + -r+hp r r 2rI p

(5.1a)

(5.1b)

where u (r, t) is the radial sheet speed and , (r, t) is the curvature of the film profile, given

by equation (2.67), namely:

h + hrn (r, t) = +
2 (1 +h) 2r (1 +!h)

(5.2)

We note here that the azimuthal dependence in our model was neglected on the basis of

the experiments of Debr6geas et al. [35], who confirmed that the resulting motion is purely

radial via particle tracking.

Holes in thin films do not necessarily open, because the second term in equation (5.2), the

azimuthal curvature, acts in opposition to the hole expansion. The only possible stationary

configuration would arise when the free surface has the shape of a catenoid, which has zero



curvature everywhere. For the hole to expand radially, the force due to surface tension,

-yr,, must be positive at the tip. However, when we have that

½H < R 0 < H , (5.3)

it easy to verify that r, < 0 at the tip, meaning that a hole of this size will contract and

eventually close itself and film rupture would not take place. We note that similar criteria

for the stability to film puncture were established by Taylor & Michael [118]. We shall

henceforth proceed by considering configurations for which holes will grow.

The governing equations are not amenable to extensive analytical work, so we will begin

in § 5.2 by following the argument of Debr6geas [35], that describes the dynamics in the

high Ohnesorge number limit during the early stages of retraction. We then proceed in §

5.3 by describing our numerical procedure and in § 5.4 we present our results. The chapter

concludes in § 5.5 where we present a discussion of three-dimensional effects that were

neglected in the present model.

5.2 Early stages of retraction

In the high Oh limit, viscous stresses dominate inertia and curvature. Non-dimensionalizing

the equations as in (5.11b) and away from the hole, where both K, and hr are assumed

negligible, (5.1b) can be approximated as

(ru), 0 -O = (r) = or (5.4)

where ro (t) corresponds to the radius of the punctured hole and the dot denotes differen-

tiation with respect to time. Since the surface energy is

1f 2

E = 41ry r 1 + dr 4 rdr , (5.5)
4 rro

its rate of change during retraction is simply

,s = 4I-rro0o . (5.6)



In the viscous limit, the surface energy is primarily dissipated within the film through the

action of viscosity. The viscous dissipation Jav is thus:

y = 27rH ( (u: Vu) r dr = 4rH (u 2 + u2/r2)2 dr = 47rpHr0 . (5.7)

Energy conservation yields an expression that gives the radius of the punctured hole as a

function of time. Specifically, E, = :v implies that:

O_ = -
(5.8)

ro pH '

from which we can deduce

ro (t) = Roe2vis , (5.9)

where Tvis = !pH/'y. Equation (5.9), initially obtained by Debr6geas et al. [35], can be

contrasted with their experimental observations that also yield an exponential retraction

rate:

roexp (t) = Ro exp 1. is (5.10)

The difference in the exponents in equations (5.9) and (5.10) will be considered in section

5.4.1, where we shall demonstrate that it may be ascribed to the initial film profile. Despite

the fact that Debr6geas et al. did not resort to viscoelasticity theory to obtain equation

(5.9), they suggested that the exponential behavior may be due to the viscoelasticity of

the films. It is now clear however, that the exponential behavior need not be attributed to

viscoelastic effects; rather, it is a generic feature of the circular hole retraction in a viscous

sheet.

5.3 Numerical method

Before presenting our results, we describe the finite difference scheme used to solve the

system of equations (5.1). In § 5.3.1, we introduce the two different ways used to non-

dimensionalize the governing equations, based on the Ohnesorge number. We then proceed

in § 5.3.2, where we explain the domain mapping transformation that maps the tip location

to the origin of our computational domain. In § 5.3.3, we derive the equation used at the

tip and conclude with § 5.3.4, where we present the discretization of the equations on a



staggered grid.

5.3.1 Non-dimensionalization of the governing equations

In non-dimesionalizing the governing equations (5.1) the timescale is chosen according to

the Ohnesorge number. By selecting the larger timescale of the two, Tin, and rvis , we

facilitate the computations, since with the same computational cost, we can integrate the

equations further in physical time. Given that Tvis = OhTinv, when Oh < 1, the flow is

primarily dominated by inertia and the appropriate retraction timescale is given by Tinv as

defined in equation (4.4). By introducing the scalings t = Tinvt*, u = UcU*, h = Hh* and

r = Hr*, equations (5.1a), (5.1b) and (5.2) may be written in non-dimensional form:

1

h*. + -- (h*u*r*)r. = 0, (5.11a)
r*r*

40h h* * * 1
ut. + u'u* - h* -* (r*U*)r*r 2r* h* + 2r*, (5.11b)

K* = h*3* + hr. (5.11c)
2(1+ rh~3/2 2r* (1 + 4 r*h' 2

2(1 + 4 4r+h ?)1/2

Conversely, when Oh > 1, using the scalings t = rvist*, u = ucu*, h = Hh* and r =OhHr*

yields the system:

1

h*. + -- (h*u*r*)r* = 0, (5.12a)
r*

ut. + u*u* = (- (r*u*) r* - h** + a, (5.12b)

K = h*r 3/2 r* 1/2 (5.12c)
2 1 + h ~) 2r* 1 + 4-h2hr*)

At the far end of the film (r - oo), Neumann conditions are used for the thickness. For the

velocity, we use either a Dirichlet or a Neumann condition depending on whether we pin

the film at the far end of the domain. As far as the initial film profile is concerned, we use

h* (r*, 0; a)= 1- -a -(r* - r) + (1+ 2a)2 + 4 (r* - ro) (2 ý+ r* - r-)

(5.13)

where a is a parameter that controls the curvature profile and r* 2 ro. In Appendix B, we

justify our choice of this profile.



5.3.2 Computational domain mapping

Equations (5.11) and (5.12) are rearranged to solve for f = h2/4, because the slope of

h, which goes like vr - r0 (t) near the tip, becomes infinite there. Doing so avoids the

difficulties in taking the derivatives of h to evaluate the curvature at the tip, which now

transforms to:
2 f frr - fr2  frS= 2 + (5.14)
(4f + f2)3/2 r (4f + f2)3/2"

In their examination of jet breakup, Eggers & Dupont [43] remedied the difficulty of h,

blowing up at the tip by fitting an even quartic polynomial to the jet profile in this re-

gion. Our approach is more natural in terms of implementation as the discretization of the

equations is done without resorting to polynomial fits.

Since this is a free boundary problem, where the tip of the film moves, solving the system

of equations (5.1a) and (5.1b) requires the remeshing of the domain at each time step. To

avoid this difficulty, we map the computational domain (r', t') to the physical (r, t)-plane

via the transformation

T = 1 -' + ro (t) , (5.15a)

t = t' , (5.15b)

where 0 < r' < L and L is the radial extent of the film. We note that this approach

was previously employed by Zhang [131], who studied the run-up of ocean waves on a

sloping beach. Under this mapping, the edge of the film is always located at r' = 0 in the

computational domain and r = L is mapped to r' = L; the free boundary problem is thus

transformed into a fixed boundary problem.

The derivatives must be transformed accordingly by

_ 8 1- r'/L 0
-t =t 1 - ro(t) (t) /L (5.16)
a 1 0

O-x 1 - ro (t) /L Ox' ' (5.17)

where the tip speed
dro

o- drt (5.18)dt



Dropping the primes, the mapping given by equations (5.15) transforms the system of

equations (5.1a) and (5.1b) into:

2fu
ft/c + (u - (1 - r/L) no) fr + 2fur + = 0, (5.19a)

r + roc

40h [f 1  u ] 1
ut + c (u - (1 - r/L) uo) ur = c 2 [ rc ()r) - fr ('IUr + C +o,

(5.19b)

r = c2 (2 2f frr - f2 fr (5.19c)
(4f + c2f2)

3/ 2  (r + roc) (4f + C2f2)
3 / 2

where
1

c (t) = ( (5.20)1 - ro (t) IL
Equations (5.19) together with (5.18) constitute a hybrid Lagrangian-Eulerian system. The

computational domain for r # 0 is prescribed by a Eulerian formulation. The tip, however,

is treated as a Lagrangian point, and this requires an additional equation, which we derive

next.

5.3.3 Tip condition

In order to obtain the appropriate boundary condition at the film edge, the governing

equations are alternatively derived by means of a Taylor expansion. This idea was previously

introduced in the past to study slender geometries that arise in jet breakup (Eggers and

Dupont [43], Eggers and Brenner [42]). Assuming symmetry about z = 0 we write

U (r, z, t) = u (r, t) + u 2 (r, t) z 2 +... , (5.21a)

V (r, z, t) = vi (r, t) z + v 3 (r, t) 3 + ..., (5.21b)

p (r, z, t) = po (r, t) + P2 (r, t) z 2 + ..., (5.21c)

where p is the pressure and U and V are the radial and normal velocity components respec-

tively. Matching powers of z in the continuity equation,

Or (Ur) + ,z (Vr) = 0, (5.22)
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Figure 5-3: Orientation of vectors for the stress balance equations (5.29) and (5.30).

we find that

(5.23)

(5.24)

Similarly, the momentum equations

atu + Uu + VzU = -,rp/p + v (r2U + z2U + orU/• - U/r 2)

otv + Uov + VozV = -Ozp/p + v (Ov + oz2V + 0rV/r)

yield

&tu + uoru = -OrPo/P + v (j2u + Oru/r - u/r2 + 2u2)
tvl + uOrvi + v2 = - 2P2/p v + ±9 + rvl/r + 6v3 )

The stress balance equations at the boundary z = h (r, t) /2 = f (r, t) are:

ft -T - fi = i - + 2v [OrUsin2 O- (V + OzU) sin 0 cos O + OzV cos 2 0

P

fi . T . t = 0 = 2 (OzV - OU) sin 9 cos O + (O,-V + OzU) (cos 2 0 - sin2 0) = 0 ,

(5.25)

(5.26)

(5.27)

(5.28)

P

(5.29)

(5.30)

vi = -an + -U)

V3 = - 4U2 + U .-3 r2



where fi and t correspond to the unit normal and tangent vectors of the surface, T is the

stress tensor, and cOh = 2 tan 9 is the slope of the interface (see figure 5-3). In the long

wavelength limit, f »> o9f we find that to leading order in f:

-P = -K- 2v , (5.31)
P P

2u2 = f (vl - aru) - ,1vl . (5.32)

Substitution of equations (5.31) and (5.32) into (5.27) yields the equations governing circu-

lar sheet retraction presented in (5.1). However this long-wavelength approximation is not

valid everywhere and the equations become singular as we approach the film tip. Similar

difficulties arise in various applications of the lubrication approximation; nevertheless, such

models perform surprisingly well. For instance, in Eggers and Dupont [43], the lubrication

model yields excellent agreement with the actual experiments of jet breakup and pendant

drop formation. In Barenblatt et al. [4], a similar issue is encountered for the spreading

of the film on a solid substrate, and the failure of the lubrication equations near the con-

tact line is treated by introducing an autonomous contour region, which is assumed to be

moving at a speed that does not vary within that region. The free boundary problem is

then solved by assuming that this region is much smaller than the region where the lubrica-

tion approximation holds and by introducing some matching conditions between these two

regions.

In Eggers' work, the failure of the lubrication approximation is remedied by 'switching-

off' the effect of viscosity near the tip (personal communication with the author). In the

jet breakup problem, the condition at the jet tip is apparently not critical. Nevertheless,

choosing the appropriate tip condition is crucial here and needs to be addressed more

carefully. We see that when 0 = r/2 and h = 0, equation (5.30) is trivially satisfied no

matter what u2 is. Hence we infer u2 by extrapolating over the values of u2 in the interior,

found using equation (5.32). Quadratic extrapolation yields:

U2tip X 2 (X2 - X1 ) u 2 ,3 + X1 X3 (X1 - X3 ) U2,2 + X2 X3 (X3 - Z2) U2,1
XlX2 (X2 - X1) + X1X 3 (X 1 - X3) + X2 X3 (X3 - X2)

where xi = ri - ro is the (i + 1)-st node in the computational grid at which u2 takes the
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Figure 5-4: The staggered grid used for the computation. The values of fi are prescribed
at the mesh points ri and the values of ui are prescribed at (ri + ri+l) /2.

value u2,i. Substituting 0 = 7r/2 and f = 0 in (5.29) gives

-P = K - 2vOruo (5.34)
Ptip P

Using equation (5.34) in (5.27), we find that the velocity at the film edge evolves according

to:

duU - + 2 -a o + ruo + 2 (5.35)
+ r 2 + U tip

The presence of the viscous term is essential here. Had we followed Eggers' remedy, the

absence of viscosity at the tip causes the hole to expand at a faster rate.

5.3.4 Finite difference scheme

Following Eggers and Dupont, [43], the numerical solution of equations (5.18), (5.19) and

(5.35) was implemented with a centered finite difference scheme on a staggered mesh over

the interval 0 < r < L. Implementation with a non-staggered grid introduced spurious

oscillations in the curvature in the long time limit. Note that similar spurious oscillations

occur in the pressure field, when the Navier-Stokes equations are solved by prescribing all

velocities and pressures at the nodes of a cartesian grid [126]. In general, we use a smoothly

varying, non-uniformly spaced mesh

0 = ro < r2 < ... < TN-1 = L , (5.36)



and solve at each timestep for fi, the square of the thickness at r = ri and for ui, the film

speed r = ri+1/2 = (ri + ri+l) /2 (see figure 5-4). Defining

Ari = ri+l - ri ,

Ari+1/2 = ri+1/2 - ri-1/2 ,

(5.37)

(5.38)

we discretize the equation for hi, (5.19a), at each point ri and the equation for ui, (5.19b),

at each point ri+1/2. Doing so, we define

Qj (h, u) - riErui + Ar1ui -i - ol
Ari + Ari- 1  L

ui - ui-1 2fi Ariui-1 + Ari-ui
+ 2fi r +  (5.39)+ Ari - Ari- 1  r + roc Ari + Ari-1

Wi (h, u) c ui ri+1/2) i+1 - Ui-1 1 i+1 - Ki

L ATi+1/2 2 Ari

80hc2  1 [ fi ri+3/2ui+l -± i+1/2- i fi-1 ri+1/2Ui - ri-1/2Ui-1
fi + fi+l [ Ari [r + roc Ari+/ 2z ri 1 + rcc ri-1/2

fi+1 - fi 1 Ui+1 - Ui-1 (Ui
- -i+ (5.40)Ari 2 Ari+1/2 4 (ri+1/2 + ro0)

where the curvatures 'i are formed as the usual second order centered finite differences,

defined at the mesh points ri. Time integration was performed with the implicit 9-weighted

finite difference scheme:

t - -oQi (h, ut) + ( -1) Q (ht-, ut-) = 0
S -(hu 

1) ,u =t-6t

it -OW, (ht,ut)+(0-1) W, (h
t-St,ut-6t 0 O

(5.41a)

(5.41b)

where ht and ut correspond to the solution vectors at time t and 6t is the time step of the

computation. In order to solve the resulting system (5.41), we use a matrix-free Newton-

Krylov method, described in Appendix A.

5.4 Results and discussion

We now present the results of our computations. Even though we explored a wide range

of Oh, particular attention was given to the high Oh regime, in order to make comparisons
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Figure 5-5: Evolution of the film boundaries and midplane velocities for high Oh and
initial hole size Ro = 50H in time increments of 6t = 10 rvis. Distances are scaled by the
film thickness, H. As Oh is progressively increased from 10 to 104 the rim becomes less
pronounced and diffuses towards the bulk. At the same time, the region of influence of the
disturbance caused by the tip motion extends further into the film and is proportional to
Oh.

with the recently reported experimental work (e.g. [35], [32], [99]). The regimes identified

in the work of Brenner & Gueyffier [13] are also present in the retraction of circular sheets

(figure 4-2). While the differences between the two geometries are not significant at low Oh,

there are striking differences in the retraction dynamics in the high Oh regime. For the sake

of clarity of the presentation, we devote sections § 5.4.1, § 5.4.2 and § 5.4.3 to discussions of

the high (Oh > 10), moderate (0.01 < Oh < 10) and low (Oh < 0.01) Ohnesorge number

regimes, respectively.

U
Uc



5.4.1 High Oh

Experiments in the high Oh limit have been limited to non-Newtonian fluids (e.g. PDMS in

[35], molten polystyrene in [32] and [99]). We proceed by demonstrating that the essential

features of retraction including the exponential hole retraction are captured by a Newtonian

fluid description.

Figure 5-5 illustrates the evolution of typical film profiles at various Oh and their cor-

responding velocities along the film midplane in time increments of St = 10Tvis. As Oh

increases beyond Oh > 100, the rim diffuses towards the bulk of the film, thus making the

film appear to be of uniform thickness. However, as one would expect, the film is slightly

thicker near the rim and very gradually thins further away from the tip. It is also important

to note that the region of influence of the film is directly proportional Oh. This was also

suggested by Brenner & Gueyffier [13], who identified the Stokes length P/puc = OhH as

the characteristic lengthscale at high Oh. As time progresses, more fluid is set into motion

and hence the region of influence due to tip motion grows in time.

Just as the velocity curves for a planar sheet asymptote to a single curve in the high

Oh limit (see figure 4-4), something similar can be said for the circular sheet. However, the

initial size of the nucleated hole has to be taken into account. In particular, having written

the momentum equations in non-dimensional form as in (5.12b) and by assuming that the

film profile near the tip is preserved, we can replace the derivative of the film curvature

with the approximate expression

S** - 20h2 5 (r - rg) , (5.42)

provided that the azimuthal curvature term in (5.12c) is much smaller than the curvature of

the film profile. Doing so leaves us with a set of dimensionless equations that do not depend

on Oh. Therefore two different simulations will yield almost identical results provided that

r0, the dimensionless initial hole radius, is the same. In other words, curves that have the

same ratio
RoC = (5.43)

HOh

will yield virtually indistinguishable velocity curves, as confirmed by a number of sim-

ulations. For example, tip speeds of a simulation with Oh = 104 and Ro = 50H are
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Figure 5-6: Speed at the film edge as a function of time for different values of Oh, with
initial hole radius of Ro = 50H. The higher the Oh, the slower the approach towards the
Taylor-Culick speed, u,.

indistinguishable from these with Oh = 103 and Ro = 5H.

Figure 5-6 indicates the dependence on Oh of the approach of the sheet tip to the

Taylor-Culick speed. Compared to the low Oh regime, high Oh films require substantially

more time to approach uc. Viscous resistive forces delay the acceleration process, because

a larger amount of fluid needs to be accelerated by curvature forces concentrated near the

film edge. In order to assess how Oh affects the acceleration phase, we plot in figure 5-7

the time required for the tip to attain 30%, 60% and 90% of the Taylor-Culick speed for

different Oh. Each simulation was initialized with a hole radius of Ro = 50H. As can be

inferred from the theoretically predicted exponential law in equation (5.9), we find that the

times tl,2 needed for the tip to attain the speed of a certain fraction of uc that correspond

to Ohl,2 satisfy the relation

t1  t2  Oh1Oh t2Oh = 2 log Oh (5.44)Ohw Oh2 2there is a clear deviation from this relation, which

provided that Ohl,2 >_ 100. At lower Oh, there is a clear deviation from this relation, which
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Figure 5-7: Time to reach 30%, 60% and 90% of the Taylor-Culick speed vs Oh for simu-
lations with Ro = 50H. For Oh > 100, there is logarithmic dependence on the Ohnesorge
number, confirming the theoretically predicted retraction rate, equation (5.9).

suggests that the rim acceleration is different from that predicted in the viscous limit. It is

rather surprising that equation (5.44) extends beyond the range of validity of the exponential

retraction.

In figure 5-8 we confirm the exponential retraction rate observed in the experiments ([35],

[36], [32] and [99]) during the early stages of retraction. We note that the higher the Oh,

the longer the hole grows according to the exponential law. Using additional information

from figure 5-6, our simulations reveal that the deviation from the exponential behavior

occurs quite early in the retraction process, typically when the rim speed is of the order of

0.2u,.

As we saw in §5.1, sheet rupture does not occur when the punctured hole is of radius

less than the film thickness. We proceed by looking at the effect of the initial hole size on

the retraction dynamics. Figure 5-9(a) shows the evolution of the hole radius for a number

of different initial radii, when Oh = 1000. The calculations indicate that the smaller the

0
103 104
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Figure 5-8: Hole growth vs time for different Oh, for an initial hole size Ro = 50H. The
higher the Oh, the longer the hole grows according to the exponential law, equation (5.9).
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Figure 5-9: Variation of initial hole size for Oh = 1000: (a) Hole expansion vs time and (b)
Approach to Taylor-Culick speed vs time. For small initial hole radii, the agreement with
the theoretically predicted rate lasts for longer times. For larger initial radii, we approach
the planar limit, considered in Chapter 4.

initial hole size, the longer the hole radius evolves according to the theoretically estimated

exponential rate of expansion, equation (5.9). In other words, the circular geometry is

influencing the dynamics for longer times when the initial hole radius is relatively small.

However, when the hole radius is large, the film motion rapidly approaches the planar limit

considered in Chapter 4. Evidently the variations in the initial hole radius affect the low

Oh films to a lesser extent, mainly due to the shorter timescales involved. This can also be

inferred from figure 5-9 and the criterion for similarity obtained in equation (5.43).

The discrepancy between the experimentally determined hole growth rate in the work

of Debr6geas et al., 1/1.4 in equation (5.10), and the retraction rate predicted by theory,

1/2 in equation (5.9), prompts us to look at the effect of the initial film profile during

the initial stages of film rupture. If the needle the initiates the retraction is orders of

magnitude thicker than the film, the film profile near the tip may not be semi-circular and

a more pointed tip would be a more realistic initial shape. The film profile used, equation

(5.13), facilitates this calculation as it can be conveniently modified via a single parameter,

a > 0. As a -- 0, the tip approaches a circular cap; the curvature at the tip increases

with a according to equation (B.9). In figure 5-10 we show the effect on the retraction rate

as the initial film profile becomes more pointed near the tip. Sheets with more pointed
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Figure 5-10: Effect of the initial film profile. Hole growth vs time for Oh = 8x 103 and
Ro = 40. The inset shows the corresponding initial film profiles at the vicinity of the tip.
When using a more pointed initial film profile we obtain a faster rate of retraction until the
pointed tip relaxes to a semi-circular cap, which then retracts according to the theoretically
predicted rate, shown by the dashed curves.

tips initially retracted faster owing to the enhanced curvature force. Eventually as the rim

acquires a more circular form, the retraction slows down to the rate predicted by theory.

Whether the pointed initial profile is the source of the anomalously large retraction rate

observed by Debr6geas et al. in [35] cannot be assessed due to uncertainty in the film

shape and to the limited duration over which their data was collected. Nevertheless, the

experiments of Roth et al. [991, suggest that an initially pointed profile can potentially

explain the different retraction regimes they observe in experiments using polystyrene films

that have a characteristic timescale ,vis = 0 (104s) . To account for these effects and analyze

the collected data, they assumed an empirically deduced time-dependent viscosity that was

fitted with the experimental data. However our calculation yields a behavior that is quite

similar to their experimental observations, thus suggesting that the initial retraction rate
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Figure 5-11: Speed of the film tip vs time since rupture for moderate Oh. Note the retraction
of the Oh = 100 film that happens at a much slower time scale. Inset: early stages of
retraction. When Oh = 0.04, there is a brief reduction in the rate at which the film
approaches uc, due to the production of capillary waves ahead of the rim.

they observe can be attributed to the initial puncture shape.

5.4.2 Moderate Oh

Moderate Oh films (0.01 < Oh < 10) arise in most configurations of practical importance,

for example the bursting of soap films. Prior to fragmentation, a sheet is generally bounded

by an edge that recedes and accumulates fluid [123]. In figure 5-11 we show the evolution of

the tip velocity for different Oh, when the initial hole radius is Ro = 50H. Not much can be

typically said about the acceleration phase of the film edge because it happens extremely

rapidly, on the order of microseconds. For comparison, we included the calculation for

a high Oh film (Oh=100), that illustrates that the transition to uc happens on a much

slower timescale. It is also worth noting that in the Oh = 0.04 case, there is temporarily a

slight reduction in the acceleration of the tip, because of the capillary waves that are being
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Figure 5-12: Evolution of the film boundaries and midplane velocities for moderate Oh in
time increments of 6t = 10 Tinr, when the initial radius of the hole is Ro = 50H. Note
the generation of the capillary waves which are more pronounced for Oh = 0.04 and the
associated oscillations in the midplane velocities. As Oh is increased, the capillary waves
diminish and the previously pronounced rim begins to diffuse towards the bulk of the film.

generated ahead of the rim. These waves transfer momentum upstream of the advancing

rim and the associated wave drag slows down the rim.

In figure 5-12 we show the evolution of typical film profiles and their corresponding

radial velocities along the midplane of the film in time increments of 6t = 10ni,n. It is

evident from these figures that at low Oh, the motion is more localized in the vicinity of

the edge. The curvature forces impart acceleration to the rim, which in turn collides with

the quiescent fluid in the bulk of the film. The inertia of the fluid ahead of the edge is thus

responsible for rim formation.

As is evident in figure 5-12, film retraction at Oh < 0.1 is accompanied by capillary

waves that precede the rim. The work of Song & Tryggvason [108] provided some physical

0 5 10



insights regarding rim and capillary wave formation of planar sheets. In particular, via two-

dimensional simulations, they argued that the curvature variations near the tip generate

vorticity there that initiates the retraction of the edge. For high Oh films, this vorticity

diffuses through the rest of the film and for that reason no rim forms.

While the study of vorticity in our one-dimensional model is not possible, we can gain

some insights into the flow by constructing an approximation to the velocity field using the

expansions obtained in § 5.3.3. Using the velocity u and film thickness h obtained from our

simulations, we plot the velocity field (U, V) along the (r, z) directions in polar coordinates

and the pressure along the midplane of the film using the set of equations (5.21). Even

though the computation of u and h is second order accurate in br and the computations

for U and V involve the evaluation of higher derivatives of u, it is possible to capture the

essential features of the flow.

Figure 5-13 shows plots of the velocity field in the film together with the pressure along

the midplane for films in the three regimes of interest. In the high Oh regime, (c), the

pressure field attains its maximum near the film tip and monotonically decreases towards

the bulk. This pressure gradient essentially generates the flow that drives the retraction.

As the Oh is decreased, (b), we see that the pressure is nearly constant in the rim and then

drops in the vicinity of the rim tip. From the velocity field in the lab frame we notice a

backflow towards the rim, thus contributing to its growth. For the low Oh film, at each

successive neck there are pressure drops and we see circulating flow, confirming the local

generation of vorticity.

A neck that connects the rim with the rest of the film only arises for Oh < 0.1, unlike

the ubiquitous necking that arises in the capillary breakup of jets [93]. As Song & Tryg-

gvason pointed out [108], the mechanisms involved in neck thinning and jet breakup are

qualitatively different. The pinch-off that leads to jet breakup is induced by perturbations

to the jet boundaries, which increase the pressure near depressions of the jet boundaries,

thus driving fluid away from them. In a low Oh film however, the pressure attains a local

minimum at the neck. The clockwise circulation that is evident in the upper part of the

film near the neck in figure 5-13(a), tends to push fluid into the rim and out of the neck,

thus contributing to the gradual neck thinning. While we suspect that the Oh = 0.04 film

depicted in figure 5-12 will pinch-off eventually, the computational cost of such a protracted

simulation can be quite large, especially if a high accuracy calculation is desired.
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Figure 5-13: Velocity field and midplane pressure for different Oh. The vector field is
depicted by the arrows and the curve corresponds to the dimensionless pressure P* = Hp/7y
along the film midplane. For the low Oh in (a) vorticity generates capillary waves that are
connected to the rim via a neck region. As Oh increases, the waves diminish and the rim
begins to diffuse towards the bulk of the film for Oh = 1, (c). Note also the pressure drops
near neck regions.
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Figure 5-15: A contracting filament at Oh = 0.001 can exhibit similar breakup character-
istics with a retracting sheet (reproduced from simulations of Notz & Basaran [80]).

5.4.3 Low Oh regime

The situation is markedly different for Oh < 0.04. A simulation was run for Oh = 0.01,

frames of which are shown in figure 5-14. As expected, the capillary waves generated are of

higher amplitude than the Oh = 0.04 case. When these waves grow sufficiently in amplitude,

they begin to interact with the growing rim. As time progresses, this interaction becomes

more violent, causing the thickness of the neck near the rim to oscillate towards zero. At

t = 100iny, when the simulation was terminated, the film was on the verge of pinch off as

the film thickness was approaching zero.

The inset of 5-14 shows the evolution of the tip speed, which oscillates with an amplitude

that increases over time, as the rim interacts with the waves it generates. This can be

compared with the Oh = 0.04 film in figure 5-11, where the tip almost monotonically

increases to u,, apart from a short interval during which the train of waves is generated.

Thus the waves in the Oh = 0.04 case do not grow substantially over the interval of the

computation, contrary to the Oh = 0.01 case.

An indication exists in the work of Song & Tryggvason [108], that this wave-rim inter-

action can occur for Oh = O (0.01) ; however their two-dimensional simulations were not

carried out long enough to see whether it becomes more violent at later times. Such grow-

ing amplitude oscillations of the tip speed were also observed at the edge of a contracting

filament in simulations by Notz & Basaran [80] (figure 5-15). Depending on the Ohnesorge

number, there were cases where the filament profiles they obtained, were not single-valued

functions of r near pinch-off. However, our lubrication approximation presumes a single

valued film profile and this has to be borne in mind, as it possible that the rim might have

pinched-off at some earlier time.

Simulations at even lower Oh (Oh = 0.005) revealed that sheet breakup can happen



almost as soon as retraction is initiated. We note that such low Oh are not readily achieved

in a laboratory setting, since in order to probe into this regime, a water sheet needs to be

about 0.5mm thick, a few orders of magnitude thicker than a typical soap film.

5.5 Three-dimensional and other considerations

The model we considered here neglects any three-dimensional effects; specifically we have

neglected the azimuthal variations in rim radius that are expected to rise via capillary

instability of which there is ample experimental evidence (e.g. [77], [82]). Rim instabilities

also occur in the so-called Edgerton crows, formed by the rim of a tubular film that is

ejected after the impingement of a drop on a thin layer of fluid (e.g. [130], [127]).

While the rim instability is also commonly attributed to the Rayleigh-Plateau instability,

if we look at the relevant timescales, we see that the instability is more complex here due

to the fact that the rim grows in time. For instance in the moderate Oh regime, if a rim of

radius R were to pinch off due to the capillary instability, it would do so after a time

lpR3

S,•' - ,R3 (5.45)

which can be comparable to the low Oh timescale of retraction,

Tin . (5.46)

This is especially true at the onset of retraction, where H and R are comparable. However,

experiments in [77] have shown that rim instability is delayed by the rim growth, which

makes rc larger. The tendency of the rim growth to suppress the onset of this instability was

demonstrated in the numerical simulations of Fullana & Zaleski [48], who suggested that the

rim will eventually become unstable to perturbations of wavelength that are typically a few

orders of magnitude longer than the film thickness. Despite the fact that the understanding

of this mechanism will contribute to our ability to predict drop sizes resulting from film

disintegration [123], it is a problem that has not been addressed at a fundamental level

yet. Apart from the suppression of the capillary instability due to the rim growth, the

stability of the rim is further enhanced through the action of viscosity as was confirmed in

the experiments using highly viscous fluids ([35], [32], [99]).



Chapter 6

Concluding remarks

6.1 Summary

In this thesis, we have presented the formulation of the governing equations of Newtonian

thin film flows. In Chapter 2, we presented a formal fluid mechanical treatment of the Navier

Stokes equations on an arbitrarily curved surface, drawing upon various concepts from

differential geometry and tensor calculus. Particular attention was given to incorporating

the inertial effects and the surface tension contributions that arise from the variations in the

film thickness, measured relative to a center surface that prescribes the coordinate system.

The equations obtained in the end, albeit complicated, are essential for simulating thin film

flows of arbitrary geometries, where the exact resolution of the free boundaries is desired.

In Chapter 3, we considered simpler geometries that can be parametrized by a curvilinear

coordinate system. Under the assumption that longitudinal fluid motions dominate the

transverse ones, we performed a perturbation expansion in powers of a small parameter

corresponding to the ratio of the characteristic thickness to longitudinal length scales to

obtain the leading order equations. Doing so reduces the dimensionality of the problem

by one, which is of great advantage for numerical simulations. Several previous studies

performed on fluid jets employed similar approaches that compared well with experimental

observations, despite the fact that the lubrication assumption (that the slope of the free

surface is much smaller than unity), strictly fails near neck regions or at the jet tip [43].

These issues also arise in our thin film flow models, but were ameliorated by including

the curvature effects due to rapid variations in film thickness and using the appropriately

modified condition at the film edge. In the special case of an axisymmetric geometry,



the equations were further reduced to obtain a system of time-dependent, one-dimensional

partial differential equations. These equations are essentially a generalization of the models

used for example by Taylor [112] and Bark et al. [5] to study the steady axisymmetric

sheets obtained when a jet hits an impactor; our model is appropriate for unsteady motions

and includes the effects of viscosity.

In Chapter 4, we turned our attention to the simplest physical system that may be

examined with this formalism; the bursting of planar films. We clarified the shortcoming

of Dupr6's attempt to use an energy principle to obtain the retraction speed, by properly

manipulating the lubrication equations. We found that viscous forces do not contribute

to the total momentum of the film; consequently our formulation yielded the same result

as that of Taylor [114] and Culick [31], who deduced the correct speed on the basis of an

inviscid theory. As we have seen, viscosity essentially dictates how momentum is distributed

throughout the film. A measure of the effect of viscosity is quantified through the Ohnesorge

number, Oh = i/ v!/pH. In the low Oh regime, the retraction is inertia-dominated and

we get capillary wave formation ahead of a growing rim. For moderate Oh numbers, no

capillary waves form ahead of the rim and for the high Oh films, the retraction is dominated

by viscosity and no rim forms. Brenner & Gueyffier [13] were the first to identify these

regimes. We extended their work on retraction in this geometry, by predicting analytically

the dynamics in the high Oh regime at the onset of rupture. In particular, we found that

the edge of the film recedes a distance that grows according to (t/T)3/ 2, where T is the

characteristic timescale. Additionally, we determined analytically that the tip curvature

grows linearly in time, contrary to the low Oh regime which has a square root dependence.

In Chapter 5, we developed a theoretical model that allows us to investigate the retrac-

tion dynamics of a circular sheet and made comparisons of our model with the experimental

investigations of Debregeas et al. [35], Dalnoki et al. and Roth et al. [99]. Our results con-

firmed the conjecture of Brenner & Gueyffier that geometry is important in sheet retraction

especially in the high Oh regime. During the initial stages of retraction, the circular hole

punctured on a sheet expands according to et/27, while the planar sheet recedes according

to the power law obtained. This difference is associated with the azimuthal curvature that

opposes the initial expansion of the circular hole and the viscous stresses that are relatively

large when the punctured hole is small. In the long-time limit however, after which the cir-

cular hole has grown substantially, these effects are diminished and the governing equations



Figure 6-1: Frames taken from the bursting of a viscous bubble. The centripetal force due
to the curvature of the bubble deforms the initially spherical shape of the bubble as time
progresses.

asymptote to those arising in the planar geometry. The discrepancy between the predicted

and observed retraction rates, may be attributed in part to the details of the puncture

through the initial film profile. In particular, we found that the initial retraction rate could
be made faster with a slightly pointed initial film profile, but as time progresses, the re-

traction rate approaches that of a film with a nearly semi-circular initial profile. Similar

observations were made by Roth et al. [99], with his experiments on polystyrene films, but
were not attributed to the profile of the film. It is hoped that our findings might motivate

and inform further experiments on the early stages of film retraction.

6.2 Discussion and future work

Even the general approach adopted has its limitations. For example, there are cases where
the transverse motions are appreciable, so our perturbation expansion cannot be meaning-
fully applied. Nevertheless, these models may serve as a foundation stone upon which to
build more complex models that include, for example, surface tension gradients and the
ambient fluid effects.

As a natural extension to the retraction problems considered in Chapters 4 and 5, we



can use the unsteady axisymmetric thin film equations derived in Chapter 3 to study the

retraction of a curved film. Experimental work on bubble retraction that covered a rather

broad range of fluid viscosities was performed in the past by Debr6geas et al. [36] and

also by Pandit & Davidson [821. Apart from direct comparisons with experiments, the

ultimate goal of such a study would be to gain more insight into spray formation via bubble

bursting, as arises, for example, when air bubbles burst at the sea surface of the sea [8]. The

novel feature brought about by this process is the fact that the curved geometry introduces

additional centripetal forces, that are absent in flat geometries. These, in addition to the

unbalanced capillary forces at the edge, cause the retraction process to be accompanied

by the formation of ligaments that eventually disintegrate into small drops via capillary

instability [88].

Our theoretical framework might also be applied in modeling bubble production, a prob-

lem with many applications in the food and chemical industries [109] and other industrial

processes [67]. The study of the stability of gas-core annular jets, which eventually break

to yield spherical shells, goes back to the early linear analyses of Rayleigh [93] and Chan-

drasekhar [20]. Experiments by Kendall [68] showed that under certain flow conditions,

periodic oscillations occur downstream that eventually cause the encapsulation and sealing

of the gas core into shells. These forms eventually detach from the jet and then rapidly

evolve into shells with a high degree of periodicity and spherical symmetry. More recently,

Gordillo et al. [52] and Lorenceau et al. [75] utilized a similar mechanism to produce

micro-bubbles in a liquid suspension and Utada et al. [120] proposed a novel technique to

produce emulsions of drops that encapsulate droplets of another immiscible fluid. By em-

ploying a variant of the unsteady axisymmetric models derived in Chapter 3, we can study

the formation and stability of such forms under perturbations. It would be interesting to

rationalize Kendall's experimental observations, by predicting the size and formation time

of these bubbles.

On a more fundamental level, thin film models can be used to study the stability of the

receding edge of a film. The destabilization of the rim of a fluid sheet is found in many

contexts such as in the celebrated Worthington-Edgerton crowns [127], that occur when a

droplet impacts a thin film of fluid, in sheet retraction (McEntee & Mysels [77], Quer6 &

Reyssat [91]) or at the edge of the sheet formed by the oblique collision of jets (Bush &

Hasha [17], Bremond & Villermaux [12]). Small perturbations induced either artificially



or due to unavoidable irregularities in source conditions may cause the rim to deform into

cusped shapes from which ligaments are emitted, which then break into droplets. While

the breakup characteristics are reminiscent of the classical Rayleigh-Plateau instability of

jets [93], to date the understanding of this fundamental phenomenon is not yet complete.

Despite the wealth of theoretical and experimental attempts (Yarin [130], Villermaux and

Clanet [122]) and simulations (e.g. Rieber and Frohn [98] Fullana & Zaleski [48]) on the

subject, there is no compelling answer that elucidates the precise mechanism responsible

for the cusp formation. Studying the stability of the rim goes a step beyond the subject

of this thesis; the inclusion of three-dimensional effects makes the problem all the more

challenging.

It is hoped that through the formalism developed herein, a number of fundamental

problems in thin film flows can be addressed in the future. Simulation of the full Navier

Stokes equations is currently impractical for this class of problems, given that the resolution

of some of the fine features in thin film flows would require a dense mesh in the vicinity of

the film. As our calculations on the dynamics of retracting films demonstrate, the simpler

lubrication models employed here are able to capture the essential dynamics and yield

results that compare favorably with both experimental observations and simulations of

the two dimensional momentum equations. This success adds to our confidence that such

models may be applied to tackle more complex problems.



Appendix A

Numerical solution

A.1 Iteration scheme

In this appendix we present the method employed to solve the system of equations (5.41)

for the sheet retraction problem. To simplify the notation, the system of equations is recast

in the form

G (x) =0, (A.1)

where G and x are vectors. In solving this system of equations at each timestep, Newton's

method is used. Starting from an initial guess xo, we solve equation

J (Xk) Axk = -G (Xk) (A.2)

for Axk at each iteration, where J (x) corresponds to the N x N Jacobian matrix of the

system. The updated solution is

Xk+1 = Xk + Axk. (A.3)

The iteration is continued until

I G (Xk+1)l < E (A.4)

for some e > 0 small, typically close to machine precision. The solution of (A.2) requires a

matrix inversion and it is the most time consuming part of the computation, especially if

we use a fine spatial discretization. To overcome the difficulty of matrix inversion, (A.2) is



solved iteratively using the generalized conjugate residual method, which can be found for

example in [50]. At each iteration i, this method essentially solves the least squares problem

min J (xk) Axki + G (xk) . (A.5)

In the absence of roundoff error, the exact solution is found in at most N iterations. The

algorithm used by this method is outlined below:

1. Choose AxkO)

2. Compute ro = J Ax(O) + G (xk)

3. Set Po = ro

4. For i = 0 until convergence compute the following
Pi -J Pi

IIJPill2
ri+l = ri - aiJ pi

b•) J ri+1 J pj
3 1 ll Pj 112

Pi+1 = ri+l + -j=o bi)
Ax i+

-
) = Ax+) aipi

The choice of ai above minimizes the norm of the residual

|Iri+1l1 = jIJ (Axi) + api) + G (Xk)l (A.6)

as a function of a, so the norm decreases at subsequent iterations. The generalized conjugate

residual method involves computations with the Jacobian matrix, J. This can be computed

for example by a hand-written analytic formula or via the finite difference scheme

Gi (x + he,) - Gi (x)
Jij (x) = h(A.7)

However the algorithm outlined above involves only Jacobian-vector products which are

computed using:
G (x + hv) - G (x)Jv h (A.8)

for some properly chosen h > 0 (see [19] and [69]). This Jacobian-free approach is the

most advantageous since no costs of forming or storing the actual Jacobian are involved.

100



10-01-
10 io

Figure A-1: Plot of the Error vs 6x to illustrate second order convergence. When 6x = 0.2
the errors are quite large due to the intial peak in the curvature gradient around x = 0.5.

Moreover, numerical tests showed that the convergence was quite fast compared to other

methods for solving equation (A.2) and hence there is no need for preconditioning. At

each timestep, the Newton iteration is initialized by extrapolation. For example, for a fixed

time-step bt, we use

X -
+ •t = 2xt - xt - bt,  (A.9)

where xt and xt - 1 correspond to the converged solutions at times t and t - 6t respectively.

This is the essential basis of the matrix-free Newton-Krylov method employed to solve

the system of equations. An overview of Jacobian-free methods can be found in the paper

by Knoll and Keyes, [69] and further details can be found in the books by Kelley ([65] and

[66]).

A.2 Convergence tests

The quadratic convergence of the Newton iteration was confirmed by a series of tests. To

test the accuracy of the finite difference scheme employed we fixed the Ohnesorge number

to Oh=0.2, the domain length to L = 40 times and integrated the equations until Tf = 30.

Computations were performed to verify both spatial and temporal convergence.

101

. . . .. I



10-

10

Figure A-2: Plot of the Error versus 6t to illustrate the second order temporal discretization.

The equations used are obviously singular and blow up as 6x, the spatial discretization

of the domain, goes to zero; this is a shortcoming of the lubrication approximation, which

assumes slow variations in the thickness of the film. However the fact that such models

were used in the past and gave results that compared well with experimental observations,

adds to our confidence in these models. For this reason, the grids were discretized for

6x = 0.04, 0.05, 0.08, 0.1, 0.2, avoiding the use of finer grids which would get closer to the

tip. On the other hand, the use of a grid coarser than 6x = 0.2 would yield poor results,

since we initially have an abrupt peak in the curvature gradient around x = 0.5. Figure

A-1 confirms that even under these restrictions imposed on Sx, we roughly get quadratic

convergence for our scheme.

As mentioned in section 5.3.4, we use a 0-weighted scheme for the temporal discretiza-

tion of the equations. When 0 = 0.5 (corresponding to the Crank Nicholson scheme), we

are guaranteed quadratic convergence for linear PDEs. In our case the equations are highly

nonlinear so we needed to verify this quadratic convergence. In our computations, we took 0

slightly larger than 0 = 0.5, which gave better behaved solutions, without compromising ac-

curacy, especially near the film breakup (Eggers & Dupont [43]). The quadratic convergence

is confirmed in figure A-2 for various values of Rt ranging from 10- 3 to 10- 1.

One striking feature of the Newton iteration scheme that was observed during the tem-
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Figure A-3: Computation time vs time step St. The computation time is minimized when
t = 5 x 10- 3 .

poral convergence analysis is that computational cost did not monotonically increase with

decreasing time step. It was found that smaller time steps would sometimes perform faster

than larger ones. This can be ascribed to the way the Newton iteration is initialized; the

larger the time-step, the farther away the extrapolated initial guess in (A.9) is from the

converged solution. In figure A-3, we plot the computation time versus the timestep, St.

Of course there is ultimately a trade-off between taking more time-steps versus perform-

ing more iterations. Our results indicate that Rt ; 5 x 10- 3 is the optimal timestep that

achieves best accuracy and fastest overall performance.
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Appendix B

Initial film profile for the sheet

retraction problem

Since it is impossible to determine the exact initial profile of the film following its rupture,

it is imposed rather artificially. We thus assume that the sheet consists of a semicircular

cap together with a nearly straight strip of constant thickness 1 (in non-dimensional units).

If we naively apply such a condition we encounter discontinuities in curvature because we

have a jump from a curvature -2 to a zero curvature (see figure B-1). We thus need to

construct a function r (x) = h (x) that mimics this initial condition, i.e.

(B.1)

T1

*(x)

I`

I •--

K 1/2

Figure B-1: Choosing a semi-spherical cap together with a straight strip introduces a jump
discontinuity in the curvature.

104

77(x) =(X1' - y (),



where
0<x<1/2

x > 1/2
(B.2)

The last equation resembles the classical phase plane flows arising in dynamical systems

that are known to exhibit stable and unstable orbits [110]. We can reproduce a smooth

approximation to y (x) , if we borrow some ideas from this branch of mathematics. A simple

dynamical system that has stable and unstable orbits along y = -2x and y = 0 is:

= x + y, (B.3)

= -y . (B.4)

If we look at the phase plane, the solutions to this system of ODEs follow curves given by

xy = -y + a, for a > 0.

When a = 0, we find that y = 0 and y = -2x. In order to give a smooth representation for

y (x), we shift these curves to the right by some distance A; hence

(+A) y = - y 2 a (B.5)

Since y (0) = 1, we find that

A = a - 1/2 . (B.6)

Solving for y (x; a) gives

y (x; a)= -a-x+ (1+2a) + 4x ( + 2-1). (B.7)

Therefore the initial film profile takes the form

(B.8)

In the limit a -- 0, we retain the piecewise y (x) . The smaller we take a, the more pro-

nounced the peak in the curvature gradient, and the finer the mesh required to resolve the
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and curvature gradient, (c) for different

sheet shape. In the numerical computations, we typically used a = 1/20

formulae of interest is the curvature and its derivative at the tip:

. (O; a) = -2 - 4a

48a 2 (3 + 2a)
S(; a) = 2a

1 + 2a

to 1/100. Two

(B.9)

(B.10)

As we increase a, the curvature at the tip increases and as does the curvature gradient.

Figure B-2 shows some representative plots of these profiles. Choosing such forms for the

initial film profile allows us to study the effect of the initial tip curvature on the retraction

dynamics by simply varying the parameter a.

106

i - - -m - `=T --

-I•

A



Appendix C

Tensor calculus

C.1 Christoffel symbols

The Christoffel symbols associated with the bases {gi, gi} defined in equation (2.26) are:

Fir = gr . jg i = gr -Oigj = -gi . Ojgr (C.1)

The computations are performed using the following identities

Og ( = (Oq + q= T ) e- + b• qAe 3

03ga = acg3 = -be 3

(C.2)

(C.3)

(C.4)03g3 = 0

These yield,

(C.5)

(C.6)

(C.7)

(C.8)

P = gY - pag = )= pq ( q / q

ro = b "q•

r3 = f3a = 0

where Q = qq2 - q2q
1 2 qlq2-
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