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Recently proposed enhancements to the CM-5 architecture for QCD calcula-

tions will also allow Teraflop performance in ab initio material science and chemical

calculations with current; well established techniques. Such performance brings fun-

damental computational studies to a qualitatively new echelon and unleashes the full

predictive power of first principles' techniques on problems in several critical tech-

nologies. Additionally, the new CM-5 architecture is well poised to take advantage

of two coming major developments in condensed matter calculation.



I. INTRODUCTION

Ab initio calculation of condensed matter systems has advanced greatly in recent

years. This approach has yielded tremendous understanding of the thermodynamic

properties of bulk materials[1], crystal surface structures[2] and dynamics[3], the na-

ture of point defects[4], and the diffusion and interaction of impurities in bulk lla-

terials[5]. However, the computational demands of the approach and the attendant

bounds on the size of systems which may be studied (roughly one hundred atoms)

have limited the direct impact of the approach on materials and chemical engineering.

Several ab initio applications which will benefit technology tremendously remain out

of reach, requiring an order of magnitude increase in the size of addressable systems.

Problems requiring the simultaneous study of thousands of atoms include defects

in glasses (fiber optics communications), complexes of extended crystalline defects

(materials' strength and processing), and large molecules (drug design). The com-

putational demands of the ab initio technique scales as the third power of system

size. Studies of thousands of atoms require a three order of magnitude increase in

computational speed, and Teraflop performance is needed to perform such studies.

Negele[6] has recently proposed enhancing the performance of the computation

nodes of the commercially available CM-5 to attain Teraflop performance in QCD

calculations by bringing the CM-5 into computation-communication load balance foi

QCD. Improving the node design impacts tremendously on the machine's performance

for this application because the QCD Hamiltonian is a local operator and, therefore,

places a much higher premium on computational than communications performance.

The most successful ab initio condensed matter Hamiltonians are also local opera-

tors[7], and we shall demonstrate in this report that condensed matter calculations

will also attain Teraflop performance on the proposed machine. The new machine will

be the first machine capable of addressing the aforementioned problems of pressing
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technological importance from first principles.

In the next section, we describe the particular ab initio electronic structure tech-

nique which best suits the parallel computing environment and outline the major

steps in a calculation performed with this technique. Section III then describes the

basic layout of the calculation among the processing nodes of the enhanced CM-5

and defines the quantities needed to describe the rigors of the calculation. Section IV

then presents a summary of the computational and communications requirements of

ab initio electronic structure calculation on the enhanced machine. This section also

gives a detailed account of the demands of each step in the calculation sufficiently

specific to serve as a guide for programming. The report concludes in section V with

a discussion of the results presented in section IV.

II. OUTLINE OF THE LCGTO-LSD METHOD

There are a variety of well established ab initio electronic structure methods[7].

The technique which best exploits the locality of the Schrodinger equation is the

the linear combination of Gaussian-type orbitals-local spin density (LCGTO-LSD)

method[8-11]. This method expands the electronic orbital wavefunctions in terms

of sums of Gaussian functions and then solves the local Kohn-Sham Hamiltonian[12]

self-consistently. The localized spatial nature of the Gaussian basis function ensures

that the Hamiltonian matrix elements decay extremely rapidly with distance and

renders application of the Kohn-Sham Hamiltonian local in the same sense as is the

application of the QCD Hamiltonian described in [6].

The calculation for condensed matter, however, is somewhat more complex than in

the QCD case. The self-consistent nature of the Kohn-Sham Hamiltonian necessitates

an iterative process where the Hamiltonian must be continually re-computed. Fur-

ther, the electronic structure problem requires the calculation of many filled Fermionic
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electron states, rather than merely the ground state and a few excited states, as in the

QCD case. Furthermore, orthonormality must be maintained among all of the elec-

tronic states. Consequently, the LCGTO-LSD calculation proceeds by the iterative

repetition of three phases: 1) calculation of the self-consistent Kohn-Sham Hamil-

tonian, 2) application of that Hamiltonian to the electronic wavefunctiols (and the

addition of a fraction of the result to the wavefunctions), and 3) re-orthonormalization

of the wavefunctions.

The self-consistent Kohn-Sham Hamiltonian in a Gaussian basis set {y} repre-

sentation is

H(-c) = H(1) + V(dir) + V(xc) (2.1)

where H is the sum of the kinetic energy and bare nuclear potential terms, V(c)

is the exchange-correlation potential, and V(dit) is the Hartree, or direct, potential.

The exchange-correlation potential is computed in terms of p(ri), the electronic charge

density evaluated on an integration grid for the exchange-correlation energy. The val-

ues of p(ri) are most efficiently computed from the density matrix P _ E, C, ,C,,,

where C,, is the coefficient of basis element tt for electronic wavefunction n. Eval-

uation of the Hartree potential is more complex because of the long-range nature of

the Coulomb interaction. To fully exploit the parallel computing environment, it is

best to replace the action-at-a-distance Coulomb interaction with local interactions

mitigated by the electrostatic potential field. The method expands this field in terms

of an augmented LCGTO basis which, to assure a proper representation of the field,

includes simple Gaussian functions in the interatomic regions in addition to the basis

used to expand the wavefunctions near the atoms. In the representation of the ex-

tended basis {i}, the familiar electromagnetic variational principle for the electrostatic

potential becomes minimization of the quantity
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El E bPjiLjj4 + e A P,,[jvi]-(bi, (2.2)
ij Avi

where e is the electronic change, the Lij are the matrix elements of 2, and [vi]

is the overlap of the three basis functions p, v and i. The minimum of the sum of

this quantity and the usual electronic energy functional then simultaneously gives the

correct solution for both the electrostatic potential arising from the electronic charge

density and the electronic eigenstates of (2.1) in the corresponding V(dir).

The second phase of the calculation requires only one intermediate quantity, the

value of the Hamiltonian acting on the electronic wavefunctions, which may be com-

puted directly once the Hamiltonian is known.

The subsequent orthonormalization of the wavefunctions, however, is more com-

plex and must proceed in terms of a number of intermediate quantities. The LCGTO

basis is not orthonormal; consequently, the first step in computing the the overlap

between two states, m and n, is to multiply the coefficients of n by the basis overlap

matrix to form C,. The overlaps between wavefunctions, Un, -< min >, then be-

come direct inner products between the C,, and the Ca. Once Unm is known, the

transformation matrix required to bring the wavefunctions into orthonormality, Anm,

may be readily computed. (A common approximation is to take A Id - (U - Id)

where Id is the identity matrix[7].) The last step in orthonormalization is then to

apply A to the wavefunctions.

IHI. ORGANIZATION OF THE CALCULATION

Assigning each vector unit (VU) to the processing of the basis functions and grid

points in a confined region of space best exploits the locality of the calculation. In

the LCGTO-LSD method, the basis functions are all centered on the coordinates of

nuclei and the integration grids are similarly designed centered on the positions of the

atoms. It is most natural to group the processing in terms of the atoms and to assign
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some number of atoms to each processing unit. As we shall soon see, the machine

is balanced when each of the Nvu = 16,384 vector units (VU's) is assigned a single

atom. To allow a more general discussion we shall assign a atoms to each VU, where

a is envisioned to be unity but may vary either greater or less than one.

Typically there are -y = 20(a) and g = 150(a) electronic basis functions and

exchange-correlation grid points assigned to each VU, respectively. Experience with

plane wave calculations shows that a 12 Ry cutoff is sufficient to represent the elec-

trostatic potential in interatomic regions. This level of accuracy corresponds to an

additional 25-30 basis functions in the extended basis set for the electrostatic poten-

tial beyond the basis functions representing the electrons. This represents a total of

approximately p = 50(a) electrostatic potential basis functions per VU.

To process its basis functions, each VU requires, in principle, knowledge of the

coefficients of all B = 20(a)Nvu elements in the basis. The local nature of the LSD

Hamiltonian and the LCGTO basis ensure, however, that this is not necessary in

practice. In practice, basis functions with centers more than 6 apart have matrix

elements sufficiently small that their interactions may be ignored[13]. At typical

solid state densities this corresponds to a local neighborhood of approximately 50

atoms. Thus, each VU only requires knowledge of the roughly r = 20 x 50 =

1000 basis functions in its neighborhood and must access only the corresponding r

elements of the self-consistent Hamiltonian. Note that the value of r is fixed by

the physical range of 6And is independent of a. In a similar vein, each VU will

periodically require information regarding the G = 150 x 50 = 7500 grid points and

P = 50 x 50 = 250 electrostatic basis functions in its "within range" neighborhood.

Finally, the calculation will require the calculation of approximately S = 4(a)Nvu

filled, orthogonal electronic states.
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IV. COMPUTATIONAL REQUIREMENTS

Table I lists the per node computation, communication and memory requirements

during an iteration for each of the major objects defined in section II above. The table

gives the results both in terms of the quantities defined in section III and in terms

of time estimates based on a mean VU processing rate of 40 MFLOPS and a mlean

VU-VU communications rate of 5MW/sec. Three additional quantities enter Table

I beyond those defined in section III: 1) M 3, the floating point operations count to

compute a three basis function overlap; 2) Mf, the operation count to evaluate a

basis function at a given point in space; and 3) , the time required to collect a

global sum of one real number on each vector unit. The first object is on the order

of 900 floating point operations, while Mf requires about 50. Commercially available

CM-5's perform properly pipelined global sum operations at rate of 10/s/value, a

figure which is reducible to 2ps/value in the enhanced machine. We shall now discuss

in detail the derivation of the results for each object in Table I.

A. Evaluation of P,,

Each VU must calculate

PM - C,*C, (41)
n

for p and v among the r basis functions in range. This will require, first, the com-

munication of the rS electronic coefficients from within the 6A neighborhood of the

VU onto the unit and then 2r 2 S floating point operations. Also, the P,, will require

r 2 words of storage.

B. Evaluation of p(ri)

With the density matrix computed, the p(ri) are readily computed through
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p(ri) = E Pg,,b,.(ri)b,(ri), (4.2)
~v

with and v each taking the r values within range and ri varying over the g points

for which the VU is responsible. The values b,(ri) may be stored in gr words and are

readily computed. These values may then be looked up and (4.2) computed with 3yr 2

floating point operations. With all of the needed information compressed into the P,

and stored on the VU's, no additional communications are necessary to compute this

object.

C. Evaluation of V(^c)

With the p(ri) known, the exchange-correlation potential is then

Vc) = Z wiv(c) (p (ri)) b,(ri)bV(ri), (4.3)

where vuc(p(r)) is the standard approximation to the exchange-correlation potential

functional[12]. This evaluation requires the communication of G values of vc in

range of each processor as well as (2Mf + 3)7rG floating point operations, where

M is the operations count to evaluate the value of a basis function at a particular

point in space. Proper ordering of the evaluation may be able to avoid continual

re-computation of the b,(ri) and reduce the computational load of this part of the

calculation. The values of V(Oc) require yr words of storage.

D. Evaluation of Pi

V(dir) is determined by the hi, which come from minimizing E as given in (2.2)

by a steepest descents' method which may occur simultaneously with the electronic

relaxations. For each VU the first step in determining the gradient of (2.2) with

respect to the hi is to compute the overlaps of the charge density with the electrostatic

basis,
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pi = PA,[Avi]. (4.4)

This must be done for each of the p electrostatic potential grid points for which

the VU is responsible. This requires (M 3 + 2)pr2 floating point operations, where

M 3 is the operations count to determine a single three basis function overlap. No

communications are required in this phase and the i require a negligible amount of

storage.

E. Evaluation of L{ }

The second component of the gradient with respect to the i comes from the

application of the Laplace operator Lij defined in (2.2). The application of this

operator to I requires knowledge of the P values of hi within range of each VU and

a total of 2pP operations. The needed pP values of L are assumed to be computed

once and stored in the local memory, but may be recomputed continually to save

memory at very little cost in computation.

F. Evaluation of V(dir)

Once the Pi have been updated, the matrix elements of the direct potential may

be computed as

Vdi') = E Z i[tVi]. (4.5)

Calculation of this for the x r matrix elements needed on each node requires trans-

mission of the P values of the updated 4bi within range and (M 3 + 2)yrP floating

point operations. No communications is required as the needed values of Pi were

transmitted previously in the communications for calculating L{(}. The results for

V(dir) may be accumulated directly onto the V(^c) above so that no additional storage

is necessary.
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G. Evaluation of H{()}

Once computed, the updated Hamiltonian must be applied to each wavefunction

with some fraction of the result added back to the original wavefunction, according

either to a conjugate gradient, steepest descents or second order equation of motion

approach. Regardless of the technique employed, once H{0L'} has been evaluated,

combination of this object with the wavefunctions is a trivial task requiring on the

order of yS operations in each VU. Application of the Hamiltonian to each wavefunc-

tion,

(C),n- H(sc)C; C (4.6)
v

however, requires 2yrS operations and yS words of storage to keep the result. All

needed elements of the Hamiltonian are computed directly in each VU, and the com-

munications requirement for this phase is that each node accesses rS coefficients in

its neighborhood.

H. Evaluation of Cn

During the calculation, it is imperative to maintain orthonormality among the

wavefunctions to keep the Fermionic wavefunctions from collapsing to the ground

state. The electronic coefficients Cn, are vectors of length B which must satisfy the

following S 2 ( 4 billion) constraints,

Unm- C ,[Luv]C., (4.7)

= nm X

where [v] is the overlap between the basis functions /t and v. Note the presence of

the double basis sum (over it and v) necessitated by the non-orthonormality of the

LCGTO basis. The first step in a practical calculation of (4.7) is to compute
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CA =- E [V]Cnv (4.8)

which requires knowledge of all of the band coefficients in the range, a communication

of sr floating point values to each processor. The computational requirement for this

calculation is 2yrS floating point operations. The storage requirements are those tof

another set of wavefunctions, (yS words), but the space used in accumulating H{(, 1 }

may be reused for the C' so that no additional storage is required.

I. Evaluation of the overlap matrix Unm

This is the most demanding part of the entire calculation. Computing

Unm = - C nG , (4.9)
IL

even exploiting the Hermitian symmetry, represents S2 global sums over the entire

basis set. The partial sums within the VU's require yS 2 operations concurrent on

each node, but then these results must be summed over all VU's. This represents a

communications load of ½S2 global sums of individual values held in each V U. With

F as the average time to compute such a sum when properly pipelined, the time for

forming the global sums will be 1 S2E. The S x S matrix U may be stored spread
$2

across all VU's requiring NS- words per VU. The transformation matrix as described

in section II (A -_ Id - (U - Id)) is then readily computed with a minimal number

of concurrent operations.

J. Evaluation of the orthonormalized wavefunctions, A{(,)

Once Anm has been determined, its S2 elements are broadcast to all nodes, which

then each perform a set of 2yS2 floating point operations. (It is most efficient to

broadcast batches of data corresponding to entire columns of A.) As it is built up,

the result A{(n) requires 7S words on each processor, but the same space employed
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to store H(,)} may be reused for this part of the calculation so that no additional

storage is needed for the application of A to the C,,.

V. EVALUATION AND CONCLUSIONS

From Table I we see that the VU memory of 4MW is sufficient for calculations

of up to 16,384 atoms. Furthermore, because an initial relaxation from random

wavefunctions generally requires approximately 50 iterations, the new machine will

perform calculations on such extremely large systems within times on the order 200-

300 hours, making such calculations quite feasible.

We also find that, even with the enhanced nodes, the calculation is still computa-

tionally bound with computations requiring twice the time spent on communications.

With only about 40% the machine's time spent communicating, calculations on these

large systems will sustain an average processing rate of about 0.4 Teraflops. Because

the calculation is still computationally bound, the factor of ten improvement in node

compute performance is critical in making the calculations feasible; without it, several

months of machine time would be required for each ionic configuration.

The new machine is not only well balanced for current ab initio condensed matter

techniques, it will also serve well as the field develops over the next several years

because its architecture is well suited to coming developments in the field. Galli et.

aL[14] recently have been developing techniques which reduce the demands of precisely

those objects which dominate the computation (Pu,, Unm and A{k}) and commu-

nications (U,,m and A{,}) of the LCGTO-LSD calculation to the level of the other,

less demanding components. This development will maintain the good computation-

communication balance and allow iterations on these large systems to be performed in

minutes. Dynamics calculations could then be carried out over picosecond time scales,

sufficiently long to compute free energies. Furthermore, to exploit the natural separa-

11

_�______II____ILYII I



tion of space into regions of rapidly and slowly varying wavefunctions, practitioners of

the ab initio condensed matter approach are experimenting with and moving toward

wavelet bases[15]. These bases not only yield Hamiltonian matrix elements with a

local structure very similar to that in LCGTO-LSD, they also have several great ad-

vantages over the LCGTO basis including the ability to systematically complete the

basis in mathematically rigorous and well defined manner[16]. Approaches based on

these new bases will place very demands on computer architectures similar to those

of the LCGTO-LSD method. The new machine will be ready to exploit this cutting

edge development to its fullest.
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TABLES

Table I. Summary of computational, communications and memory requirements

of the LCGTO-LSD approach as proposed for execution on the enhanced CM-5.

The objects required for the calculation are discussed and defined in section II. The

results presented are for a calculation employing all 16,384 vector units ill the machi:e

each processing a atoms. (The remaining scaling variables are defined in sections III

and IV.) An overall vector unit processing rate of 40 MFLOPS and an average VU-

VU communications rate of 5 MW/sec is assumed.
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Object Computation (per node) Communication Memory

Operations Time (min) Words Time (min)

A) P,, 2r2S 55(a) rs I 0.22(a) r2 = 1MW use[G]

B) p(ri) 3gr 2 0.19(a) data in unit gr = 150hKW(a) use[I]

C) v(Tc) (2Mf + 4)yrG 6.5(a) G 2.5 x 10- 5 r =20OKW(a)

D) Pi (M 3 + 2)pr2 19(a) data in unit p < 1KW(a)

E) L{ } 2pP 10o-(a) P 8.3 x 10-6 pP = 125KW(a)

F) v(ir) (M 3 + 2)orP 19(a) P 8.3 x 10-6 -r use[C]

G) H{n.} 27rS 1.1(a2 ) j rs 0.22(a 2 ) $ S = 1.3MW(a)

H) CI 2_ rs 1.1(a 2 ) rs 0.22(a) yS use[G]

I) Unm _ S2 36(a3 ) S2E 72(a2) s- = 260KW(a 2 )

J) A{,}. 2yS2 72(a3 ) S2 14(a2 ) yS use[G]

H(l) Computed once and saved in unit yr = 20hKW(a)

{Vp)} Requires uncorrupted storage during each iteration yS = 1.3MW(a2 )

Total 210min(a + a ) 87min(a2 ) 3.2MW(a2 )
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