
Computational Issues and Related Mathematics of

an Exponential Annealing Homotopy for Conic

Optimization

by

Jeremy Chen

B.Eng, Mechanical Engineering, National University of Singapore

(2006)

Submitted to the Computation for Design and Optimization Program
in partial fulfillment of the requirements for the degree of

Master of Science in Computation for Design and Optimization

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2007

© Massachusetts Institu eof Technology 2107. All rights reserved.

A u th o r ..............................................................
Comnutation for Design and Optimization Program

August 24, 2007

Certified by ......... ................
Robert M. Freund

Theresa Seley Professor in Management Sciences

Sloan School of Management

Thesis Supervisor

Accepted by ........

FMASSACHUS r INSTITUTE'!
OF TECHNOLOGY

SEP2 7 2007 I

LIBRARIES

Robert M. Freund
Theresa Seley Professor in Management Sciences

Sloan School of Management

BARKER



2



Computational Issues and Related Mathematics of an

Exponential Annealing Homotopy for Conic Optimization

by

Jeremy Chen

Submitted to the Computation for Design and Optimization Program
on August 24, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Computation for Design and Optimization

Abstract

We present a further study and analysis of an exponential annealing based algorithm
for convex optimization. We begin by developing a general framework for applying
exponential annealing to conic optimization. We analyze the hit-and-run random
walk from the perspective of convergence and develop (partially) an intuitive picture
that views it as the limit of a sequence of finite state Markov chains. We then establish
useful results that guide our sampling.
Modifications are proposed that seek to raise the computational practicality of ex-
ponential annealing for convex optimization. In particular, inspired by interior-point
methods, we propose modifying the hit-and-run random walk to bias iterates away
from the boundary of the feasible region and show that this approach yields a sub-
stantial reduction in computational cost.
We perform computational experiments for linear and semidefinite optimization prob-
lems. For linear optimization problems, we verify the correlation of phase count with
the Renegar condition measure (described in [13]); for semidefinite optimization, we
verify the correlation of phase count with a geometry measure (presented in [4]).
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Chapter 1

Introduction

We consider randomized methods for convex optimization, where "randomized" refers

to a process of random sampling on the feasible region. Randomized methods operate

on the paradigm of sampling from a distribution or a sequence of distributions on the

feasible region such that some function of the samples converge in some sense to the

solution of the problem.

Unlike interior point methods (IPMs), the randomized methods we consider are

insensitive to how the feasible set is defined. One is only concerned with how a

random line through a feasible point intersects the feasible region. Hence, redundant

constraints or "massive degeneracy" near the optimal solution set (that pushes the

analytic center away from the optimal solution set) have absolutely no effect on the

performance of randomized methods.

The method we are studying works on the basis of sampling from a sequence of

exponential distributions on the feasible set (under the assumption of bounded level

sets) such that in the limit, samples converge to the set of optimal solutions with

probability 1. As with all randomized methods, the most important issue is that of

generating samples, and much of the computational work and algorithmic analysis

deals with this issue.

It is the hope (far-fetched as it might presently seem) that randomized methods

might be improved to the point of being competitive with IPMs for solving large-scale

optimization problems. For very large-scale problems, IPMs can be impractical, since
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Newton steps become prohibitively expensive for large dimension and/or large dense

Newton equation systems. While it seems that they are unlikely to be competitive

for smaller problems, randomized methods have the inherent benefit of being effi-

cient to implement on a parallel computer insofar as sampling is concerned, and it is

conceivable that randomized methods may hold the key to efficient solution of very

large-scale optimization problems for this reason.

This thesis studies exponential annealing applied to conic optimization as was

presented in [7] by Kalai and Vempala. (It is described in that paper as "simu-

lated annealing" but we prefer using "exponential annealing" as the method is better

described as a homotopy method rather than as a sequence of candidate solutions.)

1.1 Prior Work

Recent work explicitly directed at the complexity of solving convex optimization

problems by a randomized algorithm began with Bertsimas and Vempala [1], which

was directed at solving feasibility problem. Their algorithm makes use of constant

factor volume reduction (with high probability) of the subset of R" containing the

feasible region by appropriate half-space intersection. Given an algorithm that solves

the feasibility problem by returning a feasible point or reporting failure, one needs to

call it O(log 1/E) times to solve the optimization problem to an optimality tolerance

of c using binary search.

This was followed by the work on simulated annealing presented in [7] by Kalai

and Vempala. In that work, a sequence of probability distributions on the feasible

region are generated approximately and sampled from. These distributions are chosen

such that their means converge to a point in the set of optimal solutions. (These

distributions on the feasible set are sampled from by simulating a Markov chain

known as the hit-and-run random walk.) It is their work that we hope to develop

further herein.

16



1.2 A Framework for Conic Optimization

For the purposes of this work, however, we will only consider linear objective functions

of the form cTx, where c E R" is the cost vector and x E R' is the decision variable.

We assume the existence of an optimal solution and that the level sets of the objective

function are bounded, whereby a distribution on the feasible region with density

proportional to e-C x/T is well defined for T > 0.

Given a linear objective function cTx and a regular convex cone C, we are inter-

ested in solving the following optimization problem:

min cTx

(P) s.t. b(e) - A(e)x = 0

b(c) - A(c)x C,

where b(e) E Rne, A(e) E Rmexn, b(c) (E Rnc, A(c) E Racxn. The constraints b(e) -

A(e)x = 0 are the equality constraints, while the constraint b(c) - A(c)x E C describes

the cone constraints.

In order to begin, we require a point in the feasible set. To obtain that, we may

solve the following problem:

min 0

s.t. Jbe - AeX -Obe = 0

(P') b - Acx +0(y -bc) E C

J > 0

11(x,6)112 < 2

for which (x, 6, 0) = (0, 1, 1) is strictly feasible for some given y E int C.

To briefly digress, we begin with a strictly feasible point because the Markov

chain of the hit-and-run random walk converges rapidly to its stationary distribution

to the extent that the starting point is in the interior of the feasible region. A step

of the hit-and-run random walk can be informally described as follows: (i) starting

17



from a point in the feasible region, (ii) pick a random direction, which defines a line

whose intersection with the feasible region gives a line segment or half-line, (iii) then

sample from the the desired probability distribution on the feasible region as restricted

to that line segment/half-line. (The hit-and-run random walk will be described in

greater detail in Section 2.1.)

Note also that the level sets of the feasible region of (P') are bounded, guaranteeing

the existence of an exponential density on the feasible region of (P').

If (P) is feasible, one will be able to find a solution to (P'), (x, 5, 6), with 6 > 0

and 0 < 0, and 1 t is a feasible solution to (P). In addition, if 0 < 0, g-- is a

strictly feasible solution of (P).

1.3 Computing the Interval of Allowed Step Lengths

Given a strictly interior point, successive iterates of the hit-and-run random walk are

strictly feasible with probability 1 (this is because we are sampling from a distribution

with a density). It is relatively simple to sample on an affine subspace, by either

generating a basis or using projections. Hence, the key to performing the hit-and-

run random walk is the ability to determine the end points of a line intersecting the

feasible region. Given a strictly interior point and a direction, this is the computation

of the interval of allowed step lengths.

We assume that the only cones we will deal with are product cones arising from

the non-negative orthant, the second-order cone, and the semidefinite cone. In order

to perform hit-and-run, it is necessary to determine, for some x E C, the maximum

and minimum values of a such that x + ad E C. We choose d such that lidJI = 1 and

-d is a descent direction.

The Non-Negative Orthant

The non-negative orthant is relatively easy to address. We have:

{a : x + ad > 0} = [a-d, ad]

18



where

ad = min ({-xi/di : di < 0} U {oo})

and

a-d = max ({-xi/di > 0: di > 0} U {-oo}).
i

The Second Order Cone

For the second order cone, given a point in the cone x = (;, t) and a direction d =

(d±, di), we want the maximum and minimum values of a such that (., t) + a(dt, dt)

lies in the cone. That is, Ilt + adt112 t + adt. We require that:

(d dt - d 2)a2 + (tdt - td) + (tT% - t 2 ) < 0

and

t + adt > 0.

By assumption, there exists a minimum value of a. By finding the region for which

the first (quadratic) inequality holds and intersecting it with the region defined by

the second (linear) inequality, we obtain the interval of values a may take.

The Semidefinite Cone

For the semidefinite cone, given an initial point X which we assume to be positive

definite (since we begin in the strict interior of the cone) and a direction D, we require

the positive semidefiniteness of I + aR--TDR- = I + aQTQT where X = RTR, Q is

orthonormal, and T is symmetric and tridiagonal (as obtained from the Hessenberg

form of R-TDR-'). We thus need to find the largest and smallest eigenvalues of T.

We may find the eigenvalue A with the largest magnitude using power iteration.

We then do the same for T - Al (which shifts all eigenvalues of T by -A) to obtain

the largest and smallest eigenvalues.

The addendum in A.1 of Appendix A describes an iterative method that helps

achieve this end more efficiently.
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1.4 Exponential Annealing in Brief

As previously mentioned, exponential annealing works on the basis of sampling from

a sequence of exponential distributions on the feasible set such that samples converge

to points in the set of optimal solutions.

The key to making exponential annealing work efficiently on arbitrary convex sets

is the ability to sample on appropriate linear transformations of the n - 1 dimensional

unit sphere. This is achieved by sampling from multivariate normal distributions with

covariances that accurately approximate the "shape" of the feasible region. For in-

stance, sampling on the unit sphere when the feasible region is "thin" would result in

very slow convergence of the distribution of iterates to the desired distribution. Al-

though it is known that the hit-and-run random walk converges (see [9]), its worst-case

complexity is very bad from a computational standpoint. The algorithm presented

by Kalai and Vempala makes use of information from samples to estimate the shape

of the set by computing an appropriate covariance matrix.

Before going further, we reproduce the algorithm of [7]:

The Unif ormSample routine picks a uniformly distributed random point from K.

Additionally, it estimates the covariance matrix V of the uniform distribution over the

set K. This subroutine is the "Rounding the body algorithm" of Lovisz and Vempala

in [8], which uses Xi, OK, R, and r, and returns a nearly uniformly distributed

point while making Q*(n 4 ) membership queries. (The 0* notation supresses poly-

logarithmic factors.)

We next describe the hit-and-run random walk precisely. The routine (with its

parameters shown), hit-and-run(f, OK, V, x, k), takes as input a non-negative func-

tion f, a membership oracle OK, a positive definite matrix V , a starting point x E K,

and a number of steps k. It then performs the following procedure k times:

e Pick a random vector v according to the n-dimensional normal distribution with

mean 0 and covariance matrix V (in order to sample on the n - 1 unit sphere

under the linear transformation RT where V = RTR). Let 1 be the line through

the current point in the direction v.

20



Input n C N (dimension)

OK : R" -+ {0, 1} (membership oracle for convex set K)
c E R (direction of minimization, ||ci = 1)
Xinit E K (starting point)
R E R+ (radius of ball containing K centered at Xinit)
r E R+ (radius of ball contained in K centered at Xini)
I E N (number of phases)
k E N (number of steps per walk)
N E N (number of samples for rounding)

Output: X, (candidate optimal solution for (P))

(X 0 , V) +- Unif ormSample(Xinit, OK, R, r);
for i +- 1 to I do

T +-R(1 - 1/N/n)';
Xi- hit-and-run(e-cT xTl, OK, i-1, XjI, k);

Update Covariance:
for j +- 1 to N do

I Xj - hit-and-run(ec T /TI, OK, Vi, Xi_ 1 , k)
end

Pi +-(11N) EN Xj

Vi- (1/N) EN X(Xj)T - P
end
Return Xi;

Algorithm 1: Simulated Annealing for Convex Optimization [7]
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* Move to a random point on the intersection of I and K (this is a one-dimensional

chord in K), where the point is chosen with density proportional to the function

f restricted to the chord.

1.5 Structure of the Thesis

In Chapter 2, we study the hit-and-run random walk and talk about the issues re-

lating to sampling. In Chapter 3, we propose improvements aimed at enhancing

the practical performance of the algorithm. In Chapter 4, we present computational

results, describe possible extensions and outline our conclusions.
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Chapter 2

Random Walks and Sampling

2.1 The Hit-and-Run Random Walk

For our purposes, the hit-and-run random walk is a Markov chain defined on a state

space consisting of points from a convex set K C R". Let H be an arbitrary prob-

ability distribution on K. (The hit-and-run random walk is not an honest random

walk in the sense of having i.i.d. increments, but we use this terminology to maintain

consistency with the literature.)

Given X,, X,+1 is defined by sampling uniformly on the unit sphere (possibly by

taking a vector v = (v1, v 2 ,... , v, ), where the vi's are independent normal random

variables, and returning v/IIV112) or a non-singular linear transformation of the unit

sphere in order to define a line , = {X, + av : a E R}. One then samples from the

distribution of H restricted to K n 1n to obtain X,, 1 .

Under mild assumptions, the probability distribution of Xn, as n gets large, ap-

proaches H.

Suppose that X is a random variable on K with an underlying a-algebra A. (A

a-algebra on K is a set of subsets of K closed under countable unions, countable

intersections and complements, containing K and the empty set.) We define the

Total Variation distance:

dTv(UF, YG) = Sup IIF (A) - AG (A)
AEA
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where PF is the measure induced by the distribution function F and PF(A) :

fA dF(x) (where we use the Riemann-Stieltjes integral here). For a density f, the

corresponding distribution function is F(x) := fK f -) d Note that every density

has a distribution function but the converse is not true. Note that this distance sat-

isfies the triangle inequality. For the purposes of this work, we will work only with

distributions that arise from density functions.

In [9], Lov6sz and Vempala show the convergence of the hit-and-run random walk

for the uniform and exponential distributions in the Total Variation distance. (They

experience technical difficulties in extending their results to arbitrary densities). The

proof of their result is complicated.

Instead, here we take an elementary (and consequently more intuitive) approach

to describing the hit-and-run random walk. We describe how one may approximate

the hit-and-run random walk (for a distribution H with a positive density on all of K)

with a finite state Markov chain. These approximations converge to the hit-and-run

random walk, which is a Markov chain on a continuous state space. We also note

that for each finite approximation, from any distribution on the states, the Markov

chain converges to a steady state distribution. We also find that the steady state

distributions converge to R. The gap in this analysis, however, is our inability to

show convergence to a steady state distribution from any initial distribution in the

limit of a Markov chain with a continuous state space. Hence, this section is in some

respects more general and in others more limited than the results of [9].

2.1.1 A Finite Approximation

Pick an arbitrary point in R" as the origin for a Cartesian coordinate system on which

a Cartesian grid will lie. We align the first coordinate direction with some arbitrary

vector.

To each approximation, we associate a "mesh-size" E, which describes how re-

fined each grid is. We may index each grid cell with n integers a1 , a2, ... , an. Let

(ai, a 2 ,. .. , an) refer to [aie, (a1 + 1)c] x ... x [anE, (an + 1)E] (which we will refer to as

an interval in R"). The union of these almost disjoint cells make up R". (Note that
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for any probability measure with an underlying density, the intersection of any two

cells has measure zero.)

Now, only a finite number of the aforementioned cells will intersect K if it is a

convex body. If K is not bounded, by the assumption of bounded level sets of cTX, we

may consider instead K n {x: cT(X - X0 ) 0} for some xo E int K, which is a convex

body containing the optimal solution set. For each cell C such that 1 u-(C n K) > 0,

we associate a state. We have now defined the state space of the finite approximation.

We now describe the Markov chain by outlining a single step. Given that the

current state w, is associated with a cell C1, randomly choose a point in C1 n K from

the restriction of h to C1 n K. One then performs a step of the hit-and-run random

walk. The resulting point lies in some cell C2, which is associated with some state

w2. The step is then the transition from state w, to state w2.

Clearly as c - 0, we recover the hit-and-run random walk.

2.1.2 The Convergence of Approximations

Herein, we describe in detail the results outlined previously.

Let a finite state approximation with fineness e, as defined above, have states

(E) (i = 1, 2,... , m.) associated with cells C respectively. Denote by r: the

steady state probability of being in state w j. Let Bf) = C A) n K.

Proposition 2.1. If H has a positive density on all of K, for the finite state Markov

chain defined above, the conditional probability of entering any state, given the current

state, is positive.

Proof. Suppose the current state is associated with a cell C0 ') and consider any state

(possibly the same one) associated with a cell C('. We know that B() and B(') are

convex bodies.

Since the density of the restriction of R to B E) is positive everywhere, and BE)

is compact, the said density attains a minimum a > 0 on B('.

Given any point x E B ,) the set of lines through x that have an intersection with

B(') of at least J (for J > 0 small enough) define a positive n - 1 dimensional volume
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on the unit sphere (or linear transformation thereof) since B(') is a convex body; that

volume takes up a fraction of the volume of the unit sphere b, > 0. The minimum

of the density function of the restriction of H to each such line through x exists, and

the infimum over all lines through x, cx, is positive since the density of H is positive.

Let the minimum value of bxc. over B(') be d (which is attained by compactness).

Then the conditional probability of entering state j, given the current state is i is

at least ad6 > 0 and the result follows. N

Corollary 2.2. If K has a positive density on all of K, for the finite state Markov

chain defined above, starting from any initial distribution on its states, the Markov

chain converges to a unique stationary distribution.

Proof. By Proposition 2.1, the Markov chain can be represented by a stochastic ma-

trix with positive entries. The result then follows from Perron-Fr6benius theory (see,

for instance, [11]). N

Proposition 2.3. K is stationary under the hit-and-run random walk.

Proof. Starting from K and conditioned on picking a fixed unit vector v (when sam-

pling uniformly on the unit sphere), if one were to perform the final part of the

hit-and-run random walk (sampling on the set defined by the intersection of lines

{x + av : a E R} with K where x E K), the resulting density restricted to that

line is necessarily preserved since the resulting distribution on that set is the density

due to the restriction of K to that same line. Since this holds for each point v on

the unit sphere or any non-singular linear transformation of it, the distribution K is

stationary.

Corollary 2.4. The unique steady state probabilities are given by 7rc) = /H (B .

Proof. Let Xk and Y denote the iterates of the hit-and-run random walk and the

finite approximation respectively.
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By Proposition 2.3, we have

Y(B() = P (Xk+1 E B(E|Xk E B.E)) pt(BE)

= Z1?(Yk+1 Ew Yk= wE)) 1a1H(B~if).

Also, since E pH(B )) = 1, 7rw = p- (B()) solves

Me
r = (Xk+1 E BiE) IXk E BE))rB>, r 0

Zi3 B (, ir > 0.
j~i=1

The uniqueness of the solution follows from Proposition 2.1 and Perron-Fr6benius

Theory (see, for instance, [11]). U

Proposition 2.5. If H has a continuous density function, then for a sequence of

finite approximations with decreasing mesh-size Ek > 0 and lim Ek = 0, the steady
k-+oo

state distributions converge to H in Total Variation.

Proof. Consider a measurable subset A of K (i.e., one such that p-H(A) is well defined).

For a measurable subset A, we can approximate A from above and below by the union

of almost disjoint intervals in R" (see [17]).

Let a sequence of upper and lower approximations be denoted by {Ak} and {Ak}

(associated with mesh-size Ek). Let

AH ( BknA)>0

Bk A E

B('k)CA

Also, for some approximation Ak of a set A, let 7rAk = ZBjErCAk (k) (the lower and

upper approximations give the inner and outer measures respectively).

Note that by Proposition 2.4, any subset B(') of K has pt(A) = (E). Note also

that the measure of a measurable set is equal to the (countable) sum of the measure
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of a partition of the set into measurable subsets. In particular, intervals in R' are

measurable.

Now, since K is a convex body (hence closed and bounded), there exists a con-

stant C, the maximum of the density of 'R over K, such that for an interval R,

pm-(R fl K) C Vol(R) (where the volume of an interval is nothing but the prod-

uct of its side lengths).

Clearly, we have Vol(Ak) Vol(A) Vol(Ak) and 7rAk < pt(A) ,rA-.

Also, both Vol(A) - Vol(Ak) and Vol( Ak) - Vol(A) converge to zero as k -> o

(remembering that Ak C A C Ak). We have that both

|p- (A) - Ak < Vol (A) - Vol (Ak)

and

1rAk - pu (A)j C Vol (Ak) - Vol(A)|.

Since this holds for every measurable subset of K, the steady state distributions

generated by the finite state approximations converge to 'H in Total Variation. U

To describe the rate of convergence of general irreducible Markov chains in Total

Variation, we have a lemma from Chapter 11 of [12] whose proof requires the notion

of "coupling" of Markov chains. This lemma is useful to us because Proposition 2.1

states that the conditional probability of entering any state given the current state is

positive.

Lemma 2.6. Given an irreducible finite state Markov chain with state space S, let

mj = minP (Xk+l= jXk = i) and m = Es m. Then
iss

dTV (7r k r) (1- _m)k

where r is the stationary distribution of the chain and 7rk is the distribution at the

k-th step.

It is difficult to make statements about m in Lemma 2.6 as this value depends
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very much upon the shape of the set K (and what linear transformation is applied

to the unit sphere). However, it is intuitively clear that m would approach 0 as the

approximation becomes finer.

Now, suppose that the first coordinate direction of the underlying grid in the

finite approximations is aligned with some vector c and we were to compute the

"worst case" difference in the means of cTX(E) and cTX with respect to the steady

state distribution of the finite approximation with fineness c and R respectively. We

define the worst case mean with respect to vector c and fineness f to be:

W = 7rZ ) max{ cII2x1 : x E Cj}
j=1

Proposition 2.7.

W E)- EH [cT X] IIcI|2E

Proof. Denote the restriction of R to A C K to be R(A).

W(O - E] cTX ] = ir ) max{I|c|I2xI : x E Cj} - E PH (B E)) E [(B Tx
j=1 j=1

= Wirg max{I|cII2xi : x E Cj} - 7rE cTX]
j=1 j=1

mE

= |c112 E 7ra) (max{xi : x E Cj} - E H(,B) [X 1])
j=1
mE

II|C|12 1: 7F(' )
j=1

CIICI2E

Knowing the "worst case" mean is relevant since one is often unable to find the

mean of the restriction of H to some cell B(', but the "worst case" mean is readily

computable given the underlying grid (and is, in fact, sometimes not attained).

The above result gives us an elementary proof for the convergence of a simplified

exponential annealing type algorithm for convex optimization problems with linear
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objectives which may be informally described as follows:

1. Choose a sequence of distributions {Dk} with means that converge to some optimal

solution, and an initial state corresponding to some x E K.

2. Choose mesh-size c.

3. Pick the next distribution to be used and simulate the Markov chain of the finite

approximation until "suitably close" to convergence. If the mean for the distribu-

tion picked is "suitably close" to an optimal solution, terminate.

4. Repeat 3.

Naturally, since it was shown in [9] that hit-and-run converges for an exponential

distribution, we will not be considering the finite approximations in computation, but

the above analysis gives a different perspective on the hit-and-run random walk.

To conclude this section, we quote a result by Lov6sz and Vempala from [9] that

describes the convergence of the hit-and-run random walk.

Theorem 2.8 (Lovisz and Vempala [9]). Let K E R" be a convex body and let f

be a density supported on K which is proportional to e for some vector a E R".

Assume that the level set of f of probability 1/8 contains a ball of radius r and that

Ef [jx - zf12] R 2 , where zf is the mean of f. Let o- be a starting distribution and

let a-'m be the distribution of the current point after m steps of hit-and-run applied to

f. Let e > 0, and suppose that the density function dc-/dlrf is bounded by M except

on a set S with o-(S) E/2. Then for

> 10 30 n2 R 2 In MnR

r2 rE

the total variation distance of o' and ir1 is less than e.

Note that the density do/d7rf can be readily interpreted as du/dirj(x) = lim (B,(x) nK)
whr 7f (B (x bK)

where Br(x) is a ball of radius r centered at x.
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2.2 Sampling

In performing the hit-and-run random walk on a convex set, it is our desire that we

have convergence of a sequence of distributions {'D} to some distribution where the

probability measure of the optimal solution set is 1.

Noting that any convex optimization problem can be cast as a convex optimization

problem with a linear objective, given a linear objective function (with cost vector

c) on a convex set K, using a sequence of exponential distributions with a density

proportional to e-c Tx/Tk (where T 1 0), the mean of the distribution converges to a

point in the optimal solution set. This is described in Lemma 4.1 in [7], reproduced

here for completeness:

Lemma 2.9 (Kalai and Vempala [7]). For any unit vector c C R", temperature T > 0,

and X chosen according to a distribution with density proportional to exp(-c x/T ),

E [cTX] - min cTx < nT
xEK

(Note that for an exponential distribution on K to exist, we require the level sets of

cTx on K to be bounded.)

We are interested in accurately estimating the probability that certain functions

of a random variable, drawn from a certain distribution, lie in some set. The function

of the sequence of random variables described in the previous paragraph is nothing

but f(X) := E [X]. On a parallel track, we might also wish to find bounds on the

probability that our estimates are off track.

Lemma 2.9 gives a bound on the difference between the mean of cTX and the

global minimum. In estimating the mean of X, we perform m hit-and-run random

walks starting from the same point, hoping that the distribution of each is sufficiently

close to an exponential distribution on K. We then compute the mean of the m

sample points. We would like to obtain a bound on the probability that cTX exceeds

E [cTX] by a constant factor (where X = K X(k), and the X(k)'s are drawn

i.i.d. from the distribution resulting from performing the hit-and-run random walk).
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C

Figure 2-1: The Cone Construction

Given a convex set K and a point x in the set of optimal solutions, let a = E [cTX]

(given a density proportional to exp( cTx/T)). Consider the cone C with its vertex

at F with the same a level set as K ({x E K : cTx = a} = {x E C: cTx = a}). It is

obvious that the expectation of cTX over K is less than that over C given a density

proportional to exp(-cTx/T) on each set. This motivates the results given for cones

below and is illustrated in Figure 2-1.

Lemma 2.10. Let c = (1,0,0,...), the temperature be T, and K C Rn be a cone

where cTx = x1 is minimized at its vertex, then the marginal of a distribution on

K with density proportional to e- T x/T with respect to xi is an Erlang-n distribution

with parameter A = 1/T, and hence has a mean of nT, a variance nT 2, and moment

generating function g(r) =

Proof. Without loss of generality, by the memoryless property of the exponential

distribution assume that the vertex of the cone is at a point where x1 = 0.

The marginal density is given by

f (Xi) - CXnie-x1
fo" Cx-e-Ax1 dx 13

32



where C is the n - 1 dimensional volume of the cone at x 1 = 1.

Now,

Xn1exp(-Ax) dx 0 j n ex dx

I (Vxn-e-1" + (n - 1) j n~2 e-x dx

1
1 (n - 1) x~2 e-x dx

(n - 1)!

Hence,
A nX-

1 e-Ax

(n-i)!

which is the density of an Erlang-n distribution.

The rest follow from known properties of the Erlang-n distribution (see, for in-

stance, [5]).

2.2.1 Distances Between Distributions

The next result describes the Total Variation distance between two exponential dis-

tributions on a cone with densities proportional to e-T x/T1 and e-c x/T 2 .

Corollary 2.11. Under the assumptions of Lemma 2.10, given two distributions o-1

and O2 on K with densities proportional to e-cT x/T1 and e-cTx/T2 respectively (T2 >

T1),

dTv(Ou, U2)= 1+Z 2)k exp(-ft/T 2 ) - 1+ k!(j/IT exp(-t/T1 )

k=1 .k=1

where

- _ n T2
-1 1 n

Proof. Consider the marginals with respect to x1 (referred to as x in this proof for

brevity), f, and f2 .

33



Referring to the proof of Lemma 2.10, one can verify that the density of a1 is

greater than or equal to that of 0' 2 for all x, E [0, st] and the converse is true for all

xi E [t, oo).

It follows that

dTv(Orl, u2 ) = f 2 (x) - fi(x) dx.

Now, since

fiW -(1/T1)"x"-1e-(1/T1)xfi(x) = n-)
(n -1)

(1/T 2 )nxn-le-(1/T2)x
f2(x) (i)

(n -1)

and

/ 0 An n--1 -x-x 00  n-1 e-xSdx = dx
a (n-i)! JaA (n - 1)!

- n-1-xOo [n-2 e-x dx

. n - 1 C)! +fCA (n - 2)!

(aA)"-1e-(1-)n + 2 _ dx

(n - +1)! (n - 2)!

= 1+ (aA)k eaA

k=1 .

the result follows.

Noting that the Total Variation distance between disjoint distributions is 1, con-

sider Ti = 1/2T2. For n = 2, dTv(U1,u-2) = 0.360787; for n = 10, dTv(ui,o2) =

0.721328; for n = 50, dTv(U1,U2) = 0.985251; for n = 100, dTv(-l,a2) = 0.999442;

for n = 1000, dTv(cl, -2 ) = 1 (to 20 digits of precision). This illustrates the depen-

dence on dimension of the Total Variation distance.

On the other hand, one finds that if we consider Ti = ( - T 2 , the Total Vari-

ation distance varies with dimension as shown in Figure 2-2. (This is the temperature

schedule suggested by Kalai and Vempala in [7].)

Now, if one would prefer to have the Total Variation Distance of the distribution

of the sample mean and samples from the next exponential distribution after the
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Figure 2-2: Total Variation Distance for Exponential Distributions on a Cone

temperature is decreased (later in this thesis, sample means are used to start the

next random walk), the problem becomes far more difficult. The distribution of the

sample mean on K no longer has a constant density on the level sets {x : cTx -- a. If

one were to consider only the distance between marginal distributions of the sample

mean and a sample point at the same temperature (which some thought would show

gives an upper bound), this is not easy to find since the marginal distribution of the

sample mean (using rn sample points) is an Erlang-mn distribution with parameter

m/T (this can be established by considering the moment generating function). The

Total Variation distance between the distribution of the sample mean at temperature

T1 and the distribution of points at temperature T2 can then be bounded above

by using the triangle inequality. It is thus unclear how to find the Total Variation

distance between the two.

At a given temperature T, with respect to the direction of the cost vector, the

marginal density of the distribution of sample means dominates the marginal density

of sample points only on an interval, [x_, x+]. This can be verified by considering the
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densities of an Erlang-mn distribution with parameter m/T and that of an Erlang-n

distribution with parameter 1/T. To determine the values of x_ and x+, we proceed

by performing the same procedure in the proof of Corollary 2.12, and find that x_

and x+ are the roots of

xe-x/nT -T [1 (mn - 1] 1/(mn-n)

M _Mn (n - 1)!

To show that real distinct positive roots exist for m > 1, observe that at the mean, the

marginal density of the sample mean distribution takes a greater value. The marginal

density of the sample mean distribution takes a smaller value than the distribution

of points as x approaches infinity (note the order of the exponential). At sufficiently

small values of x, where the polynomial and factorial terms dominate, the marginal

density of the sample mean distribution takes a smaller value. (Note that in the above

equation, after factoring x out n times, 0 is not a root.) We omit to show that there

are only two positive roots.

Applying a similar procedure as the proof of Corollary 2.12, we have given a sketch

of the proof of:

Corollary 2.12. Under the assumptions of Lemma 2.10, given two distributions o-

and c-2 on K with densities proportional to e-c TxT1 and e-cTx/T2 respectively (T2 >

T1 ), let 6m) be the distribution of the mean of m > 1 samples from the distribution

o-, then

dTV( UU2) dTV(U 1 , 92) + D (n
1,m

where

(n)mn-1 (n_/1 -1 x T)
D = 1 1+ ( mx/T)k exp(-mx_/T) - 1+ Xf k exp((xx/T1)

k=1 k=1
mn-1 (MX+IT~ 1 x(mx i k 

n-1 X+IT) 1 k -+/
-1+ E k! ex(m4T) + E k! ep x/1

k=1 k=1 .
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Figure 2-3: Total Variation Distance between Exponential Distributions and the Dis-
tributions of Sample Means on a Cone

and x-, x+ (with x_ < x+) are the roots of

-/nT1 =T1 L+ (mn - 1)!] 1/(mn-n)

M Mn (n - 1)!

This Corollary may be used to yield insights like those from Figure 2-2 since before

finding the required roots, we can make the transformation x = T1 to remove T

from the system, find the two new roots _ and t, and have x = T 1 h_, x+ = Tit+.

This can be seen to remove the dependence on T1 in the term D (n.

In Figure 2-3, with m = 3/2 n, we observe that D (n increases rapidly, apparently

towards 1, making the bound meaningless. (Figure 2-3 is given for a limited range

of n as approximately evaluating the right hand side of the equation for finding the

roots was expensive for large n.) Hence, we are unable to establish any theoretical

justification from using the sample mean as a starting point for the next random

walk. This outcome, however, is not entirely unexpected.
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2.2.2 Large Deviation Bounds

In sampling from a distribution, it is desirable to know how many sample points to

choose in order to ensure that large deviations of the sample mean (cost) from the

true mean (cost) occur with low probability. We continue with a proposition that

addresses this.

Proposition 2.13. Suppose K C R"n is a cone where cTx = x 1 is minimized at

its vertex. Let c = (1,0,0,...), the temperature be T > 0, X = kZL 1 X(k) and

p = E [c TX] = E [X 1 ]. If the X(k) 's are drawn i.i.d. from an exponential distribution

on K proportional to e-cTx/T, then

1p (CT X > (I±+),a) ! exp[-U - ln(l±/3))nm]

for / > 0, and

P (cTX < (1 - #)p) <_ exp[(,3 + In(1 -,3))nml

for /3 E [0, 1).

Proof. We show the proof of the first and more important bound, the other result

may be proven similarly. For convenience, let A = 1/T. Using Lemma 2.10, we obtain

the marginal distribution of X, = cTX and its associated properties.

For r > 0,

P(X > (1+3)p) = P exp r 1X(k) > exp (rm(1 + )p)).
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Using the Markov inequality,

< E exp r 1X(k) exp (-rm(1 + ))
Se k=1

=g(r)' exp (-rm(1 +,3)1p)
A \mn

exp (-rm(1 + O) p )

=: h(r,m,ri,/3).

Letting r = Ap, (and noting that y = n/A), we have

h(Ap, m, n, P) = exp-( + #)mnp].

We also find that the first term (due to the moment generating function has an

asymptote at p = 1, and we note further that h(Ap, m, n, r) is strictly convex in p

over (0, 1) by computing its second derivative and finding it to be

d2 h(Ap, m,i,/#) =,
mn exp(-(I + /)mnp) ( ) (1 + mrn(p - /3(1 - p))2)

(i-p)
2

We proceed to compute the first derivative to the end of finding a minimizer:

d
d h(Ap, m, n,#) =

mn exp(-(l + /)mnp) ( (p - #(1 - p))

-p

Giving the minimizer at p* = 1

Hence,

K (1 + 0)m exp(-Qmn)

= exp[-(3 - ln(1 + 3))mn]

The other result is derived similarly, taking care to pay attention to signs (in that

case r < 0). 0

Note the exponential dependence on both the number of samples m and the dimen-
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sion n. The improvement of the bound as the dimension increases can be explained

by the fact that the deviation from the mean is described in the relative sense.

While we may be tempted to take advantage of this and use 0(1) samples, it

should be noted that at least n points are needed in order to obtain a positive definite

approximation of the covariance matrix. (If K lies in an affine subspace, we may

always find a basis for the relative interior of K.) In our algorithm, we use at least

1. 5n points, which at /3 = 0.05 gives a probability of deviation of at most 0.0107 for

n = 50 and increases rapidly (it is at most 1. 45e-3 for n = 60, and at most 1. 37e-4

for n = 70).

Supposing that the optimal solution set is a singleton, as the temperature gets

lower, the feasible set is "practically" a cone as most of the probability mass is con-

centrated near that point (the "vertex"). In that case, as we converge to an optimal

solution, Proposition 2.13 gives us a good basis for selecting the number of sample

points m.

As a minor extension of these ideas, we might wish to consider different functions

of our sample points. A possibly useful quantity would be the means of the q m

points with the best objective values.

Proposition 2.14. Under the assumptions of Proposition 2.13, let pek = _1 X,

where the list X1(,),X(k2) X (km) is arranged in ascending order. Then

P (M [ (1- !#)pL) S (7) (i --

r=q

where

= P(c TX (1 -)11)
n1((1 - #)n)k

= Y' k! exp 13)n)
.k=1

and equality holds at q = 1.

Proof. Firstly, the probability that the q points with the smallest objective value all
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have objective value less than (1 - 3)p is E" (") (1 - pp)r(p3)"rn. This is thus a

lower bound on the probability in question.

To complete the proof,

P (cT X > (1 -I#)p) /= n n-1 
-Ax 

dx

J(-l)p (n - 1)!

0 Xn-le -x dx
J-)n (n - 1)!

= n-xeX1 00 + 00 xn-2e-x dx

dx
(n - 1)! (-3nIO (n - 2)!

((1 - ±)n~e xn-2e-x

(n -- )n (+n - 2)!

= + (1 k-(-- )n
k=1 ..

The assertion that equality holds at q = 1 is obvious. 0

Admittedly, Proposition 2.14 appears to be a weak bound, but the values involved

are easily computable. If one were to consider p,, one would note that it is nothing

but the truncated power series expansion of e(l-)n as a fraction of its actual value.

Clearly as the dimension n increases, for a given value of # 1, that fraction increases

towards 1.

Consider the following improvement on Proposition 2.14. In Proposition 2.14,

we considered only two possible events for each sample: {X 1 < (1 - 3)p} and its

complement {X 1 > (1 - O)pt}. (Note that an event is a set of outcomes.) Now let us

impose a richer structure on the set of events. Let k6 > 1 and 6 = (1 - /)/k 6 . We

now consider following partition of the outcome space into disjoint events:

{X1/t E [0, 6]}, {X 1/p E (0, 26]}, ... , {X1/p E (0, (2k 6 - 1)6]}, {X 1 /p > (2k 6 - 1)6}.

We then need to compute the probabilities of each of the outcomes listed.
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Lemma 2.15. Under the assumptions of Proposition 2.13,

P (cTX G [a, PI]) = pa - P,

where 0 < a < 3 and

PO= P(cTX >0/)
' n-1 k

= + E ! e-On.
. k=1

Proof. Compute po by repeating the computation in the proof of Proposition 2.14

replacing (1 - #) with 6.

Let the multinomial coefficient (rir2 .,rk ! (where 1 rj = m). Now,ri~rm..rk - 1  r!

if we wish for the mean of q numbers to be less than 0, if the largest k of those

numbers lie in the interval [0,3], it is then sufficient that another k of those numbers

be less than or equal to -0. Note also that the event that less than q samples have

X1 < y is disjoint from the event that at least q are. The following result follows

from the previous discussion.

Proposition 2.16. Let k6 > 1 and 6 = (1 - 3)/k 6 . For 1 - k6 < j k6 - 1,

let p3 = P (cTX E [(j + k6 - 1)6p,(j + k)6]), and q = P (cTX > (2k6 - 1)61 ) =

1 - Z ik, Pj. Under the assumptions of Proposition 2.13,

k'5-1 k
P (pI (1 - /3)/) > Pq + E M(m, r) ( rp q M6 -lmkZ6ll r

S j=1-k,5

where Pq is the right hand side term in the bound of proposition 2.14,

r k6-1 0 k,-1

:= (rik,., rk,_1) : E r. m, E r < q, E jr. < 0
j=1-k 6 j=1-kb j=1-k,
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or a subset thereof, and

M(m, r) = m -)
(r1-kai ... , rks -1, M - Yj=1-k5 ri

As discussed, the set S represents a subset of the event that /-I ; ( -)

What is at issue now is finding sets S for which we have a strong bound, which is

then a problem of enumeration. One could, in principle, extend the number of events

further to include more intervals of length 6, but under an Erlang-n distribution, the

probability of those events are small.
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Chapter 3

Computational Methods

3.1 Components of an Algorithm: Improvements

and Heuristics

Suppose one had a plain vanilla exponential annealing algorithm that performed

hit-and-run (without transforming the unit sphere), reduced the temperature and

repeated this until the temperature was sufficiently low.

In this section, we consider improvements and heuristics that can be made to the

above. By rescaling the set to "round" it [7] at each step, one obtains Algorithm

1 from [7]. We consider, in addition, modifying the hit-and-run random walk by

something we call "truncation."

Our practical objective is the construction of a robust algorithm that works effi-

ciently for problems of respectably-large dimension. Practical interior point methods

reduce the barrier parameter by a dimension-free factor; we would like to do the same

for the temperature (as opposed to using a factor of 1 - 1/v/f).

In attempting to achieve this, we recognize that one need not converge to expo-

nential distributions, but rather to distributions that converge in probability to the

optimal solution set.

(Note: In all diagrams that follow, "Distance from Boundary (in R')" refers to

the Euclidean distance of the current candidate solution to the boundary of the set
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defined by the inequality constraints. This quantity is a lower bound on the distance

to the boundary of the set in the smallest affine subspace containing the feasible

region.)

(In addition, n refers to the dimension of the problem and naffine refers to the

dimension of the affine subspace described by the equality constraints.)

(Note also that for problems for which an initial feasible point was not supplied,

relative optimality gaps are not shown in the phase where a feasible point is being

sought.)

(In this chapter, we take a slightly different approach from that described in

Section 1.2. In attempting to find a feasible point for to (P) of that section, we

consider the following problem:

min 6
x,6

(P") s.t. be - Aex -Obe = 0

be - Acx +6(y - be) E C

for which (x, 6) = (0,1) is strictly feasible for some given y E int C. We seek a

candidate solution with 6 < 0 and use convexity to obtain a strictly feasible point.

This is only done for the computations described in this chapter.)

3.1.1 The Next Phase: Where to Begin

In Algorithm 1, the next hit-and-run random walk at a "lower temperature" is ini-

tiated from the last iterate of the previous hit-and-run random walk. The reason

for this is that the last iterate is approximately distributed (in the sense of the Total

Variation distance) with a density proportional to e-cTx/Tk, which is close, in the same

sense, to a distribution with a density proportional to e-cTX/Tk+1. On the other hand,

computationally, we start each random walk at a single point, and it is a necessary

practicality to guard against the random walk having to begin at a point too close to

the boundary of K as hit-and-run mixes slowly when started near the boundary.

This motivates two strategies: (i) using the mean of the m samples used to approx-

46



imate the covariance matrix as the new starting point, and (ii) forcing the random

walk to avoid the boundary by sampling only on part of the line segment intersecting

K (which we will call "truncation"). Computing the sample mean t and using that as

a starting point results in a point deeper in the interior of K as it is distributed more

tightly around the true mean of the current exponential distribution. "Truncation"

explicitly does not allow iterates in the random walk to approach the boundary too

closely; this will be described in greater detail in Subsection 3.1.3.

Computational experiments suggest that using both strategies in tandem yields

better performance in terms of the convergence of the relative optimality gap to 0.

Figures 3-1 to 3-4 show results from solving the following problem:

min -x 1 + ==2 h/nx

(Cone.l,h) s.t. X 1  
>0

x, - hxi < h (i =2, 3,... ,n)

xi+ hxi < h (i=2,3,...,n)

for which the optimal solution value is -h. Here we use n = 20, h = 10, and supply

an initial strictly feasible solution (h/n, 0, 0, ... ,0). Figures 3-5 to 3-8 show results

for solving the (primal of the) linear program AFIRO (from the NETLIB suite).

Cases where the mean is used will be labelled "Mean Used", and "Single Trajectory"

otherwise. Likewise, the use of truncation will be indicated with "Truncation Used",

and "No Truncation" otherwise. To compare the results fairly (since termination

happens later under truncation), one needs to compare the relative optimality gap at

a given iteration.

What these tests indicate are that the use of the sample mean and truncation

provide marginal benefits in terms of convergence of the relative optimality gap to

0, but when used in tandem, a tremendous improvement is observed. For Conen,h, a

single walk achieves a relative optimality gap of about 10-5 by iteration 40, but with

use of both the mean and truncation at the same iteration number, one achieves a

relative optimality gap of less than 10-8. For AFIRO, a single walk achieves a relative

optimality gap of about 5 x 10- by iteration 50, but with use of both the mean and
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truncation at the same iteration number, one achieves a relative optimality gap of

less than 10~9.

Rel. Opt. Gap

10 20 30
Iterations

100

10-2

10-3

10 -

0

10 -

4 0 10
40 50 0

Dist. from Boundary (in Rn)

10 20 30
Iterations

Figure 3-1: Cone20,10 (Single Trajectory, No Truncation)
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Figure 3-2: Cone2o, 10 (Mean Used, No Truncation)
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3.1.2 Rescaling towards Isotropicity

The first modification to the "plain vanilla" exponential annealing method just de-

scribed is rescaling the feasible set. This is exactly what is done in Algorithm 1

described by [7]. The reasoning behind this is that convex bodies can be arbitrarily

thin along certain directions relative to others. This may result in arbitrarily small

steps in the hit-and-run random walk for all but an arbitrarily small set of directions

(as a fraction of the volume of the unit sphere).

The covariance matrix over K is given by EK = EK [(X - EK [X])(X - EK [X])T],

and defines an ellipsoid E {x : (x - EK [XI)TE-i(x - EK [X]) 1}. E can be

said to locally approximate K in the sense that if K were such that the mean and

its covariance were the origin and the identity respectively (this can be achieve by

an appropriate affine transformation), E would be contained in the convex hull of K

and -K. (Note that affine transformations preserve inclusion.) This is shown here:

Proposition 3.1. Given a density f supported on a convex set K with mean 0 and

covariance matrix I, for all x E E := {x : xTx < 1}, x is contained in the convex

hull of K and -K.

Proof. Suppose for the sake of obtaining a contradiction that v E E and v 0 conv{K, -K}.

We first note that v is strictly separated from the symmetric convex set conv{K, -K}

in the sense that there exists u : Ilull = 1 such that 0 < a = vTu and for all

x E conv{K, -K}, -(av - e) < xTu < a, - E (for e > 0 small enough). Note that

1 vTv > a2, and that acu is also separated from conv{K, -K} in the same way.

Consider the marginal density f where f(a) := f{XK:uTx} f(x) dx. Now,

a21(x) da < a2
I(a -E)
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and

f v - E a2f(x) da = / (UTx)2f(x) dx

SuT (JXXTf(x) dx) U

= T U

= 1.

This gives

1 <ca < vTV 1

which gives the desired contradiction and completes the proof.

(At this point, it is unknown to the author whether the stronger assumption of

logconcavity of the density function would yield the inclusion E C K.)

(Note: to compute the sample covariance matrix given m samples XI, X2..., Xm

with mean p, the sample covariance matrix is given by Esample = M ZT=1 (X -j (X -

Proceeding on the original line of inquiry, we have the factorization E = VVT,

which ensures that for all unit vectors d, Vd + EK [X] lies on the surface of E. This

also means that the set K' := {x : Vx E K} has the identity matrix as its covariance

as shown below:

EK' = EK' [(X - EK' [X])(X - EK' [X])T]

= EK [(V X - EK [V 1 X])(V- 1 X - EK [V lX])T]

= V 1 EK [(X - EK [X])(X - EK [X)T] V-T

=1I.

Rescaling allows more appropriate selection of directions for the hit-and-run ran-

dom walk and makes K "look" like a set with the identity as its covariance. This is

illustrated in Figure 3-9.

Without loss of generality, we may assume that our problem has no equality
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V

K' K

Figure 3-9: Rescaling Illustrated

constraints, since we can find a feasible point and a basis for the affine space which

the feasible set lies in and modify the conic constraints accordingly. Now, if d is

a random vector on the unit sphere chosen to define the line in the hit-and-run

random walk, the search direction under linear transformation becomes Vd (assume

V non-singular), and the exponential distribution on the line (the restriction of the

distribution on K to that line) is defined by the parameter cTVd (suppose d is chosen

such that this is positive).

Now, K := {x : b - Ax E C} and K' := {x : Vx E K} = {x : b - AVx E

C}. So given xo E K, one seeks the maximum and minimum values of a such that

b - AV(V- 1x) - AV(ad) E C. From this point of view, we seem to be working within

K' which has the identity as its covariance, using the cost vector VTc.

3.1.3 Truncation

Interior Point Methods (IPMs) for convex optimization are iterative methods that

work on the basis of maintaining strict feasibility of iterates (staying away from the

boundary of the feasible set). Each point in the feasible set has an associated inner

product (and induced local norm) and it can be shown that a ball of radius 1 in the

local norm is always contained in the feasible set, giving a means of ensuring the

strict feasibility of iterates.

Maintaining the strict feasibility of iterates in the hit-and-run random walk is

implicit, since the probability of any hit-and-run iterate lying on the boundary is 0.

On the other hand, as sample points are being evaluated (by performing a random
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walk), one usually observes "stalling" in the sense of very little further movement

after an intermediate point (during the random walk) gets close to a boundary with

a normal making a positive inner product with the cost vector (see Figure 3-10).

This is intuitively true in the sense that near a boundary (which is locally a

hyperplane), the volume of the set of descent directions on the unit sphere on which

"reasonable progress" can be made can be small compared to the volume of (half) the

unit sphere itself. The fraction in question depends on the inner product cTa where

c is the cost vector and a is the normal of the boundary pointing into the set (at the

point on the boundary closest to the current iterate). Supposing that Ilcil = |1ail = 1,

the closer cTa is to 1, the smaller this fraction can be. This is illustrated in Figure

3-10.

Figure 3-10: The Effect of the Boundary

What results from starting near a boundary is reduced accuracy at a given phase

and hence an increased number of phases. (Recall that a phase, as described in

Algorithm 1, involves a change in the current exponential distribution to one with

a lower temperature parameter.) This fall in accuracy at a given phase is due to a

low probability of hit-and-run iterates leaving such subsets of K containing parts of

the boundary resulting a slower progress. To alleviate this problem, we employ a

heuristic known as "truncation" in order to avoid subsets of K close to the boundary.

The hit-and-run random walk with an underlying exponential distribution is sim-

ple to perform due to the memoryless property of the exponential distribution, allow-

ing easy sampling on the restriction of the distribution to any line 1 intersecting K.

It is just as easy to sample on a subset of i n K omitting a segment of the line with

the lowest cost with a total measure (or probability) of p for some p C [0, 1). This

56



enables the walk to avoid the boundary.

Sampling on an interval or a halfline with a density proportional to e-cT(x+ad)/T

is in effect equivalent to sampling with a density proportional to e-Aa on a E

[amin, amax), where A = cTd/T (amax may be oo, but amin must be finite by as-

sumption). If, instead, we draw samples from the subset of [amin, amax), [aP, amax)

with probability mass 1 - p, iterates are forced to avoid the boundary to the extent

that the temperature is high. Note that, given p, as T 1 0, ao 1 0. While the reduc-

tion in temperature is similar in spirit to the effect of changing the barrier parameter

in IPMs, truncation is analogous to step-size rules.

To give an example of truncation, suppose cTd/T = 1 and [amin, amax) = ), ).

Let p = 0.5. We then have ap = -1 + log(2) and we sample on [ap, oo) with the

density f(x) = -lx. This is illustrated in Figure 3-11.

Truncation Illustrated for p=0.5

1.2 -

0.6 -

-6.

a = a -In(1 -p) =-1 + In(2)
0.4-

0

-1.5 -1 -0.5 0 0.5 1 1.5 2 25 3

Figure 3-11: Truncation Illustrated

The chief question one might ask is what distribution do the iterates converge to.

It is unclear. However, looking at the new Markov chain generated, one notes that

there is a "layer" of transient states on the boundary. Also, as the temperature goes

to 0, this "layer" thins and vanishes.

In informal tests on the cone {x: max 10xI 5 xi} with an objective vector
k=2,3,...,n

(1, 0, .. ),it was found that "truncation" resulted in improved performance in iter-
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ation count.

within le-6

In this problem, the number of phases is the number required to get

of the optimal objective value of 0. Figures 3-12 to 3-15 illustrate this.

n = 10 (Averaged over 5 trials)

0.1 0.2 0.3 0.4 0.5
H&R Marginal Truncation

0.6 0.7 0.8 0.9

Figure 3-12: Phase Count on a Cone versus p (n = 10)

The results suggest that it is good to keep the iterates of the random walk away

from the boundary so subsequent iterates are able to make greater progress, cutting

down on steps that make little progress (reducing "wasted" computation).
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n = 20 (Averaged over 5 trials)
50

45

40-

CD

z
35-

30-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
H&R Marginal Truncation

Figure 3-13: Phase Count on a Cone versus p (n = 20)

n = 40 (Averaged over 5 trials)
55 I I I

50-

45-
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z
40-

35-

30
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H&R Marginal Truncation

Figure 3-14: Phase Count on a Cone versus p (n = 40)
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n = 100 (Averaged over 5 trials)

0 . 02 0. . 0.5 0.CL

z

0 0.1 0.2 0.3 0.*4 0.'5 0.6
H&R Marginal Truncation

Figure 3-15: Phase Count on a Cone versus

0.7 0.8 0.9

p (n = 100)
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Schedules for p

To gain a sense of this, suppose we have a density of 1e-/T on [0, oo). It is

straightforward to derive that the interval 0, T log 11,] has probability mass p for

p E [0, 1), and the restricted distribution on the interval [T log , )) has a mean

of T ( 1+log 1-LP) which is an increase in the mean by a multiplicative factor of

1 + log 1. As previously mentioned, as T 1 0, the mean goes to zero as well.

Now it stands to reason that at higher values of T, we might wish to use a lower

value of p since iterates are naturally kept from the boundary during the sampling

process and only use a higher value when T gets low.

Suppose we fix p E [0, 1] and have a non-increasing sequence {Tk}=k1 with T = 1.

Consider a corresponding sequence of "truncation levels" Pk = min{ 1 - Tk, p}. Then

the mean goes to 0 as Tk 1 0 (even if p = 1, which gives a mean of Tk(1 - log T)). In

our tests, Tk = 0 .7k-1.

We now present tests of some schedules on problems from the NETLIB suite. All

the following illustrations are single runs, but are representative (since averages would

be rather meaningless). Note that the runs are terminated once a relative accuracy

of le-6 is achieved.

We first present a schedule with ji = 0 which implies no truncation is used (this

is denoted "No Truncation"). We then present a schedule with P = 1 (denote this

Schedule 1). We then present a schedule with P = 0.7 (denote this Schedule 2).

The results for "No Truncation" are shown in Figures 3-16 to 3-18. The results

for "Schedule 1" are shown in Figures 3-19 to 3-21. The results for "Schedule 2" are

shown in Figures 3-22 to 3-24.

To tabulate the results:

Iteration Count

Schedule AFIRO SHARE2B STOCFOR1
No Truncation (p = 0) 88 94 93

Schedule 1 (p = 1) 36 54 69
Schedule 2 (p = 0.7) 31 45 58

Table 3.1: Number of Phases Required with Various Schedules
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Considering the results where no truncation is used, we find that truncation aids

in solving the feasibility problem. Also, without truncation, it appears that finding a

point that satisfies the equality constraints takes more phases than finding one that

satisfies the inequality constraints.

Rel. Opt. Gap Dist. from Boundary (in R")
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Figure 3-16: No Truncation: NETLIB Problem AFIRO (n = 32, naffine = 24)
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Figure 3-17: No Truncation: NETLIB Problem SHARE2B (n = 79, naffine = 66)
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Figure 3-18: No Truncation: NETLIB Problem STOCFOR1 (n = 111, naffine 48)
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Figure 3-19: Schedule 1: NETLIB Problem AFIRO (n = 32, naffine = 24)
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Figure 3-20: Schedule 1: NETLIB Problem SHARE2B (n = 79, naffine = 66)
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Figure 3-23: Schedule 2: NETLIB Problem SHARE2B (n = 79, naffine = 66)
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3.2 An Algorithm

3.2.1 Exponential Annealing for Conic Optimization

Here we present an algorithm using parts of what was previously described in the

chapter. We name the algorithm "Exponential Annealing" not to expropriate the

work of Kalai and Vempala, but for the reason that it sounds more appropriate.

Input :n E N (dimension)

OK : R1 -- + {0, 1} (membership oracle for convex set K)

c E R' (direction of minimization, I1ci| = 1)
p E (0, 1) (factor by which to reduce temperature)
Xiit E K (starting point)
k E N (number of steps per walk)
N E N (number of samples for rounding)
: > 0 (desired accuracy)
P : R+ - [0, 1) (truncation schedule)

Output: Xest (candidate optimal solution)

Ao +- Xinit;
VO +- I;

i +- 0;
repeat

i - i + 1;
T- ; /* reduce temperature independent of dimension */

Sample:
for j +- 1 to N do

IXj +- hit-and-run (e-CTXT /7, OK, V-1 7 pi-1 7k (i))
end
p 4- (11N) j=X

Vi - (1/N) EN 1 (Xj - pi)(Xji - p)T

until nT[1 - log(1 - P(Ti))] < c;
Xut +- Pi;
Return X.,t;

Algorithm 2: Exponential Annealing

In this algorithm, the hit-and-run procedure differs from that in Algorithm 1 in

that it accepts an additional parameter which informs the procedure what truncation

parameter to use. Naturally, we take advantage of the description of the feasible set

to perform hit-and-run more efficiently.
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Note also that Algorithm 2 solves only problem (P) of Section 1.2, but not its dual.

The solution of the dual problem provides valuable information about the problem

itself. In particular, the dual solution describes the impact that perturbing each of

the constraints has on the optimal solution value. Hence, the lack of the dual solution

in the output of this algorithm may be viewed as an inadequacy.

In Chapter 4, we use p = 0.7, P(T) := min{1-T, 0.7}, N = [max{3/2 n, ni 2 , 1/2 n"}1

and k = 6n. (Admittedly, there has been little analysis in the choice of N.)

What is immediately apparent is that Algorithm 2 suffers from a similar compu-

tational bottleneck as IPMs. The factoring of the covariance matrix to rescale the

feasible set has a similar computational complexity, 0(n'), as solving for the Newton

direction, and the covariance matrices are invariably dense.

While it is unnecessary to "redilate" the feasible region at every phase, any discus-

sion of complexity issues must also consider the cones in question and the complexity

of computing the interval of allowed step lengths (as described in Section 1.3). This

can be expensive, especially in the case of the semidefinite cone (this is clear from the

discussion in Section 1.3).

3.2.2 On the Operation Count for Semidefinite Optimization

Much interest in the study of randomized methods arises from the rapid growth in

the computational cost of computing the Newton step at each iteration of IPMs. As a

rough guide, consider applying a simple "short-step barrier method" to the following

semidefinite optimization problem:

min by
(SDP) s.t. B - n Ajyj = S

S E C

where B, S, Ai (i = 1, 2, . .. , n) are d x d symmetric matrices and C is the semidefinite

cone of d x d symmetric matrices (hence of dimension m = d(d + 1)/2).

In this elementary analysis, assume that all given matrices are dense. We note
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that sparsity affects IPMs and exponential annealing in different ways (but we have

not studied this). Also, practical IPMs are primal-dual algorithms, and we take the

perspective that this analysis presents the cost of a dual step of a dual-only IPM.

The assembly of the Newton system has an operation count with leading term

2n 2 d , and its solution has an operation count with leading term }n . (See A.2 for

details.) In practice, practical IPMs tend to require "between 25 to 40 iterations",

we estimate that practical IPMs have a required operation count of 0(n 2 d3 ) to solve

problem (SDP).

We now provide a simple analysis of the required operation count of Algorithm 2

for solving problem (SDP). We note first that the required number of phases is at

most Iogn+1og +IogD = 0(log n) where D is an upper bound for 1 - log(1 - P(T)).

Suppose Co is the cost of finding upper and lower limits for a such that for an

interior point x, a direction d and a closed convex cone C, x+ad E C. Suppose further

that Crand is the cost of sampling on the unit sphere or some linear transformation

thereof. Performing hit-and-run at each phase costs Nk(Ca+Crand). One may check

that Crand = 0(n 2 ) where the quadratic factor results from the linear transformation

of the unit sphere.

Computation of the sample mean and covariance matrix as well as the factorization

of the latter has an operation count with leading term }n'.

Now, for determining upper and lower limits for step lengths in the semidefinite

cone, one can check that Cc, = 0(n 3 ) (see Section 1.3).

If N = 0(n) and k = 0(n), then the operation count requirement of Algorithm

2 would be O(Cn 2 log n), giving an operation count requirement of 0(n' log n) for

Algorithm 2. This is comparable with that of a practical IPM.

On the other hand, when determining upper and lower limits for step lengths

using the method of A.1 of Appendix A (which is iterative) and being conservative

with respect to minimum step lengths (supposing an ascent direction), one may find

that one requires 0(n 2 ) operations in practice instead, giving an operation count

requirement of 0(n' log n) (bear in mind that one has no guarantee of this).
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Chapter 4

Computational Results and

Concluding Remarks

4.1 Correlation of Required Phases to Measures

of Optimization Problems

In this section, we consider measures of the ease of solving linear optimization prob-

lems and semidefinite optimization problems by exponential annealing. To this end,

one requires a measure of performance and one of the inherent difficulty of a prob-

lem. As a measure of performance, we use the number of phases required to achieve a

given relative optimality gap (le-6 for problems from the NETLIB suite, and le-5 for

problems from the SDPLIB suite). As a measure of inherent difficulty, we make use of

primal/dual condition measures as first presented in [15] (for linear and semidefinite

optimization problems) and certain geometry measures developed in [4] (for semidef-

inite optimization problems). These measures are tabulated for linear optimization

problems from the NETLIB suite in [13], and for semidefinite optimization problems

from the SDPLIB suite in [4].
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4.1.1 Condition Measures

The notion of (primal) distance to infeasibility was first presented in [15] for the

purpose of developing perturbation theory for linear optimization problems. Consider

the following problem:

min cTx

(CPd) s.t. Ax - b E Cy

x E Cx,

where d := (A, b, c) is the data of the problem (A E R'", b E Rm , c E R"; Cx g R"

and Cy C R"m are closed convex cones).

Given norms 11 - || on Rm and 1 - jjX on R , using the usual operator norm

|| - |ixy for operators mapping elements of X to Y, and denoting 11 - 1|. to be the

dual norm associated with 1| - 11, we define the norm of a data instance d to be

||djj := max{||A||x,y,||bb|' ,||cj|; }.

Now, we define the feasible region of (CPd) to be

Xd := {x E Rn : Ax - b E Cy, x E Cx}.

Define the distance to primal infeasibility as

pp(d) := inf{|IAdI : Xd+Ad = ,

which is the norm of the smallest perturbation (in the same norm) that would render

the primal problem infeasible.

Accordingly, the conic dual of (CPd) is:

min bTyy
(CDd) s.t. c - ATy E C*

y E Cy,

where C* denotes the dual cone to the cone C, and define the distance to dual

infeasibility pD(d) in the same way as for the distance to primal infeasibility.
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We define the primal condition number as Cp(d) := jd|/pp(d) and define the

dual condition number CD(d) := ldl/PD(d). The Renegar condition measure C(d) :=

max{Cp(d), CD(d)} is then a scale-invariant reciprocal of the smallest perturbation of

the data d that would render the problem either primal or dual infeasible. A problem

is called ill-posed if C(d) = o0.

In the event that we are not given j dji exactly, we use the geometric mean of

the tabulated upper and lower bounds (in [13] and [4]). For details of the respective

norms used in the data, the reader should consult [13] and [4].

4.1.2 Geometry Measures

Aside from the distance to primal/dual infeasibility, [4] introduces a separate set of

geometry-based measures. We are interested in particular in the measure g. Note

that SDPLIB suite problems are in dual form:

min by

(DSDP) s.t. B - E" 1 Asy = S

S C- C

where B, S, Ai (i = 1, 2, ... , n) are d x d symmetric matrices and C is the semidefinite

cone of d x d symmetric matrices (hence of dimension m = d(d + 1)/2).

The dual geometry measure g for the problem (DSDP) is computed by solving

the following problem:

gd :=min maxj jSjj, C)Idit(11C

(Pg9) s.t. B - E' Ay = S

S E C

For details on the choice of norm, which is crucial to obtain a tractable formulation

of (Pgd), the reader may consult [4].

Note that g is smaller to the extent that the feasible region of (DSDP) contains a

point (positive semidefinite matrix) S whose norm is not too large and whose distance
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from the boundary of the semidefinite cone is not too small.

[4] also introduces another geometry measure D' for E > 0, which measures the

largest norm among the set of c-optimal solutions. Unfortunately, many of our test

problems have D' = oo (implied by the fact that Cp(d) = oc for those problems). In

particular, all the hinf problems from the SDPLIB suite, except hinf 2 and hinf 9,

have D6 = oc. In [4], analogs for the primal problem of g and D", gp and D6, are

presented as well.

In addition, [4] develops an aggregate geometry measure g' which is the geometric

mean of g, D6, gp and D'.

4.1.3 Correlation for Linear Optimization Problems

The results for some NETLIB suite problems are presented in Figures B-1 to B-5 and

summarized in Table B.1.

In Figure 4-1, we look for a relationship between the required number of iterations

to reduce the relative optimality gap to le-6 and the dimension of the problem n

(and that of the relative interior naffine; points corresponding to the same problem are

connected by dots). The results suggest that there is a potential positive correlation

between namffne and the required number of iterations.

In Figures 4-2 and 4-3, we look for a relationship between the required number

of iterations to reduce the relative optimality gap to le-6 and the Renegar condition

measure C(d). The results suggest that there is a possible positive correlation between

C(d) and the required number of iterations.
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4.1.4 Correlation for Semidefinite Optimization Problems

The results for some SDPLIB suite problems are presented in Figures B-6 to B-16

and summarized in Table B.2.

In Figure 4-4, we look for a relationship between the required number of iterations

to reduce the relative optimality gap to le-5 and the dimension of the problem n. The

results suggest that there is not a relationship between n and the required number of

iterations.
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Figure 4-4: Required Iterations versus Dimension for 13 SDPLIB Problems

In Figure 4-5, we look for a relationship between the required number of iterations

to reduce the relative optimality gap to le-5 and the order d of the semidefinite cone.

The results suggest that there is not a relationship between d and the required number

of iterations.

It is unfortunate that the results suggest neither the dimension of the problem

n nor the order of the matrices in the semidefinite cone d play an important role in

determining the required number of iterations to achieve a given relative optimality
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13 SDPLIB Problems

gap. This implies that the bound in Lemma 2.9 may not be very useful as a stopping

criteria. However, the computational results may result from not making sufficient

steps in the hit-and-run random walk so that the distribution of points did not to

converge sufficiently to an exponential distribution.

In fact, obtaining a means of choosing a number of hit-and-run steps for conver-

gence under reasonable conditions warrants further study (the requirement in Theo-

rem 2.8 is far too stringent).

There are five semidefinite optimization problems from the SDPLIB suite among

the problems tested for which C(d) and gm are finite. For those, the required iteration

count versus C(d) is graphed in Figures 4-6 and 4-7; the required iteration count versus

gm is graphed in Figures 4-8 and 4-9. Unfortunately, these plots do not indicate

anything of note.

Noting that for the 13 SDPLIB suite problems that were tested, CD(d) was finite,

in Figures 4-10 and 4-11, we look for a relationship between the required number
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of iterations to reduce the relative optimality gap to le-5 and the dual condition

number CD(d). Unfortunately, no relationship between the two is indicated.

In Figures 4-12 and 4-13, we look for a relationship between the required number of

iterations to reduce the relative optimality gap to le-5 and the geometry measure gd.

There appears to be a reasonable positive relationship between the required number

of iterations and log g.d (Note once more that there are insufficient data points to

make a definitive statement, and results here are only indicative.)

The computational results suggest that for semidefinite optimization problems, the

underlying geometry may play a very important role in determining the number of

iterations to solve a problem to some relative optimality tolerance. Unfortunately, this

quantity cannot be known a priori and is not useful for obtaining a good termination

criterion.
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4.2 Possible Extensions

4.2.1 Stopping Rules

One might consider stopping the random walk when sufficient progress has been made.

In order to quantify "sufficient progress", consider the following lemma by Lovaisz and

Vempala in [10]:

Lemma 4.1 (Lovisz and Vempala [10]). Let f : R"n --+ R be an isotropic logconcave

density function, and let z be a point where it assumes its maximum. Then

izil n + 1,

and this bound is tight.

By translating and scaling, we obtain the following Corollary:

Corollary 4.2. Let f : R n --+ R be a logconcave density function with mean [ and

covariance matrix E, and let z be a point where it assumes its maximum. Then

/(z - 1p)TE l(z - p) < n + 1,

and this bound is tight.

Since the exponential distribution is logconcave, this lemma and its corollary give

a useful bound on the distance from the mean to the optimal solution set. For details

on logconcave functions, the reader is referred to [10].

This implies that starting from the mean of an exponential distribution trans-

formed to isotropicity, the optimal solution set is at most a distance of n + 1 away

(after scaling the Euclidean unit sphere).

Indexing the steps of the random walk beginning at x(0 ) with r, consider the

following stopping rule: stop when (VTc)T(x(0) - x(r)) ;> q(n + 1)IIVTcI (sufficient

decrease), or when r reaches N, where N, is the maximum number of steps in the

random walk. For this, one choosesy E (0, 1). This would serve to reduce the number

of steps taken, and hence the computational work to be performed.

84



When tested, however, it was found that in later phases, the random walk usually

concluded with r = N,. One way to explain the problem is that the bound of Corollary

4.2 is unduly strict for our problem. Consider an isotropic exponential distribution

on a cone. One can verify (using the result of Lemma 2.10) that the distance of the

mean to the vertex of the cone is V/ i. This implies that one might wish to consider

instead (VTc)T(x(O) - x(>)) ! yjvIcf.

A natural concern with using such stopping rules would be whether their use

would invalidate the bound of Lemma 2.9 since under the stopping rule the iterates

would in general not be close to exponentially distributed on the feasible region.

This extension may be an interesting area for further investigation.

4.2.2 A Primal-Dual Reformulation for a Guarantee of c-

Optimality

In order to obtain a guarantee for -optimality, one might want to consider the fol-

lowing instead. For the original problem (from Section 1.2):

min cTx

(P) s.t. b(e) - A(e)x = 0

b(c) - A(c)x c C,

where b(e) E RMe , A(e) E RMex , b(c) E Rnc A(c) E R"n xn. The dual of (P) is

max b(e)Ty + b(c)Tz

(D) s.t. c - A(e)T y - A(c)Tz = 0

z E C*
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where C* is the dual cone of C. Now, taking advantage of weak duality, we consider

the following primal-dual formulation:

min cTx - b(e)Ty - b(c)Tz

s.t. b(e) - A(e)x = 0

(PD) c - A(e)T y - A(c)Tz = 0

b(c) - A(c)x C C
z C*

which can be seen to be of the same form as (P). Now, the dimension of the problem

has been increased, and to begin the problem we have to find primal-dual feasible

points as opposed to just primal feasible points. But, if the objective function value

is less than E, one has a guarantee that the current primal-dual pair x and (y, z) are

E-optimal.

One may be concerned with the increase in the number of unknowns in the problem

from n to n + me + p where p is the dimension of the smallest Euclidean space where

one may embed the dual cone of C. In the case of the semidefinite cone, if p is 0(n2 ),

then redilating the space would require 0(n6 ) operations.

Another aspect that one may be concerned about would be the fact that while

some primal problems have strictly feasible solutions, their dual problems may not.

This necessitates pre-processing of the problem such that both primal and dual prob-

lems have strictly feasible solutions. Examples of this can be found in the NETLIB

and SDPLIB suites, and are characterized by either Cp(d) = 0 or CD(d) = 0 (these

are tabulated in [13] and [4]). This may be overcome by the use of the homogeneous

self-dual model which has strictly feasible solutions.

4.2.3 Adaptive Cooling

In the process of developing exponential annealing, it was found that the conditions

for achieving certain probabilistic guarantees were too stringent to be practical (see

for instance, Theorem 2.8). In seeking a practical algorithm, we have ignored much
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theory, especially in reducing the temperature parameter by a constant factor at each

phase. This proposal seeks to modify the method to reduce the number of theoretical

loopholes.

One may consider instead a scheme of adaptive temperature reduction. Consider

first the feasibility problem and then the primal-dual reformulation of Section 4.2.2.

When attempting to find a feasible point for problem (P) from Section 1.2, repro-

duced here:

min cTx

(P) s.t. b(e) - A(e)x = 0

b(c) - A(c)x E C,

we attempt to find a feasible (interior) point for (P') from Section 1.2, with 6 < 0,

reproduced here:

min 0

s.t. 6b(e) - A(e)x - b(e) = 0

(P') Ob(c) - A(c)x + 0(y - b(c)) E C

( > 0

||(x, 6)1|2 < 2.

where y E int C.

This problem and the primal-dual reformulation have in common that 0 is an

upper bound for the optimal solution (assuming that the primal is feasible). This

piece of a priori information turns out to be very useful.

Suppose, at the end of some phase, given that one has a candidate solution for

either problem with value v, one may use Lemma 2.9 to choose the next value for the

temperature parameter such that the expected value of the next candidate solution

is at most yv where -y E (0, 1) (note that 0 is an upper bound on the optimal solution

value).

We then simply perform sufficient hit-and-run steps until the "current iterate" has

a solution value of at most -y(1 +#f)v (where 3 > 0). Note that Theorem 2.8 gives an
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upper bound on the number of steps we have to take in order for the distribution of the

current iterate in any hit-and-run random walk to approach our desired distribution.

This is more useful in a practical setting as we are not using Theorem 2.8 to set the

required number of hit-and-run steps.

In doing this, we will no longer have any theoretical loopholes in our algorithm.

4.3 Conclusions

Exponential annealing looks promising from a complexity perspective for semidef-

inite optimization (see Subsection 3.2.2). Unfortunately computational results for

semidefinite optimization suggest that the result of Lemma 2.9 may not be useful as

a termination criteria.

On the other hand, the proposed use of the primal-dual reformulation of the

primal problem in tandem with adaptive cooling addresses the problem of obtaining

a termination criterion and ensures that the algorithm no longer falls afoul of theory.

It remains to study if this extension can be competitive, now competing as a primal-

dual method.

While exponential annealing as presented in Algorithm 2 is not yet competitive

with IPMs and appears to have a problem with regard to performance guarantees,

it may be that the primal-dual reformulation and an adaptive cooling scheme would

make exponential annealing a practical and competitive algorithm.
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Appendix A

Addendum for Semidefinite

Optimization

A.1 Maximum Step Lengths in Semidefinite Opti-

mization

Consider the problem of finding the maximum step length such that X + aD E C

where X is a positive definite matrix, D is a symmetric matrix of the same dimension,

and C is the semidefinite cone. This is equivalent to finding the maximum value of

a such that I + aR-TDR-1 remains positive semidefinite, where X = RTR. (Let

A = R-T DR-.)

It may not be necessary to compute extremely accurate values for the upper and

lower bounds for which I + aA >- 0. In [18], Toh describes how the Lanczos iteration

(which is how the Hessenberg form is computed) can be used to find approximations

to the extremal eigenvalues of A, and gives computationally useful a posteriori error

bounds for the computed eigenvalues.

Given an initial vector qi, the Lanczos iteration generates an orthonormal se-

quence of vectors {qj}, a sequence of orthonormal matrices {Qj} and a sequence

of symmetric tridiagonal matrices {T} (where Q3 = [qi q2 ... qj]) which satisfy

AQj = QjT + tj+i,jqj+eT and Q[AQj = T. Given T and Q3, qj+i and tj+i,j may
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be easily computed.

In this description, we assume that we do not "get stuck" in an invariant subspace,

giving tj+1,j = 0, but this can be fixed by choosing qj 1 orthogonal to the previous

vectors, then setting tj+,, = 0, tj+i,j+1 = qj+ 1Aqj+ 1 . One "gets stuck" when qi is

chosen such that the subspace spanned by {qi, Aqi, A 2q,..., An- 1qi} has dimension

less than n. (Fortunately, if qi is chosen randomly, this occurs with probability 0.)

We have also neglected to describe other numerical issues such as the possible need

for re-orthogonalization, for which the reader may refer to [14].

In any event, the extremal eigenvalues of T are good estimates for the extremal

eigenvalues of A. It is well known that accurately computing the eigenvalues of a

symmetric tridiagonal matrix can be done in essentially 0(n) steps with powerful

iterative methods. Suppose the largest and second largest eigenvalues of Tj are 11
and A2 respectively (we traditionally label eigenvalues in descending order), with

corresponding eigenvectors 1 and 92. Let 6ij = Qjqj and ri = Aiii - 1jii.

Toh proves the following upper bound for the maximum eigenvalue of A. (One

may apply the same to -A to obtain a lower bound for the minimum eigenvalue of

A.)

Theorem A.1 (Toh [18]). Suppose the eigenvalues closest to A1 (A) and A2 (A) are

A, and A2 , then

AI(A) 11 + 6

where

1|r 112 ifAl A2 + 11r2112

min {ir 1 112 , - } otherwise

The condition given may sound strange as there is no way to check it computa-

tionally, but the reason for its presence is that it attends to the matter of "getting

stuck" in an invariant subspace, which implies the possibility that eigenvectors cor-

responding to the largest and second largest eigenvalues may lie in another invariant

subspace of A. Again, it is fortunate that for a random choice of qi, this occurs with

probability 0.
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A.2 On the Computational Cost of a Single IPM

Newton Step for Semidefinite Optimization

Consider the simple semidefinite optimization problem:

min by

(SDP) s.t. B - En, A>yj = S

S E C

where B, S, Ai (i = 1, 2, ... , n) are d x d symmetric matrices and C is the semidefinite

cone of d x d symmetric matrices (hence of dimension m = d(d + 1)/2). In this

elementary analysis, assume that all given matrices are dense.

A simple IPM would begin with a feasible interior point and given a sequence of

problems indexed by increasing values of the parameter v, a Newton step would be

taken for each problem and used as the starting point for the next Newton step of

the next problem (this is the elementary "short-step" method presented in [16] to

introduce the "barrier method"),

min f(y) := vbry - In det(S)

(SDPB,) s.t. B - E 1 Ajyj = S

S E C.

Now, given y such that the corresponding matrix S is positive definite with

Cholesky factorization RTR, the quadratic approximation to f at y can be shown

to be given by (see for instance [16] or [3]):

f(y + h) := f(y) + (vbi + (Ai, S-1)) hi + 2 (Aj, S- 1 AS) hihj.
i=1 j=1

Before the assembly of the gradient vector and Hessian matrix, one performs a

Cholesky factorization of S requiring 0(d') operations with leading term 1d'. (For

future reference, a triangular back solve requires 0(d 2 ) operations with leading term
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d2 , and the dimension of the Newton system is n.)

For the assembly of the gradient vector, one requires O(nd3 ) operations with

leading term 2nd3 (one computes (RA-T AR , I) using 2n back solves instead of

(Ai, S-) by explicitly forming S 1 , then computes the trace product).

For the assembly of the Hessian matrix, one requires O(n 2d3 ) operations with

leading term 2n 2d3 (one computes (At, S-1 AjS-) using 4d back solves and a trace

product, taking advantage of the symmetry of the Hessian). Hence, the assembly of

the Newton system has an operation count with leading term 2n 2d. [Alternatively,

one may form S1 Aj for j = 1,2,...,n, and perform d(d + 1)/2 trace products for

an operation count with leading (undominated) terms 2nd3 + }n 2d2. Note that this

is done at the cost of storing n d x d matrices.]

The operation count of solving the Newton system by a Cholesky factorization

and back solve is O(n 3 ) with leading term }n3 .

This gives a guide to the computational cost of taking a Newton step in an interior

point method for semidefinite optimization without the benefit of sparsity.
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Appendix B

Computational Results for

NETLIB and SDPLIB Test

Problems

In this section, n refers to the dimension of the problem and where mentioned, naffine

refers to the dimension of the affine subspace described by the equality constraints.

All problems are solved using Algorithm 2 with parameters outlined in Subsection

3.2.1.

(Note also that for problems for which an initial feasible point was not supplied,

relative optimality gaps are not shown in the phase where a feasible point is being

sought.)

B.1 Linear Optimization Problems from the NETLIB

Suite

In all diagrams that follow, "Distance from Boundary (in R"f)" refers to the Euclidean

distance of the current candidate solution to the boundary of the set defined by the

inequality constraints. This quantity is a lower bound on the distance to the boundary

of the set in the smallest affine subspace containing the feasible region.
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Req. Iter.
Problem (Rel Tol: le-6) n Cp(d) CD(d) C(d)
AFIRO 31 32 4565 1814 4565

ISRAEL 102 142 8.147e+007 1.331e+007 8.147e+007
SCAGR7 44 140 5.307e+006 2.449e+006 5.307e+006

SHARE2B 45 79 1.233e+007 7.48e+004 1.233e+007
STOCFOR1 58 111 1.939e+007 2.139e+005 1.939e+007

Table B.1: Computational Results for 5 NETLIB Suite Problems
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94

100

E 10- [

Rel. Opt. Gap

10 20
Iterations

10 0L

____S

g

30 40

10 10

100

1020

10-2

Infeasibility (w.r.t. Affine Space)

0 10 20 30 40
Iterations

30 40



Dist. from Boundary (in R")

0 20 40 60 80 100
Iterations

-10-

Rel. Opt. Gap

Infeasibility (w.r.t. Inequalities)
10

10 2

- 10

. 101

100
0 20 40 60 80 100

Iterations

Figure B-2: NETLIB Problem ISRAEL (n = 142, naffine = 142)

10 -

E 10

10 -
0

10 -

10

10-20,
0

Rel. Opt. Gap

10 20 30 40
10 20 30 40

Iterations

Infeasibility (w.rt. Affine Space)

0

10

1-5

1010
0

Dist. from Boundary (in Rn)

0 10 20 30 40
Iterations

Infeasibility (w.r.t. Inequalities)

10

a102

10,10 20 30 40 50
iterations

0

0 10 20 30 40 50
Iterations

Figure B-3: NETLIB Problem SCAGR7 (n = 140, naffine = 56)

95

100

M0 -5
E 10

10-10 10-101
0 20 40 60 80 100

Iterations

100

4

10,

5



10 0

10

Rel. Opt. Gap

1 0101
0 10 20 30

Iterations

10 10

10,

101

Infeasibility (w.r.t. Affine Space)

10~20 
,

0 10 20 30 40
Iterations

vi

10-2

10

10

104
40 50 0

102

100

10-2

_j 10-4 L
50 0

Dist. from Boundary (in Rn)

10 20 30 40
Iterations

Infeasibility (w.r.t. Inequalities)

10 20 30 40
Iterations

Figure B-4: NETLIB Problem SHARE2B (n = 79, nafflne = 66)

10-2

10-

10'

Dist. from Boundary (in R")

20 40 60 0 20 40 60
Iterations Iterations

Infeasibility (w.r.t. Affine Space)
102

100

10-2

10~-4

=L~

F

Infeasibility (w.r.t. Inequalities)

0 20 40 60 0 20 40 60
Iterations Iterations

Figure B-5: NETLIB Problem STOCFOR1 (n = 111, naffine = 48)

96

E

50

50

100
Rel. Opt. Gap

Ca
E 10

10
0

10 10

10

10

10-10

10-20

-Q

I



B.2 Semidefinite Optimization Problems from the

SDPLIB Suite

In all diagrams that follow, "Distance from Boundary" refers to the minimum eigen-

value of the matrix B - Ej=1 yAj (which is constrained to be positive semidefinite)

given a current candidate solution y, where B and the As's are symmetric matrices

defined by the problem data. Also, d gives the order of the matrices in the semidefinite

cone (d x d symmetric matrices).

Note that the "optimal solution values" for each problem, z*, were obtained from

the SDPLIB documentation [2] and other sources [6] (the lowest available value was

used). These "optimal solution values" were sometimes found to be only loose upper

bounds.

The graphs for hinf 9 and hinf 10 are not shown because the method terminated

with candidate solution values less than the lowest upper bound on the optimal so-

lution value found. For hinf 9, the method terminates with candidate solution value

237.262294312903, while the best upper bound was 237.39. For hinf 10, the method

terminates with candidate solution value 108.848461210598, while the best upper

bound was 108.86. (For these two problems, the upper bound from [6] was used,

though the article reports that the bounds it supplies for these two problems are likely

to be loose.)
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Req. Iter.
Problem (Rel Tol: le-5) m s CD(d) j (d) 9d 9m

controll 17 21 15 1.233e+006 1.233e+006 5000 9400
hinfi 42 13 14 42.15 00 76 00
hinf2 52 13 16 4025 4.427e+005 5000 1.8e+004
hinf3 24 13 16 6.078e+004 00 1.5e+004 oo
hinf4 30 13 16 1.039e+004 00 1800 00
hinf5 31 13 16 2.939e+006 00 le+005 00

hinf6 43 13 16 4.861e+005 00 6.8e+004 oo
hinf7 26 13 16 2.142e+007 00 3.5e+005 oo
hinf8 16 13 16 2.465e+005 00 1.6e+004 oo
hinf9 20 13 16 2.675e+007 2.675e+007 le+006 2.8e+004

hinflO 62 21 18 2.087e+004 oo 1600 00
trussi 25 6 13 10.5 266.5 13 51
truss4 21 12 19 18.8 522.1 19 69

Table B.2: Computational Results for 13 SDPLIB Suite Problems

100

-E

- 10i

15 2 -10L
15 20 0

Dist. from Boundary

5 10
Iterations

Conic Infeasibility

100

100

10 UU

E
0 5 10

Iterations

Figure B-6: SDPLIB Problem controll (n = 21, s = 15)

98

Rel. Opt. Gap
10 -

10

E
Ni1-

5

0 5 10
Iterations

15 20

15 20



Dist. from BoundaryRel. Opt. Gap

40

10 2 [

E

50
10-6 L

0 10 20 30
Iterations

40 50

0

E

100
Conic Infeasibility

0 10 20 30 40
Iterations

Figure B-7: SDPLIB Problem hinfi (n = 13, s = 14)

Rel. Opt. Gap

50

Dist. from Boundary
100

E

20 40 60
Iterations

-C

E

10-5

10-1

100

100

10

0 20 40 6
Iterations

Conic Infeasibility

0

0 20 40 60
Iterations

Figure B-8: SDPLIB Problem hinf2 (n = 13, s = 16)

99

N

100

10-10 L
0 10 20 30

Iterations

10 -

10

E

-10-

10 0-
0

10r 100

10-4



Rel. Opt. Gap
10,

- 10-5

1-o

1 o

10,

E

10-0

10-1
10 20 30

Iterations

Conic Infeasibility

1099

100

10097

10,9

0 10 20 30
Iterations

Figure B-9: SDPLIB Problem hinf3 (n = 13, s = 16)

Rel. Opt. Gap
100

10-2

E

10 _ _6_ _1_10_8 LI
0 10 20 30 0

Iterations

Dist. from Boundary

10 20 30
Iterations

Conic Infeasibility

10

1.508

10

101,s02

0 10 20 30
Iterations

Figure B-10: SDPLIB Problem hinf4 (n = 13, s = 16)

100

0 10 20 30 0
Iterations

v

cn

co

E

100

* 10-2

E

0

Vo

E:

Dist. from Boundary



Dist. from Boundary

0 10 20
Iterations

E

1C-10 L
30 40 0

0
v

a

1 .
10

146
E 10.

0 10 20
Iterations

Figure B-11: SDPLIB Problem hinf5 (n = 13, s = 16)

Rel. Opt. Gap

10 20 30
Iterations

40

100

E

Dist. from Boundary

10 -

10-101-
50 0 10 20 30 40

Iterations

Conic Infeasibility

10129

10128

0 10 20 30
Iterations

Figure B-12: SDPLIB Problem hinf6 (n = 13, s = 16)

101

10s

*Z 100

N

1 10
10 20

Iterations
30 40

Conic Infeasibility

30 40

10 -

N

E 10

N

N

10 -
0 50

=L

E

40 50

Rel. Opt. Gap
100

10-5

1.656



Rel. Opt. Gap

0 10 20
Iterations

M

E

10-2

10

-6

30

Dist. from Boundary
10"

.710,

E

10-

10-1
0

0V

E

10 1.746

10 744

101 742

0 10 20 30
Iterations

Figure B-13: SDPLIB Problem hinf7 (n = 13, s = 16)

ca

10-2

10-4'

10-6IL
15 20 0

Dist. from Boundary

5 10
Iterations

15 20

Conic Infeasibility

0 5 10
Iterations

Figure B-14: SDPLIB Problem hinf8 (n = 13, s = 16)

102

0 10 20 3
Iterations

Conic Infeasibility

Rel. Opt. Gap
10, -

E 10

0 5 10
Iterations

10 S21
V 10

10

E 10s

15 20

10



Dist. from Boundary
100

102

EC

1 10
10 20 30 0

Iterations

0

E

0.

0.

0.

0.

10 20 30
Iterations

Conic Infeasibility

8

6

4

2

0
0 10 20 30

Iterations

Figure B-15: SDPLIB Problem trussi (n = 6, s = 13)

Dist. from Boundary

10 20 30
Iterations

Conic Infeasibility

10 20 30
Iterations

Figure B-16: SDPLIB Problem truss4 (n = 12, s = 19)

103

E

10 0

*~10-2~

E

10 L
0

Rel. Opt. Gap
100

10-2

10 -

100

10 -2

10

10
0

c

E

10 20
Iterations

30

v
a 0.8-

0.6

0.4

0.2-

E -
0

ReL. Opt. Gap

1011
0



104



Bibliography

[1] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random

walks. J. A CM, 51(4):540-556, 2004.

[2] Brian Borchers. SDPLIB 1.2: A library of semidefinite programming test prob-

lems. Optimization Methods and Software, 11(1):683-690, 1999.

[3] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge

University Press, March 2004.

[4] Robert M. Freund, Fernando Ord6nez, and Kim-Chuan Toh. Behavioral mea-

sures and their correlation with ipm iteration counts on semi-definite program-

ming problems. Math. Program., 109(2):445-475, 2007.

[5] Geoffrey R. Grimmett and David R. Stirzaker. Probability and Random Pro-

cesses. Oxford University Press, August 2001.

[6] Christian Jansson. Vsdp: Verified semidefinite programming. Technical report,

Hamburg University of Technology, 2006.

[7] Adam Tauman Kalai and Santosh Vempala. Simulated Annealing for Convex

Optimization. Mathematics of Operations Research, 31(2):253-266, 2006.

[8] La'szl6 Lovdsz and Santosh Vempala. Simulated annealing in convex bodies and

an O*(n') volume algorithm. In FOCS '03: Proceedings of the 44th Annual

IEEE Symposium on Foundations of Computer Science, page 650, Washington,

DC, USA, 2003. IEEE Computer Society.

105



[9] Liszl6 Lovisz and Santosh Vempala. Hit-and-run from a corner. SIAM J. Com-

put., 35(4):985-1005, 2006.

[10] Laszl6 Lovisz and Santosh Vempala. The geometry of logconcave functions and

sampling algorithms. Random Struct. Algorithms, 30(3):307-358, 2007.

[11] Carl D. Meyer. Matrix analysis and applied linear algebra. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 2000.

[12] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized

Algorithms and Probabilistic Analysis. Cambridge University Press, New York,

NY, USA, 2005.

[13] Fernando Ord6nez and Robert M. Freund. Computational experience and the

explanatory value of condition measures for linear optimization. SIAM J. on

Optimization, 14(2):307-333, 2003.

[14] Beresford N. Parlett. The symmetric eigenvalue problem. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1998.

[15] James Renegar. Some perturbation theory for linear programming. Math. Pro-

gram., 65(1):73-91, 1994.

[16] James Renegar. A mathematical view of interior-point methods in convex op-

timization. Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2001.

[17] Elias M. Stein and Rami Shakarchi. Real Analysis: Measure Theory, Integration,

and Hilbert Spaces. Princeton University Press, Princeton, NJ, USA, 2005.

[18] Kim-Chuan Toh. A note on the calculation of step-lengths in interior-point

methods for semidefinite programming. Computational Optimization and Appli-

cations, 21:301-310, 2002.

106


