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Abstract
Gibbs random fields (GRF's) are probabilistic models inspired by statistical mechanics and used
to model images in robot vision and image processing. In this thesis, we bring the analytical
methods of statistical mechanics to bear on these models. Specifically, we address and solve
the following fundamental problems:

1. Mean-field estimation of a constrained GRF model: The configuration space of a GRF
model is often constrained to produce interesting" patterns. We develop mean-field
equations for estimating the means of these constrained GRF's. The novel feature of
these equations is that the finiteness of graylevels is incorporated in a "hard" way in the
equations.

2. Correlation-field estimation of a GRF model: GRF correlation functions are generally
hard to compute analytically and expensive to compute numerically. We use the mean-
field equations developed above to propose a new procedure for estimating these corre-
lation functions. Our procedure, which is valid for both unconstrained and constrained
models, is applied to the quadratic interaction model, and a new closed-form approxima-
tion for its correlation function in terms of the model parameters is derived.

3. Network representation: We show how the mean-field equations of the GRF model can
be mapped onto the fixed-point equations of an analog winner-take-all (WTA) network.
The building block of this network is the generalized sigmoid mapping, a natural general-
ization of the sigmoidal function used in artificial neural networks. This mapping turns
out to have a very simple VLSI circuit implementation with desirable circuit-theoretic
properties.

4. Solution algorithms: Iterated-map methods and ordinary differential equations (ODE's)
are proposed to solve the network fixed-point equations. In the former, we show, using
Lyapunov stability theory for discrete systems, that the worst that could happen during
synchronous iteration is an oscillation of period 2. In the latter, we show that the ODE's
are the gradient descent equations of energy functions that can be derived from the mean-
field approximation. One of our gradient descent algorithms can be interpreted as the
generalization to analog WTA networks of Hopfield's well-known algorithm for his analog
network.

5. Temperature dependence: The GRF temperature parameter reflects the thermodynamic
roots of the model. Using eigenstructure analysis, we study the temperature effect on

2



the stability of the WTA network fixed points. In particular, we derive new closed-form
formulas for the critical temperature of a large class of models used in grayscale texture
synthesis. The stability study is used to gain insight into the phase transition behavior
of GRF's.

The implications of these results for image modeling, optimization, and analog hardware im-
plementation of image processing and optimization algorithms are discussed.

Thesis Supervisor: John L. Wyatt, Jr.

Professor of Electrical Engineering and Computer Science
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Introduction

The use of Gibbs random fields (GRFs) for modeling images is now well established

in the image processing and computer vision literature. These random field models arise

very often in the context of Bayesian formulations as our a priori assumptions about

the noise-free image in image processing or the imaged 3D scene in computer vision

[31, 58, 84]. They can also be interpreted as the statistical incarnations of regularizers

under the regularization paradigm of early vision theory [76].

When considered for their own sake, these GRFs become probabilistic descriptions of

grayscale patterns. For instance, early study of these models in the context of texture

modeling concentrated on how they can be used to fit natural textures (wood, cork,

textile, etc) [14]. Later, they were used for texture segmentation, e.g., [16, 30, 79] and

more recently [37].
Another major area of application where these models are used is the development

of integrated vision systems for object recognition. In [21], GRF modeling is used as a
paradigm for integrating different visual cues like shading, stereo, and texture in order to

recognize objects. A similar use of GRFs is the one described in [12] where they are used

in the context of fusing the data obtained from different sensors to accomplish estimation
and recognition tasks.
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The scope of this thesis is much more limited. Here, we concentrate on some basic
questions that are typically asked by the typical engineer when handed a random signal:
"What is its mean? What is its covariance?" The mean and the covariance of a random
signal are usually the quantities of engineering interest, especially in signal processing
application. GRFs are remarkable in that these quantities are generally unknown be-
cause the normalizing constant of a Gibbs distribution, the famous partition function,
is generally hard to compute. Most of the reserach work concerning this question has
concentrated on the Gaussian case [6, 11, 48, 61] for which analytical results can be
obtained.

The other question relevant to engineering applications is the dependence of the ran-
dom signal on its parameters. Here also, GRFs are in a class by themselves in that their
parameter estimation problem remains largely open despite a sustained research effort
by statisticians, engineers, and applied mathematicians [6, 14, 72, 91].

The usual way for attacking these questions in the engineering literature has been
through the extensive simulations of specific models in specific contexts. In this thesis,
we follow a different path - more analytical and more generic. It is more analytical for
we bring the mathematical methods of statistical physics to bear on some of the above
questions. And it is more generic for we show how the use of such methods can give
answers for a whole class of models rather than specific, isolated ones.

The underlying theme of this dissertation is the following.

The mean-field model of statistical physics, when applied to a Gibbs distribu-
tion with discrete gray levels, can yield both moment estimates and parameter

estimates.

This theme is illustrated in the estimation of the correlation field (Chapter 4) and the
estimation of the critical temperatures delimiting visually different Gibbs samples in the
parameter space (Chapter 6).

As was mentioned above, GRFs fit naturally within the Bayesian framework of image
processing and computer vision. In this framework, the a priori GRF model is usually
competing against the sensor noise model. The impact of too much trust in the a priori

model is sometimes heuristically expressed in such catch sentences as too much prior is
far more dangerous than none at all" [45]. Although this thesis does not deal directly
with appliactions, we suggest that its framework and results could help quantify such
statements.

'The word parameter is to be understood in a generic way. In the case of GRF, its meaning encom-
passes lattice size and geometry, the neighborhood size and geometry, the local potentials, the nature of
global constraints, etc.
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1.1 Notation and Definitions

In this section, we give the basic notation and definitions that will be used throughout
this thesis. We are concerned with a finite 2 set S which will represent a two-dimensional
image. A neighborhood system for this set is a family N = {( C S, s E S} of subsets
satisfying the following two conditions:

1. s X' and

2. sE Afr, ifandonlyifrE A,, Vs, r S

The elements of S are the image pixels. Since the models considered in this thesis

have their roots in statistical physics, we will sometimes use the word site to designate an

element of S. The pixels r E AF, are the neighbors of s. The first condition above means
that the site s is not its own neighbor. The second condition introduces a symmetry
property in the definition of a neighborhood: s is a neighbor of r if and only if r is a

neighbor of s. Note that when the set S is a square grid, the symmetry condition is
equivalent to the absence of a preferred direction in the image. This is consistent with
the expectation that an image model should be noncausal.

The pair (, N) of the set and its neighborhood system is an undirected graph whose

vertices are the pixels and whose edges are formed by pairs of neighbors. A subset C C S

is called a clique if every two distinct pixels in C are neighbors. The concept of clique

is important for defining Gibbs potentials and relating Gibbs distributions to Markov

random fields.
To each pixel s E S, we assign a random variable X, taking its values xs in a set G.

usually called the spin, or pixel, state space. 3 The family (X,),Es is a random field.
The product set

Q = I Gs
sES

is the configuration space of the random field. All the random fields considered in this
thesis are such that G, = G, Vs E S. Note that the nature of the field depends crucially
on the topological nature of the set G. Some of the most commonly used G sets with
examples of their associated random fields are listed below:

2See the Appendix for the complications that might occur when infinite lattices are considered.
3 We follow the common custom of denoting a random variable with an upper-case letter and denoting

its value with a lower-case letter.
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1. G = R. The pixels of the well known Gaussian field have the real line for state

space.

2. G is a compact interval C R. This is the pixel state space of the rotor model [32].

Typically, G = [0, 2r]. Note also that analog grayscale images have a compact pixel
state space.

3. G = Z. The so-called discrete Gaussian model [32] is defined in this manner.

4. G is a finite subset of Z. For instance, the autobinomial model studied in [14]

falls under this category. The set G = {0,1,..., 255} is the pixel state space of all
grayscale digitized images having an 8-bit pixel representation.

5. G is a binary set typically taken to be {-1, 1 }. This is a special case of the previous
one. A famous example in this category is the Ising model of magnetism. This is

also a generic model for all binary images.

Models differ also in the nature of the underlying set S. The most common cases

are those for which S is a subset of Z, which corresponds to one-dimensional random
processes, or a subset of Z 2, which corresponds to two-dimensional random fields. As was
mentioned above, we mainly consider the case of a finite set S. However in Chapter 2,
we deal with Gaussian processes defined on all Z. In the finite case, we make the

assumption that the pixels of the set S satisfy a periodic boundary condition. This
means that the graph (, N) lies on a circle in the one-dimensional case, and on a torus
in the two-dimensional case.

Furthermore, for a given underlying pixel set S, models could differ in the geometry

and order of the neighborhood system N. Consider the case when S is a square grid.
Figure 1-1 shows the commonly used neighborhood systems for this case. These neighbor-
hoods are distinguished by their orders. The four nearest neighbors define a first-order
neighborhood system, the eight nearest neighbors define a second-order neighborhood
system, and so forth. Note that other neighborhood geometries are possible including

ones in which the pixel neighbors are disconnected from the pixel itself. In Figure 1-2,
we show the cliques associated with the second-order neighborhood model. The set of
cliques include single sites, pairs of sites, triplets of sites, and quadruplets of sites.

14
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FIGURE 1-1: Neighborhood orders.
neighborhood of order 1. A second
neighbors and so forth.

The nearest-neighbor pixels denoted by 1 form a
order neighborhood is formed by the eight nearest

1.2 Markov Random Fields and Gibbs Distribu-

tions

Now we are in a position to introduce basic definitions that will be fundamental for

this thesis. They are now part of the standard lore in the literature on Markov and Gibbs

random fields [19, 311. From the previous section, we have the following setup: a graph

(S,N) and a family X = {X, sE S} of random variables indexed by the set S taking

their values in a configuration space . In order to avoid using the language of abstract

integration theory, we will assume that the underlying pixel state space is discrete and

finite, e.g., G = {0,1,.. , n - 1}. Let now P be a probability measure defined on .

Definition 1 The random field X is said to be a Markov random field (MRF) if the
following two conditions are satisfied:

1. P(X = x)>O , VxE Q;

2. P(XS = xlX, = xr,Vr # s) = P(X, = xjIX, = x,,Vr E IA,), Vs E S,x E Q.

We should stress that both conditions are essential for the definition of an MRF.

Note that when constraints are imposed on the possible configurations, the first condition

might fail. More will be said on the constrained case in Chapter 2. The functions given in
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FIGURE 1-2: Cliques of a second-order neighborhood. Note the presence of cliques
containing three sites and a clique containing four sites.

the left-hand side of the second condition, known as the Markov property, are called the

local characteristics of the MRF. A compact notation for each one of them is Ps(x.Ix()),

where x(s) denotes the configuration obtained from x after the removal of the pixel s. A

fundamental property that will be proved in Appendix A is that when the set S is finite,

the probability distribution P is uniquely determined by its local characteristics. When

P satisfies the Markov property, the local characteristics can be computed more easily,

just by looking at the neighbors of each pixel instead of looking at the the rest of the

configuration x8 . Note that this computational locality will be violated when constraints

are imposed on the the configuration set Q.

Having defined Markov random fields, we now introduce their kin, Gibbs random

fields. Again the concepts that will follow are standard, and our presentation is taken

from [30].

Definition 2 A potential is a collection V = {VA,A C S, VA : - R} of functions
such that Vo = 0 ( is the empty set), and VA(x) = VA(x') if x, = x', Vs e A.

Note that the above notion of potential is valid for any set S. When this latter set is

equipped with a neighborhood system N that makes the pair (S, N) a graph with a set

of cliques C, we have the following

Definition 3 A neighborhood-compatible potential, or an N-potential, is a potential
such that VA = O,VA f C.

This definition means that interactions between pixels belonging to different cliques

are not allowed. A Gibbs distribution is a representation of a positive probability distri-
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bution motivated by the study of thermodynamic equilibrium in statistical physics. It is

defined as follows.

Definition 4 A Gibbs distribution with respect to the neighborhood system N is a mea-
sure of the form

II(x) = Z - 1 exp[-TE(x)], Z = E exp[-;E(x)], (1.1)
xefl

where E(x), the energy function, is given by

E(x) =-E Vc(x) (1.2)
CEC

and T" is the temperature.

The positive normalizing constant, Z, in (1.1) is known in statistical mechanics as the

partition function. 4 Except in very few cases, this function is very hard to compute

both analytically and numerically. Let us now give some comments regarding the above

definition.

1. The measure defined by the Gibbs distribution is always positive, i.e., II(x) > 0.

2. Only cliques are involved in the summation defining the Gibbs energy. In other

words, the potential V is a neighborhood-compatible potential in the sense of Def-

inition 3. This fact is crucial for relating Gibbs distributions to MRFs.

3. The temperature parameter reflects the thermodynamical roots of the Gibbs distri-

bution. The states of a system S of energy E, in equilibrium with an infinitely large

heat reservoir at temperature T, are distributed according to the Gibbs distribution

given above. This is the canonical postulate of statistical mechanics [85].

4. When the configuration set fQ is infinite, the condition Z < +oo must be imposed.

This situation arises when the set S is infinite or when the pixel state space is

infinite.

4 The origin of this name for the normalizing constant is the following. Let Qe be the subset of the
configuration space Q defined by Qe = {x E fQsuch thatE(x) = e}. Then we can write

Z = E exp[- E(x)]
XEn,

e
= Z'de IQ1 exp-].

e

The family (e)e is a partition of the configuration space Q. Moreover Z can be computed as an
exponentially weighted sum of the partition set cardinalities.
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5. The above definition does not involve constraints on the configuration space. We

will see in Chapter 2 how constraints can be incorporated in the Gibbs distribution.

6. Finally, one can easily check that as the temperature parameter approaches 0, the

mean of the Gibbs distribution approaches its mode. This observation is funda-

mental to applications like maximum a posteriori estimation.

It is easy to check that every positive measure II can be written as

11(x) = Z - exp[-E(x)].

(Just define E(x) = log (O), and put Z 1 = II(O).) A more delicate problem is to findfl(x)'
the potential V such that

E(x) = -
ACS

Note that in the above formula, the summation is taken over all the subsets of S. In other

words, II is still not a Gibbs distribution in the sense of Definition 4. This brings us to

the second delicate problem, namely, find sufficient conditions for the energy expression

to be a summation over cliques only.

The answers to the above two questions are not obvious. They constitute the proof

of the "if" part of the following famous theorem

Theorem 1 [Hammersley-Clifford (1972)] Let N be a neighborhood system defined on a
finite set S. Then is a Gibbs distribution with respect to the neighborhood system N
if and only if II is a Markov random field with respect to N. Moreover, for any clique C
and any site s E C, the N-potential is given by

Vc(x) = E (-1)c-BIln11s(xsixs)), (1.3)
BCC

where xB = (XB)qeS denotes the following configuration

B I xq, qEB
I = °, q B

and 1(xSlxa)) B is the conditional probability at s given the configuration xB.

The "only if" part is easy to prove. For the "if" part, we refer the reader to the

excellent course notes of D. Geman [30]. We would like however to make the following

remarks:
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1. Theorem 1 will fail if the set S is not finite. More specifically, the local characteris-

tics of an MRF are not sufficient, in the infinite case, to guarantee the existence of a

unique Gibbs distribution over the lattice. The existence and uniqueness of Gibbs

distributions for infinite sets are the fundamental questions of the mathematical

theory of phase transitions. See Appendix A.

2. It will also fail if constraints are imposed on the configuration Q. The effect of

these constraints is often a change in the neighborhood system and therefore the

cliques over which the energy summation should be taken. See Chapter 2.

3. Formula 1.3 gives the relationship between the local characteristics of the MRF and

the neighborhood-compatible potential of the Gibbs distribution. The proof of this

relationship requires the use of the Moebius inversion formula [77], well-known in

combinatorics.

The practical value of the Hammersley-Clifford theorem is that it gives us a systematic

way for constructing Markov random fields. This is usually done by choosing the family of

clique potentials corresponding to the neighborhood system defined on S. The if" part

of the theorem is also of practical use. Indeed, if we are given a set of local characteristics,

then we can use (1.3) to find whether these local characteristics are consistent, i.e., define

a unique joint probability distribution of which they are the local conditional probability

distributions.

A generic example that we will deal with in this thesis is that of a system with at most

quadratic interactions. In this case, only single-site and two-site cliques have non-zero

potentials. It follows that the Gibbs energy of this system can be written as

E(x) = E Vs(Xj) + E V{,r}(Xs,, Xr), (1.4)
sES {s,r}EC2

where C2 is the set of two-site cliques of the graph (8, N). A typical case is when the

set S is a square lattice of size N x N with four nearest-neighbor neighborhoods and

periodic boundary conditions. Then S = {s (i,j)ll < i,j < N}, and we have

N N

E(x) = E Vi(xi) + E [Vij;i+1,j(xi,, xil j) + Vij;ij+l(xij, xij+,)] (1.5)
ij=l ij=l

The first term in (1.5) can be considered the energy contribution of an external field

applied to the lattice, while the second term is the energy contribution of the interactions

between the lattice pixels. This situation is very common in the area of image processing

and computer vision, where the external field is an input data term obtained through
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an imaging sensor, while the internal field describes the interactions in the a priori

image model. Tasks like image segmentation, motion estimation, and halftoning, can be

modeled within the MRF framework using the above energy function with the external

and internal potentials chosen appropriately.

It is important to note that the summation in (1.4) and (1.5) is over cliques. An

equivalent expression can be obtained by considering potential functions indexed by

ordered pairs (s,r) such that V. = Vr. = V{,,,}. Then we can write (1.4) as

E(x)= E V(x.) + E E V(X, xv), (1.6)
SES SES rEAr

where the second summation is now taken over all the neighbors of all the pixels.

The models in which only two-site interactions are considered were called automodels

by Besag [61, and they include famous models in statistical physics like the binary Ising

model and the multilevel Potts model as well as models originally introduced by Besag

himself like the autobinomial model.

Once an energy function with potentials compatible with the neighborhood structure

is defined, we can define the positive Gibbs distribution as in Definition 4.

We end this section by giving one more notation. Let P be a probability distribution

on Q, and let s8, s2, .. ., Sm be m sites in S. Then the m-th order moment of the random

variables X,,, X 2, . . ., X,,m with respect to P is given by

R(si, 2 ,.. .,S) = E ..2 XSP(X). (1.7)
XED

The first moment is simply the mean E[X,] of the random variable X, while the

second-order moment is the correlation E[XX,] between the pixel values at sites s and

r. Note that for the Gibbs distribution, the computation of any of these moments requires

the analytical or numerical computation of the partition function - a generally difficult

task.

1.3 Contributions

As was mentioned at the beginning of this chapter, many fundamental questions

pertaining to the properties of Gibbs random fields still need to be addressed. In this

thesis we will deal mainly with the first, i.e., the question related to the moments (mean,

correlation, etc.) of the Gibbs random field, and only tangentially with the second, i.e,

the difficult question of parameter estimation.
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Our two primary goals are the following. First, we want to provide approximations

for the mean and the correlation function for a large class of Gibbs distributions, namely

those having a finite number of graylevels. Second, we want to show how analog reciprocal

networks can be derived to compute the approximate mean function.

The class of Gibbs models we are dealing with in this thesis falls somewhere in between

the binary Ising model of statistical physics and the Gaussian model of signal processing.

It is well known that the mean and correlation functions are not sufficient to characterize

a non Gaussian random signal. However, in engineering applications, the knowledge of

these functions can be very useful to answer important signal estimation questions. The

usual approach to getting these functions in the case of Gibbs random fields has been the

use of Monte Carlo simulations. Using the analytical machinery of statistical physics, we

show the following:

1. An estimate of the mean signal for a large class of unconstrained Gibbs random

fields with a finite number of graylevels can be obtained as the global minimum of

a cost function - the effective energy.

2. An estimate of the correlation function can be obtained from the mean estimate

using a simple exact relationship between the mean of a Gibbs distribution and its

covariance.

3. We define iterated-map dynamical systems to find the approximate mean of a Gibbs

distribution. We conduct an in-depth study of the long term-behavior of such maps.

4. We show that these iterated-map systems are the discrete-time analog counterparts

of discrete-time, discrete-signal dynamical systems that seek for the modes of the

Gibbs distribution. These latter systems can be construed as a generalization of

the binary Hopfield network [35].

5. We define continuous-time, gradient-descent dynamical systems to find the ap-

proximate mean of a Gibbs distribution. One of these gradient-descent dynamical

systems can be construed as a generalization of the analog Hopfield network [36].

6. Finally, we conduct a stability analysis of one of our gradient-descent systems and

use it to derive closed-form estimates for the critical temperatures of a gray-level

GRF.

In summary, starting from a probabilistic model, a Gibbs random field, we have shown

that a deterministic network can be designed to find an estimate of its mean field. This
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mean-field estimate can in turn be used to find an estimate of the correlation field.

The results described above can also be interpreted from an entirely different view-

point - that of the design of analog networks for solving discrete optimization problems.

To any cost function defined on a finite set, one can assign a Gibbs probability distri-

bution. Computing the mode of this probability distribution is equivalent to globally

minimizing the cost function. As it was mentioned earlier in this Chapter, one can com-

pute the mode by first computing the mean as a function of temperature and then finding

the limit of the mean as the temperature approaches 0. The paradigm used to find a

deterministic network to estimate the mean field can thus be used to solve the discrete

optimization problem using analog systems. The so called mean-field approximation can

therefore be construed as a digital-to-analog theory converter.

1.4 Overview

This thesis is organized as follows. Chapter 2 is devoted to surveying what is known in

the literature about the computation of the correlation function when the Gibbs random

field is either Gaussian or Ising. We found it useful to introduce the notion of a Gaussian

reciprocal process in the one-dimensional case, since it is this notion, and not that of the

Gauss-Markov process, that can be generalized to the multidimensional case. For both

the one-dimensional and two-dimensional case, the correlation function satisfies a finite-

difference equation. The correlation function of one-dimensional Ising model is derived

rigorously and all details are given, but for the two-dimensional model, we only give the

major result obtained by Onsager in 1942 and stress the fundamental difference between

the one-dimensional case and the two-dimensional case, and that is the existence of a

finite, non-zero limit for the two-dimensional correlation function as the distance between

pixels approaches infinity. This is the essence of the phenomenon of phase transition. At

the end of Chapter 2, we prove the "grayscale" version of the linear response theorem

which allows the derivation of the correlation function of a Gibbs distribution from its

mean function.

Thus the problem of approximating the correlation function is reduced to finding an

approximation of the mean function. Chapter 3 is precisely devoted to the question of

approximating the mean for unconstrained and constrained Gibbs random fields with

a finite number of gray levels. We try in our treatment to make explicit the different

assumptions needed to carry out the algebraic manipulations. We also point out where

we believe more work is required to make some of the heuristics more rigorous. The

highlights of the third chapter are:
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1. In the unconstrained case, a simple derivation of the mean-field approximation that

does not require the use of an integral representation of the partition function.

2. In the constrained case, we develop a set of mean-field equations using a probability

decomposition approach. Here also, an integral representation of the partition

function is not required.

Once the mean estimates are derived in Chapter 3, we devote Chapter 4 to show

how these mean estimates can be used to obtain correlation estimates. After developing

a general procedure for getting these correlation estimates we turn to the quadratic

interaction model and derive a new closed-form approximation for its covariance function.

The mean estimates are generally solutions of fixed-point equations. In Chapter 5, we

propose iterated-map methods to find these fixed points. First it is shown that the mean-

field iterated maps are the analog counterparts of discrete-state iterated maps that try

to compute the fixed points of a winner-take-all (WTA) network. The discrete iterated-

maps are shown to possess Lyapunov functions that can be related to the Gibbs energy,

while the analog iterated-maps are shown to possess Lyapunov functions that can be

related to the effective energy. We also derive a number of useful results concerning the

convergence and oscillations of both the discrete-state and analog iterated maps. This

chapter has also an in-depth study of the generalized sigmoid mapping which plays, in the

context of WTA networks, a role similar to that of the sigmoid function in the Hopfield

neural network. In particular, it is shown that this mapping has a simple, exact VLSI

circuit implementation with desirable circuit-theoretic properties.

One problem with the analog iterated-map dynamics is that it can have an oscillation

of period 2. In Chapter 6, we show the existence of gradient-descent dynamical systems

whose equilibrium points are the fixed points of the analog WTA network. The results

that we have described so far do not depend on the temperature parameter. In the

context of the iterated-map and gradient descent dynamical system, the temperature

plays the role of a bifurcation parameter. This role is investigated in this chapter, and

new closed-form estimates for the critical temperatures of a large class of Gibbs models

used in texture synthesis are derived.

In Chapter 7, we summarize our findings and give indications about possible research

directions in image modeling, neural networks, and analog optimization.
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2

Correlation Functions of Gaussian
and Binary Gibbs Distributions

Dangereuses images qui sont I, comme partout, les substitus d'un savoir!

Gaston Bachelard

This chapter deals with the important issue of determining the correlation function of

a Gibbs distribution. Gibbs random fields and their counterparts, Markov random fields,

have been used extensively for the past decade as a priori image models for image pro-

cessing and computer vision tasks [31, 84]. The image or spatial scene in these models is

the realization of a random field defined through local dependence characteristics. In the

Gibbs case these characteristics are defined by neighborhood-based energy interactions,

while in the Markov case they ae given by neighborhood-based conditional probabili-

ties. When the neighborhood system is given and no global constraints are imposed on

the image, the Markov and the Gibbs representations are equivalent. This is the famous

Hammersley-Clifford theorem [77].

Despite the extensive use of these models, a number of their structural and statisti-

cal properties that are important for image modeling and processing remain unknown.

Among the structural properties, we can mention the dependence of the model realiza-

tions on the functional form of the local interactions, their neighborhood size and their

parameters, whether these interactions are expressed through local conditional proba-

bilities as in the Markov representation or the interaction energies as in the Gibbs rep-
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resentation. Understanding this dependence is important for model realization, model

identification, and model parameter estimation, and it has been the object of steady re-

search since the seminal paper of Besag [6] and the texture analysis and synthesis study

of Cross and Jain [14].

Among the statistical properties of these models, the moments of the joint probability

distribution of the family of random variables defining the random field are the most

important. Already in 1980, Hassner and Sklansky [34] have mentioned the difficulty of

analytically computing the statistical moments of Markov random field models as one of

their major shortcomings. This fact sets these models apart from other more tractable

models like the simultaneous autoregressive models (SAR) [6] or the mosaic models [1]

for which it is possible to compute the correlation function between pixels located at an

arbitrary distance on the image grid.

This chapter is precisely devoted to investigating this difficult question. Of course,

there is no pretension that the answer is contained herein, for we believe there is no

general, exact answer. But we have tried to show that for some specific models, it is

possible to obtain the correlation function of the joint probability distribution. We have

also hinted at the possibility of computing approximate correlation functions for other

models - a hint that will be fully developed in Chapter 4.

There are two specific Markov random field models whose correlation functions are,

to a large extent, known even in the two-dimensional case. The first is a model in which

the pixel state space, i.e., the pixel graylevel, belongs to the real line, and where the local,

neighborhood-based conditional dependence of the color of a given pixel on its neighbors

is given by a Gaussian probability distribution. The second model is the famous Ising

model of statistical physics that can be used as an a priori model for binary images (only

two colors are allowed for each pixel.) For each of these models we start by introducing

the one-dimensional version and compute its correlation function. Then we treat the

two-dimensional case and show how the correlation function can be obtained. We hope

that this method of exposition will make clear the similarities and the differences between

the one-dimensional and the two-dimensional versions of each model. The case of the

Ising model, which is the simplest one can think of for implementing local dependence

between pixels, shows that there is indeed a big gap between the correlation structure of

the one-dimensional case and the two-dimensional case.

It is worthwhile to note that although the Gaussian Gibbs model seems to be analyt-

ically tractable, its problems have not been exhausted yet even in the one-dimensional

case! And it is still the subject of active research [49, 61].

Section 2.1 of this chapter will be devoted to a quick survey of the contexts in which
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the correlation function of the image model is needed. These contexts, which are very

common in image modeling and processing, justify by themselves the importance of

considering the correlation question for Markov and Gibbs image models.

2.1 Need for Correlation Functions

2.1.1 Image Coding

It is well known from transform coding theory [40] that the Karhunen-Loeve (KL)

transform is the optimum image transform coder with respect to all decorrelating trans-

forms as well as all unitary transforms. The criterion of optimality is that of minimum

average mean-square distortion 1 between the original data and the reproduced data.

This minimum mean-square error criterion leads in a natural way to considering the

correlation matrix of the image model. As it turns out, the KL transform diagonalizes

this correlation matrix and packs the image energy into few leading eigenvalues that are

coded and transmitted.

The information provided by the correlation matrix of the image model is also used for

determining the distortion rate as well as for studying the effect of the block size on coder

performance [40]. In these analyses, it is usually assumed that the correlation function

exhibits an exponential decay to zero with the distance between pixels. This kind of

assumption is of course inspired by that of the one-dimensional causal Gauss-Markov

process.

2.1.2 Retinal Information Processing

In their attempts at formulating a coherent theory for early vision processing by

mammals, some vision scientists [27, 3] have recently proposed an information-theoretic

framework for deriving the spatiotemporal transfer function of retinal signal processing.

This approach, which is based on the earlier work of [4], postulates that the goal of retinal

processing is to produce the most "efficient" code for transmission down the optic nerve,

considered a noisy channel with a given capacity. A crucial point in the application of such

a theory to deriving the retinal transfer function is of course that of the statistical nature

of the information source. Atick [3] assumed that for mammals this source should be the

1The word average refers to a sample average over the size of the block, while the word mean refers
to an ensemble average with respect to the probability distribution of the a priori image model.

26



ensemble of images of natural scenes equipped with a Gaussian probability distribution

whose correlation matrix is the one found by Field [27].
Markov and Gibbs random fields have been used as a priori models for a variety of

scenes including natural ones [34], but there has been no attempt at finding whether they
can produce correlation functions similar to the ones found in [27].

2.1.3 Pattern Analysis

Natural textures are generally random, and therefore they lend themselves easily to
a statistical description. In fact, two of the six natural images that were used in [27]
to determine experimentally the correlation function of natural scenes were of natural

textures. Among the statistical measures used to analyze and distinguish textures are

second-order statistics. A famous conjecture due to Julesz stated that humans are unable

to distinguish between textures having the same second-order statistics [25]. Although

there are now many counterexamples to this conjecture, second-order statistics like the

auto-correlation function [40] are still useful tools for computing the tonal coarseness and
dispersion of textures and as a first step in a texture discrimination algorithm.

2.1.4 Pattern Synthesis

Many of the image modeling procedures are based on the idea of white noise filtering.
The problem is the following: given a two-dimensional spectral density function (SDF),

S(zl, z2), or equivalently a correlation function, find a two-dimensional stable linear filter
A(zl, z2) that realizes such an SDF, i.e., such that

S(Z1, Z2) = a2A(zz)A(z, z1),

where or2 is the input white noise variance. As in the one-dimensional case this is a
problem of spectral factorization. Note that in the two-dimensional case there is no

causality imposed on the linear filter. Relaxing the causality requirement however does
not make the problem any easier to solve since in the two-dimensional case, a given two-
dimensional polynomial might not have a decomposition into a product of lower order
polynomials.

The usual engineering approach is to find a stable linear filter such that the above
equation is satisfied approximately rather than exactly. This approximate representation
of SDF is called the minimum variance representation and is studied in [39].
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2.2 One-Dimesional Case: Gaussian Processes

In this section, we start looking at some of the widely used image models from the
viewpoint of their correlation functions. Among these models, Gauss-Markov random
fields occupy a special place. The introduction of these fields into the image processing
literature came almost a decade [89] before systematic investigations of Markov random
fields in image modeling and processing were undertaken [34, 14, 31].

2.2.1 Causal Case: Gauss-Markov Processes

In this section, we show how to get the correlation function of a zero-mean, homo-
geneous, first-order, Gauss-Markov process. Let Xn, n Z, be such a process. Using
the language of random fields that we introduced in Chapter 1, the lattice 2 S here is
identified with Z and the spin state space is identified with R. The Gaussian property

means that every finite collection {Xn, Xn2 ,..., Xnp} of random variables has a Gaus-
sian probability distribution, Vp E N, ni, n 2, ... np E Z. For every random variable, the
expectation E[Xn] = 0. The first order Markov property means that

Pn1(n+nn-1,*Xn-k) = pn+l(Xn+liXn), Vk,n E Z,

where Pn+1 (Xn+l Xn,.. . X ,Xn-k) is the conditional probability density of Xn+l given the
past random variables Xn, ... , Xn-k. Using an image that is now part of the standard
folklore in probability, we can interpret the above condition as saying that in a first

order Markov process the future Xn+l conditioned on the past {Xn-1,...,Xn-k} and
the present {Xn} depends only on the present. We call this property the one-sided
Markov property. The reason will become clear in the sequel. The homogeneity property
means that the conditional probability density Pn(-1.) is independent of n. We denote

the common conditional density by p(- I-). It is worthwhile to note that a Markov process
could be homogeneous but not stationary [65].

For this random process, we are interested in computing the correlation function
E[XmXn] for any pair (Xm, Xn). This computation is rather difficult in the general case.
But because of the Gauss-Markov nature of our process it is possible to write down a
"state-space" representation that makes the computation quite easy. This can be done
as follows. From the Markov condition, we get for the mean of X, conditioned on the

past {Xn 1, l > 1},

E[X. ilXn_, , Xn-k] = E[X n Xn-]. k > 1i .

2Unlike the rest of the thesis, the lattice of the Gaussian case will be assumed infinite.

28



Moreover, because the Xn_1 and Xn are jointly Gaussian, the conditional mean of

Xn given Xn_1 is also the best linear estimate of Xn based on Xn_1 , i.e., E[XJnlXn_.] is
proportional to Xn,-1 , and there exists a, such that E[Xn[Xn-] = aXn,,-1. To compute
an, we use the standard conditional estimation property that the estimation error Zn =

Xn- anXn_1 is uncorrelated with the data. In other words,

E[Z.X.l] = E[(X - nXn..-I)Xn-] = 0,

which gives
an=E[Xn-l Xn]

E[Xn-l]

Introducing the standard deviations aun and correlation coefficients Pm,n, we can write

Xn= n P1- ,nXn-1 + Zn.
O'n- 1

Because of the Markov property, not only is the error Zn uncorrelated with Xn_ but also

it is uncorrelated with all the Xn-k, k > 1. Therefore by multiplying the above equation
by Xm, m < n, and taking the expectations of both sides, we get

Pm,n = Pm,n-lPn-l,n.

Applying the same equality to Pm,n-i and repeating, we get

n-1

Pm,n = I Pk,k+l
k=m

If we now make the additional assumption that the process is stationary, i.e., for the

Gaussian process, both the first and second order statistics are independent of n, then

we obtain

Pm, = pn-m m < n.

It follows that for the stationary, zero-mean, first-order, Markov-Gauss process, the cor-

relation function is given by

E[XmXn] - u2 pIn- m l, Vm,n E Z

where 0 < IPI < 1.

It is clear from the above expression that the correlation function of the stationary

Gauss-Markov process exhibits an exponential decay versus the distance between the

sites (unless of course I = 1.)
One important property of the error sequence in the 1D Gauss-Markov process is that

it is uncorrelated, i.e., E[ZmZn] = 0, and since the error sequence is Gaussian, the errors
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are independent of each other. Moreover, in the stationary case, E[Z2] = ar2(1 - p2 ).

Therefore, the error sequence is white Gaussian of variance equal to o2(1 - p2 ). It will

be seen that this is no longer the case for the noncausal Gauss-Markov model: the error

sequence is correlated.

2.2.2 Noncausal Case: Gaussian Reciprocal Processes

As was mentioned in Chapter 1, images are inherently noncausal, in the sense that

there is no preferred direction for scanning the image. To use the poetic imagery of

Markov chains, we can say that in an image, there is no past, no present and no future.

However, each closed region in the image has an inside, a boundary and an outside, and

its around these geometric concepts that a 2D model for conditional dependence should

be constructed. In fact, the geometric ideas of inside, boundary, and outside can even

be applied to the real line R or to the set of integers Z. Consider a zero-mean, Gaussian

process X~, n E Z. Then this process is said to be reciprocal [50] or quasi-Markov [10] if

the conditional densities satisfy the following condition

Pn(xnlxn-k, * Xn-l Xn+,- - ,Xn+l) = Pn(XnlXn-IXn+l), Vn E Z, k, I > 1 (2.1)

This condition means that the conditional probability inside the interval In -1, n + I[C Z
given the configurations outside the interval are equal to the conditional probability inside

given only the configurations at the boundary. The "inside" set here is just one point {n},

while the "boundary" has two points {n - 1, n + 1}. Here also we will assume that the

process is homogeneous so that the conditional density is independent of n. Note that

the above definition is similar to a two-sided Markov property in which we look at the

configurations on both sides of the considered site. There are two important questions

that one should ask here. The first is about the relationship between the standard

Markov property, which is a one-sided property, and the two-sided Markov property

of the reciprocal Gaussian process. The second question is whether it is possible to

characterize all the correlation functions of the stationary reciprocal Gaussian processes

the same way we are able to characterize the correlation functions of the stationary

Gauss-Markov processes.

Correlation Structure

The answer to the first question is that the one-sided Markov property implies the

two-sided Markov property. The converse is however not true, i.e., there are reciprocal,

stationary Gaussian processes that are not Gauss-Markov. Let us first state the following
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Proposition I f Xn, n E Z, is a Markov process then it is reciprocal.

Before giving the proof, let us note that the theorem does not make the assumption that

the process is Gaussian. Indeed, the proof, as will be shown, uses only the Markovian

assumption. To simplify notation, let us denote by and r the two families of variables

{Xn-k,...,X.Xn-2} and {xn+2 ,... ,Xn+l}, respectively. To prove Proposition 1, we need
Lemmas and 3 below. Lemma 1 gives an equivalent definition for a reciprocal process

while Lemma 3 is an interesting, albeit little-known, conditional independence property

for Markov chains.

Lemma 1 The process Xn, n E Z, is reciprocal if and only if

p(l, x,, rxn-1, xn+l) = p(Xn Xn-,x+l1)p(1, rx.-1 , x +l). (2.2)

Proof: Assume that condition (2.2) is satisfied. Then we have

p(xnl, Xn-1 Xn+l, r) = pl, X n-1, x, n+l,r) (2.3)

pAl, Xn rn-lXn+l )p(l, x,~, r x_., xn+1) (definition of conditional densities)
p(l, rn-l, n+l)

P(XnlXn-, Xn+l)p(l, rXl 1i, n+l) (by condition 2.2).
p(l, rXnl, Xn+l)

It follows that the process is reciprocal. Conversely assume that the process is reciprocal.

Then

p(l, xn, rlxnix,+l) = p(l, Xn- 1, Xn, Xn+l, r) (2.4)
P(Xn-1 ,Xn+l )

P(Xn l, Xn-1, Xn+l, r)p(l, Xn-1 Xn+l, r)
P(Xn-lsXn+l )

= P(XnlXn-1 n+l)p(l, rxn-1, Xn+l),

where the last equality resulted from the definitions of a reciprocal process and conditional

densities. X

In plain English, the above lemma is saying that the process is reciprocal if given
the conditions on the boundaries the inside and outside are independent. This condition

should be contrasted against the following known property ([65], p. 386) for one-sided

Markov processes. The property is easy to prove and is stated in terms of a continuous-

state Markov process.

Lemma 2 Let Xn, n E Z, be a one-sided, continuous-state Markov process. If k < m <
n, then

p(xk, Xn Xm) = p(xkl Xm )P(XnIXm). (2.5)
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This lemma states that given the present, the past and the future of a one-sided Markov

process are independent. Note how the concepts of past, present and future of Markov

processes were replaced by the concepts of inside, boundary, and outside for reciprocal

processes. These latter concepts make the reciprocal process a better candidate for

generalization to multidimensional cases. The next lemma is also concerned with the

conditional independence of past and future in Markov processes.

Lemma 3 Let X, n E Z, be a Markov process. Then we have

p(l, rx.- 1, Xn+l) = p(llx.-l)p(rlxn+l). (2.6)

p(l, rlxn-1, xn+l) =

The third equality results from Lemma 2

property.

With Lemmas 1 and 3 in hand, we can

Proof: We want to prove that if X is

Lemma 1 is satisfied. Thus we start with t

Markov condition, that (2.2) is satisfied.

and the last one in nothing but the Markov
U

i now prove Proposition 1.

Markov process then the condition given by

,he left-hand side of (2.2) and prove, using the

p(l, Xn, rlxn-., xn+l) -= Xp( xn1 , x+,r)
p(n- ,_Xn+l )

p(l, lXn, rl2zn+l)

p(n-1 lXn+l)
p(l, n-I Xn I n+) p(rlxn+l),

where the last inequality results from the one-sided Markov property. Now consider the

first term in the expression above. Then we have

p(l xn-l , xnlxn+l ) p(l1 Xn-l Xn, Xn+l )

P(Xn-1 JXn+1 ) P(Xn-1 v Xn+l )

p(l, Xn, Xn+l ln-1)

P(Xn+l lXn-1)

32

Proof:

P(I' Xn-1, X'n+1, r)
P(Xn-IXn+l)

P(I, Xn+l, rjx._j)

P(X.+l I X.-I)
P(IlXn-l)P(Xn+l, riXn-1)

P(Xn+l IXn-1)

P(ljXn-I)p(rjx.+j, x.-,)

P(IlXn-l)p(rlXn+l)



p(l I xn-l )p(x., X+l IXn-1 )
P(Xn+l Xn-1)

p(l X=-1 )p(X Xn-1 xn+l ),

where the third equality results from Lemma 2 and the last one follows from

p(xn, X n+ Xn-) = P(Xn Xn+, nI) ( i .)
p(Xn+l Xn-1) p(Xn+lxn-1)

Assembling, we get

p(l, Xn, rxn-l, Xn+l) = p(llx -l)p(rlxn+l)p(xn xn-1, Xn+l).

The desired result is obtained by applying Lemma 3. 

The converse of Proposition 1 is not true. In other words, there are reciprocal Gaus-

sian processes that are not Gauss-Markov. This fact is in sharp contrast to the case

where the state space of the Markov chain is finite. Then one can prove using the theory

of Markov random fields that there is in fact an equivalence between a one-sided Markov

process and a double-sided Markov process [30]. To see why the converse of Proposition 1

is not true, we need to study the correlation structure of Gaussian reciprocal process and

show that there are Gaussian reciprocal processes having correlation functions that are

not of exponential decay. We shall proceed as for the Gauss-Markov case and exploit

the optimal estimation properties of Gaussian processes. We will consider zero-mean

processes and denote by R(m, n) = E[XmXn] the correlation function of the process Xn.

When this process is stationary R(m, n) = R(n - m).

Proposition 2 Let Xn, n E Z, be a zero-mean, stationary Gaussian reciprocal process,
such that R(O) = 1. Denote by a = R(1) and b = 1+R(2). Then the correlation function
satisfies the difference equation

aR(l + 2) - bR(l + 1) + aR(l) = 0, Vl E {Z - (-1)} (2.7)

Proof: First we will treat the case R(2)1 y$ 1. For I > 2, consider the random variables

Xn_, Xn_, X, Xn+l. Then by the reciprocal property,

p(Xn IXn-, Xn-1, xn+l) = P(xn X-, Xn+l).

It follows that

E[XnlXn-,X~.-,,Xn+]= E[XnXn-.,Xn+].

Since the process is Gaussian, the conditional mean is a linear combination of the data,

i.e., 3 u, v E t such that

E[Xn JXnl, Xn+jI uX._ + vXn+l
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Moreover the "estimation error", or the residual, given by

Z = X - E[X IX.ni,X,+,] = Xn- uXn_ - vXn+

is uncorrelated with the data. In other words,

E[ZX,-] = E[ZnX,+] = E[ZnXnt] = 0, Vl 0 O.

The above three equations along with the expression of Z, give

R(1) - uR(O)-vR(2) = 0

R(1) - uR(2) - vR(0) = 0

R(l)-uR(- 1) - R( + 1) = 0, Vl 0.

Solving the first two equations for u and v gives

R(1) a
u = v = R(0) + R(2) = b'

which upon substitution in the last equation gives

aR(l + 1) -bR(l)+aR(I- 1) =0, Vl 0.

The difference equation (2.7) is obtained by replacing with + 1.

Now consider the case R(2)1 = 1. Since R(0) = [R(0)]2 - 1, the correlation matrix

of the Gaussian vector (Xo, X 2)T has a determinant equal to 1 -[R(2)] 2 = 0, i.e., we can

write X 2 = cXo. Using the reciprocal property, we get that the error

Z = X - E[X1 IX_1,Xo,X 2 ] = X - E[X1lX o]

is uncorrelated with X 0 , X- 1 and X 2 . The last equation is a result of the linear depen-

dence between Xo and X 2. Also, E[X1 IXo] = Xo. Hence

E[ZXo] = E[Z1Xl] = E[Z1X 2] = O.

We can then write for the first two equations

R(1) = and ; R(2) = KR(1).

It follows that R(2) = [R(1)] 2, which means that R(2) = 1 and that R(1) = +1. To

obtain the correlation R(n) it is sufficient to notice that the error Z1 is uncorrelated with

X-,+, which gives the recurrent equation

R(n) = R(1)R(n- 1).

Therefore

R(n) = [R(1)]n,

and the correlation function in this case is either R(n) = I or R(n) = (-1)n.
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Remarks: Let us pause here for a while to give the following remarks:

1. The case when R(2)1 = 1 leads to a correlation function that is either 1 or (-1)n.

The latter situation is similar to the "uninteresting" IpI = 1 for the Gauss-Markov

case.

2. In the case when R(2)I # 1, we get that u = v. The parameters u and v can be
understood as bonding parameters in the sense of Markov random field models.

Their equality is a necessary outcome of the stationarity assumptions. This is in

line with the observation made in [6] that the bonding parameters in a homogeneous

Markov random field are symmetric.

3. Since every Gauss-Markov process is also a Gaussian reciprocal process, the correla-

tion function of a zero-mean, stationary Gauss-Markov process such that E[X,2] = 1

always satisfies the difference equation (2.7). To check this, note that for a Gauss-

Markov process we have p = a, R(2) = p2 = a2. Substituting into (2.7), we get the

identity

a3 -(1 + a2 )a + a = 

as can be easily checked.

What makes the class of reciprocal processes larger than the class of Gaussian pro-

cesses is that the difference equation (2.7) admits solutions other that the ones that lead

to the exponentially decaying correlation of the Gauss-Markov process. Specifically, we

have

Proposition 3 If Xn, n E Z, is a zero-mean, stationary, reciprocal Gaussian process
such that E[X 2] = 1, then its correlation function is one of the following

1. R(n) = An, 0 < IAI < 1;

2. R(n) = cos(On), E [0, 2r].

Proof: We start with the difference equation (2.7) and set R(l) = z. Then z must

satisfy the quadratic equation

az2 -bz +a = 0. (2.8)

We have of course three cases:

1. b2 = 4a2. Then (2.8) has one solution z = z+ = ±1. We set A = ±1. Clearly the

correlation function has Form 1 above.
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2. b2 > 4a 2. Equation (2.8) has two real solutions

Z = a(b + ¥m - 4)

with z+ > 1 and z_ < 1. Therefore

R(l) = AzL + Bz4.

Since IR(l)J < 1 and R(O) = 1, we have A = 1 and B = 0, i.e., posing z_ = A with

IA < 1, R(l) = A1, which has Form 1.

3. b2 < 4a2 . In this case, (2.8) has two complex conjugate solutions ~ and ~ such that

= 1. We can then write

R(l) = A exp(ilO) + B exp(-ilO),

with tan(8) = - 1. Since R(l) is real, we get

R(l) = C cos(l0) + D sin(lO).

Since R(0) = 1, we get C = 1. Moreover for the condition R(I) < 1, VI, to be

satisfied, we must have D = 0. It follows that R(l) = cos(10), i.e, Form 2.

Note that if we impose the condition IR(I)l < 1, > 0, then R(n) = An, 0 < IAI < 1,

or R(n) = cos(On) with irrational.
The interest of the above proposition comes from the fact that the two-sided Markov

property of reciprocal processes leads to a much richer class of correlation functions.

Indeed, the almost periodic nature of R(n) = cos(nO) with irrational contrasts
7r

sharply with the exponentially decaying correlation of Gauss-Markov processes as can be

seen in Figure 2-1.

Noise Process

Beside this fundamental difference in the correlation functions, there is another dif-

ference related to the behavior of the error process Z, n E Z. While this process is

independent, identically distributed, in the stationary Gauss-Markov case, it is corre-

lated in the stationary, reciprocal, Gaussian case. In other words the autoregressive

equations

X. = uX._1 + vX.+l + Zn, n E Z
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FIGURE 2-1: (a) Exponentially decaying correlation function. (b) Cosine correlation
function for the Gaussian reciprocal process.

for a reciprocal Gaussian process are not driven by white noise. Note in particular the

noncausal nature of these equations. It is possible to compute the correlation structure of

the input sequence, Z, n E Z, as function of the autoregressive coefficients u, v. Indeed,

when R(2)1 ¢ 1, we can write the above equation as

Z = X - uX_ - uXn+, n Z,

where we have used the fact that v = u (see Proposition 3). Now Z,+l is uncorrelated

with X,, 1 , X, and Xn+2 . Therefore

E[ZZn+l] = -uE[Xn+lZn+l] = -uE[Zn2+1].

Similarly

E[ZnZ._l] = -E[X._,Zn_,] = -E[ZL].

Using the correlation properties between the error sequence Zn and Xn we can also prove

that

E[ZnZn+i] = , VI E Z, Il > 1.

The above equations mean that unlike the Gauss-Markov case, the error sequence of the

reciprocal process exhibits local (nearest-neighbor) correlations that are determined by

the autoregressive parameter u and the variance of the noise E[Z2]. An easy computation

shows that

E[Z] = E[ZnXn,] = 1 - 2uR(1).

37

eiaidms 6cd

10



2.2.3 Noncausal Autoregressive Process

This local correlation behavior of the noise sequence makes the reciprocal process

inherently different from the general noncausal, autoregressive (AR) model [40], in which

we have

X. = a-Xn-,1 + at+X.+l + Z., (2.9)

where Z, is a sequence of zero-mean, identical, independently distributed random vari-

ables. In this class of models the autoregressive parameters a+ and a_ can be different,

i.e, the model is not realizable using a homogeneous, reciprocal process. The following

proposition concerning the correlation function of a process described by (2.9) gives the

reason.

Proposition 4 The correlation function of the noncausal, autoregressive model (2.9)
satisfies a 4th order difference equation.

Proof: Denote by R(l) = E[XnX.+1 ] the correlation function. From (2.9), we have

Z = Xn- a-_Xn-_ - a+Xn+l,

and using the fact the error sequence is zero-mean and that Z and Z+, 0 0 are

independent therefore uncorrelated, we get

E[Z.nZn+l] = E [(Xn - a_Xn_.- a+Xn+)(Xn+l - a-X,,+,_l - a+X.+1+)]

= (1 + a' + a')R(l)- (a_ + a+)R(lI- 1)-

(a_ + ca+)R(l + 1) + c_a+R(l- 2) + a_a+R(l + 2)

- O.

Replacing I with + 2 and rearranging we get for R(l) the difference equation

a_a+R(l + 4) - (a_ + a+)R(l + 3) + (1 + 2 + ac)R(l + 2)

- -(a_ + a+)R(l + 1) + a-a+R(l).

Note that the coefficients of the above equation are symmetric with respect to a_ and
a+ Lt u deoteby t = 1 + a 2 + a s

a+. Let us denote by p = 1+ a2 + a , = a-_ + a+ and ( = a-a+. Then the difference

equation above becomes

¢R(l + 4) - vR(l + 3) + IR(l + 2) - vR(l + 1) + ¢R(l) = 0. (2.10)
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As for the reciprocal process, it is possible to compute the different forms for the

correlation function R(l). Indeed, The characteristic equation of the 4th order difference

equation (2.10) is given by

(Z4 _ -Z 3 + Z2 _ VZ + =0. (2.11)

Note that the roots of this fourth-order equation are invariant under the transformation

z --- . It follows that if z is a root of (2.10) then x = z + is a root of the quadratic
z

equation

4(x 2 - 3#x + 2v - 3¢ = 0. (2.12)

For each root z of (2.12), there corresponds two roots of (2.12) given by

1
z = 2(z /x 2 -4).

The different possibilities for the correlation function can be determined according to the

discriminant of (2.12), the sign of 2-3, and the condition R(l)1 < R(0), E Z.
C'

It is clear that the correlation structure of the noncausal, autoregressive model is

richer than that of the Gaussian reciprocal process. Note also that in the former case, the

parameters of the model need not be symmetric, i.e., we could have a_ ¢ a+. Moreover,

the noise process of the model need not be Gaussian. In fact the above reasoning about

the correlation function remains valid even if the independent random variables Z, have

different distributions.

The noncausal autoregressive models are often encountered when one discretizes

boundary-value differential equations and drive the resulting difference equations with

zero-mean white noise. For instance, the D Poisson equation would correspond to the

case where o = a+ = 1. This aspect of the noncausal autoregressive models and its

applications to noncausal smoothing problems is treated in [48].

Finally, it is worthwhile to mention that this richness in the correlation structure of

the noncausal, autoregressive model is obtained at the expense of a more complicated

conditional probability structure.

2.2.4 Conditional Probability of the Autoregressive Model

In order to explain this remark, 3 we will compute the conditional probability for the

nearest-neighbor autoregressive model given in (2.9). A first look at (2.9) might lead us

3 This section was formulated as an exam problem for 6.432, the core MIT course on stochastic
processes, in Spring 1992. John Wyatt was lecturer.
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to believe that the noncausal process defined by this equation is a (first-order) reciprocal

process, since only the two nearest neighbors are involved in the definition of every

random variable. This is actually wrong. The process is in fact second-order reciprocal,

in the sense that the conditional probability of the variable Xn given all the remaining

variables is equal to its conditional probability given the variables of its nearest-neighbors

and next-nearest neighbors. First let us make the following simplifying assumptions:

1. Assume that the noise process is a zero mean, independent, identically distributed

Gaussian process of unit variance.

2. Assume periodic boundary conditions, i.e, XN+1 = X1. In other words, the process

is defined on a circle instead of being defined on a line.

Our objective is to compute the conditional probabilities

P(XnIXmV1 < m < N, m n), 1 < < N.

In order to do this, we introduce the following notations. We let X and Z denote the

random vectors (Xi, ... , XN) and (Z,.. , ZN), respectively. Also, we denote by xi the

N-dimensional vector (xl,... ,xi-1, 0, xi+l,... XN) obtained from x by replacing the i-th

component with 0.

With these notations, Equation (2.9) can be written in a linear system form as

BX = Z, (2.13)

where the matrix B is given by

B =

I -a+ U ... U -a-_

-a_ 1 -a+ 0 ... 0

0 .. .. .. 0

0 ... 0 -a_ 1 -a+

, -,' . N ". n -- 1I

and is assumed invertible.

To find the conditional probabilities, we need first to compute the joint probability

distribution p(x).

Lemma 4 The random vector X is Gaussian of covariance matrix equal to (BTB) -1 ,
so that we have

p(x) ( 2 )N/ 2 exp [ 2 xTB B] .
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Proof: Since B is invertible, we can write for any N-dimensional vector r, rTX =

rTB - lZ, which is a Gaussian variable by the fact that Z is a Gaussian vector. It follows

that X itself is a Gaussian vector. Moreover, the correlation of the Gaussian vector X is

given by

E[XXT] = (BTB) - 1 ,

since E[ZZT] is the identity matrix. The expression of p(x) results from the fact that X

is also zero-mean. ·
The following formula satisfied by the conditional probabilities will also be useful

Lemma 5 Let p(x) be a probability density such that Vx E RN, p(x) > 0. Denote by

Q(x) = in p(x)
[P(O)]

Then
p(xnlm #m n) p(x)p(OIxmm = p(x) exp(Q(x)- Q(xn)),
p(O0IX, m n) p(xn)

where 0 is the value taken by the variable at the n-th site.

Proof: To prove the above inequality, we use the definition of Q(x) and the fact that

p(X) = p(xlxm m 7 n)p(xl,..,Xn-1,n+X .. XN)

p(xn) = p(Olxm, m i n)p(xl,...,Xn-lXn+l ,...XN)-

Now we are ready to obtain the conditional probabilities p(xn, Ilxm, m 0 n). Applying

the above lemma to the Gaussian distribution obtained in Lemma (4), we get

Q~x)-Q~xn)i [iBx. ll2 ![Bxll2] Q(x) - Q(xn) = [IBx.' - liBx12]

In the above expression, all the terms that do not contain xn or its nearest neighbors

xn-l and xn+l will cancel out, and we are left with the terms corresponding to n- 1, n

and n + 1. After some simple algebra we get

Q(x)- Q(xn) = -(1 +a 2 + c)X2 +2(_ + a+)Xn(X.-l + Xn+2)-2aa+Xn(Xnl + Xn+2).

In other words, we have for the conditional probability the expression

P(|rnIXm,m n) = exp {-x[ (1 + a2 + a2)x
p(Olx, m # n) epI 

+ 2(,'_ + a+)(X._l + Xn+ 2) - 2a_ a+( .(n- + x+ 2)]}.

Note that the denominator is a real number whose value can be determined using the

fact that the conditional probability integrates to one over the random variable values at

one site. There is a number of interesting remarks that can be made.
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1. The exponent in the conditional probability is invariant with respect to the trans-

formation a_ - a+ and a+ --+ a_. Writing

a2 = (1+2 + 2 )-

a= 2(a_ + +)

b = o'2a_ c+

we get

p(0lxm ¢ n) = exp - [n + 2a(x.-i + xn+2) - 2b(xn_1 + Xn+2)] .

It is clear from the above expression that there is symmetry in the parameters

bonding site n to its neighbors and its nearest neighbors.

2. Although we started with an equation in which xn seemed to depend only on zn-1
and xn+l, the conditional probability depends not only on these sites but also on

the next-nearest neighbors n_2 and Xn+2. In other words, we can write

p(xnlxm, m # n) = p(xnlxm,m = n - 2,n - 1,n + 1, n + 2).

3. From the above expression, one can deduce that Xn, 1 < n < N is a second order

one-dimensional Markov random field. The neighborhood structure of this field

is the one defined not only by the nearest-neighbor but also by the next-nearest

neighbor.

4. In order to get the best estimate of Xn given the remaining variables, we need to

compute the expectation of Xn conditioned on the remaining variables. Completing

the square in the exponent of the conditional probability, we get

P(OIxm, m n) = exp - .2 [(Xn - m) 2 + m] } 
where

Mn = E[XnlXk, k # n] = -a(Xn 1 + Xn+l) + d(Xn-2 + Xn+2).

The question remains as to what it takes so that the noncausal autoregressive equa-

tion (2.9) defines a one-dimensional Markov field with nearest-neighbor neighborhood

structure. We have the following proposition.

Proposition 5 The periodic, noncausal, autoregressive process defined by equation (2.9)
defines a first-order Markov random field if and only if the following two conditions are
satisfied
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(i) The matrix B is symmetric (a_ = a+) positive, definite.

(ii) The noise process Z is correlated with a correlation matrix B- 1 .

Proof: The proof is easy and is left as an exercise to keep the reader alert. 

The above observations are not new. In fact they were made by Besag in his 1974

paper [6]. The elementary one-dimensional treatment here should help the reader appre-

ciate the tradeoff that exists between the MRF model order and the correlation structure

of the noise sequence. Moreover, it should make more apparent the difference between

models based on conditional probabilities and noise-driven models.

2.3 Two-Dimensional Case: Gauss-Markov Random

Fields

We have seen in Section 2.2.2, that in the D case, the Gaussian noncausal models

exhibit a richer correlation structure than the causal ones. Whether the correlation

structure has exponential decay or not depends on the parameters of the autoregressive

equation representing the model. We have also seen that within the Markov context, it

is the (noncausal) reciprocal process that is the better candidate for generalization to the

multidimensional case.

In order to avoid dealing with the mathematically tricky infinite lattice (see Ap-

pendix A) or the cumbersome boundary conditions of the rectangular lattice, we will

assume throughout that the lattice is toroidal.4 In order to avoid complex notations, we

restrict ourselves to the nearest-neighbor neighborhood structure on a toroidal lattice S

of size IS =N 2.
If A C S, we denote by XA the random vector describing the configurations of lattice

sites in A. The boundary of A is a subset of S, denoted OA, and defined by

OA = {s E S-Al r E A,s E JV,}.

The boundary site configurations are described by the random vector X8A.

The Gauss-Markov random field is introduced using conditional probabilities. Later

in this section we show how it can be written as a Gibbs distribution with appropriately

4Only very recently did researchers start considering finite lattices with non-toroidal boundary con-
ditions for the Gaussian case [48, 61].

5 The neighborhood assumption is not as restrictive as it may sound. Indeed, if we extend the pixel
state space by considering pixel variables in Rd, d > 1, then higher order neighborhood models can be
treated as nearest-neighbor models as well [48].
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chosen local energy interactions. The following definition develops the concept of inside-

outside mentioned in Section 2.2.2 for the reciprocal process.

Definition 5 A Gaussian random field X., s E S is said to have the Markov property if
for any subset A C S we have

pA(XAIXS\A) = PA(XAIXaA). (2.14)

In other words, the probability density for the A configurations conditioned on the con-

figurations of the "environment" is equal to the probability density conditioned on the

configurations of the A boundary. The conditional densities depend on the set A, hence

the index A in Equation (2.14). As for the reciprocal process, one can prove that given

the boundary configuration X8A, the "inside" configuration XA and the outside" config-

uration are independent. When the set A is reduced to one site s, we can write Equation

(2.14) as

PS(xlxs\{s}) = PS(XSIxr, r e ),

which is the second condition given in the MRF definition 1.6

2.3.1 Correlation Function

The random field will be assumed homogeneous, i.e., the conditional densities are

independent of the site location s. As for the reciprocal process, we will show that the

correlation function satisfies, on the square lattice, a difference equation that we will

indicate how to solve to obtain the correlation structure of the Gauss-Markov field. For

this we use a vector notation to identify sites on the lattice. Choosing some site o as

an origin, the site s will be denoted by a vector s whose origin is located at o. We let

h = (1, 0) and v = (0, 1) be the horizontal and vertical unit vectors on the lattice. The

four nearest-neighbor of a site s will be s + h, s + v, s- h, and s - v.

Proposition 6 The correlation function of a two-dimensional zero-mean, homogeneous,
nearest-neighbor Gauss-Markov field satisfies the two-dimensional difference equation

R() - aeR(l - h) - aR(l - v) - awR(l - h) - aR(l - v) = dS(l), (2.15)

for ae, a,, a, w,, d E t.

6We do not discuss the important problem of knowing whether this condition, which is implied by
(2.14), is sufficient for (2.14) to hold [10].
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Proof: Since the field is homogeneous and Gaussian, the conditional expectation of Xs

given a configuration of the nearest-neighbors, Xr, r E As, is a linear combination of the

Xr's, i.e., there exist ae, an, a, as E R, the indices designating the east, north, west, and
south neighbors, such that

Xs = aeXs+h + anXs+v + awXsh + asXs-v + Zs, (2.16)

where Zs, s E $, is an error, or residual, field. The random variable Zs is uncorrelated

with the field variables Xr where r is a neighbor of s. Moreover because of the Markov

condition, it is uncorrelated with all the field variables other than Xs. Let s + denote

some other site. Then since E[Xs+v, Zs] = 0,1 # 0, and posing E[XsZ s] = d,l # 0, we

get

E[Xs+lXs] = aeE[Xs+lXs+h] + a.E[Xs+lXs+v]

+ aE[Xs+lXsh] + aE[Xs+lXs-v] + dS(l) (2.17)

which, because of the homogeneity assumption, gives (2.15). ·

The coefficients ae, a, an, a, can be determined from the correlation values by writing

(2.15) for = h ± v and using the fact that R(l) = R(-l). This results in the following

linear system of equations

a b c d ae 

b a d c a, h (2.18)badc a ~~~~~~~~~~~(2.18)
becf aw g

e b f c a, h

where the coefficients of the 4 x 4 matrix and the right-hand side vector are determined by

the values of the correlation function R. It is important to note that these necessary equa-

tions impose a fundamental structural constraint on the field parameters, a, a,, an, as,

which is a = a, and an = as, i.e., in the nearest-neighbor lattice, the eastern parameter

is equal to the western one, and the northern parameter is equal to the southern one. In

order to see this, notice that the above equations are invariant under the mapping north

- south, east --+ west. This result for the parameter symmetry is the counterpart in the

two-dimensional case to the equality of the two coefficients u and v for the D reciprocal

case.

The other point of analogy between the one-dimensional reciprocal case and the two-

dimensional Gauss-Markov case is in the structure of the noise field Z. We have seen

that for the reciprocal Gaussian process the noise process Z., is not white but correlated.

This fact gets inherited by the two-dimensional Gauss-Markov field. The correlation
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function of the two-dimensional noise field can be computed as follows. From (2.16) we

get

Zs = Xs - aeXs+h - anXs+v - aeXs-h - anXs-v. (2.19)

Multiplying the above equation with Zs±h and using the uncorrelation property between

the error and the data, we get

E[Zs~hZs] = -aeE[ZshXs~h] = -aeE[Z. h] .

Similarly,

E[ZsvZs] = -a.E[ZsvXs8 v] = -anE[Zsv].

Note that we have

E[Zs2lv] =] = h] = E[Z] = d.

Forl i ±h or I ± v, we have

E[ZlZ s] =0.

The most important aspect of the noise correlation function is that it is not white and

that its structure is determined by that of the Gaussian field itself.

2.3.2 Power Spectrum

Solving the two-dimensional difference equation to obtain the fundamental forms of

the correlation function is more difficult than in the D case. However, because of

linearity and stationarity, the two-dimensional power spectrum, which is the Fourier

transform of the correlation function, can be computed. Indeed we have

R(l) - ae(R(l + h) + R(l - h)) - a,(R(l + v) + R(l - v)) = dS(l).

Taking the two-dimensional Fourier transform of both sides, and denoting by S(A1 , A2)

the power spectrum of the random field we get

S(A1 , 2 ) = d(1 -2ae cos A -2a, cos A2) - .

Since the power spectrum is a non-negative function, the above expression imposes yet
another constraint on the parameters of the Gaussian field. Indeed for S(A1, A2 ) to be

non-negative, it is sufficient that ae + anI < . Note that this fact is not apparent from

the system of linear equations (2.18) used to compute these parameters.

7In fact the solution is possible in the case when we impose toroidal boundary conditions [11].
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FIGURE 2-2: Correlation function (a) and power spectrum (b) of an isotropic Gauss-
Markov random field. The origin of the correlation plot is at the leftmost corner.

Figure 2-2 shows the plots of the correlation function and the power spectrum of an

isotropic Gauss-Markov field in which ae = a, = .24. The power spectrum, plotted over

the grid [-7r, +r] x [-7r, +r], indicates that most of the signal energy is concentrated

around the origin. The correlation plot, in which the origin is at the leftmost corner,

indicates that that there is a decay in the correlation as distance increases. The raised

corners are due to the high curvature areas in the power spectrum.

Similarly, Figure 2-3 shows the plots of the correlation function and the power spec-

trum of an anisotropic Gauss-Markov field in which a = .24, a = .10 . The power

spectrum, plotted over the grid [-2r, +ir] x [-7r, +r], has a symmetric distribution about

the 2 = 0 axis. Note how the smoothness of the power spectrum affects the height of
the correlation function at the three corners other than the origin.

Important Remark: The above computation of the power spectrum used the implicit

assumption that d > 0. What if d = 0? Can we define a Gaussian MRF? The answer

is yes, we can! In fact the correlation functions in this case correspond to the cosine

correlation function in the reciprocal case. The reader can easily verify in the latter that

the cosine correlation function does correpond to a process with zero noise sequence if

the parameter 8 is assumed irrational.

When the field is defined on an infinite lattice, the degenerate zero-noise case can

be eliminated by assuming that the field is regular [49]. At least in the one-dimesional

case, i.e, S = Z, this additional assumption has far-reaching and somewhat disappointing

implications. Indeed, Levy [49] has proved that a regular, reciprocal, stationary Gaussian
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FIGURE 2-3: Correlation function (a) and power spectrum (b) of an anisotropic Gauss-
Markov random field. The origin of the correlation plot is at the leftmost corner.

field is necessarily Markov! In other words, noncausality is not adding anything new!

2.3.3 Gauss-Gibbs Distribution: Hammersley-Clifford Revis-

ited

We would like to end this section by mentioning how one can derive a Gibbs prob-

ability distribution for the two-dimensional Gauss-Markov random field. One can see

this as a (yet another) proof of the famous Hammersley-Clifford theorem [6] about the

equivalence between Markov random fields and Gibbs random fields.

To understand this paragraph, let us review the different representations of a Gauss-

Markov random field. This field was first defined using Markovian conditional proba-

bilities (Markov representation). Next, an autoregressive model driven by colored noise

was introduced based on the properties of Gaussian estimation (autoregressive repre-

sentation). Now, we would like to introduce the third representation, namely, the one

corresponding to Definition 4 (Gibbs representation).

In order to obtain the Gibbs probability distribution, one needs to define the clique

potentials. In the nearest-neighbor lattice, a clique is one of the following three subsets

{s}, {s, s + h}, {s, s + v}.

Denoting by a2 the variance of the noise process Zs, the clique potentials are defined by

X2
V(xs) =

012
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V(Xs, X+h) = _aexsxs+h

V(x 8,X 5+) = - xx0.2V(XsXs~v) anXsXs+v

The energy of the Gibbs distribution is then defined as the sum over all cliques of the

clique potentials given above, i.e.,

1
E[x] = s - aexsxs+h - anXsxs+h),

SES

so that the Gibbs distribution is given as usual by 8

p(x) = 1 exp[- E(x)].

The existence of the above distribution depends on the normalizing constant Z being

non-zero. We will now give a necessary and sufficient condition for a non-vanishing

normalizing constant. It is not difficult to verify that the energy E(x) can also be

written as

E(x) = xTHX,

where H is, for the periodic boundary condition, a block circulant matrix [40]. Using the

rules of Gaussian integration, it is not difficult to see that

exp [- 1LXTHx dx = Idet(H) 1/2

It follows that Z is non-zero, and therefore the Gibbs distribution exists, if and only if

the determinant of the matrix H is non-zero. Note that this imposes a constraint on the

model parameters ae and a, that will insure that the matrix H is positive definite. This

constraint is the same as the one obtained from the positivity of the power spectrum 61],

i.e., la,, + lan < 2-

2.4 Ising Models

In the previous section, we have dealt with a lattice system in which the pixel state

space is the whole real line. We have seen that in the Gaussian case, it is possible to ob-

tain either a closed-form expression for the correlation function or a recurrence equation

whose solution can ultimately give this function. Perhaps surprisingly, getting the corre-

lation function for Gibbs random fields with finite pixel state space is much harder. We

8This expression for the Gibbs distribution can also be computed directly using the formula linking
the probability density with the set of its conditional probabilities. See Appendix B.
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should recognize though that finite discrete problems do not present the same analytical

possibilities as infinite continuous ones. A case in point is combinatorial optimization

which is generally much harder to deal with than for instance convex optimization.

In this section, we discuss how to obtain the correlation function of the simplest Gibbs

distribution on a square lattice having a finite, discrete state space and a nearest-neighbor

interaction, namely, the so-called Ising model. As for the Gaussian case, we deal first

with the one-dimensional case, the Ising chain with a periodic boundary condition, and

then we consider the two-dimensional case. The method used to derive the correlation

function in both cases is called the transfer matrix method. It reduces the calculation

of the partition function to the computation of the eigenvalues of a certain matrix. This

method is rather general and has been used for solving exactly a number of models,

other than the 2D, zero external field Ising model, in statistical physics [5]. It is however

radically different from the method used for the Gaussian case which is based on a linear

representation of the Gauss-Markov random field. Such a representation is lacking when

the pixel has a finite state space.

2.4.1 One-Dimensional Ising Model

We consider a linear Ising chain of length N, in which each pixel k e {1,..., N} has

a pixel value Xk {-1, +1}. We also assume that the chain is periodic, i.e., XN+l = x0 .

The energy function of the chain is

N

E(x) = -J E xx,+1 = -JE1 (x) (2.20)
n=l

When J > 0 the chain is called attractive, or ferromagnetic, because the state that

minimizes the energy is the one in which neighboring pixels will be alike, i.e., both up

(+1) or both down (-1). The chain is repulsive, or antiferrormagnetic, when J < 0.

In this case, the energy is minimized when neighboring sites have different states. The

periodic Ising chain is not just a simplification of the Ising lattice to the 1D case. It is also

a valid model for some biological systems. For instance, the very complex hemoglobin

molecule, the oxygen carrier in the red blood cells, can be modeled by an Ising ring of

four sites [85].
The Gibbs probability distribution of the models is given by

P(x) = exp [-3El (x)], (2.21)

where 6 = , and the subscript N is a reminder that the partition function is computed

for N sites. This partition function can be computed exactly as is shown in the following
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Lemma 6 The partition function of a D periodic Ising chain having N sites is given
by

ZN = A+ N

where Ai, i = 1,2 are the eigenvalues of the 2 x 2 matrix

L_ = L(-1,+i) L(-1,-1) 'L L(+1,+1) L(+1, -1) 

with L(x,x') = exp(-/3xx').

Proof: We have

ZN = Ee - E1(X)
xX

N
_- Z I e-Xnxn+l

X n=l

N

= Z 1L(n, Xn+i)
X n=l

N

= Z ... E IL(xnxn+l)
X1=1 xN=l1 n=l

= LN(xl', XN+1)

= LN(1, 1) + LN(-1,-1)

where LN(Xn, xn+l) denotes the (xn, xn+l) coefficient of the matrix L raised to the power

N. Note that in the last equation, we used the periodic boundary condition XN+l = x l.

It follows that we can write

ZN = Trace(LN) = AN + A ,

where Ai, i = 1, 2 are the eigenvalues of the matrix L. U

The matrix L is called the spin-to-spin transfer matrix of the Ising chain. We will

see in the next paragraph that the two-dimensional case requires the use of a column-

to-column transfer matrix. Since L is symmetric, its eigenvalues are real and can be

computed explicitly. Indeed, we have A1 = 2 cosh P3 and A2 = 2 sinh /3. The orthonormal
eigenvectors corresponding to these eigenvalues are vl = (1, 1)T and v 2 = (1, -1)T,

respectively.

Computation of the correlation function for the D Ising chain: Let k,l E

{1,... N} be two sites on the chain. Then the correlation between the pixels xk and xi

is given by

R(k, ) = ZT1 E xkX exp(-6E(x)). (2.22)
X
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Using the lemma above and again the transfer matrix L and its eigenstructure, we can

prove the following

Proposition 7 The correlation function between any two pixels 1 < k, 1 < on a periodic
Ising chain of length N is given by

R(k, 1) (tanh )Il-kl + (tanh 1 )N-ik-11

1 + (tanh /)N (2.23)

Proof: Assume that k < 1. Then we can write for the summation over the chain

configurations

Rkl = ZN Zxkxlexp[-E(x)]
x

k-1 1-1 N

= ZN1 117 L(xn, Xn+l)X | L(Xn, Xn+I)XI JJ L(Xn, Xn+l)
X n=l n=k n=l

= ZN1 'E kL (k, Xl)L (Xk, Xl).
Xk,Xl--='l

In order to compute the last summation, note that the transfer matrix L raised to any

power s is given by

LS = AVl + AsV 2,

where Vi = vivT, i = 1, 2, is the rank one matrix corresponding to the eigenvector vi. It

follows that

R(k,l ) = Zl' E XkX [l -+kvl(xk, xI) + 2 +kV(Xk, X)]
Xk ,x=1

[A-k V(xl,Xk) + A'- V2(xi, k)]

_ z-1 AN-I+kl-k + A1-kAN+k-1]
- ~[L - - + 2 1 2 j

Using the expression of ZN as given by Lemma (6) and the explicit expression of the

eigenvalues we get

(A 2/Al) 1-k + (A 2 /Al)N-+kR(k, 1) = 
1 + ( 2/Ai)N

(tanh /3 )l-k + (tanh /)N - l+k

1 + (tanh 3)N

The above expression is valid for 1 > k. Exchanging the role of k and 1, we get the

expression given by (2.23). ·

The above formula for the correlation function of a periodic Ising chain of length N

calls the following remarks:
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1. The formula is valid for both attractive J > 0 and repulsive J < 0 interactions.

2. The correlation between pixels k and depends only on the difference k- 1, i.e.,
R(k, ) = Rk-l. This is a direct result of the shift invariance property of the Ising

ring. Note also that the sequence R(n) is even, i.e., R(n) = R(-n).

3. For B y# 0 (finite temperature) tanh B < 1. Therefore as the number of pixels

becomes very large, i.e., N -- co, we get

R(k - ) = (tanh B)Ik-'l, k, I E Z,

and the even correlation function is R(n) = (tanh /,)InlI, n E Z.

4. Comparing the correlation function of the shift-invariant Ising ring in the infinite
length limit with that of the stationary Gauss-Markov process shows that they

are identical if we impose that the variance and the nearest-neighbor correlation

coefficient of the Gauss-Markov process ae a, = 1 and p = tanh , respectively.

5. For the Ising ring, the parameter /9 which is the ratio of the bonding strength
J and the temperature T controls the amount of correlation between pixels. For
finite, non-zero temperature and finite, non-zero bonding strength, we have -1 <
tanh/9 < 1, so that the correlation sequence RP decays exponentially to zero as

In - oo. This situation is similar to that of a Gauss-Markov process with IpI < 1.

6. This exponential decay to zero means that the Ising lattice does not exhibit any
long-range order. In particular, the oscillatory behavior that the correlation func-

tion of a D Gaussian reciprocal process exhibits does not exist for the Ising ring.

However, when the temperature is very low or the bonding strength is very large,
we have perfect order. This means that in the attractive case, all the pixels have
value +1 or all the pixels have value -1, while in the repulsive case the pixels are
alternatively +1 or -1.

In the next paragraph, we will see that the exponential decrease of the correlation
function with pixel distance is also valid for the 2D Ising lattice. However, there is a
fundamental difference with the D case which is that the limit as the distance goes to
infinity might not be zero if the parameter /P is above certain critical value sl.
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2.4.2 Two-Dimensional Ising Model

In this section, we show how the transfer matrix method can be used to compute both

the partition function and the correlation function of the zero external field, isotropic

Ising lattice. The exact computation of the partition function was first done by the

Norwegian physicist Onsager [63] and constituted a major advance in statistical physics.

The exposition given here about the two-dimensional Ising model belongs to the standard

lore of the theory of critical phenomena [38]. Our treatment follows the old but now classic

survey paper of Newell and Montroll [62].

Again our objective is to compute the correlation function

R(s, r) = Z xxre-E(x) (2.24)
x

measuring the second-order dependence between two sites on the lattice designated by

the indices s and r. But now we have a square lattice S of size N x N. Also the interaction

between lattice pixels is nearest-neighbor, and the energy of the lattice can be written as

E(x) =- E Jpqscpzql
1<p,q<N2

where Jpq = J if and only if p E A/q. The lattice pixels take the values +1 or -1. As in

the D case, the parameter is the ratio of the bonding strength J and the temperature

T. From the expression of the energy, it is clear that when J > 0 the energy of the

lattice is minimized when all the pixels have the same value. All the lattice is black

or all the lattice is white. This is the ferromagnetic case. When J < 0, the energy

is minimized when the lattice has a black-and-white checkerboard pattern. This is the

antiferromagnetic case.

Before delving into the technical details, it might be worthwhile to describe informally

the behavior of the correlation function. Under the assumption of a toroidal, ferromag-

netic lattice with the number of rows and number of columns becoming infinite, the

correlation function of two sites on the same row or two sites on the same column will

a) exponentially decrease to zero with the distance between the two sites if the pa-

rameter is less than or equal to some critical value fi, that can be computed

exactly;

b) exponentially decrease to a non-zero value with distance between the two sites if /

is strictly greater than /,.
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The above behavior reveals a fundamental difference between the D Ising chain and

the two-dimensional Ising lattice. While the D Ising chain does not exhibit any long-

range order for any finite, non-zero /3, the long-range behavior of the two-dimensional

Ising lattice depends on the value of the parameter /3. The long-range correlation for

the two-dimensional Ising model at /3 values above the critical one should remind us of

the long-term dependence that the increments of fractional Brownian motions [55] with

parameter H > 1/2 exhibit. Let us for now stress the difference between the D and the

two-dimensional Ising lattice by quoting from [62]

One must be an optimist to expect a one-dimensional system to behave like

its two- or three-dimensional analog. If one is hopeful that techniques used to

solve a one-dimensional problem will help solve a two- or three-dimensional, 9

his optimism quickly subsides when he tries to apply them to the Ising lattice.

Computation of the correlation function for the two-dimensional Ising model:

In this paragraph, we will give enough details to show how the transfer matrix method,

properly generalized to handle two-dimensional lattices, will help obtain an asymptotic

(i.e., when the number of lattice sites becomes infinite) value for the correlation function

between any pair of sites on the same row. A similar result can be had for any pair of

sites on the same column. As in the D case the idea is to write the correlation in terms

of the eigenstructure of a transfer matrix.

Specifically, let m and n be the number of rows and columns respectively.' 0 Let

s = (i,j) and r = (i,j + k) be two lattice sites on the same row, and let their pixel

values be denoted by xi, and Xij+k respectively. For these pixels, the expression for the
correlation function is

R(i, j; i, j + k) = ZMN E xi,jxij+ke E(X)/T. (2.25)
x

Using the fact that the lattice is periodic in columns, we have Xp,,n+l = Xp,i Vp E

{1,... ,m}, the energy of the model can be separated into the contributions due to the

horizontal bonds and those due to the vertical bonds. Therefore one can write,

m-1 n m n

E(x) = -J A X xp,qxp+,q - J E E XpqXpq+l (2.26)
p=1 q=1 p=l q=l

9Almost fourty years after the paper of Montroll and Newell, the 3D Ising model is still unsolved.
10Although these numbers are the same for our square lattice, we distinguish between them here

because their infinite limits will be taken at two different times.

55



The interaction energy can be separated into an intra-column interaction, i.e, in-

side each column, and inter-column interaction, i.e, between every pair of neighboring

columns. If we now denote a column configuration by Cq (l,q,... , xm,q) we can express

the intra-column interaction by

m-1

((C) = -J E Xp,qXp+l,q
p=

1

and the inter-column interaction by

m

2(Cq, Cq+l) =-J E xp,qXp+l,q
p= 1

where we assume that cn+l = cl. Using the expression of Ci and 2 we can write the

total energy as
n

E(x) = E 1 (Cq) + 2 (Cq, Cq+l).
q=1l

With this expression of the energy the partition function can be written as

n

Zm,n = I L(cq,cq+l)
Cq,l<q<n q=l

= E n(Cl, C )
C1

where

L(c, c') = exp(-/l3(c) - / 2 (c, c'))
m-1 1m

- exp /3 xpxp+1 exp xpx

where in the last equation we have dropped the column index q and kept only the row

index. As for the 1D case, the symbol Ln(c, c) denotes the (c,c) component of the

2m x 2m matrix L, whose elements are defined above, raised to the power n. It follows

that the partition function is given by

2m

n ~ nZn,n = Trace(L ~) = ,
q=1

where Aq is the q-th eigenvalue of the matrix L. As in the 1D case, the computation of

the partition function is reduced to finding the eigenstructure of the matrix L. Notice

however that the problem exhibits a curse of dimensionality. While for the 1D case

the matrix L was 2 x 2, in the two-dimensional case it is 2m x 2m. It follows that the

complexity of computing the partition function grows exponentially with the column (or
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row) size of the lattice. Note that in the thermodynamic limit, i.e., when m, n -- 00oo,

only the knowledge of the largest eigenvalue is necessary. Indeed, for finite m the matrix

L has strictly positive elements, and it follows by the Perron-Frobenius theorem that the

eigenvalue of maximum modulus is strictly non-degenerate. Let A be this eigenvalue.

Then when n o with m fixed, the partition function will be of the order of A.
The fundamental contribution of Onsager was to have explicitly computed the largest

eigenvalue of the matrix L for any finite m. His expression for Al was [85]

A1 = (2 sinh 2)m/2 exp [(71 + 2 + + 2m-1)]

where

cosh k = cosh 2/ coth 2 - cos(-).
m

Having evaluated the denominator of the correlation function expression, let us now

concentrate on the numerator. Decomposing the exponential into a product, we can

write

X i,jXi,j+ke - E(x) = xiLk(c, c')xL n- (c' ),
x c,c'

where c = (xI,...,xm) and c' = (xl,...,x' ). Using the spectral decomposition of the

matrix L, we can write
2

m

LS = E AVqvT
q -1g=l

where vq is the eigenvector corresponding to the eigenvalue Aq. For the (c, c') component

of the matrix L8, we have

2m

L(c, c') = A (c)Vq(c')
q=1

It follows that the numerator of the correlation function can be written as
2

m

n-kAk XkXkVp(C)Vp(C')Vq(C)Vq(C')

p,q=l CC I

Note that the last summation can be written compactly as the square of the scalar

product of vp and xkvq, i.e., we can write the above sum as

2
m

An- kA(vp, XkVq)2

p,q=1

Using the expression of the partition function, the correlation function for any pair of

pixels on a given row can be written as

R+ -n n-'A (vp,XkVq (2Rm, (i, j; ij + k) =P'q=1 Ap Aq xkvq(2.27)
plEP=,AnP. (227
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Fixing m and k and letting n go to infinity, the above expression for the correlation

function becomes
2m

Rm(i,j;i,j + k)= (Aj/Aj)k(vl,xkvq) 2, (2.28)
p= 1

where we have dropped the dependence of the correlation function on the number of

columns n. The first term in the above summation is zero [85]. It follows that as the

distance k between the two pixels become large, the correlation function is of the order

of
(A2 A1 )k(V 1 , Xkv 2 )2 .

It follows that the presence of long-range order, i.e., low-frequency content for the lattice

configurations depend on whether the eigenvalue of maximum modulus is degenerate or

not. It has already been mentioned that for a finite m this eigenvalue is non- degenerate,

and therefore A2/Al < 1. Hence, for m finite and as k - co,

lim Rm(i, j;i,j + k) = O.
k--oo

In other words, a cylindrical Ising lattice having an infinite number of columns and a

finite number of rows cannot exhibit long-range order no matter what the value of the

parameter 63 is. However as the number of rows becomes infinite, there is a possibility for

the occurrence of long-range order. Whether this will actually happen or not depends on

the value of the parameter /3. Here, we merely state the result [85]

lim lim R(i,j; i,j + k) lino(vxkv2)2 > 0 for/3 > 3(229)
k-+oo lm-0o0o a2 0 for/3 </ 3c .

2.4.3 Other Exactly Solvable Models

Baxter's book [5] contains many examples other than the 2-D Ising lattice that are

exactly solvable, i.e., for which the Z partition function and therefore the thermodynamic

properties of the lattice can be determined in closed form. The main tool in Baxter's

approach is the transfer matrix method. Among the models treated by Baxter using

this method are the ice-type models, the square lattice eight-vertex models, the Kagome

lattice eight-vertex models, etc. These models remain an untapped source of information

about the representation of 2D patterns.

2.4.4 Effect of Constraints

Very often, one needs to impose constraints on the type of configurations that can be

produced by the Gibbs distribution model. For instance, a binary alloy can be modeled
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with an Ising lattice in which the ratio between the "up" spins and the "down" spins

is kept constant [62]. In the area of texture modeling, Cross and Jain [14] have argued

that the use of a histogram constraint improves the grayscale textural quality of a texture

sampled from a Gibbs distribution by insuring the presence of all graylevels at any instant

of the sampling process. It is intuitively clear however that imposing global constraints on

the configuration space could drastically change the Markov dependence of the random

field. This could happen even in the D case, as the following simple example shows.

Example Consider an Ising ring with four spins {S1, s2, s 3 , S4} located at the four car-

dinal points of the circle. Remember that the Ising lattice is a periodic, nearest-neighbor

lattice having the following cliques

{1, 2, {2, 3}, {3,4}, {4,1}.

The Gibbs energy of the system is

E(s) = S1S2 + S2S3 + S3S4 + 54S1 .

In the absence of constraints, the conditional probabilities of the different pixels satisfy

the Markov dependence property

p(silsi,j i) = p(silsi-lsi+l), i = 1,2,3,4,

where by periodicity, we have identified so with 4 and s.55 with s. When we impose the

global constraint that the number of +1 spins be equal to the number of-1 spins, the

above expression for the conditional probability is no longer valid. Indeed, from Table 1,

we get

Z = >3 eE(s)/T = 4+ 2e4/T

Moreover, we have

1
p(s 1 =- 11S2 =-1,s4 = +1)=

1
p(sl = +11S 2 = -1, 4 +1)= .

But

P(sl =-112 =-1,s3 = +1,s4 = +1)= 1

p(sl = 1 s2 =-1,s3 = +1,8 = +14 +1) 0.

It follows that this constrained Ising ring does not have the Markov property, although we

can define for it a Gibbs probability distribution.
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S1 s 2 s3 s4 E(s)
-1 -1 +1 +1 0
-1 +1 +1 -1 0
+1 +1 -1 -1 0
+1 -1 -1 +1 0
-1 +1 -1 +1 -4
+1 -1 +1 -1 -4

Table 2-1: Energy table for a four-pixel periodic Ising ring with uniform histogram
constraint.

It is clear from the above example that the nearest-neighbor neighborhood structure

is no longer appropriate for expressing the local dependence in the lattice. A larger

neighborhood, here the whole lattice, is needed to express the dependence of a pixel

value on the values of other pixels.

This can also be seen by looking at the energy function of the constrained system.

Indeed, the usual way of expressing constraints on the configuration space of the lattice

is through penalty functions added to the energy of the lattice. As an example, let us

take a ferromagnetic binary alloy in which the two species (white pixels and black pixels)

are mixed in equal amounts. Then one way for expressing this constraint is through the

condition 1

Zxs = 0, xs E {-1,+1},Vs E S.
seS

It is clear that the above sum is zero if and only if the number of white pixels (spin value

+1) is equal to the number of black pixels (spin value -1). In order to express penalty

incurred by deviating from the global constraint, the above sum is squared, scaled with a

"large" positive number and then added to the energy of the lattice, so that the latter

now becomes

Ep(x)=- Xsr + xs). (2.30)
sES rEAgs

It is important to note that when the penalty function is expanded, quadratic interactions

will appear between distant sites. In other words, the interaction energy is no longer

restricted to pairs of nearest-neighbor sites. Another way of stating the same thing is

that the nearest-neighbor Markov property is lost as a result of imposing the global

constraints.

"We assume that the number of lattice sites is even.
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With this expression of the lattice energy, the Gibbs distribution of the system be-

comes

p(x) = Z(i)- 1 exp(-E(s)),

where we have indicated the dependence of the distribution on the weight p of the penalty

function

J(x)= X

The penalty function J operates as an energy barrier to prevent the configurations that

do not satisfy the global constraints from occurring. To see this more clearly, let us find

the limit Gibbs distribution as the weight p -+ oo. We have

PA (X) = x(#~c)-u~)(x) _ exp(-E(x) - pJ(x))

exp(-EE(x))
Et exp(-#E(~)) exp(-#(J(~) - J(x)))

Let x be a given configuration whose penalty function value is J(x) > 0. When is

large, the terms of the partition function in which J(~) < J(x) become negligible and

only the terms in which J(~) < J(x) are counted. In other words, the summation for the

partition function becomes

E exp(-/E(~)) exp(-#(J(~)-J(x)))
t:J(t)<J(x)

i.e., only the configurations having a penalty less than the barrier J(x) are counted in

the computation of the partition function. In the extreme case when x satisfies the

global constraint J(x) = 0 and when the penalty weight approaches oo, only the

configurations such that J(C) = 0 are summed over. The probability distribution in

this limit becomes
P(X) 1(J=O) (x) exp(-/PE(x))

pt j(t)=O exp(-=E(())

where (J=0) is the characteristic function of the set {xlJ(x) = 0}.

2.5 General Case: Mean-Field Approximation

It is clear from the previous sections, that computing exactly the correlation function

of a Gibbs random fields is a rather difficult task. In most cases the exact computation

of the partition function is a necessary but usually very difficult step that requires the

use of special techniques with which the engineering community is not very familiar.
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Even a binary model as simple as the Ising lattice requires the use of rather complicated

algebraic methods like the transfer matrix method. 2 It is therefore legitimate to ask

the question whether it is possible to compute the correlation function approximately.

Because of its importance in the theory of critical phenomena, physicists have dealt with

the problem of approximating the partition function for a long time [38]. Indeed, knowing

the partition function makes possible the computation of all the important macroscopic

thermodynamic quantities like free energy, magnetization and susceptibility. Usually, a

critical phenomenon manifests itself as an abrupt change of these macroscopic quantities

as function of the lattice temperature or the strength of an external field applied to the

lattice. In fact it turns out that the latter physical situation is crucial in deriving an

expression for the correlation function.

For any Gibbs system we have the following important lemma.' 3

Lemma 7 Let P(x) = exp [-#E(x)] be the probability distribution of an arbitrary
Gibbs random field. Denote by p the mean at site p and by Xpxq the correlation function
between the two variables xp and Xq. Let hqxq be the value of a linear external field at
site q (add -Thqxq to the energy term.) Then we have

O-P (hq = ) = XpXq . (2 .31)
ahq

Proof: First write the expression of the mean as

p(hq) = Z(h ) xsexp - (E(x)- Thqxq),
Z Xq ] 

where
Z(hq) = Zexp [-T(E(x) - Thqxq)].

XT

Taking the partial derivative of the mean with respect to hq, we get

a(hq) Z(h) 2 aZ(hq) Xpexp [-_(E(x) - Thqxq)]Ohq Z(hq) 2 Ohq x T
9~~~

+ XZ(h ) pXq exp -(E(x) -Thqxq)]
Z(hq)X T

It is not difficult to check that the ratio 8Z(hq ) is the mean q(hq) at site q. ByZ 8q hq

evaluating the right-hand side at zero, we get Equation (2.31) above. ·

12For the Ising lattice, combinatorial methods can also be used to compute the partition function [85].
l3 This lemma is usually given for binary Ising models in statistical mechanics textbooks where it is

known as the "linear response theorem" ([66], p. 33). As is clear from the simple proof, it is however
valid under very general conditions.
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Note that the right-hand side is the covariance function between sites p and q that

we will denote by pq. The above formula for this function calls the following remarks.

First, it is valid for any energy function E(x), including one that would incorporate all

the constraints of the system, e.g., the uniqueness and uniform histogram constraints

that we will be dealing with in the next chapter. Second, it is valid for any temperature

T whether it be below or above the critical temperature, see Chapter 6. Third, it is

valid for any lattice structure, in particular, the cubic lattice structure that arises as

binary matching elements 14 used to represent the site states when they belong to a finite

discrete set, see Chapter 5. Fourth, it works even when the site random variables are

continuous.' 5 Finally, this formula can be generalized to compute higher order moments

by exciting the lattice linearly at more than one site and computing the partial derivative

of the mean with respect to the strength of the excitation inputs at the different sites.

The formula given by Lemma 7 above will be the basis for finding an approximation of

the correlation function for any Gibbs distribution. The approximation is derived from

the so-called mean-field theory in Statistical Mechanics. In the next chapter, we will

introduce four different ways for finding a mean-field approximation for a Gibbs random

field. We will attempt at clarifying the relationships between these different ways. Also,

we will show how the mean-field equations, no matter how they are obtained, can be

used to find approximations for the correlation function of the Gibbs system.

1 4See Chapter 3.
15 The definition of Z in this case- should be done with care to insure that the Z integral (rather than

summation) is finite.
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3

Mean-Field Approximations of
Gibbs Distributions

When you follow two separate chains of thought, Watson, you will find some

point of intersection which should approximate the truth.

Sherlock Holmes

A recent trend in computer vision has been to attempt to derive deterministic algo-
rithms from stochastic-based, mainly Bayesian, formulations of early vision tasks. There
are two main reasons for seeking deterministic algorithms. The first is fast processing
speed as compared with Monte Carlo algorithms, and the second is analog hardware
implementation. The well-known statistical physics paradigm of mean-field theory [2]
provides an analytical framework for the derivation of such deterministic algorithms.
Recent applications of the mean-field approach have been reported in [28] for surface
reconstruction and [29, 8, 7] for image smoothing and segmentation. In [12], the mean-
field aproximation is used as a tool for developing deterministic algorithms to solve the
correspondence problem in stereo vision.

Our objective in this thesis is quite different though. We would like to show how
the mean-field approximation can lead to a correlation-field approximation. This chap-
ter is devoted to developing different mean-field theories for different classes of Gibbs
models: binary, grayscale, unconstrained, or constrained. The actual computation of the
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correlation-field, given in the next chapter, is based on Formula (2.31) proved at the end

of the previous chapter.

In Chapter 6, we will see how we can use mean-field theory to get another type of

approximation - that of the critical temperature indicating the presence of a "phase

transition" between visually different patterns.

We will develop four different methods for deriving the mean-field equations. The

first method is valid only for binary fields with quadratic interactions between pixel

values. This type of interaction by itself does not make the random field Gaussian,

because the pixel state space is discrete and finite. Moreover, there is no requirement

that the interactions be only nearest-neighbors. When the pixel state space has more

than two levels, with the interaction potentials remaining pairwise, we will show (second

method) that it is still possible to use the results of the binary case. For both cases, we

assume that no constraints are imposed on the configuration space. When we do impose

constraints or when the interaction potential is not pairwise, we use two recent approaches

developed by statistical physicists to formulate mean-field equations. The first approach

is energy-based but contains one heuristic step that we will try to justify mathematically.

The second approach is probabilistic, and constraints are imposed via classical Lagrange

multiplier theory. But in both cases, the physical intuition is the same: on a given pixel,

the other pixels act through their mean graylevel values. In other words, one can neglect

the details" of the field action on a given pixel, and this approximation becomes all the

more valid when the noise variance, i.e., the temperature, of the field becomes small.

The mean-field approximation has also an information-theoretic interpretation that was

developed in [8].

3.1 Unconstrained Binary Quadratic Case

Since our interest is to deal with general lattice systems with discrete but finite state

space, let us look again at a binary system in which we allow distant pixels to interact.

In other words, we assume that we have a Gibbs system whose energy is given by

1
E(x) = -2 Jzsxr, (3.1)

s,rES

where zx, E {-1, +1}, Vs E S. In this system, we don't assume that the interaction

coefficients are nearest-neighbors. This allows for long-range interactions similar to the

ones that exist in Hopfield networks [36] or the ones introduced through the imposition

of global constraints on the lattice, Section 2.4.4. The stumbling block here is again the
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computation of the partition function

= :exp [-E(x)] (3.2)
xT

We have seen in Chapter 2 that even in the homogeneous, isotropic, nearest-neighbor
case of the Ising model, Z is very hard to compute exactly. We can however compute it
approximately, using the fact that the interaction between pixel values is quadratic.

3.1.1 Effective Energy

First, we can write the energy function as

E(x) = -xTJx.

Moreover, by completing the square of the exponent, we can show that a Gaussian
function satisfies the identity 1 [66, 80]

bTW] = rISI/2 (!T -1\(3L~ dwexp [-wTAw+bew] = xp (bTA-lb) (3.3)
/det(A) e 4

where the integration element is given by

dw= I dw,.
sES

For the integral in Equation (3.3) to exist, the matrix A must be positive definite. In the
expression of the partition function we let the binary vector x play the role of the vector
b of the above Gaussian identity. It follows that the partition function summation can
be expressed as

Z exp [wXTJ
Ex [2T 

= Ci(det(J), IS, T)E J. dw exp -W ( T )J >w+xTw],

1For the integral of the right-hand side to exist, we must assume that the matrix A is positive definite.
We make this assumption throughout Section 3.1
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where 2 we have used the invertibility of the interaction coefficient matrix J. Using easy

induction on the size of the lattice, 8S1, one can prove the following identity

E I exp(wszx) = I i E exp(wsx,). (3.4)
(x,) sES sES X=4±1

Also,

Z exp(xw 8 ) = 2cosh w, = 2exp(log cosh ws). (3.5)

In the integrals used in the partition function, we introduce the change of variables

1
w = Jv. (3.6)

In terms of the new lattice variables v, s E S, we can write the partition function

as 3 This equality results from (3.5) and from the change of variable (3.6) under the

integration sign. Note that C 2 is, like C1, independent of w.

Z = C 2 (det(J),lSI,T) jdvexp -[ v Jv+ y~logcosh ( JrVr)] . (3.7)
sES rES

The net result of all this algebra is the transformation of the partition function from a

summation over the discrete variables, x, into an integral over the continuous variables, v.

Such transformations can be done in the general case where the energy is not quadratic.

More will be said on this in Section 3.3.1.

It is classical to call [28] the exponent of the exponential function in the Z integral

the effective energy Eef , so we have by definition

Eeff (V) = 2 vTJv -T E log cosh (4 E r (3.8)
sES T rES

Note how the second term in the expression of Ee f (V) depends explicitly on temperature.

We will show later that at the global minimum of Ee ff, the effective energy has the same

2The constant Cl(det(J), IS1,T) is independent of w and x and is explicitly given by the formula

C (det(J), IS1, T) = (T) /det(J).

3Here also, we have

C2(det(J), SI,T) = Idet(J)I 2 )Is C(det(J), ISI,T).
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thermodynamic structure as the Hemholtz free energy of the system. At this stage, it is

worthwhile to mention that in general Ee f is not a convex function v. However, in the

limit of high temperatures, it is easy to show that the quadratic term will dominate in

the expression of Eef, and because J was assumed positive definite, one can conclude

that the effective energy becomes convex as T -- +oo.

3.1.2 Approximation of the Partition Function

The above integral expression of Z is exact but very complicated. The usual heuristic

argument at this stage is to say that the integrand contribution to the integral comes

chiefly from the region where the integrand has a global maximum, that is, the region

where the effective energy has a global minimum, see Appendix B. This leads to the

approximation

Z C 3(det(H*), II, T)exp -4Eeff(v*)], (39)

where v* is a point at which the effective energy reaches a global minimum,4 and H* is

the Hessian of the effective energy computed at the global minimum v*. Note that this

Hessian matrix is positive definite 5. A necessary condition satisfied by v* is of course

that the gradient of Eeff vanish, i.e.,

VEeff(v*) = 0.

Differentiating Ef (v) with respect to vq, q E S, we obtain

EJ[ -tanh ( EJrVr)] =0
sES L~r rES

which because of the invertibility of the matrix J gives

v, = tanh(T E Jsrvr), Vs E S. (3.10)
rES

The global minimum point v* belong to the set of solutions of the above system of

nonlinear algebraic equations. This set might contain more than one solution because of

the nonconvexity of the effective energy.

4The interest in this point will be explained in Subsection 3.1.4 where we will show that v* can be
considered an approximation of the true mean of x with respect to the Gibbs distribution.

5The explicit expression of C3(det(H*), ISI, T) is given by

C3(det(H*), ISI, T) = C2(ISI, T, det(J))(rT)Isl/2 //de(H*).
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The above system can be specialized to the case of the Ising model in which Jsr = J

if and only if r and q are a nearest-neighbor pair. Then we will have

v, = tanh(# E r), r e S,
rEAr,

where again 3 = J/T. The parameter controls the slope of the sigmoid function

x -- tanh(x). As - oo, the sigmoid function approaches a sign function. This can

happen when either the system temperature is too small or the interaction between pixels

is too strong.

For the general case and in the limit of small temperatures, the iterative solution of

the above equations gives

V(n+l) = sign (EJrq()) 

which is identical to Hopfield's update rule for a neural network of binary neurons in

which all the neuron thresholds are set to zero [35].

3.1.3 Effective Energy in the Presence of an External Field

Because of its importance in computing approximations for the moments of the Gibbs

distribution, this paragraph is devoted to computing the effective energy and the partition

function in the presence of an external field applied to the spins of the lattice. Although

the algebra is lengthy and tedious, it is conceptually simple: it is based on a linear change

of variables to profit from (3.3).

Let then h = (hs, s E S) be the external field applied to the lattice.6 The energy of

the system can be written as

E(x) =-2 EI JsrXsXr - hsxs, (3.11)
s,rES sES

or in vector form as

E(x) = -Jx - h Tx, (3.12)

which can also be written as

E(x) = -(x + J-1 h)TJ(x + J-lh) + hTJ-'lh. (3.13)
2 2

6In the neural network literature, the h,'s can also represent a family of thresholds that bias the
neuron outputs.
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Now we make the change of variable

y = x+J-lh

and write the partition function of the system whose energy is given by (3.13) as

T h EYTjYI TZ(h) = exp [-ThTJh] r exp Jy],
Y

(3.14)

where the above notation is used to emphasize the dependence of the partition function
on the external field h. As in the previous paragraph we can apply (3.3) to transform
the above expression into an integral

Z(h) = C (det(J), ISI,T)

= C (det(J), ISl, T)

= 21SIC(det(J), IS, T)

-_h TJ-lh
exp 2T x

~~~2T -

dwE exp -w T ( w+yTW1ISl y

-hTJ-lh
exp 2T X

exp [hTj-lh] dw xdexp[- (T)w+hJw]ex x]
2T ]/lsld

exp [-wT ( ) w + hTJ-lw + E log cosh w,].
T ~~~~~~~~~sE$.

Now we introduce the change of variable

w= T(Jv + h)

and write the above partition function as

Z(h) = C 2(det(J),IS[,T) x

dv exp ( [- vTJv + T E logcosh [T ( Jsrvr + hs)]]) (3.15)

Note that the constant C2 is independent of the external field h and depends only on
the determinant of J, the temperature T, and the size of the lattice ISt. This fact about
C 2 will be important in the next section where we use Z to prove that the solutions of
Equations (3.10) are approximations of the pixel means.
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The effective energy of the lattice system under the external field is given by

Eeff(Vh) = vTJvT E log cosh [-( Jsv + hs)] (3.16)
sES rES

where the arguments of Eeff emphasize its dependence on both the internal field v and

the external field h. The difference with the Eejf(V) of the zero field system is just in

the bias applied, in the non-quadratic term, to the average internal field at each pixel.

Note that we recover the zero external field case by setting h to zero in (3.16).

An approximation of the partition function can be obtained by replacing the integral

in (3.15) by the maximum value of the integrand. This latter can be obtained by com-

puting the effective energy at one of its minima. These can be obtained as solutions of

the gradient equations

VvEeff(V(h),h) = 0.

The notation v(h) is used to emphasize the dependence of the extreme point of the

effective energy on the external field. Differentiating Ee ff(v, h) with respect to vq, q E S,

we obtain

s Jsq v tanh (E Jr,,r + hs)]] 0,
3ES L E

which because of the invertibility of the matrix J gives

V= tanh ( JsVr + Vs E S. (3.17)
TrES

Solving this system of nonlinear equations gives the point v(h). Note that because of

the continuity of the solutions with respect to the external field we have

lim v(h) = v*.
h--0

As for the approximation of the partition function, it is given by 7

Z(h) C 3 (det(H*(h)), ISj, T)(exp [-1Eeff(v(h),h)] (3.18)

3.1.4 Approximation of the Mean-Field

Now we want to show that the vector v* is an approximation for the mean vector x.

Using the expression of the partition function in the presence of an external field affecting

7 C3 has the same functional form as C2 . Note however that C3 depends on the external field h. This
is because the Hessian is computed at the global minimum v(h) which depends on h.
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the energy as described in (3.11), we can easily verify that the mean is exactly given by

the formula ( Z h 
x--= T a0log Z(h) (.9~~~.. T ~~~~~~~~ ~(3.19)

/h=0'
Using (3.15), we get

log Z(h) = log C2(det(J), IS, T) + log s dvexp [-TEef (v, h)]

Differentiating the above expression with respect to each of the hs, s E S, and using the

fact that C 2(det(J), ISl, T) is independent of h, we obtain

T(h) T (O log Z(h)
Ohs ]

fsIs dv aEf(Vh) exp [- Ee f(v, h)]

f3ls, dv exp [-Ee. (v, h)]

Applying the saddle-point approximation method 8 to both the numerator and denomi-

nator of the right-hand side, we get 9

-(h) O aEeff (v*(h), h) (3.20)
Oh.

But we have from (3.16)

OEeff(v*(h), h) ( (h) + h )] (h)
=tanh ~ IZsV*(h) + h. = vj(h)Oh [= tanh sr

Computing the above equation and (3.20) at h = 0, we get

Xs = vs

which means that the point obtained by solving the set (3.10) of nonlinear equations is
actually an approximation of the mean field value with respect to the Gibbs distribution.

This situation is general, and it will be extended to grayscale image models, i.e, having

more than two colors, and satisfying global constraints. It is worthwhile noting that

the formula used to get the mean from the partition function can be generalized to get

any moment. This is precisely what we have shown in the previous chapter 2 for the

second-order moments.

8See Appendix B.
9Note that the scaling terms that result from the saddle-point method are the same and therefore

cancel out.
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3.1.5 Effective Energy and Free Energy

We have mentioned that the effective energy has the peculiarity of being explicitly

dependent on temperature. This explicit dependence is found both in the expressions of

Helmholtz's free energy and Gibbs's free energy. 10 We will show now that the expression
of the effective energy computed at a point, v*, obtained as a solution of (3.10) is actually
a mean-field approximation to the Helmholtz free energy F. Before proceeding with the
algebraic proof, which is quite involved, let us first give an approximation of the entropy
for the system of pixels whose states ae defined by the mean-field equations given in

(3.10). This approximation is based on the following

Lemma 8 The entropy S of a system of binary E {-1, +1}, independent, pixels with
mean-values x = (, s E S), is given by

S()- =-2 E [( (1 +,)log11 + _) )1g (1 - )] (3.21)S(R) (1 + TS) + ~(1 - )10 2sES22

Proof: In order to define the entropy, we need to make the change of variable -

2(1 +-), which maps (-1, +1) onto (0,1). The entropy of the source at site s can then
be defined as [65]

S( =-) [(i +T.) log(1 ±+ )+ T. (1 - )log (1 - )].

The entropy of all the lattice sources is the sum of the site entropies, i.e.,

S() = ES() = E [(1 + ) log (1 + -Y) + (1 -T) log (1 - S)]
sES 2SE$S 

Now we give the main proposition of this paragraph

Proposition 8 The effective energy Eeff(v*) computed at the states given by (3.10) is
a mean-field approximation of the Helmholtz free energy and is given by

Eeff(v*) = E(v*)- TS(v*), (3.22)

where E(v*) is the Gibbs energy computed at v* and S(v*) is given by

S(v*) =- E [(1 +v)og(1 + v*) + (1 -v*)log (1 -v*)]

'l°The Helmholtz free energy, usually denoted by F, is given by F = U - TS, while the Gibbs free
energy, G, is given by G H - TS = U + PV - TS, where U, H, S, P, V, and T are respectively the
system internal energy, enthalpy, entropy, pressure, volume, and temperature.
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Proof: Let us denote by

S = r

then the expression of the effective energy becomes

Eeff (v*) = v*Tw* - T E log cosh w.
sES

From (3.10), we have

v =tanhw,

1 l1+v*w; = tanh- 1 v; = log.
S .1 2 1 - v*

which gives

1-2
1 1/2+v+ 1 v

2

[(1 - v;)(1 + V*)]1/2

It follows that

log cosh w = -[log (1-v)

On the other hand, we can split the first term in the energy function as

T-vT-v u
-
1 *Tj* + *w.

= - Jv + T E vSw.
sES

Therefore

E(v*) + v* log 1 + v
2sES 1 - v*

-T L log cosh w:.
sEs

Substituting from (3.24) and expanding, we get after some algebra

Eeff(V*) = E(v*) + - E [(1 + v) log -(1 + v) + (1-v) log (1
2 ES22

- v*)]

Using (3.21), the above equation becomes

Eef f (v*) = E(v*)- TS(v*).

.

Comparing the above expression of Eeff(v*) with the expression

F=E-TS

of Helmholtz free energy computed, we can conclude the following

74

or

(3.23)

cosh w=1 + V /
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1. The internal energy E, which is the ensemble average of the Gibbs energy with
respect to the Gibbs distribution, can be approximated with the Gibbs energy com-
puted at the solution of the mean-field equations E(v*). Note that this statement
hides actually two approximations and not just one. The first is

E E(x),

and the second is

E(x) E(v*).

2. Computed at the mean-field solution v*, the entropy S(v*) is that of a system of

binray, independent pixels with mean values v, s E S. In other words, the mean-
field approximation amount to making an independence assumption on the pixel
random variables.

3. Based on the above two remarks, we can approximate the Helmholtz free energy as

F Eeff(v*) = E(v*)- TS(v*).

4. Finally, we find it appealing that the expression of the entropy derived from the
effective energy is identical to the information-theoretic entropy of a set of binary
independent sources with symbol probabilities (1 + vs) and (1 - v).

3.1.6 Remarks

We end this subsection about the binary case with the following remarks.

1. The Gaussian formula (3.3) can be used only if the matrix J is positive definite.
Note however that the expression of E ff(v) (3.8) does not require that J be positive
definite or even invertible.

2. When the matrix J is positive definite, the mean-field approximation formulas are
general, in the sense that no specific assumptions are made on the neighborhood
structure, the homogeneity, or the isotropy of the field.

3. The validity of the mean-field approximation depends on both the lattice size and
temperature. The higher the number of pixels and the smaller the temperature,
the better the approximation. A heuristic argument of why this is so is given in
Appendix B.

75



3.2 Unconstrained Multilevel Case

In the previous section, we dealt with an image model in which the pixel state space

was binary. In this section, we treat the case of a Gibbs random field image model in

which the energy function is given by

E(x)= E E V(xs,x,), (3.25)
sES rEAK

where now xs E G = {0, 1,... , n-1}, n being the number of graylevels. The above energy

is derived from the general expression (1.6) where we have dropped the energy due to the

external field and assumed that the pairwise interaction potentials are homogeneous, i.e.,

independent of the lattice site s, and isotropic, i.e., independent of the lattice direction

from s to r. A major result of this section is the proof that the fixed point equations

(3.10) of the binary case admit a natural generalization to the multilevel case. The crucial

assumption that allows such a generalization to be made is the fact that only pairwise

interactions are allowed among the different pixels. Another result is the definition of

generalized sigmoid mappings that are the multidimensional counterparts of the single

variable sigmoid function which is of widespread use in the neural network literature.

3.2.1 Effective Energy

In order to derive an approximation of the partition function Z, we need to compute

the effective energy. We accomplish this by transforming the energy given in (3.25) into

an expression similar to that of (3.1). This transformation is done via the use of binary

matching variables [93].

Before doing this transformation, the following notation will be useful. Let S. be

the subset of S defined by {s E S, x = g}. They are the lattice subsets of constant

graylevels, and they clearly form a partition of the lattice.

Let now Yag E {0, 1} be a binary variable where the first index s E S denotes a lattice

site, while the second index g E G denotes a graylevel value. The variable v takes one

of the two values 0 or 1 according to the following rule: v = 1, if s E Sg, and vg = 0,

otherwise. The binary variable v.g matches a site to a label, here a graylevel value. Since

every site s has one and only one graylevel, the matching variables obey the following

constraints

Ysg = 1, Vs E S. (3.26)
gEG
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In terms of these binary matching variables, the energy is given by

E(y) = E V(g,g') El YsgYrg,. (3.27)
gEG g'EG sES rEA,

where y is now the vector of dimension nISI of all binary matching variables ygs E

S,g E G, and is defined as follows

Y= ,"'(Y E **,Y IS 

where Ys = (so,... , Ys(n- 1))T is the vector of binary matching elements at site s E S. If

Tn denotes the set of n-dimensional vectors

ea = (1a, A..,), a E G,

which form the canonical basis of Rn, then y, E Tn, Vs E S, and y E (Tn)lsl. The values

V(g, g') of the interaction potential defines an n x n matrix V = [Vgg]ggEG that we call

the color interaction matrix. We can retrieve an expression similar to (3.1) as follows.

First define the matrix L by Lar = 1 if r E JA/V, and 0 otherwise.' Then the above energy

function can be written as

E(y)=- (-2LrVggl)ygyrg, (3.28)
9,g'EG s,rES

The above equation exhibits a clear decoupling between the horizontal connectivity be-

tween sites, and vertical connectivity between colors at each site. Note also that it is

possible to start with an energy function defined as in (3.28) instead of (3.27), and to

introduce lattice anisotropy by making the coefficients of the matrix L depend on the

neighbor orientation. We will return to this point in Chapter 6.

We can go one step further and write the energy as

E(y) = -- yTJy (3.29)

with -J = L 0 V, the outer, or Kronecker, product of the matrices L and V [40].

Explicitly, we have

J9' =2Lsr Vgg,, Vs,r E S, Vg, g' E G.

We can now use (3.3) and write the partition function in terms of the integral 12

"The matrix L is symmetric because of the assumed symmetry of the neighborhood system.
12The constant K (det(J), nisI, T) is independent of w and y and is explicitly given by the formula

K(de(J),iST) = nISI /de(J).K, (det (J),nl) IS 1 (2 - Idet(J).
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dw exp [-w T () w E exp [TW (
T ~Y

The fundamental difference with the binary case of the previous subsection is in the

computation of the summation term inside the integrand. This summation can be written

as

exp [yTw] = E "E E II exp(yTws).
Y (yi ETn) (y, ETn) (YlsETn) SES

Because of the uniqueness condition on the binary matching variable at each site,

prove, using for instance induction on the number of sites, that the right-hand

the above equation is equal to

(3.31)

we can

side of

sES gEG sES
(E exp(ws))].

gEG

Substituting into (3.30), we get for the partition function the expression

z = K (det(J),nISl IT) njs dw exp [--wT ( ) w + Z log (Z exp(w, 9)) .
SE$ EG (3.33)(3.33)

Changing variables according to

1
w= L®Vv

we can write the effective energy of the graylevel system as
we can write the effective energy of the graylevel system as

Eeff (v) = -vTJv - T E log
SE$

[ exp (T I J vr9 )
SEG rgTe

(3.34)

It is worthwhile to compare the above expression with the one for the binary case given

in (3.8). For one thing, in both expressions, the quadratic interaction term is still gov-

erned by the matrix J of the original Gibbs system. For another, the arguments of the

logarithmic terms are similar in that they ae normalized summations of exponentials.

Again, we can approximate the Z partition function by replacing the integration with

the maximum value of the integrand. These values are reached at the global minima of

the effective energy Eeff (v) which are among the solutions of

VEeff(v*) = 0.
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Z = Kj(det(J),nISjT) 13Zn1sl (3.30)



Differentiating Ee!f (v) with respect to v., s E S, and using the invertibiliy assumption

on the matrix J, we obtain

v = F(w*), Vs E S (3.35)

W*= JsV*1*
T r

where Jr = [Jb](a,b)EG2 and F = (F 1,..., Fn) is an infinitely differentiable mapping from
Rn onto the simplex

n

Tn - { E R Ezi - 1, Zi > 0 = 1... n} (3.36)
i=1

and is defined by

= Fi(p) = exp(p,) i= 1 ... n (3.37)
- 1 exp(pk)'

It is easy to check that z thus defined E T. Notice that the denominator in the definition

of F is the same for all components. It is a normalizing constant that acts like a local

partition function for the analog values of the binary matching variables. In the special

case where n = 2 (the binary case), the mapping F reduces to the famous sigmoid

function of Hopfield and backpropagation neural networks. This is why we call F the

generalized sigmoid mapping. An in-depth study of the properties of the mapping F will

be given in Chapter 5.

The similarities between the fixed point equations (3.10) of the binary case and the

fixed point equations (3.35) of the n-dimensional case are striking. The scalar function

tanh is now replaced by the n-dimesional mapping F, and the variables at each site are

now n-dimensional vectors rather than scalars. The argument of the tanh as well as that

of F is still a linear combination of the effects that the other lattice sites have on the

current pixel.

As in the binary case, an approximation of the partition function can be obtained as

Z , K 3 (det(H*),nSl, T)exp - Eeff (v*)] (3.38)

where H* is the Hessian of the effective energy computed at the global minimum v* of

the effective energy. Also, as in the binary case, we can show that this global minimum

is indeed an approximation of the exact mean of the Gibbs system, i.e.,

y- v, Vs ES.

This fact, whose proof parallels that of the binary case, justifies calling (3.35) mean-field

equations and the solution corresponding to the global minimum of the effective energy

the mean-field approximation.
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3.2.2 Effective Energy and Free Energy

In this paragraph, we relate the effective energy computed at the solutions of (3.35) to

the Helmholtz free energy by explicitly computing the entropy at these solution points.

Before doing this computation, which is actually very similar to the one given for the

binary case, we would like to mention that for each s E S, the solutions v, g E G, of

the fixed point equations admit an interesting probabilistic interpretation. Indeed, from

(3.35), it is clear that v* > 0 and that

EV = 1.
g9EG

(3.39)

Therefore, v*g can be considered the probability that pixel s on the lattice has color g. The

pixel will be assigned the color having the highest probability. Using this probabilistic

interpretation, the mean value of the graylevel xs at pixel s can then be approximated as

- >jgv.
gEG

The probabilistic nature of the analog matching variables will also appear in the entropy

expression given in (3.41). First notice that because of (3.39) and the definition of w*g

in (3.35), the effective energy can be written as

Eeff (V*) = 2V*TJv* -T E ( V*g log
8ES G

( E exp(wg,)) 
.'EG

But

log E exp(w;,) = w -log V, Vs E S, Vg E G.
g'EG

Substituting in (3.40), we get

Eeff(V*)
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1 1*T-* *v*TJv - TZ(Z V.)log I exp(w
sES 9EG \g'EG

- v*TJv* - T E v(w - log vl)
ES 9EG

= vJv - Tv*Tw* + T E v; log v*

EsES gGEG

= E(v*)- TS(v*)

gi))

(3.41)



The last equality above results from the fact that the entropy of a source s with n symbols

having probabilities v, g E G, is given for each lattice site by

S'(v) = - Vg log V8g
gEG

From (3.41) it follows that in the grayscale case, as in the binary case, the total entropy

of the lattice is equal to the sum of the site entropies. This implies that in the limit of

the mean-field approximation, the random variables (or vectors) assigned to the pixels

are independent [65]. Later in this chapter, Section 3.3.2, we will show how starting from

the assumption that the pixel random vectors are independent we can derive a mean-field

approximation for the image model.

3.2.3 Generalization

The standing assumption on the energy function, in the previous subsection, was that

the clique interaction potential between pixels Vr is homogeneous, i.e., independent of the

site s, and isotropic, i.e., independent of the site neighbors r. This assumption was made

to introduce the tensor notation for the product between the lattice connectiveity matrix

L and the color interaction matrix V - a notation that will come in very handy when

we compute the critical temperatures for the mean-field phase transitions in Chapter 6.

In case the interaction potential is not homogeneous or isotropic, we can still define a

tensor J (rather than a matrix) by

Jb-= Lsr Vsr(a, b), Vs, r E S,Va,b E G. (3.42)

The J tensor subscripts s, r relate to the lattice action while the superscripts a, b relate

to the interaction between graylevels. The tensor J satisfies the following symmetry

relationship

Jsr = Jrs (3.43)

As function of the binary matching elements the energy function is again quadratic, and

is given by 13

E(y) = - JYsaYrb = -y jy (3.44)
s,rES a,bEG

If the J tensor is positive definite we can apply the Gaussian trick (3.3) to derive both

the effective energy and the mean-field equations. Here however, we will follow another

13 Note that this energy function differs from that of (3.28) by a factor of . This amounts to choosing
~L~r = -1 if r Afw.~L., = 1 if rE A/,.
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path. We will show that if we are not directly interested in the effective energy of the
system, or in other words, we do not care of which energy function the fixed-points are
the extrema, then we can derive the mean-field equations directly from the partition
function. One advantage of this calculation is that it will shed new light on the meaning
of the mean-field equations and on the nature of the mean-field approximation of the
partition function. Another advantage is that it leads to the mean-field equations even
if the quadratic interaction tensor J is not positive definite.

We start with the following energy function

E(y,h) =- E Z JsbYsaYrb - E hsaYsa, (3.45)
s,rES a,bEG sES aEG

where we impose the uniqueness constraint

;Ysa = 1 Vs E SI
aEG

at each pixel s of the lattice. The above energy function contains a linear term to account
for the excitation with an external field h. The partition function of the lattice is given
by

Z(h) = Zexp [-E(y, h)], (3.46)
Y

where the summation is taken over all configurations satisfying the uniqueness constraint.
Now consider a generic, binary matching variable Ysa. Then the effect of the rest of the
binary matching variables 4 on ya is given by

fsa(hsa) = Jayrb + h,a, (3.47)
rES bEG

so that the partition function can now be written as

1~~~Z(h)= Eexp [T EYsafsa] 

which can also be written as

Z(h) = Eexp [TEYTfs],
Y

where we have replaced the summation over the graylevels a E G by a dot product
between the binary matching vector ys and the field effect f at site s. Now again the

14 0ur derivation here assumes that the auto-connect matrices J., s E S, are all zero.
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problem is how to compute Z(h). An approximation Z*(h) of Z(h) can be obtained if

we replace the field effect f at each pixel s by an estimate of its mean

f*(h) = E Jrvr*(h) + hs,
rES

where Jr = [J~]a,bEG and v*(h) is an estimate of the mean vector of yr in the presence

of the external field h. Then

Z(h) t Z*(h)= E exp [T Y'f;(h)].
yE(Tn)lsl

Replacing f,/T with w*(h), the summation on the right-hand side of the above equation

becomes exactly the one in (3.31), and we can use the result in (3.32) to write the

partition function approximation as

Z*(h) = I Z exp(w*(h)).
sES aEG

The problem of course is how to compute v*. This can be accomplished if we remember

that the mean at any pixel can be obtained from the partition function by

(Olog Z)= T(8 )yTa Aa0 ) h=O

This relation defines a set of consistency equations for the mean estimates v*a that are

obtained from

v* =T(al°g'2S Asa h=O'

where we have denoted by v the estimate v*a(O) at zero field. The above equation gives

exp(w*)

=bEG exp(wb)

Using the function F defined in (3.37), we get for the v*'s a set of fixed point equations

similar to those of (3.35), i.e.,

v*= F(w), (3.48)

w - T srVr* vs E S.
rES

Of course, when the tensor J = L 0 V, we get exactly the fixed point equations of (3.35).

Having shown a different way for getting estimates for the means va, let us contrast

this method with the one that led to (3.35).

83



1. The second method is more direct. However, it produces less. In particular, it

does not tell us whether the fixed points of (3.48) are the extrema of some energy

function. We know by the first method that when the J is positive definite, they

are extrema of the effective energy (3.34).

2. The second method shows indeed that at the solutions of (3.35), the partition

function is approximated by a product, over the lattice sites, of local functions,

namely,

E exp TE E sr Vsa
aEG rES bEG J

This would have been the case had we assumed that the Gibbs probability distri-

bution P(y) can be decomposed into a product, over the lattice sites, of single-site

probability distributions, i.e., that the pixels states are independent random vari-

ables (or vectors).

3. It is not clear how global constraints on the patterns can be introduced in the direct

method. We will see in the next section that there is an easy way for incorporating

them in the effective-energy method to derive the mean-field equations.

3.3 Constrained Multilevel Case

3.3.1 Saddle Point Method

As it was mentioned at the end of the previous section, the methods based on the

Gaussian integration formula (3.3) will fail if the matrix J is not positive definite. They

also fail if the energy function itself cannot be transformed into a quadratic form. We

now introduce a method that could handle these situations. We will see in particular

that it will be possible to get the effective energy for any energy function E(x), and that

it will be possible to incorporate, in the formulation, global constraints on the different

patterns. Here also, an approximation of the partition function can be had, and as usual,

this approximation requires the knowledge of the minima of the effective energy function,

minima that can be obtained from a set of fixed point equations. A very important spinoff

of this method is that it provides us with a systematic procedure to transform discrete,

nonlinear, constrained optimization problems into continuous nonlinear programs that

can be solved using continuation methods [64]

Our derivation of these equations is inspired by, but slightly different from, the one

in [68]. The basic differences are in the way we handle the constraints and apply the
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heuristics of the saddle-point method. To prepare the reader for the long algebra that

will follow, we will give the main steps of this method:

1. First, express the constraints on the matching vector using delta functions.

2. Transform the summation in the partition function into an integral.

3. Define the effective energy and use the saddle point method to approximate the

partition function.

4. Get the mean field equations for the binary matching vector as extrema the effective

energy.

The binary matching variables will be as usual denoted by the vector y. The energy

function of the lattice will now be assumed an arbitrary function E(y) of the matching

vector y. In addition to the uniqueness constraints

Eysg = 1, Vs E , (3.49)
gEG

we will assume that the number of sites in each graylevel set Sg is fixed and that they

are all equal to the same number

yg = ISI =, Vg E G, (3.50)
sES

which is equivalent to saying that the pattern histogram is uniform. The partition func-

tion of this system is given by

Z = e-ET (y) (3.51)
yY

where the summation is taken over all configurations satisfying the uniqueness and uni-

form histogram constraints.

An early version of this section appeared in [23].

Constraint Representation

The introduction of the constraints as delta functions is based on the following trick. 15

Each term in the partition function summation can be written as

e-E(Y) = j e-E(v)6(Y-v)dv (3.52)

"This trick is pretty standard in statistical physics. See, for instance, Reif [78].
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The dummy integration vector v, expressing the domain of the matching vector y, should

satisfy the uniform histogram constraints (3.50). These can be included in the above

integral using delta functions as follows

e - Er (Y) = j eE(v)(y- v) II 6(zg)dv (3.53)e T ~~~~~~~~~~~~~~(3.53)
gEG

where

zg =-y+vsg, Vge G.
sES

Note that because of the presence of the delta functions in the above integrand of (3.53),

the value of the integral does not change if we include in the integrand the functions

exp[wT (y- v)] and exp(pTz), where w and p are arbitrary vectors in Rn lS and Rn

respectively. With these additional functions, Equation (3.53) becomes

-E(y) = e-E(v)ew(T (Y-v)(y- v) I ePg5(z9)dv (3.54)
gEG

The delta functions can also be expressed as integrals using the known fact that a

delta function is the inverse Fourier transform of a function identically equal to unity 16.

In other words, let u E RN, then

5(u) = iWTUdw, (3.55)

where wTu is the scalar product of the frequency vector w and the space vector u, and

i = -1. Applied to the delta functions introduced above, equation (3.55) gives

5(v- y) = b eib T (V-y)db (3.56)

and

II (zg)= j eTZdc, (3.57)
gEG

Substituting (3.56) and (3.57) into (3.54), we get the triple integral

e-lE(Y) = | -E(v) (w+ib)T(Y-v) e(P+ic) TZdvdbdc (3.58)e T Jv Jb Ie-T e -v~~~~~~~~e (3.58)

Only the uniform histogram constraint was included in this integration. The uniqueness

constraint (3.49) will be imposed during the actual computation of the partition function

in the next subsection.

16 Again, we are doing these algebraic manipulations the same way they are done in statistical physics
textbooks, where (3.55) is usually called the integral representation of the delta function [78]. Note that
we have dropped the factor of the Fourier integral.

86



Partition Function

The partition function Z is obtained by summing (3.58) over all configurations y.

Permuting the summation and integration signs (this is legitimate, since we have only a

finite number of terms in the summation), we get

Z = jj 1 e#E()e(w+ib) T ve(p+i) T Z (e(w+ib)Ty) dVdbdc. (3.59)
Y

In order to compute the summation over y inside the integral, we need the following

equality

Ew = e I E e ,(3.60)
Y sES qEG

which can be easily proved using the uniqueness constraint on each ys. Note that the

right-hand side of (3.60) can also be written as

exp log (E ews9+ibg9) ] . (3.61)
\o gea 

Using (3.59) and (3.61), we can now write the partition function in integral form as

Z = j dvdbdc x

exp [-E(v) - (w + ib)Tv + E log ( etj9+ib° ) + (p + i)TZ] (3.62)
T ~~sES gEG

Effective Energy

The exponent of the exponential in the previous expression is analytic in the complex

vectors w + ib and p + ic. The integrations with respect to the vectors b and c are

contour integrations in the complex vector spaces CIn ls and C n , respectively. Because of

the analyticity of the integrand, the value of the integral will not be affected if we deform

the integration contours. In particular, we can have these contours pass through the real

vectors v*, w* and p* where the effective energy

Eeff(v, w, p) = E(v) + Twv - T E log (z ew) - TpTz (3.63)
8ES gEG

reaches a global minimum. Therefore, the contour integrals are taken along w* + RnlSl for

b and p* + Rn for c. Because the oscillations introduced by the terms ibTv* and icTp*

at large values of b and c tend to cancel out contributions to the integral, the maximum

contributions to the Z partition function comes from the neighborhoods of b = 0 and
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c = 0. It follows 17 that the partition function can be approximated by computing the
value of the effective energy at the global minimum

1
Z = exp [-Eeff(v*,w*, p*)] (3.64)

Looking back at the expression of the effective energy (3.63), we could make the

following remarks:

1. The uniform histogram constraints are being accounted for through the term con-

taining the vector p. Note that this vector acts like a Lagrange vector multiplier

for this set of constraints.

2. The expression of the effective energy contains, as a special case, the one derived

for a quadratic energy function in Section 3.2. Indeed, for the quadratic case we

have
. 1

- Jv,
= T

and therefore we can rewrite Equation (3.34) as

Eef(v) = E(v) + TwTv-T E log E e
sES$ EG

which is similar to (3.63).

The above two remarks suggest that although the algebraic steps that have led to

(3.63) are rather hard to justify rigorously, they lead to results that agree with the ones

obtained previously.

Mean-Field Equations

It was mentioned in the previous paragraph that the partition function can be ap-

proximated by (3.64). In order to compute the right-hand side of this formula, we need

to compute the point(v*, w*,p*), where Eeff has a saddle point. A necessary condition

satisfied by this point is
OEeff _ Eeff _ 9E'ff _. (3.65)a -- a -0. ~~~~~~~~(3.65)'Ov &w Oap

171It should be clear that the above statements do not constitute a proof. They are just a plausibility
argument to justify dropping the dependence on the imaginary parts of the constraint variables.
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Computing these partial derivatives with respect to Vka, wka and Pa, respectively, where

k E S and a E G, the fixed point equations become

9Eef - + TWka-TPa = O (3.66)
Vka Ovka =

-wk = OE,,f f Vka elk. 0 ~~~~~~(3.67)OvWka ZbEG elk
OEeff_

&Pf= - - Vka = 0 (3.68)
aP~a ~ kES

Note that equation (3.67) implies that

Vka = 1 Vk E S,
aEG

which is the uniqueness constraint as applied to the analog matching variables. At every

pixel of the lattice the analog matching variables are constrained to lie in the simplex T

defined in (3.36). This has the effect of reducing the dimensionality of the solution space

at each site by one. Note also that the fraction term in (3.67) is exactly the same as the

one defined in (3.37). Equation (3.68) is nothing but the uniform histogram constraints

as applied to the mean-field values of the binary matching variables.

Using vector notations for each site, we can write the mean-field equations (3.66),

(3.67), and (3.68) in an more compact form as follows:

a6Ef = VE(v)-Tw,- Tp = 
Ov,

Eeff = v 8 -F(w,) = 
Awn

ff = r-E v. = O,
,OP sES

where in the first equation, VE(v) is the gradient of the energy function with respect to

the analog matching vector at site s, and in the last equation r is the n-dimensional vector

(7,.. ., -) T. If we eliminate the vector w, between the first and the second equation, we
obtain the following system of algebraic equations where the unknowns are the analog

matching variables vs, s E S, and the Lagrange vector multiplier p associated with the

uniform histogram constraint:

V = F 1 V 8 E(v) -p (3.69)

,vS = r.
sES

The vector p acts in (3.69) as a constant external field. When there is no uniform

histogram constraint (p = 0), (3.69) becomes the natural generalization of (3.69) to
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models with arbitrary energy functions. It is easy to check that we get (3.35) back from

(3.69) if we assume that E(y) is quadratic and given by, for instance, (3.44).

Using the formula

y = T (&logZ(h))
Ohs h=o'

it is easy to see that the solutions of (3.69) give, as in the quadratic case, approximations

for the means Y,, s E S.

Free Energy and Entropy

At a solution of (3.69), the uniform histogram constraint is exactly satisfied so that

Eeff(v*, w*, p*) = E(v*) + Tv*w* - T E log ( e:') .

Moreover the uniqueness constraint is also satisfied, therefore

Eeff (v*, w*, p*) = E(v*) +Tv*Tw*-T(Ev) log (z et ' ) .
sES gEG g'EG

But since v* = F(w*), Vs E S, we get that

log (Zew:9) = w 2 log V*
EG

Substituting into the effective energy, we obtain

Eeff(V*,w*, p*) = E(v*) + T vglogvg (3.70)
SES gEG

Noting that the second term of the right-hand side is the negative entropy at a fixed

point v*, the effective energy becomes simply

Eeff (V*, w*, p*) = E(v*) - TS(v*).

It follows that here also, the effective energy is identical to a mean-field approximation to

the Helmholtz free energy of the system at the fixed point. Observe that the expression

of the entropy is exactly the one for 11S independent sources, each one of them producing

n symbols with probabilities specified by v*g, g E G..
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3.3.2 Probability Factorization Method

In the previous section, we have presented a method for deriving a set of algebraic

equations that can be used to compute approximations of the pixel means of a Gibbs

distribution having a discrete, finite scale of graylevels. The main characteristics of this

method are that it allows us to incorporate global constraints and leads to a natural

parameterization of the analog matching variables as outputs of the generalized sigmoid

mapping F. We have also shown that at the solutions of the algebraic equations (3.69),

the values of the effective energy approximate the free energy and that the entropy is the

same as the one that would have been obtained had the pixel states been independent

random variables.

In this section, we look at the problem from the other end. What if we start by making

the approximation that pixel states are independent random variables or vectors? What

does the expression of the free energy become? And how can we use it to find mean-field

approximations similar to the ones given by equations (3.69)?

The free energy is defined as F = E-TS [78]. Here, E is the internal energy, i.e.,

the ensemble mean of the energy with respect to the Gibbs distribution, and S is the

entropy, defined below, of the GRF model. Our objective is to obtain an approximation

for both E and S.

Entropy Approximation

The exact expression 18 for the entropy is

S = - E P(y)lnP(y), (3.71)
YE(Tn) Isl

where (T,)Is l is the set of all lattice configurations 9 and P(y) is the probability of a

configuration y E (Tn)I s l . Note that y is exactly given by the binary matching vector

yT = (yT,..., Ysl1). Therefore we can write that P(y) = P(y,.. . , yIsl)- If we make the

approximation that the binary matching vectors of any two different sites are independent

random vectors, then the joint probability distribution of y can be approximated by a

product of ISI independent probability distributions each of which dependent on one and

18In statistical physics, the Boltzman constant, k, is put in front of (3.71) to give entropy the units of
energy per degree of temperature. In this thesis, units are chosen so as to make k = 1.

19 The reader is reminded that Tn, the set of vertices of the simplex Tn, is the configuration space of
the binary matching vector y,. Tn has n configurations corresponding to the unit vectors ea, a E G that
form the canonical basis of Rn.
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only one binary matching vector, i.e.,

P(y) = P(y,.. , Ysl) - ]J P(y8 ). (3.72)
sES

Given the fact that the entropy of two independent sources is the sum of their entropies
[65], we can write

S - E P(y,) n P(y) (3.73)
sES y ET.

Let now va be the probability of the event v, = ea, then the mean vector at site s is
given by

Vs = ys = vsaea, (3.74)
aEG

with IaEG Vsa = 1, and the entropy of the random vector v, is given in [65]

E vsaInvsa. (3.75)
aEG

Substituting into (3.73), we get the following approximation for the entropy

S - E saInsa. (3.76)
sES aEG

Internal Energy Approximation

An approximation of the internal energy E can be obtained using the same probability
factorization idea. Indeed for a quadratic energy function, we have successively

E = E E(y)P(y)
YEfO

E E(y,. . .,ylsl)P(yj,...,yisl)
yE(Tn)lsl

] E E(yl,..., ylsl) P(yq)
yE(Tn)lSIl qES

~ E .. E E JsrYVYr II P(yq)
y ETn YlslETn s,rES qES

E JSV VVWr = E(v). (3.77)
s,rES

In other words, the ensemble average of the energy can be approximated by the energy

computed at the ensemble average of the vector y. If the energy function is not quadratic,

we can still make the double approximation E(y) E(y) t E(v), but this is only a zero-

order approximation that assumes that the fluctuations of the random vectors around

their means are extremely small.

92



Free Energy Approximation

Combining (3.76) with (3.77), we get an approximation of the free energy

F = E-TS E(v) + T E vsa log sa. (3.78)
sES aEG

Observe that this approximation is the same as the one obtained from the saddle-point

method (3.70). It follows that another way for getting the mean-field approximation

would be to find the minima of

E(v) + T E Va log Vsa,
sES a6G

subject to the uniqueness constraints and uniform histogram constraints. This leads to

defining the effective energy, actually the Lagrangian, by

Eef f [v, p,q] = E(v) + T E Vsa log sa
sa

+ E pa(E Vsa -) + E qs( Vsa-1), (3.79)
aEG s sES a

where the p = (pa,a G) and q = (q, s E S) are the Lagrange vector multipliers

corresponding to the uniform histogram and the uniqueness constraint, respectively.

Mean-Field Equations

The extrema of the effective energy function 3.79 are given by

akff - aE + T(1 + log vka) + qk + pa = 0 (3.80)
19Vka aVka

OE = -1 + E Vsa = 0 (3.81)
8q. aEG

Eeff = - + Vka = (3.82)
a9 Pa kES

The second and the third sets of equations represent the uniqueness and histogram con-

straints. In Chapter 6, we will use these equations to derive estimates of the critical

temperatures corresponding to mean-field phase transitions. For now, the reader should

note that these equations are different from the ones obtained using the saddle-point

method (3.69) . For one thing, the generalized sigmoid mapping does not appear in the

new set of equations. This is because the uniqueness constraints were imposed through

Lagrange multipliers rather than by directly computing the partition function.
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3.4 On the Legendre Transformation

In classical mechanics, the Legendre transformation is used to derive the Hamilto-

nian formalism from the Lagrangian formalism. In classical thermodynamics, it is used,

among many other instances, to pass from an internal energy representation to an en-

thalpy representation, or from Helmholtz's free energy to Gibbs's. Geometrically, there

is nothing to the Legendre transformation more than the idea that a curve in the plane

could be either represented by a locus of points or as an envelop of a family of lines, and

that the two representations are equivalent. 20

In this short section, we will use the Legendre transformation to show how we can

obtain equivalent representations for the mean-field systems described by the effective

energy expressions that we have derived in this chapter. We restrict ourselves to the sys-

tem described by an arbitrary energy function E(y), Section 3.3.1, but without imposing

any global constraint. In this case the effective energy is given by

Eeff(v, w) = E(v) + TwT v -T E log E e'.9/ (3.83)
sES $ EG

The Legendre transformation of the above energy function with respect to the gen-

eralized coordinates w is given by 21

jHeff(v, w) = Eejf(, w) - wTVw Eef (v, w), (3.84)

where the symbol Vx denotes the gradient with respect to x. Observe that at the critical

points of Eeff the two functions have the same values. Simple algebra shows that

WTVwEeff(V,W) = wv- TEZ Z w.sgF.(ws).
sES gEG

Substituting this equation along with (3.83) into (3.84), we get

Heff(v,w) = E(v)-T TZ E F9(w.) log ( eW,9 -TEE w8gFg(w.) (3.85)
sES gEG 'EG ES gEG

From the definition of the generalized sigmoid mapping F, we have

log es') = Wsg - log F.(w).
g'EG

2 0An insightful treatment that we particularly like is the one by Callen [9].
2 1Note that we continue to express Heff in terms of the original coordinates w.
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Substituting back in (3.85), we get simply

H f (v, w) = E(v) + T E E Fg(w,) log Fg(w8 ). (3.86)
sES gEG

This representation has the following appealing features

1. There is a nice separation between the contributions of the system states to Heff.

All the contributions of v are through the energy term E(v), while all the contri-

butions of w are through the entropy term.

2. The generalized sigmoid mappings allow us to give a compact representation of the

system entropy, S, away from the fixed points.

S = S(w) = -E E F(w) log F,(w8 ).
sES gEG

The above representation also justifies the probabilistic interpretation of the generalized

sigmoid mappings: F(w,) is the probability that pixel s has color g. Moreover, at the

fixed point, we have by (3.69)

Vsg= Fg(w*).

Substituting in (3.86), we recover the expression of the free energy at the fixed point,

namely,

Heff(v*, w*) = Eeff (v*, w*) = E(v*) + T E E vg log v,
sES g9EG

expression that was already given in (3.41) and (3.70).
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4

Correlation-Field Approximations
of Gibbs Distributions

When I hear you give your reasons, the thing always appears to me so ridiculously

simple that I could easily do it myself, though at each successive instance

of your reasoning I am baffled until you explain your process.

Dr. Watson

In this chapter, we will use the mean-field equations developed in Chapter 3 to answer

the following important question: What is the correlation function between the two

graylevel values of a pair of pixels in a Gibbs random field image model?" Chapter 2 was

devoted to investigating some remarkable examples, the Gauss-Markov random field and

the Ising model, for which we can answer this question exactly.

Now we would like to argue that for the other Gibbs models in which the pixel state

space is neither continuous, like the Gaussian model, nor binary, like the Ising model,

we can obtain estimates for the correlation field from the very equations that give us

estimates for the mean values of its pixels. Formula (2.31) that we proved in Chapter 2

will be at the core of our argument.

Before going into the different cases, it is probably worthwhile to re-examine the dif-

ferent approximations that we have made in order to arrive at the mean-field equations. 

'The equations we are referring to are the ones we obtained in Chapter 3, namely, (3.10), (3.17),
(3.35), (3.48), and (3.69).
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1. Saddle point approximation: This approximation was used to derive (3.10),

(3.17), (3.48), and (3.69). It amounts to estimating the value of an integral by

computing its integrand at a well-chosen point. We have mentioned that the validity
of this approximation improves as we increase the lattice size.

2. Stationary phase approximation: We used this approximation in Section 3.3.1

to argue that the principal contribution to the integral form of the Z partition

function (3.62) comes from points lying in the real vector space 3RnlS'Il rather than

the complex vector space CnIs l.

3. Probability factorization approximation: We used this method to derive the

effective energy from an assumption on the joint probability distribution of the

Gibbs random field. One aspect of this approximation, in the case of a general

energy function, is that it identifies the mean of a function, e.g., the energy, with

the value of this function computed at the pixel means. This latter approximation

was also used to relate the effective energy to the Helmholtz free energy.

The approximation method for the correlation field that we propose here adds yet

another approximation. For it consists in identifying the derivative of the mean estimate

with the derivative of the exact mean so as to be able to apply (2.31) and obtain the

correlation function.

For any two pixels p, q on the lattice we denote by rpq the correlation 2 between the

random variables xp and xq, i.e,

rpq = (xp - Yp)(Xq _q) (4.1)

where the expectation operator3 is denoted by an overline.

According to Lemma 7, the correlation is given by

rpq = a (hq =0), (4.2)49 hq

where hq is the strength of an external field applied to the lattice at pixel q. Let us

remind ourselves here that in (4.2), the external field is scaled with temperature before

it is applied, i.e., it is the term -Thqxq that is added to the energy function rather than

the term -hqxq When the latter is added to the energy, Formula 4.2 should be replaced

with

rpq= T T P(hq = 0). (4.3)
o9hq

2In this chapter, we abuse terminolgy and call rpq a correlation function. See ([66], p. 33).
3 This symbol was chosen so as not to confuse the common expectation symbol E with the energy

function.
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The approximation formula for the correlation function is

rpq pq = Tah (hq = 0), (4.4)

where ,p and fpq denote estimates of the mean at pixel p and the correlation between
pixels p and q, respectively. It is this approximation that we will use in the rest of this
chapter.

The intuitive idea for using the above formula is quite simple. If we want to know
the inherent correlation between xp and xq, i.e., how much xp fluctuates around its mean
because of fluctuations that xq experiences around its own mean, we consider the mean
behavior of the system. Then we excite it by a small perturbation Ahq at site q, measure
the change Azp in the mean value of xp due to the perturbation, and compute the
ratio '-. The change in ip is due to the effects of the external perturbation Ahq and

Ah, '

the internal interactions between p and the rest of the lattice due to the fluctuations
of xq. Therefore to get the correlation between xp and xq due solely to the internal
field interactions, we need to take the limit of the above ratio as Ahq -+ 0, which gives
Formula 4.2.

The rest of this chapter will be devoted to investigating the use of the mean-field
approximations of Chapter 3 to compute the correlation-field approximations according
to Formula 4.4.

4.1 Unconstrained Binary Case

Our starting point is (3.17) that we reproduce here for ease of reference

vp = tanh [T ( Jpqvq + hp) , Vp E S. (4.5)

The above equation was derived with an external field of energy -hTx added to the
interaction field energy E(x). Therefore to compute the correlation field in this case,
(4.4) needs to be applied.

When the external field is zero, h = 0, then it is clear that v = 0 is always a solution
of (4.5) at all temperatures. This corresponds to a zero mean value for all pixels. For
an external field h applied to the lattice, the perturbation of the zero mean solution can
be obtained from (4.5) using a first-order Taylor series expansion of the tanh function in
the neighborhood of zero. This yields

VP = ( Jq + hp p pE S. (4.6)
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If we denote by Is the identity matrix of order I1S x IS1, then the above equation can be
written in matrix form as

(TIs - J)v = h. (4.7)

Note that if T is high enough, the above matrix is guaranteed to be invertible. A sufficient

condition for this to happen is that T be greater than the largest eigenvalue4 of J. Under

this condition, the perturbation of the mean field v around the zero solution due to an

external field h is given by

v = (TIs - J) -'h. (4.8)

If we denote by r the I x S correlation matrix of the binary random field, and by I

its approximation then we get by Formula 4.4

r (Is - TJ)-. (4.9)

The following remarks are called for:

1. The matrix I' is symmetric due to the symmetry assumption on J. Conversely, if

I' is to be symmetric as an approximation of the symmetric correlation matrix r,
then J must be symmetric.

2. What if T is small? If T is so small that the Hessian at the zero solution of (4.5) is

not positive semidefinite, then the zero mean solution cannot be a local minimum

of the effective energy. In other words, we need to Taylor-expand the right-hand

side of (4.6) around a different point.

Using the above approximation of the correlation function, we can define a Gaussian

distribution having

I (TI= - J)

for information matrix. Since the field has a zero mean, the Gaussian distribution is

given by

p(v) = - exp [-2TVT(-J + TIs)v],

where ic is a normalizing constant.

This distribution has the same first and second order statistics as the high temperature

binary model and could be construed a Gaussian "approximation" of the binary field. The

previous statement should be understood informally, since we have not given a precise

definition to the concept of distance between probability distributions.

4The matrix J is assumed symmetric, and therefore all its eigenvalues are real.
5An information matrix is the inverse of a non-singular correlation matrix.
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4.2 Unconstrained Multilevel Case

In this section we conduct an analysis similar to the one we have given for the binary

case. The difficulty in the multilevel case is in the way the colors are represented in

the mean-field solution. Indeed, the mean-field equations give the analog mean values,

vs9 E (0, 1), s E S, E G, of the binary matching variables ysg rather than the colors

themselves. An interpretation of v.g that is suggested by both the uniqueness constraint

(3.26) and the expression of the entropy at the mean-field solution, e.g., (3.40), is that it

represents the probability that site s gets the color g. In terms of the binary matching

variables Yog, one can always write

x = gy = gs, Vs E $, (4.10)
gEG

where g is the vector of the n pixel graylevels (0, 1, . ., n - 1). It follows that the mean

color is given by

, _ Ad gy= g = gTy. (4.11)
gEG

The other difficulty is how one should apply (4.3) given that the external field h should

be applied on the two-dimensional lattice pixels xs, s E S, and not the three-dimensional

lattice of the binary matching variables Ysg, s E 5, g E G. This problem can be solved by

decomposing the pixel color over the binary matching variables as in (4.10). Then the

energy due to the external field h at s can be written as

- h' = -h E gysg = -hsgTys. (4.12)
gEG

The above equation means that applying an external field h on x is equivalent to

applying an external field hg on y. The external excitation at site s corresponding to

color g is denoted h = gh8. Using (4.12), the fixed-point equations (3.48) become

Vs = F [ (Jrvr + hag)] ,Vs E S, (4.13)
rE5

where J is the n x n matrix [Jf](a,b)EGxG.

4.2.1 A General Relationship

Using the above remarks, we can write down a general relationship between the

correlation-field expressed in terms of the actual color means and the correlations based
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on the means of the binary matching elements. The interest of this relationship is that

it reduces the computation of

Fp, = T hpPpqq

to that of
ab -ypa
pq T hqb

Proposition 9 For any p, q E S, we have

rpq = E abrab. (4.14)pq'
a,bEG

Proof: First notice that because of (4.11), we have

&Xp E Spa
ahq h aE ahq 

Next by the chain rule, we have

-Yp_ aYpa ahqb

Ohq bEG ahqb Ahq

where according to (4.12),
ahqbah b.
Ohq

Equation (4.14) follows immediately. 

The meaning of (4.14) should be clear. To pass from the color correlations to the

matching variable correlations the latter ones need to be weighted by the color products

ab and summed to get the color-based correlation coefficients. Proposition 9 can also be

proved directly by going back to the definition of the means of xs and Ysg as function of the

Gibbs distribution. It is important to keep in mind that the correlation coefficients are

not independent. Indeed, because of the uniqueness constraint on the binary matching

elements, we have for their means

Ypa = 1, Vp E ,
aEG

which upon partial differentiation with respect to hqb gives

rb= , vp, q ES, Vb E G.
aEG

Finally, let us note that Equation 4.14 can be written more compactly as

rpq = gTrpqg,
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where g is the color vector and r'pq is the n x n correlation matrix between the matching
variables at sites p and q.

As a result of the above proposition, we can now concentrate on approximating the
correlation coefficients rpa. But before doing this we need some preliminary properties

satisfied by the general fixed point equations(4.13).

4.2.2 Preliminary Properties

In this paragraph, we assemble some of the properties of (4.13) because of their

usefulness in the derivation of the correlation-field approximation.

At high temperatures, the generalized sigmoid mapping F maps Rn onto the neigh-

borhood of the point e, where e = (1, 1,.., 1)T. Therefore in the limit of high temper-
atures, vs = e, Vs E S, is always a solution. This remains the case even in the presence
of an external field. In the binary case of the previous section, the zero mean-field was a
valid solution at zero external field for all temperatures. A similar situation happens in

the multilevel case if we assume that the sum

E Jsr
rES,bEG

is independent of both s and a. Indeed for any a R, F(ae) = e, which means that
V, = !e is always a solution at zero external field. We call this solution the trivial mean-

n

field solution. Its probabilistic interpretation is that every pixel has an equal probability

for being assigned any color.

Another fact about F is that its gradient can be given in closed form as function of

F itself. We will show in Chapter 5 that the Jacobian DF(z) of F(z) is given by

DF(z) = diag(F(z)) - F(z)F(z)T . (4.15)

At the trivial mean-field solution, we have

M A_ DF(-e) =-I - 20 (4.16)
n n

where I is the n x n identity matrix, and O _ eeT is the n x n matrix having all its
coefficients equal to 1. Note that since Me = 0, the matrix M is singular. It is also

symmetric, therefore digonalizable with an orthogonal matrix. Let e' E e, the (n- 1)-
dimensional linear space orthogonal to the vector e. Then we have Me' = e', which

means that any vector in e is an eigenvector of M corresponding to the eigenvalue
!. It follows that M has two eigenvalues: Al = of multiplicity (n- 1) , and

n n~~~~~~~~~~~~~~~~~~f
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A2 = 0 of multiplicity 1. To construct the matrix K that diagonalizes M, we choose the
last column vector k, = e, and the first n- 1 column vectors kl, ... , kn- equal to an

arbitrary orthonormal basis of the (n- 1)-dimensional space e. We remind the reader

that for an orthogonal matrix, we have K-' = KT.

4.2.3 General Case: Orthonormal Transformation

We are now interested in computing approximations of the correlation coefficients

rpab. As for the binary case, we Taylor-expand the right-hand side of (4.13) to the first
pq

order in the neighborhood of the trivial mean-field solution. Using the expression of the

generalized sigmoid function gradient, we get

-e + vs = -e + M ZJ svr +h hsg (4.17)n nTrE

In the above equation, vs is a perturbation of the analog matching variables around the

trivial mean-field solution e, which cancels out from both sides. Since eTM = 0, a
n'

necessary condition for vs to be a valid perturbation is that

eTVs = E Vsg = 0.
gEG

In other words, the perturbation v. at every site s must be in eJ, the vector space or-

thogonal to e. This also means that the above linear equations in v, are not independent.

However they can be made independent using the linear transformation

U = KTV.

Observe that because the eT is the last row in KT, the last component in us is 0.

Multiplying (4.17) through by KT we get

KTMK [4 ( K TJsKUr + hsKTg)JX Vs E S. (4.18)
TrES

The matrix KTMK = diag(, .. , 0). Therefore for every vector us the last equation

is identically satisfied and gives 0 = 0. So we can eliminate ISI equations from the above

linear system and solve for u' = (ul,..., unl )T instead of solving for u.. Denoting by

Jr the matrix obtained from KTJsrK by deleting the last row and column and by g' the
vector obtained from KTg by deleting the last component, we get for the u' 's the linear

system

U= ( J'u + hg' Vs E S. (4.19)
rES )
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Denoting by u' and h' the vectors obtained by stacking the the site vectors u'8 and hsg',

respectively, we get
(nTI-J')u' = h', (4.20)

where J' is the block matrix [J',]S,,ES. Formally, this linear equation for u' looks like the

linear equation (4.7) given for the binary model. Some of the issues related to the use of

(4.20) to compute the the correlation coefficients r are

1. We need to be able to invert the matrix (nTI- J'). This means that either n, the

number of colors, or T, the temperature, needs to be high enough. A necessary

and sufficient condition for (nTI- J') to be invertible is that the product nT be

greater than the largest eigenvalues of J'.

2. The relationship between the correlations based on the variables u and those based

on the variables v is given by the well known formula for the linear transformations

of random vectors

rpq(v) = Krpq(u)KT (4.21)

where the boldface rpq(v) matrix denotes the correlation matrix between the match-

ing vectors vp and Vq, and similarly for rpq(u).

3. How is the correlation matrix rpq(u) is derived from the correlation matrix rpq(u')?
Here also we should go to first principles. We know that the last component of Uo

is 0 for all s E S. Therefore, rpq(u) is obtained from rpq(u') by adding one row

and one column of zeros to the latter.

4. Is the final result dependent on the choice of the orthogonal transformation matrix

K, i.e., on the orthogonal basis of the linear subspace eT? The answer is no.

One can prove, although the algebra is tedious, that the effects of the orthogonal
transformation matrix K in (4.18) and (4.21) cancel out."

Now we are ready to give a general procedure for obtaining an approximation r of the

correlation matrix r for the color random variables x distributed according to a general

Gibbs distribution with pairwise interaction potentials.

1. Choose the matrix K and compute

r(u) = (nTI- J')-.

2. Construct the matrix r(u) by adding to each block, rpq(u), a row and a column

of zeros.
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3. Compute r(v) according to (4.21).

4. Finally compute the color correlation coefficients rpq using (4.14).

In this procedure, the computational burden comes from the computation of the

inverse matrix. We will see in Chapter 6 that for some special structures of the model

matrix J we can use FFT algorithms to invert the matrix (nTI- J').

4.2.4 Special Case: The Autobinomial Model

An interesting case where we do not have to go through the rather cumbersome

method developed for the general multilevel model is that of the autobinomial model,

first introduced by Besag [6] and subsequently used in [14] for texture synthesis. This

model is defined by the coefficients

Jab = 2L,, Vb = 2Lsrab, Vs, r E S, a, b G (4.22)

where L,, is a neighborhood function that is nonzero if and only if r is a neighbor of s.

Note that any anisotropy in the model can be incorporated in the definition of L.r. For

instance, when the neighborhood A, is that of the four nearest neighbors on the square,

toroidal grid, we can write

0 if r Af
Lsr = { h if r is a west or east neighbor of s (4.23)

Pv if r is a north or south neighbor of s

Using the graylevel vector g, the color interaction matrix for this model can be written
as

V = _ggT.

It follows that

Jsr = 2LsrggT,

and the model matrix J is given by

J = 2L ® ggT. (4.24)

In order to get an estimate on the perturbation around the mean color, we multiply

(4.17) through by gT to obtain

x = gTM [4 (Z2LsrggTvr + hag)] (4.25)
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Easy algebra shows that

gTg = l (n- 1)n(2n-1)

gTMg = 1 Tog 
gZ9 g = gg-- g Og=j (n2 -1)

It follows that

Xs l 12 2Lr + h). (4.26)
rES/

The perturbations x on the mean colors in the autobinomial case satisfy the following

system of linear equations

(2 Is - 2L) =h (4.27)

For a ratio 12T/(n 2 - 1) higher than the largest eigenvalue of L, we can approximate the

correlation function of the autobinomial model around the trivial mean-field solution by

1'--r2 Is_- L)- ', (4.28)

where for this model, the trivial mean-field solution corresponds to a mean color value

given by
1 n-1

n gEG 2

The natural question that aises here is "how is this multilevel case related to the binary

case treated in the previous section?" Substituting n with 2 in (4.27) gives

(4TIs - 2L)k = h. (4.29)

This equation differs from (4.8) by the presence of the factor 4 in front of the temperature.

The reason is due to the difference between the pixel values in the two binary models.

In (4.8), the pixel mean values are in the segment (-1,1), while in the present case they

are in (0,1). We can pass from one to the other using the change of variable x +1
2'

This and the quadratic interaction result in the 4 factor of (4.29).

Also, as in the binary case, we can give a Gaussian "approximation" of the autobino-
mial model based on the mean Ys = (n- 1)/2 and the information matrix ( 2T Is - 2L)Tn2_ -,-

by

p(x) = r-2 exp - (x - ) T 1 s - 2L (x - ),

where 2 is a normalizing constant. For specific structures of the model matrix L, much

more can be said about the values of T for which the above approximation exists, see

Chapter 6. An important observation can already be made: the original autobinomial

model and the corresponding Gaussian model share the same neighborhood structure

and bonding parameters.

106



4.3 Constrained Multilevel Case

So far, the only constraint that has been imposed on the binary matching variables

is the local uniqueness constraint which specifies that one and only one binary matching

variable is nonzero at each site. The natural question is whether the general procedure

that we have developed in the previous section carries over to the case where global con-

straints are imposed on the binary matching variables. One type of such constraints

is the uniform histogram constraint that was introduced in Section 3.3.2. From a pat-

tern synthesis point of view, this constraint guarantees that all colors are present in

equal amounts in the synthesized pattern. In graph optimization, it corresponds to an

equipartitioning of the graph vertices.

It was noticed in Chapter 2 that Formula (2.31) is valid whether the configurations

are constrained or not. Also, the general remarks given in the previous section about

the relationships between the color correlations and the matching variable correlations

remain valid for the constrained case.

Our objective in this section is therefore to show that the correlation estimates

tbd aVb (h = ) (4.30)
i~md

can also be obtained using the information contained in the critical point equations of

the effective energy. In the binary and the multilevel unconstrained cases, we used first-

order Taylor series expansions of the fixed point equations to compute the correlation

approximations as the coefficients of the inverse of a certain matrix. For the multilevel

constrained case, we will show how the mean-field equations (3.80) derived in Section 3.3.2

can be used to obtain a system of linear equations that is satisfied by the correlation

approximations. An important advantage of this method is to show the close relationship

between these approximations and the Hessian of the system energy. This relationship

is an instance of a deeper fact relating Green's functions to correlation functions in

continuous field problems [66]. We gave the reader a glimpse at this fact in the description

that followed (4.4).

Our starting point is (3.80) to which we add the effect due to an external field repre-

sented by the field strength h = (hind, m E S d E G). The equation then becomes

a + T( + logvsa)-hmdadsm + q +pa0O, sE S, a G, (4.31)
a sa

where qs and Pa are the Lagrange multipliers corresponding to the uniqueness and uniform

histogram constraint. The Kronecker delta symbols express the fact that the effect of
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the external field is linear in the binary matching variables. The solutions v, q and p of

this equation are functions of the external field h = (hnd, m E S, d E G).
In order to obtain the equations satisfied by the correlation estimates, the above

equation is differentiated with respect to hid and the chain rule is applied to the energy

partial derivatives

8-E Vdb + a -d + -= 0, S ES, aEG. (4.32)
rbVrb 9V a Vb hmd Vsa a hmd m ihmd O9hmd

Letting h go to zero, denoting by v* = (v*,s E S,a E G) a solution of the mean-

field equations, and substituting the partial derivatives from (4.30), we get the following

system of linear equations for the correlation estimates

z 0 2E(v*)tbd + r. T- -adm+T qPa = 0, s sES, aEG. (4.33)rb TVOsmb T 
8 hmd ahmdrbvov + Tha 

The above equations can be written in terms of the Hessian coefficients

Hab 0 2E(v*) T
-9 ~&7 f + T7 6 .rabOvsaaVrb = as a

of the unconstrained effective energy computed at the mean-field solution v* as

EHbf b -TSadSm + Th + Th = 0 s E S, a E G. (4.34)
r rmhmd &hmdrb

The partial derivatives of Pa and q express the sensitivity of the Lagrange multipliers
to the perturbation of the system energy with an external field. These sensitivities are

unknown but can be obtained using the constraint equations (3.81) and (3.82). Indeed,

if we differentiate the constraint equations with respect to hd,m S,d E G, and
compute the resulting partial derivatives at h = 0, we get for the uniqueness and uniform

histogram constraints
^ bd = 
Frm = 0, Vr,m E S, Vd E G, (4.35)

b

and
f"]bd
Fdm = 0, Vb,d E G,Vm E S, (4.36)

r

respectively. The number of unknowns bd, ap aq, in (4.33), (4.35) and (4.36) is
rmIihmd ' hnd

equal to the number of equations. Moreover the system is linear in the unknowns and,

in theory, can be solved to give the correlation functions as well as the sensitivity of the

Lagrange multipliers with respect to the external field.

The above procedure for computing the correlation estimates has a number of advan-

tages. Among them are
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1. It is valid for any energy function.

2. It is valid at any temperature T above the critical temperature (see Chapter 6).

3. The configuration constraints can be incorporated via Lagrange multipliers, and

the sensitivities of the latter with respect to external fields can be computed along

with the correlation estimates.

It is worthwhile to look at (4.34) when no constraints are imposed on the binary

matching variables. Then the Lagrange multipliers are identically zero, and these equa-

tions become

Hrrm = Tad6am, Vm, s E S, Va, d E G (4.37)
rb

which can be written in tensor form as

Hf = TIs® I, (4.38)

where Is and IG are the ISI x ISI and n x n identity matrices, respectively. Under this
form it is clear that the correlation tensor and the effective energy Hessian computed at

the global minimum of the effective energy are inverse of each other. Note that as the

temperature decreases to zero the global minima of the effective energy and those of the

energy become identical. When the uniqueness and uniform histogram constraints are

imposed, we can obtain the correlation estimates of the constrained case from those of

the unconstrained case by projecting the latter on the constraint linear spaces defined

by (4.35) and (4.36).

Having computed the correlation estimates of the binary matching variables, we can

get the correlation estimates of the graylevels using (4.14)

4.4 Summary

It is probably time to stop and reflect about what we have accomplished. In Chapter 2,

we raised the question of computing the correlation function of a Gibbs distribution - a

probabilistic model of widespread use in image modeling and machine vision. We carefully

considered some of the cases for which the correlation function is exactly known: the

continuous Gaussian model and the binary Ising model. The question remained whether

the correlation function can be computed approximately for other models. Using (2.31),

also known as the linear response theorem in Statistical Physics [66], we have proposed

a procedure for computing correlation-field approximations for a large class of discrete,

multilevel Gibbs distributions. This procedure is new. So is the explicit formula giving
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the correlation approximation for the autobinomial model. Moreover, we have considered

the constrained graylevel case, and here also, we have shown that approximations of the

correlation coefficients can be obtained as functions of the Hessian of the effective energy

computed at the mean-field solution.

The mean-field and correlation field approximations can be used to define Gaussian

distributions that have the same neighborhood and bonding parameter characteristics as

the original discrete, graylevel distributions. We believe that the relationships between

these Gaussian models and their discrete, graylevel parents need further study. Of par-

ticular importance is to understand when we can use the Gaussian model, which can be

sampled relatively easily, instead of the discrete, graylevel model whose samples require

time-consuming Monte Carlo methods to generate.
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5

Mean-Field Theories and their
Network Representations

If you have built castles in the air, your work need not be lost;

that is where they should be. Now put the foundations under them.

Henry David Thoreau

5.1 Introduction

Even the casual reader should have noticed that up until now, our work has drawn

heavily on the analytical methods of statistical mechanics. In this chapter, we shift our

viewpoint from thermodynamics to dynamics. Computationally, the shift is from the

study of cost functions and their extrema to that of algorithms and stability.

This chapter is written somewhat in the spirit of Hopfield's two seminal papers [35, 36]

on the binary and analog neural networks that now bear his name. Our starting point is

a dynamical system defined on a finite set. This set was the vertices of the N-dimensional

hypercube in the case of the discrete Hopfield model, where N is the number of neurons.

In our model, the discrete winner-take-all (WTA) model, the finite set is the artesian

product of N sets, each one of them being the set of vertices of the simplex T. This

simplex is a natural one, since it is the one associated with the uniqueness constraint
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of the binary matching elements. We show that our dynamical system possesses an
"energy" function that decreases along its trajectories. We then concentrate on the

study of one mode of operation of the WTA system, the synchronous one, and give a

sufficient condition that guarantees the absence of oscillations in the network. Our proof

uses an apparently novel argument of interlacing Lyapunov sequences.

The gap between Hopfield's discrete [35] and analog [36] models can be bridged using

mean-field theory. We alluded to this fact in Chapter 3. See also [58] and [92]. Interest-
ingly, Hopfield himself was not aware of this connection until after the publication of his

1984 paper on the analog model [John Wyatt, private communication]. We will show,

using a simple mean-field method that does not require the use of path integrals la

Peterson [68] or la Simic [80], how an analog WTA dynamical system can be derived

from the discrete one. There is an interesting parallelism in the mean-field derivation
between the Hopfield model and the WTA model. The now famous sigmoid function

is a direct result of the mean-field approximation. It operates as a smooth version of

the threshold function of the discrete model. The mean-field approximation of the dis-
crete WTA network yields a generalized sigmoid mapping that is a smoothed version of

the discrete WTA mapping. We state and prove useful properties about the generalized

sigmoid mapping, including its being the gradient map of a convex function. We then

concentrate on the global dynamics of the synchronous, analog WTA network. Here also,
we show the existence of a Lyapunov function that is nonincreasing along the system tra-

jectories. Even better, we use this function and the properties of the generalized sigmoid

mapping to prove that the only w-limit sets of the analog WTA dynamical system are

either fixed points or limit cycles of period 2. We strengthen this result and show that

under a condition similar to that of the discrete WTA network, the only w-limit sets are

the fixed points.

Ultimately, we would like to be able to implement the analog WTA network in analog

hardware. It came as a surprise to us that the generalized sigmoid mapping can be imple-

mented exactly using MOSFET transistors operated in subthreshold CMOS technology.

We give two such implementations and comment on some of their circuit-theoretic prop-

erties.
Finally, we extract what we believe is the essence of the Hopfield-type dynamics to

extend the Hopfield and WTA models to neural networks in which the neuron states
live in abstract spaces. We treat in some detail the Hilbert space case and show that
results similar to those of the analog WTA model hold as well. We argue that this new

layer of abstraction is exactly what is needed to extend the "neural network" paradigm
to networks in which the neurons are the sites of phenomena described by, for instance,
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elliptic partial differential equations.

We leave out many classical subjects. For instance, we do not discuss the important
subjects of learning, memory and recall, and information capacity. With the formal

framework developed here, it will be possible to investigate these subjects by "copying"
the work that has already been done in the context of Hopfield networks.

5.2 Discrete Winner-Take-All Networks

Our motivation for adopting the formal model described in the next subsection for
the discrete WTA network is threefold:

* First, the work described in Chapter 3 showed that whenever the mean-field ap-

proximation of a multilevel Gibbs random field is being derived, the mapping of

the pixel state onto a vector of binary matching variables was a required step. This

mapping results in the change of the pixel state space from the space of labels or

graylevels to the set of the simplex T vertices (see (5.1)). This motivated our
interest in defining a dynamical system directly on this set.

* A number of WTA mechanisms have been proposed in the computer vision liter-

ature to implement different visual tasks. For instance, Marroquin [58] used an

algorithm similar to the synchronous dynamical system (5.3) to implement the

Marr and Poggio stereo matching algorithm [57]. He made a number of interesting
observations concerning network convergence and limit-cycling. Much more defi-
nite results will be stated in this chapter about both the discrete and analog WTA

networks.

* The winner-take-all mechanism has also made its way into the analog VLSI im-

plementation of early vision algorithms. Mahowald and Delbrfick [54] designed

an analog VLSI circuit to implement the cooperative stereo algorithm of Marr and

Poggio (op. cit.). Their VLSI system implements the local vertical inhibition mech-
anism among different features using an analog WTA circuit due to Lazzaro [47].

In these and similar circuits, stability is always an issue [82]. But as a first step
to sort out the stability question, it is essential to delineate the stability problems
due to hardware implementation from those due to the algorithm itself. Hence, the
main objective of our WTA framework is to investigate the stability and oscillation
issues inherent to the WTA mechanism.
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5.2.1 Notation and Framework

Let S be a set of sites. They could represent either pixels in an image, neurons in

a neural network, or spin sites in a magnet model. The number of these sites will be
denoted SI. To each site s E S, we assign a vertex y, of the simplex

T = {Z E ~R,a > 0, Va E {, and E Zk = 1}, (5.1)
kEG

where 5 is the finite set of integers {1,2,...,n}. Every vertex in the simplex encodes
one of the state sites. This state could be either a graylevel or a label. We denote the set

of vertices of Tn by Tn. The configuration set or the state space of all the sites is the set

_A (Tn)ISL (5.2)

An element y E Q is given by y = (y , ... , y,... , yT )
T . Now on the state space , we

define the discrete dynamical system

y.(k + 1) = W(u.(k)) (5.3)

u5(k) = Z Jsryr(k), Vs E S, Vk > 0 (5.4)
rES

The matrices Jsr are n x n symmetric matrices, and the (a, b), 1 < a, b < n, coefficient

of each one of them will be denoted by Jaf. They define connectivity strength between

the states of any pair of sites. If sites s and r do not interact then J,,r = 0. Throughout
the chapter we make the assumption that J, is symmetric and that J,r = J,s. Thus the
block matrix J is symmetric. The mapping W maps Rn to the simplex T and is defined
by

W(Z) = (W(Z),.. Wn())

where for every a E G,

W(z) ={ 1 if z. > Zb, Vb (
0 otherwise

In words, the mapping W assigns 1 to the component of z which is greater than all other

components and 0 to all the other components. Therefore W defines a winner-take-all

(WTA) mapping on Rn. The dynamic system (5.3) will be called the discrete winner-

take-all (WTA) dynamical system. The above definition does not say what happens if

there are more than one winner among the components of the vector z. Let A = {a E

9lz = max(zl,... , zn)}. The set A is the set of indices corresponding to the maximum
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(0, 0,1)
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x

FIGURE 5-1: The 3D simplex. The vertices of this simplex represent the possible states
at each site. The configuration space is the cartesian product of S copies of these vertices.

components of z. The number of these indices will be denoted AI. Then the definition
of Wa can be extended to include the case where IAI > 2 as follows

JA if za >Zb Vb (W'(Z) = ( - a' (5.6)
0 otherwise

Observe that with this extended definition of W the image of R n might contain points

that are not among the vertices of T. If we want to restrict (5.3) to being a dynamic
system on Q, then we can choose

W () ={ 1 if a = m A=ina = min{bE zb = max(zl,... ,z~)} (57)
0 otherwise

In the sequel, we adopt this latter definition of W. In this case, the dynamic system

is defined on . In Figure 5-1, we show the state space of each pixel in the case when
n the number of labels is 3. The discrete case evolves on the vertices of the simplex,
while the analog state will evolve in its interior. If we imagine that at each site we have
a column of binary variables representing the coordinates of each vertex, then the WTA
network has a 3D architecture similar to the one shown in Figure 5-2.

The first part of the following lemma about the properties of the mapping W will be
very useful in studying the WTA dynamical system.

Lemma 9 The winner-take-all mapping W : - Tn satisfies the following properties:
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i) z T (W( Z 1) - W(Z 2 )) > 0, VZ1, Z2 E R -

ii) The function '/ R' - R defined by b(z) = zTW(z) is convex.

Proof: i) Let i = min{j E GIzlj > zm, Vm E G}. Then by definition of W, we have

ZTW(zl) = z1 1.

Moreover, zTW(z 2 )= Zlm Zli. Therefore

zT (W(ZI)-W(Z2 )) Zli-Zlm > .

2) To prove that ,b is convex, we need to prove that the inequality

b (tzl + (1 - t)Z2) < t(Zl) + (1 - t)lk(z2)

is satisfied Vzl, z2 E ~R and Vt E [0,1]. This is indeed the case since the function - is

nothing but the function z = (z,... , zn) - maxi(zi), which is a convex function. 

There are two modes in which the state of (5.3) can be updated: synchronous and

asynchronous.

1. Synchronous mode: In this operation mode, all the sites are free to change at each

time step. In updating a site at time k + 1, only the state of the system at time k

is used. This update rule is similar to a Gauss-Jacobi iteration [64]. The way our

dynamical system was defined in (5.3) corresponds to this operation mode.

2. Asynchronous mode: According to this operation mode, only one site s is updated

at each time step k. As a result, the update of each site uses the most recent

information about the state of the system. This update rule is similar to a Gauss-

Seidel iteration [64]. At each time step k, we denote by Sk the site selected for
updating. Then the operation mode becomes

YS,,+l(k + 1) = W(u 8(k)) (5.8)

u8(k) = E JsrYr(k) (5.9)
rES

y 3(k + 1) = y,(k), if s $ sk+l (5.10)

The initial condition of (5.3) and (5.8) will be denoted by (Ys(O), s E S).
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FIGURE 5-2: The winner-take-all network. Each column represents the state at a given
site in the lattice. Each node in a given column is labeled either 0 or 1. Because of the
uniqueness constraint, all the nodes are labeled 0 except one. So the sum along each
column is 1. The horizontal layers represent the connectivity between the sites. In this
particular case, we have nearest-neighbor connections [59].
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5.2.2 A Lyapunov Function for the Discrete WTA Dynamics

Lyapunov functions are a standard tool for proving the stability of equilibrium points

in the qualitative theory of ordinary differential equations [86]. They can also be defined

and used for the study of the stability of fixed points in iterative processes and nonlinear

difference equations [46]. However in all these contexts there is the underlying assumption

that the state space is a continuum, i.e., d or an open set of R. Moreover, in addition

to the well-posedness conditions imposed on the dynamical system (Lipschitz continuity

for the differential equation and continuity for the difference equation), the Lyapunov

function itself is required to be continuous on the state space. The WTA iterative process

that we have defined above has an underlying state space 0 = (T,,)Isl that is discrete

and finite. Therefore the standard definitions of Lyapunov stability theory need to be

adapted to the situation at hand. If y E Q, we denote by Cy E 0 the new state resulting

from updating the WTA dynamics (either synchronous or asynchronous) to y. Then we

have the following definition

Definition 6 A function E: f -- R is said to be a Lyapunov function for the discrete
dynamical system

y(k + 1) = Cy(k), y(0) E o
if the change

AE A E(/Cy)- E(y) (5.11)

is nonpositive Vy E Q.

The above definition implies that a Lyapunov function is always nonincreasing along

the trajectories of the system. Moreover, since the state space is finite, any function

is both bounded above and below. It follows that along any trajectory, a Lyapunov

function always converges to a limit. The rest of this subsection will be devoted to

finding Lyapunov functions for the WTA dynamical systems both in the asynchronous

and synchronous modes.

Let E be the quadratic function defined on the state space 0 as follows

E(y) = - Ys JsrYr- (5.12)
s,rES

For now we will call E(y) the energy" of the system configuration yr = (y1,... ,YIsl)-

For the WTA dynamics defined in (5.3) or (5.8), denote by E(k) the system energy at

time k and by

da(k) = ys(k + 1) - y8(k) (5.13)

the state transition vector at site s. Then we have
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Proposition 10 The one-step energy change in terms of the site state transition vectors
is given by

AEk Ek+ - Ek = -2 E d (k)u(k) - E dT(k)Jsrdr(k). (5.14)
sE s,rES

Proof: To prove this equality, start from the right hand side and expand the second

term to get the three-term expression

- Z yT(k + 1)Jsryr(k + 1)- yT(k)J.ry,(k) + 2 y(k)Jsry(k 1),
s,rES s,rES s,rES

where we have used the symmetry of J,r in the last term. Using the expression of u,(k),

the first term in the right-hand side of (5.14) gives

2 E y(k)TJsrY(k)- 2 E y(k)Jsryr(k + 1).
s,rES s,rES

Adding the last two expressions and using the definition of E we get the desired equality

(5.14). 

With this expression, we have the following

Proposition 11 Under the assumption that J,, is positive semidefinite, s E S, the
energy sequence Ek, k > 0 (5.12) is non-increasing along the trajectories of the asyn-
chronous, discrete winner-take-all system (5.8). Therefore it is a Lyapunov function.

Proof: Let s* be the one and only site to be updated at time k + 1. Then by Proposi-

tion 10, we have

AEk =-2d (k)u. (k) - ds (k)Js.s d4s.(k) <-d < (k)u (k),

the term in J,.. being < 0 by assumption. But we have

d . (k) = y 8 .(k + 1)- y.. (k) = W(u.(k))- W(u.*(k- 1)).

Applying the first part of Lemma 9, we get

dT (k)u. (k) >> 0.

It follows that AEk < 0 or Ek+l < Ek, which means that E is non-increasing along the

trajectories of the asynchronous WTA dynamic system defined in (5.8)

Observe now that the function E is bounded below by

Emn = - E IJsI11,
s,rES
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where IIJorl is the matrix norm of Jr induced by, for instance, the 12 norm on ~R. The
sequence Ek, k > 0, is non-increasing and bounded below. Therefore it converges to a
limit Esy,.

It is important to note that the above proposition remains valid even if the block
matrices J,, s E S, are all zero. When they are positive definite, the Lyapunov sequence
becomes strictly decreasing. Hence, we have the following

Corollary 1 Under the assumption that J,, is positive definite, s E S, the energy
sequence Ek, k > 0 (5.12) is strictly decreasing along the trajectories of the asynchronous,
discrete winner-take-all system (5.8). Therefore, it always converges to a fixed point.

The above corollary allows us to rule out oscillations in asynchronous, discrete, WTA
networks in which the autoconnection matrices are positive definite.

Note that the energy sequence along the trajectories of the synchronous WTA dynamic
system (5.3) is not guaranteed to be non-increasing unless we assume that the block
matrix J = [J*]JEs is positive semidefinite.

Proposition 12 Suppose that the matrix J = [Jsrl]s,rES is positive semidefinite. Then
the energy sequence Ek, k > 0, (5.12) is non-increasing along the trajectories of the
synchronous, discrete winner-take-all system (5.3). Therefore it is a Lyapunov function.

Proof: First, we define the nISI-dimensional vector d = (di,... , ds) . With this and
the definition of the block matrix J, the second term in the expression of AEk (5.14)
becomes

AEk = -2 E dT(k)u,(k)- dT(k)Jd(k).
sES

Let now

E(k) = {s e Sly,(k + 1) # y,(k)}

be the subset of sites whose states have changed at the (k + 1)st iteration. Then

EdT(k)uo(k) = E (y(k + 1) - y(k))T u,(k)
3ES sE<(k)

= ~E (W(u,(k))- W(us(k- 1)))T u,(k)
sE.(k)

> 0,

where the above inequality results from Lemma 9, part (i). From the above inequality
and the fact that J is positive semidefinite, we get that AEk < 0 or Ek+l < Ek, i.e., the
energy sequence Ek, k > 0, is non-increasing along the trajectories of the synchronous,
discrete WTA dynamic system (5.3). ·
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By the above proposition and the lower-boundedness of the energy function, it results

that the energy sequence Ek, k < 0, converges to a limit Esyn Note that both Esyn and

Esy,, depend on the initial condition of the WTA system.

The condition imposed on the matrix J in Proposition 12 is stronger than needed.

Indeed for the energy sequence Ek, k > 0, to be non-increasing along the trajectories of

(5.3), it is sufficient that J be non-negative on a set V of vectors defined as follows:

V a_ {d E nlSI such that 3y,y' E , y ~ y', d = y- y'}. (5.15)

In words, a vector d = (d, .. d ., . di)T is in V if and only if every d E Rn can

be written as a difference ys - y', where Ys and y' are two vertices of T. Note that D

does not contain the zero vector. Therefore there should exist at least one site s E $

such that y3 ? y~.

An interesting situation arise when the diagonal blocks of J are all zero. This is

usually the case when the the matrix J is induced by the coefficients of a Markov random

field with pairwise interactions and no external field. Then in this case, only along the

asynchronous WTA trajectories is the quadratic energy guranteed to be non-increasing.

This is because of the following

Proposition 13 Let P be an N x N symmetric matrix such that PI, = 0 for all 1 < I <
N. Then P is positive semidefinite if and only if P is the zero matrix.

Proof: The if" part is trivial. For the "only if" part, notice that on the one hand,

N

trace(P) = Pll = O.
1=1

On the other hand, the eigenvalues Al, 1 < 1 < N, of P are all nonnegative real, and since

the trace is an invariant for P

trace(P) = a Al = 
1=1

It follows that A = 0 for all 1 < I < N. Therefore P is the zero matrix.

5.2.3 Thresholds and External Inputs

It is perfectly possible to change the dynamics of the WTA so that thresholds and

external inputs are included. For instance, the synchronous system 5.3 becomes

YS(k + 1) = W(u.(k)) (5.16)

u,(k) = E Joy,(k) + h. - t,, Vs E S, k > 0 (5.17)
rES
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where h, is now an external vector field applied at site s and t is a vector of thresholds.
The computation of the winning components in the vector us must of course involve
both the components of the external field h, and the components of the threshold vector
t,. It is not difficult to check that the energy function given below is bounded and
non-increasing along the trajectories of (5.16)

E = __ JsrYr Y s + Ys (5.18)2 3 
s,rES sES sES

if the block matrix J = [Jar] is positive semidefinite. Similarly, when the matrices J,
are all zeros, the above function defines non-increasing sequence along the trajectories of
the asynchronous WTA system with external inputs and thresholds.

5.2.4 Global Dynamics of the Synchronous Discrete WTA Net-

work

The convergence of the Lyapunov sequence Ek to a lower bound is an important result
but it does not tell us very much about the global dynamics of the system trajectories.
However because of the finiteness of the state space f, every orbit (y(k))k>O starting
at an arbitrary y(0) E ft will converge to a limit cycle. In other words, there will
be I 0, p > 0 such that the finite sequence y(l),y(l + 1),... ,y(l + p - 1) satisfies
y(l + i) y(l + j),0 i < j < p-1 and y(l + p) = y(p). The integer p is the period of
the cycle. Our objective in this paragraph is to prove that under a mild condition on the
matrix J the only limit cycles of the synchronous WTA system are the fixed points. This
will be done by introducing a new Lyapunov function inspired by the work of Marcus
and Westervelt on the analog Hopfield network [56].

Let

¢ (u) -E WT(Us)us (5.19)
sES

here W is the winner-take-all mapping defined in (5.3). As usual, we are interested in
computing the change

AWk =bk+l - k

along the trajectories of the WTA dynamical system, where ALSk = 4(u(k)). Note that

= -E W (s(k))us(k)
sES

= - E- yT(k + 1)us(k)
8ES

= - YT(k + 1)Jsryr(k) (5.20)
s,rES
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which means that at each time step both the current state and the next state are involved

in the computation of 4'k. Contrast this with the Lyapunov function E, where only the
current state is needed in the computation. We have the following

Proposition 14 The function D defined in (5.19) is a concave Lyapunov function for
the synchronous WTA dynamic system (5.3).

Proof: Using the definition of D (5.19) and the first part of Lemma 9, we can see that

t is concave as the negative of a sum of convex functions. Now from (5.20) we have

Al = -- (ys(k + 2) - ys(k))T Jsryr(k + 1),
s,rES

which can also be written as

Ark = - E (W(us(k + 1))- W(us(k - 1)))T us(k + 1),
sES

where we have used the update equations of the synchronous WTA system (5.3). Now

using the first part of Lemma 9, we get that

(W(us(k + 1))- W(us(k- 1)))Tus(k + 1) > 0, Vs E S, k > 1.

Therefore, Ark < 0 and the sequence (k)k>O is non-increasing along the trajectories of

the synchronous WTA system. ·

Here also for each initial condition, y(0) E fl, the sequence (k)k>0 will converge to
a limit that is a minimum for the orbit (y(t))t>o0 .

The objective of the rest of this section is to prove that if the block matrix J satsfies
a weak form of positive definiteness, then all the limit cycles of the synchronous WTA

system are of period 1, i.e, they are all fixed points for the discrete system (5.3). The

following lemma on the relationship between the two Lyapunov sequences (Ek)k>o and

()k)k>O along the trajectories of (5.3) is fundamental for the proof.

Lemma 10 Assume the block matrix J positive semidefinite. Then the sequences (Ek)k>o
and (k)k>o are interlaced along the trajectories of System (5.3), i.e.,

Ek+ < k < Ek < Vk-I Vk > 0.

Proof: First, let us write Ek in terms of the auxiliary variables us(k) and the winner-
take-all mapping W. From (5.12) and the definition of us, we get

Ek -Z uT(k)W (u(k-1)) -
sES
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Now

k-Ek =-E UT(k) (W(u(k)) - W(u.(k -1))).
sES

Applying the first part of Lemma (9) to every term in the above summation, we get

4· k-Ek < 0.

Similarly,

k- Ek+l = - (u(k) - u,(k + 1))TW(u8 (k))
sES

= - E (y,(k) - y(k+ 1))TJ, (yr(k + 1) - yr(k) + yr(k)),
s,rES

where we have used the definitions of the auxiliary variables u8 and the iteration equations

(5.3). Moreover, we have added and subtracted the term yr(k) so as to make use of the

nonnegativity of the matrix J and write

- E (y 8(k) - y 8(k + 1))T Jsr (Yr(k + 1) - Yr(k)) > 0.
s,rES

Therefore

k-Ek+l > - E (y(k)- y.s(k + 1)) T Jryr(k)
s,rES

= - E uT(k) (W(u8 (k - 1) - W(u.(k)))
sES

where we have used again (5.3). Applying Lemma 9 to every term of the right-hand side

we get the desired inequality k > Ek+1. E

We are in position to state a major theorem for the global dynamics of synchronous

WTA networks, but we need first to introduce some new notation. For each site s E S,

let H, be the vector space in Rn spanned by the edges of the simplex 7. This space is

of dimension n- 1. Denote by

H = eSEsHS

The direct sum of these subspaces. Note that if v and v' are in R then d = v - v' is in

H. We say that the matrix J is positive definite on H if vTJv > 0, for all v E H, v y 0.

Theorem 2 Suppose that the block matrix J is positive definite on H. Then all the
trajectories of the synchronous, discrete winner-take-all network converge to fixed points.

Stated differently, this theorem asserts that under a mild assumption on the matrix

J describing the interaction between the different sites, the synchronous winner-take-all
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network has no limit cycles of period > 1. One can also show that if this condition is not

satisfied then limit cycles of period 2 can occur.

Proof: We know that because of the finiteness of the state space Q, every trajectory

converge to a limit cycle of period, say p. Our objective is to prove that p = 1. So let

y(l) be an initial point on the limit cycle. Then by periodicity y(1) = y(p). Therefore,

E = Ep and l = 4p. By Propositions 12 and 14 both (Ek)k>o and (k)k>o are non-
increasing along the trajectories of (5.3). Using Lemma 10, we obtain

E 1 = 1 = E 2 = 2 = ... = Ep = p,

i.e., both sequences are constant over the limit cycle, and their values are equal. Let

d(k) = y(k + 1)- y(k), 1 k (p- 1) be the transition vector between any two

successive points on the limit cycle. We want to prove that d(k) = 0, i.e, that the state

vector is also constant. Indeed by Proposition 10, it is easy to check that

dT(k)Jd(k) = Ek - Ek+l + 2(~k - Ek).

But because the Lyapunov sequences are constant, we get

dT(k)Jd(k) = 0.

which implies, since dk E H and since the block matrix J is positive definite on H, that

dk, 1 < k < p - 1, itself is 0. In other words, the limit cycle is reduced to a single point.

We will see that this global property remains valid when we replace the winner-take-all

mapping an analog approximation, which will be done later in this chapter. 1

5.2.5 Relationship to the Binary Hopfield Network

In this short subsection, we show that the binary Hopfield network can be easily

mapped onto a discrete WTA network whose dynamics is governed by one of the two

systems (5.3) or (5.8).

We assume the reader familiar with Hopfield's 1982 paper. Denote the connectivity

matrix of the Hopfield model by T = [TS,]S,rES. The neurons Vs, s E S, of the Hopfield

model can have one of two values 0 or 1. Using the method of binary matching elements,

we can map 0 and 1 respectively onto the vertices (0, 1)T and (1, O)T of the 2D simplex

1 Note that as for Proposition 12, it would have been enough to assume that the matrix J is positive
on the set V defined in (5.15). We have preferred to give the stronger sufficient condition of positive
definiteness on H because it is the one that is needed for the analog case.

125



xl + x2 = 1, x1 , x 2 > O. The 2D binary vector corresponding to V will be denoted v,

and as a result of the mapping we have v, = (V, 1- V)T. For each pair (s, r) E S x S

define the interaction matrix J,s by

is Ta 01
0s 0

Hopfield's dynamical system is defined as in [35] by 2

Vs . 1, if E TrV >0
rES

V, 0, if ETV r<0.
rES

Now denote by us = (u, u5 l)T the sum 3

E JsrVr,
rES

From the definition of Jar, it is easy to see that the Hopfield dynamics can be written as

V, ( 1 , 0 )T, if u5
l > u.o

VS (0, 1), if u'o > usl.

Therefore the update conditions for both the Hopfield model and the WTA model are

equivalent. Using the definition of the WTA mapping W, the above dynamics can simply

be written as

v,(k + 1) = W(u5 (k))

Another mapping of the binary Hopfield model onto a discrete WTA model is to use the

following definition of interaction matrices

Tsr T, J
The reader will easily verify that the quadratic "energy" corresponding to these interac-

tion matrices is the same as the one that would result from replacing the zero-one values

of the neuron outputs with ±1. The identification of the binary Hopfield network with

a WTA network implies that all our conclusions about the global dynamics of the WTA

network are also true for the Hopfield network.

2It is worthwhile to mention that we do not exclude the site s itself from the summation giving the
total action of the network on the neuron at site s. Also, Hopfield considered only the asynchronous
update mode, although he mentioned the possibility of using a synchronous one.

3 Because of the definition of Jr, the first component of u, is always equal to 0, hence the notation
Uso.
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5.3 Analog Winner-Take-All Networks

In this section, we give the analog counterpart of the discrete WTA networks described

in the previous section. The only heuristic step in our presentation is the use of the mean-

field approximation to pass from the discrete WTA network to the analog one. Although

an axiomatic presentation of the WTA dynamical system is possible, we have preferred

this path for three reasons. The first is to indicate that there is a strong link between the

discrete network and the analog one. The second is to show how the generalized sigmoid

mapping, which is the fundamental building block in the analog WTA network, arises

in a rather natural way when we use statistical physics to find analog counterparts to

discrete systems defined on the finite state space Q. The third reason is to point out the

role of thermodynamics in studying the global dynamics of the analog WTA networks.

This section is organized into several subsections. In Subsection 5.3.1, we use mean-
field theory to derive the analog WTA network from the discrete one defined in (5.3).

Subsection 5.3.2 is devoted to a detailed study of some of the properties of the generalized
sigmoid mapping. These properties will play a central role in Subsection 5.3.3 where the

dynamics of the synchronous WTA network is studied. Our major result here is that
all the limit cycles have either a period of 2 or are fixed points. This result extends,

to the analog WTA network, the one that Marcus and Westervelt [56] obtained for the

analog Hopfield network. Moreover, if the connectivity matrix of the network satisfies a

weak form of positive-definiteness that we will specify, then the only limit cycles are the

fixed points. Analog hardware implementations of the generalized sigmoid mapping, the
building block of the WTA network, are given in Section 5.4.

5.3.1 Derivation of the Analog WTA Network

To make this chapter self contained, we give a detailed derivation of the fixed-point

equations of the analog WTA network using one of the methods presented in Chapter 3.
We have shown in the previous section that the quadratic energy function

E(y) = - y srYr
s,rES

is non-increasing along the trajectories of the synchronous discrete WTA network (5.3) if

the connectivity matrix J = [Jsr](5,r)Es2 is positive semidefinite. We have also shown that
if the autoconnection matrices J.s are positive semidefinite, then the same energy function
is non-increasing along the trajectories of the asynchronous, discrete WTA network (5.8).
The above energy function can be used to define a Gibbs distribution on the state space
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Q. The partition function (refer to Chapter 1) of this distribution is given by

Z = E exp [- E(y)]-
yE/l

We are now in a situation similar to that of Section 3.2 where we have used the method of
binary matching elements to transform the Gibbs distribution of a multilevel pixel state
space to a Gibbs distribution in which the pixel state space is the set Tn of the simplex Tn

vertices. The fastest way to derive the fixed-point equations of the analog WTA network

is to proceed as in Subsection 3.2.3. This method has the advantage of not requiring

that J be positive semidefinite on the block matrix J. However for the algebra to work

out correctly, we should assume that the auto-connect matrices J, = 0, Vs E S. This

situation is typical of Markovian fields. Denote by v, an approximation of the ensemble

average y- of Ys, E S, with respect of the Gibbs distribution. Let

= E Jsvr + hs
rES

be an approximation of the effect of the lattice on the state of site s. We have included

in w,, the effect of an external field h, s E S, so as to be able to get consistency relations

for vs, at zero external field.

An approximation Z of the partition function can be obtained by replacing the actual
lattice field effect at site s with the approximation w. of its mean. Thus

Z Z= Eexp [TYs~ws]I T

Z exp ET YsE WexyE/1~ ~ ~ 1 
= E ... E exp[ E YS W,

Y1 ETn YsETn sES

1 = E...E i exp ys]-
Y ETn YsETn SE$S

Since the vectors ys can only be the vertices of the simplex T, the above summation can

be written as

Z = II E exp(wsg/T).
sES gEG

Using the formula

a log%v T Ohh=o

where

log Z = log E exp(wsg/T), (5.21)
sES gEG
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we can obtain the following set of consistency relationships for the vectors v., s E S

v, = F( w), Vs e S, (5.22)

where the mapping F is the generalized sigmoid mapping that was introduced in Chap-

ter 3. This mapping is a continuous one from Rn into the simplex T whose j-th compo-

nent is defined by

ezi
Fj(z) = , i V = (Z,Z 2 ,... Zn)T e tn, (5.23)

=1 e z i

Often we will deal with the case where the argument of the generalized sigmoid mapping

is scaled with the inverse temperature . In this case, we will use the notation

n.FT(Z) = F( T Z), z E 3R.

The consistency relationships given in (5.22) are nothing but the fixed-point equations

of the discrete dynamical system

vs(k + 1) = FT(wS(k)) (5.24)

w 3 (k) = E JsrVr(k)
s,rES

Here also, we can define a synchronous mode of operation and an asynchronous one.

In the sequel, we will concentrate on the synchronous system in which all sites are free

to update their states at each time step k + 1 and only information available at time step

k > 0 is used in the update.

Because the components of F are nonnegative and sum up to 1, the state vs(k) E T.

Therefore, the state space of the above discrete dynamical system is the compact, convex

set K = (Tn)Isl. Formally this system can be written as

v(k + 1) = KT(v(k)), v(0) E K, (5.25)

where KCT is the nonlinear mapping induced by FT and the connectivity matrices [J9r]s,rES'

A priori it is not clear that a fixed point for the dynamical system (5.24) exists at all. In

fact there is at least one: it is the fixed point whose existence is guaranteed by Brouwer's

theorem ([13], p. 149), that we state here for ease of reference.

Theorem 3 If K is a nonempty compact convex subset of d and K : K - K is a
continuous map, then there is a point v E K such that v = K(v).
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The conditions of the above theorem are satisfied by our mapping /CT and the subset
K. The problem remains whether the trajectories of (5.24) converge to one of the fixed
points of C. A sufficient condition for this to happen will be given in Subsection 5.3.3. For
now we need to justify the name "analog winner-take-all network" given to the system
(5.24). This will become clear after we give some of the properties of the generalized
sigmoid mapping in the next subsection.

5.3.2 The Generalized Sigmoid Mapping

The generalized sigmoid mapping F is as old as Statistical Mechanics. In fact it
corresponds to the Gibbs probability distribution assigned to a thermodynamic system
in equilibrium with a heat source at temperature T = 1 having n states with energies
specified by the real numbers -zl,...,-z,. Indeed in this case, the probability pj that
the system be in the j-th energy state is given by

ezj
Pi En~ Zi'P3 -ZEL 1el"

which is exactly the expression of the j-th component of the generalized sigmoid mapping
as given in (5.23). This probabilistic interpretation of F is useful in its own right. Because
the exponential is an increasing function, the mapping F assigns the highest probability
to the component j such that zi > zi, # j. In fact there is a close relationship between F
and the winner-take-all mapping W' defined in (5.6) for we have the following proposition

Proposition 15 The mapping FT converges pointwise to W' over Rn as T -+ 0 and to
le = 1 (1, 1..)T E Rn as T --+ oo.

Proof: Easy proof. 

Now denote by 'ij, 1 i 0 j < n the hyperplanes zi = zj in ~R, and let be the
union of all these hyperplanes. Then it should be clear from the previous proof that the
mapping FT converges pointwise to the winner-take-all mapping W defined in (5.7) as
T - 0 over 'Rn\H7. It follows that except for the zero- measure set , the dynamical
system (5.3) with the finite discrete state space ft is the zero temperature limit of the
dynamical system (5.24) with the continuous state space C. We will show in the next
subsection that even at nonzero temperature, both systems have similar behavior when
the matrix J is positive definite on H.

Although most of the following properties of F are easy to prove, we have decided to
assemble them here since to the best of our knowledge, they do not appear elsewhere in
the literature.
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Proposition 16 The generalized sigmoid mapping is invariant under translation along
the vector e.

Proof: Let a E R. Then easy algebra shows for all z E 3Rn that

F(z + ae) = F(z).

The above proposition looks benign but will be used in the next subsection to finish

our proof that the limit cycles of the dynamical system (5.24) are either fixed points

or have a period of 2. When the consistency relationships (5.22) were derived, F was

obtained through a differentiation process. Hence,

Proposition 17 The generalized sigmoid mapping is a gradient map, i.e, there exists
p 3'n -, R such that

F=VP.

Proof: Write
n

P(Z) log E exp(zg), Vz E R. (5.26)
g=1

Then it is clear that F(z) = VP(z). 

The symbol P was chosen to indicate that it is a potential function. It is known that

the derivative of the sigmoid function can be expressed in terms of the sigmoid function

itself [36]. The generalized sigmoid mapping exhibit a similar property, for we have

Proposition 18 The Jacobian DF of the generalized sigmoid mapping is a symmetric
n x n matrix that satisfies

DF(z) = diag (Fg(z)) - F(z)F(z) T . (5.27)

Moreover, it is always singular with the vector e being the only eigenvector corresponding
to the zero eigenvalue.

Proof: Let z E 3". Then we have by definition for 1 < j < n

e zi
Fj(z) = Z-

Let now i A j be in {1, . . ., n}. Then the partial derivative of Fj with respect to zi is

given by

9Fj(z) eezi

(En ) ) 2
azi (1=) ez,)

Fj (z) Fj(Z)
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Similarly, for i = j we have

OFj(z) _ ezi eZj ezi

El-- en ' (En-- ez,) 2

= Fj(z)-Fj(z)Fj(z)

Assembling the above expressions in a matrix form, we get (5.27). To simplify notation

define f A F(z), and M A DF(z). Note that
n

fj >O, l<jn, 'fj = l,
j=1

and
M = diag(fi) _ ffT.

Then Me = f ffTe. But fTe = Ej fj = 1. Therefore Me = 0. This proves that e is

an eigenvector associated to the eigenvalue 0. It also proves that the row sum of M is

constant and equal to 0. Since M is symmetric this is also true for the column sum. Let

us now prove that the null space of M is generated by e. So let be another vector in

the null space of M then the i-th component of MC satisfies

f,-ffTC = 0, 1 < i < n.

Since fi > 0, we get that

i = fTC, 1 i < n.

In other words, all the components of ¢ are equal, i.e, ¢ E span(e). 
The Jacobian of F is a symmetric matrix and therefore is diagonalizable using an

orthogonal matrix. Note that the first column of this orthogonal matrix can be taken
equal to e. Note also that e x , the vector subspace orthogonal to e, is invariant under M

and that the restriction of M to this subspace is invertible.

Now we would like to prove the most important property of the generalized sigmoid

mapping, and that is the convexity of its "potential" function P. The convexity of P will

play both a theoretical role when we study the dynamics of the analog WTA network

and a practical role in that it will insure that any electrical n-port built to implement

the generalized sigmoid function will be locally passive.

In order to make the proof as self contained as possible, we recall the basic definition
of convex functions and an equivalent characterization of these functions in terms of
arbitrary convex combinations of points.

Definition 7 A function F: · -+ R is said to be convex if, for all zl, z2 E Wn and
<a< 1

(az + (1- a)z 2 ) < aF(z1 ) + (1 - a)CT)F(z 2 ) (5.28)
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The following proposition gives an equivalent characterization of convexity, and our

experience has confirmed its extreme usefulness in deriving meaningful inequalities.

Proposition 19 A function F: n -~ R is said to be convex if and only if, for all
Z1,Z 2 ,.. . Zm E n and all nonnegative numbers a1 , 2 ,.. ,an with Em al = 1

s az < clF(zI) (5.29)

Proof: To show that (5.29) is sufficient take m = 2 which gives the convexity definition.

To show that it is necessary, proceed by induction on m, the number of points. A detailed

proof is given in ([64], p. 83). i

When the function F is differentiable, its gradient can be used to characterize its

convexity. The next proposition will be useful when we study the dynamics of the analog

WTA system. Its proof can be found in ([64], p. 85).

Proposition 20 Suppose that F : R - R is a differentiable function over 'n, and
denote its gradient map by F'. Then F is convex if and only if, for all z1, z2 E Rn

F(z 2 ) - (z 1 ) > "(z1 )(z 2 - z1 ). (5.30)

When F is twice differentiable, we can use its Hessian F" to characterize its convexity.

Again, see ([64], p. 87).

Proposition 21 Suppose that JF: R --+ R is a twice differentiable function over R
with a Hessian matrix denoted by F". Then F is convex if and only if 'F"(z) is positive
semidefinite for all z E Rn.

The following lemma is based on the above characterization and will be instrumental

in proving the convexity of P.

Lemma 11 Let z1, z2, . . . , Zm be a family of real numbers, and let aC1, a 2 , . , acm a family
of nonnegative real numbers with m l = 1. Then we have

In 2 m

)izi < az2 (5.31)
1=1

Proof: The function F(z) = z2 is a convex function on R by Proposition 21. Inequal-
ity 5.31 results easily from applying Proposition 19 to the square function F. 

Last in this subsection but not least, we state the following

Proposition 22 The function P, of which the generalized sigmoid mapping is a gradient
map, is convex on Rn.
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Proof: To prove this, we use Proposition 21. Let z be an arbitrary point in Rn.

The Hessian of P at z is nothing but the Jacobian of the generalized sigmoid function

F, DF(z) whose expression is given in Proposition 18. With the notation used in the

proof of Proposition 18, this expression is

M = diag(fj) - ffT.

We want to prove that this matrix is positive semidefinite, i.e.,

( T MC > 0, Vt E R.

But we have
n n \2

( T M - E fC 2 - fil)

Since the real variables fl, 1 < I < n, are nonnegative and satisfy ~L 1 fl = 1, we can

apply Lemma 11 to conclude that

C(TM( > 0.

The convexity of P was also independently observed in [44] where it played an im-

portant role in the analysis of mean-field algorithms for solving the linear assignment

problem.

Finally, it should be noted that if F is the gradient map of P then FT is the gradient

map of T'PT where PT(.) = P(-.).
These properties of the generalized sigmoid mapping will be used in the next sub-

section devoted to the study of the global dynamics of the analog, synchronous WTA

network (5.24).

5.3.3 Global Dynamics of the Analog Synchronous WTA Net-

work

In this subsection, we concentrate on studying the global dynamics of the synchronous,

analog WTA network. The update equations of this network were derived from the
discrete WTA network in Subsection 5.3.1. They are re-written below for ease of reference

v8 (k + 1) = FT(w8 (k)) (5.32)

w 5 (k) = EZJsrVr(k),
rES
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The state space of this process is the compact, convex set K = (T)Isl. We have also

written this iteration in the more compact form

v(k + 1) = CT(V(n)), (O) E K (5.33)

where CT is the nonlinear mapping induced on K by FT and the connectivity matrices

[Jsr]8,rES By Brouwer's theorem (see 3), this dynamical system has at least one equi-

librium point. This fact is interesting but is too general to be useful for this particular

system. Since all the trajectories are bounded, the long-term behavior of the System 5.33

is revealed by the structure of its w-limit sets [46], Proposition 1.10. Our major result

here is that the w-limit sets of (5.33) do not contain limit cycles of period greater than 2.

Therefore, as T is varied, the trajectories cannot bifurcate to chaos via period-doubling

[60].

We recall here the basic definition needed for the rest of this subsection.

Definition 8 A function E: K -- is said to be a Lyapunov function for the discrete
dynamical system

v(k + 1) = kv(k), v(O) E K

if it is continuous on K and if the change

AE _A E(kCv)- E(v) (5.34)

is nonpositive Vv E K.

This definition differs from that given in Definition 6 in that the Lyapunov function is

required to be continuous.

We have shown in Chapter 3 that the fixed-point equations (5.22) can also be obtained

as the extrema of an effective energy that is usually derived by transforming the partition

function sum into an integral. However, this effective energy is not guaranteed to be

a Lyapunov function along the trajectories of (5.33). But because F, the generalized

sigmoid mapping, is the gradient map of a convex "potential", we can guarantee the

following

Proposition 23 With
W ZJsrVr: Vs E S, (5.35)

rES

and PT being the gradient map of FT, the function E: J(K) R defined by

E(w) = WSFT(WST [PT(WS) + PT (x£, J rFT(Wr))] (5.36)
sES sES \rES

is a Lyapunov function along the trajectories of the analog synchronous WTA system
(5.3S2).
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Proof: First, it is clear that E is continuous on K. Now, let us compute E(w) along

the trajectories of (5.32). At the k-th iterate Ek = E(w(k)), we have

Ek = - vT(k)Jgrvr(k + 1) - T (PT(wS(k)) + PT(w(k + 1))).
s,rES sES

Easy algebra shows that the change along the trajectories is successively given by

AEk = Z (v,(k + 2) - v,(k))T Jvr(k + 1) - T E [PT(ws(k + 2)) -PT(w.(k))]
s,rES sES

= A [vT(k + 1)(w,(k + 2)- w,(k))- T (PT(w,(k + 2))- PT(WS(k)))]
8ES

= E [FT(w.(k))T (w,(k + 2)- w,(k))- T (PT(w,(k + 2))- PT(w(k)))].
8ES

Now in order to prove that AEk is nonpositive, it is sufficient to prove that every term

inside the above summation is nonpositive. Since by Proposition 22, TPT is convex with

gradient map FT, we have according to Proposition 20 for all s E $

T (PT(w.(k + 2)) - PT(w 8(k))) > FT(w.S(k))T(wS(k + 2)- w.(k)).

Therefore AEk < 0, and the sequence Ek is nonincreasing along the trajectories of the

(5.32). ·

Note that since this Lyapunov function is continuous on the compact set K, it reaches

its minimum Enn. Therefore, there is v(0) E K such that the sequence Ek = E(v(k))

converges to Emi. Moreover, for every initial condition v(0) E K, there is a point v*

such that Ek > E* = E(v*) and Ek - E*.

The Lyapunov function proposed above is again inspired by the one that Marcus

and Westervelt [56] used to study the convergence and stability properties of the analog

Hopfield network. The most interesting aspect of this Lyapunov function is that "it looks

one-step-forward," thus producing a Lyapunov sequence that depends both on v,(k) and

its update vs(k + 1). Using the effective energy (see, e.g., (3.40))

Eeff (V) = V J-TZ PT EisrVrj
2 .9ES rES

as a Lyapunov function candidate produces a sequence that depends only on the current

state v.(k), and the effective energy change along the trajectory could be either positive

or negative.

We are now in a position to make precise conclusions about the aW-limit sets of the

analog, synchronous WTA networks. First let us recall the definition of w limit sets and

state a discrete version of LaSalle's invariance principle ([46], p. 9) which basically tells

us where in the state space to look for them when we have a Lyapunov function handy.
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Definition 9 A point p E K is said to be an w-limit point of the dynamical system

v(k + 1) = C(v(k)) (5.37)

defined on K if there is an initial condition v(O) and a sequence (ki)i>0 such that the
sequence v(ki) converges to p. The w-limit set of the dynamical system is the set of all
w-limit points.

Theorem 4 /LaSalle's Invariance Principle [46]] If E is a Lyapunov function for
(5.37) on K then every w-limit set of (5.37) is contained in the (LaSalle) set

= vEK KIAE = E(Cv)-E(v)= 0}.

Our statement of LaSalle's invariance principle differs somewhat from the one given

in Proposition 2.6 in LaSalle's monograph (op. cit.) in that the trajectories of the analog

WTA system are always bounded. Moreover, our statement is about the w-limit sets of

the system rather than the individual trajectories.

Now we can state our major result for this subsection.

Theorem 5 The only w-limit sets of the analog, synchronous, WTA dynamical system
(5.32) are the limit cycles of period less than or equal to 2.

This theorem is a non-obvious extension to the class of analog, synchronous, WTA net-

works of the result that Marcus and Westervelt obtained for the analog, synchronous,

Hopfield network. The proof of this theorem uses the following lemma satisfied by the

generalized sigmoid mapping F and its potential P.

Lemma 12 Let zo be an arbitrary vector in Rn. Then z e an satisfies the equation

FT(Zo)T(z - Z) - T (PT(z) - PT(ZO)) = 0 (5.38)

if and only if there is I E R such that z = zo + pe.

Proof: "If" part. Assume

3y E A, such that z -zo = e.

Then because the components of the generalized sigmoid mapping sum up to one, we get

FT(Z)T(z- z0 ) = FT(zo)T pe = .

On the other hand we can immediately see from the expression of 7PT that

PT(ZO + ye) = + PT(Zo).
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Combining the last two equations, it results that (5.38) is satisfied.

"Only if" part. Assume that z E g' satisfies (5.38). Then we can always find p E R

such that z - zo = ye + p, where p is a vector orthogonal to e. Substituting into (5.38),

we get the following equation in p

FT(zo)Tp - T (P'T(ZO + p) - PT(zO)) = 0-

Using a second-order Taylor series expansion of PT in the neighborhood of zo, we can

write ([17], p. 193)

FT(ZO)TP - T (PT(Zo + p) -PT(Zo)) =-j dt(1 - t)pTDFT(Zo + tp)p,

From the equation satisfied by p, it follows that

dt(1 - t)pTDFT(zo + tp)p = 0.

Since t - DFT(zo + tp) is continuous and positive semidefinite, we get that

PTDFT(ZO + tp)p = 0, Vt E [0,1].

But we have seen in Proposition 18 that the null space of the Hessian of PT, i.e, the

Jacobian of FT is the one-dimensional subspace spanned by e. Since p is orthogonal to

e, we conclude that p = 0. It follows that z = zo + ye. Q.E.D. 

Let us now prove Theorem 5.

Proof: According to LaSalle's invariance principle, it is sufficient to study the LaSalle

set of the Lyapunov function given in Proposition 23. So let v(0) E K, and compute

AE = E(/Kv)(0))- E(v(0)) = E - Eo. Then we have

AE = E [FT(wS(O))T(w(2)- w(0))- T (PT(w3 (2))- PT(wS(0)))].
sES

By convexity of TPT, the terms inside the summation are all nonpositive. Therefore

setting AE1 to zero implies that for all s S

FT(w8 (0)) T (w 8 (2) - w,(0)) - T (PT(w.(2)) - PT(w8 (0))) = 0.

Applying Lemma 5.38, we conclude that for every s E S, 3. such that

w,(2) = w.(0) + yse.

We know from Proposition 16 that

Fr(Z + ae) = FT(Z).
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Therefore, for all s E S,

v.(2) = v.(0),

which means that the LaSalle set £ contains only periodic orbits of period 2 or less. 

The above result is important because it proves that all the trajectories of the analog,

synchronous WTA network converge to one of two attractors: a periodic orbit of period

exactly 2 or a fixed point.

It is important to note that all these results about the global dynamics of the WTA

network were obtained without making any assumption about the network connectivity

matrix J. Additional assumptions on J will of course buy us more. Indeed we have the

following

Theorem 6 Suppose the connectivity matrix of the WTA network positive definite 4 on
H. Then the only w-limit sets of the analog, synchronous WTA system (5.32) are the
fixed points.

Proof: According to Theorem 5, the only w-limit cycles are the fixed points and the

limit cycles of period 2. Suppose then that the w-limit set is not a fixed point, and let

v(0) and v(1) be its two points. Observe that we have by periodicity v(2) = v(0). We

want to prove that in fact v(1) = v(0). Now v(1)- v(0) is a vector in H. Since J is

positive definite on H, it is sufficient to prove that the quantity

/ = (v(1)- v(0))T J (v(1)- v(0))

is nonpositive. But

= v T ()J (v(1) - v(0))- v T (0)J (v(1) - v(0))

= v T (1)J (v(1) - v(0)) + v T (2)J (v(2)- v(1)),

where in the last term, we have used the fact that v(2) = v(0). Now

v T (1)J ((1)- v(0)) = E FT(ws(0)) T (w,(1) - w,(0))
sES

< T 1PT(w(1))-PT(W(O))]
sES

where the last inequality is a result of the convexity of P and Proposition 20. Similarly,

we have

v T (2)J (v(2) - v(1)) < T Z [PT(W(2)) - PT(W(1))]
sES

< T E [PT(w,(0)) - PT(W(1))]
sES

4Recall that we used the symbol H to denote the direct sum of eEEsH,, where H, is the (n - 1)-
dimensional subspace spanned by the edges of the simplex T, at site s.
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FIGURE 5-3: A circuit implementation of the generalized sigmoid mapping defined on
V. This circuit is operated in subthreshold mode, takes the gates voltages as inputs
and gives the drain currents as outputs. The control current source Ic could also be
implemented as a transistor whose drain current is in saturation.

where again we have used periodicity: PT(wS(2)) = 1PT(Ws(O)). Assembling all the

inequalities, we conclude that

/3 < T E [PT(W5(1)) - PT(W 8 (O)) + PT(wS()) - PT(W8 (1))]
seS

<0.

Therefore v(1) = v(0), i.e, the limit cycle is a fixed point. Q.E.D.

5.4 Circuit Implementation

5.4.1 Implementation of the Generalized Sigmoid Mapping

In this subsection, we propose a CMOS circuit implementation of the generalized
sigmoid mapping. The circuit uses Carver Mead's analog computation paradigm [59] of

using the physics of the silicon medium to perform useful computations. Thus the circuit
will be operated in the subthreshold region where the drain-to-source saturation current
is an increasing exponential function of the gate voltages. A schematic of the circuit is
given in Figure 5-3. Our circuit is a natural generalization of the differential pair circuit

used in the transconductance differential amplifier [59].
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We would like to show that when the transistors are operated in the subthreshold

region the drain currents I,..., In are the outputs of a generalized sigmoid mapping

whose inputs are the gate voltages V1,..., Vn,. One of the advantages of subthreshold

operation is that the drain current saturates in few thermal potentials Vo = T of drain-
to-source voltage. Moreover, in this operation mode, the drain current is an exponential

function of the gate-to-source voltage. For everyone of the transistors in Figure 5-3, we

can write ([59], p.68),

Im = Io exp [(rVm - V)/Vo], 1 < m < n, (5.39)

where Io and K are process-dependent parameters. Applying KCL at the common source

gives
n

EIp = I. (5.40)
p=l

Substituting for the drain currents, the KCL equation becomes

n

E Ioexp(Vp/Vo)exp(-V/Vo) = I, (5.41)
p= 1

which gives

Io exp(-V/Vo) = I [ exp(Vp/Vo)] . (5.42)
_=1 

Substituting back in (5.39), we get for the drain currents

exp(,cVm/Vo)
Im = IcE exp(V/Vo)' (5.43)

This circuit has the interesting properties of being unclocked and parallel. Moreover, the

(scaled) uniqueness constraint is imposed naturally through the KCL equation and the

control current source. An easy way of implementing this current source is by a transistor

with a saturated drain current. From a complexity point of view, this circuit is most

striking since it computes n exponentials, n ratios, and n- 1 sums in one time constant!

Another interesting computational feature of this circuit is that it implements, in a

natural way, the winner-take-all (WTA) maooing. Indeed, when one of the gate voltages,

say Vm, is more positive by many V0's than the other gate voltages, all the transistors

other than Tm are turned off, and the drain current Im is approximately equal to the

control current I,. A good, honest, analog WTA circuit should exhibit the property that

when the inputs are equal the outputs are also equal. This is trivially satisfied by our

circuit.
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I5

T5

FIGURE 5-4: Modified circuit implementation of the generalized sigmoid mapping de-
fined on 5. In this circuit all the transistors are diode-connected, and all the drain
currents are well in saturation region. Note that for every transistor, both the voltage
input and the current output are on the same wire - the drain.

One disadvantage of the above circuit is that the input voltages and output currents

have different wires. This makes the incorporation of the circuit as a building block in

larger networks more difficult because of the additional wiring involved. One possible

solution that will preserve the mapping between input voltages and output currents is to

short the gate and the drain of each of the transistors and apply the input voltages to the

drains. The modified circuit is shown in Figure 5-4.5 Each transistor is said to be diode-

connected ([591, p. 39). In normal operating conditions, the drain current has the same
exponential dependence on the gate-to-source voltage as in the previous circuit. The

resulting input/output mappings from voltages to currents is still a generalized sigmoid

mapping. In the next paragraph, we concentrate on this modified circuit and show that

it satisfies some desirable circuit-theoretic properties.

5.4.2 Circuit-Theoretic Properties

In this subsection, we give the circuit-theoretic properties of the generalized sigmoid

mapping circuit shown in Figure 5-4. As it was mentioned in the previous section, the

fundamental difference between the original circuit of Figure 5-3 and the modified circuit

5I would like to acknowledge helpful discussions with John Wyatt and to thank him for suggesting
the diode-connected configuration shown in Figure 5-4.
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of Figure 5-4 is that in the latter the input and output for each cell are on the same wire.

This allows us to consider the modified circuit a multiport circuit element.

We let v and i be the n-dimensional vectors representing the input gate voltages and

the output drain currents, respectively. We let V be the open set of R" of admissible

input voltages. This set is determined by the conditions of normal operations, including

the requirement that the transistors be operated in subthreshold mode.

The mapping F: V --+ R" such that v = F(i), where F is the generalized sigmoid

mapping, represents a voltage-controlled, nonlinear, resistive n- port. We abuse notation

and identify this n-port with its representation mapping F. Its properties are given by

the following proposition. 6

Proposition 24 The generalized sigmoid n-port F is reciprocal, locally passive and hav-
ing a co-content function given by

1
¢(v) = -IcVoln E exp(Kvm/VO) (5.44)

m=l

Proof: A sufficient condition for reciprocity is that the voltage-controlled representation

F be a gradient map. It can be easily checked that

F(v) = V(v).

The above equation also proves that is indeed the co-content function of the nonlinear,

resistive n-port F.

To prove its local passivity, we need to show that the Jacobian of F, JF(V), is positive

semidefinite for all v E V. But this is an immediate result of the convexity of the

co-content, i.e, the potential function of the generalized sigmoid mapping. m

Thus, with this reciprocal, locally passive implementation of the generalized sigmoid

mapping, we have added a new circuit element to the library of the circuit designer. Note

that since this circuit element implements in an analog way the uniqueness constraint of

the binary matching variables, it can be considered a nonlinear constraint box [33] that

can be used in analog, reciprocal, locally passive networks to implement optimization

algorithms.

6The concepts of reciprocity, passivity, content, and co-content are fundamental to nonlinear circuit
theory. They are carefully developed in [90].
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5.5 Generalization: Synchronous "Neural Networks"

on Functional Spaces

In this short section, 7 we go beyond the usual practice of assigning binary or real

numbers to sites in neural networks and assign functions from a functional space (here,

we restrict ourselves to a Hilbert space.) Thus, every neuron" becomes the site of a

nonlinear, distributed parameter system communicating with the external world and with

the neighboring sites. We concentrate on the parallel, synchronous, operating mode and

give sufficient conditions for the state of the network to be the solution of an optimization

problem.

Notation Let X be a real Hilbert space. Recall [13] that Riesz's representation theorem

allows us to identify 7 with its dual space. Let S be a finite set of N sites. The state of

each site s E $ is an element vs in a convex closed bounded subset K C Ht. The symbol £

will denote the Banach algebra of bounded linear operators on 7'H. Let {Lr E , r, s E S}

be a symmetric (i.e, Lrs = L,) family of such operators. For each site s, we define

Us -E Lsrvr E -(
rES

Note that us lies in a convex bounded subset of 'H that we denote by U.

A Synchronous Neural Network Let now {F., s E $} be a family of nonlinear maps

from ' into 'H. We assume that every F. is a compact map on the closure of U,, denoted

U, such that F(U) C K. Define now the synchronous dynamical system on the product

Hilbert space by

t+ = F.(ut), v E K (5.45)
U =~~3 

Ut = E Lsrvt. (5.46)
rES

We assume that the update is being done synchronously, that is, at each time instant

t + 1, all the sites are free to change their states using the information at time instant t.

The synchronous mode of operation is the one to use if the different sites are to operate

in parallel. This functional-analytic framework is a straightforward generalization of the

discrete- or real-valued one currently encountered in the neural network literature. The

7 This section was originally written as an independent research note and could therefore be read
independently of the rest of this chapter.
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dynamical system (5.45) can be written in a more compact form as

vt+l = F(ut), v0 E KN (547)

ut = Lvt , (5.48)

where F = (F 1,..., FN), v = ( 1,.. ., vN), U = (ul,. .. , UN), and L is a symmetric N x N

matrix with coefficients in £.

Proposition 25 The dynamical system (5.47) admits at least one equilibrium point, i.e.,
3v E K N such that v = F(Lv).

Proof: The mapping G = F o L is compact on the closed bounded convex subset

KN C lN, and G(KN) C K N . The statement is then a straightforward application of

Shauder's fixed point theorem [13]. N

This fixed point is not necessarily unique, and it is not clear whether the sequence

v t , t > 0 converges to any of the fixed points or any limit cycles. However, The study of

the long-term behavior would be substantially facilitated if system (5.47) had a Lyapunov

functional. We give below a sufficient condition for the existence of such a functional.

Theorem 7 Suppose that every map F. is the Giteaux-derivative of a convex Gdteaux-
differentiable functional O. , t --+ R. Then there exists a continuous functional :
t N -- X such that the sequence t A (vt) is nonincreasing along the trajectories of

5.47.

Proof: Denote by < . ,. > the inner product in the Hilbert space 7'H. Define the

functional

(u) = <us, FS(u) > - E ((u) + qS(F.(u))). (5.49)
sES sES

It is clear that · is continuous on '. Moreover, along the trajectories of 5.47 we have

A/ = I(Fu) - (u)

= < FS (u.),F, o F(u 8 ) - US > - (+q(F o F,(U,)) - q(u.)). (5.50)
8ES $ES

Since the functional d, is convex, we have the inequality

0 (F o F.(u,)) - q5(u,) >< F,(uS), FS o F(u,) - US >-

Therefore A$ < 0 and the sequence Tat is nonincreasing along the trajectories. .

The above Lyapunov functional is formally the same as the one used in Subsec-

tion 5.3.3. The theorems stated for the global dynamics of the analog, synchronous
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WTA network suggest that similar conclusions hold in this abstract setting if we assume

that for every s, the mapping Fs and its "potential" q, satisfy the property

< F(u), w - u >= 0)(w) - ,(u) if w = v. (5.51)

This property can be construed as a solvability condition for an equation parameterized

by u and with unknown w. A careful look at the properties of the generalized sigmoid

mapping, specifically (5.38), indicates that a much weaker condition is actually sufficient.

This condition is that the mappings F, satisfy the following:

(P) For every s E $ and u X, let A,(u) be the set of points w E X such that

(5.51) with parameter u and unknown w is satisfied. This set is nonempty because

it contains u. Then we say that the mapping F, satisfies the property P if it is

constant over A,(u) and equal to Fs(u).

Then we have the following

Proposition 26 Suppose that every Fs satisfies the property P. Then any periodic orbit
of the dynamical system (5.47) has a period of at most 2.

Proof: Let v, v 2 ,..., vP be a periodic orbit of period p. Then since the sequence

At, 1 < t < p is nonincreasing around the orbit and since p+l = l (by periodicity),

we conclude that 4l = 2 = ... = P, and therefore we have Ai = 0 around the orbit.

Since all the terms inside the summation in (5.50) are of the same sign, it follows that

(F o F,(u)) - ,,(u)-< F(ul), F. o F(ul) - ul >= O.

But by the assumption made on F, and , we get that

3 1 F(uo)) = F,(ul))

Or V4 = V2, which means that the period of the orbit is at most 2.

It is important to note that the above conclusions are independent of the interaction

operators Lr, r, s E S. If we now make the additional assumption that the matrix oper-

ator L from 7/N -4 71 N is positive definite, then using the fact that L defines a norm on
W N , we can prove that the only periodic orbits of the dynamical system (5.47) are the

fixed points.
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Conclusion The above treatment did not include external inputs. These could be eas-

ily added to the system dynamics, and the Lyapunov functional can be easily changed

to account for their presence. The conclusions about the global dynamics of the network

remain however unchanged. This generalization is an attempt to look at neural networks

from the perspective of large scale, hierarchical systems rather than the "small scale"

perspective of biology and VLSI circuit implementation. Our model could include sys-

tems as varied as assemblies of flexible trusses in a large space structure or processors

running the related waveform relaxation programs, where the "waveform" is the static

load distribution for each truss. More theoretical work is needed to understand the prac-

tical implications of our assumptions on the nonlinear mappings at each site, like their

compactness and monotonicity. Moreover, it is important to characterize the mappings

that satisfy the additional condition stated in the preamble to Proposition 26.

5.6 Summary

In this chapter, we have studied, in some depth, the global dynamics of both the

discrete and analog winner-take-all networks. The major results of this chapter are

1. For the discrete, synchronous WTA network, if the connectivity block matrix of

the network satisfies a weakened form of positive definiteness, then the fixed points

are the only limit cycles of the network.

2. The analog WTA network can be derived from the discrete WTA network using a

very simple mean-field approximation method.

3. The dynamics of the analog WTA network is governed by the generalized sigmoid

mapping that we have proven to be the gradient map of a convex potential.

4. The generalized sigmoid mapping admits a simple exact VLSI circuit implementa-

tion operating in subthreshold mode.

5. The worst that can happen in any synchronous, analog WTA network with a sym-

metric connectivity matrix is an oscillation of period 2.

6. If the connectivity block matrix of the analog WTA network satisfies a weakened

form of positive definiteness, then the worst can be avoided and the fixed points

become the only limit cycles of the network.
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7. The neuron state does not have to be a number. It can be, for instance, a multidi-
mensional signal of finite energy whose dynamics is governed by a partial differential
equations. Even in this case, we can define "neural networks" whose dynamics is
governed by a Lyapunov function similar to the one of the analog WTA network.

We have left out many interesting issues: learning, content addressable memories,
pattern recognition, information capacity, etc. We feel that all these issues can be dealt
with in the framework provided in this chapter. For instance, we can use the outer-
product/Hebbian learning rule to define the connectivity matrix J. We can use the
WTA network to store and recall gray-level patterns the same way the Hopfield network
is used to store and recall binary patterns. These stored patterns can be used as the
basis for a pattern recognition task of grayscale images.

The passage from the discrete WTA model to the analog one resulted in the intro-
duction of a new parameter: the temperature. The results that we have stated for the
global dynamics of the analog WTA model do not depend on temperature. The hot"
question for the moment is then: What is the impact of temperature on the dynamics of
the analog WTA model?

For an answer, the interested (and not yet tired) reader might like to have a peep at
the next chapter.
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6

Solution of the Mean-Field
Equations

Singularity is almost invariably a clue.

Sherlock Holmes

6.1 Introduction

In this chapter, we address in some detail the temperature question posed at the end

of the previous chapter. Our presentation will be in three parts. The first part will
deal with the iterated-map synchronous WTA network with continuous states that we
introduced in the previous chapter. We will show how the temperature can affect the
nature of the network fixed point(s). In the second part, we will show how the fixed
point sof the WTA network can be retrieved using continuous-time, gradient-descent
methods. A nice result in this part is a generalization of the analog Hopfield dynamics
[36] to the case of WTA networks. We will push the generalization further and con-
struct Hopfield-type analog dynamics on "neural" networks in which the "neurons" have
multidimensional, memoryless input/output mappings with convex potentials. Although
we could have studied the temperature-dependence question in this part, we have pref-
ered to defer it to the third part which deals with the more general case of constrained
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WTA networks. Specifically, 1 we will deal with one of the constrained multilevel Gibbs

models that were introduced in Chapter 3 and consider the fixed-point equations of the

probability decomposition method, see Section 3.3.2. In this context, we will propose
gradient descent algorithms rather than iterated-map algorithms for the solution of the
fixed-point equations and treat in some details specific models that arise in the context

of image and texture modeling. In particular, we will see how the imposition of the
commonly used periodic boundary conditions will make the computation of the so-called

critical temperature possible. In fact, we will be able to provide closed-form formulas

for these critical temperatures as function of the model parameters, i.e, the connectivity

block matrix J = [Jrs,res. The approach we take is conceptually very simple but alge-

braically somewhat tedious. The basic idea is to study the eigenstructure of the iteration

Jacobian in the synchronous analog WTA network or the eigenstructure of the effective

energy Hessian in the case of the probability decomposition mean-field model.

Recently there has been some emphasis on the role of "phase transitions" in image and
texture modeling using Gibbs random fields [30, 19, 69]. We will show how our analytical

models can provide some insights into the phase transition phenomenon. Since we feel

it is important to distinguish between the empirical notion of phase transition that we

use here and the mathematical one, we give in Appendix A a short overview of the

probabilistic theory of phase transitions for Gibbs systems as developed by the Russian

mathematician Dobrushin in the late sixties and early seventies.

6.2 Unconstrained Multilevel Iterated Maps

Recall the equations that give the fixed-points or the mean-field solutions of the

unconstrained multilevel Gibbs model (3.35)

V = F(ws) (6.1)

Ws = E JsrVr

sES

We know from the previous chapter that they are also the fixed-point equations of the

analog WTA dynamical system without external inputs. We remind the reader that we
used these equations in Chapter 4 to compute approximations of the correlation function
of an unconstrained multilevel Gibbs random field. In this section, we study in more
details the properties of the solutions.

1An early version of the third part will appear in the Journal of Mathematical Imaging and Vision
as a paper co-authored with Alan Yuille under the title "Mean-Field Phase Transition and Correlation
Function for Gibbs Random Fields."
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6.2.1 High-Temperature Solutions

We know from Proposition 15 of the previous Chapter that as T o, the generalized
sigmoid mapping converges to the constant mapping from Rn -- Tn that assigns to any
z the vector e, where n is the number of labels or graylevels, and e is the vector of

n'

components (1, 1,... , 1)T orthogonal to the simplex Tn. We have therefore the following

Theorem 8 For T high enough, the fixed-point equations have a unique fixed point
v,(T), s E S. Moreover

1
lim v(T) =-e, Vs S

T-*oo n

Note that because of Brouwer's fixed-point theorem, there is always at least one
solution at any temperature. This proposition says that for high enough temperatures
there is one and only one solution that converges to the trivial fixed-point v = ne, s E S
as T approaches +oo. First, let us first prove the convergence statement.
Proof: Assuming T high enough, the unique fixed-point v,(T) is bounded for all s E S,

and the argument of the generalized sigmoid mapping is given by

1
-E JsrVr(T)

rES

and converges to the vector 0 as T - +oo, and therefore v(T) -+ F(O) = e as
n

T -- +oo. ·

The proof of uniqueness 2 is not as easy. It is based on finding a lower bound Tmin < T
such that the global mapping T (see (5.25)) is a contraction mapping on the state space
K = (T )lSI. Specifically, we have the following.

Proposition 27 The global mapping KT of the WTA network (5.24) is a contraction
mapping on K with respect to the 2 norm for

T > Tin = p(J), (6.2)

where p(J) is the spectral radius of the matrix J.

The proof of this proposition is based on the following lemma about the eigenvalues

of the Jacobian matrix of DF(z) at an arbitrary point z E Rn.

Lemma 13 The spectral radius p(DF(z)) satisfies

p(DF(z)) < ma<x (Fk(Z)), LIZ E Rn (6.3)

2John Wyatt came up with the main ideas of this proof while reading an early draft of this chapter.
I would like to thank him for allowing me to include it in the final thesis document.
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Proof: Since the Jacobian of DF is symmetric positive semidefinite its spectral radius

is equal to its largest eigenvalue. From Proposition 18, we have

DF(z) = diag (f, . .. , ffT

where we have put f F(z) to simplify notation. Let (A, () be an (eigenvalue, eigenvec-

tor) pair of DF(z). Then we have

fkCk k- fkf¢ = ACk, V1 k < n.

We have the following two cases:

(i) fTC = 0. Then one can show that this could happen if and only if f = n, in which

case A = is an eigenvalue of multiplicity n - 1, and (6.3) is satisfied.
n

(ii) fT( ~ 0. Then the eigenvector ( can be scaled so that fT( = 1. It follows that

Ck = Af 1<k<n.
fk - A

Now because of the normalization fT( = 1, we conclude that the eigenvalues of the

Jacobian matrix satisfies the algebraic equation

n 2

E R 
fk -A 1.

To conclude the proof of this lemma, just notice that if A > maxl<k<n fk, all the terms

of the above equation are negative, and therefore it cannot be satisfied. Hence,

p(DF(z)) < max (Fk(z)), Vz E Wn.
1<k<n

Corollary 2 The sepctral radius p(DF(z)) < 1, Vz E Rn.

Proof: This results from the previous lemma and from the fact that maxl<k<~(Fk(z)) <

1, Vz E s. ·
Let us now go back to the proof of Proposition 27.

Proof: The mapping CT is continuously differentiable on the interior set of K. A

sufficient condition for a continuously diffrentiable function to be contracting with resepct

to the £2 norm is that the spectral radius of its Jacobian matrix be < -y < 1. Now the

Jacobian of KT can be obtained using the chain rule, and we have

DCT(v) = [DsCT(v)](s,)ES2
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with

Dsr.,KT(V) = TDFT(W.)J9.

In other words,

DKT() = diag(DFT(wl),... DFT(wjlS))J.

Because of the multiplicative property of induced matrix norms,

p(DkT (V)) < _p(diag(DFT(W1), ... DFT(wls1)))p(J)

1
- max p(DFT(w))p(J)

< Tp(J)S
T

where the last inequality results from Corollary 2. To conclude, just define Tin = p(J).

Then if T > Tan, the mapping CT will be contracting. U

From this it follows that the synchronous iteration of the WTA network is the Picard

iteration of a contracting map. It therefore converges to a unique fixed point.

Using the probabilistic interpretation of the generalized sigmoid mapping, the infinite-

temperature solution corresponds to a configuration in which the labels have equal like-

lihood to appear at each site. The pattern of the network is random-looking or noisy -

a state that fits the intuitive understanding of thermal agitation at high temperatures.

Because the above solution is approached as T becomes very high for all connectivity

matrices J, it will be called the trivial solution. There are however special cases where

this trivial solution is a valid solution at every temperature. The case below is a typical

one.

Proposition 28 Assume that for every s E S the matrix

Ns = E Jsr
rES

has e as an eigenvector corresponding to an eigenvalue As. Then for any temperature
T> 0, the trivial solution Vtr, s E S, is a solution of (6.1).

Proof: When v = e, the argument of F in (6.1) can be written as

1 1 A8 e
yw,= -Nse= -e.
T nT nT

Using Proposition (16) of the previous chapter, we conclude that F( xe) = e. It follows

that the trivial solution is a fixed point of (6.1) for any temperature T > 0. 

It is clear that the point e is geometrically a privileged point of the simplex En. In

fact, it is also a privileged solution for the fixed-point equations since every other solution
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in the interior of T, int(T), can be mapped to the trivial solution v" using a smooth

(nonlinear!) transformation that maps every T onto itself.

Lemma 14 Let = ( I1, ... n)T E int(Tn). Then the transformation Bc: n R

defined by

BC-1()= zZj (6.4)

is a bijective mapping from T onto itself such that Bc(¢) = e.

Proof: First of all, note that Bc is well defined on Tn since has only nonzero com-

ponents, z E Tn cannot have all its components zero, and they cannot be orthogonal.

Therefore the denominator in (6.4) is always nonzero. Moreover, it is easy to see that

Bc,(z) > 0, 1 < j < n and FY= BCj(z) = 1. Therefore BC(T) C Tn. Also since the

('s are nonzero Bc(zi) = Bc,(z 2) implies that Zlj = z2j, 1 < j < n, i.e., BC is injective.

Moreover, if z' E Tn then it is easy to check that the point z defined by

is in T and satisfies Be(z) = z'. This means that B is surjective on Tn and that the

transformation

z E (i , 1 < j < n

is the inverse transformation.

We denote the inverse transformation of BC by B. 1. Now if v; E int(Tn), Vs E S,

is a solution of the fixed-point equations (6.1), then it can be mapped onto the trivial

solution using the transformations By:, s E S applied on each of the equations. Note
also that using the new variables

W = Bv:(V)

we can write a new set of fixed-point equations

W =Bv {F [ JsrBWrJ}

having the trivial solution for a fixed point. This transformation can be made at any

temperature. The dependence of these transformations on temperature is through the

fixed point v*, s E S.
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6.2.2 Stability of the High-Temperature Solution

The previous section discussed the existence and uniquness of a fixed point at high

enough temperatures. Under some conditions on the connectivity matrices J, the trivial

solution obtained in the limit of infinite temperatures can be a (not necessarily unique)

WTA fixed point at any temperature. We also pointed out to the possibility of using a

state-space preserving nonlinear transformation to map any fixed point on to the trivial

solution. In this section we would like to investigate the stability of the trivial solution

under the synchronous analog WTA dynamical system given in (5.24) which we rewrite

here for ease of reference

v,(k + 1) = F (Tw(k)) (6.5)

w.(k) = E Jsrvr(k).
s,rES

As function of temperature, the above system can be considered a one-parameter family

of d-dimensional maps where d = n s l with a fixed point at = e, Vs S. The
stability of this equilibrium point as function of temperature can be studied by looking at

eigenstructure of the linearized map at the equilibrium solution [87]. To get this linearized

map, we need to compute the Jacobian D of the mapping defining the dynamical system

(6.5). We have the following

Proposition 29 The linearized map of ICT at a point that maps onto the trivial solution
is given by the block matrix D = [DSr]s,rEs where

1
Dsr = MJsr (6.6)T

is a symmetric matrix with

M -I- -o.
n n

We encountered the matrices O and M for the first time in Chapter 4 (see (4.16))

where we had to a compute correlation-field approximation for the based on the mean-

field approximation.

Proof: In order to get the (s, r) block of the Jacobian of the right-hand side in (6.5),

we compute its gradient with respect to the vector Vr. Applying the chain rule, we get

TDF 0w 

Using Proposition 18, the fact that we are at the trivial solution, and the linear depen-

dence of w, on vr, the above expression becomes

TMJsr
T
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which is the desired formula for Dsr. This matrix is symmetric because both M and Jsr
are symmetric. X

Let us make the following remarks:

1. Although D.r depends on the matrix J,,, only the columns of the matrix Jsr that

are parallel to the simplex I affect Dsr. Indeed, we know that the vector e spans

the one-dimensional null space of M. Every column vector j of J.r can be written

as the direct sum of ji E 7T and j 2 E span(e). Since M 2 = 0, we conclude that

only the parts of the column vectors parallel to 7 affect the matrix D.r.

2. The above conclusion is actually valid for all fixed points and not just for the

trivial fixed point. The latter case has however the special feature that any vector

j 2 E T1 is an eigenvector corresponding to the eigenvalue . It follows that when
n

the column vectors of J.r are all orthogonal to e, we can write

1
Dsr = 1Jsr (6.7)

nT

In other words, the linearized map at the trivial fixed point is directly proportional

to the block connectivity matrix, and we have

D= TJ. (6.8)
nT

It is easy to verify that under the above condition on the column vectors of J, the

null space of J and therefore D has dimension ISI.

3. It follows from the above analysis that the eigenvalues of the linearized map D

are proportional to the eigenvalues of the block connectivity matrix J, and the

coefficient of proportionality is 

4. Finally, note that the above remarks are valid whether the matrix J is positive
semidefinite or not. In general, J can have positive as well as negative eigenvalues.

The local stability at the trivial solution depends on the eigenvalues of the matrix

D. If the magnitudes of these eigenvalues are smaller than 1 then the trivial solution is
stable. It is clear from (6.8), that the temperature T and the number of colors or labels n
play similar roles. A large number of labels, like a high temperature, will make the trivial
fixed point more stable. In other words, the iteration will converge faster to the noisy
pattern characteristic of thermal agitation. Now let AIm(J) be the largest magnitude
for the eigenvalues of J, then we have the following
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Proposition 30 Suppose n, the number of colors, given and suppose that

T IAIm(J)T >
n

Then the trivial solution is stable.

Proof: The direct proof is easy. The result can also be deduced from the proof of

Theorem 8 by noting that at the trivial solution the spectral radius of every diagonal

block DF (W) is .

We will see in Subsection 6.4.1 that there are important special cases in which it

is possible to compute the eigenstructure of the matrix J explicitly. We will do this

computation in the context of the probability factorization mean-field equations for the

constrained multilevel Gibbs model.

Since the block connectivity matrix is assumed symmetric, the Jacobian matrix D

cannot have complex conjugate eigenvalues, and therefore a Hopf" type bifurcation3

from the trivial fixed point is not possible. It follows that there are only two types of

bifurcation as the temperature decreases from high values where the trivial fixed point

is stable to low values where it is unstable:

1. The temperature is such that the linearized map has eigenvalues equal to 1.

2. The temperature is such that the linearized map has eigenvalues equal to -1.

Note that the second situation can occur for positive temperatures only if the block

connectivity matrix J is not positive semidefinite. The reader should recall (Theorem 5)

that in this case, the analog synchronous WTA dynamics could have limit cycles of period

2. The work on understanding the bifurcation behavior of the analog WTA system in this

case is still in progress. For the case when the connectivity matrix is positive semidefinite

on vector space H (see Theorem 6), the only bifurcations that can occur are from a stable

trivial fixed point to stable nontrivial fixed points.

6.3 Unconstrained Multilevel Gradient Descent

By far, the most common way to find solutions of the fixed-point equations uses

the gradient descent method. This method is a natural one because these points are

the extrema of the effective energy obtained from the saddle-point approximation. The

3 A historically more correct name for iterated maps is "Naimark-Sacker" bifurcation. See Wiggins
([87], p. 374-381).
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objective of this section is to show that there is actually more than one way to write the
gradient-descent dynamical system of the unconstrained, multilevel, mean-field equations
developed in Chapter 3.2.

First let us recall the effective energy given in (3.34)

E ff(v) = v Jv- TElog I exp E )J]9' , (6.9)
sES LEG rES,g'EG

where Eeff is expressed in terms of the mean-field variables v. Recall also that Jr' =

LsrV(g,g') and Jr = LsrV. The gradient descent equations for these variables can be
compactly written as

dv
C dt =-VEeff(v) (6.10)

where C is a diagonal matrix of positive "capacitances." Computing the right-hand side,
we get for every s E S,

dv [ 1
C d= =- ,- JsrF(wr T)i (6.11)

dt [ss rrES

WS, = E JsrVr, (6.12)
rES

where F is the generalized sigmoid mapping, and Cs is an invertible diagonal matrix
of positive entries. We have C = diag(Cl, ... , Cpsl). These gradient descent equations
are written in terms of the "output" variables v, of the generalized sigmoid mapping.
An alternative way for writing these equations is by using the input" variables ws.
Assuming that the block connectivity matrix J is invertible, we can write the effective
energy function in terms of the "input" variables as

1 T
Eeff(w) = wTJ-lw - T E log exp[w_/T] (6.13)

ES EG

Differentiating with respect to w,, we get the gradient-descent equations

Cs dws= [ J-1w' -F(w./T)] (6.14)dt sr -rES

where C, is again a diagonal matrix of positive entries corresponding for the site s.
Using the fact that

VS = Jarwr, (6.15)
rES

the above gradient descent equations can be written as

csdw (6.16)C-- = v, + F(W8 /T). (6.16)
dt
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Note that under the assumption that the block connectivity matrix is invertible both

sets (6.11) and (6.13) of gradient descent equations will give the same set of equilibrium

points, i.e.,

V = F TE JsrVr
rES

Note also that in both cases, it is the constraint

Ws = E JsrVr

rES

that is enforced between the mean-field variables v. s E S, and the auxiliary variables

w., s E S in the gradient descent dynamical systems.

Another possibility is of course to adopt the constraint

= F(w/T), Vs E s, (6.17)

and define the dynamical system

dw,
C = -w, + y Jsrv,. (6.18)8 dt rES

The natural question is whether the above system minimizes some "energy" function.

The answer is yes, but the surprising fact is that the Lyapunov function of this system

is not the effective energy Eeff but its Legendre transform, Heff, which was derived in

Section 3.4. Its complete expression is given by

Hef (v, w) = E(v) + T A F(ws./T) log Fg(w,/T). (6.19)
sES gEG

which is valid for an arbitrary energy function E(v). Imposing the input-output con-

straints (6.17) has two important implications. First, the function HeIff becomes

Heff(V) = E(v) + T E E v" log V,g (6.20)
sES gEG

and, second, the time derivatives of the output variables v.g sum up to zero, i.e,

E i.g = 0, Vs E S, (6.21)
gEG

as a result of the fact that

E vSg = 1, Vs E S.
gEG
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Geometrically, the "velocity constraint" means that the velocity vector v is parallel to
the simplex T,. For the case when the energy function is quadratic,

1 T
E(v) = - E VS JsrVr,

r,sES

we have

Heff(V) = - E V8 JsrVr +
r,sES

T E v89sg log vag,
sES gEG

and the following theorem

Theorem 9 The function Heff of (6.22) is nonincreasing along the trajectories of the
dynamical system (6.18).

Proof: Compute the derivative of Heff(v) along the trajectories of (6.18). We have

Heff (V) =- E vJsrvr + T E E (1 + log v%).
s,rES sES gEG

Now because of (6.21), the term

]EVs9
sES gEG

sums up to zero. Moreover, we have

log V = s

Again because of (6.21), the term

sES EG

sums up to zero, and the time derivative of Heff reduces to

/Heff(V) = - JsrVr +
s,rES

ZE E Wsgsg,
sES gEG

which can also be written as

JsrVr&ff( (V) =- vS
sES

The inner term is nothing but Cl'*. As for ,,, it is given by

= -DF(w,/T)w*.
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Moreover, we know that (see Proposition 22) the Jacobian of F is symmetric and positive
semidefinite. Therefore,

,TDF(w,/T)C'* 8 > 0, Vs E S,

and it follows that

Heff (V) < 0

The above result can be strengthened to a strict inequality by noticing that the value of

the generalized sigmoidal mapping at an arbitrary point depends only on the orthogonal

projection of this point on the hyperplane eTzs = 0, see Proposition 16. Moreover,

according to Proposition 18, the Jacobian of F is positive definite on this hyperplane.

Abusing notations and denoting by ws, s E S, the projections of the auxiliary variables

on the hyperplanes eTz, = 0, we conclude that w*, lies in this hyperplane and that

,~DF(w,/T)C7'w8 > 0, Vs E S.

Therefore

Hef f(V) < 0.

Corollary 3 The function Heff defined in (6.22) is a Lyapunov function of the system
(6.18) that is strictly decreasing along its trajectories.

Proof: The strict decrease of Heff was shown in the paragraph preceding this corollary.

In addition, Heff is continuous over the compact subset (T~)lsl. Therefore, it is bounded
below. Heff is therefore a Lyapunov function of (6.18). a

Three facts played an essential role in obtaining the result of theorem 9 and its
strengthened version. The first is that the time derivative of each of the output variables
V8 is constrained to be in the hyperplane eTz,, = 0. The second is the particular form
of the generalized sigmoid mapping that allowed us to recover the auxiliary variable w,g

from the logarithm of the output variable vg9. The third fact is that the potential function
of the generalized sigmoid mapping is convex.

It will be interesting to see how essential these facts are to the final result. In other
words, what mappings F will make system (6.18) have a function similar to Hef ff that is
nonincreaisng along its trajectories?

It turns out that the only requirement is that F be the gradient map of a convex
potential. Indeed, we have the following important generalization of Theorem 9.
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Theorem 10 Let , s E 5, be a family of twice-differentiable, convex functions defined
on Rn with gradient maps denoted by Fs, s E S. Then the function

1 T T
H(v) =- V Jsrvr + Z [w Vs- (w,)] (6.23)

s,rES sES

where
V, = F.(w,)

is nonincreasing along the trajectories of the dynamical system (6.18).

Proof: Computing the time derivative of H(v) along the trajectories of (6.18), we get

H(v) = -E wTDF 8 (w)C; 1 w.
sES

Since the function ts is convex and the diagonal matrix Cs is positive, the term

*TDF(w,)C-w* > 0,

which yields

H(v) < 0.

The above theorem calls the following remarks:

1. First, it is important to notice that the convex functions U), and therefore F8 , are

site-dependent. A practical case where a situation like this may arise is where the

generalized sigmoid mappings are considered at different temperatures.

2. For the convex function $), the function

(vs) = max [wTvs - (ws)]
w

is also convex, and it is called the convex conjugate ([83], page 731), of s. The
mapping that assigns to a (not necessarily smooth) convex function its convex

conjugate t* as defined above is sometimes called the Legendre-Fenshel transform,

op. cit.. Note that the value of w8 that maximizes the right-hand side is precisely

obtained for all wo such that vs = FS(w,). This is exactly the condition at which

the function H is computed. Therefore, we can write

1 T
H(v) = -- v, VJsrvr + E (v.). (6.24)

s,rES sES
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3. Theorem 10 can be interpreted as a robustness theorem in the sense that as long as

the mapping from the input variables w, to the output variables v, has a positive

semidefinite Jacobian the system (6.18), will not oscillate. If in addition every

mapping F, has a convex compact image, then the continuous function H(v) will

be bounded below, thus becoming a Lyapunov function for (6.18).

4. It is not difficult to show that for the generalized sigmoid mapping, we have

; (v,) = T E v8g In v.
gEG

Thus we recover the expression Heff of Theorem 9 from (6.23), which was to be

expected.

Finally, let us state some of the advantages of the gradient descent method in the

input space w E RnlSI as compared to the synchronous iteration method of the previous

chapter or to the gradient descent in the output space v E Rnlsl.

1. When the output space of the "neuron" is a compact subset of Rt then the function

H will be a Lyapunov function of the system, and the only attractors of will be the

minima of H which are also the the fixed points of (6.1) or equilibrium points of

(6.18). We know from the previous chapter that the synchronous iteration dynamics

might have an oscillation of period 2, and that this oscillation can be ruled out by

imposing additional constraints on the block connectivity matrix J.

2. The Lyapunov function H is nonincreasing along the trajectories of (6.18) inde-

pendently of the connectivity matrices Jsr. The only requirement that needs to be

imposed is a symmetry assumption on each of the blocks Jsr and on J. Note that

this was not the case for the gradient system (6.14) where we had to assume that

the matrix J was invertible.

3. When we do descent in the output space, there is no guarantee that the outputs

remain constrained to the simplex 7v~. This constraint is satisfied only at equilib-

rium. However, we will see in the next section that it is possible to change the

gradient descent equations so as to enforce the output constraint during descent.

Under a condition similar to that of Proposition 28, we can show that the trivial fixed

point v = n,g E G, s E S is always a an equilibrium point for the dynamical system

4See, for instance, the proof given below in a circuit-theoretic context.
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(6.18) at which w, = 0. We can also analyze the local stability of this equilibrium point

by computing the Jacobian of the right-hand side of (6.18). Note that the condition
for local stability is that all the eigenvalues of the Jacobian matrix be less than 0. The

sufficient condition for stability that we obtain is similar to that of Proposition 30.

Circuit-theoretic remark: We have shown in Chapter 5 that the generalized sigmoid

mapping has an exact circuit implementation using diode-connected MOSFET's operated

in subthreshold mode, see Section 5.4. This implementation is a nonlinear, voltage-

controlled, resistive n-port with a co-content function given by (Proposition 24)

1 V n
I(v) = - IVoln E exp(,Cvm/Vo). (6.25)

IC m=1

(It should be clear to the reader that in the context of this paragraph, the variables

vm, 1 < m < n, denote the input voltages of the resistive n-port.)

A natural question that arises from the remarks given above is the circuit-theoretic

implications of applying the Legendre-Fenchel transform to the co-content function .

For the current vector i, let

0*(i) = max (iTv - 4(v)) (6.26)

be the convex conjugate of 4. Note that the function v -+ iTv - I(v) is concave, and

therefore 4*(i) is well defined but can be unbounded for some values of i. However, if we
restrict the voltages to be in some compact region of R', as is the usual case, then *
will be bounded. The following proposition is the main result of this paragraph

Proposition 31 The convex conjugate * defined in (6.26) is the content of a nonlinear,
current-controlled, resistive n-port and is explicitly given by

ICV0 i Zi
- Z l In -. (6.27)

m=1 'l

Proof: The function v -+ iTv- (v) it has maxima at the points where its gradient is
0, i.e,

i = F(v)

where F is the gradient map of . From the explicit expression of i,,m 1 m < n, see

(5.43), we get that

In -
Therefore

(i) = E [I m In i + (v)] -(v).
m=1 C I C I
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Now notice that by KCL, we have

E [ (V) - (V) = .

Therefore
· (i) = I EVo i Im

m=1 'cn' '

which is the result claimed above. 
Implicit in the expression of * are the constraints that the currents must be non-

negative and sum up to I. The expression of * is a strong reminder of the information-

theoretic definition of entropy. We call this nonlinear, reciprocal, locally passive, resistive

n-port the entropic resistor. The output voltage m is given as

*(i) Vo 

Vm = () - +n (6.28)

The diode-connected circuit given in Figure 5-4 can be considered an implementation
of the above v-i characteristics provided only n- 1 current sources be used as inputs
with KCL setting the n-th input current. It should be noted that biasing the voltages

by the same amount does not affect the currents. This fact, which is apparent in (5.43)
but not in (6.28), means that the latter equation does not provide the full inverse for the
mapping from the voltage domain onto the current domain.

6.4 Constrained Multilevel Gradient Descent

In this section, we concentrate on the case where global constraints are imposed on
the binary matching elements. We adopt the probability factorization point of view. We
will show how in this case and under the practical assumptions usually made in image
modeling, we can obtain closed form equations for the temperatures at which the trivial

solution becomes unstable. We will also propose a gradient projection algorithm for
finding the equilibrium points in terms of the output variables vs, s E S.

Recall that the intermediary step in the probability decomposition method was the
approximation of the free energy F in terms of the mean-field variables. This approx-
imation is given in (3.78). Notice that the right-hand side in this equation is similar
5 to Heff, see (6.20). From the previous section, we know that Hff is nonincreasing

along the trajectories of the dynamical system (6.18), where the mean-field variables are

5The two expressions are not identical, because F is given at the mean-field values while Heff is valid
for all v., s E S, satisfying the constraints (6.17).
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obtained using the constraint equations (6.17). If the expression of the free energy F

is used as the basis of a gradient descent update in the space of mean-field variables

vs., s E S, then there is no guarantee that the velocity vector i's will remain parallel to

the simplex Tn during the descent. This is why two sets of Lagrange multipliers are given

in the expression of the probability decomposition effective energy (3.79)

Ef [v, p, q] = E(v) + T E V E va log a
sES aEG

+ £ Pa(, sa - y) + q8( v, - 1). (6.29)
aEG sES sES aEG

The first set p = (pa, a E G) corresponds to the global uniform histogram constraint,

while the set q = (q., s E S) corresponds to the uniqueness constraint at each pixel.

The mean-field solutions belong to the set of saddle points of the above expression of

the effective energy. At these saddle points we have

OEeff O9E
f f= - E +T{logvsa+1}+pa+q=O, VsES,aEG,

(9vsa 1-Ovsa

OEeff
-apa = vsa- =0, Va E G

sES

aE a -1= 0, Vs E S . (6.30)
0q% aEG

Among the first-order methods that we can use to solve these algebraic equations,

we can mention the differential multiplier method [73], which uses a gradient descent

for Eeff[v, p, q] with respect to v,, Vs E S and gradient ascent with respect to the

Lagrange multipliers p and q. A sufficient condition for this method to converge to a

point where the constraints are satisfied exactly is that the Hessian of Eeff with respect

to the mean-field variables be positive definite for all v, p and q, see Luenberger ([52],

p. 427). Because the constraints are linear in the mean-field variables, this Hessian

is identical to that of the "free energy" part of the effective energy. Note that the

positive definite condition is satisfied in our case if the temperature T is high enough.

For low temperatures, this method might fail in one of two ways. The first is common

to all optimization methods where the objective function is non convex, and that is the

convergence to a local rather than global minima. The second is peculiar to this method

and is related to the problem constraints: the algorithm might converge to a point where

the constraints are not satisfied.

An alternative first-order algorithm to the differential multiplier method is the gra-

dient projection method also described in Luenberger ([52], p. 330). Here the descent
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is also with respect to the mean-field variables but its taken along the negative of the

gradient of the free energy projected on the hyperplanes of both the uniqueness and uni-

form histogram constraints. This projected gradient can be computed explicitly due to

the simple form of the linear constraints, and a formula for the descent equation is given

in the simulation subsection 6.4.3.

6.4.1 Bifurcation Temperature

In this subsection, we study the stability properties of the solutions of (6.30) in the

particular case where the energy E(v) is quadratic in the variables vsa, s E S, a E G, i.e.,

i~) 1E Z jab
E(V) 2 sr E Vsa Vba rb

s,rES a,bEG

where in this subsection, the coefficient of Jab is given by

jab = -2LsrVab.

As usual, Lsr refers to the graph connectivity matrix, while Vab refers to the color inter-

action coefficients. The expression of the energy becomes

E(v) = E E LrVabVsaVrb-
s,rES a,bEG

By adding the entropy term to the above expression, we obtain the free energy

F(v) = LsrVabVsaVrb + T sa log Vsa.
s,rES a,bEG sES aEG

Free Energy Hessian

In this section, we develop a perturbation analysis of the mean-field equations to

estimate the location of transition temperatures. It is inspired by both the Gaussian

perturbation analysis well known in statistical physics [53] and more recent work on the

elastic net optimization approach to solving the traveling salesman problem [20].

The extrema of the effective energy obey the equations (6.30). Our first result follows

directly:

Theorem 11 If the interaction matrix L,, is shift-invariant, i.e., Lr = A._r for some
A, then Vsa = 1/n, Vs E S, a E G, is always an extremum of the effective energy.
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Proof: It is clear that Vs = 1/n,Vs E S,a E G, satisfies the global constraints.

Shift-invariance implies that Er Ls, = K is independent of the index s. Then setting

Pa = -2(K/n) Eb Vab - T{log(1/n) + 1} and qs = 0 gives an extremum. U

We observe that shift-invariance is a very desirable property of the spatial interaction
tensor. It is a homogeneity condition that ensures that interactions between different
sites depend only on the relative positions of the sites. Henceforth we will assume that

it is satisfied.
For high temperature the solution vsa = 1/n, Vs E S, a E G, is the only solution of

the mean-field equations. We call this point the trivial solution and will refer to it in

the rest of this section as such. It corresponds to a situation where every site has the
same value, which is the average of all the allowed colors values. All the structure is
essentially averaged out. Such behavior is typical of the high temperature limit of most

Gibbs distributions.
To determine the stability of the trivial solution, we must examine the Hessian of

the effective energy evaluated at this solution. If the Hessian is positive definite then

vsa = 1 /n, Vs E S, Va E G, is a stable solution. As the temperature decreases, however, a
phase transition will occur. The Hessian will develop negative eigenvalues and the trivial
solution will become unstable and a nonsymmetric, patterned, solution will develop.
By computing the eigenvalues and eigenvectors of the Hessian, we can determine the
critical temperature at which the phase transition occurs. Moreover, the form of these
eigenvectors will approximately determine the form of the solutions near the critical

temperature. We must take care to ensure that we only consider eigenvectors which are

in directions allowed by the global constraints.

Differentiating (3.79) twice with respect to the variables Vsa, s E S,a E G gives as a
generic coefficient for the energy Hessian at the trivial solution

,92E
H,ra = = 2L,Vab + nT5,sr6ab. (6.31)

Vsaa&rb

Note that because of the linearity in the constraints, the Lagrange multipliers do not
appear in the expression of the Hessian. This Hessian can be written as the following
sum of tensor products (also known in signal processing as Kronecker products [40])

H = 2L V +nTIs I, (6.32)

where L is the connectivity matrix of the image lattice, V is the color interaction matrix,
and Is and I are the identity matrices of order ISI and n, respectively. In the following
subsection, we give expressions for the eigenvalues and eigenvectors of the Hessian at
vsa = l/n, VsES,aEG.
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In the remaining of this subsection, we will assume that the lattice S$ is square of

size N x N.

Hessian Eigenstructure

The Hessian matrix given in (6.32) is of order Sin. Note that both L and V are sym-

metric therefore diagonalizable with real eigenvalues. The effect of the identity matrices

of the second term in (6.32) on the eigenstructure of the Hessian is simply to shift the

eigenvalues of 2L 0 V by nT.

From the following simple linear algebra fact about tensor products [40], we can

conclude that the Hessian matrix H is itself diagonalizable with real eigenvalues.

Fact: Let x be an eigenvector of A with an eigenvalue a and y an eigenvector of B with

an eigenvalue , then z 0 y is an eigenvector of A 0 B with an eigenvalue ca#.
In reality, much more can be said about the eigenstructure of H, because our assump-

tions make the matrix L block circulant with all its blocks being circulant matrices [15].

Indeed, because of the shift-invariance assumption and the periodicity of the lattice, we

can write

L = Circulant(Li, L 2 ,.. , LN), (6.33)

with

Li = Circulant(cil, C2,... ,cIN), Vi = 1,...N, (6.34)

where for an arbitrary N-tuple A = (a,, a 2, . ., aN), the notation Circulant(al, a2, . ., aN)

denotes the N x N matrix

A=

al a2 ...... aN

aN al a2 ... aN-1

a3 a4 ...... a2

a2 a3 ...... al

The actual values of the coefficients cji, 1 < i,j < N, depend on the order of the model,

i.e., the neighborhood size, and its bonding parameters. The following theorem about

the eigenvalues of H is however valid for any neighborhood size and any set of bonding

parameters as long as the symmetry condition L8r = L,, is enforced. Define ~N = em N .

Then we have the following
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Theorem 12 Let %a, 1 a < n, be the eigenvalues of V, and pq, 1 < p, q < N be the
2D discrete Fourier transform of cij, 1 <_ i, j < N given by

N

Cpq = i cP(i-l)(i-1) (6.35)
i,j=l

Then the nN 2 eigenvalues of the Hessian matrix H are given by

Apqa 2Cpqa + nT, 1 < p, q N, 1 < a < n. (6.36)

Proof:: The proof of this theorem is based on the tensor algebra fact mentioned above
and the following lemma about block circulant matrices. ·

Lemma 15 Let L be the block circulant matrix given by (6.33) and (6.34). Then the
eigenvalues of L are exactly the 2D Fourier coefficients of the matrix cij, 1 < i,j < N,
given by (6.35).

Proof: For a proof, see [43]. 

Reference [43] does not give the eigenvectors of the matrix L, but it is not difficult to

show the following

Lemma 16 Let wp be the vector (Pk-1))<k<N. Then the N 2 eigenvectors of the block

circulant matrix L are given by the tensor roducts wp 0 wq, 1 < p, q < N.

Note that these eigenvectors are independent of the matrix L coefficients. Based on

Lemma 16 and the Kronecker product fact stated above and denoting by Ua, 1 a < n
the eigenvectors of the matrix V, we can now state

Theorem 13 The nN2 eigenvectors of the block circulant matrix L are given by the
tensor products wp ® Wq® Ua, 1 < p, q < N 1 < a < n.

The expression of the Hessian along with Theorems 12 and 13 means that we can

separate the spatial" or lattice effects from the "color" effects on the eigenstructure of

the Hessian. Note that the uniqueness and uniform histogram constraints are translated

into constraints on the acceptable eigenvectors along which we are allowed to perturb the

mean-field values about the trivial solution. More specifically, we should choose, among

the eigenvectors of V those that are orthogonal to eG = (1,... , 1) E ?M, and among the
eigenvectors of L, those that are orthogonal to es = (1,...,1) E 3RN 2. For the former,

the only eigenvector that is not orthogonal to es is the one corresponding to p = q = N.

As for V, the satisfaction of the constraints will depend on the specific coefficients Vab.

To determine the critical temperatures we merely have to compute the temperature

at which the first eigenvalue Apqa becomes negative, provided that its corresponding

170



eigenvector obeys the global constraints. From the form of Apqa given in Theorem 12,

we see that at sufficiently high temperature all the eigenvalues will be positive and so

Vsa = 1/n, Vs E S,a E G, is stable. As T decreases the details of the interactions {L.r}
and {Vab} become important and negative eigenvalues may develop. In the next section,

we consider two special cases and compute the phase transitions.

6.4.2 Special Cases

Two cases are of special interest because they have been widely used in the tex-

ture literature. The first is that of the Potts model [16], and the second is that of the

autobinomial Markov random field model [14].

In both cases we assume a nearest neighbor interaction between the lattice sites having

a horizontal bonding parameter /3h and a vertical bonding parameter ,. The circulant
blocks Li, 1 < i < N of the matrix L are given by

Li - O Vi 1,2, N,

L = Circulant(O, Oh, 0 ... , 0, /3h),

L2 Circulant(3, O,. , 0),

LN = Circulant(l, 0,. . . , O).

A simple application of Lemma 15 will give the N 2 eigenvalues of the matrix L

q = 2 [, cos(2ir/N) + 3h cos(27rq/N)]. (6.37)

Note that the effects of an anisotropic lattice on the critical temperature can be easily

studied using the above formula. However, to simplify the statements of our results, we

will restrict our attention to the isotropic case for which 3h =/ = 1. In this case and

for any value of N, the eigenvalues are within the closed interval (-4, +4). However,

the eigenvector corresponding to the largest eigenvalue is the vector es which is exactly

perpendicular to the uniform histogram constraint hyperplane. Therefore, it has to be

rejected as a valid perturbation.

The Potts Model

For this model the color interaction matrix is given by Vab = 1 - ab. That is, there

is a contribution to the texture energy if and only if the colors of two neighboring pixels

are different. Note that in this case the color matrix is a circulant, symmetric matrix.
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Therefore it is diagonalizable by a Fourier matrix, i.e., its ath eigenvector ua has the

components ,(b-l), 1 < b < n, and all the eigenvectors except one, namely un = eG,

satisfy the uniqueness constraint.

This color interaction matrix has only two eigenvalues: (n - 1) of multiplicity 1 and

-1 of multiplicity n- 1. The first corresponds to the eigenvector eG. Note that the

second eigenvalue is independent of the number of colors.

The spatial interaction matrix L has eigenvalues

2 [cos(2rp/N) + cos(2rq/N)].

The eigenvalue with p = q = N has the eigenvector, es, that does not satisfy the uniform

histogram constraints. It follows that the allowed eigenvalues of the Hessian are

-4 [cos(2rp/N) + cos(2rq/N)] + nT

for (p,q) (N,N). The trivial fixed point becomes unstable when the first of these

eigenvalues reaches 0. It is straightforward to evaluate these eigenvalues to obtain the

following

Theorem 14 For the Potts spin model color interaction and the nearest-neighbor, isotropic,
attractive, spatial interaction, the critical temperature is

T = (4/n) [1 + cos(27r/N)]

corresponding to the eigenvectors p 0 Vq 0 Ua with (p,q) = (0,1)or(1,0) and a E
{1,...,n-1}.

Observe that the critical temperature decreases inversely proportional to the number

of colors but is relatively independent of the number of lattice sites for large N. Indeed

as N -. oo the critical temperature tends to 8/n.

The behavior of the system just below the critical temperature is given by a linear

combination of the eigenvectors p 0 vq 0 ua with (p,q) = (0,1) or (1,0) and a 

{1,...,n-1}.

The Autobinomial Model

For our second model we set n = 2 and consider the autobinomial Gibbs random

field model with (V, V12, V21, V22) = (0, 0,0, 0,-1). This is closely related to the Ising spin

model which, in the absence of global constraints, is exactly soluble with known critical

temperature.
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The eigenvectors of Vab are (1,0) and (0,1) with corresponding eigenvalues 0 and 1
respectively. Neither of them satisfy the global constraints. Instead we must consider

their combination (1/VX)(1, -1) which corresponds to projecting the unit eigenvector

(0,1) in the direction perpendicular to the constraints. This gives a contribution of (-

1/2) to the quadratic expansion about vsa = 1/2. Thus it effectively corresponds to an

eigenvalue of (-1/2).

Combining this with the results for the spatial interaction matrix gives "allowable"

eigenvalues

-2 [cos(2p7r/N) + cos(2q7r/N)] + 2T

for (p, q) (N, N). The following result is obtained

Theorem 15 The critical temperature of the isotropic, attractive, nearest-neighbor, bi-
nary autobinomial model is given by T, = 1 + cos(27r/N).

Observe that the critical temperature is only weakly dependent on N for large N.

Moreover, as N -- oo we get T - 2.

Below the critical temperature the solution will be a linear combination of the two

vectors with color part (1,-1) and spatial part p(k-1),(1-l) for (p, q) = (1,0) or (0, 1).

The result given in Theorem 15 can be generalized to an autobinomial model with n

gray levels and a color interaction matrix Vab = -ab, 0 < a, b < n- 1. Indeed, using an

argument similar to the one that precedes Theorem 15, we can show that

T,= (-n 3 )[1 +cos(2r/N)].

This formula can alternatively be derived from Equation (4.27) which we used to obtain

an approximation of the covarinace function of the autobinomial model.

The dependence of critical temperature on the square of the number of gray levels is

in agreement with an empirical observation made in [69] concerning the regions of phase

transition of the autobinomial model.

6.4.3 Simulations

In this section we compare our results for the Potts model and the autobinomial

model with computer simulations using a novel projected gradient descent algorithm.

This algorithm has the advantage of enforcing the constraints on the mean-field variables

at every step of the update. Let

F(v) = ~ - LsrVabVsavrb + T y ] vsalogvsa,. (6.38)
s,rES a,bEG sES aEG
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be the free energy. The components of of DF(v) are given by the partial derivatives

OF

Ov sa '

We have the following

Proposition 32 Denote by VPF(v) = ( P), , the projection of the gradient of F(v)
on the uniqueness

Vsg = 1, Vs E S,
aEG

and uniform histogram
Evsg = 1, a E G,

sES

constraint surfaces. Then we have

OF OF P O F 1 O OF 1 E OF (639)
Ov~~~~ ~~ + nN2 ~~~~~~~~ (6.39)AOvo a s N 2 r n E OVsb n + OVrb'

Proof: It is enough to check that

OF)'
=0, VaEG,

sES sa

and that
OF =0, Vs E S.

aEGa

For instance, for the first equality, if we sum up the right-hand side of (6.39) with respect

to s E S, the first and the second terms will cancel each other, while the third and fourth

terms will cancel each other. 

The projected gradient descent dynamics can now be written as

OF)'
ca =-- ,VsES, aEG, (6.40)

OV.ia

where c is a positive time constant. 6

This gradient rule can be inserted in a continuation (or deterministic annealing)

method that performs a projected-gradient descent while decreasing the temperature T.

The intuition is that the global minima can be found at high temperature, where the

free energy is convex, and can then be tracked down as the temperature decreases to the

desired final temperature. This type of methods is not guaranteed to converge to the

global optimum solution, but is empirically extremely successful [67].

6It is important that this time constant be the same for all variables v.a, so that the velocities jsa

would be parallel to the constraint surfaces.
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(a) (b)

FIGURE 6-1: States of the isotropic Potts mean-field model at different temperatures:
(a) Initial condition; (b) T slightly higher than the critical temperature; (c) T slightly
lower; (d) T lower. Note that for T slightly higher than the critical temperature, the
mean-field states are attracted back to the trivial solution. The lattice size is 16 x 16.

The Potts Model

We consider the case with n = 2 colors and N = 16. From the previous section,

Theorem 14, we find that the critical temperature is Tc = 3.85.

We performed simulations at temperatures T = 3.9, 3.75 and 3.5. The system was

given the initial configuration vsa = (1/2) + na, Vs E S,a E G, where the {na} are
chosen independently from the uniform distribution over the range -0.005 < na < 0.005

and then projected to ensure that the {vsa} satisfy the global constraints.

To update the {v,a} we use the projected gradient, given by (6.39). In discrete time,

the projected-gradient descent is given by

vsa(t + 1) = v,,(t) - a- ( (t)), Vs E S,a E G, (6.41)

where the coefficient ( = 1/(10 + DPF DPF). The term dependent on DPF in the

denominator is used to stabilize the iterations where the gradient is large.

The experiments were run on a SUN4 with a stopping condition whenever jDPF! <
0.0005. The typical number of iterations varied greatly with the temperature. For

temperatures below the critical one, the number of iterations generally decreases with

temperture, as we can see from Figures 6.4.3. 6.4.3 and 6.4.3(a).

The results confirm our theoretical predictions of the temperatures at which the trivial

equilibrium point becomes unstable. The simulation at T = 3.9 rapidly converged to the

state va = 1/2, Vs E S,a E G. AtT = 3.75 and T =3.5 the state vsa = 1/2, Vs E S,a E
G became unstable and the system converged to a new minimum. This is illustrated by

Figures 6.4.3, 6.4.3 and 6.4.3(a).

In Figure 6.4.3, the grayscale images represent the mean-field values by pixel intensi-

ties defined as follows. Suppose the color values are specified to be C = {C,}. Then the

mean-field values {v4a} will correspond to intensities {Is} = {a VsaCa}. If the pattern
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is assumed binary with 0 corresponding to black and 255 corresponding to white, then

C = {0,255}, and the intensities {I,} = {255Wl }. Figure 6.4.3(a) gives the mean-field

values of the initial conditions. Figures 6.4.3(b), 6.4.3(c), and 6.4.3(d) final states at

T = 3.9, 3.75, 3.5 respectively. It is clear that the critical temperature lies between

T = 3.9 and T = 3.75. Note that if we rounded off the {vsa} to the nearest integer we

would obtain a purely binary black-white pattern. The patterns just above the critical

temperature correspond to a random-looking binary texture, while those just below the

critical temperature correspond to more ordered patterns. It is in this sense that the

critical temperature defines a phase transition.

In Figure 6-6(a), the theoretical prediction about the pattern below the critical tem-

perature is illustrated. For a given column, the intensities are plotted versus the rows

for both T = 3.75 and T = 3.5. The resulting curves are sine waves whose amplitudes

measure the degree of saturation of the mean-field variables, i.e., how close they are to

black or white. Note that this saturation increases as the inverse of temperature. The

phases of these sine waves are random.

Figures 6.4.3(a) and (b), and 6.4.3(a) plot the energy, the free gradient and the norm

of the free energy gradient, as a function of the number of iterations, at temperatures

T = 3.9, T = 3.75 and T = 3.5 respectively. Figure 3(a) shows that at T = 3.9 the

system rapidly converges to the solution v = 1/2, s E S,a E G. Figures 6.4.3(b)

and 6.4.3(a) (at T = 3.75 and T = 3.5) show that the system slowly escapes from the

local minimum at V,a = 1/2, s E S,a E G, and converges to a new solution. This

convergence is significantly faster for T = 3.5.

The Autobinomial Model

Here also we consider the binary case n = 2, and again we choose N = 16. It follows

from Theorem 15 that the critical temperature is T, = 1.92.

We performed simulations using the same techniques described in the previous sub-

section. We ran the algorithm at T = 2.1, T = 1.8 and T = 1.6.

As predicted the trivial equilibrium state vsa = 1/2, Vs E S, a G, was stable for

T = 2.1 and unstable for T = 1.8 and T = 1.6. See Figures 6.4.3, 6.4.3, 6.4.3(b) and

6-6(b).

In Figure 6.4.3, we show the mean values of the intensities as defined in the prvi-

ous paragraph. Figure 6.4.3(a) gives the mean intensities of the initial condition. Fig-

7In Figure 6.4.3, we give a pictorial representation of the mean-field values. The actual binary textures
are obtained by thresholding the mean-field values about the value 1/2. When the mean-field values are
close to but randomly distributed about 1/2 we get a random-looking pattern.
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(a) (b)

FIGURE 6-3: States of the isotropic autobinomial mean-field model at different temper-
atures: (a) Initial condition; (b) T slightly higher than the critical temperature; (c) T
slightly lower; (d) T lower. Note that for T slightly higher than the critical temperature,
the mean-field states are attracted back to the trivial solution. The lattice size is 16 x 16.

ures 6.4.3(b), 6.4.3(c), and 6.4.3(d) give the final states at T = 2.1, 1.8, 1.6, respectively.
It is clear that the critical temperature lies between T = 2.1 and T = 1.8. As for the
Potts model, the patterns just above the critical temperature correspond to a random-
looking binary texture, while those just below the critical temperature correspond to
more ordered patterns2 . It is in this sense that the critical temperature defines a phase

transition.

In Figure 6-6, the theoretical prediction about the pattern below the critical tem-
perature is illustrated. For a given row, the intensities are plotted versus the columns
for both T = 1.8 and T = 1.6. The resulting curves are sine waves whose amplitudes
measure the degree of saturation of the mean-field variables, i.e., how close they are to
black or white. Note that this saturation increases as the inverse of temperature. The
phases of these sine waves are random.

Figures 6.4.3 and 6.4.3(b) , plot the energy, the free energy and the norm of the free
energy gradient, as a function of the number of iterations, at temperatures T = 2.1,
T = 1.8 and T = 1.6 respectively. Figure 6.4.3(a) shows that at T = 2.1 the system
rapidly converges to the solution vs = 1/2, Vs E S, a G. Figures 6.4.3(b) and 6.4.3(b)
(at T = 1.8 and T = 1.6) show that the system slowly escapes from the local minimum
at v = 1/2, s E S, a E G, and converges to a new solution. This convergence is faster
for T = 1.6.

6.4.4 Application: Phase Transition

Recent work on texture modeling using Gibbs random fields [22, 70] has shown that
their descriptive "power" could be quite limited if the model parameters are not cho-
sen appropriately. This is probably best illustrated with the role of the temperature
parameter. Heuristically, we can say the following. When the temperature is high, the
noise level in the Gibbs system is high, and the Gibbs distribution is close to a uniform
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FIGURE 6-6: The local minima for temperatures lower than the critical temperatures
are approximated rather well by the eigenvectors of the energy Hessian matrix. The
amplitude of the sine wave indicates the saturation of the mean-field values. It increases
with inverse temperature. The phase is random. (a) Potts model. (b) Autobinomial
model. The scale of the mean-feild values is 255 so as to match the grayscale figures.

distribution over the set of all possible pattern configurations. Sampling from this distri-

bution is very likely to produce a noisy pattern without any textural properties. When
the temperature of the Gibbs distribution is very low, the most probable patterns are the
ground states of the Gibbs energy. In [70], it is shown that these ground state patterns
have "unintertsing" textural properties. In other words, the patterns sampled from the

Gibbs distribution have no textural characteristics at both ends of the temperature scale.
Therefore we can argue that most of the interesting textural patterns are sampled when
the temperature is "neither too low nor too high."

This intuition is borne out in the simulated annealing study of the Gibbs autobinomial
model described in [71], where it has been shown experimentally that there are transition
temperatures at which the pattern visual properties change noticeably. But the important
problem of predicting the temperature range in which phase transitions are expected to
occur has remained open. This temperature prediction is important for two main reasons.
First, it allows to set up, without recourse to the time-consuming simulated annealing
algorithm, upper and lower limits on the temperature scale within which "interesting"
patterns are likely to get synthesized. Second, it helps in choosing the appropriate a
priori model parameters when maximum a posteriori (MAP) estimates are sought for a
given image processing or computer vision task.

The above two reasons have been pointed out in the recent literature on Gibbs random
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fields and their siblings, Markov random fields. The importance of the first reason is

mentioned in [19] where it is stated that 3

[... ] a Markov random field exhibits a phase transition phenomenon when

parameters are specified so that the short-term correlations among neighbor-

ing pixels develop into long-term correlations [... ]. Models exhibiting phase

transition are of limited value in image modeling because realizations tend to

be dominated by one or two colors and do not exhibit fine structure or tex-

ture. [... ] The presence of phase transition and the interpretation of model

parameters have been ignored in some applications of random field models.

As for the second reason, the effect of phase transitions on the quality of MAP estimates,

it is stated in [30] that

[... ] the efficacy (and visual appearance) of the MAP estimator degrades

rapidly as the relative influence of the prior distribution [... ] is increased with

respect to the data component [ ... ]. This phenomenon appears to be related

to the existence of phase transition in the prior model: reconstructions may

be dominated by the global properties of the prior, such as long-range order

[... ], which are characteristic of certain parameter ranges.

From a theoretical viewpoint, we should emphasize that the general problem of phase

transitions for Gibbs random fields is a difficult one. In Appendix A, we give a quick

survey of the mathematical aspects of this question and show how one can use the

theoretical formulas already obtained in the literature to derive crude estimates of the

temperature interval within which phase transitions are likely to occur. We also point

out the fact that within this theoretical context, the mathematical problem of phase

transitions for constrained Gibbs random fields remains unsolved.

In the mean-field context, we have shown how the change in temperature leads to a

change in the equilibrium pattern from a noisy-looking pattern to a structured pattern.

This type of behavior was observed in our deterministic simulations for both the Potts and

autobinomial models. The main advantage of our mean-field solution is that it provides

us with an explicit formula for the temperature at which this type of transition occurs.

For instance, the critical temperature formula given for the Potts model in Theorem 14

shows that as the number of colors become higher, the critical temperature at which

transition to a structured pattern occurs becomes lower. This decrease is like _ for the

we have italicized the expression phase transition in these quotes.
'We have italicized the expression phase transition in these quotes.
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Potts model. We can also show using the estimate of the correlation function given in

(4.28) for the autobinomial model that the critical temperature of that model actually

increases like n -1. Moreover, it is not difficult to incorporate in these formulas the3.

anisotropy of the lattice. It is then possible to show using an eigenvector argument that

if we have a nearest-neighbor, anisotropic, attractive lattice, then the structured pattern

that will appear at the critical temperature will have the direction of the larger bonding

parameter.

6.5 Summary

This chapter was devoted to an analysis of the effect of temperatures on the solutions

of the mean-field equations of the grayscale Gibbs random field.

In the first part we studied the synchronous iterated map and showed that the center

of mass of the simplex Tn plays a previliged role at each site. Using a nonlinear transfor-

mation 4 that preserves this simplex, we showed that all fixed points can be mapped onto

the trivial fixed point at which the pixel mean-field matching vectors are represented by

the simplex center of mass. The trivial fixed point is always a high4-emperature solution

of the fixed-point equations.

Next we studied the stablity of the trivial fixed point and showed that there is a lower

bound on the temperature for which the trivial fixed point is stable. This lower bound

depends on the number of colors and the eigenvalues of the block connectivity matrix.

An iterated map is but one method for finding the fixed points. Another method is

to profit from the fact that the fixed-point equations can be obtained as the extremum

equations of energy functions that can be derived from the mean-field approximation.

We can then define gradient-descent dynamics whose attractors are the fixed points. In

this context, we have obtained the following:

1. We have shown that the type of gradient descent to be used is decided by the

relationship imposed between the mean-field variables v, and the auxiliary variables

Ws.

2. If this relationship is one of linear dependence of w, on v,, r E S, through the

connectivity matrix J then we should use the effective energy Eefy to define the

gradient descent equations in terms of the mean-field variables v,.

4 This transformation is identical to the one used in interior-point methods for linear programming.
See, for instance, Karmarkar's original paper [41].

183



3. If the relationship is imposed using the generalized sigmoid mapping, then Hf f,

the Legendre transformation of Eeff, should be used to define gradient-descent

equations in terms of the auxilary variables w8 .

4. The latter method is a generalization of the Hopfield dynamics to the case of winner-

take-all networks.

5. The realization that the generalized sigmoid mapping is convex allowed us to gener-

alize both the Hopfield and WTA gradient descent to networks in which the neuron

input-output mappings are n-dimensional but have convex potentials. This was

done using the Legendre-Fenchel transform of the convex potentials.

6. When interpreted in circuit-theoretic terms, the Legendre-Fenshel transform allows

us to obtain content functions from co-content functions. Thus the new gradient de-

scent dynamics has an appealing circuit-theoretic interpretation in terms of content

functions.

Finally, we studied the temperature dependence of the mean-field solutions in the

context of the probability decomposition method. Using an eigenstructure analysis of

the free energy Hessian, we have obtained, for the periodic lattice case, new closed form

formulas for the critical temepratures at which the trivial equilibrium point becomes

unstable. Using a novel projected-gradient decsent algorithm, we have verified these

formulas for two Gibbs models used in texture synthesis: the Potts model and the auto-

binomial model. We have also commented on the insights that these critical temperatures

provide into the phenomenon of phase transition for Gibbs random fields.
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7

Conclusions and Directions for
Future Research

Just because some of us can read and write and do a little math,

that doesn't mean that we deserve to conquer the world.

Kurt Vonnegut

In this final chapter, we would like to give a survey of the contributions of this

dissertation and point out some future research directions.

7.1 Conclusions

7.1.1 Correlation Functions of Gibbs Random Fields

The first major result of this thesis is the establishment of a close link between

the mean-field approximation and the correlation-field approximation. The widely held
belief that the mean-field approximation contains only information about the first-order

statistics of the Gibbs distribution is unfounded. The crucial fact is that the mean-

field approximation is more than an approximation of the Gibbs ensemble averages: it

is actually an approximation of the Gibbs partition function which is the generating

function of the Gibbs distribution. If we know the generating function of a probability
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distribution then we have everything we need to compute its moments, in particular, the

second-order moments.

There are two extreme cases in the realm of Gibbs distributions in which exact com-

putations of the correlation functions are possible. These cases are the Ising model in

which the pixel state space is binary and the Gaussian case in which the pixel state space

is the real line. The class of Gibbs distributions with a finite number of graylevels, which

contains all digital graylevel images, have correlation functions that are hard to derive

analytically and expensive to compute numerically. Chapter 4 was devoted to explain-

ing a new procedure for obtaining correlation-field approximations from the mean-field

approximations. We applied this procedure to the autobinomial Gibbs distribution, a

model of widespread use in texture synthesis, and derived a new formula for its corre-

lation function that shows explicit dependence on the model temperature, number of

graylevels, and lattice parameters and connectivity graph.

7.1.2 Winner-Take-All Networks

The important intermediary step in getting the correlation-field estimation is of course

to get the mean field. The realization that the mean-field equations are actually the

fixed points of a winner-take-all (WTA) network has led us, in Chapter 5, to initiate a

systematic study of the dynamics of these networks both in the discrete and analog cases.

Although one could define the analog network in an axiomatic fashion, i.e, independently

from the discrete case, our presentation has the advantage of showing that there is a deep

link between the two and that this link is provided by mean-field theory.

Among the new results, we should mention:

Iterated MAP Dynamics

1. For the discrete, synchronous WTA network, if the connectivity block matrix of

the network satisfies a weakened form of positive definiteness, then the fixed points

are the only limit cycles of the network.

2. The iterated map dynamics of the analog WTA network is governed by the gener-

alized sigmoid mapping that we have proven to be the gradient map of a convex

potential.

3. The worst that can happen in any synchronous, analog WTA network with a sym-

metric connectivity matrix is an oscillation of period 2.

186



4. If the connectivity block matrix of the analog WTA network satisfies the same

weakened form of positive definiteness as in the discrete case, then the worst can

be avoided and the fixed points become the only limit cycles of the network.

5. The neuron state does not have to be a number. It can be, for instance, a multidi-

mensional signal of finite energy whose dynamics is governed by a partial differential

equations. Even in this case, we can define "neural networks" whose dynamics is

governed by Lyapunov functionals similar to those of the analog WTA network.

Gradient Descent Dynamics

In Chapter 6, we have also provided gradient-descent dynamics for WTA networks.

These descent equations have the advantage over the iterated map dynamics of Chapter 5

of having only point attractors. We have discovered that the convexity of the sigmoid

mapping potential is the crucial assumption that makes the effective energy functions

derived from mean-field theory bona fide Lyapunov functions. This discovery allowed us

to define gradient-descent equations for more general settings and to bring the role of the

Legendre-Fenshel transform to the forefront. Here also we could have defined gradient

dynamics in a functional space setting the same way we have done it for the iterated map

dynamics.

Circuit-Theoretic Results

We have discovered that the generalized sigmoid mapping admits a simple exact VLSI

circuit implementation operating in subthreshold mode.

We were also able to give a circuit-theoretic interpretation to the iterated-map and

gradient-descent Lyapunov functions in terms of the co-content and content functions of

the generalized sigmoid resistive element, respectively. We have proved that the content

function of the generalized sigmoid mapping has the same functional form as information-

theoretic entropy!

An aside discovery was that the content and co-content functions of a locally passive

n-port resistive element are dual of each other in a precise sense, the duality relationship

being given by the Legendre-Fenshel transform.

7.1.3 Stability and Critical Temperatures

Also in Chapter 6, we have studied the temperature dependence of the mean-field

solutions in the context of the probability decomposition method. Using an eigenstructure
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analysis of the free energy Hessian, we have obtained, for the periodic lattice case, new

closed form formulas for the critical temperatures at which the trivial equilibrium point

becomes unstable. Using a novel projected-gradient descent algorithm, we have verified

these formulas for two Gibbs models used in texture synthesis: the Potts model and

the autobinomial model. We have also commented on the insights that these critical

temperatures provide into the phenomenon of phase transition for Gibbs random fields.

7.2 Directions for Future Research

7.2.1 Image Modeling and Processing

Mean-field theory has given us approximations of both the mean and the correlation

of a graylevel Gibbs random field. As pointed out at the end of Chapter 4, they can be

used to define a Gaussian joint probability distribution. This Gaussian distribution has

the same underlying graph structure as the original discrete Gibbs distribution. It is also

the maximum entropy distribution among all joint probability distributions having the

same mean and correlation function [26]. Gaussian models have the advantage that they

can be synthesized using fast frequency-domain techniques [89]. It will be worthwhile

to compare patterns synthesized from these Gaussian models with the patterns obtained

from their discrete parents using the time-consuming Monte-Carlo sampling procedures.

Discrete Gibbs random fields were also used to implement a labeling layer in hi-

erechical models for segmenting textured images [16]. To the best of our knowledge, the

mean-field counterparts of these hierechical models have not been investigated yet.

In this thesis, mean-field theory was used as an analytical framework for analyzing the

grayscale Gibbs distributions which have been used for long as models for microtextures

[14, 16]. A natural question is whether the mean-field dynamics can itself be used for

pattern generation. We suggest that the useful region for investigating the pattern gener-

ation capabilities of the mean-field dynamics should be around the critical temperatures

that were computed in closed form in Chapter 6. It might also be worthwhile to compare

the deterministic mean-field dynamics with that of reaction-diffusion equations which are

known to generate "interesting" patterns [88]. This comparison must be centered around

the role of nonlinearities in both models. The mean-field nonlinearity (sigmoid, general-

ized sigmoid) is dissipative (it has a convex potential) while the reaction nonlinearity is

not bound to be dissipative, and therefore, it is more likely to produce "richer" patterns

... at the expense of stability!
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7.2.2 Neural Networks

In our analysis of the dynamics of winner-take-all (WTA) networks, we have assumed

that the network connectivity matrix was a given of the problem. In the context of artifi-

cial neural networks, learning is the procedure whereby the network connectivity matrix

is computed so that the network outputs (here, its stable configurations) have desirable

features. In his original papers [35, 36], Hopfield suggested the use of a Hebbian/outer-

product rule for defining the connectivity coefficients in his network. We can proceed

in the same manner for the WTA network which thus becomes a content addressable

memory (CAM) for grayscale patterns the same way the Hopfield network is a CAM for

binary patterns. This line of research should open the way for a large number of inter-

esting applications of the WTA network to optimization, image processing, and pattern

recognition. Of course, the different problems that have popped up in the context of Hop-

field networks will also pop up in this context: spurious minima, assymetric connections,

dense connectivities, etc.

On a more speculative level, we suggest that the generalized sigmoid mapping can be

considered a "grandmother" neuron [74] that fires along the axon of the winning label.

Using this neuron as the output stage in a backpropagation network is worth investigating

as a mechanism for implementing supervised competitive learning. Using the property of

the generalized sigmoid mapping Jacobian, we can also write backpropagation learning

equations for feedforward networks of these "grandmother" cells that are very similar to

the backpropagation equations based on sigmoid functions. It is worthwhile noting that

the lateral inhibition in the VLSI implementation of each of our "grandmother" cells

has a O(n) complexity rather than the usual O(n2 ). In the work of Poggio and Girosi

[75], the role of the grandmother cell is played by the Gaussian radial basis function.

This function seems to be biologically plausible [Poggio, private communication]. We

ignore whether the simple VLSI implementation of the generalized sigmoid mapping is

biologically plausible.

7.2.3 Constrained Optimization

The path that we have followed in this thesis starting with the correlation function

of Gibbs random field image models with a finite number of graylevels is somewhat

atypical. For in order to answer an inherently probabilistic question, we have adopted a

deterministic method: mean-field theory. The reader should contrast this approach with

the typical simulated annealing paradigm in which one usually starts with a deterministic

question (find the minimum of a cost function) and uses the probabilistic framework as
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an intermediary step.

Of course, the two method can be combined. Whenever we are looking for an analog

solution of a discrete optimization problem, the discrete cost function can be considered

the energy of a Gibbs distribution. Then the mean-field approximation can be used to
get the analog algorithm. Many authors have already investigated such an approach

[68, 80, 44].
We have shown how the application of such a method on a discrete cost functions

with uniqueness constraints at each site results in an analog WTA network. From an

optimization viewpoint, this method can be construed as a systematic way for coming

up with interior-point algorithms for discrete nonlinear programming problems. Indeed,

the analog counterpart of the discrete uniqueness constraint turned out, via the natural

parameterization imposed by the generalized sigmoid mapping, to be the interior of the

simplex Tn. This simplex and its projective transformations are at the core of Karmarkar's
interior-point method for linear programming. We believe that this analogy should be
investigated further. Karmarkar's recent paper [42] about the continuous dynamics of

his algorithm seems to be a good starting point.
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A

Mathematical Theory of Phase
Transitions

En ce qui concerne la connaissance theorique du rel...

tout ce qui est facile a enseigner est inexact.

Gaston Bachelard

Abstract: In this Appendix, I try to explain (for myself, at the very least) the im-

plications of the modern mathematical theory of phase transitions as far as the Gibbs

systems used in image modeling ae concerned. My objective is (to try) to make clear

what probabilists mean by phase transition and to apply some of their results to the

image models that are commonly used in image processing and computer vision.

A.1 Introduction

In probability theory, the problem of phase transitions arises in the following context.

Given an infinite set of random variables and a family of conditional distributions for

these random variables, find a joint probability distribution from which the family of

conditional probability distributions can be derived. This infinite set of random variables

is said to exhibit a phase transition when, to the family of conditional distributions,
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correspond more than one joint probability distribution. In other words, phase transition

is a failure in uniqueness. The situation at hand is not unlike that of Markov chains,

where we are given a set of conditional probabilities, the transition probabilities, that

might or might not admit a unique equilibrium distribution depending on the properties

of the transition matrix. The fundamental difference between the situation considered in

this note and that of Markov chains is that the set indexing the infinite family of random

variables has no natural order and therefore we cannot use the language of semi groups,

as for Markov chains, to study the "long term" behavior of the system.

This note is divided as follows. After giving the notation in the next section, we

show, in Section 3, why the finite case does not pose any problems from the probabilistic

point of view. Then in Section 4 we pass to the infinite case and deal with the existence

problem for the joint distribution. Section 5 is devoted to the statement of a very general

sufficient condition, due to Dobrushin, for the absence of a phase transition. Then in

Section 6, we give a testable inequality, due to Simon, for Dobrushin's condition to be

satisfied. This condition is applied to Gibbs systems with potential functions commonly

used in image modeling. The consideration of an infinite family of random variables

by probabilists at the outset is contrasted, in Section 7, with the idea of an infinite

system as a thermodynamic limit - idea that is used in statistical physics to define phase

transitions. Finally in Section 8, we give some thoughts and indicate an open research

problem that might be taken up by someone more daring and capable than the author

of this document.

A.2 Notation

Most of the time, we will work with a square regular lattice- the one usually used

in image processing. In practice, this square lattice is a finite subset S C Z 2 , but the

mathematical theory of phase transitions is concerned with infinitely countable lattices.

The problem of determining the size of the finite lattice that could capture those math-

ematical phase transitions as defined on the infinite lattice is, of course, of the realm of

computational physics. This aspect of the problem, which is very important in applica-

tions, will not be dealt with here.

At each site s E $ of the infinite lattice, there is a pixel (or spin) whose state x is

a random variable that can take its values from a set G. Typically this set is a discrete

finite set or a compact interval of R. However both in image processing and statistical

physics, models are used in which G = R, as for, e.g., Gaussian models, or G = Z, as

for the discrete Gaussian models. The configuration space is given by the set Q = Gs.

192

I



This set is a countably infinite product and has at least the power of the continuum.

Defining a probability measure on such sets should be done with care. The lattice will

usually be equipped with a symmetric neighborhood system {A/'., s E S} that will define

on the set S a graph structure. Although the neighborhood system is important for

image processing applications, most of the mathematical questions pertaining to phase

transitions can be formulated for an infinitely countable set S without any additional

structure.

If A C $ we denote by XA = (x., s E A) the configuration of the sites belonging to
the subset A. We also denote by x() the configuration of the subset S\{s}.

A.3 Finite-Lattice Case

Assume that we are given for the lattice S the set of conditional probability distribu-

tions

{Ps(XSlx(s)),s E S}.

Then it is natural to ask whether this set of conditional probability distributions, usually

called local characteristics determine, in a unique manner, a joint probability distribu-

tion on the lattice. If the lattice is finite the answer is yes: a unique joint probability

distribution can be recovered from the conditional probability distributions. So assume

that S is finite and number its sites from 1 to N = ISI then we have the following

Proposition 33 [Besag [6]] f the lattice is finite then the joint probability distribution
is uniquely determined by its local characteristics.

Proof: The proof uses the fact that the joint probability distribution for a finite lattice

satisfies
P(x) i P(xjzX1,...,xs. 1,y.+1_....yN) (A.1)

= II ~~~~~~~~~~~(A.1)P(Y) -=l P(y[l, ** X-, Y+, , Y-, N)
which can be easily proved by noting that

P(X) = P(XNIX(N))P(X(N)) = 5 xP(XNIX(N)) 1, , N-1,yN) (A.2)~~~~~~~P(x)=PY~()PxN) (NIX(N))
and repeating the above formula until all the y,'s ae exhausted. By fixing a reference
configuration y, the above formula proves the existence of the joint probability distribu-

tion. Uniqueness is proved by noticing that if P and P' ae two joint distributions having
the same local characteristics then (x) = P'(X), which means that P _ P'.

P(y) p,(y)

The above characterization of joint probability distributions for finite lattices calls

the following remarks:

193



* The local characteristics need to be positive for Formula (A.1) to be valid for any

two configurations x and y.

* If some of the local characteristics take zero as a value, then this would mean
that some of the lattice configurations are prohibited. In other words we have a
constrained system. Let us denote by SI' the subset of the configuration space Q
that is defined by the constraints. Then (A.l) can be rewritten by conditioning

both sides on the event A = {z E IT}, i.e.,

P(xIA) P(xsI x,...,xS-,YS+1, .. , YN, A) (A.3)
P(yIA) 1 P(yIz,.x, X,,I,y,+*, YN, A)

* Note that there is not (yet) any type of markovianity assumption on the system.
Formula (A.1) is valid for any kind of probability distribution on a finite set. It
should be stressed that the role of a local markovianity assumption on the local

characteristics is to ease the computation of the latter by looking at a small subset
of the configuration set.

* The set S is not assumed to have any specific structure. In particular, the graph

structure introduced by the neighborhood system is not used.

* The question of the existence and uniqueness of the joint probability distribution

is purely probabilistic. At this level, there is no need to define a Gibbs system

describing the physical interactions between the site spins.

A.4 Infinite-Lattice Case

If the ISI is infinite then Formula (A.1) is no longer valid [30]. In order to describe

the mathematical theory dealing with the questions of existence and uniqueness of a

joint distribution in the infinite lattice case, we should first set up the right machinery

for defining the conditional probabilities in a mathematically meaningful way. Although
there are many presentations on how this can be done [77, 51, 32], we adopt here the
original formulation of Dobrushin in which the state space G of each spin is a finite set.
First we need to clarify what we mean by the probability distribution of the lattice. We
denote by F(S) the set of finite subsets of S.

To each finite subset A E F(S) corresponds a probability distribution PA(xS, s E A)
such that

Prob{X = x.,s E A} = PA(x,S E A). (A.4)

194

-T



The family P = {PA, A E F(S)} of all probability distributions of all the finite sets of

the lattice must satisfy the following consistency conditions for any two finite subsets

A' C A E F(S):

PA(xs,S E A) = PA(XS,S E A'), (A.5)
sEA\A',xsEG

which means that for two nested, finite sets the probability distribution of the smaller set

can be obtained as a marginal distribution from the distribution of the larger set. The

family P is called the distribution of the random field X defined on the infinite lattice.

The next step is to define what we mean by a conditional distribution on the infinite

lattice. For this, we consider a finite set A E F(S) and a configuration y = {yo, s E S\A},

and we associate to them the conditional probability distribution defined by

Prob{X, = x ,,s E AIy} = QA,y(xs,s E A). (A.6)

As in the case of the family P, we also require the family Q = {QA,Y, A E F(S), y E GS\A}

of all conditional distribution to satisfy a set of consistency conditions for finite, nested

sets. In order to understand these conditions, one should start with the following lemma:

Lemma 17 Let A, B, and C be three events. Then we have for the conditional probabil-
ities

Prob(A U BIC) = Prob(AIB U C)Prob(BIC) (A.7)

Proof:

Prob(A U BIC)Prob(C) = Prob(A U B U C) (A.8)

= Prob(A[B U C)Prob(B U C)

= Prob(AIB U C)Prob(BIC)Prob(C).

Let now A' C A E F(S) be two finite subsets and y GS\A the lattice configuration

outside the subset A. Define the events A = {X. = x5 , s E A'}, B = {X, = x,, s E A\A'},
and C = {X8 = y,,s E S\A}. Then we have

Prob(A U BIC) = QA,y(x,, s E A) (A.9)

Prob(AIB U C) = QAI,(XS, s E A')

Prob(B IC) = E QA,y(xs, s E A).
zaxEG,SEA'

where is defined by y. ys E S\A and , = xs, s E A\A'. Applying Lemma 17 above

we get the consistency conditions that must be satisfied by the family of conditional

distributions Q.
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Given the above definitions, there are two important questions that must be dealt
with. The first is: given a consistent family of conditional distributions Q, does there exist

a joint probability distribution such that the family Q would be its family of conditional
distributions? The second is: what are the conditions that we should impose on the

family Q so that the joint probability distribution is unique when it exists?
The existence question is not too difficult to solve. For the probability distribution

to exist it is sufficient that the conditional probabilities be Markovian . Before giving
the precise definition of this notion, let us note the following

1. In the finite case, there was no need for any additional assumption on the condi-

tional distributions for the joint probability to exist.

2. Another difference with the finite case is that in order to define the Markov property,

we need to equip the set of sites S with a neighborhood system, i.e., with a graph

structure in which the sites become the vertices of the graph.

To keep the definition as general as possible, we now assume that the lattice is a

graph (, E), where S is the set of vertices and E the set of edges. The graph incidence

function, c: S x S - {0, 1}, is defined by c(s,r) = 1, if there is an edge between the
sites s and r, and c(s, r) = 0, otherwise. If A E S, the boundary of A, denoted by 8A is
the subset of S defined by aA = {r E Sic(r, s) = 1, s E A}. The boundary of a site s will
be simply denoted Os. It will be assumed that Os E F(S), Vs E S, so that if A E F(S)

then OA is also in F(S).

Definition 10 The family Q of conditional probability distribution is said to be Marko-
vian if the following condition is satisfied

QA,y(x,,s E A)= QA,yaA(xs,s E A), (A.10)

where Y8A is the configuration of the lattice on the boundary of the set A.

In other words, in order to determine the conditional probability distribution in a finite

subset of the lattice given that the lattice configuration is known outside the subset, it
is sufficient to condition on the lattice configuration at the boundary of the subset. Note

that the definition of the Markov property is global, i.e., in terms of finite subsets of the

lattice rather than local in terms of single spins. When the spin state space G is finite, the
local and global definition are equivalent [18]. However, when G = A, as in the Gaussian

case, then one can find random fields that are locally Markov but not Markov [10]. Now
we can state Dobrushin's existence theorem:

1This assumption is actually stronger than the one needed. In fact, it is enough that the conditional
probabilities be "asymptotically close" to Markovian.
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Theorem 16 Let (S, E) be an infinite graph where each vertex has a finite boundary, and
let G be a finite set. Let Q be a Markovian family of consistent conditional distributions.
Then there exists a joint distribution P having Q for conditional distributions.

Proof: see [18]. 

For a given family Q of conditional distributions, we denote by P(Q) the set of joint

distributions defined by Q. In the case of a Markovian field, Theorem 16 says that P(Q)

contains at least one element. The situation where P(Q) contains more than one element

led Dobrushin to give the following definition [18].

Definition 11 A phase transition is said to occur if P(Q) has two elements or more.

To intuitively understand this definition, one should view the infinite graph as an

infinite volume thermodynamic system (i.e., a system considered in the thermodynamic

limit), in which the site interactions are described by the family Q of conditional distribu-

tions. The thermodynamic equilibrium of the system is described by a joint distribution

P. When more than one joint probability distribution exists for a given set of interac-

tions, the system can exist in as many different thermodynamic equilibria as there are

joint distributions. Each of these equilibria is called a phase. An important question in

statistical physics is to know whether a system can exhibit a phase transition. In the

following section, we give a sufficient condition for the absence of a phase transition also

due to Dobrushin. We also indicate how this condition can be used to give the ranges of

system parameters for which there can be no phase transition. Before closing this section,

notice should be made of the fact that no mention has been made of Gibbs distributions

in the formulation of the different definitions and problems. But it is clear that under

the conditions of Theorem 16, and the condition that the conditional probabilities are

positive, we can define, for each A F(S), a Gibbs distribution. Moreover this Gibbs

distribution will be, by the Hammersley-Clifford theorem, compatible with the graph

structure of the lattice.

A.5 Dobrushin's Uniqueness Condition

Dobrushin's sufficient condition for the uniqueness of the joint probability distribution

on the infinite lattice is formulated in terms of the local conditional distributions, i.e.,

the ones obtained when the finite subset A is restricted to one site. Again, we remind

ourselves that this restriction is valid only because the spin state space G is finite. To

intuitively understand the uniqueness condition, we could argue as follows. For a finite

system, the joint probability condition is uniquely defined by the conditional distribution.
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Therefore, one should try to make the infinite case as close as possible to the finite case by

making sure that the local conditional distributions depend weakly on the configurations

of distant sites and that no matter where we are on the lattice, the distance of the local

conditional probabilities to the other ones is small. These notions will now be made

rigorous.

Let r, s E S be two different sites on the lattice, and let Qr,y be the conditional

probability distribution associated with the site r when the lattice configuration outside

{r} is y. Let now Y(s) be any configuration for S\{r} that agrees with y everywhere

except at the site s. Consider now the distance between the two conditional distributions

Qr,y and Qr,y(.) defined by

d(Qr,y Qr,y(o)) = lQr,y(xT) - Qr,y(,)(x)l. (A.11)
xEG

Note that this distance is zero when the two conditional distributions are identical. Note

also that it depends on the value taken by the configuration Y(s) at the site s. We can

eliminate this dependence by considering

drs = sup d(Qry Qr,y(,)), (A.12)

which measures how dependent the conditional distributions at site r are on the values

taken by the field at site s. With these definitions, we can state Dobrushin's uniqueness

theorem

Theorem 17 If
SuprEs E dr, < 1 (A.13)

sir

then 1P(Q) contains one and only one element.

An interesting interpretation of the above condition is that the infinite matrix d =

[dr.] (where we pose drr = 0) has an to-induced norm that is less than one. This

matrix can therefore be considered a contracting operator on the space £oo of bounded

sequences. Note also that if the field is Markovian then dr, = O,Vs 0 ar, which means

that the matrix d is sparse with a banded structure. Then it becomes very easy to check

Condition A.13 above.

A.6 Simon's Uniqueness Formula: Application to

Gibbs Measures

In this section we present some applications of Dobrushin's uniqueness condition. All

the applications use the formalism of Gibbs distributions. To introduce this formalism,
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we will have to define the important notion of a potential function. We then present

Simon's uniqueness formula that implies Dobrushin's uniqueness condition. Simon's for-

mula is then applied to some Gibbs distribution commonly used in image processing and
computer vision to derive upper bounds on the phase transition temperatures in terms of

the parameters of the interaction potentials. These bounds are extremely useful when we

want to sample the Gibbs distribution or when we run simulated annealing algorithms.

A.6.1 Potential Functions and Energy for the Infinite Case

The material presented in this section is pretty standard and could be found in,

e.g., [32]. Our presentation however omits important mathematical details so as not to

overload the unfamiliar reader.

Definition 12 A function : F(S) x 2 -. is called a potential if VA E F(S) and
Vw E the series

Et(w) = E (A,w) (A.14)
AEF(S),AnA•O

is summable.

The quantity E (w) is called the total energy of the subset of sites A for the config-
uration w. In order to understand the above definition better, assume that A is a single

site s. Then the total energy of s for the configuration w is written

E,(w) = E ID(A, ). (A.15)
sEAEF(S)

In other words, for a given configuration of the lattice sites, the contribution of the

site s to the lattice energy is the sum of the (interaction) potentials computed at the

configurations of the finite subsets containing s. This definition calls some remarks:

1. Assume that the set S is finite. Then in Definition A.14, we can take A = S. Then
the total energy of the lattice for the configuration w is given by [77]

E (w) = E b(A,w). (A.16)
ACS

2. The summability condition is always satisfied for the finite case. Therefore any
function defined on F(S) with values in is a potential function. However, some-

times the conditions

* · (0, ) = 0;
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. VA E F(S),wA = wA = O(A,w) = (A')

are imposed, see [30].

3. Definition A.14 is valid for any set S. When the set S has a graph structure as in

image grids, we can be more specific about the values of the potential function over

special subset of vertices, e.g., simplices in which c(s, r) = 1 for all pairs (r, s), r s.

Examples

Let us now give some examples to illustrate the concept of a potential.

1. Generic Case: Very often the potential function is separable, i.e.,

4(A,w) = J(A) '(wA), VA E F(S), Vw E Q (A.17)

where J(0) = 0. Note that this potential function satisfies the two conditions men-

tioned above in the context of finite lattices.

2. Pair Potentials: In this case, we have (A,.) = 0 as soon as AI > 2. For the

generic case, the pair potential is defined by

J (r,s)Q(w,,ws) ifA = (r,s),r s,

$(A,w) = J(r, r)(wr) if A = {r}, (A.18)

0 otherwise,

where J: S x S R and A: G x G R are symmetric. In this case, the formula

for the total energy at site s for the configuration w is given by

E?(w)= J(s,s)Ob(w,) + E J(s,r)I(w,,wr). (A.19)
rE(S\{,})

Note that under the summability condition, the above series, which might contain

an infinite number of nonzero terms, always exists. The pair potential as defined

here is valid for any set S whether it has a graph structure or not.

3. Gibbs Potential: Assume now that S is the set of vertices of a graph (5, E). A

subset C C S is called a clique 2 if the restriction of c to C x C is identically equal to

one. In other words, any pair of vertices picked up from C are linked by an edge in E.

We denote by C(S) the set of cliques of the graph (5, E). Then a potential function

2In graph theory, the word simpler is usually used to designate a clique, while the word clique is
reserved to simpleces of maximal number of vertices.
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is a Gibbs potential if (A,-) = 0, if A 0 C(S). It should be noted that the Gibbs

potential is defined only for finite cliques, i.e., for the set FC(S) = F(S) n C(S).

Let now s be a fixed lattice site, and let C: = {C E FC(S)ls E C} be the set

of finite cliques containing the site s. The energy contribution of site s for the

configuration w is given by

E(w)= E J(C),wc-. (A.20)
CEC,

We note that in the finite case, we have C(S) C F(S).

4. Multidimensional Ising Potential: This is a Gibbs potential defined on the lattice

Zd, d > 2, equipped with the nearest-neighbor neighborhood system. In this case,
FC(S) = C(S) = SU{{r, s} C Zd c(s, r) = 1}, and the potential is a pair potential

so that we can write for every s E S

E () = J(s,s)Z(w 8 ) + J(s,r)(w rw). (A.21)
{s,r}EC(S)

A.6.2 Simon's Formula

In [81], Simon has shown that Dobrushin's uniqueness condition is implied by an

easily testable inequality that involves the potential functions of the conditional Gibbs

distributions. It was mentioned in Section 2 that under the Markovianity assumption

it was possible to define a Gibbs distribution that would be compatible with the graph

structure of the lattice. In fact, the Markov assumption is not really needed to define

conditional Gibbs distributions even in the infinite dimensional case. This can be done

as follows. Let b be a potential defined on the set S. Let A E F(S) and y be the

configuration of the sites E S\A, the environment of A. Then the Gibbs conditional

probability of the subset A for the environment configuration y is given by

QA,y(x) = exp (- E(xy)). (A.22)

where

ZAY= E exp (- TE (xy))
XEOA

is the conditional partition function associated with the finite subset A and the boundary

condition y. The symbol xy corresponds to the site configuration w given in Definition

(12). Note that the summation in the conditional partition function is only over the site

configurations of the subset A. Note also that the above formula is implicitly assuming

that the spin state space G is finite. In case G is R as in the Gaussian model or a
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compact interval in R as in the Heisenberg model, the above definition of the conditional
distributions should be changed to take into account the probability measure on the state

space. Again, we should note that this definition is independent of the lattice structure

but depends crucially on the potential function.
We are now in a position to state Simon's theorem. For a function f defined on

11 11f will be the sup,,EQ If(w)I. The potential function is said to be shift-invariant
or homogeneous if 4(A + p, rpw) = (A, w), VA E F(S), p E S, where rpw = (wS-P)oEs is

the translate of the configuration w e Q.

Theorem 18 Let : F(S) x fl -- be a homogeneous potential function defined on the
set S. If

(IAI - 1)11,(A,-)II < 1, (A.23)
OEA

then the conditional Gibbs distributions satisfy Dobrushin's uniqueness condition.

Proof: see [81]. S

The summation in Condition (A.23) is over all the finite subsets containing the site
0. Each term in the summation gives the maximum contribution over all configurations
that this subset could contribute to the total energy. Note that because of translation

invariance, the point at which Inequality A.23 is tested is irrelevant. Note also that this

inequality is generally satisfied when the temperature T is high enough. It therefore gives
an upper bound on the true critical temperature of the infinite system. This fact will be

exploited in the next section to give upper bounds on the true critical temperatures for

some commonly used Gibbs systems.

A.6.3 Applications

In this subsection, we give some applications of Simon's formula to the problem of
existence of a phase transition for some of the potential function examples mentioned in

the previous subsection. We will assume that S = Z2 and that the potential function

is a pairwise, homogeneous potential. Under these assumptions, the right hand side of

Simon's inequality can be written as

1
-11P 1s},-)11.

O#sES

If in addition we assume that the potential is factorizable, i.e.,

P({0, S}, W) = J(0, )(wo, W)
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as in the generic example above then Simon's inequality can be written as

Z IJ(O,s)l sup I'((wo,ws)l < 1. (A.24)
T osES wo,ws E G

Before applying the above formula to actual systems by specifying the bond parameters

J = J(0, s) and the interaction function , we would like to make the following remarks:

1. The inequality does not distinguish between attractive and repulsive potentials -

the sign of J, does not enter into consideration.

2. The L norm of the function Vi should exist. A sufficient condition for this is

that T be bounded on G x G. It is clear that a Gaussian potential (i.e., pairwise,

quadratic potential with G = R) does not satisfy this condition. However this

condition is always satisfied whenever G is compact and T continuous with respect

to the natural topology of G.

3. Again, we stress that this is only a sufficient condition. It is unable, for instance, to

tell us whether the Ising chain (S = Z, G = {-1, +1}) exhibits a phase transition

below a certain temperature. In fact, we know by direct computation that it does

not.

Now, we give some actual examples for applying Simon's inequality. As was men-

tioned, They are all for the case S = 2 . We will also assume that the lattice has a

homogeneous graph structure, i.e., each node on the lattice is connected to the same

number of neighboring vertices. We denote this number by . This graph structure is

introduced because it is the one that is prevalent in the image processing literature. The

graph v = 4 (4 nearest neighbors) corresponds to a first order neighborhood model; v = 8

(eight nearest neighbors) corresponds to a second order neighborhood model and so on.

Moreover, we consider only isotropic models.

1. Potts model: In this model, we have G = {1,...,n},J. = J,Vs E S,(v(wr,W,) =
6(w,, ws) where (-,-) is Kronecker's delta function. Simon's inequality becomes

simply

| < 1, (A.25)
T

or T > vjJj. In other words, if there is a phase transition it can only happen for

a critical temperature Tc < nJI. For the case where the bonding strength JI = 1

and the = 4, we get the upper bound T 4. Note that this upper bound is

independent of n, the number of colors. In Section 6.4.2, a mean-field estimate
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of the critical temperature was given for the periodic lattice and was found to

be T = 8/n. When n = 2 we get the upper bound given by Simon's formula.

As n increases, the mean-field estimate decreases consistently with Simon's upper

bound. It is interesting to note that when n is very large, T - 0. This result is

also consistent with the exact result, reported in [32], that for n > 12, there is no

phase transition in the sense of Dobrushin.

2. Autobinomial model: Here also, we have G = {1,... , n}, J, = J, Vs E S, I(wrwo) =

w, wo. The supremum of over G x G is n 2. There results that the Simon's in-

equality becomes

T ~l < 1, (A.26)
T

or T > vlJIn2. For the nearest-neighbor, binary case v = 4, n = 2, and JI = 1 we

get for Tc the upper bound Tc < 16. This bound is actually very coarse. In Section

6.4.2, the mean-field estimate of the critical temperature for this model was found

to be Tc = 2. This is also consistent with Simon's upper bound.

3. Heisenberg model: Now we assume that G = [0, 2r], a compact interval C ,J =

J, Vs E S, I(wr, w) = os(wr - w), which is upper bounded by 1. It follows that

we get a result similar to that of the Potts model, i.e., Tc < vIJI.

A.7 Relationship to the Theory of Yang-Lee

In classical statistical physics, the partition function is used to define a phase transi-

tion. According to a generally accepted definition in this field, a phase transition occurs

at a zero of the partition function considered as a function of the inverse temperature

/3 = . However for a finite lattice and when E A, the partition function is strictly

positive and a zero cannot exist. But if /3 is treated as a complex variable, then a zero

will exist. In the latter case however, the zero is a complex variable that is hard to relate

to the physical temperature of the system. The situation can be remedied by consider-

ing the thermodynamic limit, i.e, what happens to the complex zeros of the partition

function as the lattice size goes to infinity while the spin density remains constant. It is

clear that as in the mathematical case, we might run into an existence problem for the

thermodynamic limit. This existence depends, first, on how the thermodynamic limit is

taken and, second, on the interaction potentials between spins [85]. If the thermodynamic

limit exists, then the sequence of zeros of the partition functions of the finite lattices will
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possess a clustering point on the real axis. This clustering point would then be used to

define a phase-transition temperature.

A.8 Conclusions

In conclusion, we would like to state the following remarks:

1. Dobrushin's theory of Gibbs states does not exhaust all phase transitions. Indeed,

Gruber (1976) has come up with an example in which the infinite system has a

unique Gibbs distribution at all temperatures, i.e., there is no phase transition in

the sense of Dobrushin, but where the free energy has a singularity, i.e., there is a

phase transition in the sense of macroscopic thermodynamic. In other words, the
existence of more than one Gibbs measure is the "worst" that can happen to the

infinite system, but there are other bad" things that can happen also.

2. The theory presented in this appendix does not deal with spin state space that is

unbounded. In particular, it does not deal with the important case of Gaussian

spins. Cassandro and his collaborators (1979) extended the theory to deal with the

unbounded case and have come up with a generalization of Dobrushin's condition

to this case. The case of Gibbs/Markov Gaussian fields is a research area in its
own right that reduces in the D case to the study of the so-called reciprocal
processes. It is of particular importance since the results obtained can be used to

solve important engineering problems like multidimensional smoothing [50].

3. It is to be noted that the systems considered were all unconstrained. The intro-

duction of constraints on the configurations introduces long range interactions that

might lead to the violation of Dobrushin's uniqueness condition. It is therefore

expected that in the constrained case, phase transitions could happen in regions

that are otherwise prohibited. The problem of finding a sufficient condition for

uniqueness in the constrained system similar to Dobrushin's is still apparently an
open research question in the theory of Gibbs systems [D. W. Stroock, private

communication].
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B

Saddle-Point Approximation

Quite simple, my dear Watson.

Sherlock Holmes

In this appendix, we give more details on the saddle-point approximation that we

used in Chapter 3 to replace the integral representation of the partition function with

a simpler expression that depends on the point where the effective energy has a global

minimum. This type of approximation is a multidimensional generalization of Laplace's

method for finding the leading term in the asymptotic expansion as x -- +oo of integrals

of the form

I(x) = b e_(t)dt, (B.1)

where b is a real continuous functions. The fundamental idea behind Lapalce's method

is the following: If the real continuous function +(t) has its global minimum at c E [a, b]

then it is only the immediate neighborhood of c E [a, b] that contributes to the asymptotic

expansion of I(x). An excellent reference on this and related methods is the book by

Erdelyi, Asymptotic Expansions [24].

There are two steps involved in the approximations:

1. Assuming c the open interval (a, b), replace I(x) with

I(x; ) = C+C ef O(t)dt (B.2)
for sufficiently small.e

for e sufficiently small.
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2. Use the Taylor series expansions of ¢ in the neighborhood (c- , c + e) of c to find

the asymptotic expansion of I(x; E).

One can easily show that the quantity I(x) - I(x; E) is exponentially small compared

with I(x) as x - +oo. This implies that the asymptotic expansions of I(x) and I(x; c)

are identical as x -- +oo. For more details, see the abovementioned reference.

The mechanics of the method is rather simple. Writing the second-order Taylor series

expansion of +(t) in the neighborhood of c, we get

+(t) = +(c) + (t-c)2 (2)(c) + o ((t - )2) (B.3)

the first-order term being zero because +'(c) = 0 at the isolated global-minimum point

c. We will assume from now on that the integration is over all the real line. Substituting

into the integral and neglecting the contribution of the higher order terms of the Taylor

series, we get
I(x) ~ e-'O(C) + e_(C)(C)(t_,?2

-00

Since +(2 )(c) > 0, the above integral evaluates to

2r

X(2)(C)'

which gives

I(x) e

When we are dealing with the multidimensional case as in the approximation of the

partition function, the Gaussian integral evaluates to

2r ISI/2

l det(H-")

where ISI is the size of the lattice, and H* is the Hessian of the multivariable function
+(v) computed at the global minimum point v*. The integral I(x) can therefore be
approximated in the multidimensional case by

( ) z~ ) / det(H*)e ). (B.4)

This approximation is better, the larger the parameter x. In the case of the partition

function approximation, this parameter depends on the lattice temperature, T, and the
lattice size, S. Indeed, one can write

yEqf (v) = (Eeff(v)/IISl),
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where the term between parentheses is the effective energy per pixel which can be con-

sidered approximately independent of the lattice size. This heuristic argument suggests

that the mean-field approximation improves, the larger the lattice size.

In Section 3.1.4, we used both the above approximation and its generalization to the

case where the integral to be expanded is of the form

I(x) = b f(t)e-'(t)dt,

where f and b are real continuous functions. In this case, one can show that the leading

term in the expansion of I(x) as x +oo is

V'2rf e-,(c)

V (2) (c)

where c is the point at which the function reaches a global minimum. For more details,

see [24]. A similar leading term can also be obtained for the multivariable case.

As stated by Amit ([2], p. 137f), Physics tends to lump together three methods -

steepest descent, saddle-point and Laplace's method, unless distinctions ae absolutely

required." Indeed, the name "steepest-descent" is usually reserved for the case where

the functions f and are complex analytic in the complex variable t and where I(x) is
a contour integration.
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