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ABSTRACT

LOAD-DEFORMATION BEHAVIOR OF SATURATED CLAY
DURING UNDRAINED SHEAR

by

EDWARD BROOKS KINNER

Submitted to the Department of Civil Engineering on
May 4, 1970 in partial fulfillment of the requirement for the
degree of Doctor of Science in Civil Engineering.

Comparisons are made between the predicted and observed
behavior of a strip footing during undrained loading for the purpose
of gaining additional insight into how improved engineering estimates
of undrained stability and initial settlements can be made for
structures that are to be placed on deposits of saturated clay.

Undrained load-deformation and bearing capacity data for
idealized "field" conditions were obtained with the aid of model
footing tests on Boston Blue Clay. The model footing tests were
conducted at overconsolidation ratios of one, two, and four on
undisturbed soil samples that had been one dimensionally consolidated
from dilute slurries in the laboratory. Plane strain conditions were
approximated in the tests by the use of a rectangular footing having
a length to breadth ratio of eight.

Consolidated undrained plane strain, triaxial, and direct-
simple shear tests were conducted for the purpose of obtaining
information on the undrained strength, stress-strain modulus, E; and
K , the coefficient of lateral stress at rest of the soil. These data
were used in making theoretical predictions of the footing performance.

Undrained bearing capacity predictions were made with a
bearing capacity theory in which strength anisotropy of the soil
during undrained shear can be considered. Load-deformation predictions
for the model footing were made with a bi-linearly elastic finite
element program.

It is concluded that reasonable predictions of undrained
bearing capacity for a strip footing on Boston Blue Clay can only be
made if the effects of sample disturbance and strength anisotropy are
considered.

The predicted load-deformation behavior of the model footing
was dependent on the values of undrained shear strength, K , and E
that were specified in the analysis. Parametric'studies

-2



showed that average values of K and of undrained strength from plane
strain tests for each overconsolidation ratio could be used in making
final correlations with the model test results. However, with the
bi-linearly elastic finite element analysis it was not possible to
make an a priori prediction of the modulus at all values of over-
consolidation ratio that would lead to a good prediction of the model
footing performance for the full range of loading. Rather, the choice
of the best modulus value was dependent on consideration of the stress-
strain properties of the soil for each stress history.

Thesis Supervisor: Charles C. Ladd
Title: Associate Professor of

Civil Engineering
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Estimates of two major factors, stability and settlement, are

usually required when designing earth structures and foundations that

are to be placed on deposits of saturated clay.

Stability calculations are made to ascertain the safety of the

structure with regard to ultimate collapse. Emphasis in stability

calculations is normally given to the most critical condition occurring

during or following construction. For many foundations problems on clay

deposits, this critical period occurs at the end of construction for

nearly undrained conditions, when little if any dissipation of excess

pore pressures has occurred, Bishop and Bjerrum (1960).

Estimates of total settlements are made so that the structure

may be designed for anticipated movements. The total settlement that

a foundation may experience is generally considered to consist of three

components:

a. The first, an initial or immediate settlement,
is caused by deformation of the soil at constant
volume (undrained conditions) under the imposed
shear stresses.

b. A time-dependent settlement, commonly known as
primary consolidation, occurs as the volume of the
clay mass changes due to increasing effective stress
upon dissipation of the excess pore pressure.

c. A settlement known as secondary compression or
secondary consolidation occurs wherein the volume

- 18 -



of the clay changes under conditions of apparent
constant effective stress.

This report is concerned with the undrained stability and

initial settlements of foundations on saturated clay. Estimating the

undrained stability of a foundation is very important for in many cases

this is the most critical condition from the standpoint of safety.

Estimating initial settlement is important because the existence of

large initial settlements may indicate an approaching undrained

failure. Furthermore, initial settlements are the starting point from

which to analyze primary and secondary consolidation.

Direct observations of undrained stability in the field must

either be made with special load tests or test embankments or after

unexpected failures. Therefore, observations of undrained stability

in the field require either special and expensive procedures or un-

desirable conditions. An analysis of the initial settlements in the

field is desirable so that the reliability of the predictions that had

been made might be ascertained. Complicated field conditions fre-

quently make this analysis difficult. For these reasons, it is

desirable that the engineer have reference "field" data upon which to

judge the reliability of his predictions of undrained stability and

settlement. These reference "field" data may be obtained with the

aid of model footing tests.

1.2 PURPOSE

The research described in this report was conducted for the

purpose of making comparisons between the predicted behavior of a

- 19 -



strip footing and the measured "field" behavior of the footing as

simulated in the laboratory model footing tests. The intent of the

research was to develop a body of knowledge that might be utilized to

make improved engineering estimates of undrained stability and initial

settlements for plane strain foundation problems on saturated clays.

1.3 SCOPE

Undrained stability and initial settlements were studied with the

aid of model footing tests in the laboratory under carefully controlled

conditions. The equipment that was developed employed a rectangular

footing having a length to breadth ratio of eight. This permitted

simulating plane strain foundation conditions that are frequently

encountered in practice.

A comprehensive series of undrained model footing tests was

conducted on samples of Boston Blue Clay (liquid limit approximately

40 percent) having overconsolidation ratios of one, two, and four.

Normally consolidated tests at three values of effective stress were

conducted for the purpose of observing normally consolidated "field"

behavior over a range of consolidation stresses.

Undrained strength and stress-strain data (normally consolidated

and overconsolidated) from plane strain, triaxial, and direct-simple

shear tests on Boston Blue Clay were compiled, analyzed, and compared

for use in making theoretical predictions of the performance of the

model footing.

Undrained stability predictions were made using a bearing capacity

- 20 -



theory developed for application to cohesive soils that exhibit an-

isotropic undrained shear strength. Load-deformation predictions, through-

out the full range of loading, were made with the aid of a bi-linearly

elastic finite element program in which anisotropic initial stresses

and strength anisotropy could be specified. Detailed studies were made

of the influence that variations in undrained strength, stress-strain

modulus, and the coefficient of lateral stress at rest have on the pre-

dicted performance of the model footing.

It is shown that stability calculations for undrained bearing

capacity conditions can be greatly in error unless anisotropy with

respect to undrained strength is considered. Recommendations are made

concerning how improved predictions of initial settlements in the field

can be made with the aid of finite element techniques. Suggestions

are presented for additional laboratory and analytical effort that this

research has shown to be desirable.

- 21 -



CHAPTER 2

THEORETICAL CONSIDERATIONS AND REVIEW OF MODEL FOOTING

TESTS

2.1 THEORETICAL CONSIDERATIONS

Consideration is given in this section to methods by which the

initial settlements and undrained stability may be estimated for founda-

tions such as the model footing employed in this research. Initial

settlements will be discussed in Section 2.1.1 and undrained stability

will be considered in Section 2.1.2.

2.1.1 Initial settlements

Several theoretical approaches may be employed to estimate the

initial settlements of foundations on clay. Elastic solutions are

frequently used. If the soil is reasonably homogeneous, it may be possible

to characterize the deposit as a single elastic layer. The initial

settlement can then be estimated using an equation of the form:

B
p = - I (1)

where

p is the initial settlement of the foundation

a equals the average stress imposed on the soil by

the foundation

B is a convenient foundation dimension (usually the width

in the case of a rectangular footing)

E is the undrained Young's modulus of the soil and

- 22 -



I is an appropriate influence factor determined

for Poisson's ratio equal to 0.5.

Influence values are presented by several authors. Poulos (1967), for

example, gives influence values that can be used to calculate the

settlement of a strip footing resting on an elastic layer of finite

depth underlain by a rough rigid base. Influence values presented by

Janbu, et al. (1956) can be used to estimate initial settlements for

a range of foundation embedments, strata thicknesses, and footing

shapes.

For cases where the underlying clay is composed .of several

layers or in cases where it is desirable to divide a homogeeous deposit

into several layers, Davis and Poulos (1968) proposed using a numerical

integration approach to compute the immediate settlements. In this

approach, the footing settlement is calculated by summing the strains

of the individual layers using an expression of the form:

S - 0.5 (ax +y)j Sh (2)

where 6h is the thickness of each layer, and representative

increments of vertical and horizontal total normal stress are given

by oz, and Cx and a respectively.

Classical elastic stress distribution theories are employed

in determining the influence values for use in equation (1) and the

stress increments used with equation (2). For the stress ranges

usually encountered in practice, soils do not behave as linearly elastic
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materials. Methods that retain a portion of the classical elastic

theory but that include consideration of the aforementioned non-linear

behavior have been presented for estimating initial settlements.

Lambe (1964) used elasticity theory to compute the increments

of normal stress that were imposed at selected points below the founda-

tion. However, in this method, the strains determined in laboratory

tests on soil specimens subjected to these representative field stresses

are integrated over the depth of the soil to estimate the initial

settlement.

Davis and Poulos (1968) retained the use of equations (1) and

(2). The non-linear behavior of the soil is considered in their method

by using modulus values that are determined in undrained shear tests

on soil samples subjected to stresses representative for the problem

under consideration.

Both methods were developed for axi-symmetric foundation

problems. However, the principles of the methods are applicable to

plane strain conditions.

Both approaches are subject to the limitation that the strains

and redistribution of stress that accompany yielding of the soil

cannot be considered in the estimate of initial settlement. Thus if

significant yielding occurs in the soil it is expected that neither

approach will yield accurate predictions of the initial settlement.

In their paper, Davis and Poulos show that the foundation stress re-

quired to cause first yield is dependent on the undrained strength and

coefficient of lateral stress at rest of the clay. It is shown for
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normally consolidated clays, that the factor of safety with respect to

undrained bearing capacity failure for a strip footing at first yield

is typically greater than four. The corresponding factors of safety

for lightly overconsolidated clays are shown to be from two to four.

Thus, since local yielding occurs in most foundation problems on clay,

it is desirable that methods be employed that consider this behavior.

Recently, theoretical methods have been developed that can

be utilized to estimate initial settlements, even though local yielding

occurs. Christian (1966), and Hoeg, et al. (1968), used a lumped

parameter model to predict the load-deformation behavior of a strip

footing resting on an elastic-plastic soil which yielded in accordance

with the Tresca yield criterion.

Foundation performance after first yield can be studied with

the aid of finite element techniques. Plane strain problems can be

studied with finite element program PLASAD, MIT (1968). As with the

lumped parameter model, it is assumed with this program that the soil

exhibits an isotropic shear strength that is characterized by the

Tresca yield criterion.

Finite element program FEAST III,D'Appolonia (1968) and

D'Appolonia and Lambe (1970), employs a bi-linearly elastic stress-

strain relationship. In this approach, the elastic properties of the

soil are modified when the imposed shear stresses in an element equal

or exceed the specified yield stress. Although this stress-strain

relationship can closely approximate elastic-perfectly plastic behavior,

stress and strain remain uniquely related after yield. Program FEAST III
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has been employed extensively in the research described in this report.

2.2.2 Undrained Stability

It has long been recognized that clays can exhibit anisotropic

strength. An early mention of this fact was made by Casagrande and

Carrillo (1944), and Hansen and Gibson (1949) made theoretical pre-

dictions of its influence. But only recently has considerable effort

been devoted to the study of the magnitude and causes of strength

anisotropy and to the solution of engineering problems that consider

this behavior. Several reviews of the state-of-the-art concerning

anisotropic strength in clays have recently been made: Ladd and

Varallyay (1965), Bishop (1966), Duncan and Seed (1966) and Baker and

Krizek (1970). The causes of strength anisotropy have been categorized

as follows:

a) anisotropy of the effective stress-strength parameters

b) anisotropy with respect to pore pressure development

c) rotation or reorientation of the principal stresses

during shear.

It is difficult, if not impossible, at the present time to isolate and

study the effects of the individual sources of strength anisotropy

when dealing with the solution of stability problems in the field.

Nevertheless, it is important that the net effect of this physical

behavior be considered.

The implications of strength anisotropy were outlined by Ladd

and Bailey (1964). The results of undrained triaxial tests on Boston

Blue Clay were presented to demonstrate that significant differences
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in undrained shear strength can occur when samples of this clay are sub-

jected to a reorientation of principal stresses during shear. Based on

the results of these tests, Ladd and Bailey pointed out that due to

differences in total stress paths, it was possible that variations in

undrained strength could occur along potential failure surfaces below

footings and foundations on normally consolidated deposits of clay.

Hence, the average undrained strength along potential failure surfaces

would be a function of the strength anisotropy.

Ladd and Bailey further noted that when the results of vane

and unconfined tests are used in making predictions of undrained

stability, satisfactory predictions might be made because of compensating

errors. For instance, Bishop and Bjerrum (1960) used the results of

these tests to analyze several end of construction failures of fills

and footings resting on saturated clays. Factors of safety of approxi-

mately one were obtained. Ladd and Bailey suggested that the lower

measured strengths of the unconfined and vane tests, relative to CK UC
o1

triaxial tests,1 resulted from sample disturbance and reorientation

of principal stresses respectively. Satisfactory stability predictions

might be obtained since use of these low strengths was offset by the

presence of a low average insitu strength, relative to the CK UC
o

strength, because of anisotropic strength behavior.

Numerous solutions to engineering problems that consider

strength anisotropy have been proposed. For example Hansen (1952)

1 CK UC Anisotropically consolidated triaxial compression test.
o
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formulated solutions for passive earth pressure and bearing capacity

problems on anisotropic clays. Duncan and Seed (1965), Lo (1965),

Rangantham and Matthai (1967), and others have considered slope

stability problems for cases of anisotropic strength. Of particular

interest to the research described in this report is the work of Davis

and Christian (1970) and D'Appolonia (1968).

Davis and Christian (1970) presented a method that can be

employed to estimate the undrained bearing capacity of a strip footing

resting on an anisotropic clay. They assumed that the strength an-

isotropy of a clay can be characterized by an elliptical strength plot

as shown in Figure 2-1. s in the figure is the undrained shear

strength for vertical compression, i.e. the major principal stress,

•1, is in the insitu vertical direction. suh and su6 are the

undrained strengths measured when 1 is oriented horizontally and 6

degrees from the vertical respectively at failure. Using the method

of stress characteristics, Davis and Christian determined that Nc, the

bearing capacity factor, varied as b/a, the ratio of the half axes

of the elliptical strength plot. N for a surface strip footingc

varies as shovwn in Figure 2-2. Once the appropriate N value of the
c

soil has been determined, the bearing capacity of a strip footing is

estimated as N times the average of s and s uh Davis and Christian

noted for most clays that Nc could be expected to be between 4.75

and 5.14. This represents an eight percent variation in the ultimate

bearing capacity for the same average of suv and Suh* The Davis and

Christian theory is employed later in this report to predict the
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undrained bearing capacities of the model footing tests.

The capability to consider strength anisotropy was incorporated

in finite element program FEAST III, D'Appolonia (1968). Therefore,

when use of this program is made, predictions of both load-deformation

behavior and bearing capacity can be made for an anisotropic clay. As

noted earlier, this program is employed extensively in the research

described in this report. Anisotropic strength is assumed to vary in

the program in accordance with the distribution proposed by Casagrande

and Carrillo (1944).

2.2 REVIEW OF MODEL FOOTING TESTS

Small scale footing tests have been employed extensively

in soil mechanics research. A comprehensive survey of footing tests

conducted prior to 1959 was made by Roberts (1961). Six references

were cited that dealt with tests on cohesive soils. All laboratory

programs cited considered either remolded clays or "undisturbed" samples

from the field that were placed in containers for testing. One interest-

ing observation from these early footing tests was that the ultimate

bearing capacity for a strip footing was found to be approximately

equal to 5.1 times the shear strength of the soil measured in unconfined

1
tests. Roberts pointed out that very little effort had been made in

Laboratory model footing tests on remolded or compacted clays have
continued. Among these are Young, et al. (1966), Goodman, et al.
(1966), Perloff and Rahim (1966), and Brown (1967). The investiga-
tion by Brown concerned layered clays.
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these investigations to study footing behavior as a function of the

stress-strain characteristics of the soil.

Recently, emphasis in model tests has been directed toward more

fundamental studies of footing behavior for idealized "field" conditions

in which anisotropically consolidated deposits of saturated clay are

simulated in the laboratory. A review of some of this work is presented

here.

Model footing tests on Spestone Kaolin, liquid limit 74 percent,

were conducted by Burland (1967). A detailed description of the equip-

ment and a review of a preliminary portion of the research is given by

Burland and Roscoe. (1969). Emphasis in the research to date has been

directed toward making comparisons of predicted and observed behavior

during periods of primary consolidation subsequent to the application

of footing loads. Relatively little effort has been given toward the

study of initial settlements. Thus, most of the work is not directly

applicable to the research described in this report. However, a brief

description of the tests is given here for they are considered to be of

general interest with respect to equipment development and testing

procedures for model footing investigations of the type described in

this report.

The tests were conducted for the purpose of evaluating a theory

for the stress-strain behavior of "wet" clay that is under development

at Cambridge University. Rectangular footing were employed with widths

of one and two inches and a length of six inches. The soil to be tested

was anisotropically consolidated, under a back pressure, from a slurry
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having an initial water content of about twice the liquid limit. Lead

shot were placed in the slurry prior to consolidation so that observations

of subsurface movements could be made. Initial consolidation increments

were performed with a hydraulically actuated piston operating from the

bottom of the container and final consolidation was conducted with a

rubber membrane that enclosed the footing at the top of the unit. All

tests reported have been on normally consolidated samples that were

consolidated to the same initial vertical effective stress.

A stress controlled loading of the footing was employed. In both

of the tests reported to date, three load increments were used with 24

hour intervals being allowed for consolidation between them. The

nominal factor of safety with respect to undrained bearing capacity

failure for the first load increments was greater than 2.9. No bearing

capacity tests were reported. Rather, the bearing capacity was calculated

to be 5.14 times the undrained shear strength determined from simple

shear tests. Settlement occurring within 10 seconds of the load applica-

tion was assumed to be initial settlement. This initial settlement was

noted to always be less than 10 percent of the final settlement that

existed after primary consolidation was complete. For a factor of safety

of three, the ratio of the consolidation settlement to footing width was

0.04. Hence, the initial settlement for this test was less than about

0.004 times the footing width.

Model footing tests conducted at the University of Sidney are

described by Poulos (1964) and Davis and Poulos (1968). The tests were

conducted to aid in the development and evaluation of a method for
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predicting the initial and total final settlements and the rate of con-

solidation settlement under three dimensional conditions for foundations

on clay soils. Tests were conducted on two normally consolidated clays:

a kaolin with a liquid limit of 55 percent and Hurstville Clay with a

liquid limit of 43 percent.

A soil container 12 inches in diameter was used. Circular footings

of 1, 2, and 5 inches were employed for most tests. The different footing

sizes permitted observation of footing behavior for various ratios of

foundation width to strata thickness. Apparatus construction and ex-

perimental procedures permitted footing behavior to be studied for a

wide range of hydraulic boundary conditions.

The soil was placed in the apparatus at a water content within a

few percent of the liquid limit. The footing was placed on the slurry

surface prior to consolidation. Consolidation stresses were then applied

to the top surface of the sample with a rubber membrane pressurized by

water. The pretest vertical effective stress was about 30 psi, and a

back pressure of 20 psi was employed. Most of the tests were stress

controlled wherein the footing was loaded instantaneously with dead

weights. Observations of footing settlement with time were then made.

At the time of load application, the nominal factor of safety against

undrained bearing capacity failure varied from approximately 4 to 16.

The undrained bearing capacity was estimated to be N times the un-
c

drained shear strength of the soil determined from anisotropically con-

solidated triaxial compression tests.

Of particular interest is the fact that comparisons were made
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between the measured and predicted initial settlements of the model

footings. Initial settlements were predicted from three dimensional

elastic displacement and stress distribution theory, as discussed in the

previous section, using undrained stress-strain modulus data from

anisotropically consolidated triaxial compression tests. The predicted

values were consistently from three to 73 percent greater than the ob-

served values. The primary reason for the reported discrepancies arose

from the values of undrained modulus used in making the predictions.

Values of strain for the modulus calculations were taken when the pore

pressures in the stress controlled triaxial tests had equalized and

become stationary. The authors reported that a considerable amount of

creep occurred in the triaxial tests by this point. In contrast they

stated that the same amount of creep could not have occurred during

the few seconds which elapsed in the model tests before the readings

of initial settlement were taken. These observations point out the

considerable influence that the choice of the modulus value has on

predictions of footing performance.

It is also of interest to note that the authors conducted three

displacement controlled tests, two on Kaolin and one on Hurstville Clay

to study the load-settlement behavior of footings under conditions where

no appreciable excess pore pressures developed. The two Kaolin tests

employed very different sized footings. A two inch diameter footing was

used in one test and a half inch diameter one was used in the second.

1
When plotted in terms of normalized displacement , the tests exhibited

Normalized displacement is defined as the footing penetration divided
by the footing diameter.
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almost identical behavior. This suggests that any edge effects that

existed in the test with the half inch diameter footing were no more

severe than those for the test with the two inch diameter footing.

Model footing tests are currently being employed in research in

Japan. Aboshi, Yoshikuni, and Uchibayashi (1969) report the results of

studies that were conducted to examine the stability of foundations in

which consolidation is accelerated by the use of vertical cardboard

drains. A highly plastic clay from the Inland Sea of Japan is being

used. Considerable emphasis to date has been given to observing the

pattern of subsurface movements during the tests. Since no load-deforma-

tion behavior, bearing capacity values, or undrained shear strength data

on the clay used in the above tests have been reported, information from

these tests is of little direct benefit to the research described in this

report. However, mention is made of this work since effort is currently

being directed toward the measurement of excess pore pressures, total

stresses, and subsurface strains during the footing tests. These results

should be of interest to any one engaged in model footing studies in

the future.

Model footing tests have been conducted at M.I.T. for the purpose

of investigating the load-settlement-time behavior of circular footings

on normally consolidated Boston Blue Clay. This work is described in

detail by Alvarez-Stelling (1966) and Gicot (1966). A review of some

of the research is given by Perez-La Salvia, et al. (1966).

A circular footing 2 inches in diameter was used for all tests.

All samples were consolidated in a 12 inch diameter bin to a vertical
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effective stress of two kg/cm2 . An initial slurry water content of about

75 percent was used. Consolidation to 1.75 kg/cm2 was performed with an

air driven hydraulic ram and a consolidation plate. The footing was

placed in the apparatus for the final consolidation increment that was

performed with a rubber surcharge bag pressurized by air. Stress con-

trolled tests were conducted by Alvarez-Stelling in which the footing

was loaded instantaneously with dead weights. Values of initial settle-

ment were obtained by extrapolating the plots of footing settlement versus

the square root of time to zero time. Predictions of initial settlement

were made using solutions from elasticity theory and the stress path

method, Lambe (1964). In general, agreement between the predicted and

observed values was not good. Initial settlements when expressed in

terms of normalized displacement varied from 7.5 x 10-4 to 1 x 10-2 as

the approximate factor of safety with respect to bearing capacity

failure decreased from 4 to 1.3. Thus, the initial settlement increased

by a factor of 13 as the factor of safety decreased by a factor of three.

Gicot consolidated piezometers in the clay in order to observe

excess pore pressure behavior at selected locations under the footing.

Interpretation of the pore pressure data is somewhat difficult because

of the experimental techniques which were employed.

Both Alvarez-Stelling and Gicot conducted bearing capacity tests.

Increments of load were applied to the footing over a period of several

minutes. Interpretation of these bearing capacity data is somewhat

difficult because of the testing procedures that were adopted.

Several observations can be drawn from this review. Model footing
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tests have only recently been employed in efforts to study footing

behavior for idealized field cases in which anisotropically consolidated

deposits of saturated clay are simulated in the laboratory. Primary

emphasis in these investigations has been given to studies of the time

rate of settlement of the footings or to observations of subsurface

movements. Although initial settlements have been studied, no detailed

investigation has yet been made of the magnitude of initial settlements

throughout the full range of loading, from zero load to failure. Con-

sideration in several of the studies has been given to correlating the

observed initial settlements with the undrained stress-strain behavior

of the soil. However, it is evident that much is still unknown con-

cerning how the stress-strain behavior of a soil as measured in undrained

shear tests can be utilized to accurately predict footing performance.

Laboratory bearing capacity.studies have been made with compacted,

remolded, and "undisturbed" field samples of clay. However, no program

(other than that reported here) is known to exist wherein bearing capacity

observations have been made for both normally consolidated and overcon-

solidated samples of a completely undisturbed, one dimensionally con-

solidated clay that is known to be highly anisotropic with respect to

undrained shear strength.

In each of the programs reviewed, all of the normally consolidated

tests employed approximately the same vertical consolidation stress.

Therefore, observations have not been made of normally consolidated

"field" behavior on the same clay for a range of vertical consolidation

stresses.
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CHAPTER 3

MODEL FOOTING TESTS

3.1 INTRODUCTION

A comprehensive series of model footing tests was conducted for

the purpose of observing the "field" performance of a strip footing

for undrained loading conditions on saturated clay. Tests at over-

consolidation ratios of one, two, and four were performed on "undisturbed"

samples of Boston Blue Clay that were one dimensionally consolidated

from dilute slurries. Boston Blue Clay is a silty clay of moderate

plasticity with typical index properties as follows: liquid limit 40

percent,plasticity index 20 percent, and activity 0.4. Detailed classi-

fication data for this soil are presented in Appendix A.

A description of the test procedures and equipment is given in

Section 3.2. The model footing test results are presented in Section

3.3.

The results of 14 tests, each requiring about two weeks' work

are reported here. Eight to ten other tests were conducted before

perfecting the test procedures and equipment.

3.2 TEST PROCEDURES AND EQUIPMENT USED FOR MODEL FOOTING TESTS

The test procedures and equipment used during the model footing

tests are described in this section. The intent of this investigation

was to obtain high quality load-deformation and bearing capacity data

for a strip footing during undrained loading conditions under idealized
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field conditions. Plane strain conditions for the strip footing were

approximated by the use of a rectangular footing having a length to

breadth ratio of eight (length five inches, width 0.625 inches). Com-

pletely undisturbed, anisotropically consolidated samples of clay were

used to simulate idealized field conditions. The undisturbed samples

of clay that were employed were obtained by consolidating soil in 12

inch diameter bins.

The soil was placed in the bins under a partial vacuum at a

water content of 100 percent, about two and a half times the liquid

limit. Consolidation to the desired pretest effective stress was per-

formed in several increments in two stages. The initial consolidation

was performed with a stainless steel consolidation plate and a 5000

pound capacity air operated Karol Warner Conbel loader. After this

stage, the plate was removed and the footing placed in the bin. Depend-

ing on the apparatus being used, consolidation was then continued with

either a latex surcharge bag or a latex membrane, pressurized by

water. Both the bag and membrane were specifically developed for this

investigation. Bin One used the surcharge bag. The equipment arrange-

ment for final consolidation and testing is shown in Figure 3-1. Bin

Two, Figure 3-2, employed a latex membrane. A rectangular recess was

formed in both the surcharge bag and membrane to house the footing.

This is illustrated for the membrane with Bin Two in Figure 3-3.

At least one additional increment of virgin compression, and

all the overconsolidated increments, were conducted with the surcharge

bag or membrane. Except for one test, the ratio of the total increment(M )

of virgin compression under the bag or membrane to that with the
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consolidation plate varied from 0.6 to 1.25. Thus, the samples of clay

were completely undisturbed at the time of testing.

Standardized procedures were followed throughout the experimental

program. Particularly close control was maintained of initial slurry

water contents, batch consolidation, and times of "aging" at the maximum

past pressure, avm. The ratio (T /T ) of the time permitted for

secondary compression to the time for primary consolidation at ovm,

varied from 2.16 to 6.15. As will be seen in the following chapter, this

range of T /Tp  is comparable to that for the plane strain tests that

were used extensively in the analysis of the model test results.

Detailed information for each of the tests is given in Appendix

C. This includes data on consolidation, initial and final water contents,

aging, secondary compression, and tabulated test results.

Observations of footing load and settlement were made during

the tests. The footing load was monitored with a load cell and the

displacement obtained with a linear displacement transducer. Data from

these devices were collected on an X-Y recorder. During the tests the

footing was advanced into the clay at a constant rate. Undrained tests

were performed wherein the footings were taken to failure within about

15 seconds.

A photograph of the equipment arrangement for Bin Two at the

time of the test is shown in Figure 3-4. Of particular interest in

this photograph is the loading system that was employed. The load cell,

with which the footing load was applied, was screwed into a horizontal

cross arm that was restrained to move in a vertical direction by two
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one inch diameter shafts passing through linear bushings. The dead

weight of these components was supported by two springs. The cross

arm was connected to a worm gear screw jack that was advanced at a

constant rate by the electric motor shown resting on the stand at the

left of the figure. The electric motor was connected to the jack with

a universal joint linkage and reduction gear.

Additional information is given in Appendix B concerning the

test equipment and experimental procedures that were employed. This

includes supplementary photographs of the equipment.

3.3 MODEL FOOTING TEST RESULTS

Normally consolidated model footing tests were conducted at

2
three vertical consolidation pressures: 1.0, 2.0, and 3.38 kg/cm

2
The overconsolidated tests had a maximum past pressure of 3.38 kg/cm

The test results are presented in terms of a/a versus

p/B. The stress ratio, a/vc , is equal to the average net applied

footing stress, a, divided by the vertical effective consolidation

- 1
stress at the time of the test, a . The normalized displacement,

vc

p/B, equals the footing displacement, p , divided by the footing

width, B.

A composite plot of the normally consolidated tests is given

in Figure 3-5. It is of particular interest to note in this figure that

1
The surcharge pressure during undrained shear was maintained equal
to the vertical consolidation stress .vc
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very reproducible results were obtained at each consolidation stress.

Seating effects occurred occasionally. These were eliminated in the

figure by defining zero normalized displacement to be at a factor of

safety of five for each test.1 The factor of safety was computed

relative to /a o at p/B = 0.1.
vc

Examination of Figure 3-5 shows that the tests did not exhibit

normalized behavior. The load-settlement behavior and ultimate bearing

capacities for each stress level fall within distinct bands. At p/B =

= 0.1, the a/a value for the tests with a = 1.0 kg/cm2 is aboutVC vC

six percent greater than that for the tests at a = 3.38 kg/cm2
vc

This indicates a slight reduction in the normalized strength, su/Ovc,

with increasing consolidation stress. The data indicate that the

normalized stress-strain modulus of the clay in undrained shear, E/vc,

is not unique and is affected more significantly by the magnitude of

a than is the normalized strength s /a. Modulus data for tri-
vc u vc

axial and direct-simple shear tests that are cited in the next chapter

also show decreasing normalized moduli with increasing effective stress.

The non-uniqueness in the load-deformation behavior has impor-

tant practical application. It has been recommended, Ladd and Lambe

(1963), that "undisturbed" samples obtained from the field be con-

solidated to stresses greater than the insitu stresses and normalized

parameters used in order to minimize the effects of sample disturbance.

This sampling and consolidation process may destroy the soil structure

that originally existed insitu, Bjerrum (1967). In addition to this

problem, the data in Figure 3-5 suggest that by virtue of the differing

The maximum adjustment to the "measured" p/B was 0.0027.
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effective stresses, the measured stress-strain modulus of the laboratory

specimen can be significantly different from that exhibited insitu.

Fortunately, changes in undrained strength arising from the differences

in cvC are not as large, at least for this particular clay.

The test results for overconsolidation ratios of two and four

are given in Figures 3-6 and 3-7 respectively. Once again it is seen

that excellent agreement existed among the tests at each stress history.

Plane strain conditions did not exist near the ends of the

footing. The predictions of footing behavior that will be discussed in

Chapter Five were made for plane strain conditions. Accordingly, the

Oa/ values of the model tests have been reduced by approximately
vc

2.5 percent to correspond to plane strain stresses. The guidelines

of Meyerhof (1951) were followed and are discussed in Appendix B.

Average curves for each stress level or stress history were

prepared after the data were adjusted by 2.5 percent to be comparable

to plane strain conditions. The average curves for the three normally

consolidated stress levels are shown in Figure 3-8. The average curves

for the overconsolidated tests and the normally consolidated tests at

a = 3.38 kg/cm2 are given in Figure 3-9.
vc

The modulus that was effective for each overconsolidation ratio

prior to first yield was calculated from the theory of elasticity using

the method proposed by Janbu, et.al. (1956).1 When normalized with re-

spect to the vertical undrained plane strain strength 2 the computed

1 Determination of first yield was made with the aid of finite element

predictions discussed in Chapter Five.
2 The vertical undrained plane strain strength is discussed in Chapter Four.
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moduli, E/s , are 950, 815, and 610 for overconsolidation ratios of one,

two, and four respectively. The decreasing ratio of modulus to s with

increasing overconsolidation ratio means that the modulus decreases more

rapidly upon rebound than does the strength.1

The changes in the absolute values of modulus and strength

that occur upon rebound are illustrated in Figure 3-10. The data in

this figure have been replotted from Figure 3-9 by normalizing the

average footing contact stress (plane strain conditions) with respect

to the maximum past pressure, ovm . This is a particularly informative

plot, for it is seen that at any p/B value, a/avm decreases as the

overconsolidation ratio increases.

Predictions of the model footing behavior will be made in

Chapter Five. The model footing tests will be considered again there.

1 Similar observations are made in Chapter Four with respect to E/s
values computed from undrained plane strain, triaxial, and direct-
simple shear tests.
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CHAPTER 4

UNDRAINED SHEAR TESTS

4.1 INTRODUCTION

In order to make correlations between the measured performance of the

model tests and those predicted by theoretical methods, information is

needed concerning the behavior of Boston Blue Clay in undrained shear fol-

lowing one dimensional consolidation. The following soil parameters must

be specified when making a load-deformation prediction with a finite ele-

ment analysis: s v, Ks, Ko, and E. Information is needed concerning s

and K for making undrained bearing capacity predictions. The parameter suv

is defined as the undrained shear strength (Tmax= qf) of the soil specimen,

determined from a test in which the major principal stress is in the insitu

vertical direction at failure. The parameter Ks is a measure of the strength

anisotropy of the soil. It is equal to the ratio Suh/Suv where suh repre-

sents the undrained shear strength (qf) resulting from a test wherein the

major principal stress at failure is in the direction coincident with the

insitu horizontal plane. The ratio chc/ve represents the coefficient of

lateral stress at rest, K . Young's modulus, E, is used to characterize the

stress-strain behavior of the soil.

The engineer frequently encounters problems that approximate plane

strain conditions. The model tests performed during this investigation em-

ployed a rectangular footing having a length to breadth ratio of eight. This

is a good approximation to plane strain conditions. The results from un-

drained shear tests in a plane strain device are therefore of direct interest

in this investigation. Since plane strain equipment is only beginning to

become available to the practicing engineer, it is useful to compare the

- 44 -



results of triaxial tests with those from plane strain tests. The Norwegian

Geotechnical Institute direct-simple shear device is easier to use than

plane strain equipment, and it models a horizontal failure surface. It is

therefore of interest to compare test results determined with this equip-

ment with those from plane strain and triaxial tests.

Test data from the three types of equipment are summarized and com-

pared in this chapter. Throughout this discussion emphasis is placed on

data from those tests that have direct applicability when making bearing

capacity predictions and finite element analyses of the load-deformation

behavior of the model footing tests described in this report. The range of

overconsolidation ratios for the three classes of tests is not constant,

and in the case of the triaxial and direct-simple shear tests exceeds that

of the model tests. Information has been included for these higher over-

consolidation ratios, since it was deemed useful to compile these data in

one reference.

4.2 STRENGTH AND MODULUS DATA FROM PLANE STRAIN TESTS

Plane strain data cited here were obtained with the M.I.T. plane strain

device described by Dickey, Ladd, and Rixner (1968) and Bovee and Ladd (1970).

Data reported by Rixner (1967); Dickey, Ladd,and Rixner (1968); and Bovee,

Kinner, and Ladd (1970) are discussed here. Tests have been conducted for

overconsolidation ratios of one, two, and four.

The M.I.T. plane strain device uses a sample 3.5 inches wide by 3.5

inches high by 1.4 inches deep and has the following capabilities: (1) K
o

consolidation with removable side platens; (2) measurement of K ; (3) vertical

and horizontal stresses, cv and ch, can be varied independently; (4) the

sample can be sheared by increasing or decreasing av or by increasing or
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decreasing ch. All tests reported herein were strain controlled with cv

being either increased or decreased to produce failure.

The Boston Blue Clay samples used in these tests were consolidated

from dilute slurries in the laboratory using procedures similar to those

discussed in Appendix B for preparation of the soil in the model tests.

Prior to use, the consolidated batches of clay were stored in oil. Clas-

sification data and batch information on the soil are given in Appendix A.

Plane strain active (compression) tests yield strength and stress-

strain data corresponding to s . All tests conducted to date have had K
uv o

values less than one. Therefore, these active test results correspond to

conditions where the orientation of the major principal stress during

consolidation and shear has been constant. Plane strain passive (extension)

tests yield strength and stress-strain data corresponding to Suh. Because

of the aforementioned K conditions, all passive tests conducted to date
0

have experienced a reorientation of the major principal stress during shear.

Two types of passive tests have been employed. The first is the vertical

K test in which the sample is trimmed in the conventional manner and

consolidated with a • in the vertical direction. A passive (extension)

test is performed by reducing the vertical stress on the specimen. The

1
second type is the horizontal K test. The sample is trimmed from the

o

batch of clay at.an orientation 900 from that employed for the active and

vertical Ko passive tests. The sample is consolidated with aIc in the

horizontal direction in the apparatus. The horizontal direction in the

apparatus, therefore, corresponds to the insitu vertical direction.

Undrained shear is conducted by increasing the vertical stress in the

apparatus. Thus, the sample experiences a reorientation of the principal

stresses during shear. The stress-strain modulus computed from this test,

1 Consolidation and subsequent shear of this type were reported by Duncan
and Seed (1966 b).
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when multiplied by (1-v2) = 0.75, is a measure of Eh, Young's modulus

in the insitu horizontal direction.

Summary tables of the tests are contained in Appendix D. Represen-

tative stress-strain curves for the active and passive tests at OCR's of

one, two, and four are presented in Figures D-1 through D-6. Detailed

plots illustrating the effective stress behavior of these tests during

shear are given in Bovee, Kinner, and Ladd (1970). This information has

been studied to assess the reliability of the data. However, since

correlations employing total stress parameters have been made, the

effective stress plots for these tests are not duplicated in this report.

Modulus data for several of the tests are given in Figures D-7 and D-8.

The variation of s uvv c , Suh /vc , and K with overconsolidation
uv ye uh vc s

ratio for Boston Blue Clay in plane strain shear are shown in Figure 4-1.

The values of s /a for the three overconsolidation ratios are considered
uv vc

to be reliable. The effective stress paths to the maximum stress difference

for overconsolidation ratios of one and four compare favorably, geometric-

ally, with those for •TT triaxial compression tests. No CK U triaxial
0 o

tests at an overconsolidation ratio of two were available for comparison.

It will be shown later that the average s uv/vc curve in Figure 4-1 and a

similar curve for =VW- triaxial compression tests are in good agreement.
0

Difficulties have been encountered with the passive tests. The most

persistent problem has been that of computed obliquities that were too

high at strains greater than about two percent. In those tests wtere this

problem existed, undrained failure was defined to have occurred at

ARCSIN q/p = 400. It is recognized that highly overconsolidated soils

can exhibit high obliquities at low strains. This point was borne in mind

so as to avoid a premature definition of undrained failure in the case of
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the overconsolidated samples. Furthermore, in those vertical K tests
o

where necking may have been a problem, undrained failure was defined to

occur at the point of inflection of the stress strain curve.1 The steps

taken to resolve these problems are discussed in detail in Bovee and

Ladd (1970).

The plot of Ks in Figure 4-1 is based on the average s v/vc

curve and the curve shown for the passive tests. For overconsolidation

ratios from one to four, the Ks values indicate that Boston Blue Clay is

highly anisotropic when subjected to a reorientation of principal stresses

during undrained shear in plane strain.

Values of normalized secant modulus were computed from the test

results. These plane strain moduli, adjusted by the factor (1-v ) = 0.75

to permit comparison with undrained triaxial data, are shown in Figure

4-2 for three factors of safety. The factor of safety is defined as

the ratio of the change in shear stress required to cause failure at

qf to the total change in shear stress at the point in the test under

consideration, Aqf/Aq.

Ladd (1964) has discussed how the measured stress-strain

modulus of a soil can be dependent on such factors as aging, strain rate,

and environment. Using a viscoelastic model, Watt (1969) has shown how

the stress-strain modulus of a soil determined from a laboratory test

can be dependent on strain rate. Using creep data typical of moderately

1
This was done for two tests, P-1 and P-2. The computed values of c
at the points of inflection were 25.3 and 28.3 degrees
respectively.
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plastic clays (San Francisco Bay Mud) Watt predicted that the secant

modulus of an isotropically consolidated sample sheared at a strain rate

of 1.0 percent per hour would be four percent greater at 2.5 percent

axial strain than that of a sample tested at 0.6 percent per hour. Strain

rates of 0.5 and 1.0 percent per hour were used in the plane strain tests.

Differences in the computed moduli arising from this difference in strain

rate are considered minimal, if existent at all. Batch preparation

procedures were standardized early in the testing program to minimize

variations in the test results due to preparation factors.

A deliberate effort was made to minimize the effect of variations

in aging time. A standard 24 hour period for the last normally consoli-

dated consolidation increment was adopted. This criterion was met for

all the tests plotted in Figure 4-2, except for one of the two active

tests at an OCR = 2. Therefore, the tests had times of secondary

compression of from 16 to about 22 hours under the last normally consoli-

dated increment.

Secondary compression was computed from the time the side platens

were released for those tests in which they were used. One of the two

tests at an OCR = 2 had six hours of secondary compression. The ratio

of the time for secondary to the time for primary consolidation, T /T,
s p'

thus varied from two to seven.

All tests had a nominal maximum past pressure, a , of 4 kg/cm2

vm

values of 2.9 and 5.8 kg/cm2 . The effect that the magnitude of a
vm

has on the measured modulus will be discussed in relation to the triaxial

and dýDSS tests.
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Even though scatter does exist in the data in Figure 4-2, trends

with increasing overconsolidation ratio have been indicated wherever

possible. Secant modulus values for the full range of loading during

1
these tests are given in Figures D-7 and D-8.

At factors of safety of three and four, the passive moduli at each

OCR are approximately equal to or greater than the active moduli. This

behavior is reasonable in spite of the much larger values of Aq, since

at the early stages of the passive tests the shear stresses acting on

the samples are being released. By Aqf/Aq = 2, the Es/ vc values from

the passive tests are less than those for the active. This is attributed

to the much larger strains exhibited by the passive tests prior to

failure.

4.3 K DETERMINATIONS
o

Many measurements of K for Boston Blue Clay have been made
o

with the plane strain device. Other determinations have been made

during anisotropically consolidated triaxial tests. Triaxial and plane

strain K determinations are reported here for OCR's of one, two, and
0

four. Square oedometer tests described by R. Ladd (1965) were used to

make the first determinations of K for overconsolidated Boston
0

Blue Clay. He reported K values for OCR's up to 96.
o

A summary plot of K measurements from several sources is given

in Figure 4-3. Table D-2, Appendix -D, lists K values for several

Modulus data from two passive tests at an OCR = 4 are given
in Figures 4-2 and D-8, while strength data from only one
test are reported in Table D-1. The Aqf value for.test PSP-12 was used
to plot the modulus information for the second test.

- 50 -



triaxial and plane strain tests. All Ko values noted for the plane strain

device were computed on the basis of the lateral stress applied to the

cell membranes.

The results reported by R. Ladd (1965) are from one sample which

was subjected to two cycles of virgin compression and overconsolidation.

The ranges of virgin compression were from 2 to 8 and from 10 to 12 kg/cm2

His measurements did not indicate that K was dependent upon stress

level in the normally consolidated range. Likewise, no dependence of

K on v is seen in Table D-2 for virgin compression. At an
0 vc

OCR = 4, Ko as measured in the plane strain device is about 15 percent

lower than the values determined from triaxial and square oedometer

tests. The reason for this is not clear.

4.4 TRIAXIAL COMPRESSION TESTS

An extensive review of existing triaxial compression test data

on Boston Blue Clay was undertaken for the primary purpose of developing

relationships for the variation of undrained strength, measured at maximum

stress difference, and stress-strain modulus with overconsolidation ratio.

Factors such as the reproducibility of test results, the effects of the

magnitude of preshear consolidation stresses, and aging were considered.

Data obtained at M.I.T. from 1961 to 1968 were used. These included

tests reported by Bailey (1961), Ladd and Varallyay (1965), and Braathen

(1966). Other data from Earth Physics research which have not been

previously reported were also included. Summary information for these

tests is given in Appendix E, Table E-2. Summary data from Bailey

(1961) and Braathen (1966) are given in Tables E-3 and E-4 respectively.
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All these tests were performed on clay which had been

consolidated from dilute slurries in the laboratory and stored in oilbefore

use. The index properties and other information about the samples are

listed in Appendix E, Table E-1. Data from "undisturbed" natural samples

were not employed since it was desired to work with a family of tests for

which the stress history, origin, and other factors such as environment

were as well defined as possible.1 This discussion is limited to tests

wherein the pore fluid salt concentration was constant throughout batch

preparation, consolidation, and shear. Triaxial extension tests were

not considered, since no overconsolidated extension data exist.

In Figure 4-4 the s /a ratios for the normally consolidated
u vc

tests are plotted versus the preshear consolidation stress and time. No

dramatic trend exists in the data as a result of the variations in index

properties, pore fluid salt concentrations, or batch preparation

procedures of the clay over the period of research under consideration.

The data have been replotted in Figure 4-5 in a manner per-

mitting study of the combined effect of a and of T . For a constant
vc s

a there is a fairly consistent increase in s /a with increasingvc u vc

T This is particularly apparent at C = 6 kg/cm 2 . A similar trend

for Drammen Clay was reported by Bjerrum (1967).

The average s /a ratio for the CIU tests with a greater
u vc vc

than two kg/cm2  is 0.308. That for the CK U tests is 0.323. It has

1
However, the CU triaxial data on Boston Blue Clay from the
M.I.T. campus show very similar behavior to that of resedimented
BBC, Ladd and Luscher (1965).
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been shown previously that the difference in the above undrained strength

ratios for C-•T and TC-! triaxial compression tests is not large, Ladd
o

(1965).

The shear strength ratio, su/ v versus the log of the over-

consolidation ratio for the tests is shown in Figure 4-6.1 Insufficient

data are available to permit making a distinction between the over-

consolidated CK U and CIU- tests.

As with the plane strain tests, the stress-strain moduli for the

tests were studied by considering how the normalized secant modulus,

Es lvc , varied with stress level, Aqf/Aq, and overconsolidation ratio.

The strain rates for the triaxial tests reported here varied from 0.68

to 1.2 percent per hour. Differences in the computed moduli arising from

this range of strain rates are not considered significant.

As seen in Figure 4-4, the differing environment between the

"salt" and "water" samples employed by Bailey (1961) did not result in a

consistent difference in the undrained strengths of the two types of

samples. This has been discussed in detail by Ladd and Kinner (1967).

This difference in environment was also found not to have had any dramatic

effect on the stress strain moduli computed from Bailey's tests. (See

Appendix E, Figure E-1.) This observation plus those made with respect

to Figure 4-4 suggest that differences in the stress-strain behavior

The void in the strength data between OCR's of 1 and 4 is not
as large as it first appears. The author had access to strength
data on overconsolidated BBC in this region whichare not cited here.
This information was used as a general guide to locating the curves
in this region.
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among the batches of clay as reflected by computed values of Es/5 vc,

arising from variations in preparation procedures are small.

The normalized secant moduli at Aqf/Aq = 2 for the normally

consolidated samples are plotted in Figure 4-7 versus the time allowed

under the last consolidation increment, T . Even though scatter exists,
s

an increase in the normalized secant modulus for Boston Blue Clay with

increased aging is indicated. D'Appolonia (1968) reached similar

conclusions for Boston Blue Clay aged up to a maximum of about 100

hours. An increase in the stress-strain modulus with aging for other

soils has been reported by Wissa (1961), Bjerrum and Lo (1963), and

Ladd (1964).

It is often assumed for normally consolidated clays that the

modulus is proportional to the consolidation stress, i.e. a constant

normalized modulus. The influence of the magnitude of the preshear

consolidation stress on the normalized secant moduli for the normally

consolidated samples is illustrated in Figure 4-8.1 While conflicts

in the data do exist, it is concluded from the CIU tests in this figure

that the normalized secant modulus for Boston Blue Clay is not

necessarily constant but may decrease with increasing consolidation

pressure for a fixed time of aging. The effect may be more important

with lower times of T . It also may be more important for CIUC than for

CK UC tests.
o

1 The number of tests in Figure 4-8 is less than those in Figure 4-4
and 4-5. Difficulty was encountered in interpreting the initial
modulus data for some tests. The strength data have been used for
those tests where the uncertainty concerning (a1- 3)max was
small.
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Data presented by Lambe and Whitman (1969) indicate that a

similar conclusion can be drawn for at least one other clay, Lagunillas

Clay. Data which they present show a downward curvature of strain

contours drawn through effective stress paths of CIU tests at different

values of C . Working at much smaller strains than those existing here,
vc

Hardin and Black (1968) found that the shear modulus, G, for normally

consolidated clay varied (at constant void ratio) as / rather than
vc

U . The observation concerning the data in Figure 4-8 is not for a
vc

case where changes in void ratio have been isolated.

These observations indicate that attention should be given to the

magnitude of the preshear effective stress for normally consolidated

samples and to the maximum past pressure for overconsolidated samples

in any study involving comparisons of soil behavior, particularly

modulus, with overconsolidation ratio.

Ten of the twelve overconsolidated triaxial tests studied had a

C equal to six kg/cm 2 . Accordingly, whenever possible with the
vm

CIU tests, the variation in E /T with OCR has been compared with
S Vc

normally consolidated samples having C = 6 kg/cm2 . Owing to the
vc

limited number of tests, no such distinction could be made with the

CK U samples.

The resulting variations in normalized secant modulus with over-

consolidation ratio are shown in Figure 4-9 for three factors of safety,

Aqf/Aq, with respect to undrained shear failure. To eliminate the

effects of aging as much as possible, only those normally consolidated

tests having Ts of four days or less have been used. All known T

values at a for the overconsolidated tests were from one to fourvm
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days. The normalized modulus relationship for the CIU tests reaches a

maximum at an OCR from six to eight depending on the factor of safety

under consideration. For overconsolidation ratios of one and four the

normalized modulus values for the CK U tests are on the average about
o

twice those for the CIU tests.

4.5 DIRECT-SIMPLE SHEAR TESTS

An extensive series of constant volume shear tests has been per-

formed on samples of Boston Blue Clay using the direct-simple shear

device described by Bjerrum and Landva (1966). Some of these tests have

been reported by Edgers (1967). A description of the equipment, its

calibration, and the testing procedures that are employed are given by

Edgers. The results of all the constant volume tests conducted by

Edgers plus several of the tests conducted subsequently are summarized

in Table F-1. A brief summary of tests on recompressed, overconsolidated

samples is also contained in Appendix F. All tests reported here were

performed on samples which were trimmed from batches of clay previously

consolidated from dilute slurries in the laboratory. Classification

data and batch information on the soil are given in Appendix A.

The exact meaning of the strength measurements obtained with the

apparatus is not yet known. This is the subject of current research.

An axi-symmetric, linearly elastic, finite element analysis is being

made of the cylindrical sample which is used in the apparatus.

Accordingly, no attempt has been made to date to adjust the measured

values of maximum horizontal shear stress to arrive at the value of

maximum shear stress needed for making direct comparisons with triaxial
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and plane strain undrained strength data.

Duncan and Dunlop (1969) attempted such a comparison. They

applied the results of a finite element analysis made for a prismatic

simple shear sample patterned after Roscoe (1953) to the cylindrical

Geonor direct-simple shear sample. They assumed that the imposed simple

shear stresses could be approximated by an increment of pure shear. Their

approach yielded a reasonable value for the undrained strength of

Manglerud Clay. However, an examination of their method in terms of

effective stresses showed that the required P was greater than 450.

The assumption that the imposed shear stresses are those of pure shear

can not be correct for normally consolidated Boston Blue Clay since this

assumption leads to computed values of &3 that are negative at

(T ) /& and (T /0 )
h max vc and (hv)ma x

Even in view of the unknowns concerning the measured strength

values, it is of interest to compare the CUDSS results, in terms of

(T h)max, with those obtained from triaxial and plane strain tests.

Modulus data obtained from this device are also of considerable interest.

The variation of (T h)max/vc with overconsolidation ratio forh max vc

OCR's up to eight is shown in Figure 4-10. A comparison of these data

with triaxial and plane strain results will be made in the next section.

The CUDSS sample undergoes a shear strain during the test wherein

the base of the sample is held stationary and the top is translated

horizontally. The modulus computed from this test is not a shear

modulus in the strict sense of the word, since the sample does not

experience a pure distortional deformation at constant volume under a
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fixed net normal load. Nevertheless, the computed modulus, Th/Y, .is

considered to be a first approximation to the shear modulus in the verti-

cal plane, Gvh. For an undrained soil possessing isotropic elastic

properties E = 2G(l+v) = 3G.

Examination of the plane strain test results has already shown that

moduli in the horizontal and vertical directions are unequal. However,

if the assumption of isotropy is invoked, a comparison of moduli can be

made among the three types of tests by using a value of E computed from

the equation above for the CUDSS tests. In the following discussion,

the modulus so computed will be called a pseudo-secant modulus.

The modulus information obtained from the CUDSS tests is very

consistent. Consolidation times of from 18 to 24 hours were allowed

at for all tests. The values of T /T varied from about 9 to 11.
vm s p

Strain rate effects with this device were investigated by Edgers (1967).

He conducted tests at 2.5 to 20 percent per hour. (See tests 201 through

204, Table F-1.) No dramatic strain rate effects were observed. Except

for tests 201, 202, and 204 all constant volume tests have been con-

ducted at a strain rate of five percent per hour.

The normalized pseudo-secant moduli for the tests with OCR's of

one and eight are plotted in Figure 4-11 for a factor of safety,

(Th) max/ h equal to two. Numbers beside the symbols denote the strain

rates for the three "non-standard" strain rate tests. As with the

triaxial data in the previous section, a decreasing normalized modulus

with increasing Y is observed. The data in this figure are
vm

particularly revealing, for the same trend is seen for both stress

histories. This observation underlines the point made in the previous
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section concerning the importance of standardizing of the maximum past

pressure in studies involving normally consolidated and overconsolidated

samples.

The variation in the normalized pseudo-secant modulus with

overconsolidation is shown in Figure 4-12 for three factors of safety.

With the exception of one sample, all tests used to prepare this

figure had Tvm = 4 kg/cm2 . The normalized pseudo-secant modulus reaches

a maximum value at an OCR of about four.

4.6 COMPARISON OF SELECTED DATA FROM PLANE STRAIN, TRIAXIAL
COMPRESSION, AND DIRECT-SIMPLE SHEAR TESTS

Strength and modulus data from the plane strain, triaxial,

and direct-simple shear tests are compared in this section for the

purposes set forth at the beginning of the chapter. A comparison was

made in Section 4-3 of K data obtained from CK U triaxial and plane
o o

strain tests. It will be recalled for overconsolidation ratios of one

and two that K values measured in the two apparatus were in general
o

agreement with those reported by R. Ladd (1965). For an overconsolidation

ratio of four the plane strain results were somewhat lower than the

triaxial and oedometer data.

Comparisons of strength data from the several types of

undrained shear tests are given in Figure 4-13. For purposes of the

comparison su for the CUDSS tests has been defined as (Th)max . The

average curves developed earlier for each stress system have been

plotted. The average values of s u/vc from the plane strain active

tests are about five percent greater than the triaxial compression
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values. Thus as a first approximation, the engineer could, in the

absence of plane strain equipment, use triaxial compression tests at the

appropriate OCR to estimate the value of s uv/ for Boston Blue Clay.1
UV vc

At overconsolidation ratios from approximately four to six,

K is close to one. It might be expected that the strength measured in
o

plane strain active and passive tests would be approximately equal for

these OCR's. They are not. This indicates that the soil has anisotropic

properties, perhaps arising from the fabric of the soil which is developed

during one dimensional consolidation, Martin and Ladd (1970).

General agreement between the plane strain passive and direct-

simple shear tests is also noted in Figure 4-13 for OCR's up to four.

This agreement should be considered somewhat fortuitous since the CUDSS

test has never been shown to correspond to the plane strain passive

condition, and (T h) was defined as s in the figure. It should

also be remembered that some difficulty has been experienced with the

2
plane strain passive tests. However, in the absence of a plane strain

device, the engineer can obtain an approximation to s h/rvc for Boston

Blue Clay for overconsolidation ratios up to four by using the CUDSS

strength, (Th )max vc. It should be noted that a CUDSS test is easier,

faster, and hence, less costly to run than either a CK U triaxial or
o

1
A similar observation can be made with respect to normally
consolidated Weald Clay, Henkel and Wade (1966).

2

The influence that uncertainties in s /a have on load-de-
formation predictions are discussed in
the following chapter.
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plane strain test.

Data in Figure 4-13 for overconsolidation ratios of one, two,

four, and eight have been replotted as appropriate in Figure 4-14. This

figure expresses the strength at any overconsolidation ratio as a fraction

of that existing at the maximum past pressure, avm. As expected, the

triaxial and plane strain active tests are in good agreement.

The relative positions of the data in Figure 4-14 for the

four types of tests are considered correct. With increasing OCR, the

effect of the reorientation of the principal stresses during shear should

decrease as K approaches one. It is expected that continuation of
o

these curves to higher overconsolidation ratios would ultimately lead

to a computed Ks greater than 1. Bishop (1966) and D'Appolonia (1968)

present triaxial data for London Clay and Boston Blue Clay respectively

which indicate that this is possible. Unconsolidated-undrained triaxial com-

pressionidata reported by D'Appolonia indicate that K equals one at an

OCR = 16. Additional research is needed to define the overconsolidation

ratio at which this will occur under plane strain conditions.for Boston

Blue Clay. The intermediate position of the CUDSS curve in Figure 4-14

is expected since the samples tested in this apparatus experience a

reorientation of principal stresses at failure that is probably between

about 30 and 600. As explained in Section 4.2, all active and passive

tests to date have experienced 0 and 90 degrees reorientation of

the principal stresses during shear respectively.

Normalized secant moduli from the three shear devices are

compared in Table 4-1 and Figure 4-15 for three factors of safety with
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respect to undrained shear failure. The best estimate of the average

value for each factor of safety and test condition has been listed.

Better agreement in some cases between the CK U triaxial and plane
o

strain active tests could be achieved if the triaxial data were reduced

to the same time at avm as existed for the plane strain and CUDSS

tests. However, this was not done in view of the scatter in the data

and the averaging required to develop the table and figure.

In general, normalized moduli from the CK U triaxial tests
o

are equal to or greater than the plane strain active moduli. As

expected, the larger axial strains in the CIU tests yielded secant

modulus values which were lower than those of the CK U triaxial com-
o

pression and plane strain active tests. For the factors of safety and

overconsolidation ratios considered, the normalized secant moduli for

the CIU tests are typically from 1.5 to 2.5 times lower than those com-

puted from plane strain active tests. This approximate relationship

might be used to estimate modulus values for plane strain active con-

ditions when plane strain and CK U triaxial compression test data are
o

not available.

The agreement between the CIU and CUDSS moduli is fortuitous

since in the CIU tests no reorientation of stresses occurred, whereas

they were reoriented in the CUDSS device. Additionally q = 0.5(a1- 3 )

was employed in the CIU computations, whereas Th was used for the

CUDSS tests. The principal stresses are rotated in.the passive test

as well. However, this occurs as the shear stresses pass through zero.

The high initial passive moduli are associated with this stress release.
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An entirely different situation exists in the CUDSS test since the

1
principal stresses are rotated in the company of shear stresses. Such

a condition occurs at many points in the soil underlying a strip footing.

No approximately constant relationship is seen among the

modulus values from plane strain passive tests and other test data that

have been studied. However, it is seen that for factors of safety

greater than about three, the normalized moduli from plane strain passive

tests are greater than the values from CK U triaxial compression or
o

plane strain active tests. At lower factors of safety, the much larger

strains in the passive tests result in normalized secant modulus values

that are lower than those for these other tests.

Examination of the data shows that the ratio Es/ u  for each
s u

test decreases with increasing overconsolidation ratio. This is illus-

trated in Figure 4-16 at a factor of safety for each test of three.

This indicates that the decrease in the absolute value of the modulus

is greater at a given overconsolidation ratio than is the decrease in

the absolute value of undrained strength. A similar observation was

made with respect to the values calculated from the model tests prior,

to first yield.

Other factors as yet undefined may also contribute to the low
modulus values of the anisotropically consolidated CUDSS
tests.
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CHAPTER 5

CORRELATION OF .PREDICTED AND OBSERVED BEHAVIOR

5.1 INTRODUCTION

The results of correlations between the ultimate bearing

capacity and load-deformation behavior observed during the model footing

tests and those predicted by theoretical methods are presented in this

chapter. The values of undrained bearing capacity measured in the

tests are considered in Section 5.2. Stability predictions are made

there for cases of both anisotropic and isotropic undrained shear

strength. With the aid of finite element program, FEAST III, a para-

metric study was performed to investigate the influences that variations

in soil parameters have on the predicted load-deformation behavior of

the model footing. This study is discussed in Section 5.3. Final

finite element correlations with the model tests are discussed in

Section 5.4. Additional factors concerning the finite element correla-

tions are discussed in Section 5.5.

5.2 UNDRAINED BEARING CAPACITY PREDICTIONS

The bearing capacity measurements obtained during the model

footing tests presented in Chapter Three are the first undrained

bearing capacity determinations that have been made for both normally

consolidated and overconsolidated stress histories of a clay that is

known to be highly anisotropic with respect to undrained shear in plane

strain. The average suh/Suv ratio for Boston Blue Clay at over-
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consolidation ratios of one, two, and four was shown in the previous

chapter to be about 0.6.

In this section comparisons are made among.the ultimate bearing

capacities measured in the model footing tests and those predicted by

the Davis and Christian (1970) theory on the basis of anisotropic un-

drained shear strength. Comparisons are also made among the measured

bearing capacities and values predicted under the assumption that Boston

Blue Clay exhibits isotropic undrained strength as measured in uncon-

solidated-undrained triaxial tests and in several of the undrained shear

tests discussed in Chapter Four.

With the Davis and Christian method, the ultimate bearing

SuvSuh
capacity of a surface strip footing is equal to N [ h]. As shownc 2

in Figure 2-2, Nc varies from 4.0 to 5.14 depending on the anisotropic

strength ellipse of the soil. It will be recalled from the discussion

of this theory in Chapter Two that for most clays Nc will not be less

than about 4.75.

The parameters suv and suh can be determined from plane strain

active and passive tests. However, information from other sources is

required to define the anisotropic strength distribution of the soil.

D'Appolonia (1968) conducted an extensive series of unconsoli-

datedundrained (UU)triaxial compression tests on samples of Boston Blue

Clay cut with their axes inclined at 00, 300, 450, 600, and 900 from

the insitu vertical direction. The purpose of these tests was to

establish a variation of undrained strength for this soil with rotation

of the principal planes. D'Appolonia (page 146) was unable to draw
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conclusions regarding a specific distribution of undrained shear

strength for Boston Blue Clay. Therefore, his tests do not provide

information that is of direct benefit in the choice of N .
c

Other criteria must therefore be used to determine Nc

Hypothetical distributions of strength might be employed and the

resulting variations in N determined. The Davis and Christian strengthc

ellipse for K = 0.6 and N = 5.14 is shown in Figure 5-1. Two other
S C

distributions of strength are shown for comparison. Both were prepared

for K = 0.6. The first (shown by the dashed line) is the Casagrande

and Carrillo distribution. This is the distribution of strength em-

ployed in finite element program FEAST III. Although not elliptical,

it is seen that the Casagrande and Carrillo relation for this K value

yields an N value that is approximately 5.14. The third relation inc

the figure represents the probable lower limit of the anisotropic

strength relation for Boston Blue Clay for OCR's from one to four.2

This distribution is also not elliptical. However, an approximate b/a

ratio for it was determined in order to estimate N . The resulting
c

N is 5.0. Also shown in the figure is a shaded area that represents

the probable range of the CUDSS test results. This was determined

1 Even if a distribution of strength had been observed, it would not
necessarily be that existing during the model tests. The UU samples ex-
perienced an isotropic preshear stress state. Furthermore, they were sub-
jected to disturbance resulting from trimming and handling, and the re-
lease of the anisotropic consolidation stresses that existed during batch
consolidation. In comparison, samples in the model tests were undis-
turbed and subjected to anisotropic consolidation stresses prior to shear.

2
This relation will be discussed further in regard to Figure 5-8. It
is labeled there as curve 3.
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assuming that the reorientation of principal stresses at (- )max is

from 45 to 60 degrees and that su = (Th)max/cosF where T = 30 degrees.

The CUDSS results and the three hypothetical distributions of anisotropic

strength all indicate that an N of approximately 5.14 could be used.
c

Accordingly, the value of 5.14 was chosen for use in making bearing

capacity predictions with the Davis and Christian theory.

The values of undrained strength used in making predictions

with this theory were taken from Figure 4-1 and are as follows:

OCR s / KOCR uv 'vc uh vc s

1 .34 .18 .53

2 .58 .35 .605

4 .94 .58 .617

Comparisons of the observed undrained bearing capacities and

those predicted by the Davis and Christian theory are given in Table

5-1. Excellent agreement is seen between the measured and predicted

values of bearing capacity at each overconsolidation ratio.

The comparisons that were made among the measured bearing

capacity values and those predicted from several undrained shear tests

in Chapter Four on the basis of isotropic undrained strength are given

in Table 5-2. The undrained strength used in each case was taken from

the average curves in Figure 4-13. An additional comparison was made

for each OCR using UU test data on vertical samples from D'Appolonia

(1968). Specimens were cut from batches of clay prepared in the same

fashion as for the model footing tests. These are also given in Table
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5.2. An N value of 5.14 was used in all cases.
c

The comparisons in these two tables clearly demonstrate

that significant error will result if the anisotropic undrained strength

of Boston Blue Clay for these overconsolidation ratios is ignored.

The maximum difference between the measured ultimate bearing capacities

and those predicted on the basis of anisotropic strength was seven

percent. However, only in one case was the percent difference between

the observed value and that predicted assuming isotropic undrained

strength less than 15 percent. If the soil is assumed to exhibit

isotropic undrained shear strength in accordance with either plane

strain active or CIU triaxial compression tests, the bearing capacity

is over predicted from 10 to 28 percent. Conversely, the bearing

capacity is under predicted by about 25 percent if direct-simple shear

test results are employed.1 If UU test data are employed, the effects

of sample disturbance result in a 25 to 30 percent under prediction

in the bearing capacity. Thus, depending on the undrained shear data

employed in the analysis, either unconservative or over conservative

predictions of undrained stability will result if the soil is assumed

to exhibit isotropic strength. From the standpoint of both safety

and economics, it is desirable that the strength anisotropy of the soil

and the effects of sample disturbance be considered when making bearing

capacity predictions. To achieve this end, a theory that considers

strength anisotropy should be combined with laboratory tests that are

If the mean Th from the CUDSS tests is increased by 15 percent to
yield an estimated qf, then the error is about 10 percent on the
low side.
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performed to determine the necessary anisotropic strength parameters

of the soil.

In the case of the Davis and Christian theory, it is desirable

that plane strain active and passive tests be conducted to determine

Suv and suh for use in the analysis. However, as noted earlier,

the results of plane strain tests are not sufficient to choose N .
c

Other test data, trial and error procedures, or some additional criterion

might be used to choose this parameter.

5.3 INFLUENCES OF SOIL PARAMETERS ON PREDICTED LOAD-DEFORMATION
BEHAVIOR

Finite element program FEAST III was utilized in predicting

the load-deformation behavior of the model footing. This program and

the finite element grids that were used are discussed in Section 5.3.1.

It is necessary to specify several soil parameters when making

predictions of load-deformation behavior with this program. The in-

fluences that variations in selected soil parameters have on the pre-

dicted load-deformation behavior are considered in Section 5.3.2.

5.3.1 Discussion of Finite Element Program FEAST III and the Finite
Element Grids that Were Used.

Predictions of the load-deformation behavior of the model

footing were made with finite element program FEAST III developed by

D'Appolonia (1968). As used here, the program employs a total stress

analysis for a nearly incompressible soil that is assumed to yield in
a1 -a3

accordance with the Tresca yield criterion ( )- = s .The program
2 f u
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uses a piecewise linear analysis with incremental loads for a bi-linear-

ly elastic material. The elastic properties of an element are changed

when the imposed shear stresses reach or exceed the specified yield

stress. Stress and strain remain uniquely related both prior to and

following yield.

Anisotropic strength may be specified. The program was written

on the assumption that the anisotropic strength of the purely cohesive

soil varies as s = s [K÷ + (1-Ks) sin2a] where s is the undrained

strength of an element that yields when the major principal stress is

oriented a degrees from the horizontal. This distribution of un-

drained shear strength was proposed by Casagrande and Carrillo (1944).

Other distributions of anisotropic strength were considered, and

are discussed in Section 5.3.2.

In addition to the yield criterion, the following soil param-

eters must be specified when using this program: the yield stress,

suv; the yield factor, Ks; the coefficient of lateral stress at

rest; modulus of elasticity; Poisson's ratio; yielded modulus

ratio; and yielded Poisson's ratio.1 Values of Poisson's ratio were

chosen to simulate undrained loading conditions as closely as possible.

Two values were used, 0.49 and 0.495. The effect of the resulting

volume compressibility was assessed and found to be insignificant.

The yielded modulus ratio, the ratio of the yielded modulus to the

Anisotropic elastic properties prior to yield may be specified.

However, all predictions in this report employed isotropic elastic
properties.
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initial modulus was taken as 0.001. In order to maintain constant bulk

modulus, the yielded Poisson's ratios were made equal to 0.49999 and

0.499995 respectively. The influence that the remaining soil param-

eters (suv, Ks, K, and E) have on the predicted load-deformation

behavior will be considered in Section 5.3.2.

All finite element predictions were made for a soil body

existing under initial K stresses that were constant with depth. This
o

is the same condition existing in the model footing tests.1 Unless

otherwise noted, the footing was subjected to a uniform vertical dis-

placement and the average stress under it calculated..

Three basically different finite element grids were employed

during the course of this research. These are numbered 1, 2, and 4.2

Grid 4 was modified slightly to achieve better performance. This

modified grid is termed grid 4A. Grids 1, 2, 4, and 4A are shown in

Figures G-1 through G-4, Appendix G. The reader is referred to Appen-

dix G for a comparative discussion of the grids. Greatest reliance

can be attached to the correlations obtained with grids 4 and 4A. It

is shown in Appendix G that the predictions with these two are similar.

Unless otherwise noted, grid 4 was used in the parametric study dis-

cussed in Section 5.3.2. Grid 4A was used in making the final correla-

tions with the model tests that are discussed in Section 5.4.

1
The average soil height during the tests was four inches, and the
minimum a was 0.844 kg/cm 2 . Therefore the influence of the unitvc
weight of the soil on av was insignificant.

2 Another grid, number 3, was not used extensively and is not con-
sidered here. It was very similar to grid 2.
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5.3.2 Parametric Study Using Selected Soil Parameters

One of the major objectives of the research described in this

report was to obtain correlations between the measured load-deformation

behavior of the model footing during undrained loading and that pre-

dicted by the finite element method. These correlations were made

using soil properties determined from the undrained shear tests dis-

cussed in Chapter Four. Prior to making final correlations, it was

found desirable to have information concerning the influence that

variations in these soil properties had on the predicted behavior.

This information is developed in this section for the three over-

consolidation ratios employed in the model footing tests. The soil

parameters to be considered are E, the modulus of elasticity; s

Suh
the vertical undrained strength; K , the ratio -- ; and the coef-

s Suv
ficient of lateral stress at rest, Ko. The effect of varying the un-

drained shear strength distribution, s u for a given value of Ks

will also be discussed.

For the conditions considered here, D'Appolonia (1968)

illustrated that the displacements computed with this program at any

load are inversely proportional to E/avc,to within about five percent in

the region corresponding to contained plastic flow.1 Accordingly,

except near the ultimate load, the predicted load-deformation behavior

This point has been known for some time. Christian (1966) derived
incremental stress-strain relations for an elastic, perfectly plastic
material. He demonstrated that E could be factored out of the
incremental relations. This is the reason for the proportionality
condition.
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varies inversely as E/lv
vc

The soil properties s and K , and to a lesser degree
uv o

S
uh

K = uh and s , influence the predicted load-deformation sinces s ua
uv

they determine when an element will first yield. In any parametric

study concerned with these properties, it must be remembered that their

influence on the predicted load-deformation behavior is interrelated.

For example, the increment of shear stress required to cause yielding,

Aq/v ,c is controlled by both s and K . A greater increment of

Aq/vc is required to cause yielding if K is increased at constant
S
uv. Conversely, a similar increase in A-q -  would be required if
vc vc

Suv/jvc were increased appropriately at constant K . Even though the

effect of these properties is interrelated, it is desirable to have

information concerning the variation of the individual parameters at

the three overconsolidation ratios. This information is helpful, for

entirely reproducible results were not always obtained in the undrained

shear tests. Furthermore, in field situations, some uncertainty will

always exist concerning values of the soil properties that should be

used for making predictions of foundation performance. Under these

conditions it is desirable that the engineer have information concerning

the effects that uncertainties in the individual parameters will have

on the predicted behavior.

Variations in K at each overconsolidation ratio are con-
o

sidered first. This is followed by a discussion of the effects of un-

certainties in s and s h. Lastly, variations in the s distribution

at a fixed K value are considered for an overconsolidation ratio of
s
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one.

Figure 5-2 shows what effect a 10 percent variation in K has
o

on the predicted load-deformation behavior for the normally consolidated

case. The range of Ko used in preparing the figure equals the range of

K values that is usually encountered for normally consolidated Boston
o

Blue Clay in the laboratory. (See Chapter Four and its related

Appendices). Note that the ordinates of this and other figures in this

section have been expanded relative to those of the model test results

presented in Chapter Three. The strength and modulus values for the

runs in the figure are representative of normally consolidated Boston

Blue Clay. These values will be considered further in Section 5.4.

To provide perspective, model test data have been included in the

figure. The shaded area is bounded by the average curves from the

model tests for cvc values of 2.0 and 3.38 kg/cm2 . The test results

for avc = 1.0 kg/cm2 in general lie above curve 1. Differences in

load-deformation behavior existed in the two runs from a factor of

safety of about 3.4 for the model tests. Throughout this chapter, the

factors of safety of the model tests are reckoned from o//a valuesvc

for p/B = 0.1. On the average, differences in the two predictions are

equal to or less than the observed variations in the model test results.

The effect of at least a 10 percent variation in Ko is shown

in Figures 5-3 and 5-4 for overconsolidation ratios of two and four

respectively. As with the normally consolidated case, the ranges of

K values shown in these figures are approximately equal to or somewhat
o

greater than those encountered in laboratory tests for Boston Blue Clay.
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The strength values noted in these figures are typical for these stress

histories. The average test curves are shown in the figures to offer

perspective concerning K effects for these stress histories. It is
o

apparent from the figures that errors in load-deformation predictions

arising from uncertainties in K decrease as the overconsolidation ratio
S

increases. As the value of K (and _uv ) increases with overcon-
ovc

solidation ratio, a greater increment of shear stress, Aq/a•c, is

required to cause first yielding. Hence, the factor of safety at which

differences in Ko become apparent decreases with increasing overcon-

solidation ratio. For an OCR = 2, the effects of K do not become evident
o

until a factor of safety of 1.5 is reached. At an OCR = 4, a 13 percent

variation in Ko does not have any dramatic effect even at a factor of

safety for the model tests as low as 1.3.

The effect that specifying different values of undrained shear

strength has on the predicted load-deformation behavior for the normally

consolidated case is illustrated in Figure 5-5. A value of K = 0.53
o

was used. It is intermediate between the K values used in Figure 5-2.

Curve 1 was prepared using s uv equal to the largest value thatuv ve

has been measured to date for normally consolidated Boston Blue Clay in

undrained plane strain active shear. The value of suh /vc used in this

run was somewhat larger than the maximum value reported in Table D-l.

Curve 2 was prepared using the lowest values of suv/avc and suh/ vc

that could be considered for later correlations. Relative to the

strength values for curve 1, these curves represent a 10 percent

difference in suv/avc and about a 23 percent variation in suh /vc
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As in Figure 5-2, the shaded area shown is bounded by the average model

test curves at a = 2.0 and 3.38 kg/cm2 . The average test curve for
vc

av = 1.0 kg/cm in general lies above curve i. The combined differences

in suv/Ovc and suh /vc resulted in a larger divergence of the curves

than existed in Figure 5-2 for a 10 percent variation in K . At
o

a/ o = 1.15, curve 2 has a p/B value 1.6 times that of curve 1.
vc

The effects that differences in undrained shear strength have

on the predicted load-deformation behavior for an OCR = 2 are shown in

Figure 5-6. Here there is about a five percent variation in both suv /vc

and s h/c between the two predictions. The values of s v/v are

both within a few percent of those used in the final correlations for

this overconsolidation ratio. In both cases the value of s uh/vc is

larger than that finally used. Some difficulty was encountered in

the plane strain passive tests at this overconsolidation ratio. The

value of s uh/vc used for curve 2 is for the extreme case of no reduc-

tion in the passive strength upon rebound. Therefore, from the stand-

point of strength, curve 2 represents an upper limit for this stress

history. The combined effect of changes in s v/avc and s uh/vc are

evident for factors of safety of 1.6 or less as compared with a factor

of 3.4 for the normally consolidated case. This is expected since sim-

ilar observations were made concerning Ko effects with increasing overcon-

solidation ratio.1 While not within the scope of the present discussion,it

More dramatic effects were encountered in the normally consolidated

case for another reason. The differences in the undrained strengths
for the OCR = 2 case were less, percentage wise, than were those for
the normally consolidated case.
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should be noted that the E/J values used for these predictions did not
VC

yield as good agreement with the average test curve as did the modulus

values shown in Figure 5-3. Modulus values appropriate to each over-

consolidation ratio will be considered in Section 5.4.

The continued insensitivity of initial load-deformation pre-

dictions to small uncertainties in undrained strength which accompanies

increasing overconsolidation is seen in Figure 5-7 for an OCR = 4.

The two predictions did not employ the same value of K o. However, in

view of the observations made with respect to Figure 5-4, any difference

in behavior arising from the unequal Ko values is small. There is

about a five percent difference in both s v/ývc and s uh/vc between

the two runs. This is comparable to the differences in strength em-

ployed in the preparation of Figure 5-6. The two predictions were

identical until a factor of safety relative to the model tests of 1.35

was reached.

Important conclusions can be drawn from the above observations.

It is seen that errors in load-deformation predictions arising from

inaccurately estimating K decrease with increasing overconsolidation
0

ratio. Likewise, differences in initial load-deformation predictions

arising from some uncertainty concerning su decrease as the over-

consolidation ratio increases. However, it should be remembered that

calculations of the ultimate bearing capacity are still proportional

to estimates of the strength.

With the assistance of D.J. D'Appolonia of M.I.T., the author

modified FEAST III to investigate the influences that different
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distributions of undrained shear strength, Suo, for the same Ks value,

have on the predicted load-deformation behavior. Only the normally

consolidated case was investigated. This work employed grid 1 and

used a uniformly loaded flexible footing. All runs employed identical

load increments. The load-deformation plots that follow are based on

the normalized.displacement of the centerline of the footing. The

results are presented for the purpose of making qualitative observations

concerning the effects of differing distributions of s u. Before

extensive quantitative conclusions are drawn concerning this effect, it

is recommended that additional runs be made with a grid such as 4A.

The distributions of undrained strength that were used are

shown in Figure 5-8 along with the algebraic expressions by which they

are defined. Curve 1 is the basic undrained shear strength distribution

of FEAST III. As noted earlier, this is based on the earlier work of

Casagrande and Carrillo (1944). Curves 2, 3, and 4 were chosen for two

reasons. Their algebraic expressions were easily programmed.

Additionally, they have other interesting properties. Curve 2 represents

a case where the undrained strength at yield is approximately constant

for the first 20 degrees of reorientation of the major principal stress.1

Curve 3 represents a case where the undrained strength at yield is

approximately constant for a reorientation of principal stresses greater

than 70 degrees, but changes rapidly during the early.stages of re-

orientation. Curve 4 is a linear relationship which under certain

Throughout this discussion K is assumed to be less than or
equal to 1.
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circumstances might be easier to remember and use. These curves are not

based on further theoretical or experimental grounds.

The load-deformation predictions made with these distributions

are shown in Figure 5-9. The numbering of the predicted curves corresponds

to the numbering of the distributions in Figure 5-8. The shaded area in

the figure is bounded by the average test curves at a = 2.0 and
vc

3.38 kg/cm2

The relative positions of the load-deformation curves look

reasonable intuitively. At any a greater than 20, curve 2 in Figure

5-8 has the largest sut value. This curve experienced the smallest

normalized displacement at any p/B value. Curves 3 and 4 both exhibit

larger p/B values relative to curve 1, for I/vc less than 1.4.

Curve 4 lies below curve 3 for a/vc less than 1.3 and then inter-

sects curve 1 at a/a = 1.43. This suggests that, except near failure,
vc

most of the elements in the grid that yielded, did so for a values

greater than 45 degrees.

One quantitative observation will be made. At a/a = 1.3,
vc

the ratio of p/B for curve 3 to that for curve 2 is 1.24. If the

two curves had had identical s distributions, this displacement
uc

ratio could be explained on the basis of a 25 percent difference in

modulus. This is not a large effect. Furthermore, as the overcon-

solidation ratio increases, K will increase. As this occurs, the

importance of the specific s distribution will decrease. Additionally,

it has been shown that uncertainties in the values of undrained

strength have less effect on the predicted load-deformation behavior
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as the overconsolidation ratio increases. For these reasons, the

Casagrande and Carrillo relationship, curve 1 Figure 5-8, was used in

making final correlations at all overconsolidation ratios.

5.4 FINITE ELEMENT CORRELATIONS OF PREDICTED AND OBSERVED BEHAVIOR.

The final finite element correlations that were made with

the model footing test results are discussed in this section. Emphasis

is given to choosing those soil properties that lead to good agreement

between the predicted and observed load-deformation curves for the full

range of loading. Observations that were made in the previous section for

overconsolidation ratios of two and four showed that for the ranges of

strength and Ko values that are obtained in laboratory tests for these

stress histories, the predicted load-deformation behavior is not

dramatically effected until a factor of safety of about 1.5 or less is

reached. Therefore, one set of average strength and Ko properties

was used in final correlations for each of these overconsolidation

ratios.

For the normally consolidated case it was shown that a similar

range of strength and Ko values will lead to different predictions at

factors of safety less than about 3.5. Instead of making final

correlations with such a range of values, it was found useful to choose

average properties for this stress history as well.

After the values of strength and Ko have been fixed, the only

soil parameter left that will influence the finite element prediction
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is the modulus. An investigation was undertaken to ascertain which

modulus values yielded the best predictions for each case. The ex-

planation for the choice of these values is the main topic of this

section.

5.4.1 Presentation of Final Correlations

The average model test curves and the best finite element

correlations are shown in Figures 5-10, 5-11, and 5-12 for overconsolida-

1tion ratios of one, two, and four respectively. The value of & for
vm

the overconsolidated tests was 3.38 kg/cm 2 . Therefore, initial corre-

lations have been obtained for the normally consolidated tests at

S= 3.38 kg/cm2 . Observations are then made with respect to the soil
Vm

properties needed for correlations with the other normally consolidated

tests.

The s /vc value for the normally consolidated case is theuv vc

average value shown in Figure 4-1. A K = 0.588 was employed, which is
s

Suh
larger than that in Figure 4-1. This gives a s = 0.20. It will

vc
be recalled that failure in two of the normally consolidated plane

strain passive tests was defined at the point of inflection of the

stress-strain curve. This is considered to have resulted in a computed

average strength for the tests which is somewhat low. A K value of
o

0.51 was used for this stress history. Examination of the data in

Two predicted curves are shown in each figure. The curves labeled
"Adjusted Prediction" will be considered later in this section. The
circled numbers denote the total number of yielded elements at the
indicated values of o/v

vc
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differed by 10 percent. A s / value was used that was approximatelyuv vc

equal to the average of the two tests. It was noted in Chapter Four

that the square oedometer, CK U triaxial, and plane strain K values

were not in complete agreement for this overconsolidation ratio. The

K value of 0.93 is taken from the midpoint of the range of the data.
o

A normalized modulus of 400 was used for making final the

correlation with the normally consolidated tests. An E/C = 300 was
vC

used for the two overconsolidated cases.

In the normally consolidated case, Figure 5-10, the footing

displacement is slightly under predicted initially. For a/o valuesvc

from 0.6 to about 1.15 the footing displacements are overpredicted

somewhat and at low factors of safety p/B is once again under pre-

dicted.1 Footing displacements at high factors of safety are over

During the final load increment for this run, several additional
elements yielded. If the prediction had been continued beyond p/B
= 0.04, it would have exhibited increased non-linear behavior.
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Figure 4.r3 and Table D,-2, Appendix D, will show that this value is

reasonable.

The two plane strain active tests at an OCR of two had su vcuv vc

values that differed by three percent. The lower of the two values

was chosen for the final correlations, The value of Suh/vc was taken

from the average curve in Figure 4-1 at this OCR. The value of K = 0.72
0

was taken from the relationship presented by R. Ladd (1965) and replotted

in Figure 4,3.

The s vc values for the two active tests at an OCR = 4uv vc



predicted in both overconsolidated cases and are under predicted at low

factors of safety, Figures 5-11 and 5-12.

It might at first appear odd to the reader that an E/ v = 400
vc

was used for the normally consolidated correlation, whereas a value

of 300 was found best for the overconsolidated tests. The reasons for

choosing these E/ave values will become clear later in this discussion.

Consolidation settlements due to a high value of cv, the

coefficient of consolidation, during recompression in the overconsolidated

stress range is not considered to have necessitated use of the lower

E/c value for the overconsolidated tests. The average times to
vc

p/B = 0.02 and 0.10 in all tests were 3.1 and 15.6 seconds respectively.

Calculations were made of the percent consolidation and the magnitude

of consolidation settlement that could have occurred during the tests.

At p/B = 0.02 the maximum computed percent consolidation was approximate-

ly one percent for the overconsolidated tests when a very conservatively

high value of c was used, 150x10-4cm2/sec. This corresponds to a
V

consolidation settlement of less than p/B = 0.0005. The maximum

computed consolidation settlement at p/B = 0.10 was less than p/B =

= 0.002.

It is concluded that for practical purposes both the normally

consolidated and overconsolidated tests were completely undrained.

Additional information concerning these calculations is given in

Appendix B.
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5.4.2 Preliminary Considerations with Respect to the Choice of
Modulus.1

In order to understand why a lower E/ovc value was needed in

the overconsolidated cases than for the normally consolidated case, it

is necessary to compare the stress-strain curves specified in the

computer predictions with those obtained from laboratory tests. Before

making comparisons among predicted and measured stress-strain curves,

a determination must first be made concerning what stress-strain curves

to compare. Two obvious choices are available: comparison of the

predicted and measured plane strain active curves or comparison of

curves for the plane strain passive condition.

The non-linear behavior of the predicted load-deformation curves

is the result of the yielding of elements in the finite element grid.

One is then lead to consider the orientation of the principal stresses

prior to and at yield, for the elements in the grid that ultimately

yield. If the average a value is nearer 900 than 00, then primary

attention can be directed to the plane strain active stress-strain

curves. Conversely if the average a valve is close to 00 the passive

tests should be given primary consideration. At the same time how-

ever, it should be remembered that the behavior of those elements that

never yield also influence the predicted load-deformation behavior,

for these elements do experience strain.

An examination of the orientation of the principal stresses

at yield, for the yielded elements in the runs at each OCR has shown

1 A summary concerning the choice of the modulus value for use
in the final correlations is presented in section 5.4.6.
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that primary consideration for most of the loading in each case can be

given to comparisons of the stress-strain curves for the plane strain

active case. The results of this study are as follows:

Direction of ac at Yield Measured
From the Horizontal, a (Degrees)

OCR = 1 OCR= 2 OCR = 4

78% >800 69% >700 43% > 700

78% >500 75% >500

The tabulated values are for a p/B = 0.022 for an OCR = 1 and

p/B = 0,018 for the two overconsolidated cases. The percentages are

based on the total number of yielded elements in the runs at the in-

dicated values of normalized displacement.

Comparisons are made in Figure 5-13 among the stress-strain

curves obtained during the plane strain active tests and those employed

in the finite element analyses.1 In the figure the test curves at

each overconsolidation ratio are the average curves of those presented

in Appendix D. The slopes of the yielded portions of the computer

stress-strain curves have not been indicated in the figure. They are

approximately horizontal, since the yielded modulus ratio was 0.001

in all cases.

Figure 5-13 shows that the stress-strain curves of the finite

1 Comparisons between the finite element stress-strain curves and those

measured in the plane strain passive tests are also shown for each
OCR in Figure 5-14. This figure will be considered later in
the section.
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element model are not coincident with the measured plane strain active

stress-strain curves. For an OCR = 1, strains are under predicted in

the finite element analysis for values of Aq/Aqf greater than about

0.4. At an OCR = 2 strains are slightly over predicted for Aq/Aqf

less than 0.55 and are underestimated thereafter. For an OCR = 4

strains are overestimated in the finite element analysis for Aq/Aqf

less than about 0.75 and under predicted thereafter.

In view of these observations, it is necessary to consider the

distribution of stress and strain in the finite element grids through-

out loading in order to understand why the particular modulus values

were employed. Emphasis throughout this discussion is given to comparing

the strains in the bi-linear finite element model with those measured in

the plane strain active tests at equal stress levels,(Aq/Aqf). It

is these comparisons of strain that are used to explain the choices of

the modulus values for the final correlations. The fact is first illus-

trated that the distributions of stress and strain in the finite element

grids change throughout the loading sequence. This is discussed in

relation to Table 5-3 for all three OCR's. Comparisons of strain

between the bi-linear model and the plane strain active test curve at

each OCR are then made to explain the final correlations.

With each overconsolidation ratio, attention was directed

to the stresses and strains that existed throughout the loading sequence

for those elements that yielded at p/B equal to or less than 0.04. The

total number of elements considered was 185, 153, and 123 for OCR's of

one, two, and four respectively. Summary information from this study
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for the three overconsolidation ratios is given in Table 5-3. More

detailed information for each overconsolidation ratio is given in Tables

5-4 through 5-6. With respect to these tables, it is to be noted that

primary attention was given to those elements at each load increment

that had experienced less than 20 degrees of reorientation of the major

principal stress, i.e. oal> 700. This range of a(700 to 900) permitted

making direct comparisons between the Aq/Aqf and strain values for the

elements and those of the plane strain active stress-strain curves.

Note also that the percentages listed in Table 5-3 are with respect to

the total number of elements that yielded in each of the runs by p/B

= 0.04, irrespective of a.

Table 5-3 was prepared to illustrate two points. First, there

are differences in the extent of yielding among the runs for the three

OCR's at the same value of /$a . Secondly, the distributions of
vm

stress and strain of the elements in the grids change throughout the

loading sequence in each case.

Consider the second column for each OCR in Table 5-3. It is

apparent that considerably more yielding occurred at low values of

a/avm for an OCR = 1 than occurred for the overconsolidated cases. For

example, by o/c = 0.46, 52 elements had yielded in the normally
vm

consolidated run as opposed to only 4 at /vm = 0.531 for an OCR = 2.
vm

Likewise, at /a vm = 0.7,81 elements had yielded in the normally
vm

consolidated case as opposed to only 31 at O/a = 0.77 at an OCR = 4.

These observations suggest that more attention should be directed to

the agreement between the unyielded portion of the specified bi-linear
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stress-strain curve and the plane strain active stress-strain curve as

the overconsolidation ratio increases.

The changing distribution of stress and strain in the finite

element grid during loading is further illustrated in the third column

for each OCR. There a summary is given of the total number of elements

that exhibited Aq/Aqf values for the region on the finite element

stress-strain curve where the predicted strains could

be less than the strain measured in the undrained plane strain active

tests. For example, the listing for OCR = 1 is for those elements

(yielded and unyielded with lac>700) that had Aq/Aqf values

greater than 0.4.

It is seen that strains can be underestimated in many elements,

and that the number of elements for which this occurs changes during

loading. At G/a = 0.35, 72 elements in the normally consolidated
vm

case have AA > 0.4. At a/C = 0.7, the number had increased to
Aqf vm

approximately 100 even though only a total of 81 elements had yielded.

At /jvm ==0.43 for an OCR = 2, only about 15 elements exhibited an
vm

underestimate of strain relative to the plane strain active test. How-

ever, by C/v = 0.65, strains were underestimated in more than 60
vm

unyielded elements with IcI>700. The same behavior existed for an

OCR = 4. For example at /vm = 0.77 strains were underestimated in at
vm

least the 20 unyielded elements with la>700 .

The agreement between the predicted and measured footing

1 It will be shown later that strains in many elements can be
overestimated as well.
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performance for each OCR will now be considered. As noted above,

emphasis throughout loading in eachcase is directed to comparing the

strains from the bi-linear finite element model with those measured in

the plane strain active tests at equal values of Aq/Aqf. The most

dramatic effects occurred for an OCR = 4. The prediction for this OCR

will be considered first. Discussions of the predictions at OCR's of

two and one will then be presented.

5.4.3 Discussion of the Final Correlation for an Overconsolidation
Ratio of Four.

Consider Table 5-6 and Figures 5-12 and 5-13. The present

discussion only concerns the prediction shown by the upper dashed line

in Figure 5-12. The curve labeled "Adjusted Prediction" will be con-

sidered later. For purposes of this discussion, the elements in Table

5-6 having Aq/Aqf > 0.69 are considered to form a group for which an

underestimate of strain relative to the plane strain active curve is

possible.1

At l/ave = 1.39 only one element had a Aq/Aqf value for

which there existed an underestimate of strain. Strains were over-

estimated in 28 elements having Aq 0.38 (and for about 45 with
Aqf

Aq < 0.38). These overestimates of strain resulted in the over predic-
Aqf

tion of footing displacement seen in Figure 5-12 for low values of

vc

As loading continued in the finite element analysis, the

1
A value of 0.75 would be more reasonable based on Fig. 5-13.
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predicted footing displacement curve intersected and then underestimated

the model test curve until low factors of safety were reached. Further

examination of Table 5-6 shows why this happened. At a/lvc = 2.27,

11 (7+3+1=11) unyielded elements exhibited an underestimate of strain.

At a/v = 3.07 strains were under predicted in 38 unyielded elements.

Furthermore, the average strain of the yielded elements at this point

was only 0.52 percent, as compared with a failure strain in the plane

strain test of about 1.7 percent. (See Figure 5-13). The underestimate

of strain for this large a number of elements lead to the divergence

of the predicted and measured curves.

Even more divergent behavior existed at al/vc = 3.52 where

strains were underestimated for about 60 elements since the average

strain of yielded elements is less than 0.6 percent.1

The average strain for the yielded elements increased rapidly

after this point. At /la = 3.92 the average strain of the 52
vc

yielded elements in Table 5-6 was 1.25 percent. It is seen that the

predicted load-deformation curve is "breaking" rapidly at this a/alv

and is beginning to "catch-up" with the model test curve.

An adjustment to the prediction in Figure 5-12 will now be

considered. With program FEAST III, the yielded values of the elastic

constants of an element are employed for loading subsequent to the load

increment in which the specified yield stress is equaled or exceeded.

After yield the shearing resistance of an element increases from the

1
The largest strain of the yielded elements was 1.4 percent.
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value existing at yield in accordance with the specified yielded modulus.

Economics dictates the use of a limited number of load increments. There-

fore, it is unavoidable that the apparent shear strength of some of the

yielded elements will be larger, following yield, than desired. The

cumulative effect of the overestimate of strength could affect inter-

pretation of the prediction.

An approximate correction has been applied to the prediction

in Figure 5-12. This was determined as follows. A cumulative average

of the yield ratios at yield, q/qf, for all the yielded elements in

the grid at each load increment was computed. For example it is seen

in Table 5-3 that this average was determined for eight elements at

S/U = 0.576 and for 72 elements at Y/a = 0.88. At /Y = 4.1
vm vm vc

(p/B = 0.04) it was determined for a total of 123 elements.

A pro-rated correction to the original prediction was calculated

at each load increment on the basis of the average yield ratio and the

percentage of the total number of yielded elements at that point. For

example, if at some 0/l the cumulative average yield ratio at yield
vc

for the 61 yielded elements was 1.05, the adjustment to the prediction

would be:

61
5 (-) = 2.5 percent

123

Approximate corrections of this type were determined throughout the

loading sequence.1 The resulting corrected curve is labeled "Adjusted

This correction procedure is approximate for it does not consider the
different sizes of elements in the grid. Furthermore, increases in the
shearing resistance of the yielded elements following yield are not con-
sidered. Error from this point is small since the yielded modulus ratio
was 0.001 and large strains were confined to the region near the footing.
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Prediction" in Figure 5-12. It is seen that the adjusted curve does

not really improve matters very much.

It should now be evident why E/aCv = 300 was used for this OCR.

The intent of the correlation was to achieve general agreement with

the test curve throughout the full range of loading. If a higher

E/ vc had been employed, excellent agreement would have been achieved

initially but even poorer agreement would have been obtained at low

factors of safety. Conversely, a lower E/avc would have yielded better

agreement at low factors of safety, but poorer agreement early in loading.

5.4.4 Discussion of the Final Correlation for an Overconsolidation

Ratio of Two.

The final correlation for an overconsolidation ratio of two

1
will now be considered. See Table 5-5 and Figures- 5-11 and 5-13.

It should be noted that for elements with Aq/Aqf greater than about

0.55, strains can be underestimated relative to the plane strain active

undrained shear tests. At a/a = 0.855 strains were underestimated

in only 13 elements while they were overestimated in 70 to 80 elements.

Up to this value of a/avc, it is seen that the finite element pre-

diction slightly overestimates the load-deformation behavior observed

in the model tests. The magnitude of this over prediction is less

than for the OCR - 4 since the magnitude of the overestimate of strain

is less. (See Figure 5-13.) At oala = 1.07 strains are underestimated

The basic FEAST III prediction will be considered first.
A discussion of Adjusted Prediction follows.
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in 50 elements and overestimated in 30 elements. The finite element

analysis is beginning to under predict the footing settlement at this

point. Divergence of the two curves continues because of the under

prediction of strain in the finite element analysis. At a/v = 1.98,

strains are underestimated in 21 unyielded elements and the average

strain of the yielded elements is only 0.56 percent as opposed to a

failure strain in the plane strain test of about 1.2 percent. Beyond

this point the average strain of the yielded elements with I 1>700

increases rapidly. At a/a = 2.26 it was 1.4 percent, and the pre-
vc

dicted curve had converged with the model test results.

The same type of adjustment was applied to this prediction as

was discussed with regard to the correlation for an overconsolidation

ratio of four. As before, it is seen that the "overshoot" of the

yield stress in the computer prediction does not invalidate the

observations made concerning the effect of the distribution of stress

and strain in the grid.

The prediction of footing displacement at /la values greater
vc

than about 2.0 for the adjusted curve is explained by consideration of

the average strain for the yielded elements. As noted earlier, at

a/vc = 1.98 (unadjusted) the average strain was 0.56 percent. This

is still less than the failure strain in the plane strain active test.

The corresponding adjusted value while closer to the model test curve,

is still above it. The adjustment from a/c = 2.26 lies below the

model test, but the average strain of the yielded elements for this load

increment was greater than average failure strain of the plane strain
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active test. For intermediate values, the failure strain of the undrained

shear test and the average strains for the yielded elements were

approximately equal. Additionally, Suv/ vc = 0.56 was used in the

prediction. This is the minimum vertical strength that has been measured

at this OCR. Therefore, it maybe somewhat low.

The reasons for using E/a = 300 with this OCR should again
vc

be clear. The intent of the correlation was to obtain general agreement

between the predicted and measured load-deformation curves for the full

range of loading. As with the OCR = 4, use of higher or lower values

of E/cv would have resulted in improved agreement at specific

a/r values. However, agreement elsewhere would have been sacrificedvc

and would have resulted in poorer overall agreement.

5.4.5 Discussion of the Final Correlation for the Normally
Consolidated Case.

The final correlation for the normally consolidated case will

now be considered.1 Refer to Table 5-4 and Figures 5-10 and 5-13.

For Lq/Aqf greater than about 0.4,strains can be under predicted in

the finite element analysis. It will be recalled that extensive

yielding occurs at low values of a/avc for this stress history. Hence,

much more of the predicted load-deformation behavior is controlled by

contained plastic flow for this stress history than for the over-

consolidated cases.

This portion of the discussion is limited to the unadjusted
prediction for the test curve at a = 3.38 kg/cm 2 .
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At a/vc values less than or equal to about 0.7, the finite

element prediction is slightly above or coincident with the model

test results. Even though 52 elements had yielded by a/a = 0.46, the
vc

average strain of these yielded elements was only 0.07 percent, as

compared with about 0.55 percent for the failure strain in the plane

strain active test. This explains the under prediction of footing

displacement for high factors of safety. The magnitude of the dis-

crepancy between the two curves is not large in this region. However,

even the differences in the failure strains between the computer and

test curves is not as large in this case as in the others. For example

in the normally consolidated case yielding occurs at 0.035 percent in

the bi-linear model and the average failure strain in the plane strain

active test is about 0.55 percent. Thus the difference in failure

strains is approximately 0.5 percent. For an OCR = 4 yielding occurs

in the computer prediction at 0.45 percent, as compared with failure

at 1.7 percent in the soil test. Thus the difference in failure

strains for this OCR is 1.2 percent, much larger than in the normally

consolidated case.

At ra/c = 0.7 the average strain of the yielded elements was
vc

0.31 percent, very close to the failure strain in the active test. At

about this point the two curves crossed. By a/l = 1.056, thevc

average strain of the yielded elements had increased to 0.81 percent,

and the predicted results agree well with the measured curve.

Reasons for the divergent behavior of the predicted curve for

a/l values greater than about 1.2 are not entirely clear. However,vc
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when an adjustment is made for the overestimate of yielded stress,

more reasonable performance is observed.'

The above behavior is perhaps partially explained by comparing

the predicted and measured stress-strain curves for the plane strain

passive case, Figure 5-14. The finite element stress-strain curves

under predict the plane strain passive strains beyond a certain point

at all values of OCR, but the problem is most severe for the normally

consolidated stress history. In this case strains are under predicted

for Aq/Aqf greater than 0.3 and for practical purposes are never

over predicted. By comparison, in both overconsolidated cases the

strains are over predicted up to Aq/Aqf equal to about 0.5 and are

under predicted thereafter. The normally consolidated prediction

experienced the least abrupt "break" in relation to the model test

results. However as seen above, the problem of under predicting

strains in passive failure is most severe for this stress history.

As with the overconsolidated cases, the E/$a that was used
vc

in the prediction was employed to obtain general agreement throughout

the full range of loading. It is evident that different values of

E/a would have lead to improved agreement locally at the expense
vc

of general agreement throughout loading.

1 Approximately 40 additional elements yielded during the last load
increment for this run. If the prediction had been continued,
the predicted curves would have exhibited increased non-linear
behavior. Drawing on experience from other runs, the approximate
behavior of the adjusted curve has been indicated for further
displacement of the footing.
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The next point to be considered in regard to the normally con-

solidated tests is the choice of the modulus value needed for good

predictions with the tests at a = 1.0 and 2.0 kg/cm2 . The normallyvc

consolidated tests have been replotted in Figure 5-15. The curves in

the figure for a = 1.0 and 2.0 kg/cm2 have been normalized withvc

respect to the ultimate bearing capacity of the test curve for

= 3.38 kg/cm . For example, at p/B = 0.1 in Figure 5-10, the
vc

ratio of /'C/ for the tests at 3.38 kg/cm 2 to those at 1.0 kg/cm 2 is
vc

0.945. The a/v value at any p/B for the a = 1.0 kg/cm2 curve
vc vc

in Figure 5-10 has been multiplied by this factor to prepare Figure

1 25-15. The ratio for • = 2.0 kg/cm is 0.986.
vc

It is evident in Figure 5-15 that when the data are normalized

with respect to the ultimate bearing capacity, significant differences

still exist among the load-deformation curves.2 The model footing

tests at a = 1.0 kg/cm2  exhibited a much more abrupt break in the
vc

load-settlement curve than did the tests at the other two effective

stresses. This may be due to some difference in soil structure at

this low effective stress. While variations in K with a may
o vc

No distinction has been made among the three consolidation stresses
for a/v less than about 0.5.

Differences in sample preparation procedure are not considered to
have caused these differences in behavior. The ratio of the incre-
ment of consolidation stress under the surcharge bag to that with the
consolidation plate was 1.0, 0.6, and 1.25 for the tests at a
= 1.0, 2.0, and 3.38 kg/cm 2 respectively. If disturbance vc

effects due to removal of the consolidation plate and placement of
the footing on the soil surface existed then the tests at avc
= 2.0 kg/cm 2 would not be expected to occupy the
intermediate position that they do.
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be possible, they are not considered very probable. It will be

recalled that in Chapter Four an examination was made of the dependence

of K on the magnitude of a . For a equal to or greater than0 vc vc

2 kg/cm 2 , no dependence was seen between the value of K and the
o

magnitude of avc in the normally consolidated region.

It was observed in Chapter Four that the normalized stress-

strain modulus of Boston Blue Clay did decrease with increasing avc

This was observed for anisotropically consolidated CUDSS tests; see

Figure 4-11. Data in Figure 4-8 for CIU triaxial compression tests also

indicate that the normalized stress-strain modulus resulting from this

type of undrained shear is not necessarily constant but may decrease

with increasing avce

If the relationships between normalized modulus and avc

in Figures 4-8 and 4-11 are extrapolated to 1.0 kg/cm 2 , the normalized

moduli at 1.0 kg/cm 2 are calculated to be from 35 to 40 percent greater

than those at 3.4 kg/cm2 . In the range a/v = 0.8 to 1.2, the

effective normalized modulus of the footing test curve at a = 1.0 kg/cm2
vc

is from 35 to 100 percent greater than that for the curve at ave
= 3.38 kg/cm 2. Thus, the increases in normalized modulus that were

observed over the same range of avc in the direct simple-shear and

CIU triaxial tests might explain much of the observed difference in

footing behavior.

For the same range of a/vc , the effective normalized modulus

of the model test curve at avc = 2.0 kg/cm 2 is 10 to 30 percent greater

than that for avc = 3.38 kg/cm 2. The normalized moduli at 2.0 kg/cm 2

- 98 -



in Figures 4-8 and 4-11 are 27 and 20 percent greater respectively

than those at a = 3.38 kg/cm 2 . The differences in normalized moduli

for this range of ac in the three types of tests are remarkablyvc

similar.

5.4.6 Summary Remarks Concerning the Choice of Modulus Values for
Use in Final Correlations

The important findings of these correlations of load-deformation

behavior will now be reviewed.

A bi-linear finite element analysis was used to predict the

behavior of the model footing. The effects that variations in strength

and K at each OCR had on the predicted load-deformation behavior were
o

investigated. Following this study, values of these parameters for

each OCR were chosen for use in making the final predictions of

footing behavior. An investigation was then conducted to ascertain

what values of modulus yielded a good prediction of footing behavior

throughout loading in each case.

For the rigid footing considered here, the choice of the modulus

value at each OCR was explained by comparing the strains in the bi-

linear finite element model with those measured in the plane strain

active test at equal values of Aq/Aqf. No single factor of safety

with respect to the choice of the modulus value was found applicable

for the three stress histories. The bi-linear stress-strain curves

yielding the best correlations intersected the plane strain active

stress-strain curves as follows: (See Figure 5-13)
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OCR E/vc__ A/f for intersection

1 400 approx. tangent to
curve at less than 0.4

2 300 .55

4 300 .75

The point at which extensive yielding occurred varied with the

overconsolidation ratio and played an important role in the choice

of the modulus. In the normally consolidated case extensive yielding

occurred at high factors of safety. Thus most of the load-deformation

behavior was controlled by contained plastic flow. The factor of

safety at which extensive yielding occurred decreased as the OCR

increased. Hence, more of the load-deformation behavior was con-

trolled by "elastic or prefailure" strains as the overconsolidation

ratio increased. Thus, use of a constant E prior to yield, to

approximate the actual curved stress-strain behavior of the soil lead

to larger differences between the predicted and measured footing

behavior as the OCR increased.

At high factors of safety in the normally consolidated case

the bi-linear model slightly underpredicted the footing displacement.

Then as the strains of the yielded elements increased, good agreement

existed for most of the remaining loading sequence.

In the overconsolidated cases, the bi-linear model resulted in

over predictions of footing displacement at high factors of safety

since the model overestimated strains compared to the plane strain

active test. Conversely, at low factors of safety where the bi-linear
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model underestimated the plane strain active strains, the footing dis-

placements were under predicted.

5.5 ADDITIONAL COMMENTS CONCERNING FINITE ELEMENT CORRELATIONS

In this section several additional factors concerning the finite

element correlations will be discussed. These include observations

concerning the development of a tri-linear finite element analysis,

strain rate effects with regard to the choice of modulus,strain

softening, and observations concerning other improvements to finite

element analyses that may be desirable. These will be discussed in

the order listed above.

An important conclusion resulting from the correlations in the

previous section is that with the bi-linear finite element analysis, it

is difficult to make an a priori statement concerning the modulus

value that leads to general agreement with the model footing test

results. At each overconsolidation ratio, it was necessary throughout

loading, to study the states of stress and strain of many of the

elements in the finite element grid. A comparison then had to be made

with regard to the plane strain active stress-strain curve of the soil,

to determine whether, on the average, the bi-linear stress-strain

curve predicted the soil's behavior adequately throughout loading.

The bi-linear finite element analysis is a very powerful tool.

However, this study has shown that a modification to it is desirable.

As a first step, finite element programs employing tri-linear stress-

strain curves should be developed. Development of these programs

will actually make it easier to obtain good predictions. As it now
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stands, one is forced to over predict strains for one range of Aq/Aqf

and to under predict strains for the remainder of the loading. Then in

order to estimate the potential error in the prediction, it is necessary

to go through the laborious task of compiling the distribution of stress

and strain for elements in the grid so that a comparison can be made

1
with respect to the stress-strain curve for the soil. With a tri-linear

model the net effect of overestimating and underestimating strains will

be reduced. Thus, better agreement will be achieved initially without

having to make a detailed study of the distribution of stress and strain

in the grid.

Mention was made in Chapter Four that the strain rate employed

in an undrained shear test can have an influence on the stress-strain

modulus that is measured. Strain rates of 1.0 percent per hour or less

were employed in the plane strain tests. The model footing tests were

performed within about 15 seconds. The question might be raised con-

cerning why "slow" plane strain tests can be used to analyze "fast"

model tests. No specific answer to this question is possible. However

it should be noted that it was not necessary to resort to strain rate

effects to explain the results. Using the plane strain data, a cogent

explanation for the agreement between the observed and predicted be-

havior was presented for each overconsolidation ratio. For those cases

where significant overestimates of strain existed in the finite element

model, the finite element analyses over predicted the footing behavior.

Conversely, under predictions of footing displacement occurred for

In the future it is recommended that subroutines be written to
perform this task.
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cases where the strains in the "slow" plane strain tests were under-

estimated in the bi-linear model.

It will be recalled that the yielded portion of the stress-

strain curve specified in the computer prediction has a small positive

slope. The point to be considered now is how closely does this specified

behavior approximate soil behavior after yield. Strain softening, a

decrease in the stress difference after failure, occurred in some of the

undrained shear tests studied in Chapter Four. For example, strain

softening occurred in the plane strain active tests at all three over-

consolidation ratios. Conversely, no significant strain softening was

observed during the plane strain passive tests. Is the divergence of

the yielded portion of the stress-strain curve used in the finite element

analysis from the strain softening behavior of the plane strain active

tests important? At the present time strain softening is not considered

in any finite element analysis. Therefore, no definite answer to the

question can be made. However, it is possible to consider how well the

average behavior of the bi-linear analysis approximates the behavior of

Boston Blue Clay.

The plane strain active test results suggest that if strain

softening did occur in the model tests, it should be most predominant

in those areas under the footing that experienced little if any re-

orientation of the principal stresses. The distribution of strain for

the yielded elements with lal>700 was examined for the largest U/5vc

value tabulated for each overconsolidation ratio in Tables 5-4 through

5-6. This information is tabulated in Table 5-7.
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The average strain of the yielded elements, E , was greater
y

than Ef, the failure strain in the plane strain active test, for OCR's

of one and two. However, there is no problem with regard to strain

softening since significant strain softening did not occur immediately

in the plane strain tests. (See Figures D-1 and D-3). At the o/l
vc

studied for an OCR = 4, there is no strain softening problem since e
y

is less than Ef.

As with the discussion in the previous section, it is necessary

to consider the overall behavior of the grid,rather than the behavior

of the "outlying elements". Therefore, while some elements at each OCR

experienced large strains, the effects of these elements can only be

considered significant from the standpoint of how they influence the

average strain. Since the average strains in the above listing do not

indicate extensive strain softening of the soil, the average behavior

of the bi-linear analysis is acceptable in this regard at the indicated

stress levels.

A second point to be considered with respect to strain softening

is the matter of changes in shearing resistance after yield due to

continued reorientation of principal stresses. At the present time, no

specific guidance in this area can be obtained from laboratory data.

However, the FEAST III solutions were examined in this regard in order

to obtain some insight into the problem. There appears to be little

concern with respect to this question since less than five percent of

the yielded elements experienced more than five degrees additional

reorientation of the principal stresses after yield.
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Further research in the area of strain softening may be

warranted. However, before an extensive effort is expended, a tri-

linear finite element program should be developed. Better agreement

between the model tests results and these finite element predictions

is anticipated. The importance of strain softening can then be re-

examined in light of the new correlations.

In Appendix G the patterns of subsurface movements at

hypothetical slope indicator positions were examined for three different

finite element grids. At normalized footing displacements greater than

0.02, erratic subsurface movements were occasionally observed. These

erratic subsurface movements are the result of large strains that

existed in the grids at large footing displacements. Small strain

theory was employed in the development of the finite element program.

If the coordinates of the nodal points are updated after each load

increment, the small strain theory of the analysis may be able to

better handle the large strains that develop.
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CHAPTER 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 SUMMARY AND CONCLUSIONS

A comprehensive series of model footing tests on normally

consolidated and overconsolidated Boston Blue Clay was conducted.

These tests were performed for the purpose of observing the ultimate

bearing capacity and load-deformation behavior of a strip footing for

undrained loading under carefully controlled laboratory conditions

where the stress history, stress state, strength and other properties

of the soil were well known. Strength and modulus parameters were

obtained from consolidated- undrained (CU) plane strain, triaxial

compression, and direct-simple shear tests. Values of Ko, the coeffi-

cient of lateral stress at rest, were determined from plane strain,

triaxial, and square oedometer tests. These soil parameters were used

in theoretical analyses to predict the performance of the model footing.

An analysis of the correlation between the predicted and observed

behavior was made for the purpose of gaining additional insight into

how improved engineering estimates of the undrained stability and

initial settlements of structures in the field can be achieved. It

has been shown that good estimates of footing performance for undrained

shear are possible if the appropriate soil parameters are employed.

The important points resulting from this research are:

1. The model footing test results obtained during this

research demonstrate that the anisotropic undrained
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strength of Boston Blue Clay must be considered if reasonable

estimates of undrained bearing capacity are to be achieved for

overconsolidation ratios of one, two, and four. The maximum

difference between the ultimate bearing capacities measured in

this testing program and that predicted by the Davis and

Christian (1970) theory using anisotropic strengths based on CU

plane strain tests was only seven percent. If the effects of

strength anisotropy and sample disturbance were ignored, pre-

dicted undrained bearing capacities were typically in error by

±15 to 30 percent.

2. Analysis of the load-deformation behavior of the model

footing tests with finite element program FEAST III showed the

following:

a. The load-deformation behavior for the normally consolidated

case was found to be very dependent on the accurate assess-

ment of the vertical undrained strength, s , and of K .

The strength anisotropy of the soil, K and s , while also

important, did not dramatically affect the predicted per-

formance at factors of safety greater than about two.

b. Error in the predicted behavior arising from moderate un-

certainties in s uv Ks, and Ko of the soil, decreased as

the overconsolidation ratio increased.

c. At all overconsolidation ratios the predicted load-settle-

ment behavior was found to be very dependent on the modulus

employed in the analysis.
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3. With the bi-linearly elastic finite element analysis used

in this research, it was not possible to make an a priori

prediction of the modulus value at all OCR's that would lead

to a good prediction of model footing performance for the

full range of loading. Rather, choice of the best modulus

value was dependent on consideration of the stress-strain

properties of the soil at each stress history.

a. In the normally consolidated case extensive yielding

occurred at high factors of safety and most of the load-

deformation behavior was controlled by contained plastic

flow. The bi-linear model in this case predicted the

footing behavior quite well until just before failure.

Strains in plane strain compression prior to failure

were under predicted by the bi-linear model (see Figure

5-13) and thus at high factors of safety there was a

very slight underprediction of footing displacement

(Figure 5-10). There was general agreement throughout

most of the remaining loading sequence as the strains of

theyielded elements increased.

b. As the overconsolidation ratio increased the factor of

safety at which extensive yielding occurred decreased.

Thus more of the load-deformation behavior was controlled

by "elastic or pre-failure" strains. Consequently the

bi-linear stress-strain curve was less able to model the

actual non-linear stress-strain behavior of the soil
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(see Figure 5-13). Differences between the predicted

and measured load-deformation behavior became larger

as the OCR increased. At high factors of safety in

both overconsolidated cases, the footing displacement

was over predicted. Conversely, at low factors of

safety, the finite element method underestimated the

footing displacement (see Figures 5-11 and 5-12).

4. The normally consolidated model footing tests did not

exhibit truly normalized behavior. The normalized modulus

E/c was found to decrease with increasing a (Figurevc vc

5-10). Similar behavior was observed in direct simple-

shear and CIU triaxial compression tests. (Figures 4-8

and 4-11).

5. This research has demonstrated that an integrated

approach.to the solution of engineering problems is

fruitful. The correlations that were obtained demonstrated

that the results of laboratory measurements can be used

with theoretical methods to achieve good predictions of

undrained "field" behavior as measured in model footing

tests.

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

The following laboratory research is recommended:

1. Research on the undrained shear strength behavior of

Boston Blue Clay under plane strain conditions should

be extended to higher overconsolidation ratios.

2. Model footing tests should be conducted at higher
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overconsolidation ratios concurrently with additional undrained

plane strain tests. Both groups of data are needed for

making reliable predictions of load-deformation behavior

at overconsolidation ratios greater than four.

3. Model footing tests having extended times of aging should

be conducted to compare aged "field" behavior with that

observed in other laboratory tests.

4. Larger sized model footing apparatus should be developed

and instrumented so that effective stress analyses of load-

deformation behavior can be studied. A method for observing

sub-surface movements should also be developed and in-

corporated in this equipment.

5. Reference data for undrained stability conditions starting

from K stresses now exist. The area of strength-increases-
o

with-consolidation has received very little attention. The

laboratory equipment and techniques for models tests which

now exist make it possible to consider research in this area.

Much laboratory and theoretical effort will be required.

6. As time permits, research in the following areas would be

beneficial:

a. A concurrent program of drained plane strain and model

footing tests.

b. A concurrent program of plane strain and model footing

tests on overconsolidated recompressed samples.

The following analytical effort is recommended:

1. A tri-linearly elastic (or bi-linearly elastic perfectly
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plastic) finite element program should be developed.

2. Another analysis of the model footing tests should be

conducted with the program that is developed. Emphasis in

this analysis should be directed to two areas. The first

would be the establishment of general guidelines that could

be employed in choosing modulus values for differing over-

consolidation ratios. This is considered possible for the

tri-linear analysis since the net error of underestimating

and/or overestimating strains will be smaller than with the

bi-linear analysis. Secondly, based on the resulting

correlations an assessment should be made of the effects (if

any) of strain softening in the model tests. If strain

softening is considered to be of significance, then a finite

element program having a strain softening capability should

be developed.

3. Existing finite element programs should be modified to update

the nodal point coordinates following each load increment.

This should improve the performance of elements that are

subjected to large strains.
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CHAPTER 8

LIST OF NOTATIONS

Note: A bar over a stress indicates an effective stress

Suffix f indicates a failure condition

1. Stresses

ai ' 1 Major principal stress

a3 ' a3  Minor principal stress

a•, av Vertical stress

ah ' ah Horizontal stress

avc av at consolidation

ahc ah at consolidation

ac Consolidation stress for CIU C triaxial test

Tvm Maximum past vertical effective stress

a Average footing contact stress

Aca, Change in vertical stress

Increments of vertical and horizontal total normal

stress for use in calculating the initial settlement

of a foundation
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(, - ) / 2
.L J

(o, +a.,)/2

qf, Tmax (a1-03 )/2 at failure (maximum stress difference)

Aqf Change in shear stress required to cause failure

Change in shear stress at point in test

norizontal snear stress measurea in airect-simpie

shear test

2. Stress Ratios

Skempton's A parameter

Skempton's B parameter

Coefficient of lateral stress at rest = c ___
nc vc

OCR Overconsolidation ratio = m /vcvm vc

a/a Model footing test stress ratio

3. Strength and Modulus

qf for undrained shear

qf for test in which ao at failure is

vertical direction

f for test in which a1 at failure is

horizontal direction

in insitu

in insitu
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h • D •

. -r ~ · ~· · ·

shear test

2. 

Stress Ratios



s
ue

sue
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qf for soil when r1 at failure is oriented o degrees

from the insitu horizontal direction; term referring

to the distribution of anisotropic undrained shear

strength

qf for soil when a1 at failure is oriented 6 degrees

from the insitu vertical direction

Orientation of a from insitu horizontal direction
1

Orientation of (1  from insitu vertical direction

s /suh uv

Young's modulus; stress-strain modulus

Modulus in insitu horizontal plane

Secant modulus

Initial modulus specified in bi-linearly elastic

finite element analysis

"Yielded" modulus specified in bi-linearly elastic

finite element analysis

Secant shear modulus computed from direct-simple

shear test

Shear modulus in vertical plane

Eo, E

Gvh



4. Dimensions, Displacements, and Strains

Width of Mnr1e1 footinQ

c F L%_L;L-_ %.j LLLsUp- .- J cL- en) oJ Lmo oL , n

settlement of a foundation

p/B Normalized footing displacement

Axial strain at failure in plane strain active test

AXlai strain in triaxial ana plane strain tests

average vertical strain or yielaea elements in tinite

element grid ( Ia>700 )

Shear strain in direct-simple shear test

Model footing test sample height at end of primary

compression for the last normally consolidated increment

Height of solids

Sh Thickness of elastic layer

Lateral displacement of node in finite element grid

5. Miscellaneous

a,b Half axes of elliptical strength plot in bearing capacity

theory of Davis and Christian (1970)

Rate of secondary compression
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Compression index

Coefficient of consolidation

Void ratio

Change in void ratio during secondary compression

Specific gravity

Influence factor for computing the initial settlement

of a foundation

Bearing capacity factor

Plasticity Index

Time required for primary consolidation

Time allowed for secondary compression at a for
vm

model footing, plane strain, and direct-simple shear

tests

Time allowed at a
vm

for triaxial compression tests

Poisson's ratio

Initial water content

Final water content

Liquid limit

Plastic limit
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ARCSIN q/p for plane strain and triaxial tests

ARCTAN Th/ v for direct-simple shear tests

6. Designation of Undrained Shear Tests

CIU C Isotropically consolidated undrained triaxial compression

test with pore pressure measurements

CK U C

CK U PSA
o

CK U PSP
o

CU DSS

Anisotropically consolidated undrained triaxial

compression test with pore pressure measurements

Anisotropically consolidated plane strain active

(compression) test with pore pressure measurements

Anisotropically consolidated plane strain passive

(extension) test with pore pressure measurements

Anisotropically consolidated constant volume

direct-simple shear test

Unconsolidated - Undrained triaxial compression

test
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Table 4-1

COMPARISON OF NORMALIZED MODULUS VALUES FROM
PLANE STRAIN, TRIAXIAL, AND DIRECT-SIMPLE

SHEAR TESTS

Test

Triaxial

Plane Strain

CUDSS

Consolidation
Time at E

(days) vm

%1 to 4

Triaxial Plane Strain CUDSSa.
F.S. OCR

CIU CK U Active Passive
o

4 1 200 530 410 800± 200

3 1 190 380 350 480 180

2 1 175 290 230 230 125

4 2 275 700 420 800± 390

3 2 270 520 370 530 320

2 2 190 335 290 245 225

4 4 370 850 600 800± 420

3 4 350 650 550 625 350

2 4 215 450 525 350 230

S(kg/cm2)vm

6.0

4.0

4.0

Normalized pseudo secant modulus
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Bin Two At Time Of Test

Figure 3-4
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APPENDIX A

INDEX PROPERTIES OF BOSTON BLUE CLAY USED FOR PLANE
STRAIN, DIRECT-SIMPLE SHEAR, AND MODEL FOOTING TESTS

This appendix presents information on the index properties

of the Boston Blue Clay used in the model footing, plane strain, and

direct-simple shear tests discussed in this report. Index properties,

as well as batch properties, are given in Table A-i for the plane strain

and direct-simple shear soil. Index properties of selected model

footing tests are given in Table A-2. A composite plot of the results

of hydrometer analyses on several of the batches and tests is given in

Figure A-i.

Index properties of each batch or model test were not deter-

mined since the soil for the plane strain and direct simple shear tests,

from batch 900 on, was taken from the same storage containers as was

the soil used in the model tests. Furthermore, as much soil as possible

was recycled following use.

The first batch, 100, was prepared in April 1967. Approximate

mineralogical data for the clay are given in Table A-3.
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Table A-2

INDEX PROPERTIES OF BOSTON BLUE CLAY USED IN

SEVERAL MODEL TESTS

- 180 -

Test
No. WL% WP% P.I. Activity

101 40.7 19.6 21.1 .406

104 40.3 19.6 20.7

107 41.3 19.6 21.7

200 42.3 18.5 23.8 .458

400 39.8 18.9 20.9 .445



Table A-3

APPROXIMATE MINERALOGICAL DATA ON BOSTON BLUE CLAY

15 - 20 % Quartz

5 % Chlorite

30 - 45 % Illite

'1.5 - 3 %

<1%

Iron Oxides

Organic Matter

(After Mitchell 1956)
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APPENDIX B

DESCRIPTION OF MODEL TEST EQUIPMENT AND

EXPERIMENTAL PROCEDURES

B.1 INTRODUCTION

A detailed description of the test equipment and experimental

procedures employed in the performance of the model footing tests is

given in this appendix. The equipment is discussed in Section B.2, and

the test procedures are outlined in Section B.3. Calibrations,

calculations, corrections and other miscellaneous information are con-

sidered. in Section B.4.

B.2 DESCRIPTION OF TEST EQUIPMENT

B.2.1 Background

Most of the tests conducted during this investigation

employed some of the basic equipment used by earlier investigators,ý Perez

La Salvia, et.al. (1966). For brevity in this discussion, this equipment

is referred to as Bin One. Bin One is discussed as well as several

pieces of apparatus that were developed by the author during this

investigation. The model footing apparatus that was designed and con-

structed during this research is termed Bin Two.1 The equipment is

described in the sequence in which it was employed during the sample

This appendix contains several photographs of Bins One and Two.
Schematic diagrams of the bins are given in Figures 3-1 and 3-2,
Chapter Three.
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preparation and testing.

In summary, the model tests were conducted on samples of

normally consolidated and overconsolidated Boston Blue Clay that were

one dimensionally consolidated from dilute slurries in 12 inch diameter

bins. Rectangular footings having a length to breadth ratio of eight

were used. The footings were 5 inches long by 0.625 inches wide. The

average soil height at the time of the test was about four inches.

B.2.2 Clay Slurry and Initial Consolidation

The clay was introduced into either Bin One or Bin Two in

slurry form under a partial vacuum with the aid of the equipment set-

up pictured in Figure B-l. The soil was introduced into the apparatus

through a funnel assembly, a portion of which is shown at the top of

the photograph. The equipment shown in the figure is that developed by

the author for Bin Two. It was developed for the dual purpose of use

in the models' program as well as for use as the Soil Mechanics

Laboratory's clay batch preparation unit. The depth of the soil con-

tainer was made greater than that normally needed in the model tests

so that batches of clay of approximately seven inches in height can be

obtained. This soil height is sufficient to permit several 3.5x3.5xl.4

inch horizontal and vertical specimens to be trimmed from the same cake

of soil. All seals between adjacent parts of the apparatus are made

with O-rings. The flanges shown on the bin in the figure were press

fitted and then welded to the soil container prior to its final-

machining. In addition to insuring the circularity of the inside

diameter of the bin, the flanges also serve to protect the ends of the
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unit from damage. The three foot long polyvinyl chloride cylinder

that is shown was employed so that after introduction into the chamber,

the diffused soil slurry would be fully subjected for a short time to

the vacuum existing in the unit. A conically shaped diffuser assembly,

not visible in the photograph, was attached to the lucite top plate.

It was employed to insure that the soil slurry was atomized prior to its

fall through the chamber. The vacuum was applied to the unit with the

flask and vacuum pump shown in the background. Vertical tie rods were

employed to keep all sections of the apparatus centered and in place.

The vacuum apparatus employed with Bin One was similar. Vacuum seals

between adjoining pieces of this apparatus were made with rubber gaskets

and silicone grease rather than with O-rings.

Initial consolidation of the slurry was performed with the

stainless steel consolidation plate shown in Figure B-2. It was loaded

by a 5000 pound capacity Karol-Warner Conbel loader. The plate,

designed by the author, was constructed with a removal O-ring feature

as shown in the photograph. Thus side friction between the plate and

the walls of the bin could be reduced as much as possible after the

slurry had obtained some rigidity. In order to minimize deflections

of the plate, the load from the Conbel loader was transferred to the

consolidation plate through a five inch diameter shoulder ring.

Double drainage exists during consolidation with the plate. The holes

seen in the central region of the plate lead to radial drainage grooves

that collect water from the porous stone that is recessed in the bottom

surface of the plate.
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A plane, level soil surface was achieved by guiding the

consolidation plate with the linear bushing assembly shown in Figure

B-3. A portion of the Conbel loader is also shown in this figure.

The coupling assembly connecting the loader to the consolidation plate

shaft, while awkward looking, was extremely versatile and worked well.

Air pressure to the Conbel loader was provided by an air

compressor. It is possible that pressure surges could have developed

when the air compressor turned on. These were eliminated by placing

an air tank in series with the output line of the compressor. The

pressure to this tank was maintained at a constant level with a Nullmatic

pressure regulator and a Nupro bleed valve. The Conbel was in turn

controlled by a second Nullmatic regulator.

B.2.3 Final Consolidation with Surcharge Bag or Membrane

After a desired consolidation stress was reached, the con-

solidation plate was removed, and subsequent consolidation was performed

with the footing apparatus in place. This consolidation was performed

in Bin One with a surcharge bag. In Bin Two it was conducted with a

surcharge membrane.

In previous work with the Bin One, a circular footing was

used. Since the present research employed a rectangular footing, an

entirely new surcharge bag was needed. The bag that was developed is

shown in Figure B-4. The upper photograph shows the rectangular slot

in the bottom of the bag which accammodated the footing. The lower

photograph is a view of the top of the bag with the footing installed.
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Made from natural latex, the bag was fabricated from three pieces that

were formed on separate molds. The top surface, sides, and the outer

portion of the bottom of the bag were about 0.030 inches thick. The

bottom of the bag adjacent to the rectangular slot for the footing was

from 0.010 to 0.015 inches thick. The author found it necessary to

make this surcharge bag after a local company experienced difficulty

in making a bag with the desired specifications. The diameter of the

bag was made greater than the inside diameter of the bin. Thus, its

bottom surface was never in tension. This prohibited the rectangular

slot from stretching and separating from the sides of the footing.

Visual confirmations of this fact were obtained in special experiments

at several pressures. A stainless steel collar was slipped over the

footing shaft to eliminate friction between the bag and the footing

shaft. This is shown in the lower photograph of Figure B-4. The rubber

collar fabricated into the bag had a length greater than the bag height.

Thus, during the test it was not possible for the collar to stretch and

tend to pull the top of the slot off the footing. The rubber slot

for the footing was very flexible and had a thickness of from 0.010 to

0.015 inches.

The membrane employed with Bin Two is shown in Figure B-5.

This membrane is also made of natural latex. The arrangement illustrated

is that existing at the time the footing apparatus is installed in the

bin in preparation for the final consolidation increment(s). The footing

shaft does not pass through any rubber collar with this apparatus.

Instead, the footing, membrane, and the shaft are sealed at the top
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of the rectangular slot by an O-ring. However, even with the O-ring,

metal to metal contact is still maintained between the footing shaft

and the footing. Thus, the unit did not have to be calibrated for

the compression of the O-ring. The bottom of the membrane was provided

with a convolution to keep it from experiencing tension that would pull

it away from the footing. As with the surcharge bag, the slot in the

membrane was made very flexible so that it would collapse and follow

the footing during the test. The average thickness of the membrane was

about 0.015 inches.

At least one increment of virgin compression was conducted

with the footing assembly in place. Deaired water was used with both

the surcharge bag and membrane. In both cases pressure was applied

with the air compressor through an air-water pressure. interchange

vessel. A long length of polyethylene tubing was used on the outlet

of the interchange vessel to retard air flow into the water in the bins.

The equipment set-up during the final consolidation is shown

for Bin Two in Figure B-61. It should be noted that a Geomeasurements

Inc. triaxial piston unit assembly is used for loading the footing.

The top one inch thick plate was fabricated from aluminum (copper based

alloys would have attacked the latex membrane, a portion of which can

be seen in the photograph ). Even though the top plate is one inch

1
Weights are applied to the footing piston during consolidation to
compensate for the upward thrust of the pressurized water in the
membrane. With Bin One compensating weights are also used during
consolidation. In this case they are used to account for the lack
of surcharge pressure over the area of the stainless steel collar.

- 188 -



thick, it is still subject to some deflection under pressure, since the

span is 12 inches. Accordingly, the dial support was suspended across

the bin as shown. The linear displacement transducer employed during

the test is attached to the vertical rod that supports the dial. Four

Swagelok fittings were installed in the sides of this bin. The upper

two are used to vent air from the bin when the membrane is installed.

Either one or both of the lower fittings can be used to provide lateral

top drainage through a sand pocket. Bin Two is back pressured with a

mercury pot system. Back pressure is applied to the soil through the

fittings to the bottom porous stone and the sand pocket. Back pressures

of up to 2.5 kg/cm2  have been used.

Volume changes during final consolidation with this bin are

monitored with a 200 cc colume change device. The observed volume

change can be compared with that computed by multiplying the vertical

movement of the footing times the area of the bin.

B.2.4 Apparatus Arrangement at Time of Test

The apparatus arrangements at the time of a test are shown

in Figures B-7 and B-8 for Bins One and Two respectively. The 300

pound capacity BLH load cell that records the footing load is suspended

from a cross arm. The cross arm is attached to the shaft of a 1000

pound capacity Simplex Uni-Lift Worm Gear Screw Jack. The cross arm

is in turn restrained to move only in the vertical direction by two

one inch diameter shafts that pass through fixed linear bushings

identical to the one shown in Figure B-3. The footing is advanced into

- 189 -



the clay by driving the jack with the aid of a Graham variable speed

electric motor that is connected to the jack through a Boston Gear

reductor and a universal joint assembly.1

The wires in the center of Figure B-7 lead to the linear dis-

placement transducer that monitors the footing displacement during

the test. This bin is also fitted with a Swagelok fitting so that a

sand pocket can be used for top drainage. (See Figure 3-1).

B.3 SAMPLE PREPARATION AND TEST PROCEDURES

B.3.1 Batch Preparation

The Boston Blue Clay used in the model tests was obtained in

1966 during construction operations on the M.I.T. campus. Typical

properties of the soil are given in Appendix A. It was stored in

galvanized containers at a water content of 60 to 80 percent until the

fall of 1968. The soil was sieved through a number 40 sieve prior to

use, since in its natural state it contained shells and traces of

sand and wood chips. Any soil not used immediately after sieving was

stored in 20 gallon plastic containers.

Each batch of clay (approximately 11.25 kg of solids) was

mixed to a nominal water content of 100 percent at a NaCl concentration

of 16 g/l. The initial water content of the soil to be used was de-

termined the day before sample preparation. Experience showed that

1
The Graham motor and universal joint assembly are shown in
Figure 3-4, Chapter Three.
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the salt concentration of the raw soil was approximately constant from

batch to batch. The salt concentration of the raw soil was therefore

checked about every fourth test. Distilled water and reagent quality

Na C were used to bring the slurry of each batch to the aforementioned

nominal water content and salt concentration. The average water

content actually achieved for each batch is given along with other

test results in Appendix C. The soil was mixed with a hand electric

mixer and spoons. Care was exercised to minimize air entrapment

during this procedure.

The apparatus comprising the vacuum chamber wasassembled and

evacuated to an absolute pressure of less than 4 centimeters of

mercury. Prior to insertion of the soil, the unit was checked for

leaks by isolating it from the vacuum pump and checking for pressure

increases with time. The soil was not inserted until all apparent

leaks were stopped. The inner surface of the consolidation bin was

liberally coated with silicone grease prior to assembly of the vacuum

unit so that friction between it and the soil would be minimized

during subsequent consolidation.

The soil slurry was inserted into the chamber slowly in

several increments. Atomization of the soil was achieved with Bin

One by regulating the soil injection valve. The diffuser assembly

in Bin Two helped atomize the slurry. Even with diffusion of the

slurry it was possible that the excessive air remained in the soil.

Accordingly, after every second increment of soil, insertion was dis-

continued until there was no longer any evidence of air bubbles
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escaping from the slurry surface. The total time for insertion varied

from batch to batch, but usually took from 1½ to 3 hours.

During insertion of the slurry, the valves at the bottom of

the chamber were closed and the vacuum was drawn from the top of the

unit through the vacuum valve near the injection valve. Twenty to thirty

minutes after soil insertion was completed, the top vacuum valve was

closed and the valves at the bottom of the consolidation chamber were

opened to the vacuum flask. The soil injection valve was then opened

slightly so that the pressure in the cylinder gradually increased to

atmospheric pressure. Consolidation of the clay slurry under the

resultant seepage force and evacuation of the water from the bottom of

the unit continued until the soil surface was about one half inch below

the top surface of the bin.

B.3.2 Initial Consolidation

Following disassembly of the vacuum unit, the soil container

was transferred to the Conbel loading frame. Several consolidation

increments were then performed with the consolidation plate. Both top

and bottom drainage existed during this consolidation. All slurries

were subjected to an initial consolidation stress of about 0.07 kg/cm2

for a few hours. The purpose of this increment was to insure that the

consolidation plate was well seated on the soil surface before higher

stresses were imposed. The consolidation stresses were increased to

0.50 kg/cm2  in two increments. Except for two tests, the intermediate

stress was 0.25 kg/cm . Owing to the extensive time required to

complete primary consolidation for the 0.25 kg/cm 2 increment, the

- 192 -



applied stress was increased to 0.50 kg/cm 2 after about 90% consoli-

dation for most tests. The consolidation times allowed for these and

other increments for each test are given in Appendix C, Table C-l.

Further consolidation with the plate was predicated on the intended use

of the clay. Subsequent consolidation for the normally consolidated

tests at &v = 1 kg/cm2 was performed with the surcharge bag. With

the exception of test 100, consolidation for the normally consolidated

tests at v = 2 kg/cm2  was continued with the plate to 1.25 kg/cm2 .

Test 100 and all other tests were consolidated to 1.5 kg/cm2 with the

plate.

B.3.3 Final Consolidation and Rebound

Removal of the consolidation plate and insertion of the

footing assembly was an operation that required considerable care. It

was conducted in the following manner.

Water which had collected on top of the consolidation plate

was sponged or siphoned off and the top of the plate thoroughly dried.

A fine polyethylene tube was inserted into each of the drainage holes

of the consolidation plate and as much water as possible was either

siphoned off or blown out of the drainage grooves and porous stone of

the plate. The bottom drainage valves were then closed, the con-

solidation stress from the Conbel released, and the consolidation plate

removed as rapidly as possible. The plate was easily removed since

the O-ring had been released and thus offered no frictional resistance.

Some adhesion between the soil and the plate was observed. Disturbance

to the soil surface from this factor was reduced by placing a layer of
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filter paper between the soil and the plate when the plate was installed

prior to consolidation. Any water that dropped from the porous stone on-

to the filter paper as the plate was removed was quickly sponged off

with a soft cotton towel in order to reduce swelling. Then the filter

paper was removed,

After the exposed inner surface of the bin was cleaned of any

soil and excess silicone grease, a layer of Saran Wrap was placed over

the soil to retard evaporation until the surcharge bag or membrane

was installed.

Top and bottom drainage through the consolidation plate and

bottom porous stone existed during those consolidation increments with

the Conbel. However, with the surcharge bag or membrane only bottom

drainage would occur unless special provisions were made. Accordingly,

a Swagelok fitting was installed at a location in the bin wall which

would be 0.2 inches below the soil surface at the end of consolidation.

Prior to insertion of the surcharge bag or membrane a volume of soil

one inch long by one inch deep extending one half inch from the bin

wall was removed. The plug in the Swagelok fitting was removed and

filter paper installed on the inner surfaces of the void. The void

was then back filled with sand and the sand densified with a thin rod.

The soil adjacent to the sand pocket was undoubtedly disturbed during

the process of clay removal and sand backfilling. The sand pocket

was therefore located diagonally off one end of the footing, at a

distance of more than 5.5 footing widths, in order to prohibit this

disturbance from influencing the test results.
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The Saran Wrap was removed and two or three layers of filter

paper were placed over the soil surface except for the area-within

about one inch of the footing. After the filter paper had been installed

the exposed inner surface of the bin was coated liberally with silicone

grease to reduce friction between it and the surcharge bag or membrane.

With Bin One, the surcharge bag, with the footing and stainless

steel collar in position, was then placed in the bin. Spacing plates

were placed on top of the bag so that when the top plate assembly was

installed, the bag was compressed vertically. Enough spacing plates

were used so that the bag was compressed more than it would extend

during subsequent consolidation.

Placement of the top plate assembly of this apparatus required

two people. The footing shaft passed through linear bearings in the

assembly. Accordingly, careful alignment of the unit was necessary

before it could be lowered into place. The assembly was suspended at

the top of the test loading frame by a cable and pulley system leading

to a chain fall. While one person controlled the vertical movement

of the top plate, the second guided the footing shaft into the bearing

housing and held the footing off the soil surface. The footing was not

lowered into contact with the soil until the top plate had been lowered

into its final position. The unit was then bolted to the consolidation

ring and bottom plate. The bolts were tightened uniformly so as not to

cock the linear bushing and jam one end of the footing into the soil.

The design of the second apparatus permitted one person to

perform the final equipment assembly. The footing shaft was clamped

in its retracted position until the top plate was bolted in place.
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Thus, if normal caution was exercised, the footing could not damage

the soil surface. The retaining nuts with this apparatus were also

tightened uniformly to avoid cocking the footing.

Consolidation was continued after water had been siphoned

into the bag or membrane. The pressure was increased in steps over

about a 30 minute period to the vertical stress to which .the clay had

been subjected by the Conbel. The next consolidation increment was then

applied. Consolidation of the clay was monitored by use of a dial

gauge attached to the footing shaft. Weights as necessary were placed

on the footing loading assembly to achieve an average stress under the

footing equal to the applied fluid pressure.

After the required time of secondary compression at avm'

the normally consolidated samples were tested and samples for the over-

consolidated tests were rebounded. Except for one test, the time for

secondary compression at a varied from 50 to 65 hours. This corre-vm

sponds to a ratio T s/T from 2.1 to 6.2 as seen in Table C-2,

Appendix C. This range of T /T is similar to that for the plane
s p

strain tests reported in Chapter 4. The time of secondary rebound at

a for the overconsolidated tests was never less than 16 hours.
vc

Particular care was exercised during overconsolidation with

Bin One to maintain a free flow of water through the sand pocket and

filter paper into the bin.

B.3.4 Loading

During the test, the footing load was monitored by a 300 pound

BLH load cell and the footing displacement by a 0.625 inch stroke
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linear displacement transducer. The test data were recorded on a Hewitt-

Packard X-Y Recorder. All electronic equipment was allowed to warm up

under the correct input voltage at least 30 minutes prior to the pre-

test calibration. The pre-test calibrations of the load cell and

transducer were performed on the X-Y recorder. The load cell was

calibrated with dead weights and the displacement transducer with a

micrometer barrel.

In order to fill the surcharge bag and membrane with water,

it was necessary to have two valve connections. This requirement

offered a ready made solution to any potential problem of a sudden

pressure drop during the test resulting from volume change which

accompanied downward movement of the footing. One connection was

made to the water side of the air-water pressure interchange vessel

while the other was made to the air side. During consolidation the

air valve was closed and the water valve open. Before conducting

the test the valve positions were reversed. Thus, air was in direct

contact with the water in the bin during the test. Hence, any problem

with turbulent water flow through valves and fittings, even though

remote, was eliminated.

A strain controlled test was conducted using the 1000 lb.

capacity jack and variable speed motor mentioned earlier. The load

cell was brought into contact with the footing loading assembly prior

to the motor being turned on. Thus, while the test was conducted

rapidly, an impact loading of the footing was avoided.

With the exceptions noted below, a footing displacment rate
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leading to a p/B = 0.1 in 15.6 seconds was used for all tests.

Displacement rates of 9.4 and 8.3 seconds for p/B = 0.1 were used for

tests 104 and 105. The choice of this range of displacement rates is

discussed in the next section. All drainage valves were closed during

the tests.

B.3.5 Post Test Procedures

After the test, the load cell and displacement transducer

calibrations on the X-Y recorder were rechecked. No calibration shifts

occurred.

With both apparatus, the footing could slip out of the

rectangular slot in the bag and membrane unless considerable care was

exercised when placing the pressure elements in the bins. Therefore

after each test a check was made to determine that the footing had

remained in the slot. This was done before either the bag or membrane

was removed. No slippage occurred for any test reported here. Final'

measurements of the sample height were taken after the soil surface

was exposed. Water content determinations were then made throughout

the sample. The results of these measurements are given in

Appendix C.

B.4 CALIBRATIONS, CALCULATIONS, CORRECTIONS, AND OTHER COMMENTS

B.4.1 Calibrations and Calculations

All gauges were calibrated with a deadweight gauge calibrator

1
i.e. p = 0.0625 inches in 15.6 seconds.
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before use. The Conbel loader was calibrated with a 10,000 pound

capacity proving ring, the calibration of which had been previously

checked with an Instron. Although not used directly, the factory

calibrations of the load cell and linear displacement transducer were

checked. Both devices were found to meet the manufacturers' specifi-

cations.

The sensitivity scales of the X-Y Recorder were set so that

each division of the centimeter paper used to record the test data

typically represented 0.75 pounds and 0.0003 inches for the calibration

factors of the load and displacement axes respectively. Readings to

finer values were possible since continuous plots of the data were

obtained during the tests.

The test results were calculated from the X-Y Recorder trace

as follows:

a _ (No. of load divisions)(X-Y Recorder load calib.factor)

a vc (Footing area) ( aC)

= (No. of disp. divisions)(X-Y Recorder disp. calib.factor)

B Footing width.

The a/a valves were adjusted to conform to plane strain conditions
vc

as discussed in the following section.

B.4.2 Corrections

Checks were made to determine the frictional resistance of
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the linear bushings in the footing loading assemblies. Some frictional

resistance between the surcharge bag and the stainless steel collar

and footing shaft was possible under certain assumed conditions.

Friction tests on latex surfaces coated with silicone grease were con-

ducted. The results of these tests were used to assess the error in

the model tests which would occur for a range of conditions considered

to be possible, although not necessarily probable. The range of the

combined error of bearing friction and surcharge bag-collar-footing

shaft friction is as follows:

Pressure at time of Range of uncertainty

test (kg/cm2) in /a
vc

0.844 -.015 to .0071

1.0 -.013 to .008

2.0 -.009 to .012

3.38 -.007 to .0148

The positive number arises from the fact that if the stainless steel

collar lost contact with the footing at any time, then the surcharge

pressure would act over a larger area of the footing than anticipated.

The test results have not been adjusted for these ranges of error. The

data are therefore uncertain to this degree.

The axial compression of the footing loading shaft

was calculated to be 0.0003 inches for the largest applied footing load

of this test series. This compression corresponds to a normalized

displacement of less than 0.0005. Any correction to the recorded
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footing displacements for a test would be variable since the load on

the footing shaft built up during the experiment. In view of the

magnitude of error involved no such corrections have been made.

Following Meyerhof (1951), it was assumed that the bearing

stresses at the ends of the model footing approximated those under a

square footing. Meyerhof further assumed that the bearing capacity of

a square footing is the same as that for a circular footing. The

nominal average footing contact stresses computed from the test results

were corrected for this effect in order to recover the average plane

strain stresses which existed in the central portion of the footing.

Using an N value of 6.2 for a circular footing, the correction for
c

the footing dimensions used in these tests is -2.6%. This correction

has been applied to the average curve for each series of tests. In

applying this correction, it has been assumed that it is applicable

at all stages of the test, rather than only at the value of the ultimate

bearing capacity.

B.4.3 Rate of Loading

The footing displacment rates used during the tests were

determined by the fact that undrained conditions were desired. The

average times to p/B = 0.02 and 0.10 were 3.1 and 15.6 seconds.

An assessment of the magnitude of the consolidation settlement that

could have occurred during the tests was made with the aid of theoret-

ical solutions presented by Poulos (1964). Calculations were made

assuming that the full load was applied at time zero. An impermeable

footing and bottom boundary were assumed. A fully permeable top
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surface was assumed even though the filter paper did not cover the

entire soil surface during the tests. Coefficients of consolidation

used in the calculations were as follows:

Normally Consolidated : 6 to 30x10-4cm 2/sec

Recompression for Overconsolidated range :

37 to 150x10-4 cm /sec

The lower value for each stress history is typical of that determined

from CUDSS tests. The upper value in each case represents a very

conservative estimate for the largest value that is considered possible.

The vertical stress distribution employed in the calculations

of consolidation settlement was taken from a FEAST III run. The

Skempton - Bjerrum method was employed to compute the magnitude of

the consolidation settlement.

The maximum percent consolidation in the normally consolidated

case was 1.1% at 15.6 seconds ( p/B = 0.1). This corresponds to a

consolidation settlement of p/B less than 0.002. At time 3.1 seconds,

the consolidation settlement in the normally consolidated case was

approximately zero. Computations for the conservative c value in the

overconsolidated case yielded consolidation settlements of p/B = 0.0002

and 0.0016 at 3.1 and 15.6 seconds respectively. It is concluded that

for practical purposes the footing tests were completely undrained.

B.4.4 Miscellaneous

The laboratory in which these experiments were conducted was

not equipped to maintain constant temperature. Severe temperature
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fluctuations, particularly during the summer months, were avoided with

the aid of air conditioning.

B.4.5 Model Test Similitude

Roscoe (1968) presented a summary of the criteria which

must be met to achieve similitude in model tests involving soils. His

discussion considers soils, both prototype and model, which exhibit

unique stress-strain curves that are effective stress path dependent.

The similarity of the model and prototype stress-strain curves for geo-

metrically similar effective stress paths is assumed. Additionally,

the stress histories must be identical.

If the above conditions are met then prototype behavior

can be predicted by model tests if there is similitude of body stresses,

boundary stresses, size, time, and strain between the model and proto-

type. Roscoe points out that meeting all these criteria can be a

difficult task. However, under the conditions employed in the model

tests for this research, similitude conditions are easily satisfied.

The maximum soil height used in this testing program was

less than 4.5 inches. Since the minimum preshear effective stress

employed for any bearing capacity test was 0.844 kg/cm2 , it is seen that

body stresses due to soil weight were insignificant. Thus, there is no

need to scale either soil or pore fluid unit weights. This permits

use of the prototype soil in the model. If the stress state and stress

history of the prototype condition are known, these conditions can be

duplicated in the model. Thus, the boundary stress scale factor is

one. Strain similitude is also achieved since identical soils, stresses,
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and stress histories are being used and geometrically similar points

in the model and prototype experience identical loading conditions.

Dynamic similitude considerations due to pore water flow are of no

concern since undrained tests were performed. The size scale is left

as the independent variable which can be chosen for convenience. No

specific prototype was modelled in the program. However, the footing

test results can be applied directly to appropriate field cases on

Boston Blue Clay where body forces are relatively small.
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Surcharge Membrane Bin Two

Figure B-5
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•inal Consolidations Bin Two

Figure B-6
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Figure B-7
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Figure B-8
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APPENDIX C

TABULATED TEST RESULTS AND OTHER INFORMATION ON

MODEL FOOTING TESTS

This appendix contains tabulated results of the model

footing tests and other miscellaneous data.

The normally consolidated tests are numbered 100 through

108. The two tests with an overconsolidation ratio of two are numbered

200 and 201. Numbers 400 through 402 were assigned to the tests with

an overconsolidation ratio of four. The basic data for each test have

been tabulated in terms of p/B and c/a . These tabulations may be
vc

found immediately after the text of this appendix. Test 402 was con-

ducted with Bin Two. The other tests were performed with Bin One.

The consolidation history of each test is summarized in

Table C-i. A composite plot of e - log avc data from the test series

is shown in Figure C-i. -The average Cc value for the tests is 0.366.

This compares favorably with the range of values reported for other

samples of Boston Blue Clay obtained at the M.I.T. campus, Ladd and

Luscher (1965). The results for test 107 show that Boston Blue Clay

having an equivalent pore fluid salt concentration of 16 g/l NaCI and

an initial water content of 100 percent, exhibits a straight line e -

log avc curve for the stress range of 0.25 to 3.38 kg/cm2. I

vc
Values of the rate of secondary compression, Ca, for the

The C value for test 107 is slightly higher than the average value.c

- 213 -



last normally consolidated increment of each test are shown in Figure

C-2. Since each batch was initially a dilute slurry, the usual definition

of Ca as given by Ladd and Preston (1965) could not be employed.

Accordingly, Ca  in this report.is defined, as the ratio of the change

in sample height per log cycle of time during secondary compression,

to the sample height at the end of primary consolidation for the last

normally consolidated increment. Since the maximum difference between

sample heights at avm was only 15%, the C values computed in this

manner can be compared to determine whether the rate of secondary

compression in these tests varied with the magnitude of avm. No

dramatic dependence of C on avm is seen in the figure.

The times of secondary compression at a were approxi-
vm

mately constant for most tests. The values are summarized in Table

1
C-2 along with the values of T /T . The combined effect of the

sp

time for secondary compression and the value of C for each test are

shown in Figure C-3 where the change in void ratio during secondary

compression, Aes, is plotted versus avm. The value of Aes was

approximately constant for all tests.

Water contents were taken throughout each batch of clay

after the model test was conducted. Much of the apparatus had to be

disassembled before the water contents could be taken. This normally

took 15 to 30 minutes, during which time a change in the water content

distribution in the immediate vicinity of the footing was possible.

Comparisons of the water contents among the batches were made using

two values. The first, called the final average water content,

The values of T /T are comparable to the range of values which exists
for the plane sArain tests.
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consisted of the average of 10 to 12 determinations made throughout the

depth of the soil and out radially to within about one inch of the bin

wall. The second value was determined from the average of the water

contents made at depths from ½ to two inches and for distances up to

two inches from the centerline of the footing. This quantity, called

the water content near the footing, was probably not affected very

much by the aforementioned post test water content redistribution.

The two water content values for each test are listed in Table C-3.

The values indicate that the experimental procedures

employed in this program lead to remarkably reproducible results for

each a and stress history. The slightly high water contents of
vm

the 200 series tests, relative to the 400 series tests is not considered

serious. The final average water content is seen to be greater than

that near the footing. This is explained by the fact that the final

average included samples from locations near the bin walls which may

have been influenced by side friction. Secondly, samples in this

average taken from depths near the porous stone may have swelled during

disassembly of the equipment.
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TABULATED FE S TLTS
MODEL FOOTING TEST

100

cr= 2 kg/cm2

.423

.505

.589

.755

.838

.92

1.002

1.087

1.17,

1.252

1.297

1.336

1.354

1.36

1.37

OCR = 1

.0001

.0003

0008

.0014

.0017

.0020

.0034

.0042

.0056

.0073

.0092

.0148

. 0184

.0307

.0407

.o686

.0965

T s = 56.4 hrs
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TABbUATED RESULTS
MODEL FOOTING TEST

101

T= 2 kg/cm2 OCR = 1 T = 50.9 hrs

.1848

.222

.292

.37

.444
.5175
.591
.665

.74

.812

.886

.96

1.035
1.108

1.182

1.22

1.257

1.29

1.33
1.348

1.36

1.376

1.39
1.408

.0005

.0016

.0027

.00374

.0037

.0046

.0051
,0062

.0068

.0083

.0097

.o0116

.0149

.0175

.0208

.o0243

.0319

.0383
.0462
.0621

.0780

.1017
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TABULTLATED RESULTS
IMODEL JOOTING TEST

102

ve == 2 kg/cm2

9/3
.07 54
.151
.226

.28

.302

.377

.452

.529

.603

.68
755

.83

.905

.976
1.054
1.13
1.205
1,2243

1.23

1.32

.0001

.0003

.0007

.0011

.0012

.ooi4

.0021

.0023

.0027

.0034

.0041

.0052

.oo64

.0075

.0096

.0122

.o0156

.0178

,0215

.0274

OCR = 1 Ts = 53.9 hrs
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1.328 .0342

1.34 .0411

1.35 .0479
1.36 .0547

1.368 .0616

1.372 .0684
1.381 .0753
1.392 .0821

1.394 .0889

1.395 .0999



T.ABULATED RESULTTS
f MODETL CTNC~1 0'EST

103

OC9 = 1

- 219 -

= 56, 6

,38 , 0472L,

1.386 9

S1 2-97 .0 587

.414
1.42 .095
1,42 . ...__

I?5 .0003

.-'> .00!

. ,,0016

'7 .0026

- o00-- n2

= " o.0058

1.02 .007

1. 1 ,.!00a9

i, 22 t..011

1 o 016 5
S. ft ,01884

. K .0218

1.* 6. .0287
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TA B• LATED -ULTT
iODEL TOOTING TIET

1o4

c = 2 k•/cm 2 OCR =1 T' = 55 hrs
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M"A3ETLAT d, RES LTS
MODEL TEOTIT> ST

I (- t,

OC = 1.

- 2.21 -

S= 1 k-/im2 IT a - b

Fla
II

2. t:: 05 5 3SC

L.) 40649

, .0721

i.4Lv

1r,# Itr .O9

1.48 , 0 8

181 0001
S28 . 0008

322 2 O01

.6 I .0015
*0 -002 14

1 9 -7 o 2 o:90035.. 9 . 't

.967 ,,053

, 0 35 .0061

1 !O .0072

1,3 .2) •O1

1. 372 1•i4

', 44 .o)216

1.4 , tEt :2 b 3.
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TABUIATTED RES3ULTS
MODEL FOOT.TNG( TEST

107

,cca 1t Ts, =5Q.,• P hrs

- 223 -

S.I ~(JTC

, 234 .0 195

1.269 024-,

1.293 .0301
LGq ,(0362
1. 316 .•422

I. 3283 .o419 •.
1. 3428 .•85

S1.349 .0649

-1. 36 .0829
1. 3:69 .,09?2

1. 372 .1

Data Listed f or . 019
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TAB ILATED RESULTS
MODEL ?FOOQTING TEST

4o02

OCR = 4. 2T 1=07.2 r
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. 275t 1 .,oo•0.

- 5502 .r0002

.0253 .o008
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Table C-2

ELAPSED TIME FOR SECONDARY COMPRESSION FOR
THE LAST NORMALLY CONSOLIDATED INCREMENT

- 235 -

Test Elapsed TimeTest Time for Secondary Tfor s
SecondarySecondary Time for Primary T

Compression p

100 56.4 2.64
101 50.9 2.16
102 53.9 2.80
103 56.6 2.83
104 55 2.62
105 57 2.63
106 63.6 2.24
107 50.8 2.78
108 65.3 2.38
200 50.0 4.28
201 63.8 2.06
400 60.5 4.95
401 61.5 6.15
402 107.2 5.15



Table C-3

MODEL TEST WATER CONTENTS

- 236 -

Final Water
Test Average Content Near cavm vcWater Content Footing (g/m2 (kg/cm2

% %(kg/cm (kg/cm

100 33.74 33.22 2.0 2.0
101 33.63 32.76 2.0 2.0
102 33.14 31.88 2.0 2.0
103 34.10 33.35 2.0 2.0
104 34.18 33.41 2.0 2.0
105 38.26 37.52 1.0 1.0
106 37.83 37.0 1.0 1.0
107 31.02 31.0 3.38 3.38
108 32.13 31.5 3.38 3.38
200 32.47 32.0 3.38 1.69
201 32.5 32.0 3.38 1.69
400 32.05 31.7 3.38 .854
401 32.09 31.6 3.38 .844
402 32.31 31.97 3.38 .845
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APPENDIX D

MISCELLANEOUS INFORMATION ON PLANE STRAIN TESTS

AND MEASUREMENTS OF K
o

This appendix contains miscellaneous information on the

stress-strain-strength characteristics of Boston Blue Clay determined

in plane strain for overconsolidation ratios of one, two, and four.

Summaries of K measurements from several sources are also given here.
o

Tabulated summaries of the tests are given in Table D-l.

Stress-strain curves for several of the tests are shown in Figur eD-1

through D-6. Except for test A-8, only those tests have been plotted

that experienced at least 16 hours of consolidation after removing the

side platens for the last normally consolidated consolidation incre-

ah v
ment. For the passive tests, the ordinate h v refers to the

a
vc

difference between the horizontal and vertical insitu stresses.

Therefore, no distinction need be drawn, in the figures, between

horizontal and vertical K tests. Curves of the normalized secant
0

modulus, Es/ vc versus applied shear stress ratio, Aq/Aqf for

several tests are shown in Figures D-7 and D-8.

Table D-2 presents summary data of Ko determinations from

several sources.
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Table D-2 (1)

K DETERMINATIONS

Plane Strain Tests a.

a. All K values based on applied cell pressure
o

b. K value with membrane correction
o

Other values without correction: AK + .004 to +.007
0

- 243 -

K Value OCR vY (kg/cm2 ) 2 (kg/cm2 ) No. of
Determi-
nations

.513 1 2.0 - 7

(.497 -.545)

b.
.513 1 4.0 - 9

(.498 -.525)

.703 2 2.0 4.0 4
(.662 -.730)

b.
.867 4 1.0 4.0 5

(.80 -.897)

b.
.85 4.25 .908 3.86
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APPENDIX E

MISCELLANEOUS INFORMATION ON CU TRIAXIAL COMPRESSION

TESTS

This appendix presents miscellaneous information on the

CIU and CK U triaxial compression tests presented in this report.
o

Table E-1 presents information on index properties, batch preparation,

and pore fluid salt concentrations for the triaxial tests studied.

Table E-2 presents summary information on triaxial tests discussed in

this report that have not been reported elsewhere. Table E-3 gives

summary information from Bailey (1961), and Table E-4 presents summary

data from Braathen (1966). Figure E-1 shows the normalized secant

modulus values, E /a for the tests reported by Bailey (1961) for
s vc

two very different salt concentrations. No dramatic environmental

effects are evident in the figure.
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APPENDIX F

MISCELLANEOUS INFORMATION FOR CONSTANT VOLUME

GEONOR DIRECT - SIMPLE SHEAR TESTS

This appendix contains a tabulated summary of constant

volume direct-simple shear tests performed on Boston Blue Clay. This

summary is given in Table F-1. A brief description of a limited number

of special overconsolidated tests is also given here. The results of

these tests are presented in Table F-2.

Three special tests were conducted in which the samples

were consolidated to a maximum past pressure of 4 kg/cm 2. They were

then rebounded to an OCR = 8. This was followed by reconsolidation,

herein termed recompression, to a lower overconsolidation ratio as shown

for each test in Table F-2. Constant volume tests were then performed.

The sample recompressed to an OCR = 1 exhibited a (Th )max vc

value that was only a few percent greater than any of the conventional

normally consolidated tests. This sample had a lower preshear void

ratio than first existed at the maximum past pressure. It exhibited a

a /Cvc ratio that was higher than most of the conventional tests. This

is analogous to a lower positive excess pore pressure development.
(Th)max

The recompressed OCR = 2 sample had a ratio that

•vc
was only 91 percent of the conventional OCR = 2 samples. It also

exhibited a smaller strain to failure and a lower a /a ratio than
v vc

the two conventional tests. The latter behavior is analogous to the

development of greater positive excess pore pressure. The behavior of

- 260 -



the recompressed sample relative to the conventional samples is

attributed primarily to the higher void ratio that should have existed

during this test relative to the conventional samples. Reference to

the consolidation chapter of any standard soil mechanics text will

illustrate this point. The lack of a final water content, however,

precludes making a direct comparison of the void ratios of the three

samples.

Similar statements are appropriate for the recompressed

OCR = 4 sample. Its strength at (T h)max /v was only 90 percent of

the conventional OCR = 4 samples.

The normalized pseudo-secant moduli from the recompressed

OCR = 1 test fell within the high range of the conventional normally

consolidated tests. The modulus ratios for the overconsolidated

recompressed specimens were from 0 to 30 percent lower than the values

for the corresponding conventional stress history.

The above observations on strength and modulus for the

overconsolidated recompressed samples have important practical applica-

tion. On jobs where low factors of safety are anticipated, the

engineer is advised to determine whether any overconsolidated strata

are of the rebounded or recompressed variety.
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APPENDIX G

FACTORS INFLUENCING FINITE ELEMENT CORRELATIONS

The reliability that can be attached to the correlations

obtained with finite element analyses and model footing tests is

dependent on many factors. Good quality model footing tests are

desired. Likewise, it is desirable that good undrained shear test data

be available for choosing soil parameters for the finite element pre-

dictions. The quality of the finite element analyses must also be

considered. Some of the factors affecting their reliability are dis-

cussed in this appendix. This discussion is limited to the observations

made with an existing program, FEAST III, D'Appolonia (1968).

Emphasis in this discussion is placed on a comparison of

three basically different finite element grids, numbers 1, 2, and 4.1

Certain improvements were made in grid 4 with an additional grid,

number 4A. Grid 4A is considered in the following discussion where

appropriate, and is discussed in some detail at the end of this

appendix. The grids are illustrated in Figures G-1 through G-4.2

Grid 1 is very similar to that employed by D'Appolonia (1968) in

1
Grid 3 did not differ appreciably from grid 2 and is not
discussed here.

2
The term "Reflection Boundary" has been applied to the right hand
boundary in each grid to denote a boundary that is rigid with regard
to lateral displacement and frictionless in the vertical
direction.
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earlier correlation efforts.

The first factor to be considered is the overall size of the

finite element grid relative to the dimensions of the loaded area.

Drawing on the experience of D'Appolonia (1968), grid depths and widths

of at least five and four times the width of the footing, respectively,

were employed. These compare to relative depths and widths in the model

tests of 6.5 and 8.0 respectively. The grid dimensions employed,

particularly in grids 4 and 4A, resulted in the zones of yielding being

no closer than three footing widths from the fixed or reflected boundaries

at normalized footing displacements of about 0.02. It will be shown,

that beyond this normalized displacement, the finite element correlations

should be considered with some reservation.

The vertical elastic stress distributions with depth under

the edges of the footings in grids 1, 4, and 4A are compared in Figure

G-5. These distributions were made for cases in which the footings were

uniformly loaded and flexible. Also shown for comparison is the vertical

stress distribution predicted for the same loading conditions and a

Poisson's ratio equal to 0.5, by Poulos (1967) for a soil layer under-

lain by a rough rigid base at a depth of five footing widths. The

stress distributions from grids 1 and 4 are adversely affected by

triangular elements as seen by the irregularities in the stress distribu-

tion curves. These observations demonstrate that the use of triangular

elements should be avoided as much as possible. If triangles are

employed in transition zones between elements of different size, the

triangles should be located as far as possible from zones of high stress
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gradients.Quadrilaterals rather than triangles were used as transition

elements in grid 4A. Irregularities in the vertical stress distribution

were thus eliminated. Unsatisfactory performance of triangular elements

for axisymmetric problems is reported by N.G.I. (1969).

Using a finite element grid having four elements under the

half width of the footing, D'Appolonia (1968) demonstrated that the

load-settlement behavior of rigid and flexible footings is almost

identical. A uniform displacement was applied to the rigid footing and

the average resisting stress computed. Nodal loads yielding a uniform

applied stress were applied to the flexible footing and the footing

displacement was monitored. Hoeg, et al. (1968) present similar results

for a homogeneous soil using a lumped parameter model. A verification

of these observations for grid 4 is shown in Figure G-6. Grid 4 had

eight elements under the half width of the footing. The exercise was

performed using soil parameters corresponding to an overconsolidation

ratio of four for Boston Blue Clay. In Figure G-6 it is seen that the

two methods of solution gave essentially identical results up to

/avc = 3.25. The centerline displacement of the flexible footing has

been plotted. Based on these observations, the two methods of solution

should give similar results in terms of load-settlement behavior, for

overconsolidation ratios of one and two.

The fact that the stress distribution under the rigid footing

can be erratic is illustrated in Figure G-7. Stress distributions for

grids 2 and 4 are compared for the row of soil elements adjacent to the

rigid footing. The soil parameters used for the two runs correspond to
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those for normally consolidated Boston Blue Clay. The only significant

difference in the parameters for the two runs was the value of E/-vc

vcThe run for grid 4 employed E/yve = 400, whereas a value of 300 wa.s used

for grid 2. D'Appolonia (1968) illustrated that the displacement of a

footing predicted by finite elements is inversely proportional within

about 5 percent to E/a in the area of contained plastic flow. Using
vc

proportionality, the normalized displacements, p/B, for grid 4 noted in

Figure G-7 have been adjusted to correspond to E/a = 300.
vc

Another observation that can be made from Figure G-7 is that

the distribution of vertical stress in the elements immediately under

the footing is more erratic in grid 2 than in grid 4. Triangles were

placed in the grid 2 at a depth of B/4, whereas rectangles existed at

the same depth in grid 4. This observation provides more justification

for employing triangles as sparingly as possible. No comparative run

was made with grid 1. for a uniformly displaced rigid footing. The

location of triangles in this grid would almost certainly lead to an

erratic distribution of vertical stress under the footing. Carrier

(1968) investigated the vertical stress distribution under a rough rigid

plate. He used a finer mesh than those employed here. As expected,

the distribution of vertical stress which he observed under the footing

was more uniform than those observed in this investigation.

Good agreement between finite element predictions and measured

load settlement behavior might be achieved. However, these correlations

should be considered in the light of the reasonableness of the pattern

of subsurface movements and plastic yielding. No laboratory observations
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in this area were made. However, the reasonableness of the finite element

solutions can be assessed.

On the basis of the above discussion one might expect

that a different confidence factor would be applied to the correlations

obtained with the three grids. A discussion of the relative behavior of

the three grids for approximately constant normally consolidated soil

parameters will be presented first. This will be followed by consider-

ation of the behavior of grid 4 for varying soil parameters.

The soil parameters used in the comparative study of the

three grids for the normally consolidated case are given in Table G-l.

Limited nodal displacement output was employed for the grid 2 run

having the anisotropic undrained shear strength. Comparison of sub-

surfaceimovements among the grids has therefore been made with the grid

2 run having the isotropic undrained strength. This difference in

soil properties is not considered to adversely effect the qualitative

conclusions that have been drawn. Comparisons of yielded zones among

the grids have been made using the grid 2 run with the anisotropic

strength. For internal consistency, the footing displacements at which

comparisons have been made have been adjusted, if necessary, by pro-

portionality to correspond to E/a = 300.
vc

Comparison of the subsurface movements for the three grids

is made by consideration of the lateral movements that were predicted

at two hypothetical slope indicator locations. One slope indicator

is located at the edge of the footing and the second at B/4 from the

footing. The slope indicator at the edge of the footing is located in
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an area having very large stress and strain gradients. Movements for

the edge slope indicators are given in Figures G-8, G-9, and G-10 for

grids 1, 2, and 4 respectively. Plots of the predicted slope indicator

movements for the location B/4 to the side of the footing are shown in

Figures G-11, G-12, and G-13 for grids 1, 2, and 4 respectively. In

all these figures the parameter AR/p is plotted versus depth. The

ratio AR/p is the ratio of the lateral movement of the node under

consideration, to the vertical movement of the corner node of the footing.

A uniformly loaded flexible footing was employed for grid 1. For grids

2 and 4 a rigid footing was used wherein the nodes at the interface of

the footing and soil were uniformly displaced.

It should be noted that decreasing values of AR/p with

increasing values of p/B do not indicate that the nodal point in

question is moving toward the footing. The absolute movement of the

node is coupled to the value of p/B. Unless otherwise noted, study of

these data has shown that for the load increments considered all nodes

except those in grid 1 experienced continued outward movement as the

footing penetration increased. However, as is evident from these figures,

this continued outward movement was not always uniformly varying.

The lateral movements under the edge of the footing in grid 1

are not satisfactory. The behavior of grids 2 and 4 at the same location

are much better. Except for the second node below the footing, the

pattern of displacements for grid 4 are uniformly varying for p/B up

to 0.012. For the second load increment, the second node did move

inward. Likewise there is some erratic behavior under the edge of the
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footing in grid 2 for low values of p/B. For values of p/B equal to

or greater than about 0.02, the behavior of grids 2 and 4 are different.

In grid 2 the lateral movements to a depth of B/4 are very large

relative to the lateral movements at greater depths. The interface

between the square elements and the triangular transition elements is

located at a depth of B/4 in this grid. The change in the relative

magnitude of lateral movement for large values of p/B in grid 4 at a depth

of about one footing width is associated with a transition from a zone

of general yielding to a zone that had not experienced extensive

yielding.

The lateral movements for normalized displacements up to

0.03 are well behaved for the three grids at the slope indicator position

B/4 from the footing. The uniformly varying nature of the subsurface

movements is seen to have broken down for large footing displacements

with grids 1 and 4. It should be noted that the footing displacement

shown for grid 4 is greater than seven percent of the footing width.

The erratic nature of the subsurface movements at both slope

indicator positions for normalized footing displacements of greater than

0.02 does not mean that the finite element analysis is at fault. Small

strain theory was employed in the development of the program. Strains

of greater than 20 percent were observed in elements near the corner

of the footing for normalized displacements greater than 0.03. This

combination of large strains with a small strain theory formulation may

be one of the principal factors that caused the observed behavior. This

observation suggests that the results of finite element analyses for
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the type of foundation problem considered in this report should be

viewed with reservation for normalized displacements greater than about

0.025. Fortunately, the ultimate bearing capacity in the model tests

was largely mobilized before this normalized displacement was reached.

Patterns of yielding in the three grids for two nominal values

of p/B are shown in Figures G-14 and G-15. For clarity in Figure

G-15, the yielded zones for grid 4 have been shaded. For the sake of

comparison, the boundaries of these zones have not been "smoothed"

out. There is general agreement in both figures between grids 1 and 2.

The yielded zone for p/B = 0.01 in grid 4 does not extend as far

laterally as do the zones for the other grids. The lateral growth of

the yielded zones for other grid 4 normally consolidated runs were in

closer agreement to those shown for grids 1 and 2.

For the larger p/B value, a yielded zone is seen to lie

within an unyielded .area for grid 4. Grid 4 is not entirely alone in

this respect however, for similar behavior was observed for the grid 2

run having the isotropic undrained shear strength. See Figure G-16.

There are 104 elements below the footing in grid 4 from the surface to

a depth of 2B. In the same region in grids 1 and 2 there are 76 elements.

There are many triangles in this area for grids 1 and 2 but none there

for grid 4.

On the basis of the observations made thus far, the following

conclusions can be drawn concerning the reliability that can be

attached to the correlations obtained with the three grids. The patterns

of subsurface movements in grid 1 are poor enough to eliminate it from
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further consideration. Other adverse factors associated with grid 1 are

its vertical stress distribution with depth, and the almost certain

highly erratic stress distribution under the footing.

Grid 4 had a less erratic stress distribution under the footing

than grid 2. Although no specific run was made to check this factor,

the vertical stress distribution with depth in grid 2 is considered to

be less acceptable than that with grid 4, because of the triangular

elements that existed in this mesh. Although both grids showed erratic

subsurface movements under the edge of the footing, grid 4 exhibited

better overall performance for all normalized displacements studied.

At B/4 away from the footing, both grids were well behaved until large

values of p/B.

Grid 4 was considered superior to grid 2. It was used in

parametric studies concerning the effects that variations in soil param-

eters have on the load deformation behavior of normally consolidated and

overconsolidated Boston Blue Clay. For the reasons discussed at the end

of this appendix, Grid 4A was employed in making final correlations with

the model test data.

How much difference does exist between the results obtained

with different grids for the same soil properties? The answer to this

question is illustrated in Figure G-17.

The soil properties used in the two runs were identical except

for the values of E/I . For grid 2, the value of E/0 equaled 350.
vc vc.

The normalized displacements for this run were adjusted to correspond to

a value of E/a equal to 400 before they were plotted in the figure.vc
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For values of a•/- less than 0.8, the grid 2 results lie above those
vc

of grid 4. For larger values of /avc , the grid 2 curve lies below that

for grid 4. The percentage difference between the' normalized displace-

ments at a/lvc = 0.6 is about 35 percent. The absolute magnitude of

difference between the two runs at this point is however, quite small.

At /crve = 1.2, grid 2 has a p/B value 1.25 times that of grid 4.

Correlations with a given grid for different overconsolidation

ratios require the specification of different initial stress states and

soil parameters. The possibility was considered that acceptable sub-

surface movements, yielded zones, and load-settlement correlations could

be obtained with grid 4 for the normally consolidated case, while

unacceptable results would result because of these factors for the over-

consolidated cases.

The soil properties for the overconsolidated runs to be dis-

cussed are given in Table G-2. Subsurface movements for the same slope

indicator positions discussed earlier are given in Figures G-18 and

G-19 for an OCR = 2 and in Figures G-20 and G-21 for an OCR = 4. It

is observed that there has been an overall improvement in the conditions

for an overconsolidation ratio of two. There is erratic behavior

immediately under the footing, but the deviations from the average curve

are less than for the normally consolidated case. The behavior is

excellent for p/B values less than 0.01 at both slope indicators for

the overconsolidation ratio of four. For all practical purposes, failure

occurred in this run at p/B f 0.015. This explains the erratic subsur-

face behavior at the larger footing displacements.
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Patterns of yielding near failure for these runs are shown in

Figure G-22. Two small areas of contained "elasticity" existed for the

OCR = 2 run as shown by the shaded areas. The depth of the yielded zone

is seen to decrease with increasing overconsolidation ratio.

Another factor affecting the load-settlement behavior predicted

by Feast III is the size of the imposed load increment. The elastic

constants for an element are changed to the "yielded" values only if

the specified yield stress is reached or exceeded during the latest load

increment. After "yield" the shearing resistance of an element increases

in accordance with the yielded modulus. If due to a large load incre-

ment, the specified yield stress is exceeded by a significant degree,

the shearing resistance of the element for the remainder of the problem

will be too large. The cumulative effect for many elements could affect

the predicted load-deformation behavior.

The effect is illustrated in Figure G-23 for two runs with grid

4 employing soil parameters for normally consolidated Boston Blue Clay.

Both runs were identical in every respect except that in the first, 19

load increments were used to achieve a p/B = 0.01, while in the second,

only six increments were employed to reach the same footing displace-

ment. The difference between the two runs is not large. Oddly enough

the stresses for the two runs at p/B = 0.01 were almost identical.

The prediction for which six increments were used should not be con-

sidered the limiting case. If only one increment had been used then

an elastic solution would have resulted for this displacement and the

footing stresses would have been much larger.

Prior to making final correlations with the model test data,
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a reassessment of the performance of grid 4 was made. The following

modifications to grid 4 were incorporated in grid 4A. The two rows of

rectangles under the footing at a depth of approximately 2B, which had

a length to breadth ratio of six, were replaced by three rows having

a ratio of four. All but three of the triangles in grid 4 were replaced

by quadrilaterals in grid 4A. The improvement that this made in the

vertical stress distribution with depth was discussed earlier (Figure

G-5). Also, the behavior of quadrilaterals is considered to be superior

to that of triangles when yielding occurs. The depth to width ratio of

grid 4A was made equal to six, to be in closer correspondence with that

existing in the model tests. The grid width was rounded out to 5B.

Comparative runs for the two grids were made. Identical normally con-

solidated soil parameters were used and the load increments were the

same. The comparison is shown in Figure G-24.
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Table G-1

NORMALLY CONSOLIDATED SOIL PROPERTIES USED

IN COMPARATIVE STUDY OF

GRIDS 1, 2, AND 4

Bulk modulus maintained constant after yield by adjustment
of yielded Poisson's ratio.

Yielded modulus ratio = .001
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Grid su/a K K E/a vuv VC S 0 VC

1 .335 .6 .5 300 .49

2 .33 1.0 .5 300 .495

.342 .6 .5 350 .49

4 .32 .563 .53 400 .495



Table G-2

SOIL PROPERTIES FOR THE EVALUATION OF THE
PERFORMANCE OF GRID 4 FOR USE IN

OVERCONSOLIDATED CORRELATIONS

v = .495

Bulk modulus maintained constant after yield by adjustment
of yielded Poisson's ratio.

Yielded modulus ratio = .001
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OCR s /u K K E/cuv v S 0 VC

2 .55 .688 .69 400

4 .9 .61 .89 300
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